





































































































































































































2.18.2 Graphing
All graphs present 1 have I

in addition to any normali:

indicated in figure legends).

:n construct 1 using Graphpad Prism

tion or subtraction procedures (as
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Figure 15: Location of substitutions in r« ation to the ¢ ystal
structure of 1 ¥ ¢ o zal mu :le actin.

Crystal structure obtained by Otterbein, et al. Science 293, 708

(2001). PDB file can 1} 2 ¢ . with ti ID: 1J62Z. The first
three residues have been r ¢ d and a not indicated. All
identified substitutions are highlighted yellow and associated
numbers are indicated with red lines where neces i1ry. A) Front
view of actin: subdomain 1 - >wer right; subdomain 2 - upper
right; subdomain 3 - lower left; subdomain 4 - upper left. B)
View of actin from the right side: subdomain 1 - Dbottom;
subdomain 2 - top. C) View of :tin fr¢ Dbehind: subdomain 1 -
lower left; subdomain 2 - upper left; su main 3 - lo r right;
subdomain 4 - upper right. D) View of actin from the left side:
subdomain 3 - bottom; subdomain - top.
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the inferred actin seq 1«c (Acc # EF607093) corresponds to a

fast skeletal muscle actin.
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mackerel fast and herring low, Ser n her: 1g fast) is of little

consequence to the 3° structure of actin.





















Figure 26: Thermally indu¢ 1 unfolding of the skeletal muscle
isoforms of actin isolated from the muscles of
Atlantic herring plotted as the percent overall change
in ellipticity.
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Actins were considered to be in their native conformation at 5°C

(relative ellipticity - 10C 1. Heat induced wunfc 1ing was
considered to be complete at 75°C (relative elliptic: y - 0%).
Conversion from mdeg w: perfor :4 using ! =2 following formula:

(1-[6% - 0/ total change 0])* 100%. Data taken from Figures 24
and 25.
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contributions of the 13 replacements found in slow skeletal

muscle actin.
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