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Abstract 

Users do not always know what they want, in which case traditional query-based image 

retrieval approaches fail. This thesis serves to amend this shortcoming with a novel approach 

to organize and browse large image collections based on visual similarities in a way that 

extends the user's natural search sense. Starting with an unordered set of images, salient color 

and gradient information are extracted into feature vectors. A self organizing map (SOM) then 

projects these high-dimensional vectors onto a 2D canvas so that similar ones are grouped 

together. When browsing around on the canvas through intuitive operations like pan and 

zoom, a dynamic collage is generated that shows the most pertinent images. To make 

organizing larger image collections practical, a parallel SOM training algorithm is designed 

that runs on graphics processing units. The results of using a variety feature vectors are also 

evaluated. 
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Chapter 1 Introduction 

Since the dawn of the digital camera photos have gotten easier and cheaper to take, store, 

and share. One of the primary reasons many consumers own a computer is to manage the 

photos they take. As a result of this, the amount of visual data circulating cyberspace is too at 

an all time high. Massive online databases of community photos are cropping up constantly. 

Due to the proliferation of all of this visual content in the past decade or so there became a 

need to be able search that content not with text, but rather by submitting the content the user 

had to get more of it; as a result content-based image retrieval was born. Up until that point 

users would query against metadata they or others had created describing the available 

images, be it filenames, directories, and/or keywords, and then cycle through the results in 

sequence. Accompanying thumbnails are provided in most cases but this visual aid is usually 

a secondary means of narrowing the search. People in the field were tired of trading apples for 

oranges and started to design new ways of capturing the essence of images discretely so they 

could then use that captured data in systems that would enable users to find what they wanted, 

when they wanted, the way they wanted. Some systems were completely automated, some 

required search-time user feedback, but on the whole they all addressed the issue as a query

to-results problem. The people behind such systems posited that their users, like their text 

searching counterparts, knew what they were in search of. Though sound, this postulate 

overlooks one indelible nuance of human behavior, impulse. When we go to the supermarket 

on an empty stomach and leave with the cart twice as full as we should, this is impulse. When 

we decide we are going to lose 50 pounds, likely due to our supermarket buying habits, and 

subsequently spend a small fortune on a yearlong gym membership only to trade the rowing 
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machine for the remote in a week, this is impulse. It should not come as a surprise then, that 

when users jump into their favorite collection of photos or onto their favorite social 

networking site that they may not have a method to their madness, it may simply be impulse. 

Maybe we could be presenting all of this visual content in an equally impulsive, but 

deceptively useful, way. The human mind is capable of processing quite a bit of visual 

stimulus extremely quickly; irritating case in point: channel surfing. Instead of forcing it to 

explore a collection one image at a time, why not give users as much as we can and let them 

survey it in an instinctual way that will open their mind to what they might find? This 

philosophy is at the core of similarity-based image organization and browsing. This thesis is 

the consolidation and continuation of the work on that subject first presented in [1, 2] . 

The pages that follow describe in detail how to compare images, how to organize images 

in 2D based on those comparisons, and how to facilitate effective browsing of the organized 

images, notably large numbers of such images. Chapter 2 reviews related work. Chapter 3 

shows how color-based and/or gradient-based feature vectors are extracted from the images. 

Chapter 4 solves the following 2D image organization problem: 

Given a set of images, T, assign a 2D coordinate (x1,y1) to each image /, 

where (I E T), such that: 

1. The distance between two visually similar Images 1s as small as 

possible 

2. Images are evenly distributed to make full use ofthe available space 

It does so using the aforementioned feature vectors to train a self organizing map, which, by 

its topology preserving nature, prompts similar vectors to congregate and dissimilar ones to be 
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spread out. To make the organizing of large sets practical, a training algorithm is designed 

that runs in parallel on graphics processing units. The organizing process maps images with 

distinct feature vectors to unique positions on a 2D virtual canvas. Displaying all images at 

their mapped locations groups images by visual similarities but may overwhelm the users 

when the number of images is large. Chapter 5 addresses this by taking the image 

organization results as input and dynamically generating an image collage that always 

displays the most pertinent set of images based on which portion of the 2D canvas is currently 

being viewed. The interface to manipulate the collage allows for the use of simple well known 

operations like pan and zoom. The effects of the interface operations tailor to the natural 

inclinations users have when they browse and search. After presenting this organization and 

browsing solution, Chapter 6 goes over different organizational results obtained using a 

variety of types of feature vectors by evaluating them using new metrics specifically designed 

to target the image organization problem presented above. 

Solving the 2D image organization problem described above has important and practical 

applications. For instance, operating systems can adopt this technique as an option to arrange 

images spatially in a folder in 2D by their visual contents. Online photo sharing sites and 

image search engines can also organize images in a similar interface by their content 

similarities so that the users can easily locate the images they have in mind in a more tactile 

environment. It has been found that users find such an environment enjoyable and useful [3]. 

In summary, the following lists the contributions of this thesis that facilitate a solution of the 

described problem: 

1. A way to organize images in 2D based on similarity using a SOM 

2. A survey and comparison of old and original feature vectors that can be used for 
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computing similarity between images 

3. A fast SOM training algorithm for the GPU is proposed and shown to run tens of 

times faster than the standard training method carried out on a CPU 

4. A flexible way of browsing large amounts of images within the confines of limited 

screen space 
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Chapter 2 Related "Work 

The previous works in the following areas are related to this thesis; how the works are 

similar to, different from, or have influenced this thesis is discussed. 

2.1 Content-Based Image Retrieval 

Content-based image retrieval (CBIR) has been an active research area in the past decade. 

Based on the user interaction required, existing "pure" CBIR approaches rely only on image 

content and can be classified into two categories: query by example and relevance feedback. 

Today however, researchers are no longer ignoring the already wide array of search tools 

available for and textual metadata attached to images found on the web. Emergent so-called 

"composite" CBIR systems [4] are popping up that piggyback off image search results ofwell 

established search engines like Google, enhancing their results by re-ranking or filtering them 

based on established CBIR techniques. 

2 . 1.1 Query by Example 

Query by example (QBE) approaches require the user to describe the desired image 

content of the results in some way. Over the years there have been quite a few such systems 

proposed. Depending on the system users might have to specify image properties or give a 

visual query such as an example image [5, 6]. IBM's venerable Query by Image Content 

(QBIC) system for example ranks the most likely matches based on how well the images in 

the database adhere to the given color properties or layout. Color properties would often be 

specified directly as numeric percentages of selected colors while the layout would be 
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sketched with colored regions by hand. The color properties and regions would then be 

analyzed and then results would be found and ranked accordingly. 

Virage [7] was one of the first open systems to break free of the old mold of manual 

annotation and start making use of visual features primarily. It established a framework 

whereby different primitive descriptors that characterized things like color, shape, and texture 

could be plugged in and made use of. In order for a plug-in primitive to be useful it needed to 

strike a balance between time complexity and search accuracy. Virage seemed to promote a 

paradigm of simply swapping images for text in terms of search and results, no longer 

requiring anything from the user but a simple query image. These were some of the most 

influential prototype QBE systems of the early years [6]. In most cases the systems that 

followed extracted low-level features from the query image, sometimes with and sometimes 

without spatial information, and searched in clever ways for images with similar features. 

Some of the later systems started extracting features via segmentation so that image similarity 

was based more on the high level objects and structures than on low-level global distributions. 

The Blobworld [8] framework, for instance, recognizes the nature of images as combinations 

of objects. Though past systems of the time strayed away from segmentation because of the 

performance constraints those types of algorithms imposed, the people behind Blobworld felt 

that image description at the level of objects is crucial for CBIR progress and so they 

developed a segmentation algorithm that, while imperfect, was fast enough to be used for 

retrieval. The feature extraction stage of this system consists of the segmentation and 

refinement of regions, called blobs, followed by feature extraction techniques being 

performed on those blobs that were similar to the color, shape, and texture ones used globally 

on the whole image in other systems. In effect, this approach is a way to limit the similarity 
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checking to salient regions of the image. The results were generally a little better than simple 

histogram-based retrieval when there is a clearly defined object of focus in the query image, 

but they tended to be a little worst when the whole scene was important. 

Though different QBE approaches have used different types of features and search 

methods, the optimal setup often depends on the application and the user's intention, whether 

it be browsing aimlessly, surfing with a slight agenda, or searching with a goal [9]. 

• ..,.._ [58 

c p-. 13"4 

• .......,. 1155 

(a) Color properties (b) "Hand" drawn sketch (c) Real image 

Figure 2.1: Some common query styles. In (a) a series of colors can be selected and their 

relative percentage in the image set by sizing the respective box. (b) is an 

example image drawn in a paint program that would be valid input to certain 

CBIR systems. (c) is the most common type of query used in CBIR systems, 

which is the best and easiest option given that the user has an image similar to the 

one that they want. 

2.1.2 Relevance Feedback 

Relevance feedback is a technique adopted from 1960s document retrieval literature that 

refines search results to what a user is looking for based on feedback given from the user 

through multiple rounds of interaction [10]. At every round, the search algorithm selects 

several images on which the user is required to provide feedback (relevant or irrelevant). The 

feedback is then used for refining the results so that better ones can be provided in the next 
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round. The goal of different relevance feedback approaches is to minimize the amount of user 

interaction needed before the candidate set has been whittled down to good results. 

2.1.3 Composite CBIR 

Composite CBIR systems tend to build on the back of what is already available. Usually 

their target domain is the web since it contains the most images that would already have 

metadata attached to them, either implicitly, from their being on a certain page, or explicitly, 

being tagged by users from a community photo site. The recent VisualRank [ 4) is one such 

composite CBIR system; it is touted as an image focused complement to Google' s PageRank. 

Its purpose is to find the visual themes in a set of images and then determine their relative 

strength after which the set can be filtered so that only the "best" images relative to the 

strongest themes remain. The set of images is the results returned from Go ogle 's image search 

which is based predominately on textual page data. Sometimes there are redundancies in such 

search results, like when a product is the query and multiple images of it come back but they 

all look the same. In these cases VisualRank can be used to select one of these images to 

represent the product. 

VisualRank starts by generating a similarity graph where the original image results are the 

vertices. The vertices are connected by weighted edges based on their similarity which is 

determined by the amount of shared local features (Scale Invarient Feature Transform interest 

points). The centrality (connectedness) of the vertices is then used to determine things like 

theme and importance which are later used to filter spam and unrelated images out. 
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Figure 2.2: Here is a good example of the structure of a similarity graph from the VisualRank 

literature [ 4]. Notice that the enlarged ones are the most connected and relevant. 

This thesis organtzes a large number of images based on the similarity of extracted 

features and visualizes them in a dynamically generated image collage. Organizing is based 

only on the pixel content in the image as the work strives to make the organization procedure 

as free from outside interaction as possible so as to be robust and friendly to users. While both 

the proposed approach and CBIR techniques rely on extracted feature vectors to perform their 

tasks, their methods of user interaction and potential uses are different. CBIR is query driven 

whereas the proposed approach can constitute a form of interactive query or simply be a 

means of casually surfing a collection for pleasure or with the agenda of finding something of 

value in a diverse database. 

2.2 Similarity-Based Image Browsing 

While CBIR approaches are for users with clear goal about what they are searching for, 

similarity-based image browsing (SBffi) [11] aims to please users who just want to 

surf/browse an image collection, possibly in search of something and possibly not. The 

challenge here is how to arrange images based on visual similarities in such a way as to 
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optimize the experience. 

Several approaches have been proposed for browsing images. Torres et al. prescribe ways 

to enhance CBIR results by browsing them in visual structures [12]. They use either a spiral 

or a concentric representation to display images. The concentric representation consists of a 

series of rings sharing a common center. The rings get closer to each other as their radii 

enlarge. In a similar way, images placed on the outer rings are displayed at a shrunken size. 

The other representation is a spiral one. Images, starting with the query one, are laid out along 

a classical Archimedes spiral that gets tighter with succesive turnings, similar to its concentric 

counterpart. The layout of images on the spiral comes in two flavors. The first flavor lays out 

the images in their ranked order around the spiral with an equal spacing based on their 

similarity to the query image (which is at the center). The image sizes shrink the further they 

are from the center. The other type of layout is the same as the first with the only difference 

being that instead of placing the images around the spiral equally based on rank, the positions 

of the images are determined with respect to the similarity measure. 

(a) Concentric rings (b) Ranked spiral (c) Similarity spiral 

Figure 2.3: Visual structures used by Torres et al. obtained from [12]. Note that the changing 

image sizes are not reflected. 

In [13] Chen et al. describe a way to visualize the contents of image databases by using a 

structured modeling technique, called the pathfmder network. It is a branched clustering 
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method that was originally proposed for analysis of psychological proximity data that they 

have retrofitted for the purposes of SBIB. The strength of the pathfinder network is that based 

on the similarity between the images (i .e., histogram or texture in this case) it links them in 

the least redundant most intuitive way by making sure the links adhere to the triangular 

inequality condition. If the number of target links is specified to be one less than the number 

of images in the database then the paths that result between images in the network are 

minimum-cost paths. Such is the way their networks were constructed. The results depend 

highly on the way in which image similarity is determined, be it by color, texture, or shape. 

Color produces the most intuitive networks when viewed from a distance. The final goal of 

the network is a situation where the distance between any two images is proportional to their 

similarity. 

Figure 2.4: A pathfinder network created by Chen et al. in [13] based on the images ' color 

histograms. 

Snavely et al. showed us another very interesting way to arrange and browse large sets of 

photos of a scene taken by a community of photographers from different viewpoints in [ 14]. 

Their proposed method exploits the common underlying 3D geometry in the scene. They ftrst 
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map out the viewpoint of each photograph with respect to the scene at large and then generate 

a sparse 3D model of that scene. The images are then placed where they were taken from with 

respect to the model, effectively filling in as much of the visual detail as they can by having 

these images overlap based on their perspectives. The result is a stunning three dimensional 

rendition of a scene generated and composed entirely of photos casually taken by independent 

photographers without restrictions. 

Figure 2.5: A snapshot obtained from Microsoft's Photosynth [15] which is built upon the 

work of Snavely et al. in [14]. 

Differing from the previous work, this thesis organizes images on a 2D virtual canvas and 

presents them in the form of a dynamically generated collage that is composed of images 

selected automatically according to the panning and zooming performed by a user as they 

search interactively for images they want to see. Unlike [ 14], the purpose of this work is not 

to fmd a common spatial relationship between images of a common scene but rather to 

measure the amount of similarity between images (which often includes their common spatial 

relationship) and organize the images based on those similarities to facilitate browsing. There 

is no stipulation on where the images have to come from, they can be completely dissimilar 
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and the result will reflect that. 

2.3 Self Organizing Map 

A self organizing map (SOM) is a special type of artificial neural network which consists 

of a set of interconnected units each of which has its own weight vector [16]. Once trained 

using unsupervised learning, a SOM can represent a set of high-dimensional samples in a 

topology preserving way, meaning similar samples will be placed together whereas dissimilar 

ones will be pushed away from each other. As a result, SOMs are useful for clustering and 

visualizing high-dimensional data. 

SOM-based algorithms have been proposed for both image retrieval [17] and image 

browsing [18]. Both approaches use tree-structured SOMs [19] to organize images. Due to the 

high computational cost for training, the SOMs used in these two approaches are quite small 

in size. The proposed approach trains the SOM on the GPU and hence can afford using large 

SOMs that have a lot more units than the number of images in the dataset. This makes it 

possible to assign unique 2D coordinates for images with distinct features. These coordinates 

are then used for visualizing the dataset, as well as for clustering images into groups when 

only a subset of images can be displayed. 

2.4 General Computing on the GPU 

Since the introduction of the programmable rendering pipeline, the graphics processing 

unit (GPU) has become a very capable coprocessor for general-purpose computing. Existing 

research has shown that many image processing and computer vision problems can be solved 

on GPUs much faster than on CPUs. How to implement the SOM on a GPU has been 
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previously described. For example, a simple GPU-based SOM algorithm is discussed in [20] 

which can handle up to 4-dimensional vectors, such as RGBA colors. The implementation of 

a parameter-less SOM on the GPU is proposed in [21]. 

The GPU-based SOM training approach used in this work is similar to the one described 

in [20] however, we extend the algorithm and use the SOM as a means to organize image 

feature vectors of arbitrary dimensions. The GPU is also used to create the image collage for 

interactive image browsing and searching. 
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Chapter 3 Feature Vectors 

In order to orgamze Images based on similarity, we first need to define a way of 

measuring the similarity between two images. If we were to compute the similarity based on a 

pair-wise pixel comparison the computation costs would be unreasonably high and oftentimes 

small shifting and/or rotation would result in large differences. A better approach is to define 

and utilize image feature vectors, also called image descriptors [22] or signatures [9], which 

represent the salient information of images effectively at a low dimension. The ideal image 

feature vector is unique enough to correctly describe the image it was generated from, but 

close enough to vectors of related images to link them upon feature vector comparison. CBIR 

approaches sometimes leverage advanced feature extraction techniques to produce precise 

results for queries but such techniques require more processing. When the goal is to 

interactively organize a dynamic set of images computationally simple feature vectors are 

preferred so that hundreds of images can be analyzed at interactive speeds. In this chapter the 

feature vectors are chosen on the basis of their being fast to compute and also their robustness 

to superficial image manipulations like translation and scaling. 

Here are the notations used in the following sections: 

• I denotes an image or more formally a set of pixels p that each have a color 

(rp,gp,bp)· 

• C(p) = lNR X rp/256J X NG X N8 + lNG X 9p/256J X N8 + lN8 X bp/256J IS the 

quantized color of pixel p, where NR, NG, N8 are the total number of bins used for 

quantizing the RGB color channels (assuming 8-bits per channel), respectively. 
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• liS II denotes cardinality of a setS. 

• Q h (p) is the set of pixels within the h x h window centered at pixel p, not including 

p. 

• G is the gradient map of image I and G (p) = ( ()P, lp) keeps the gradient direction and 

magnitude for pixel p. 

• 8 (p) = lNe X ()p/2rrj is the quantized gradient direction for pixel p, where Ne is 

the number of bins used for quantizing directions. 

• L (p) = l N L X lp / Lmax J is the quantized gradient magnitude, where Lmax is the 

maximum possible gradient magnitude and NL is the number of bins used for 

quantizing gradient magnitudes. 

3.1 Color-based 

Color-based features are the dominating ones when images are small and shape IS 

unperceivable or are displayed in a large group and details are less focused upon. 

3.1.1 Color Histogram 

The baseline of all image feature vectors is the color histogram. Each value in the fmal 

vector represents the number of times that a certain color occurs in the image. By simply 

summing up the occurrences of colors in the image and normalizing those sums by the total 

number of pixels we have a feature vector that is robust to rotation and scaling 

transformations. It should be noted that the main weakness of the color histogram is caused by 

the same property that makes it robust in the first place - its lack of spatial information. An 
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example of this issue is that you can randomly shuffle the pixels of an image and get the same 

histogram, which is undesirable. The N -dimensional color histogram feature vector can be 

calculated as follows: 

(1) 

nc = ll{plp E //\ C(p) = c}ll 

where the vector's dimension is decided by N = NR x NG x N8 . 

3.1.2 Color Autocorrelogram 

The color autocorrelogram, originally proposed in [23], extends the color histogram by 

introducing spatial information in the form of neighboring color probability. The value of 

each dimension of such a vector represents the probability of finding two pixels of a certain 

color in the image that neighbor each other. It is computed by counting the number of pairs of 

neighboring pixels that have the same color and then dividing by the total number of pairs that 

were checked. Since the spatial information in this type of vector is relative, it is robust to 

rotation and scaling transformations. The problem with this type of vector is it does little to 

account for shape in the image. 

The original color autocorrelogram considers multiple neighborhood size samples [23]. 

Our experiments have shown that a single neighborhood size sample is often more effective 

and hence the autocorrelogram calculation is simplified to: 

(2) 

me = ll{(p, q)IC(p) = c 1\ q E il3 (p)}ll 
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nc = ll{(p, q)IC(p) = C(q) = c 1\ q E .03 (p)}ll 

where the dimension of the vector is also decided by N = NR x Nc x N8 . 

3.2 Gradient-based 

Gradient-based feature vectors are more adept at modeling general shape than their color

based counterparts. Organization by a gradient-based vector is useful but considering it alone 

can lead to unobvious results when an organization is viewed from afar and changes in images 

are less apparent. The this section is inspired by previous work that uses orientation 

histograms for image classification [24]. It extends the orientation histogram from the 

mentioned work by describing variants based on those vectors found in section 3.1 above. 

In all cases the initial gradient information is extracted from a grayscale version of the 

image by first convolving it with the Sobel filters. The horizontal and vertical gradient values 

are then converted into direction (angle) and magnitude for every pixel in the image. Since 

gradient direction is linked to image rotation, the resulting feature vectors are not rotationally 

invariant. The feature vector of a rotated image contains the same set of values in the same 

order but these values are translated in the vector with respect to the amount of rotation 

applied to the image [24]. Vectors based on gradients are however robust to scaling until the 

resolution of the image becomes too low to preserve the original shape, like when a circle 

becomes a dot. 

3.2.1 Gradient Histogram 

This is a direct adaptation of the color histogram to gradient data from an image. The 

directions and magnitudes of possible gradients are quantized into a number of bins. Each 
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dimension in the feature vector represents the number of occurrences of gradient values 

belonging to the corresponding bin. Similar to the color histogram, the occurrences are 

normalized based on the total number of values available. 

(3) 

ni = ll{piL(p) X Ne + 8(p) = i}ll 

where the dimension of the vector is decided by N = N0 x NL. 

3.2.2 Gradient Autocorrelogram 

This vector extends the probabilistic nature of the color autocorrelogram to the gradients. 

The gradient information is first quantized, as seen in the previous case, and then the 

neighboring occurrences of gradients are counted, summed into a final vector position, and 

divided by the total pairs of the neighbors checked. The feature vector extracted measures 

how likely a certain gradient in the image is to remain constant within its neighborhood. 

[
nl nN] 

Fgrad _corr (I)= -, ··· ,-
ml mN 

mi = ll{(p, q)IL(p) x N0 + 8(p) = i A q E il3 (p)}ll (4) 

II{ I L(p) = L(q) A 8(p) = 8(q) A }II 
ni = (p, q) L(p) X N0 + 8(p) = i A q E il3 (p) 

where the vector' s dimension is also decided by N = Ne x NL. 

3.2.3 Gradient Direction Histogram 

Like the standard gradient histogram, this version models the global distribution of the 

gradient vectors but where it differs is it eliminates the quantization of the gradient 
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magnitude. Each dimension of the final vector represents the sum of all gradient magnitudes 

along a certain direction. The final values are normalized by the sum of all of the magnitudes. 

When the total feature vector dimension is fixed, this histogram allows the gradient direction 

to be quantized in finer resolution than the gradient histogram does. 

mi = I lp 
pEG,8(p)=i 

(5) 

where the dimension of the vector N = N8 . Please note that the above equation sums the 

actual (non-discretized) magnitude. 

3.2.4 Gradient Direction Autocorrelogram 

Similar to gradient direction histogram, an autocorrelogram can also be defmed using the 

gradient direction only, without considering the gradient magnitude. The corresponding 

feature vectors depict how edges in a given image change orientations within the local 

windows. 

mi = ll{(p, q)l0(p) = i A q E !13 (p)}ll 
(6) 

ni = ll{(p, q)l0(p) = e(q) = i A q E n3 (p)}ll 

where we also have N = N0 . 
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3·3 Hybrid Approaches 

The visual content of an image is a combination of both color and shape, for this reason 

feature vectors based on either color or gradient only may not provide the best results. Two 

hybrid approaches are proposed below which combine color- and gradient-based approaches 

in two different ways. 

3.3.1 Color Histogram + Gradient Direction Autocorrelogram 
Aggregation 

This feature vector simply joins two separately generated parts together. The first part is 

generated using the color histogram and the second is obtained using gradient direction 

autocorrelogram. 

3.3.2 Color-Gradient Correlation Histogram 

This is a novel feature vector that was originally devised m [2] that measures the 

correlation between color and gradient direction in an image. It is computed by assigning a 

bin to every possible color and gradient direction pair and then summing into those bins the 

gradient magnitudes of pixels that have the corresponding color-gradient pair. The vector can 

be represented as follows: 

mi = L lp 
pEG II 

C(p)xN9 +8(p)=i 

(7) 

where the dimension of the vector is decided by N = NR X NG x N8 x N8 . Please note that 

the above equation sums the actual (non-discretized) magnitude. 
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Chapter 4 Organization of Images 

Now that we have a compact description of our images in feature vectors we want to 

organize them using those feature vectors in 2D. We use an SOM to put visually similar 

images (ones with similar feature vectors) together and spread dissimilar ones apart. 

4.1 SOM Construction 

In order to organize a set of images T based on their N -dimensional feature vectors the 

SOM needs to consist of M x M units, where M x M » IITII. This makes it possible to map 

distinct feature vectors to unique locations in the SOM because each image has enough space 

to occupy its own region of the map. Each SOM unit x has its own N -dimensional weight 

vector W(x). All of the values in the weight vectors are selected at random from within 

ranges that correspond to those derived across the space of the feature vectors in T. The range 

of the ith dimension of the N possible dimensions, for instance, is defined as 

[min/EN Fi (J), max/EN Fi (/)], where F(/) is the feature vector of image I, specifically one of 

those described in Chapter 3, and Fi (/) is the ith value in that vector. Ranging the 

initialization minimizes the number of training iterations needed for meaningless random data 

to be phased out. 

4.2 SOM Training 

The SOM is trained with an unsupervised learning process that works to minimize the 

mean squared Euclidean distance of W(x) for all units x with respect to their closeness in the 

map. The process requires multiple iterations in which all images are shown to the SOM in a 
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random order. When a particular image I is shown to the SOM for training, the goal is to find 

the best match unit (BMU) and then update the weight vectors in the BMU' s neighborhood. 

The BMU for a given image I is the unit x for which the Euclidean distance between the 

feature vector F(I) and the weight vector W(x) is minimum. Once the location of the BMU 

for image I, B(I), is known, the weight vectors of the BMU itself and those of the nearby 

units are adjusted to match F(I) more closely. The new weight vector is a linear interpolation 

between F(I) and W(x). The parameter A.(x), called the influence, is used for the 

interpolation at unit x and is computed using the Gaussian function: 

lx-8(1)12 

A(X) = r · e s2 (8) 

where s is the neighborhood size, r is the learning rate, both of which decay exponentially 

over time. The number of total iterations affects the decay rate of the neighborhood size and 

learning rate. Generally the more iterations the SOM is put through the slower the decay and 

the better the final convergence. In this thesis the preference is to consider the coordinate 

system as wrapping so that images placed on the edges of the SOM will be similar. This 

means that the lx- B(I) I quantity in equation (8), the Manhattan distance in the SOM, 

becomes the minimum that can be computed amongst the true and wrapped versions of x and 

B(I). See section 4 in appendix A on the influence shader for more details. 
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for a given number of ite r a tions 

compute the new learning rate r and n eighb orhood size s 

fo r each randomly selected and unprocessed image I 

fin d the BMU for I 

for each unit x within s of the BMU in t h e SOM 

compu te influence A.(x) 

set W(x) to i nterpolation between F(/) a nd W(x) based on A.(x) 

Figure 4.1: Pseudocode for a standard SOM training algorithm. 

Once the SOM has converged the final BMU for each image in T is found just as it was 

during training. The mapping from an image I to its final BMU's coordinate B(I) is therefore 

obtained. By design the SOM preserves topology, which ensures that images having similar 

feature vectors are mapped to locations that are closer to each other, and vice versa. 

4.2.1 Implementation on the CPU 

The SOM training algorithm is iterative in nature and can be implemented in a straight 

forward fashion by a direct implementation of the algorithm in Figure 4.1 . The problem with 

the direct approach is that it will quickly become a computational burden since time 

complexity is O(M x M x IITII x iterations), and as stated above M x M » IITII. Luckily 

SOM training is very parallel, a feature which will be exploited in the following section. 

4.2.2 Implementation on the GPU 

As shown in Figure 4.2, the weight vectors of all units in the SOM are stored using a 

single color texture. Since each pixel can hold four values in its four color channels, to handle 

weight vectors of N -dimensions, the texture needs to contain N I 4 times more pixels than the 

number of SOM units. These pixels are grouped into N I 4 tiles, with pixels from the same 
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position of different tiles holding the values of the same unit's weight vector. 

During initialization the weight vector values are pre-generating as described in the SOM 

Construction section and placed in a texture that is loaded into the GPU. Although not as fast 

as generating random values on the GPU directly [25], the difference is negligible as the 

initialization is performed only once. 

Figure 4.2: The texture that represents the initial SOM with random weight vectors. The 

SOM in this case consists of 256x256 units, each holding a 16-dimensional 

weight vector. To store the weight vectors for all units, the texture contains 

512x512 pixels (each containing 4 values), which are grouped into 4 tiles. 

After initialization, the SOM is trained on the GPU using the unsupervised learning 

process outlined in Figure 4.3 which is a version of the algorithm in Figure 4.1 that has been 

modified for parallelism. 
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fo r a given number of iterations 

compute new learn ing r ate r and neighborhood size s 

fo r e a ch randomly selected and unprocessed image I 

render distance texture based on F(/) a nd c u rrent SOM texture 

repeat 

render quarter- sized texture that keeps smallest distances 

u n til the size of the texture becomes 1 X 1 

r ender i nfl uence texture using r and s 

render new SOM textu re with updated we i ght vectors 

Figure 4.3 : Pseudocode for the GPU-based SOM training algorithm. Please note that the 

render lines are carried out on the GPU and Appendix A contains the code that 

performs them. 

The first task is to find the BMU for a given image / . We start with one rendering pass to 

compute the Euclidean distance between the feature vector F(/) and the weight vector W(x) 

for each unit x. The distance obtained is stored in a distance texture along with the 

coordinates of the unit as shown in Figure 4.4(a). Parallel reduction is then used to locate the 

pixel in the distance texture that has the smallest value in the blue channel, which is the one 

computed from the BMU. Parallel reduction works by finding and keeping the pixel 

containing the minimum blue channel value of four corresponding pixels from the previous 

pass. Each time the process reduces the number of pixels by a factor of four. For a SOM with 

M x M units, the parallel reduction process requires log M rendering passes. 

(a) Distance texture (b) Parallel reduction 

Figure 4.4: The distance texture and parallel reduction results obtained during the search for 

the BMU. Images in (b) are scaled for better illustration. In all textures the blue 
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channel keeps the distance between the image feature vector and the weight 

vector of the corresponding unit in SOM. The red and green channels keep the x

and y-coordinates of that unit. The final result of the parallel reduction is a single 

pixel whose blue channel has the smallest value and red and green channels keep 

the coordinates of the BMU. 

Next we update the SOM texture in two rendering passes. The first pass computes the 

interpolation parameter il.(x) for all units using and stored the result in an influence texture 

(shown in Figure 4.5(a)). The second rendering pass takes the influence texture and the 

current SOM texture as input, performs linear interpolation for all of the tiles at the same 

time, and then stores the results into an updated SOM texture (shown in Figure 4.5(b)). Figure 

4.6 displays the intermediate and the final stages of training for a sample SOM. 

(a) Influence texture (b) Updated SOM texture 

Figure 4.5 : The influence texture and the SOM texture with updated weight vectors. The 

parameters used for interpolation are stored in the red channel of the influence 

texture. 
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(a) After 1 iteration (b) After 30 iterations (c) After 100 iterations 

Figure 4.6: The SOM textures obtained during a training process that uses 100 iterations. As 

the neighborhood size decays over time, the SOM texture becomes more and 

more detailed. 

4·3 Constructing a Multi-Level SOM 

The single level SOM is fine if all images are to be considered equal. This is not the case 

since there are often images in populated areas that better represent those images that 

neighbor them. Those representative images are the ones that should be selected when there 

are limitations on the number that can be chosen. For this reason we delve into the idea of the 

multi-level SOM that gives information on how important each image is. This importance 

information translates into display order priority when it becomes time to browse the 

organized result. 

4.3.1 Bottom-Up Approach 

The bottom SOM, which is the largest, is obtained usmg SOM training procedure 

described above. The upper level SOMs are then generated from the lower level SOMs 

directly without training. The actual size of each generated level is a factor of the one directly 

below it, this way each unit in that level corresponds to an equal sized region in next lower 

level. The generation itself is carried out by assigning each unit in the level being generated a 

weight vector that is equal to the average of the weight vectors of those units in its child 

region in the next lowest level to it. The average weight vector is then used to find the best 

matching image from the child region for each unit in the upper level, as shown in Figure 4. 7. 

Since the best images have feature vectors that are closer to the average feature vector of their 
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neighborhoods, we consider those images to be more representative and hence more 

important. The set of images available for the training of the next higher level is the set of all 

of the best matching images found during the most recent level generation (or the whole set 

when starting from the bottom). This approach produces what is dubbed the multi-resolution 

SOM since the level building process is akin to scaling an image down. 

2 

Figure 4.7: An example of a level generation taking place in a multi-resolution SOM. The 

images are the numbered squares and as you can see only the closest one in the 

corresponding child region to the averaged weight vector in the upper level (based 

on color) is selected and moves up. 

4.3.2 Top-DownApproach 

Top-down SOM level generation consists of fully training multiple SOMs of increasing 

size at each level. The training process is modified slightly such that the search for 8 1(/), the 

BMU position at level i, is limited to the region that corresponds to 8 1_ 1 (/) of the previous 

level for each image /. While the center of the influence injected into the map at Bt(I) 
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because of I is limited based on this region, the influence itself is allowed to permeate past 

region's borders. As a result any links between neighboring images in neighboring regions are 

realized by their close proximity at their region's shared border. The purpose of this so-called 

Tree-Structured SOM [ 19] is to limit the potential area for like images to sprawl out resulting 

in tighter clusters and quicker searches, O(log(M x M)) as opposed to the O(M x M) of the 

original SOM. Figure 4.8 and Figure 4.9 show a training example and comparison of results 

highlighting the shortcomings of this approach. 

Figure 4.8: An example of a multi-level SOM trained from the top down where the numbered 

squares represent images. This approach starts by fully training a relatively small 

top level SOM. Once the training is complete there will most likely be shared 

BMUs, e.g. 1 and 2. The next level is then created with a size that is a product of 

the higher level's size, as a result each unit of the higher level has an equally 

sized region below corresponding to it in the new level; in this case the 

multiplicative factor was 4. The new level is then trained with limitations as 4.3.2 

describes, after which the images have new BMUs at that level inside the regions 
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corresponding to their BMUs in the level above. 

(a) Multi-Resolution SOM (b) Tree-Structured SOM 

Figure 4.9: The results of the two different style SOMs trained under the same settings tell 

vastly different stories. On the one hand, the multi-resolution SOM in (a) 

maintains the nice, dispersive property of the original SOM on which it is based 

whilst in (b) half or more of the space is not used and most of the clusters have 

heavy overlapping. This is because even though the total size of the levels is 

enlarging, the images are still being locked into what are effectively tiny SOMs 

all the way down the tree, which means there is not enough room for the images 

in those regions to spread out (a problem eluded to in 4.1 SOM Construction 

above). If they spread out across the regions more evenly we might see a similar, 

perhaps better clustered, version of the bottom up multi-resolution SOM, but in 

this form it is not the case regardless of the settings. 
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Chapter 5 Browsing of Images 

At this point we have a 2D virtual canvas onto which each image I has been mapped to a 

point !canvas based on its final BMU position in the SOM. If there are only a small number of 

images we can simply display the canvas as is, however, when the image set gets larger, 

displaying the canvas and all of its images within limited screen area so that they will not 

overlap too much will force each image to be too small for the user to recognize its content. 

To address this problem an image collage is dynamically generated based on the portion of 

the 2D virtual canvas that is currently being viewed. The user adjusts the view of the canvas 

through three simple navigating operations: panning, zooming, and changing the individual 

image display size. All of these controls work independently; notably, zoom does not change 

the image size, only the size of the canvas. The specifics of this collage generation under 

different user interactions are described in the following sections. 

5 .1 Panning and Zooming 

The user can use simple panning and zooming operations to select which portion of the 

2D virtual canvas is being viewed. In this approach the viewed area is kept track of by 

mapping the screen coordinates of the browsing window onto the coordinates of the 2D 

canvas which effectively establishes a viewport. Both the panning and zooming operations are 

implemented by adjusting the mapping relationship, as shown in Figure 5.1 . 
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Figure 5.1: Adjusting the area of the 2D canvas being viewed through (a) panning and (b) 

zooming. The solid and dotted squares represent the original and the modified 

positions of the 2D canvas, respectively. The smaller dashed square represents the 

viewport area that is seen on screen. The dots in the crosshairs represent the 

mouse location before and after the panning. 

Panning is merely a translation of the 2D canvas so that a different portion of the canvas 

will show up under the fixed viewport. Panning is implemented using mouse drag, when the 

user clicks point A on screen and drags it to point B, we ensure that the point on canvas that 

originally maps to point A now maps to point B. 

The zooming operation is implemented using mouse wheel, i.e., scrolling the wheel up 

makes the virtual canvas bigger and scrolling the wheel down makes it smaller. It is 

noteworthy to reiterate that the zooming operation does not affect the display size of each 

individual image, which is controlled separately. As a result, when the users zoom in on a 

portion of the 2D canvas, they will observe more images in this region rather than seeing the 

same set of images at a bigger size. To provide a better user experience the center of the 

zooming is set based on the current mouse location. In the first scenario, where the mouse is 
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not inside any images being displayed, scrolling the mouse wheel up or down will scale the 

canvas bigger or smaller about the current mouse location. In the second instance, when the 

mouse is inside a displayed image, the center of the scaling is set to the center of the image to 

ensure that the image under focus does not move during the zoom. 

Having these points of interest not move is tricky though because after zooming in or out 

the canvas shifts. In fact, the only point on the canvas that will move under scaling is the point 

at the origin of the viewing area. For instance, origin x 2 = (0, 0) x 2 = (0, 0) whereas 

(0.1, 0.2) x 2 = (0.2, 0.4). To undo this zoom shift we can apply a translation that is the 

inverse of the amount of shift that occurs at the point of interest. For instance, in the previous 

example no translation is necessary for (0, 0), but if (0.1, 0.2) is the point of interest then an 

inverse translation of ( -0.1, -0.2) is required after scaling to keep that point stationary . 

Canvas 

. ----:--
I I 

I 

I I 
I 

~ -- - ----·- -
I I 

I 

I I 
I 

--1 

I 
I 

____ j 

I 
I 

~---~----Viewport 

Figure 5.2: The point in the canvas (the solid square) at the center of the viewport (the dot at 

the center of the dashed crosshair) determines its translation. 

Here, translation (panning) is managed by remembering which point in the canvas is at the 

center of the viewport (see Figure 5.2). The viewport position of an image I under this model 

lS: 
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!viewport = Ucanvas -center)* scale (9) 

where !viewport and !canvas are the positions of the image in the viewport and canvas, 

respectively, center is the point described in Figure 5.2, and scale is the factor by which the 

canvas has been zoomed. To undo zoom shift on a mouse location we compute and apply the 

inverse translation to the model like so: 

mouseviewport 
centernew = centerold + l 

sea eold 

mouse viewport 

scalenew 
(10) 

where mouseviewport is, as you would expect, the mouse position in the viewport, and the 

scale factors are determined based on the amount of zoom being done. Notice that the sum of 

the first two terms is actually the position of the mouse in the canvas. In a special case, if the 

mouse is over an image the standard zoom shift correction still results in the image moving 

under the mouse slightly. In this situation we can simply consider the mouse to be at the 

center of that image over which it hovers and fully compute the center like so: 

centernew = !canvas 
I viewport 
scalenew 

(11) 

thus achieving the effect of the image under the mouse remaining still under zoom. Panning 

the canvas is done by translating the center point based on mouse drag like so: 

mousenew - mouseold 
centernew = centerold + l sea e 

(12) 

where the mouse positions are with respect to the viewport. 
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5.2 Image Display Size 

The image display size is independent of panning and zooming. The upshot of this is the 

ability to quickly move toward images of interest by zooming, making similar ones appear as 

undesired ones slide off out of the viewport without having to perform repetitive changes to 

the image display size. The size is changed by holding down a mouse button and scrolling the 

mouse wheel up or down to increase or decrease the image display radius. The radius change 

is a straightforward one: 

radius = radius x ywheel new old (13) 

where y > 1 is the scale change per scroll click and wheel is how many wheel clicks 

occurred; it is positive for clicks up and negative for clicks down. 

5·3 Selection 

Once the viewing area is set by pan and zoom, all of the images inside it from the canvas 

are candidates for generating the image collage. The number of images actually used for 

creating the collage depends on the screen size of the browsing window, as well as the user 

specified image display size. If the number of images to display is based only on the ratio of 

screen area to image size when panning the canvas, images with higher priority 

entering/leaving the viewing area may cause currently displayed images disappear/reappear. 

The flicking that would result as the user pans across the canvas is undesirable and does not 

take full advantage of the static order. To address this problem, the images that might be 

displayed over the whole canvas at the current scale are pre-selected and then only the ones 

within the current viewing area when the user pans across the canvas are displayed. The total 
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number of images selected is computed as: 

H = l5 X Acanvas X Rscreen 

Aviewport Rimage 
(14) 

where Acanvas and Aviewport is are the areas of the 2D canvas and the currently viewed 

portion, Rscreen and Rimage are the resolution of the browsing window which the viewport is 

in and the image display size, and the parameter l5 controls the margin between images, for 

example setting it to 0.85 would leave approximately 15% of the area open to margin. The 

value H is reevaluated every time the user performs a zoom operation. 

In order for the selection of H images to be clear and consistent a static order over all 

images is predetermined. Visible images selected using the order will be used to compose the 

image collage. The ordering is defined based on the following two criteria: 

• Images that are more representative should have higher priorities to allow them to be 

selected first. 

• Images with similar priorities should be ordered in a dispersive way so that the images 

selected for display are spread across the screen evenly. 

The priority of each image I is a value z1 that equals to the highest level in the multi-

resolution SOM (described in 4.3 above) that the image is mapped to. 

To ensure the subset of images selected spreads uniformly across the screen, the images 

are also disperse ordered. Here an idea is borrowed from image halftoning and a dispersed-dot 

dithering matrix of the same dimensions as the bottom level SOM is calculated. Dithering 

matrices are recursively defined as: 
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v<zJ = [~ D and u<ml = [! !l 
D(Zm) _ [ 4D(m) 

- 4D(m) + 3U(m) 

4D(m) + 2U(m)] 

4D(m) + uCm) 

(15) 

For each image I, its disperse order d1 is the value in the matrix where !canvas maps to. 

The mapping is performed by simply mapping the image position in canvas coordinate space 

into the coordinate space defined by the dimensions of the dither matrix. The uniformity 

property of the dispersed-dot dithering matrix ensures that the first H images selected for 

display will be spread evenly across the screen. 

At the end of the organizing process, each 1mage I has a 4D vector (x1,y1,z1,d1) 

associated with it. When selecting among visible images to composite the image collage, the 

ones with smaller z values are selected first. If images have the same z value, the ones with 

smaller d values are then selected first. Once selected, each image is texture mapped to a 

rectangle centered at the location (x1,y1) in the draw window. The selected images are drawn 

in reverse precedence so that, in case of overlapping, ones with higher priority overlap ones 

with lower priority. 

5·4 Experience Enhancement 

At this point the interface described is robust at managing large numbers of images under 

a variety of useful user interactions. The user has been given the ability to pan and zoom the 

canvas and resize the images as they see fit. To further improve the browsing experience, a 

number of techniques are also applied, which include mouse hover, mouse flicking, and 

smooth zooming/resizing. 
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Since users usually focus on one main image at a time it is of benefit to enlarge and bring 

the image of interest to the front. If something is not done with the focus image the user has to 

resize all of the images at once, which causes the total number of images display H to change, 

which in turn may cause the image of interest disappear requiring the user use more zoom to 

relocate it. For this reason a hover behavior is implemented to enlarge the image which is 

currently in focus, deemed to be the one the mouse is over. The enlargement ratio is 

calculated based on both the distance of the mouse location to the image center and the 

image's original dimensions. This feature allows the user to quickly enlarge an image by 

moving the mouse over it, as well as easily cancel the enlargement effect by moving the 

mouse outside the image' s original area. Images are sized based on a bounding square whose 

radius (half of its dimension) is the display size described in 5.2. They are scaled so that the 

maximum of their width and height is equal to the square's dimension. For any image I its 

current radius R(I) is calculated as: 

R(I) = (1- a)radius + (a)radiusfocus 

. ( lmousex - Ix I !mousey - Iy I ) 
a = mm d. I ,-'--d-. _...;.._I-~ 

ra lUS X width ra lUS X height 

(16) 

where radiusfocus > radius is the radius of a focus image, a is the enlargement ratio, 

( mousex, mousey) is the mouse position in the canvas, is the center, Iwidt h: I heio ht is the 

aspect ratio of I and Iwidt h or heio ht or both are 1. 

If the collage contains many images users will have to zoom in quite a ways to see the 

bottom level ones. As a result the scale of the 2D virtual canvas can be significantly larger 

than the viewing area. If the user would like to move around the canvas at this scale, a lot 

39 



panning operations are required. To reduce the panning operations needed, a way to throw the 

canvas with a mouse flick is implemented. The velocity of user' s mouse drag operations is 

kept track of by computing the difference between mouse's coordinates over the past few drag 

events. When the user releases the mouse, instead of stopping the movement of the canvas 

immediately, we allow it continue to move in the same direction it was travelling on release 

but dampen the velocity gradually using a pre-defined deceleration factor. This enhancement 

allows the user to control how far away the canvas is thrown through the speed of mouse 

drag, rather than having to repeatedly drag it. 

The final enhancement we made is to dampen discrete changes in the interface, like image 

size and canvas zoom, with animation based on exponential decay between states for a less 

ridge feel. Upon such a change we simply interpolate between the old and new states using 

enough steps in between to make the transition smooth. In a generic sense: 

ai = exp (P ( 1- ~)- p) 

(17) 

where N is the total number of steps to be taken, state0 is the old state, stateN is the new 

state, and parameter p controls the shape of the exponential curve and is experimentally set to 

5. Notice that ai decays exponentially so that changes start quick but finish smoothly. This 

type of animation was found to improve the aesthetic appeal without sacrificing productivity 

to slow visual effects. 

5·5 Demonstration 

Figure 5.3 gives a small demonstration of the browsing interface through screenshots. 
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(a) (b) 

(c) (d) 

Figure 5.3: After the SOM has been trained with 256 images the image collage looks like (a). 

In (b) the image display size is decreased resulting in more images being shown, 

the canvas is also zoomed out a little. An image of interest is also found in the 

bottom left corner, its enlargement is due to the mouse cursor hovering over it. In 

(c) the canvas is panned so that the image of interest is at the center and then the 

canvas is zoomed in on. Notice that the image display size is not affected by the 

zoom and that we are seeing all of the images in this area since new images have 

stopped populating the vacant regions. We can see that most of the small images 

surrounding the one that is focused upon bare similar characteristics and are also 

of interest. To get a better look at these, the image size is increased in (d) beyond 

that of what it was in (a). 
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Chapter 6 Experiments and Evaluations 

Figure 6.1: The results of organizing a collection of 2200+ images. Close inspection suggests 

that similar images are grouped together. Remember that the organization wraps 

from each edge to its opposing one. 

The proposed algorithm is implemented using Java. The JOGL API is used for accessing 
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OpenGL commands and all the shaders that run on the GPU are written in GLSL (included in 

Appendix A). The implementation is tested on a desktop computer with a 3 GHz Intel Core 2 

Duo CPU and a NVIDIA Quadro FX 1700 GPU. The experiment is performed using a 

collection of images downloaded from the Flickr photo sharing site. A dataset of 2200+ 

images are put together by performing 22 different searches based on keywords. It is worth 

noting that some of the keywords used, such as lily and daisy, return visually similar images 

which make it challenging for clustering. One of the organization results is shown in Figure 

6.1. 

6.1 Organizing Speed 

The most time-consuming part of approach presented is the SOM training for image 

organization. To verify whether the approach is capable of handing a large number of images 

at interactive speed the SOM training time needed under different settings are presented in 

Table 1. To measure the speedup of the GPU implementation, the SOM training algorithm is 

also implemented on the CPU. 

Table 1: The time needed for training the SOM on the GPU under different settings. 

Number of images 256 256 2220 2220 

SOM size 128x128 128x128 256x256 256x256 

Feature vector dimension 16 64 16 64 

CPU time needed 1m 50s 5m41s 47m 27s 3h 8m 52s 

GPU time needed 19s 21s 2m2s 5m lOs 

Speedup 6x 16x 23x 37x 

The testing shows that the CPU implementation is not even in the ballpark of the GPU 

when the number of images is high. In the CPU's defense this was a simple single-threaded 
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implementation. Since dual core CPUs are commonplace at the time of writing the numbers 

shown could be halved to mimic the optimal use of two processing cores but still the high end 

load would require an unreasonable amount oftime. 

6.2 Organizing Quality 

As explained in Chapter 1, the goal of 2D image organization is to group similar images 

as close as possible and at the same time evenly distribute images across the canvas. This 

objective differs significantly from the one under which feature extraction techniques for 

content-based image retrieval (CBIR) have been evaluated in the past [5]. For this reason, 

rather than using precision and recall as is customary for CBIR, new performance metrics are 

proposed and used in this section that properly characterize the image organization results 

obtained under different feature vectors. 

6.2.1 Metrics 

To allow quantitative evaluation we assume that a ground truth classification of images is 

available. That is, the set of images T is manually divided into N subsets Sk such that 

U1SI<S'V Sk = T and so that images within each subset are considered to be visually similar. 

The quality of image organizing result can then be evaluated using the span of the area 

occupied by the images in each subset. 

To evaluate a given subset Sk> we first need to find the centroid image for that subset. 

That is, find an image ck, (ck E Sk) that satisfies the following condition: 

'Vj(j E Sk/\i * ck), I D(i, ck) < I D(i,j) (18) 
iESk iESk 
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where D(i,j) is the Euclidean distance between the coordinates of images i andj. 

Then, the span of the area occupied by images in subset Sk is measured using the average 

distance between each image in Sk and its centroid ck: 

(19) 

This metric gives us a measure of the overall closeness of the positioned images from the 

subset Sk . It is worth noting that if the maximum distance is used it will be too prone to 

outliers and if the median is used it will not penalize enough for outliers; for instance, up to 

50% of the images in Sk could be scattered far away from the rest without a negative impact 

on Rk(Sk) if it was median-based. For these reasons the average distance is chosen as the 

foundation of this metric. 

On the other hand, we can calculate the average distance for all images not in the subset k 

usmg: 

(20) 

This metric tells us how far away that the images not belonging to the subset Sk are. 

The ratio of the above two measures is a dimensionless number, which is a good evaluator 

of the effectiveness ofthe image organization for the subset Sk: 

(21) 

where Ek is referred to as the effectiveness of the feature vector being used on the image 

45 



subset Sk. An average effectiveness measure across the entire set of images is then simply: 

(22) 

where the higher the E value the better the overall organization is as it indicates that the 

images from the same subset are close to each other whereas the images not belonging to the 

same subset are far away. 

The above effectiveness measure evaluates how well the first objective for image 

organizing is satisfied. A similar approach can also be used for evaluating the second 

objective, that being, whether images from all of the different subsets are distributed across 

the available space. To evaluate this we can calculate the average span of all images in the 

collection using: 

F = 11~11 L D(i, c) 
iET 

(23) 

where cis the centroid image for the whole set T. Since the coordinate system we use has the 

range [ -1, 1] and is wrapped, evenly distributed images will give a F measure of about 0.75. 

6.2.2 Results 

In all of the experiments the number of units in the SOM is set to 256x256, which is large 

enough to ensure images with distinct feature vectors in our dataset are mapped to unique 

locations. The number of iterations used in the SOM training is fixed to 30, which is 

determined by experiment to be sufficient for a reasonable convergence without sacrificing 

the quality of the result. In all cases one organization is performed with random vectors for 
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each image to serve as a basis of any observed improvement, or lack thereof. These vectors 

can be represented like so: 

Frand (/) = [rl, ... I rd] 

ri = rand(O, 1) 
(24) 

where rand(O, 1) is simply a function that returns a random real number from the given 

range. 

We first evaluate whether the SOM training approach can evenly distribute images under 

different feature vectors settings. Figure 6.2 plots the measure F, the average span, for all 

image locations in the organization obtained from the SOM alongside the average feature 

vector distance in the vector space. It confirms that, when different types of feature vectors 

are used, the average distances among feature vectors differ dramatically. However, the 

average span of the images' locations stays at about 0.71, close to the average span of 

randomly positioned images, which is the most evenly distributed. This suggests the SOM 

training algorithm can effectively map images across the final coordinate plane regardless of 

the original feature vector distribution. 
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Figure 6.2: The average span of all images 10 the SOM and the average feature vector 

distance in the feature space. 

Since not all of the images found by Flickr' s searches visually depict the keywords used, 

to test the performance of different feature vectors we manually select 1 0- 15 images for each 

category and use them as the ground truth classification for evaluation. Figure 6.3 shows the 

average effectiveness measure, E, for different feature vectors under different size settings. 
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Figure 6.3: The effectiveness of different feature vectors under different vector dimension 

settings. 

The following can be observed from the evaluation: 

• When the size of the feature vector is limited to four dimensions, the two color-based 

approaches offer the best results. However, increasing the feature vector size does not 

necessarily improve the clustering. 

• The gradient-based approaches generally perform better with larger feature vector 

settings. 

• When the feature vector size IS larger than four, the gradient histogram is 

outperformed by the gradient direction histogram and the gradient autocorrelogram is 

outperformed by the gradient direction autocorrelogram. This suggests that the 

gradient magnitude information does not play as significant a role in depicting the 

visual contents of images. 
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• Throughout our experiments we found that to achieve the optimal performance, the 

gradient-based approach generally requires feature vectors with higher dimensions 

than the color-based approach does. Hence, in the aggregate vector we allocate 

roughly 1/4 of the feature vector to store the color histogram information and 3/4 for 

the gradient direction autocorrelogram information. 

• As expected, the best performances are obtained using the two hybrid approaches. 

Among the two approaches, the color-gradient correlation feature vector performs 

better at higher dimensions and the simple aggregated vector performs better at lower 

dimensions, most likely due to the standout performance of the low dimensional color 

histogram. 

Figure 6.4 shows the effectiveness obtained for different tmage categories using four 

selected feature vectors. 

16 ,---------------------------------------------------------.. ~ 

8 +---~~-------+------------~----------------~----------~~ 

2 

• 40 Color Histoaram • 160 Color Autocorreloeram • 160 Direction Autocorreloeram • 640 Color-Gradient Correlation 

Figure 6.4: Effectiveness of four different feature vectors across different categories. 

The results show that: 

• Using only four numbers, the color histogram can effectively group together images of 

fire, lightning, rose, star, and winter. This can be attributed to the distinct color 
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distributions of these images. 

• The color autocorrelogram performs the best on the fire, iceberg, and sun categories. 

This is due in no small part to the unique neighbor color pattern existing in images of 

these categories. 

• The gradient direction autocorrelogram is very effective at grouping daisy and lily 

images. These images contain textures from which the gradient direction 

autocorrelogram production procedure can extract a distinct gradient direction pattern. 

However, it does poorly on desert and winter images where image gradient is not as 

prevalent. 

• With combined color and gradient direction information, the hybrid color-gradient 

correlation approach performs the best for blossom, desert, forest, sky, stars, and wave 

images and also performs well in categories such as fire, sun and winter. 

• Some categories are hard to distinguish from others since they are visually similar. For 

example waterfall images may appear similar to wave or river images. Beach and field 

images contain large portion of sky, which can influence the feature vectors generated. 

Figure 6.5 shows the image placements generated using three different feature vectors. As 

expected, images are placed at random locations in a fairly uniform distribution when the 

random feature vector is used for training. The result obtained using the color-gradient 

correlation feature vector shows better clustering based on category than the one generated 

with the color histogram, which is consistent with the effectiveness values measured. (b) and 

(c) also visually confirm the results in Figure 6.3 and Figure 6.4 and the conclusion that the 

SOM evenly distributes the images over the entire space (Figure 6.2). 
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color 
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Figure 6.5: Image organizing results obtained. Left column shows all the images and right 

column shows the distribution of different categories using different colors. 

Please note that the SOM is trained with a wrapped influence so the image 

positions will be better for browsing and as a result similar images may be placed 

near boundaries of the opposite sides. 
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Chapter 7 Conclusion 

This thesis details an algorithm for the automated organization of a large collection of 

images based on the content of those images. The process of mapping multi-dimensional 

feature vectors extracted from the images onto a 2D coordinate system through the use of a 

Self Organizing Map (SOM) is described along with a way to offload the majority of the 

computationally heavy SOM training onto the GPU. The evaluation of the proposed GPU 

training algorithm yields remarkable speedups over the CPU based implementation. A method 

of transforming the similarity-based image organization data into a user driven browsing 

interface is presented. Intuitive ways of handling zooming, panning, and image sizing are 

explained with the ultimate goal of helping the user find what they want, whether they know it 

or not, quicker. Ways to maximize screen real estate are discussed for when the collection to 

show contains more images than can feasibly be displayed at once. The validity of this design 

as an interactive browsing solution that improves upon the status quo is evaluated along with 

the effectiveness of the organizations obtained from a host of different types of feature 

vectors. This is done both qualitatively, by way of visualizations of the organizations, and 

quantitatively, through metrics tailored specifically to the image organization problem. From 

the experimental data, conclusions about the pros and cons of each type are drawn. 

Overall the content of this document has many practical applications, not the least of 

which is a useful method of surfing on community image sites and as an alternative to the 

standard thumbnail/filename layout currently employed by operating systems. The feature 

vectors studied are useful general purpose ones that offer a wide array of image processing 

and computer vision related merit. The GPU implementation of the SOM for an arbitrary 
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dimension of feature vector is a powerful tool for anyone looking to leverage the SOM's 

unique abilities but is worried about the computational constraints imposed by its training. 

Finally, the concepts backing the browsing interface are of value under any circumstances that 

require the visualization of a large number of overlapping objects with limited screen 

resolution. 
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--~----------------------------------------------------------------------------------

Appendix A Shaders 

These shaders are written in GLSL. Most of what follows is comments that have been 

inserted to aid understanding; the code itself is very minimaL Each shader should be thought 

of as running independently on every pixel fragment being processed by the GPU in paralleL 

A.t Distance 

I* all uniform variables are set by external GL code *I 

I* used to access the som texture data *I 
uniform sampler2D somTexUnit; I* = 0 *I 

I* used to access the sample (image) texture data *I 
uniform sampler2D sampleTexUnit; I* = 1 *I 

I* blocks is the number of som tiles due to the feature vector size , 
it is used to keep the output coordinates correct *I 

uniform vec2 blocks; I* = (columns , rows) *I 

I* constant for normalization because shader output through gl_FragColor 
(at the end ) is clamped from [O .Of, l .Of) *I 

uniform float maxNormDistance; II= sqrt(number feature vector dimensions) 

void main () 

I* the relative position of this unit in the som (somTexUnit couldn't 
be used with gl_TexCoord unfortunately but remember it 's 0) *I 

vec2 coord = gl TexCoord[O] .st; 

I* initially a zero vector to be added into *I 
vec4 dVec = vec4(0); II= (0 , 0 , 0 , 0) 

I* euclidean distance code is generated dynamically at runtime 
externally based on the number of feature vector dimensions a nd 
injected before the shader is loaded because loops in shaders can 
be slow *I 

I* BEGINNING OF GENERATED *I 
vec2 blockCoord = vec2(coord); 
vec4 dif; 
dif = texture2D(sampleTexUnit , blockCoord) 

- texture2D(somTexUnit, blockCoord); 
dVec += dif * dif; 
blockCoord = vec2(coord . x + 0.5 , coord.y + 0.0); 
dif = texture2D(sampleTexUnit, blockCoord) 

- texture2D(somTexUnit , blockCoord); 
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dVec += dif * dif; 
blockCoord = vec2 (coord.x + 0.0, coord.y + 0 . 5); 
dif = texture2D(sampleTexUnit, blockCoord) 

- texture2D(somTexUnit, blockCoord); 
dVec += dif * dif; 
blockCoord = vec2(coord . x + 0 . 5, coord.y + 0.5); 
dif = texture2D(sampleTexUnit, blockCoord) 

- texture2D(somTexUnit, blockCoord); 
dVec += dif * dif; 
/* END OF GENERATED */ 

/* add up the indiv1dual sums and perform the final square root */ 
float d = sqrt(dVec.x + dVec . y + dVec . z + dVec.w); 

/*the return is ((som x , som y), normalized distance , opaque) and is 
written to the distance texture which is set up externally */ 

gl FragColor = vec4(coord *blocks, d I maxNormDistance, 1); 

A.2 Minimum 

/* all uniform variables are set by external GL code */ 

/* used to access the distance texture data written by the distance 
shader */ 

uniform sampler2D distanceTexUnit; / / = 0 

/* used to find reduction partners , it depends on the 
current reduction being performed */ 

uniform vec2 offset; // = (0.5 , 0 . 5) on first reduction 

void main () 

/* coordinate of the bottom left pixel can be gotten directly */ 
vec2 coordO = gl TexCoord[O] .st; 
/* the other three are computed based on the offset */ 
vec2 coordl vec2(coord0.s + offset.x, coordO.t); 
vec2 coord2 vec2(coord0.s, coordO.t + offset.y); 
vec2 coord3 vec2(coordl.s, coord2 . t); 

/* get distance data out of the d1stance texture */ 
vec4 unitO texture2D(distanc eTexUnit, coordO); 
vec4 unitl 
vec4 unit2 
vec4 unit3 

texture2D(distanc eTexUnit, coordl); 
texture2D(distanc eTexUnit, coord2 ); 
texture2D(distanceTexUnit, coord3); 

/* find the one with the minimum blue channel , i . e . , the distance*/ 
vec4 minimum = unitO ; 
minimum unitl . b < minimum.b ? unitl minimum; 
minimum unit2.b < minimum.b ? unit2 minimum; 
minimum unit3.b < minimum.b ? unit3 minimum; 

/* return the minimum unit directly, it is written to a duplicate of 
the d1stance texture (because read/write is not possible , only 
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read or write) whose address is swapped externally , called ping 
pong *I 

gl FragColor minimum; 

A.3 Influence 

I* all uniform variables are set by external GL code *I 

I* used to access the distance texture data which actually just contains 
the best match unit coordinates in the first pixel after the parallel 
reduction performed by multiple renderings with the minimum shader *I 

uniform sampler20 distanceTexUnit; II= 0 

I* the position of the pixel containing the bmu data in the reduced 
distance texture, which is the bottom left pixel and is accessed on the 
half pixel *I 

uniform vec2 bmuCoord; II (0.5 I distanceTexWidth , 0 . 5 I distanceTexHeight) 

I* the decaying neighborhood radius that is updated on iteration , note the 
normalization by somWidth , the max possible neighborhood diameter , so 
radiusSq will be relative to the distances calculated from texture 
coordinates , which are in the range [0 , 1], below . the biggest radiusSq 
can be after normalization is 0 . 5 *I 

uniform float radiusSq; II = initialRadius * exp(-time I lamda) I somWidth 

I* the decaying learning rate that is updated after on iteration *I 
uniform float learning; II = learningRate * exp(-time I iterations) 

void main () 

I* best match unlt's coordinates from distance texture *I 
vec2 bmu = texture2D(distanceTexUnit, bmuCoord) .xy; 

I* the coordinates of this pixel fragment, that is the unit in the 
som, but note that they come from distanceTexUnit ' s texture 
mapping because it is the same size as the original som (not the 
tiled som texture with blocks)) *I 

vec2 coord = gl_TexCoord[O] . st; 

I* computes the closest position taking into account wrapping *I 
vec2 dif = abs(bmu- coord); 
vec2 best= min(dif, vec2(1) - dif); 

I* physical euclidean distance in the som from this unit to the best 
matching unit *I 

float d = length(best); 

I* neighborhood influence function using this node's physical 
distance from the bmu *I 

float influence= learning* exp(-(d *d) I radiusSq); 

I* returned influence for this position will be written to the 
influence texture (set up externally) in the red channel of this 
pixel fragment *I 
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gl_FragColor vec4(influence, 0 , 0 , 1) ; 

A.4 Update 

/* all uniform variables are set by external GL code */ 

/* used to access the som texture data */ 
uniform sampler2D somTexUnit; // = 0 

/* used to access the sample (image) texture data, note that the 
GL TEXTURE MAG FILTER must be GL NEAREST for the texture to use the 
same coordinates as somTexUnit without having the data 
filtered/changed */ 

uniform sampler2D sampleTexUnit; // = 1 

/* used to access the influence texture data, note that the 
GL TEXTURE WRAP S and GL TEXTURE WRAP T must be GL REPEAT for the 
texture with the mapping adjusted externally so a duplicate of the 
texture is mapped exactly over each of the tiles containing the 
different parts of the unit's weight vectors in the som */ 

uniform sampler2D influenceTexUnit ; // = 2 

void main () 

/* the relative position in the som 
sample one is scaled via nearest 

vec2 coord = gl_TexCoord[O] . st; 

/* from the som unit width vector */ 

and sample texture because the 
neightbor to the same size */ 

vec4 unitPart = texture2D(somTexUnit , coord) ; 

/* from the image feature vector */ 
vec4 samplePart = texture2D(sampleTexUnit , coord) ; 

/* from the influence texture */ 
float influence = texture2D(influenceTexUnit , gl_TexCoord[2] .st) .r; 

/* linear interpolation , note tha this shader runs on different 
parts of the weight vectors in the som independently in 
parallel */ 

gl FragColor = unitPart +influence* (samplePart- unitPart); 
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