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Abstract 

This thesis consists of the examination of methodologies for sensor fusion and data 

fusion of remotely sensed, sparse geospatial targets. Methods for attaining an increased 

awareness of targets in both tactical and strategic roles are proposed and examined. 

The example methodologies are demonstrated, and areas for further research noted. 

Discussions of the proposed methods are carried forth in the context of iceberg 

detection. 

Amongst the difficulties associated with the combination of sensor parameters and 

sensor data are the wide variety of technologies, performance ability, coverage, and 

reliability that are available to those users of remote sensing technology. Typical 

sensors include airborne search radars, marine search radars, surface wave radar, and 

satellite synthetic aperture radar. The ability to mitigate the related parametric variances 

is the test of an appropriate sensor or data fusion algorithm. 

D ocumented herein are the efforts to find such an algorithm using various statistical 

methods. Primary among these is Bayes Theorem combined with tracking systems 
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such as the multiple hypothesis tracker. This and other methodologies are explored 

and evaluated, where appropriate. It will be demonstrated that such a methodology 

can combine sensor data returns to provide high performance, wide-area, situational 

awareness with sensors considered to have poor performance. 
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Chapter 1 Introduction 

This manuscript describes the research, application, and development completed 

towards finding appropriate methodologies for sensor and data fusion of remotely 

sensed targets. Within the context presented here, sensor and data fusion refer to the 

combination of sensors parameters and detection data, respectively. Similarly, remote 

sensing refers to the observation of a phenomenon via either active or passive means. 

The phenomena being sensed are referred to as targets. For our purposes, the targets 

are physical objects presumed to exist in some broad geographical location; however, 

the reader should not presume that the theory and methods presented here are limited 

to this specific application. 

While the body of work presented could have been applied to a broad range of targets, 

a specific target set was chosen due to the application that motivated the development 

of these methods. Specifically, the availability of a diverse set of independent sensor 

used for the rem te sensing of icebergs provided the opportunity to produce methods 

for combining these sensors, and their data. 
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This work, being driven with this specific application in mind, focused on combining 

disparate, sparse sensors producing temporally sporadic data. These sensors vary 

parametrically with respect to geograprucal coverage, detection capability, and 

reliability. Thus, the body of work presented here limits itself to the mitigation of the 

challenges posed by the use of these discordant sensors. 

For the reader's reference, Figure 1.1 (Petro-Canada, 2002) provides a map of the 

offshore region of Eastern Canada; the geograprucal area of interest. Icebergs frequent 

this area to varying degrees from March to July each year as they drift with the 

Labrador Current. The motivating factors behind the monitoring of icebergs in this 

region stems from the desire to protect the srupping routes that pass through the ar a 

and the oil and gas fields located on the north-eastern Grand Banks of Newfoundland. 

The safe operation of shipping vessels, and of oil rigs and platforms, require 

knowledge of the iceberg locations. 

1.1 Icebergs and Iceberg Management 

Icebergs are sections of glacial ice, set adrift when broken from the glacier at the ocean 

edge. The International Ice Patrol (liP) provides a brief description of the iceberg 

process (liP, 2003a). About 90% of all icebergs encountered in anadian waters are 

calved from the glaciers of Western Greenland, accounting for 10,000 to 40,000 

icebergs annually (CIS, 2002a). 
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Figure 1.1: Oil and Gas Operations Map (Petro Canada, 2002) 
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The major glaciers of Greenland are shown in Figure 1.2 (liP, 2003b). Ocean currents 

carry the icebergs through Baffin Bay and the Labrador Sea. The icebergs eventually 

following the Labrador Current south to ewfoundland (Figure 1.3, CIS, 2002a). In 

the North Atlantic, the water temperature ranges from -1.7 ·c in the Labrador 

Current, to 20 ·c in the Gulf Stream. South of the Grand Banks, the cold Labrador 

Current mixes with the warm Gulf Stream. Generally, icebergs melt rapidly once they 

encounter the Gulf Stream; however, in 1926 an iceberg was reported 275 km from 

Bermuda, and they have been know to travel as far east as the Azores (liP, 2003a). 

Icebergs range in size from less than 1 m in waterline length (maximum dimension in 

the plane of the water surface) to hundreds of meters. Their mas generally ranges 

from hundreds of tons to tens of millions of tons. Icebergs have be n known to 

exceed kilometers in length with associated increases in mass (CI , 2002b). 

Icebergs are classified on waterline length, and mass ranges are associated with these. 

Table 1.1 (CIS, 2002b) shows the standard liP classifications. 

Figure 1.4 shows yearly iceberg frequency (liP, 2003c) as determined by the liP. The 

numbers are determined from reports of icebergs south of the 48th Parallel in each year. 

This accounts for an average of 480 icebergs per year. 
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Figure 1.2: Iceberg Producing Glaciers (liP, 2003b) Figure 1.3: Iceberg Affecting Currents (CIS, 2002a) 
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Table 1.1: Iceberg Classifications 

Classification 

Growler 

Bergy Bit 

Small Berg 

Medium Berg 

Large Berg 

Very Large 

Berg 

2500 

2000 

1500 

1000 

500 

on ~~ 

Height Above Waterline Length 

Water (m) (m) 

less than 1m less than 5 m 

1 m to less than 5m 5 m to less than 15m 

5 m to 15m 15m to 60 m 

16m to 45 m 61 m to 120m 

46 m to 75 m 121m to 200m 

Greater than 7 5 m Greater than 200 m 

Iceberg Counts 
Below 481h Parallel (Source: liP) 

-

laJ~ 1 . ~ ~ II I .ln ~ln. In Lft 

Approximate 

Mass (Mt) 

0.001 

0.01 

0.1 

2.0 

10.0 

Greater than 10.0 

-

n~ .• L~ 1M II 

~#~#~~~~~~##~~~~~$~#~~~~~~~~~~~~~~~ 
Year 

Figure 1.4: lceberg Frequency 
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While both shipping and oil and gas recovery require knowledge of iceberg locations, it 

is the oil and gas industry that requires wide-range, accurate data that can only be 

supplied by advanced remote sensing devices. For its part, shipping relies mainly on 

reported southern 'ice limits' and the use of commercial marine radar systems for 

detection. 

The oil and gas operators must be concerned "vith the probability that a drifting iceberg 

may impact a platform, tanker, or supply vessel, or scour undersea facilities such as 

wellheads and pipelines. Thus, since the discovery of oil and gas deposits in the region 

in the late 2Qth century, a fair amount of effort has been placed in determining means of 

long-range detection and physical management of icebergs. 

To protect their installations from the potential of iceberg collisions, operators of 

offshore oil and gas development and recovery programs use a variety of remote 

sensing technologies for the detection of icebergs. The subset of icebergs that could 

pose a threat to installations can then be physically managed to remove the threat 

imposed by their presence. 

The main detection techniques currently used for ice management are aerial patro~ 

visual sightings from vessels and platforms, marine radar, satellite synthetic aperture 

radar (SAR), and surface wave radar (SWR). Almost all of these, except human vision, 

rely on radar systems. These and other means of detecting icebergs will be discussed in 

Chapter 2. 
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With every sensor currently in use or available for remote sensing, there are trade-offs 

between sensor performance and coverage. For operations where large regions must 

be searched, a balance must be struck b tween using sensors with high co erage ability 

and lower detection performance, and sensors with low coverage ability and high 

detection performance. 

1.2 The Need for Advancement in Fusion Ability 

Ideally, a single sensor that is better in all respects to any combination of the existing 

sensors could be sought; however, practical technological and financial limitations 

dictate that such a sensor will not likely exist in the near future. Instead, the 

appropriate combination of information from the existing individual sensors provides 

the best means to achieving a data product that provides better coverage, continuance, 

detection ability, and mitigates false positives in a manner beyond the capabilities of any 

single sensor. 

The lacking performance of the current sensor regime has been apparent for many 

years. Rossiter et al. (1995) pointed out several flaws in the iceberg detection systems 

in use at the time: 

• A lack of a continuous iceberg detection capability within the near

platform zone precipitating the need for iceberg re-identification. 

• lack of utilization of all available data. 
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• A lack of drift direction information, such as iceberg keel data. 

• Reliable and timely information is critical: otherwise the information will 

lack credibility. 

As well, requirements were noted which are still relevant: 

• Ships require only positional information of icebergs to avoid collision, 

platforms desire heading and speed information in addition to positional, 

since they lack the ability to maneuver or maneuver quickly. 

• Ships, especially tankers, do not consider growlers less than 200 t a threat, 

however bergy bits with masses greater than 10,000 t can do damage, 

therefore the detection system should be capable of detecting 

approximately 1000 t icebergs, or 10 m x 10 m x 10 m. 

• Ice information that is required for tactical decisions should be on the 

bridge or in the platform control room for direct and immediate use. 

The cost of developing new sensors is seen as prohibitive; however, the remote sensing 

technologies in use are continually being improved. The need exists to make the most 

of the information available from the current sensors and to deploy these sensors 

effectively. 

These sensors should be combined parametrically in order to provide the means for 

advanced risk modeling. Offshore structures must be designed to withstand the loads 

they may experience; for structures that are exposed to icebergs this load is determined 

from risk analysis models. With previous risk models, detection schemes incorporate a 

9 



.------------------------------

rudimentary sensor scheme-often consisting of only one marine radar sensor. This 

does not take into account the many other radars and types of sensors being used in 

offshore iceberg management Taking these other sensors into account, their different 

types and the assessment of their implementations, will result in more accurate and 

realistic risk assessments. Furthermore, a method for combining detection data from 

the many different sensors in use for iceberg detection could provide a better, real time, 

wide-area view of the ice conditions on the East Coast for efficient use of the ice 

management resources. A system that accounts for the uncertainty associated with 

each sensor type will provide the means to utilize even wide-area low-confidence 

sensors and increase the accuracy and coverage of the sensor network. 
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1.3 Statement of Challenges 

In a broad sense, defining a methodology for the combination of sensor parameters 

and sensor data satisfies a need that exists in a wide range of applications. In terms of 

remote sensing technologies, the need to monitor large geographical expanses is a 

challenge. In a country, such as Canada, with an extensive coastline that is largely 

unguarded and mostly unmonitored, the application of a system capable of combining 

data collected over large geographical areas has significant security applications. 

The challenges, in particular to iceberg detection, are numerous. Icebergs present poor 

radar targets (Rossiter et al., 1995) compared to the approximate radar cross section of 

other objects and standard references. The effective target area of icebergs is affected 

by their irregular shape and the conductivity of ice. Table 1.2 compares small icebergs to 

other typical offshore targets. 

The complexity of the iceberg detection problem is not limited to iceberg size or 

reflectance of radio waves. The solution must consider the type of sensor being used, 

its ability to detect targets, minimize false alarms, and discriminate between icebergs 

and other targets. As well, the applicability and tasking of any sensor within a sensor 

hierarchy is dictated by its reliability, availability, coverage, and data latency. The ability 

of any sensor to detect targets is further a function of the target size, environmental 

conditions, and range. 
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Table 1.2: Radar Cross-Section Comparison 

Classification Radar Cross-Section Actual Projected 

(m2) Cross-Section (m2) 

Growler 0.01-D.1 2 

Bergy Bit 0.5-1.0 60 

Small Iceberg 5-10 400 

Supply Vessel 150 400 

Life Raft 0.25-0.5 3 

Steel Sphere 1 1 

In terms of an overall strategy for offshore hydrocarbon recovery and offshore 

platform safety, the designed iceload of the platform must be considered along with its 

safety perimeter and its ability to avoid collision. This combined with the ice 

management strategy-the towing of icebergs to avoid collisions with urface and 

subsea structures, and the ability of these operations to succeed--define the threat to 

the structure. An examination of all of these influences is beyond the scope of this 

document. 

When focusing on providing safe operation of offshore installations and vessels, the 

key is knowledge of iceberg existence and location. This knowledge also promotes 

effective sensor resource deployment, such as the dispatching of ice management 

vessels and surveillance aircraft, or the acquisition of satellite imagery. 
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The need exists for a system that can monitor both the immediate (tactical) and 

upstream (strategic) areas so that ice management operators can make informed 

decisions on the use of ice management resources. A knowledge of the sensor 

network's ability to detect icebergs, through the parametric combination of sensors, 

and the assimilation of data to form a most-certain analysis of the current iceberg 

positions, would give the ice management operators insight into what is really 

happening in the ocean regions that influence industry safety and operational decisions. 

There are two aspects to the integration of information from iceberg sensors. First, the 

challenge is to define ways of combining current remote sensing capabilities such that a 

set of sensors can be viewed as a 'single' sensor network. This view of the sensors as a 

whole would provide detailed knowledge of areal coverage and the ability to detect 

targets in this coverage area. The network could be adjusted for areas deficient in 

ability to detect targets by introducing new or reallocating existing sensors. This 

provides the means for theoretical risk analysis and planning. 

Second, a methodology must be defined for the combination of the sensor-derived 

data. Represented in a state space paradigm, iceberg data should include factors such 

as position, size, keel depth, and the level of confidence associated with the target. 

Subsequently from these the attributes such as risk to surrounding structures can be 

estimated. The association between targets could be determined from of the target, if 

available, along with knowledge of the sensors and the environment. 
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1.4 Definitions: Sensor Fusion vs. Data Fusion 

As discussed above, the methods examined here can be divided into two categories: 

• a methodology for combining sensor performance characteristics: Sensor 

Fusion; and, 

• a methodology for combining data obtained from a sensor: Data Fusion. 

The challenge of combining sensors' performance is concerned with the combination 

of performance curves spatially and temporally. The methodology to achieve this is 

not concerned with individual data points, only with the combination of the sensors' 

statistical performance parameters. 

Alternately, the combination of sensor data is concerned only with the combination of 

data, not performance statistics. The combination of detection data makes use of 

performance statistics to determine the validity of those detections. 

The two strategies are summarized in the following definitions: 

• Sensor Fusion: From individual performance curves, overall sensor 

network performance must be devised using a method that accounts for 

the various parameters of each sensor. In doing so, the value of each 

sensor can be assessed on an incremental basis to determine optimal 

configurations for existing and future installations. Thus, this fusion 

serves a long-term strategic purpose. 
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• Data Fusion: With detection data commg from multiple sources, a 

means to fuse the detection data into a combined detection database is 

necessary. The fusion methods must account for variations in the 

different sensors such as detection confidence metrics and latency times 

between detections. Through rigorous utilization of sensor knowledge, 

sensor derived data can be combined in a statistical manner, allowing 

even low confidence data to be combined effectively. This fusion serves 

both strategic and tactical purposes, and is sometimes referred to as data 

integration. 

1.5 Thesis Contributions 

The focus of this thesis is the combination of sensors and sensor data. The thesis 

applies existing theory and techniques to the areas of sensor parameter combination 

with emphasis on spatial-temporal combination, and detection ability of combined 

sensors. As well, the integration of detection data from sensors is accomplished in 

terms of detection coverage, the current position of previously detected targets, and 

confidence in this resultant information. It is demonstrated that combining detection 

information provides an improved detection ability through efficient use of all available 

information. 

This approach is unique in its application of these theories to iceberg detection. It is of 

particular interest at this time, when effective satellite observation is becoming a 

commercial possibility. The number of remote sensing instruments is now reaching a 
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quantity that will allow for wide-area coverage and sufficient revisit rates to support the 

algorithms herein described. 
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Chapter 2 Current Solutions and T echniques 

2.1 Iceberg Detection 

Presented in this chapter is a historical perspective of iceberg detection, followed by an 

overview of theory and algorithms deemed applicable to the challenges described in 

Chapter 1. 

2. 1. 1 Iceberg Detection Sensors 

A large variety of remote sensmg technologies have been examined for their 

applicability to the iceberg detection problem. 

There are a variety of sensors currently used to detect icebergs off the Canadian East 

Coast: 

• human visual observation; 

• airborne frequency-agile search radars; 

• ship-mounted search radars (X-band and S-band); 

• ship-mounted enhanced search radars; 
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• platform-mounted search radars (X-band and S-band); 

• platform-mounted enhanced search radars; 

• satellite-borne SAR; and, 

• surface-wave radar. 

These are compared parametrically in Appendix A, and a summary is presented in 

Table 2.1 and Table 2.2. swell as those listed, other technologies have been previously 

evaluated for iceberg detection (Rossiter, et al, 1995): 

• coherent radar systems, providing: 

o target velocity from Doppler info; or 

o enhanced imaging from phase shift; 

• imaging radar: 

o Side Looking Airborne Radar (SLAR); and 

o airborne SAR; 

• Forward Looking Airborne Radar (FLAR), such as AN/ P 137; 

• Ice multi-Parameter Imaging X-band Radar (IPIX); 

• Airborne Imaging Microwave Radar (AIMR), passJVe nucrowave 

technology; and, 

• Fluorescence Line Imager (FLI), visual spectrum techn logy. 
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None of these systems are currently used for iceberg detection off Canada's East Coast 

for reasons including cost, availability, and applicability. 

Detailed analysis of ice detection using the sensors mentioned above can be found for 

marine radar in Environmental Studies Revolving Fund (ESRF) Report 008 (Ryan, 

Harvey, Kent, 1985), enhanced marine radar in ESRF Report 035 (Harvey, Ryan, 

1986), and airborne radar in ESRF Report 045 (CANPOLAR, 1986). C-CORE has 

also evaluated current and promising techniques. A partial list of the reports containing 

an evaluation of relevant sensors is given below: 

• C-CORE IIMI Report 1999 (C-CORE, 1999) 

o 'SeaScan' enhanced marine radar 

o RADARSAT -1 iceberg detection 

o Physical management concepts 

• C-CORE IIMI Report 2000 (C-CORE, 2000) 

o High Frequency (HF) surface wave radar 

o RADARSAT-1 iceberg field trials 

o Physical management evaluation 

• C-CORE IIMI Report 2001 (C-CORE, 2001) 

o RADARSAT-1 iceberg field trials 

19 



o 'SeaScan' enhanced marine radar 

• C-C RE IIMI Report 2002 (C-CORE, 2003a) 

o HF surface wave radar validation 

o Ultra High Frequency (UHF) coherent radar system 

o ENVISAT satellite SAR detection 

o Improved 'SeaScan' enhanced marine radar 

• C-C RE IIMI Report 2003 (C-C RE, 2003b) 

o Satellite SAR iceberg detection in sea ice 

o ENVISAT ship/iceberg discrimination 

o Physical management with nets 

• E RF 008: The Assessment of Marine Radars for the Detection of Ice 

and Icebergs (Ryan, Harvey, Kent., 1985) 

o Testing of X and S-band radar off Labrador 

o Some mathematical treatment of RCS and signal to clutter ratio 

• ESRF 045: Iceberg Detection by Airborne Radar: Technology Review 

and Proposed Field Programs (CANPOLAR, 1986) 

o Examines feasibility of studies into real aperture SLAR, SAR, etc. 

o Statistical target and clutter return distributions 

o Litton APS-504V(5) AR system 
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o Signal processing, scan to scan integration, CF AR processing 

• Mobil il, Assessment of Iceberg Management for the Grand Banks 

Area: Analysis of Detection and Deflection Techniques (Bishop, 1989) 

o Litton APS-504 V(5), pulse compressed, frequency agile SAR 

o The BiStar radar system 

o IPIX Doppler radar 

• RF 132: Remote Sensing Ice Detection Capabilities- ast Coast 

(Rossiter et al., 1995) 

o xhaustive treatment of support vessel and platform needs 

o LARvs.SAR 

o Overviews of SARs: STAR1, STAR2, Litton AP 504V(5), and 

FLAR AN/ APS 137, marine pulse radar, HF SWR, IPIX Doppler 

radar, AIMR microwave radiometer, FLI optical imager, and 

other acoustic systems and optical systems 
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N 
N 

!fable 2.1: Sensors, Part I 

Sensor Visual 

Airborne 

Coverage Horizon based 
on height of 

observer 

Probability of No data 
Detection 

Probability of No data 
False Alarms 

Resolution Spatial 
resolution 

.3mrad, -5. lm 
@ 17 krn 

Cost $4500 to SSOOO 
per hour 

UpdateFreq 1- 2 days 
weather 

permitting 

Platform Ship 

id. id. 

No data 1 o data 

No data No data 

id. id. 

Salary Salary and 
any ship 

costs 

Real time Real time 
if in region 
of interest 

Surface Wave Satellite Radar 
Radar 

HFSWR RADARSAT/ 
E.t'NISAT 

4 SOlan range, Works best in 

120° wide, 300km or 

200,000km2 150km swath 
width modes 

Small bergs For these 
(>15m) out ro modes, can only 

450km[3] detect bergs over 
30m, but does 
this very well. 

1 o data No data 

600m, 3.6° SOrn or 30m 

Azimuth resolution 
respectively. 

Operational S2k to S4k per 
Costs image for 

commercial. 

Real time less An ascending 
any post and descending 

processing pass every 3 days 

Airborne Radat Enhanced Marine Radar 
Marine Radar 

Litton SAR SeaScan/ Titan S-hand X-band 
Search 

Most effective Same as Marine Dependent on /d. 
between 150 to Radar Radar Heigh~ 
450m altitudes, Suppott Vessels 

hence 50 ro 17km, Hibernia 
87km swath 48km [1] 

width 

Growlers (<5m) Capable of Bergy Bits (5--- Capable of 
detectable up to detecting 15m) detectable detection of 20m 

29krn in calm growlers ( <Sm) up to 13krn [2] bergs upto 23krn 
seas at7km in calm seas [2] 

No data No data No data odata 

2% ofrange Dependent on 1% of range 1% of range 
used for the marine radar used for used for 

detection. used (X or S- detection. detection. 

Beamwidth 2.3 ° band) Bearnwidth 2° Bearnwidth o.so 

$4 500 to SSOOO Additional setup Setup low, plus id. 
per hour cost of processor operators salary. 

1-2 days Real time if in Real time if in Real time if in 
weather region of interest region of interest region of interest 

permitting 



Table 2.2: Sensors, Part II 

Sensor Visual 

Airborne 

Data Latency None, if sighting 
relayed by radio 

Availability Only when a flight 
has been 
chartered 

Reliability Susceptible to low 
visibility 

Ability to Excellent 
Classify identification, 

some size 
information, no 

accurate velocity 
information due 

to range ambiguity 

[I] Rossiter et al., 1995 
[2] C CORE, 1992 
[3] C CORE, 2000 

Platform Ship 

None None 

Constant Constant 

id. id. 

id. id. 

Surface Wave Satellite Radar 
Radar 

HFSWR RADARSAT/ 
ENVISAT 

From 6 to 20 3 hours minimum 
minutes 

processing time 

Daytime Constant, note 
operation due update fre<Juency 
to ionosphere 

'F' L!yer 

No weather Penetrates most 
limitation weather 

conditions, has a 
dependency on sea 

state for ocean 
target detection 

Long period Detection 
tracking software 

available. developed. 
Some size Isolates targets 

information from clutter and 
speckle. Size 

detection excellent. 
No velocity 
information 

Airborne Radar Enhanced Marine Radar 
Marine Radar 

litton SAR Search SeaScan / Titan S-band X-band 

None, if sighting None None N one 
relayed by radio 

Only when a flight Constant Constant Constant 
has been chartered 

Works in X-hand Dependent on Better than X, Affected by 
rherefore somewhat rhe marine adversely moderate 
susceptible to rain radar used (X affected by rain and fog 

and fog. Flights can or S-band) heavy rain (1] [I] 
only occur in 

appropriate weather 

Human Same as Marine H uman id. 
interpretation of Radar, software interpretation 

Radarscope. may make of Radarscope. 
Some ability to detect tracking easier Some ability to 

size. No velocity detect size, and 
information if monitored, 

direction and 
speed 



2.1.2 Other Approaches to the Ice Problem 

Other approaches to iceberg management include attempts to modify, mark or destroy 

icebergs. 

In Ryan (1985), the issue of the radar cross section of icebergs (radio frequency 

reflectivity of icebergs) is addressed. Several previous attempts to detect icebergs are 

noted, including methods for marking icebergs for re-identification: 

• dye Vla vanous delivery systems, documented in Allen (1971), Grant 

(1979), and Robe (1978); and, 

• floating tags, documented in Robe (1977). 

The floating tags described above were attached with lines to icebergs, and included a 

radar reflector and radio direction finder transmitter. It is reported that most icebergs 

broke away from their line during stormy conditions or rolling events. 

In 197 5 the US Coast Guard Research and Development Center attempted to tether an 

instrument package to an iceberg using a large steel dart and trailing line. The method 

effectively solved the rolling and melting problems; however, calving could still 

dislodge the dart. T ests were apparently carried out in 1975 and 1977 with success. s 

well, research was conducted in 1971 to define an electronics package for deployment 

on or near icebergs to transmit position derived by Long Range Navigation (LORAN) 

or other navigational systems (Ryan, 1985). 
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Proposed in Ryan (1985) is the deployment onto icebergs of the following passive and 

active materials and devices; the purpose of which is to make icebergs easier to detect: 

• resonant filaments (a.k.a. chaff); 

• reflective mesh; 

• off-berg reflectors (kites or balloons); 

• radar transponders; 

• radio direction finders; 

• L RAN transmission equipment; 

• HF radar transponders; and, 

• satellite tracking transponders. 

Of these methods, only satellite tracking transponders, such as elf Locating Datum 

Marker Buoys (SLDMB), are currently used. Not addressed in Ryan (1985), is the 

prohibitive cost to deploy these technologies, or the reliability of their application to 

icebergs. The primary user of satellite transponder technology is the liP, which 

deploys them from aircraft. 

Also worth noting are the attempts at reducing iceberg mass. Amongst other , the liP 

attempted this using conventional bombs, thermite, lampblack and mining (liP, 
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2003d). Figure 2.1 shows the result of a thermite test. These methods have proven 

ineffective against icebergs. 

Figure 2.1: Thermite used on an Iceberg by the IIP 

2.2 Techniques Applicable to Sensor Fusion 

This section describes common statistical techniques that are deemed appropriate to 

the combination of iceberg detection sensor parameters. These methods will be 

examined further in Chapter 3, where they are applied to sensor fusion. They are 

presented here only as a reference to the basic theory. 
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2.2.1 Probability Theory 

The most apparent method of combining any statistical parameter is through 

traditional statistical combination. What follows is an explanation of the mathematics 

of classical statistics, as illustrated here by Venn probability trees. 

Possibly the simplest method of combining any set of probability parameters is classical 

statistics. Because each parameter from the set can be treated as an independent 

probabilistic test, they are combined using the intersection function for independent 

variables (Peebles, 2001). In Figure 2.2 this is demonstrated by using a Venn 

probability tree for three consecutive trials. For simplicity, the same probability of 

success is used for each trial. 

In these trials, the probability of success of any single test is defined to be 60% (0.6), 

hence the probability of failure is 40% (0.4). Success is termed a positive outcome and 

failure a negative outcome. All possible outcomes of three consecutive tests can b 

seen in the Venn tree. 

Combining all three tests into a single trial reqwres defining some cnteoa that 

represents success or failure of the three tests as a whole. For example, the criteria of 

success could be defined as at least two positive results from three trials, thus two or all 

three of the trials must have a positive outcome for this set of trials to be viewed as a 

success. This introduces a new probability of success for the set of tests. Effectively, 
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an external confidence limit has been imposed on the outcome of the set. The success 

of two of the three tests is required for the minimum confidence to be satisfied. 

Te t 1 Test 2 Test3 Result 

0.6 0.6·0.6·0.6=0.216 

0.4 0.6·0.6·0.4=0.144 

0.6 0.6·0.4·0.6=0.144 

0.4 0.6·0.4·0.4=0.096 

0.6 0.4·0.6·0.6=0.144 

0.4 0.4·0.6·0.4=0.096 

0.6 0.4·0.4·0.6=0.096 

0.4 0.4·0.4·0.4=0.064 

1.000 

r igure 2.2: Venn Trees 

For example, presuming a 60% probability of success of each trial, and requiring at 

least two successes of three trials for a 'conclusive' level of confidence, the probability 
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of success of the complete set can be found from the sum of the probability of each 

trial that meets the 'two-of-three' criteria or better: 

2of3 = 3(Pr(success) 2 
• Pr(failure)) + Pr(success) 3 

= 3((0.6) 2 (0.4)) + (0.6) 3 

= 0.648 

Eq. 2.1 

Thus the probability of success increases from 60% (0.6) to 64.8% (0.648) when the 

three attempts are treated as one. It is clear at this early stage that a clearer definition of 

confidence is warranted; better methods of determining confidence will be discussed 

further in Section 2.2.3 and illustrated in Chapter 3. 

If the qualitative measure of required confidence is less, the quantity of negative results 

allowed may be increased. For example, an individual test repeated three times, 

requiring only one 'success' for the test to be considered successful, provides a result 

with less confidence of representing the actual state space than one requiring at least 

two out of three. Using the one of three criteria, the chances of this combination of 

individual trials being successful is increased significantly from 60% to 93.6%. 

In essence this is the well-known 'M out of N' radar filtering technique (Bogler, 1990). 

The effect of using an m-of-n combination on a probability of success depends on the 

initial value of the probability of success, and the values of m and n. Applying a 1-of-n 

overall success criterion will increase the probability of success regardless of its 

previous value; a positive result from either sensor will be counted as a valid outcome, 
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even if success occurs in only one trial but not the others. Similarly, if the results from 

2-of-3 tests are required to be correct then those sets with only a single positive are 

elimlnated. This increases the chances of success of a set with an individual probability 

of success greater than 0.5, but will lower the chances of success of a set with 

individual probability of success less than 0.5. 

A series of graphs are attached (Figure 2.3, Figure 2.4, Figure 2.5), which can help 

illustrate the results of combining different iterations of tests '\vith various success 

criteria. In these, all trials have the same probability of success. 

The total probability of success, given a method of 'best m-of-n' with a success rate of 

S among all the trials, can be written as below: 

n n 

Pr( Overal/Success) = L c sx (1 - sy-x 
X 

x=m 

Eq. 2.2 

The most advantageous method would be to reqwre only one successful event t 

include the set of trials as an overall success. At this point it appears that this method 

is very effective at increasing the probability of success of a trial; however, the tradeoff 

lies in the effect on the confidence, which can be shown to decrease. This is discuss d 

in Chapter 3. 
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Figure 2.4: 1-of-N Combinations 

31 



09 

08 

07 

015 
~ 
]5 .. e 05 ... 
;3 0 4 

0.3 

02 

0.1 

0 

~------~~--~/~-~--------------------~==~~--~ 
-+-2013 
-+-2014 

_,._2015 
-2olll 

r----~.~~~~~------------------------------------~--20" 
-Unear 

0 0.1 02 0.3 0.4 05 0.6 0.7 08 0.9 

Individual Probability 

Figure 2.5: 2-of- Combinations 

2.2.2 Conditional Probability and Bqyes Theorem 

The classical method described above deals with independent probabilistic measures. 

This is insufficient for multivariate problems with dependent variables. One way of 

depicting dependent problems is through use of a joint probability table (Brown and 

Hwang, 1992) as shown in Table 2.3. This table is known as a confusion matrix in 

classification theory. Here an unknown state space is referred to, where the 

phenomenon being investigated is present, 'positive', or not present, 'negative'. 
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Table 2.3: Two-Way Table 

Positive Test Result Negative Test Result 

Positive State Correct Test Result False Negative Result Probability of an 

Actual Positive 

Negative State False Positive Result Correct Test Result Probability of an 

Actual Negative 

Probability of a Probability of a 1.0 

Positive Result Negative Result 

The two-way table can be expressed in equation form, as in Table 2.4. 

Table 2.4: Two-Way Table with Equations 

Positive Test Result Negative Test Result 

Positive State Correct Test Result False Negative Result 
Pr(PS) 

Pr(PS &PR) Pr(PS &NR) 

Negative State False Positive Result Correct Test Result 
Pr(NS) 

Pr(NS &PR) Pr(NS&NR) 

Pr(PR) Pr(NR) 1.0 
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Where we use the definitions below: 

• PS = Positive State 

• S = egative State 

• PR =Positive Test Result 

• NR = Negative Test Result 

The conditional probabilities are Pr(PR IPS), Pr(NR IPS), Pr(PR INS), and 

Pr(NR INS), where X I Y indicates the likelihood of some condition X given Y. The 

joint probabilities are shown in Table 2.4, they include Pr(PS & PR), Pr(PS & NR), 

Pr(NS & PR), and Pr(NS & NR). The marginal probabilities are Pr(PR) andPr(NR). 

Bayes theorem is a method for dealing with a problem that relies on some a priori 

knowledge. Where the initial state- the marginal probability Pr(PS) - is known or 

approximated and a test is performed on the system. Bayes Theorem provides a 

method to update the marginal probability with the new information from the result of 

the test. Bayes theorem can be stated as in Joyce (2003): 

Pr(A I B) = Pr(A & B) 
Pr(B) 
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In the above table, the 'state' is the prior condition of the system, and the Pr(PS) , or 

the probability of the state being 'positive'. Thus, given a result of the test, the estimate 

of the state is redefined. The updated estimate is termed the 'posterior'. 

In cases where not all of the joint and marginal probabilities are known, the other 

probabilities may be determined through calculation. The multiplication law of 

probability states for dependent probabilities is shown in Eq. 2.4. 

Pr(A & B)= Pr(A I B) x Pr(B) 

= Pr(B I A) x Pr(A) 
Eq. 2.4 

The significance of the two-way table for determining the actual state of some system is 

in its ability to provide a confidence metric. This is further elaborated on in the 

following sections. Its relationship to sensor fusion is illustrated in Chapter 3. 

2.2.3 Statistical Confidence 

As discussed in Section 2.2.1, a measure of confidence is required for evaluating the 

combination of statistical parameter . It can be defined, for the purposes of this 

treatise, that confidence is the statistical representation of the ability f some test or 

trial, or set of trials, to return the true value of the state space being observed. 
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There are four parameters of interest returned from the conditional probabilities of the 

two-way table ( ection 2.2.2); these can be termed as in Chankong et al. (1985): 

selectivity (sensitivity): Pr(PR IPS) &j. 2.5 

selectivity (specificity): Pr(NR INS) &j. 2.6 

predictivity( +) :Pr(PS I PR) Eq. 2.7 

predictivity(-) :Pr(NS I NR) Eq. 2.8 

Thus, a test can be defined-not simply as its likelihood of returning positive or 

negative- but on its ability to represent the true state space: to return a positive result 

when the state is positive, and to return a negative result when the state is negative. 

The confidence in the trial is the likelihood that the test result represents the state of 

that being ob erved: 

and, 

Confidence Given PR = Pr(PS I PR) = _P_.:r('--P_S_&_P_'R~) 
Pr(PR) 

Confidence GivenNR = Pr(NS I NR) = _Pr~(_M_S_&_N_R~) 
Pr(NR) 
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These conditional probabilities of preclictivity should be maximized, as they vary 

proportionally with the confidence in the information returned from the test. Note 

that the confidence in a test's ability to determine a positive state i not necessarily 

equal to its ability to determine a negative state. 

Often the Pr(PR I PS) and the Pr(PR INS) are the parameters used in examining the 

worthiness of a test as a detector for some phenomenon. In these cases the formula 

for preclictivity can be derived from Bayes theorem as a function of Pr(PR IPS) and 

Pr(PR I S): 

Pr(PS I PR) = Pr(PS & PR) 
Pr(PR) 

= 
Pr(PS) Pr(PR I PS) 

Pr(PR) Pr(PS + NS) 

= __ P_r..:.....(P_S..:._) P_r_;_(P_R_:I_P_S.:._) _ 
Pr(PR & PS) + Pr(PR & NS) 

Pr(PS) Pr(PR IPS) 
=----__...:....____.:._.:____.:_____.:. ___ _ 

Pr(PS) Pr(PR IPS)+ Pr(NS) Pr(PR INS) 

Eq. 2.9 

Eq. 2.11 

The formula for Pr(PS I NR), Pr(N I PR), and Pr(NS I R) can be similarly 

determined: 

Pr(PS I NR) = Pr(PS) Pr(NR IPS) 
Pr(PS) Pr(NR IPS)+ Pr(NS) Pr(NR I NS) 

Eq. 2.12 
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Pr(NS I PR) Pr(NS)Pr(PR INS) 
Pr(NS) Pr(PR I NS) + Pr(PS) Pr(PR IPS) 

Eq. 2.13 

Pr(NS I NR) Pr(NS) Pr(NR INS) 
Pr(NS) Pr(NR I NS) + Pr(PS) Pr(NR I PS) 

Eq. 2.14 

These equations are dependent on the prior state of the state space. In keeping with 

Bayes Theorem, the Pr(PS I PR) or the Pr(PS I NR) can be used as posterior values to 

update the Pr(PS) prior value. The implication of this will be examined further in 

Section 2.3.1. 
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2.3 Techniques Applicable to Data Fusion 

This section describes common statistics techniques that are deemed appropriate to the 

combination of iceberg detection data. These methods will be examined further in 

Chapter 4, where they are applied to data fusion. They are presented here only as a 

reference to the basic theory. 

2.3.1 Iterative Bqyes 

As briefly mentioned m Section 2.2.2, Bayesian Theory may be used for the 

modification of a prior probability value using a conditional posterior calculation. Thi 

update may be done using the formula derived in Section 2.2.3, or iteratively as shown 

below. 

This iterative method provides a means of combining multiple statistical tests. The 

terminology us d here is based on Chankong et al. (1985) . In each iteration, where the 

test returns either a positive or a negative, the prior value is updated: 

• given a positive result: 

Pr(PS),pdared = Pr(PS I PR) Eq. 2. 15 

• or, given a negative result: 

Pr(PS) ,pdared = Pr(PS I NR) Eq. 2.16 
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To simplify the equations, the notation is changed as shown below: 

• the following define the selectivities (specificity and sensitivity): 

a + = Pr(PR IPS) 

a += Pr(NR IPS) 

a - = Pr(NR INS) 

a - = Pr(PR INS) 

• and, the following define the predictivities: 

e+ = Pr(PS I PR) 

e+ = Pr(NS I PR) 

(} - = Pr(NS I NR) 

fr = Pr(PS 1 NR) 

Eq. 2.17 

Eq. 2.18 

Eq. 2.19 

Eq. 2.20 

Eq. 2.21 

Eq. 2.22 

Eq. 2.23 

Eq. 2.24 

The recurs1ve formulae can be generated for the predictivity equation above by 

defining So as the a priori knowledge of the probability of a positive state, and 81 as the 

subsequent predictivity after the result of the test has been obtained. For example, the 

positive predictivities for the first iteration are defined as follows: 
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(} + o = Pr(PS) Eq. 2.25 

(} +, = Pr(PS I PR) Eq. 2.26 

The formulae for recursive calculation of predictivity can be d rived using the above 

notation: 

Pr(PS I PR) = Pr(PS) Pr(PR I PS) 
Pr(PS)Pr(PR IPS)+ Pr(NS)Pr(PR INS) 

e +o·a+ 
=--------------------

e +o ·a+ 
=------------------------

(} +0 ·a+ +l-B +o -a- +B +o ·a-

e +o ·a+ 
=------------------

l-a- +(a+ +a- - l)(} +o 

e +o·a+ = =,.-------------

In a similar manner Pr(NS I NR), Pr(PS I NR), and Pr(NS I PR) can b found: 

e -o ·a
Pr(NS INR) = (} - , ==----- 

a + +(a+ +a- -l)B -o 

Eq. 2.27 

Eq. 2.28 

Eq. 2.29 

Eq. 2.30 

Eq. 2.3 1 

Eq. 2.32 

These recursive formulae allow for the calculation of the probability that a positive 

result represents a positive state. This is significant, since it can be used to illustrate 
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that the results obtained from the recursive analysis are the same as that obtained from 

analysis of the Venn tree depiction of the problem using the intersection function for 

independent variables on the separated Pr(PR IPS) and Pr(PR INS), as seen below. 

The example below demonstrates that there is no difference between evaluating a 

battery of tests as one and evaluating these tests as individual iterations. In this 

example sensitivities of 0.6 and 0.7 are used. Both test iterations have a probability of 

false positive of 0.01 . The calculations are shown in Figure 2.6. 

Sensitivity Combinations: False Positive Combinations: 

Test 1 Test 2 Result Test 1 Test 2 Result 

0.6·0.7=0.4200 0.01·0.01 = 0.0001 

0.6·0.3=0.1800 0.01·0.99=0.0099 

0.4·0. 7=0.2800 0. 99·0.01 =0.0099 

0.4·0.3= 0.1200 0.99·0.99= 0.9801 

1.0000 1.0000 

Figure 2.6: Intersection Calculation of Multiple Tests 

The probability of a success in both iterations is 0.42. The chance of a false positive 

decreases to 0.0001 in this case. Using the results of the combined tests we can find 

the predictivity for positive and negative results as below. 
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• The preclictivity for positive results of both tests, combined: 

Pr(PS I PR) = Pr(PS) Pr(PR IPS) 
Pr(PS) Pr(PR IPS)+ Pr(NS) Pr(PR I NS) 

0.05. 0.88 =-----------------
0.5. 0.88 + (1- 0.5). 0.0001 

:::0.99976 

• Th preclictivity for negative results of both tests, combined: 

Pr(NS I NR) Pr(NS) Pr(NR I NS) 
Pr(NS)Pr(NR I NS)+ Pr(PS)Pr(NR I PS) 

=--~(~1-_0_.~5)_·0_.9_8_0_1 __ _ 
(1- 0.5) . 0.9801 + (0.5). 0.12 

::: 0.89091 

Eq. 2.33 

Eq. 2.34 

These can be compared to the results of iterating over the two inclividual tests. The 

same analysis is performed recursively on the first test and then the econd, both with 

positive results: 

Pr(PS I PR) Pr(PS) Pr(PR IPS) 
Pr(PS) Pr(PR IPS)+ Pr(NS) Pr(PR I NS) 

0.5·0.6 =---------------
0.5 . 0.6 + (1 - 0.5). 0.01 

::: 0.98360 
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Pr(PS I PR),ew 
Pr(PR I PS) Pr(PS I PR) prev 

Pr(PR INS)+ (Pr(PR IPS)+ Pr(NR I NS) - 1) · Pr(PS I PR) prev 

0.7 . 0.983606557 
=------------------------

0.01 + (0.7 + 0.99 -1). 0.983606557 

~ 0.99976 

Eq. 2.36 

Likewise, the preclictivity calculation for negative results is done in two steps when 

using the recursive formula: 

Pr(NS I NR) = Pr(NS) Pr(NR I NS) 
Pr(NS) Pr(NR I NS) + Pr(PS) Pr(NR I PS) 

Pr(NS I NR),ew 

= -~(1_-_0_.5..:_)_· 0_.9_9 __ 
(1- 0.5). 0.99 + (0.5). 0.6 

~ 0.71223 

Pr( NR I NS) Pr( NS I NR) prev 

Pr(NR I PS) + (Pr(PR IPS) + Pr(NR INS) -I) · Pr(NS I NR) pre' 

0.99·71 2230216 =------------------------
0.3 + (0 .. 7 + 0.99 -1). 0.712230216 

~ 0.89091 

Eq. 2.37 

Eq. 2.38 

These two results provide identical posterior probabilities: illustrating that either batch 

or iterative means can be used to determine confidence in test results. As well, using 

this iterative approach, out of sequence calculations should ultimately provide the same 

results as test calculations performed in sequence, which will help to resolve any is ues 

with data arrival times. 
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2.3.2 Association and Tracking 

Extensive volumes have been written on fusion systems, tracking, and association 

algorithms. Various authors treat the subject with different levels of abstraction, 

examinations of architecture, and inferences and extrapolations of the target features. 

For a broad-based, exhaustive examination of the topic see Hall (1992), where many 

aspects of general data fusion are addressed including the relationship between the 

system and the users, the types and levels of inferences that the system should make, 

the types of sensors and their outputs in terms of pre-processing of data, 

characterization of sensor parameters, and deftnition of the state vector. 

Hall defines three levels of fusion. The first level is physical combination of the 

parameters measured. The second level of fusion is the processing of situation 

assessments, seeking a higher order of inference such as meaning or patterns in time or 

space. The third level would be a further abstraction from situational assessments, to 

determining a level of threat or adversarial intention for military or intelligence 

applications. 

Heistrand et al. (1983) describe three basic architectural approaches to data fusion for 

tracker-correlation systems: 

1. A centralized architecture that transmits raw, unprocessed data from 

several sensors to a central fusion process, which performs data 
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alignment and association, followed by correlation, tracking and 

classification. 

2. A fusion process that receives state vector and declaration of identity 

information generated by preprocessing performed at each sensor. Here, 

alignment, association, correlation, filtering, and classification are 

performed on state vectors rather than raw data. 

3. A hybrid approach of the above methods. Presumably with more or les 

preprocessing and/ or a combination of processed and raw data 

transmitted to the central process. 

Haykin et al. (1994) also discuss distributed systems. Within the distributed system 

Haykin et al. describe three approaches: majority vote, fusion of statistics, and fusion of 

feature vectors. 

Majority vote systems integrate data by a simple vote. If the majority of systems 

believe a feature to exist, then it is reported. A weighting factor can be added to 

provide a more sophisticated integration. Haykin et al. point out that this system is in 

actuality lossy. Information is being discarded when the vote on a feature does not 

make the majority. For this reason, majority vote systems are not recommended. 

The fusion of statistics can be done through the integration of sufficient statistics 

computed by the preprocessors of the individual sensors. In this manner, processed 

information is combined based on the information altered by the preprocessor of the 
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sensor. This includes position and time information, along with other information 

stored in a feature vector. 

Fusion of feature vectors integrates feature vectors generated from the raw data by the 

preprocessors of the individual sensors. The feature vector is a set of target parameters 

that may or may not be completely defined at the time of detection. The feature vector 

may prove more intuitive in the extrapolating of future events since it may contain 

information that can be used for determining the type or intent of the target. Events 

can be extrapolated and then confirmed to provide evidence of target existence, 

population of the feature vector and increased certainty of the validity of the 

information. Confidence values associated with the data will provide feedback, 

providing a means for the focusing of the sensor array to areas of particular interest 

The choice of the system will most likely depend on the sensors available, specifically 

on the location where processing and interpretation of raw data are completed. 

Hall's definition contains four parts for the first level of fusion: 

• Data alignment: transformation of data into a common spatial and temporal 

reference frame. 

• Data association: sorting or correlating observations from sensors into 

groups representing data related to a single distinct entity; this determines 

which observations belong together as being from the same entity, object, 

event, or activity, or whether they constitute a new entity. 
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• Tracking: estimating target position and velocity. 

• Identification: combining identity information-may include clustering 

methods, adaptive neural networks, templating methods, and Dempster

Shafer and Bayesian inference. 

Of the processes mentioned above, data association is one of the most complex, 

particularly if the state space represents non-physical information, such as analysis of 

financial trends, or sociological phenomena. Aldenderfer and Blashfield (1984) 

describe four categories of association measures: 

1. distance measures, for example Euclidean, Weighted Euclidean, City 

Block, Minkowski, Mahalanobis, Bhattacharyya, and Chernoff; 

2. correlation coefficients, for example Pearson Product-Moment 

Correlation and Spearman's Rank Correlation Coefficient; 

3. association coefficients, measures of agreement such as Jaccard's 

Coefficient, Gower's Coefficient, Cohen's K-Coefficient; and, 

4. probabilistic similarity coefficients. 

Selecting the association metric depends on the nature of the state space, such as for 

continuous, discrete, or binary variables. Hall reports that Brown, Pittard, and pillane 

(1990) developed a test bed to compare association metrics. 

Further decisions that must be made in the design of a data fusion architecture include 

the time at which associations will be made, either when they are received, or at some 
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later time in a batch mode of processing, as well as whether multiple associations will 

be allowed for single targets: multiple versus single hypothesis systems. 

At a more practical level Blackman and Popoli (1999) review multiple target tracking 

(MTI) systems. Such a system can be broken down into several parts, namely: Sensor 

D ata Processing, Observation-to-Track Association, Track Maintenance, Filtering and 

Prediction, and Gating Computations. 

As illustrated in the block diagram of Figure 2. 7 (Blackman and Popoli, 1999), the 

fusion system employs an iterative process of updating tracks and positions. 

Sensor Data Observation-to-Track Track Maintenance Current State 

Processing Association 

i 1 
Gating Computations Filtering and 

Prediction 

i 
Maneuvering Model 

Figure 2.7: Tracking-Fusion System Diagram 
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The individual blocks in this diagram are elaborated on below: 

• Sensor Data Processing and Measurement Formation: Performed at the 

sensor or at a centralized location. Observation data are derived from 

the sensors raw data through manual or automated means. 

• Observation-to-Track Association: Observations are as ociated with 

existing tracks. Gating computations eliminate impossible 

detection/ track associations, speeding up automated processmg. 

Association improves the quality of information about the tracks. 

• Track Maintenance: Tracks are given a score based on their reliability. 

Unreliable tracks may repre ent 'false positives', and are deleted when 

their score is reduced to below a preset threshold. Targets not associated 

with tracks start a new track with an appropriate score-track initiation. 

• Filtering and Prediction: Given refined estimates of the tracks being 

monitored, estimates are made of the position of the target at a time 

when future data will arrive. 

• Gating Computations: From the estimates of its future position a 'gate' 

is determined. This 'gate' is the possible position for the target given 

what is known of its current state. This simplifies association of the next 

target observation data to the updated track database. 

The tracking system would step through this process every time new information 

becomes available. 
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Track initiation algorithms depend on the type of association being used. In global 

nearest neighbor (GNN), new tracks would be started for all observations that are not 

assigned to a previous track, whereas in multiple hypothesis tracking (MH1) new 

tentative tracks are started on all observations and subsequent data are used to 

determine which of these tracks are valid. For tentative track confirmation, the lifetime 

of the track without confirmation is limited. As well, the gate size can be chosen as a 

function of the confidence of the original detection. The decision as to whether a 

tentative track is deleted or kept is based on some metric. A track score function 

modifies the initial tracks and deletes the appropriate tracks. 

An example of a track score function would be the log-likelihood ratio for use in 

evaluating a hypothesis: 

• H1: A single target produced the observations contained in the track. 

Result: Track Confirmation. 

• H o: The observations contained in the track were produced by unrelated 

events, such as false positives. Result: Track Deletion. 

Alternatively a Bayesian updated score could be used (such as presented in Section 

2.3.1), with the threshold set either by some basis in calculation or empirically. 

The filtering and prediction aspect of the tracker is used to incorporate the assigned 

observations into the updated track parameter estimates. The output of the prediction 

defines the center of the gating region used in the next iteration. Blackman and Popoli 
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(1999) suggest Kalman filtering as the most applicable if the underlying target dynamics 

and the measurement processes can be assumed to be Gaussian. In this case, 

estimation of the mean target state and the associated covariance matrix is all that is 

required to define the probability density function (PDF) from the target position in 

state space. However, if these Gaussian assumptions are not justified, such as in the 

case of non-linear target dynamics, it may be preferable to propagate the PDF directly 

in target state space, rather than just using the mean and covariance from the Kalman 

filter to defme a Gaussian PDF. Alternatively, interacting multiple models or Kalman 

filters may be used to approximate a non-linear dynamic. 
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Chapter 3 Sensor Fusion Method 

This chapter examines the application of methodologies for sensor fusion specifically 

pertaining to the parameters that describe sensor capabilities to detect targets and avoid 

the generation of false targets. 

The sensor fusion methodology should be such that the combination of parameters 

from multiple sensors can be represented as a single theoretical sensor. Hence, it is the 

combination of parameters that affects the fusion of sensors. 

The focus of the discussion revolves around the intended application for these 

methods--detection of the icebergs that seasonally populate the waters along Labrador 

and Newfoundland coasts and infringe upon the areas of petroleum development in 

the Northwest Atlantic. 

Since the intention of this section is to examine the combination of parameters without 

the associated sensor data, stochastic simulation techniques such as Monte Carlo will 

not be addressed; stochastic methods could be used in place of, or in association with 
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the methods presented here. Likewise, the combination of sensor data will not be 

discussed until Chapter 4. 

3.1 Sensor Fusion Overview 

Sensor fusion, as defined in Section 1.4, refers to the statistical combination of sensor 

parameters. The goal of sensor fusion is to provide the means of creating a single 

model that can be used in place of multiple models for simulation and theoretical 

sensor evaluations. 

A useful sensor fusion system should provide a single sensor output based on multiple 

sensors with varying parameters (such as geospatial region, temporal interval, and data 

latency). This requires a method of combining the associated sensor parameters. 

The resultant fused sensor provides the means to further the analysis of ice detection 

simulations and strategic evaluation of geographic and temporal placement of various 

combinations of sensors. In this section the basic theories outlined in Section 2.2 will 

be discussed within the context of their application to sensor fusion. 

To begin, the variables affecting the combination of sensors parameters and data will 

be briefly reviewed, followed by the specific challenges affecting sensor combination 

and subsequently how these challenges are met. 
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3.1.1 Sensor Variables 

A number of variables apply to the sensors that can be used in this remote sensing 

application. The variables are discussed briefly below, and the optimal result from any 

variation in the combination of sensor performance noted. 

The parameters associated with the sensors are probability of detection, probability of 

false alarms, identification, coverage, resolution, latency, and confidence in results. 

• Probability of detection refers to the capability of a sensor to correctly 

identify the target of interest from the sensor's area of coverage. This 

should be maximized in order to ensure maximum data acquisition. 

• Probability of false alarms refers to a target datum that may be non

existent or an entity that has been incorrectly identified as a target of 

interest. This must be minimized to prevent undermining confidence in 

the system. Decreasing the probability of false alarms will improve the 

systems ability to handle data sources with a low probability of detection. 

• Identification, referring to both target identity and target features, must 

be maximized, thus distinguishing the target icebergs from the other 

objects such as ships, metal or non-metal, moving under power or 

drifting, and platforms, and quantifying size, and shape characteristics. 

• Coverage must be maximized. An effective system will have a wide area 

of analysis to give the most comprehensive picture of the monitored 

environment. Coverage may be a function of sensor location, for 

multiple non-coincident sensors. 
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• Resolution must be maximized. This ensures detection of the smallest of 

targets and their features. Within the context of iceberg detection, this 

should be of a degree where the smallest detectable target cannot prove a 

threat to ships, pipelines and platforms. 

• Latency in data availability must be minimized. In wide-area strategic 

operations some latency can be tolerated. The amount of latency-delay 

from sensor to user-that a fusion system can handle is related to the 

coverage area. That is, a larger coverage area will allow for larger 

latencies due to the ability to detect targets at the extremities and still 

have time for a reaction. Latency does reduce the effectiveness of a 

sensor for detection near a facility, particularly in the tactical area. 

• Confidence, as determined by the certainty of the results, must be 

maximized for the system to be of value. Where the output of any 

system has a confidence below the tolerable limit for the user, the system 

may be abandoned for other methods. 

Sets of the above variables exist for each sensor in the sensor fusion system. Further to 

this, variations in the number, location, and type of sensor affect how the final sensor 

fusion system will perform. Some sensors have restrictions on their availability; 

however, the sensor fusion system output is presumed to always be available. Despite 

this, the availability of the sensor will limit the methods of combining them. The 

interaction of these parameters is depicted in Figure 3.1. 
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User Defined 

I Types of Sensors II umber of ensors II Place & Time I 

Environmental Performance Overlap 
Conditions • Geographical 

• Temporal 

I 
l 

Fused ensors 

Figure 3.1: Sensor Fusion Variable Relationship 

The combination o f multiple sensors relies on the performance of each inclividual 

sensor and on the overlap, geograprucally and temporally, in the region being 

monitored. 

It should be noted, in an evaluation of sensor performance and specifically with regards 

to risk analysis, that persistent adverse weather conclitions wruch impact sen or 

performance may be relevant. However, tllls is beyond the scope of tllls investigation. 
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3.1.2 Sensor Fusion Challenges 

Geospatially and temporally coincident sensors can have their performance combined 

with relative ease, as will be demonstrated in ection 3.3.1. fa greater challenge is the 

combining of geographically and temporally spaced data. 

The system for combining the sensor parameters must be capable of accommodating 

sensors with different sensor iteration rates, at different intervals, and observing from 

various locations. 

There are three issues identified as challenges to the combination of the sensors 

parameters. Specifically, the combinational method must account for three items: 

• the physical spacmg of ensors, hereafter referred to as geospatial 

separation; 

• the temporal separation b tween sensor data communications or report 

intervals; and, 

• the temporal delay in receiving data from the sensors, hereafter referred 

to as data latency. 

These challenges are addressed through the application of basic stati tical theory, along 

with some exceptions necessary for handling data latency. 
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3.2 A Sensor Fusion Methodology 

To address the challenges raised in Section 3.1.2, a methodology is proposed. At the 

most general level, the problem of parameter combination for sensor fusion will be 

examined from a statistical approach. By first decomposing the region of where 

sensors interact into a common grid from which each sensor can be referenced, and 

then applying each sensor's performance for that grid in sequence, a measure of the 

actual performance can be obtained. Hence, each grid unit has its own set of variables 

determined. 

In Section 2.2 several techniques were described which are applicable to sensor fusion. 

The techniques consisted of two approaches: 

• probability theory; and, 

• conditional probability and Bayes theorem. 

At a superficial level, probability theory techniques, such as those illustrated in Section 

2.2.1, appear to have significant application to data fusion and are applicable to sensor 

fusion analysis. Indeed, for coincident sensors, the m-of-n technique (Section 2.2.1) 

would appear to be very useful. As seen in Figure 2.3, with the probabilities combined 

using a two-of-three criteria and a success probability of 0.7, they result in a probability 

of0.784: 
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S Overall = S 3 + 3 . S 2 (l - S) 

:. Pr(det) = 0.784 

Eq. 3.1 

If available, false alarm probability data can also be included. Given the PF A for a 

single detection attempt is 0.022, then in the example directly above it becomes quite 

smaller: 

SOvera/1 = S 3 +3·S 2(l-S) 

False Alarm Rate-;:::, 0.00143 

Eq. 3.2 

When examining the alteration of the probability curve, it was noted that above 50% 

the 'two of three' combination increases the probability of a 'successful' set, and below 

50% the combination decreases the probability of a 'successful' set. In the above 

example, the Pr(det) is increased because it is above 50% and the PFA is suppressed 

because it is below 50%. 

However, situations may exist where the Pr(det) and PFA rate are closer together or 

below the 0.5 probability, where the outcome of the methods uch as two-of-three or 

three-of-five go from improving the likelihood of an overall outcome to decreasing it. 

Two-of-five or three-of-seven type schemes could be used in these cases as these have 

crossover points that are not at 0.5. 
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In this way the crossover point could be customized such that it falls between the false 

alarm rate and the sensitivity. This would allow us to increase sensitivity and decrease 

false alarm rates. 

Notably, the m-of-n technique is not applicable to sensor fusion in general. The 

requirement to have multiple iterations of a positive sensor result implies an 

expectation of frequent sensor iterations- in the same location. In the case where 

fewer iterations might take place, this expectation would mean that results from a 

sensor fusion system could be delayed by days or weeks. 

This shortcoming of the m-of-n techniques is not associated with the 1-of-n technique, 

making the 1-of-n technique more applicable to non-overlapping, geospatially 

separated sensors and to sensors with infrequent data updates. 

The 1-of-n technique will be quite poor in its handling of false alarm targets. The m

of-n technique increases probably of detection and decreases the likelihood of 

detecting poorly detected targets. For sensors whose probability of false alarm is much 

lower than the probability of detection, this may be seen as a benefit. nfortunately, 

processing by this method will prevent detection of 'faint' targets, for example, targets 

which have a probability of detection on the order of the probability of false alarm. 

Hence, this technique is limited to sensors whose probability of detection is 

significantly larger than the probability of false alarm. 
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Further to tllls, the Pr( det) and PF A parameters are not independent. When the 

detection problem is generalized, it is quickly discovered that these are conditional 

probabilities of the target existence problem. The following tables show the actual 

detection problem. Table 2.4 describes the problem using the terminology defined in 

Section 2.2.2. Table 3.1 shows the same table using industry nomenclature. 

Table 3.1: Two-Way Table with Detection Vernacular 

Target Reported No Target Reported 

Target Exists Pr(det) (aka POD) Missed target Pr(Actual Target) 

No Actual Target PFA Correctly observed 

non-target area 

Pr(farget Reported) 1.0 

Using the formulae for recursive Bayes, Section 2.2.3, a metric for confidence in the 

sensor result can be determined; this is useful in estimating the consequence of the 

combination method. The conditional probability of Pr(PS I PR) indicates the 

likelihood that the report of a target actually indicates a target and likewise Pr(NS I NR) 

indicates the absence of missed target. Using the iterative formulae defined in Eq. 2.29 

and Eq. 2.30 and the target detection variables, Eq. 3.4 and Eq. 3.6 are produced. 
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Pr(PS I PR) = Pr(PS) Pr(PR IPS) 
Pr(PS)Pr(PR I PS)+ Pr(NS)Pr(PR I NS) 

Eq. 3.3 

prior· Pr(Det) 
=------~----~--~~----

prior· Pr(Det) + (1- prior)· PFA 
Eq. 3.4 

Pr(NS I NR) 
Pr(NS)Pr(NR INS) 

Eq. 3.5 
Pr(NS)Pr(NR I NS)+ Pr(PS) Pr(NR I PS) 

= (1- prior)· Pr(Det) 

prior· Pr(Det) + (1- prior)· PFA 
Eq. 3.6 

Notably, this requires the assumption of the prior statistic value with which to begin 

analysis. A non-informative prior value, such as 0.50 could be arbitrarily chosen for the 

purposes of sensor comparison. These two metrics indicate the likelihood that the 

information reported by the sensor correlates with the actual state of the phenomenon 

being observed. 

Using Bayes, the outcome of each sensor iteration affects the estimate of the system 

state under observation. That is, the prior value estimate is replaced with the posterior 

(either of Pr(PS I PR) and Pr(PS I NR) given the detection result). 

Given the methods elaborated on above, a methodology has been defined to address 

the issues raised in Section 3.1.2. Each of the three issues is addressed in turn: 

geographical separation, temporal separation, and data latency. The described method 

illustrates one approach, alternate approaches certainly exist. 
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To combine sensors that operate over different geographical areas, a 1-of-n criterion is 

recommended. Combining in such a statistical manner results is some increase in the 

probability of detection where the coverage area overlaps. This is achieved at a cost of 

increasing the probability of false alarms or false detections in the overlapping area. 

When looking stricdy at non-coincident geographical coverage with no temporal 

component (repeating of sensor iterations), only the 1-of-n method will provide results. 

To temporally combine sensor Pr(det) curves, consider that the detection curve 

represents an attempt to find an iceberg over a defined period. This time period is 

generally sensor dependent. For example the Pr(det) curve for the scan averaging 

marine radars can be derived from a minute or more of radar data while the Pr( det) 

curve from HF SWR radar in ice detection mode is derived from 5 minutes of radar 

data. To extend this to a longer period, a criterion is established for the minimum 

number of repeated observations to produce a detection (i.e. the m-of-n criterion). 

Once this is established, the combination of sensor probability curves can be done in 

the same manner as for geographical area. A knowledge of h w the detection statistics 

were derived is required to prevent misapplication of this methodology. Furthermore, 

temporally combining sensors presumes that the target in question has remained in the 

same space with respect to the resolution of the system, thus limiting the time between 

observations or the maximum number of combined interactions. 
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Similarly, spatial and temporal separations can be combined, first temporally and then 

spatial. From the observation of different variations of the m-of-n parameters, it was 

determined that 2-of-n is the optimal combination criterion for typical marine radar 

systems; those sensors that have a very low PF A rate (see Figure 2.5). Given that the 

probability of a false alarm is generally much less than the probability of detection, this 

criterion applies the maximum increase in probability of detection while minimizing the 

probability of false alarms even for values of 'n' as low as three. 

Data latency, often due to delays in data being processed, is taken into consideration 

insofar as the potential effect the delay would have on the risk to an offshore 

installation. Where the system of sensors is concerned, sensors that cannot provide 

observations of the area around the structure in time for effective management are not 

considered in the calculation of enhanced performance probability. This only affects 

areas around the installation to the extent that an iceberg could be present and have 

time to reach the installation before the data from the sensor is available. For example, 

RADARSA T -1 has approximately 2 hours turnaround time on processed data (1.5 

hours turn around by a ground station and 0.5 hours processing time). In a worse case 

analysis, an iceberg traveling at its maximum possible speed (for illustration purposes 

1.03 m/s, or 2 knots, is used here) would need to be within 14 km of the structure to 

be of any risk of not having been detected before impact, based on detection with this 

sensor alone (used only as an example). Hence, around the structure for a radius of 14 

km, the RADARSAT-1 Pr(det) is reduced to zero in the analysis. That is, with respect 
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to the integration of the sensors, RADARSAT -1 contributes no detection information 

in this area; hence for immediate calculation purposes the Pr( det) is equal to zero in this 

reg10n. In all other areas, the delay has no effect if the maximum travel is less than the 

system resolution and the RADARSAT-1 Pr(det) is considered in the overall 

performance of these outer regions. Significant data latency will impact the resolution 

of the system. Use of sensors with high data latency will require the use of coarse 

resolution to account for possible movement of the target. 

Using the methodology outlined here, multiple sensors can be combined over a period 

of time, and with various delays in the availability of the data, to create a single 

probability of detection map over a geographical area. This can then be used to create 

more accurate and realistic risk analysis models. 

3.3 Sensor Fusion Application 

The methodology noted in the previous section can be used to combine sensor 

detection parameters for vanous sensors. First, an example of sensor iterations 

demonstrates the effect on the confidence metric derived from Bayes; subsequently a 

large scale application is presented. 

3.3.1 Sensor Fusion Example 

The combination of a set of detection parameters is illustrated with a simple example in 

Figure 3.2 and Figure 3.3. The effects on Pr(det) of the 1-of-n and m-of-n 
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combination of three iterations of the same sensor were shown previously in Figure 

2.4. In this case, the cumulative probability of detection is depicted for the 1-of-3 case 

and the 2-of-3 case, along with the single event probability of detection for the example 

sensor. As can be seen in the two graphs, the use of 1-of-3 methods can dramatically 

improve Pr(det), but decrease confidence. The opposite is true for 2-of-3 methods. 
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Figure 3.2: Pr(det) for Sensor Fusion 

The plot of Figure 3.2 represents the detection of a 40 m iceberg in 5-m seas with S-

Band marine radar mounted at platform height (~75 m). The PFA for this example is 

0.01 and the prior value was 0.1. The figure shows the original Pr(det) in dark blue. 

This probability of detection is increased when a 1-of-3 criteria is applied. For 1-of-3, 

probability of detection is not limited by the original probability. For the 2-of-3 
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--- ---------------- - -----------------------

combination, the probability is only increased when the initial sensor Pr( det) is greater 

than 0.5. This illustrates that, while this method is applicable for sensors with a 

normally high Pr(det), it may hinder poorer performing sensors. 
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Figure 3.3: Certainty Result for Sensor Fusion 

In Figure 3.3 the calculation of predictivity are shown for a simple positive iteration 

and for a 1-of-3 and a 2-of-3 case. This figure illustrates the confidence-the results of 

the predictivity calculations-is significantly higher for a 2-of-3 case than a 1-of-3 case. 

This illustrates the general trade off between increased Pr( det) and increased 
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confidence when selecting the m-of-n criteria. Also note that the low PF A provides a 

high confidence. 

The next example illustrates the combination of parameters by the 1-of-n method. To 

perform the combination of parameters over a geographical area the sensors are 

referenced to a single relative reference frame in Cartesian coordinates. The sizing of 

the increments of the coordinate system would ideally be less than that of the 

resolution of the finest sensor, but may be restricted by processing requirements and 

the use of sensors with data latency. 

In this example, the combined sensors are located in two locations. An attempt to 

detect 30-m icebergs with S-band radar is presented here. The S-band marine radars 

are positioned 35 km apart. Both radars are mounted at platform heights common to 

offshore oil and gas platforms- typically 35-45 m. Figure 3.4 shows the curve for 

target detection of each sensor. The effect of combining the two radar performances 

over a geographical area can be seen in Figure 3.5. 
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The benefit of combining geographically spaced sensors is clearly the area covered. A 

1-of-n method must be used to do this, as any one sensor cannot detect outside its own 

range, negating the possibility of having two detections anywhere except where they 

overlap. 

For combinations of events where multiple iterations are available over the same 

geographical region in a reasonable interval, it is presumed that at least some 2-of-n 

method is desirable; this is possible when the probability of false alarms is relatively low 

compared to Pr(det). The process is limited in 'n' by the amount of time available 

before de-correlation occurs. That is, the amount of time before the target has the 

opportunity to move to another resolution cell. 
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3.3.2 Sensor Fusion Sample Application 

The following provides a sample application of the sensor fusion methodology 

described in Section 3.2. For the purposes here, it is assumed that the user has control, 

or at least knowledge, of the types of sensors in use, their number, location, and the 

parameters that define their performance. 

Operators of sensor networks can typically place sensors spatially to provide relatively 

effective coverage of the area of interest to them. Each of these sensors types have 

varying parameters of performance. Each can, in turn, have its variations used to the 

sensor networks effective advantage within the confines of technology and cost. 

The choice of coverage area and probability of detection required determines the 

sensor deployment configuration. Coverage area and probability of detection are 

functions of the type of sensors used. The frequency at which sensor sweeps are 

performed and the environmental conditions are independent variables. 

At the time of writing, the offshore iceberg detection regime contained a variety of 

sensors with some used more frequently than others. These were described in further 

detail in Section 2.1.1. They consist almost exclusively of radar-based systems and are 

listed in Table 3.2. 
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Table 3.2: Offshore Sensor Regime 

Marine Radar 

Enhanced 

Marine Radar 

Surface Wave 

Radar 

X and S-band non-coherent radar has been traditionally used in 

manne environments. X-band (10 GHz) provides better 

resolution due to its higher operating frequency and S-band (3 

GHz) provides better penetration of fog and moderate (4 

mm/hr) to heavy (16 mm/hr) precipitation (C-CORE, 1992). 

These are limited to the line-of-sight horizon or less depending 

on target size and environmental conditions. For a typical 

platform mounted unit at a height of 75 m this horizon is 

approximately 36 km. 

Based on slightly modified conventional marine radar, enhanced 

marine radars effectively use data processing techniques to 

enhance the detection capabilities of marine radar, particularly 

for small targets or in poor conditions. 

These are restricted to the line-of-sight horizon. 

Surface Wave Radar (SWR) is a variant of Over-The-Horizon 

(OTH) radar. Where microwave frequency systems are limited 

to very near the line-of-sight horizon, HF band (3-30 MHz) 

radars are capable of using the conductivity of the ocean to 

extend their range and provide detection capabilities up to 450 

km. This coherent radar system is more susceptible to noise 

reflected by the ionosphere. The increased strength of this noise 

at night reduces the SWR performance for these periods of 

operation (C-CORE, 2000). Developments are underway to 

improve night time performance. 
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Airborne Radar Airborne reconnrussance flights are routinely performed over 

the Grand Banks area of the East Coast of Canada where 

drilling and pumping operations occur. These aircraft use 

Litton APS-504 M 5 search radars. Varying altitudes provide a 

radar horizon of 50 to 87 km. Due to the use of frequency 

agility and higher incidence angles this system outperforms 

traditional marine radar (Rossiter et al., 1995). 

SAR Satellites 

Visual 

Observations 

Examples of SAR satellites include ENVISAT and the 

RADARSATs. The RADARSAT satellites are Canada's 

multipurpose space-borne SAR radars. Satellite SARs provide 

all-weather detection capability for 'small' or larger icebergs. 

Modes such as 300 km or 150 km swath width frames are useful 

for iceberg surveillance. These remote sensing satellites use 

polar orbits and are typically limited to multi-day revisit 

schedules per satellite (RSI, 2001). 

Visual observations are made from ships in transit, platforms, 

airplanes, and support vessels. These observations are 

obviously limited to the visible horizon and may be considered 

the most reliable. However they are the most afflicted by 

environmental conditions that decrease visibility. 

For practical implementation purposes, the geographical area of interest has been 

broken into two parts: the tactical and strategic ranges. 
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The tactical range is the area in the immediate vicinity of the platform, typically 

extending outward on the order of 10 to 50 krn (Rossiter et al., 1995). Sensors used in 

this area provide very quick update rates and very low latency. While SWR, satellite 

SAR and aerial sensing can be employed, the most utilized sensors in this region are 

conventional and enhanced marine radar, and visual observations from offshore 

production platforms or ships. 

The strategic range encompasses a much wider area and is outside the tactical range. In 

this range, where data latency is not an issue, all sensors can be used. These include 

satellite SAR, airborne reconnaissance and SWR as well as marine radar and visual 

observations from ships and airplanes. The strategic area is vast, making it difficult to 

obtain accurate and frequent information updates about the region. 

The following example shows a Pr(det) combination of these detection sensors for a 

50-m iceberg in 5-m seas. There are six sensors used in the combination: 

• enhanced marine radar with scan a eraging at Hibernia; 

• enhanced marine radar with scan averaging at Terra ova; 

• marine radar at the White Rose development with (capabilities assumed 

similar to the Terra Nova radar); 

• typical aerial reconnaissance flight; 

• RADARSAT-1 ScanSAR NarrowB frame; and, 
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• HFRadar. 

First, consider the Pr(det) of the marine radars. Shown in Figure 3.6 is the probability 

of detection for an S-hand marine radar of a 50-m iceberg in 5-m seas. 
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Figure 3.6: Probability of D etection CU!Ve 

This can be extended into three dimensions, assuming that the performance of the 

sensor is the same in all directions, by rotating the probability of detection in a full 

circle around the radar. This is shown in Figure 3.7. 
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Figure 3.7: Pr(det) for a Single Radar in 3D 

Taking the example of the two radars at Hibernia and Terra Nova, a second map of the 

probability of detection can be generated as in Figure 3.8. Scan averaging is excluded 

here so that the effect of the overlapping of the radars could be illustrated better, since 

the generally higher Pr( det) curves obtained with scan averaging benefit less from the 

combination method. 

In Figure 3.8, it is possible to see that where the two radars overlap there is an increase 

in detection performance. It is noteworthy that the performance of each of the two 

radars in Figure 3.8 is different with respect to range and probability of detection. This 

is caused by the different heights of the radars rom for Hibernia and 45 m for the 

Terra Nova FPSO). 
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Figure 3.8: Interaction between Pr(det) for Two Marine Radar 

In Figure 3.9, a top-down view of the area containing both marine radars is shown. 

The figure also contains a colour bar that shows the probability of detecting an iceberg, 

which is represented in colour in the image. 

Figure 3.10 continues with adding detection performance of the radar system at White 

Rose, with similar capabilities as Terra Nova. 
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Figure 3.9: Top-down view of Hibernia and Terra Nova Radars 

(Single Scan) 
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Figw:e 3.10: Pr(det) for Platforms with Marine Radar Installations 

The contributions of HF SWR from Cape Race, a RADARSAT-1 ScanSAR frame, and 

an aerial search radar reconnaissance flight are added in Figure 3.11, Figure 3.12, and 

Figure 3.13 respectively. For the aerial flight, an example flight path is taken from an 

ice reconnaissance flight flown on April 23, 2001 by Provincial Airlines Limited (PAL). 

The RADARSAT-1 frame was taken directly from RADARSAT's planning software. 

The location of the frame with respect to the island of Newfoundland is seen in Figure 
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3.14. An ascending and descending RADARSAT -1 frame from subsequent days are 

shown in this figure. 
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Figure 3.11: Pr(det) for Marine Radars plus HF SWR (2000) 
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3.3.3 Assessment of Results 

This discussion on sensor fusion has provided a sensor fusion methodology. 

Described in this chapter have been techniques to assess multi-sensor performance 

based on well-known statistical methods. With this method, performance curves are 

added systematically to consider the influence of all the sensors in the geographical area 

of interest. In doing so, the value of each sensor can be assessed on an incremental 

basis to determine optimal configurations for existing and future platforms. The model 

of multi-sensor performance is compatible with existing ice load and risk analysis 

methods that apply individual iceberg target simulations around one or more platforms 

with modeled detection sensors. 

3.4 Analysis 

The multi-sensor method treats each sensor as a set of statistical tests over an area. 

This area is broken into small sections, and in each of these sections the probability of 

detecting an iceberg is determined. Using the methodology outlined here, multiple 

sensors can be combined over a period of time, with various delays in the availability of 

the data, to create a complete probability of detection map over a geographical area. 

This method is useful 1n the implementation of sensor models for risk analysi . 

However, the method demonstrated here is limited in resolution. As well, the 

methodology has restrictions such as minimum number of iterations and the types of 

combinations that can be performed on spatially disparate sensors. 
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Though deliberately not addressed here, stochastic simulation techniques would likely 

be more feasible in the simulation of combined sensor performance. This is 

particularly true given the advances in computer technology in recent decades. 

From an offshore oil and gas operational perspective, it is the handling of iceberg data 

on a day to day basis that is most relevant. For this analysis, tracking systems such as 

those discussed in Section 2.2 would be more relevant. The method for sensor fusion 

described here may provide benefit to sensor combination, but does not aid in the 

handling of target data. The remainder of this thesis thus focuses on what has been 

defined herein as data fusion. 
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Chapter 4 Data Fusion Method 

This chapter examines the issue of data fusion methodologies specifically pertaining to 

the combination of detection sensor data with respect to target existence and non

existence, and the subsequent determination of target features. 

It is intended that the proposed data fusion methodology be such that the combination 

of sensor reported data provides an increased likelihood of the determination of the 

existence of the target, along with an estimation of feature information derived or 

extrapolated in the process. 

In recent years, data fusion systems have become an important element in offshore ice 

management due to the extreme importance of reliable detection predicating the 

availability of additional detection sensors. Examples of these sensors include multiple 

overlapping marine radars, and new long-range wide-area data sources such as HF 

SWR and satellite SAR. 

Subsequently, the terminology and examples used in this discussion will revolve around 

the immediate application for these methods. In particular, the icebergs that seasonally 

populate the waters along Labrador and Newfoundland coasts and infringe upon the 
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areas of petroleum development in the Northwestern Atlantic are used to develop the 

application of the data fusion methodologies. 

4.1 Data Fusion Overview 

For the purpose of this analysis, data fusion refers to the combining of data from all 

available sources such as marine, enhanced marine, airborne, satellite and land-based 

radars and visual observations. Through the on-going collection and association of 

data from these, a single complete data product is generated. 

While simple statistical methods can combine probabilities of detection for varying 

sensors, there are many applications were a more intuitive data-oriented system is 

desired. The goal is to provide a wide-area interpretation that is as accurate and current 

as possible. In a general context, this is a 'picture' of the state space that can then be 

used for other analysis. In the iceberg management application, the results of this 

combination can then be used to efficiently plan and manage the region close to the 

operation facilities (tactical zone). 

There are many methods employed in data fusion and inference. For the purpose of 

this investigation, quantitative methods are more appropriate due to their basis in well 

understood mathematical and statistical techniques. These methods include, but are 

not limited to, 'weighted averaging' techniques, geometric methods, non-probabilistic 

methods, and probabilistic methods of inference such as Bayesian estimation, least 

squares method and Kalman filtering (Manyika and Durrant-Wyte, 1994). 
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4.1.1 System Variables 

The parameters associated with the sensors are probability of detection, probability of 

false alarms, identification, coverage, resolution, latency, and confidence in results. 

These have been defined in 3.1.1. In addition to these definitions, note that where 

fusion systems rely on the features of targets to perform association the resolution of 

the sensors must be capable of detecting those features. 

Sets of these variables exist for each sensor to be used in the sensor fusion system. 

Further to this, the variations in the number, location, and type of sensor affects how 

the final sensor fusion system will perform. The interaction of these parameters is 

depicted in Figure 4.1. 

The combination of multiple sensors relies on the performance of the sensor and also 

on the overlap, geographically and temporally, in the region being monitored. 

It should be noted in an evaluation of sensor performance, and specifically with regards 

to risk analysis, that persistent adverse weather conditions, which impact sensor 

performance, are relevant to the analysis. However, this is beyond the scope of this 

thesis. 
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Figure 4.1: Data Fusion Variable Relationship 
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4.1.2 Data Fusion Challenges 

The pnmary challenges facing a data fusion system are those of combining 

geographically and temporally spaced data. As well, the sensors described above have 

varying refresh rates, data latencies, probabilities of detection, and resolutions, which 

complicate the execution of data fusion. 

The system for combining old and new data must be capable of incorporating data that 

arrives at different rates, at different times, and from various locations. Discussed 

below are the important aspects of data combination with respect to geographical and 

temporal combination of sensors and the effect of latent data. First a single sensor, or, 

sensor node is defined. 

Sensor nodes are defined here as individual sensors. Most often these are radars on 

ships, platforms, aircraft, satellites, or onshore. As well, human observers on 

platforms, ships, and aircraft can be considered sensors for the purposes of this 

discussion. 

Each sensor node consists of three parts. These include a sensor, raw data received 

from the sensor, and the interpretation of that data. 

The primary performance parameter of a sensor is its ability to detect a target such as 

an iceberg. This is a probability curve, whose profile is defined by the technology of 

the sensor, the size of the target and environmental conditions. 
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Combination of data over a geographical area implies the requirement to associate data 

from one sensor with another. For detected targets to be combined over a period of 

time, the data must remain correlated for that period. That is, without knowledge of 

target movement, the data points of one moment in time must be such that they can be 

combined with the next iteration within the resolution of the sensor. Hence, the 

objects that are being detected from one period to the next are limited in the distance 

they can move from one sample to the next. For the information to be combined in 

the most simplistic manner, the time period elapsed must be smaller than the time 

required for the iceberg to move from one resolution cell to another. 

The requirement for short-term correlation is very limiting to the data fusion method. 

To utilize other sensor nodes and combine multiple sensors over wide-areas, a method 

of associating new targets with old must be determined that does not require the target 

to be in the same location. A method of iceberg tracking must be established. To 

achieve this data fusion, a tracking system is employed. 
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4.2 A Data Fusion Methodology Using Tracker Theory 

A useful data fusion system takes all available target information and combines it to 

create a single data product that is superior to what could be extracted from any of the 

individual datasets. In the selected application, this fusion system must be capable of 

combining available data on positions and possibly headings, speed and size of icebergs 

from many sensors, at irregular times and over a very large area. From these data, it 

must extrapolate a best estimate of the actual position, heading, speed and size of 

icebergs at any point in time. It must also account for errors in the measurement 

systems and for the reliability of the data. 

Since extrapolating the position of the icebergs is necessary to both make the system 

useful and to reduce the computational requirements, it must have similar functionality 

to that of a radar tracking system. Consequently, a basic radar tracking system 

architecture is used as the framework for the fusion system. The overview of the 

fusion system presented in Figure 2. 7 (Blackman and Popoli, 1999) is reproduced in 

Figure 4.2 for convenience. 
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Figure 4.2: Tracking/ fousion System Diagram 

With respect to the challenges noted in Section 4.1.2, this tracking system is deemed 

desirable. Geographical and temporally spaced data can be associated with one another 

given their prediction from one location to another. This association relies heavily on 

the availability of a maneuvering model. Reasonable latencies in data can be tolerated, 

but will have increasingly detrimental effects as targets near critical regions. N on-

sequential data could be handled with varying degrees of inconvenience depending on 

the implementation and architecture of the system. 

4.2.1 Architectures 

The architecture of the data fusion system is most concerned with the transportation of 

data from the sensor to the user. This implies the processing of the data at the user or 
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at some point along this path. The location of the processing provides alternatives in 

the system implementation. 

Two general approaches are applicable. They will be referred to here as centralized 

systems and distributed preprocessing systems. The descriptions are presented here 

based on Haykin et al. (1994). 

Centralized systems immediately integrate the raw data into a common channel and 

then perform the necessary signal processing at a central location. This requires a high 

bandwidth communication link between all sensors and the central location. 

Distributed preprocessing systems preprocess the raw sensor data at the sensor and 

then supply the interpreted output to some central integration system. The distributed 

method is more reasonable in this application, due to the geographic dispersion of the 

sensors and the cost associated with providing bandwidth for transmitting the raw data 

to a central location. 

In the application which is the main focus of this thesis, the sources of the information 

to be fused are distributed over a wide-area. The data come from ships, platforms, 

airplanes, HF SWR stations, and Earth observation satellite ground stations. This 

tends to limit the methods of data processing, since each data source has varying 

degrees of processing and raw data are not available or difficult to access. The 

preprocessors in this case vary from human interpretation of radar displays to 
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sophisticated computer algorithms such as those used for satellite based SAR or HF 

SWR. 

4.2.2 Tracking System Description 

As illustrated in the block diagram of Figure 4.2, a system can be broken down into 

several parts, namely: Sensor Data Processing, Observation-to-Track Association, 

Track Maintenance, Filtering and Prediction, and Gating Computations. 

The fusion system employs an iterative process of updating iceberg tracks and 

positions. A general description of the process is described in Section 2.3.2. To 

illustrate how the system will operate, a single iteration of the process is given below 

for a distributed pre-processing architecture. 

• Sensor data consist of the processed data from a sensor or sensor array. 

The sensor array can be homogeneous (consisting of similar or identical 

sensors) or heterogeneous (disparate sensors). The use of heterogeneous 

sensors requires consideration of their individual abilities and may impact 

the track maintenance, gating, and filtering stages. 

• Observation to track association is performed in either batch or iterative 

sequence. The association consists of matching new detected targets, or 

the lack of targets, to previous tracks; where tracks are a set of detections 

that are suspected of deriving from a single target. 

• The track maintenance portion of the MHT provides for the generation 

of new tracks and/ or association with available previous tracks. 
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Similarly, it accommodates the deletion of old tracks, such as those which 

are unsubstantiated by new detections. This case may arise in the 

presence of false alarms. 

• Filtering can be used to reduce the error in position measurement. Many 

common filters, such as the Kalman filter, are well suited to this task. To 

determine the degree to which any new detection can be associated with 

a previous target, the estimated position of the previous target is 

calculated. A maneuvering model may be used at this point to provide 

the basis for statistical likelihood of position estimation, or for the 

reduction of computational load based on filtering using the gating 

regton. 

• The gating computation is used to remove improbable or impossible new 

detections from the association processing. The previous position 

prediction will carry with it an error variance that is used to defme an 

area, or 'gate' at the time of the new detection. For each particular track, 

new targets outside of its gate area can be excluded from the association 

calculations, thus reducing processing time. 

In an iterative implementation the system steps through this process each time new 

target information becomes available. The result is a picture of the current state of 

targets, utilizing all available data. 

Data arriving out of sequence, that is after more recent information has been processed 

for a coincident area, may pose a problem based on the algorithms used. In the worst 
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case, an analysis will have to revert to a prevtous state and re-process the out of 

sequence information along with its subsequent previously processed data sets. 

4.2.3 Data Fusion Example 

A data fusion system should optimally combine data from sensors with excellent to 

poor detection ability, small to large coverage areas, and with varying false positive rates 

by using the information known about those sensors. These parameters will determine 

the confidence in the information from the sensors, and subsequent sensing iterations 

will adjust the confidence such that false positives are eliminated and confirmed 

detections are retained. 

4.2.3.1 Track Scoring 

A variety of methods can be employed to determine if an initial track should be 

propagated to the next iteration of the tracking system. The method used in any fusion 

or decision system is very subjective and is often based on the creator's preference and 

background. For the analysis presented here, Bayes statistics are employed. As 

introduced in Section 2.3, Bayes statistics operate in an iterative manner and modify 

some prior statistic value based on the negative or positive outcome of a statistically 

based test. For example, in a tracking system, the posterior result from an attempt to 

detect a target can be used to update the Bayes prior value; hence Bayes is useful as a 

track score method. There are quite a number of arguments for and some against the 

use of Bayesian decision theory and Bayesian inference. 
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When making decisions under uncertainty it makes a great deal of practical sense to use 

all the information available, old or new, objective or subjective. Humans make 

decisions using an intuitive process based on our experience and subjective judgments. 

Classical statistical approaches consider the parameters of a model as fJXed, but 

unknown, constants that are estimated using sample data taken randomly from the 

population of interest. The Bayesian approach treats these population model 

parameters as random quantities. The Bayesian approach uses old information or 

subjective data to construct an a priori distribution model for these parameters. This 

model expresses the starting assessment about how likely various values of the 

unknown parameters are. Current data is then applied via Bayes formula to revise this 

assessment, creating the a posteriori distribution model for the population model 

parameters. Parameter estimates and confidence intervals are calculated directly from 

the a posterion· distribution. These confidence intervals are legitimate probability 

statements about the unknown parameters, since these parameters are now consider d 

random, not fixed (NIST, 2001). 

The most frequent criticism of Bayesian analysis is that the a priori distributions which 

are 'improved' on every iteration can have various, reasonable distributions that will 

often yield different results. This is a supposedly unappealing lack of objectivity. 

However, Bayesian analysis with non-informative prior statistics (no or minimal a pn'ori 

information) is objective. Berger (1985) points out, "When different reasonable priors 
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yield substantially different answers, can it be right to state that there is a single answer? 

Would it not be better to admit that there is scientific uncertainty, with the conclusion 

depending on prior beliefs?" That is to say, if reasonable prior statistics yield 

reasonable but different results, it should be acknowledged that uncertainty exists in the 

problem and not a deficiency within the method. 

It is the ability to create an a posteriori distribution (the result of an iteration on an a priori 

distribution) and an associated certainty measurement that best lends Bayesian analysis 

to this application. The ability to use a priori information and iteratively add new 

information may provide a means around the problem of delayed data, if this can be 

done out of sequence. Non-sequential temporal processing is not address here. 

Based on the distributed processmg architecture (Section 4.2.1), the system would 

receive as input a list of iceberg observations and associated details. This information 

would include the type of sensor and the location of the observation. From the 

knowledge of the parameters of that sensor, and of existing icebergs already be~g 

tracked, the system updates its own tracking database. Details from this database 

would then be used to create estimations of iceberg positions, headings and speeds that 

would be used for the management of ice resources and subsequent improvement of 

safety for crew and facilities. Other inputs include environmental observations such as 

surface currents derived from radar and ocean current profile measurements taken 

from vessels and installations. In the absence of a more sophisticated predication 
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model, this information could also help provide short-term estimates of future iceberg 

positions. 

The following Bayes iterative equations (Chankong et al., 1985) are convenient for use 

here. These are the same equations derived in Section 2.2.3. These become the basis 

for track score calculations. 

Pr(PS I PR) = Pr(PR IPS)· prior Eq. 4.1 

Pr(PR INS)+ (Pr(PR IPS)+ Pr(NR INS) -1) · prior 

Pr(PS I NR) = Pr(NR I PS) ·prior Eq. 4.2 

Pr(NR INS)+ (Pr(PR IPS)+ Pr(NR INS) -1) ·prior 

The variables in these equations have been initially defined in Section 2.3.1; they are 

defined here specifically for target detection. 

Pr(PS I PR) = Probability of a positive state (target exists) given a positive result 

(target detected) . 

Pr(PS I NR) = Probability of a positive state (target exists) given a negative result 

(target not detected). 

Pr(PR IPS) = Probability of a positive result (target detection) given a positive 

state (target exists), typically referred to as probability of detection (Pr(det)) 

of a sensor. 

Pr(NR IPS) = Probability of a negative result (target not detected) g:tven a 

positive state (target exists), easily formulated as 1-Pr(det). 
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Pr(PR INS) = Probability of a positive result (target detected) given a negative 

state (target does not exists), typically referred to as probability of false alarm 

(PF A) of a sensor. 

Pr(NR I ) = Probability of a negative result (target not detected) glVen a 

negati estate (target does not exists), easily formulated as 1-P A. 

Prior = For the initial iteration the prior is set to a known or default value. 

Depending on the outcome of the iteration either the Pr(PS I NR) or the 

Pr(PS I PR) becomes the posterior value. At the beginning of the next 

iteration this is used as the prior value. 

The outcome of this track score method is influenced by several key, typically preset, 

variables: 

• Pr(det); 

• PF ; and, 

• the number of successive iterati ns. 

As well, since the amount of processing resources is limited to some degree, a means of 

eliminating apparently false target tracks is required. For this, a limit is set on the 

posterior. nee a posterior value appears improbable to represent a target, that targ t 

(and/ or its associated track), are removed from the system to free up processing 

resources for new detections. 

102 



The following example illustrates iterative Bayes and the influence of Pr( det) and PF A. 

Figure 4.3 depicts a positive detection followed by seven missed detections, followed 

by a detection and three more missed detections. In this case the non-informative 

prior value is 50% and the Pr(det) is 20% and the PFA is 5%. The initial detection 

raises the predictivity and maintains confidence in the detection, despite its lack of re-

occurrence. 

Iterative Bayes 

D Target Detected 0 Target Not Detected 
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t---

I 
--------------- L ----I ------- I 
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I ~II 
1- Predictivity I 

0.4 

0.3 

0.2 

0.1 
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2 3 4 5 6 7 8 9 10 11 12 13 

Iteration Number 

Figure 4.3: Iterative Bayes with Missed Detections, PFA = 5% 
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In Figure 4.4, the PF A is decreased to 1%. This shows the relationship between 

Pr( det) and PF A. The results are much improved; this is due to the interaction of PF A 

and predictivity. 

Iterative Bayes 

0 Target Detected 0 Target Not Detected 

0.9 I I --/ --------I 
I 
I 
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I 1- Predictivlty I 

0.4 
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0.2 

0.1 

0 
2 3 4 5 6 7 6 9 10 11 12 13 

Iteration Number 

Figure 4.4: Iterative Bayes with Missed Detections, PFA = 1% 

The detection is given merit by the low false alarm rate; likewise, the missed detections 

are moderated by the low likelihood of detection. A desirable PF A will ensure the 

propagation of a track through multiple iterations, even when the Pr( det) is poor. 

From this it is apparent that in a tracking system where Pr(det) may be low the role of 

PF A cannot be underestimated. 
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4.2.3.2 Bqyes Iterative Simulation 

To examine the influence of the track discarding value, the Bayes prior value and the 

Pr(det) and PFA on a tracking system, a simulation system was developed in 

MA TLAB®. This system was based on Eq. 4.1 and Eq. 4.2. The system focuses on 

the detection aspect as opposed to the track aspect of MHT systems. The track quality 

is proportional to those targets which are known. Misidentification of targets is not 

dealt with here. Tracks and targets are referred to interchangeably since a valid target 

can only be found by sufficiently corroborating evidence of its track. 

The key parameters m the simulation tests are briefly described m the following 

paragraphs. 

• Gating: To simplify the analysis, it was assumed that the system was 

based on a reasonable maneuvering model with Gaussian distributed 

error, and the gating size was preset to two standard deviations of the 

model error. 

• Bayes Prior: Several Bayes pnor values were used throughout the 

analysis. While the choice of the prior value is debatable, early parametric 

experimentation with the simulation indicated that this initial value was 

quickly and significantly altered by the first iterations of the simulation. 

For the simulation, a value of 0.5 was used unless otherwise noted, as it 

represented a 'non-informative' value (Berger, 1985). 

• Pr(det) & PFA: In practical implementations of tracking systems, the 

Pr(det) and PFA values will likely vary due to factors such as range, target 
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size, reflective properties, and environmental interference and noise. For 

this simulation, the Pr(det) and PFA are kept constant for each 

simulation test. Values for the Pr(det) and PFA are taken based on poor 

sensor performance (Pr(det) = 10 to 50% and PFA = 0.001 % to 0.1 %) 

• Minimum Track Score: The value at which a track is discarded is critical 

to the reduction of false alarms within the system. This value was varied 

for several tests depending on the purpose as discussed below. 

For each iteration of the simulation, several steps are followed: 

1. Variable Initialization: The prior value chosen (0.5) was assigned to each 

element of a vector which represented a set of undiscovered targets. 

2. Detection Attempt: Based on the Pr(det) and gate variance, a random 

number of vector indices were selected and determined to have been 

detected. Pr(det) is derated on the assumption that 95% of targets will be 

within the gating area; 5% will be missed. This is intended to represent 

imperfect target maneuvering models. 

3. False Targets: Based on the PFA, a number of vector indices were 

created at each iteration corresponding to the PF A and the total number 

of target indices. The PF A rate was used for previous false alarms in a 

similar manner as the Pr(det) rate was for the target vector. 

4. Bayesian Update: Using the corresponding Eq. 4.1 or Eq. 4.2, the 

posterior value was calculated based on whether the indices were 

contained in the 'detected' subset. False targets were also processed in 

this manner. Real target vector indices that had not been detected to this 

106 



point were not altered. If a previously detected target track was re

discovered after being discarded, it was reassigned the 0.5 prior. 

5. Track Score Eliminations: For those posterior values that had fallen 

below the acceptable minimum to remain a valid track, the posterior 

values are set to zero. This is indicative that the vector indices were 

discarded and presumed invalid. 

Subsequently, the posterior values become the prior values for the next iteration. All 

tracks with a score greater than the track score elimination limit are considered to be 

valid at this point. 

Miscorrelation between targets is not accounted for. While cross-correlation of targets 

is possible, the intention of this simulation is to demonstrate the utility of the track 

score method. Cross-correlation of targets will be a function of the sensor resolution, 

maneuvering model accuracy and target density. 

To examine the results of the simulation, the values at steady state are examined. As 

can be seen in Figure 4.5, the percentage of targets not deleted by the track 

maintenance function increases over the duration of the simulation. The time required 

to discover all of the targets is, in this case, about 50 iterations. For this example, a 

Pr( det) of 10% was used with a PF A of 1%. The track score elimination cutoff was a 

0.1 probability value for the posterior. The number of false targets, as a ratio to r al 

targets, is 0.154. At the steady state, 82.5% of all targets are represented as tracks in the 

system. 
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The portion of simulated 'real' tracks that are maintained in the tracking system is 

primarily dependent on the track elimination value. Figure 4.6 shows the effects of 

vanous track elimination values on the percentage of real tracks maintained in the 

system. For this simulation, an initial prior value of 0.5 was used, along with a PF A of 

0.1% and a Pr( det) of 15%. Variations on the prior value have little impact on the 

performance. Lower values of the track elimination value enhance detection 

performance. 
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Figure 4.6: Real Targets in Tracker vs. Track Elimination Value 

A tradeoff does exist with respect to the track elimination value and the false track 

ratio. Figure 4. 7 shows the relationship between the prior value, the track elimination 

value and the ratio of false to real tracks in the system. For this example, a Pr(det) of 

10% was used with a PF A of 0.1% 
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Elimination Value 

Given a suffi.ciendy low track elimination value, a very high portion of the real targets 

will be represented as tracks in the system. This is achievable with very low Pr(det) 

rates. However, the system and sensor iterations required to detect all of the targets is 

dependent on the sensor Pr(det). Figure 4.8 shows the minimum number of iterations 

to reach 99% target discovery vs. Pr( det) value. 
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Figure 4.8: Iterations Required to Reach 99% Target Discovery 

For reference, the interaction of PFA and Pr(det), with respect to the ratio of false 

tracks to real tracks that are maintained within the system, is shown in Figure 4.9. Note 

that as the system performance improves, the ratio of false to real tracks diminishes, 

quantization errors are created by the simulation. 
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Figure 4.9: Ratio of False to Real Targets vs. PFA and Pr(det) 

Bayes, as the basis for the track score component of the tracking system constructed 

here, dramatically improves the probability of detection in situations where some false 

tracks can be tolerated and sufficient iterations are available. These examples overlook 

the association portion of the system and presume a reasonable maneuvenng and 

prediction model. 
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4.3 MHT Using Historical Maneuvering Statistics 

Along with the track score component illustrated in Section 4.2.3, an association 

method is required to relate new target information to existing tracks, or create new 

tracks from previously undiscovered targets. The following is an example of this 

tracker fusion methodology implemented around the distributed architecture. In this 

first implementation, the target prediction estimates are related to the historical 

information on iceberg movement. 

The facets involved ill fusing iceberg data from multiple sources are illustrated 

schematically ill Figure 4.10. The multiple hypothesis association examined here is the 

'fusion' system at the center of the diagram. It uses the tracking system parameters, 

kinematics model, and knowledge of the sensors to accomplish data fusion. 

Targets detected from sensor iterations must be associated with existing information in 

the database. To perform an association of targets detected from one sensor sweep to 

the next, the historical statistics of iceberg movement are examined and the likelihood 

of any new detection being attributed to a previous detection quantified. From this a 

hypothesis of most likely detections can be found. Additional methods of association 

are examined ill Section 4.4. 
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rigure 4.10: rusion System with Broad Scope 
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Parameters 

· Data-Track Association 
· Track Score Quantification 

· Parameter/Feature Combination 
· Confidence of Data Metric 

Knowledge of Parameters 
of Sensors 

· Error in Features 
· Positional Error 

· Processing Artifacts 

This implementation is based on a multiple hypothesis tracker (MH1); information is 

retained in the system so that multiple theoretical solutions to the association challenge 

can be evaluated in parallel. Figure 4.11 shows a block diagram representing the 

algorithm. 
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Figure 4.11: Multiple Hypothesis Tracker Outline 

This multiple hypothesis tracker is written in MATLAB®. It collects iceberg detection 

information and stores it in a database containing information regarding the detection 

time, location, type of sensor (e.g. aerial reconnaissance, satellite data, SWR), the 

number of detections, and size and shape characteristics, if available. The detection 

information is input into this MHT in the MANICE file format nvironment Canada, 

1989) since this is a common industry reporting method. Using the database and the 

kinematics statistics collected for icebergs, a likelihood is determined that detections 

from sequential sensor iterations are produced from a single iceberg. The greater the 
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likelihood value, the more confident the user can be that a group of detections, one 

from each of a several scans, are from a single iceberg detected at different times. 

To increase the number of kinematic statistics that can be utilized, the system calculates 

the likelihood three detections--one from each of three scans-have come from the 

same iceberg. A group of three-detection sets that are not mutually exclusive constitute 

a hypothesis. Thus, if all available maneuvering statistics are to be utilized, three sensor 

scans, such as an aerial reconnaissance flight, a satellite frame, and another aerial 

reconnrussance flight, are needed to provide enough data for the creation of a 

hypothesis. Several statistics are utilized to provide a basis for the association of 

iceberg detections: 

• probability of deviation from the wave and current direction; 

• probability of turn rate for an iceberg per day; 

• probability of the change in speed of an iceberg per day; 

• probability of the heading of icebergs in an area (historical); 

• probability of track speed between two detections; and, 

• difference in size of detected icebergs. 

The statistics that reqwre three scans are conditional probabilities such as rate of 

change in heading or rate of change in speed. The rate of turn, change in speed, and 

historical heading statistics are broken into % degree squares where sufficient historical 
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data (PERD, 2001) were available. Using these statistics, detections from three 

subsequent scans are compared. Every possible association of any three points, one 

from each of the scans, is evaluated and ranked by likelihood. A set of associations 

that do not conflict with one another constitute one hypothesis. 

Inaccuracies in position measurements of detections during sensor sweeps are not 

specifically accounted for; however, since the statistics are arrived at from actual aerial 

flights the error inherent in this type of sensor is included. The iceberg tracks 

generated from the flights are the basis for the statistics detailed in Section 4.3.1. Areas 

where very little data have been collected may have statistics less representative of the 

actual drifting icebergs. 

The number of possible associations between three sets of detections can be large. For 

example, for three scans with 50 iceberg detections each, the number of associations of 

any three detections, one from each scan, provides 125,000 track possibilities. From 

these, the set of mutually exclusive associations with the highest probability is selected; 

this is the most likely hypothesis. The number of possible hypotheses for 50 tracks 

from 125,000 possible exceeds billions of billions. To reduce this number, tracks with 

low probabilities can be eliminated. An algorithm that calculates hypotheses from 

most likely to least likely was developed and included in the MA TLAB 

implementation. 
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An example of the types of products that could be produced by such a MHT system 

can be seen in Figure 4.12 and in Figure 4.13. In the first diagram, associations are 

made from three consecutive days, the first in red, the second in yellow and the third in 

green. The depicted set of tracks represents the most likely hypothesis; to avoid 

confusion improbable associations are not shown. 
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In Figure 4.13, one iceberg detection (iceberg 72) from the scan iteration on day 2 is 

displayed with lines to all of its possible associations in the first and third scans. These 
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lines represent all of the possible tracks that include this detection from the second 

scan. Associated with this is a list of probable tracks ranked from highest to lowest 

that allows the operator to choose the most suitable track based on the operator's 

expert knowledge. This alternate system enables a human shepherded fusion system 

that may provide the operator with the information to choose a result they are more 

confident in, rather than the most probable result based on the statistics used. The 

numbers in the figure represent ID numbers from the database and the darker lines 

indicate associations that are more probable. 
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4.3.1 SupportingAna!Jsis 

Two sets of data were analyzed to generate the statistics used. The first were iceberg 

tracks from the liP collected from 1960 to 2000 and covering a wide-area north east 

and south of Newfoundland (PERD, 2001). This dataset contained over 55,000 usable 

track fragments. The second dataset consisted of the tracks from the PAL Ice D ata 

Network System (IDNS) database from the 2000 ice season (PAL, 2000). The IDNS is 

a geographic information system (GIS) based database system for monitoring discrete 

detections, mostly from aerial reconnaissance flights, for the hydrocarbon recovery 

companies operating on the Grand Banks of Newfoundland. The 2000 set contained 

tracks close to the Hibernia location and contained 627 usable track fragments. The 

liP data set has a median of 62 hours between observations while the PAL data set has 

a much better median of 2 hours between observations, making its tracks much more 

representative of actual iceberg motion. 

To make the previously described MHT system possible, drift data were analyzed to 

quantize the motion statistics of icebergs in the region of interest. Various regions 

have different currents and bathymetry. Hence, the area in which the iceberg was 

located can influence its motion and consequently the statistics were broken up into a 

grid measuring 0.5° latitude by 0.5° longitude. Two sets were generated, one set of 

statistics determine the average speed and direction of the icebergs from the data set in 

the 0.25° square, and the second determine the rate of change of speed and direction of 
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the iceberg by 0.25° square. The data set for this quantification of iceberg kinematics 

was further broken into icebergs that had an initial heading of north, east, south, or 

west in their 0.25° square. 

4.3.1.1 Historical Drift Speed and Heading Statistics 

For the historical drift speed and heading statistics, the liP dataset tracks were broken 

down by 0.25° latitude and longitude squares, the drift speed and heading of the 

icebergs were calculated, and statistical models were generated from the accumulated 

data. An example of the modeled data is presented in Figure 4.14. The direction of 

the arrows of this diagram represent the average heading, while the size of the arrows 

represents the relative averaged speed. 

Shown in Figure 4.15 and Figure 4.16 are examples of the m deled data for 0.25° 

square with the mean and standard deviation of the heading and the speed. 
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4. 3. 1.2 Historical T uming and Acceleration Statistics 

Also using the liP data set, the rate of change of the heading and speed data was 

analyzed. Given three points in an iceberg track, statistics for acceleration and rate of 

change of heading can be accumulated. That is, by examining the speed from the first 

to second sighting and from the second to third sighting, a set of data representing the 

average change of speed was found. As well, by measuring the change in direction 

from the first to second, and second to third points a set of data representing the 

average turning rate for an iceberg can be determined. These are normalized by day, 

and broken down into an additional four groups, one for each 0.25 ° square with initial 

north, east, west, and south headings. 

Examples of these from the statistics accumulated are shown in Figure 4.17 and Figure 

4.18 (note that 6·10·6 m/s2 equal 1 knot/day change in speed). These are the most 

important statistics for the MHT associations. 
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4.3.1.3 Wave and Surface Current Direction vs. Heading Direction 

Another supporting data set consists of iceberg heading and speed vs. wave and surface 

current heading. These conditional probabilities can be determined and used in the 

MHT association procedure. Given the environment conditions over the period 

between detections, a statistic is generated that represents the influence of the wa e and 

surface current force on the icebergs motion. This affects the probability distributions 

of rate of turn and change in speed and subsequently the probability that any one 

iceberg is associated with any other two. This provides increased accuracy of results, 

since it incorporates real-time environmental information. 

The analysis of these forces on iceberg motion was done using the PAL data set from 

2000. This set was used due to its high temporal resolution. The environmental data 

was collected by the Microwave Radar bserving System (MIR S) onboard the 

Hibernia facility. The MIROS (2008) is a coherent radar that extracts Doppler 

information from the ocean surface producing directional wave spectra and surface 

current measurements. 

An example of the heading correlation from a combination of the wave and surface 

current direction and iceberg direction is shown in Figure 4.19. This graph compares 

iceberg heading to the summation of wind or wave forces over th period between 

iceberg sightings. For a good correlation, the points should be in a straight line. 
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Also examined during this analysis was the influence of wind data collected at Hibernia 

and the correlation between significant wave height, wind speed, and surface current 

speed on iceberg speed. No correlation could be established in this analysis. 
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4.3.2 Statistical Maneuvering Application 

A simulation was performed of the MHT system to test the ability to accurately 

associate iceberg detections to one another from sensor scans. In particular, scans that 

have significant periods between successive iterations, such as aerial reconnaissance 

flights, are of interest. 

The accuracy of a set of iceberg tracks is determined by the frequency with which the 

iceberg location is updated. That is, if the iceberg location is updated every two hours, 

the recorded track is considered to be of a high accuracy. Otherwise, if the iceberg 

location is updated infrequently, say once every week, the iceberg's actual path is not a 

certainty. Hence, two sets of data were used to determine the ability of the tracker to 

accurately make iceberg detection associations, a sparse set that is input into the 

tracker, and a highly accurate set that represents the actual iceberg motion. With the 

highly accurate set, sparse sets with any degree of delay between detections can be 

generated through resampling. 

A set of iceberg tracks that meets the criteria described above, is the track output from 

PAL's IDNS from 2000. The 2000 data set contains accurate tracks for targets near 

the Hibernia, Terra Nova, and White Rose locations (Figure 1.1). These tracks can be 

compared to the general direction of the associations being made ill the wider area to 

determine the effectiveness of the MHT associations. As well, the data points ill the 
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PAL IDNS (the position information from the individual tracks) can be used as inputs 

to the MHT and the results used to tune the system operation. 

The PAL IDNS database from the 2000 ice season (PAL, 2000) provided a data set of 

closely monitored icebergs. From this database, a set of three days was selected such 

that the maximum number of iceberg targets were present. From the three days, 

detection sets were generated such that the iceberg detections had various mean times 

between detections. For testing purposes, sets consisting of three sensor scans, with 

mean times of 24 hours and 6 hours between detections, were used. 

The system was unaware of which detections belonged to what iceberg. Ideally, the 

MHT system would associate detections that came from the same iceberg with each 

other. Intuitively chosen combinations of the statistics were used to determine the best 

association. Factors that affected the ability of the MHT system to perform correct 

associations include the amount of time between detections, the amount of cross over 

of the tracks, and the effect of some environmental forces that have not been 

accounted for, such as tidal effects, deep water current variations, and underwater 

iceberg profile anomalies. 

The associations made from the 6 hour scans are shown in Figure 4.20. This figure 

depicts the iceberg detections, labeled in order of entry into the MHT program. The 

actual tracks can be seen in Figure 4.21. The two asterisks represent the Hibernia and 
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Terra Nova locations; the line represents the 100-m bathometric mark. The ranking for 

the correct hypotheses can be seen in Table 4.1 
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Figure 4.21: Actual Tracks, 6-How: Intervals 

Table 4.1: Hypotheses Rank List for 6-Hour Interval 

Correct Track Association Hypothesis Rank in 

Track List 

13-7-1 1 

14-8-2 1 

15-9-3 1 

16-10-4 1 

18-12-6 1 
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The associations in Figure 4.20 were correct for nearly all tracks involving three iceberg 

detections. The data set also contained partial tracks from icebergs that were not 

present in all three scans. Since every possible association was included, no matter how 

unlikely, the MHT algorithm generated a track that included the leftov r partial tracks 

of different icebergs. The combined partial tracks are clearly visible as erratic, 

improbable tracks (e.g .. track 5-11-17), the correct partial two-point track can be seen 

in Figure 4.21 

The associations made from the 24-hour scans can be seen in Figure 4.22. The results 

of this association are poorer than for the 6-hour. The actual tracks can be seen in 

Figure 4.23. While some associations are correct, the most likely hypothesis shown is 

not the completely correct set of associations. In this case, one of the possible eight 

tracks is correctly associated. To determine how the system would perform when 

functioning in an operational setting, the MHT system was setup to perform only the 

association of the last pair of the three detections for each track. This simulates an 

operational use of the system where a previous track is established with at least two 

detections and the next step is to link new detections to the established tracks. In thi 

test of the system, three of the eight tracks were correctly associated. The results of the 

associations can be seen in Figure 4.24. Table 4.2 shows how far down the correct 

associations lay in the complete list of hypotheses for the unfixed cased. 
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Table 4.2: Hypotheses Rank List for Unfixed 24-Hour Interval 

Correct Track Association Hypothesis Rank in 

Track List 

24 - 16 - 8 20 

22-14 - 5 26 

21-13-4 13 

20-12-3 22 

25-18-10 26 

23-15-6 56 

19 - 11 - 2 1 

The reasons for the less accurate result when the two 24-hour tests are compared to 

the 6-hour test lies in the greater rime-period between detections and the overlapping 

of tracks. The greater rime-period results in a greater opportunity for icebergs to turn 

and change velocity. As well, they may be subjected to greater influence from 

unaccounted phenomenon (tidal effects, intermediate and deeper currents). 

Consequently, this poor association indicates the requirement for more complete and 

accurate data to be input into the MHT if it is to provide greater accuracy over the 

longer time period. 
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4.3.3 Assessment of Results 

This multiple hypothesis tracking system defines an association probability between ice 

detections based on iceberg kinematics, namely angular and translational acceleration. 

Such an association system should be useful in either a tactical or a strategic planning 

environment. 

The associations are made with sets of three detections to allow for the calculation of 

turning and acceleration statistics when provided only target position data. Due to this, 

there is a propensity to make associations to available 'other' icebergs when the actual 

iceberg may not have been detected or been outside the coverage of the sensor. 

This association method worked well for the average iceberg movement over short 

periods, but does not sufficiently take into account the wide variations that 

environmental conditions can cause. Research on this method was stopped in favour 

of substituting the Canadian Ice Services (CIS) iceberg drift model in place of the 

maneuvering model based on historical statistics. This system is described in Section 

4.4. 
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4.4 MHT Using Iceberg Drift Modeling 

As an alternative to the statistical maneuvering model examined in Section 4.3, an 

additional model is examined. During the period of research for this thesis, this n w 

iceberg drift prediction model, the Coupled Ice-Ocean (CI ) iceberg drift model, 

became available operationally from the CIS. The CIO model uses real-time 

environmental data and iceberg size to provide movement predictions. It is a logical 

step to use this as the basis an iceberg maneuvering model, since the CIO model sums 

forces on an iceberg in a similar way as was done for maneuvering based on historical 

statistics, that is, to sum historical forces (wind, wave, ocean currents, and surface 

currents) to determine future positions. The increased accuracy of the prediction drift 

model reduces the computational overhead requirement by decreasing the number of 

possible associations between previous detections and new targets. 

4.4.1 Canadian Ice Services Drift Model 

The CIS have been developing and improving the CIO model to determine sea-ice 

drift for use in producing ice charts. The inclusion of a physical model for iceberg drift 

has enabled operational iceberg forecasting with reasonable accuracy. The CIO iceberg 

drift model uses estimates of underwater iceberg profiles, scaled on waterline length, to 

generate a predicted path determined by the environmental forces. This is not the first 

attempt at creating such a model; however, it appears that recent advances in 
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environmental sensing and computation ability have translated into a model more 

accurate than previously available. 

The model's inputs are: position, in latitude and longitude, time, and iceberg waterlin 

length. The model outputs a set of latitudes, longitudes, and times for that iceberg. 

The model at this time does not account for shape parameters, and uses a genenc 

underwater profile based solely on waterline length. 

The model has been shown to have reasonable positional forecasting error in most 

cases and is an improvement over previous models (Carriere et al., 2001, C-C RE, 

2003a, and C-CORE, 2003b). This is significant since the accuracy of this model 

determines the gating size used in association and confidence calculations. 

To illustrate the process through which information is added into the MHT, three 

iceberg aerial reconnaissance flights are examined. One detection from the first is 

chosen and the subsequent associations with that detection ar illustrated. The three 

aerial flights are from April17, 19, and 21,2003. 

Figure 4.25 hows a prediction for the iceberg designated HG03-017. This iceberg was 

a large tabular "vith a measured waterline length of 333 m. The prediction depicted is 

for 35 hours after the initial detection n April 15, at 01:20. The effect of size on drift 

prediction can be quite dramatic as is shown in Figure 4.26, which illustrates 

predictions for iceberg HG03-017 given different waterline lengths. 
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Figure 4.25: Iceberg Prediction HG03-017, 35 Hours, 333-meter 

Waterline Length. 

142 

-47 



Q) 
"0 
.a 
·~ 
_j 

47.2 

1: 

47.15 
.. . 

.••....•• \ ln~ial Location 
Forecasted Iceberg Track 

··1s ·······:·· ····· ·:········:···· 

47.1 ... ····· . ..... . ·. 

47.05 

47 

46.95 

46.9 

46.85 
• • • • • 0 • • 

• •••••••••••••• , •••••••••••• 0 ••• 0 , ••••••••••••••••• , ••••••••••• • • ••• • , • ••••••••• 0 •••••• , • • ••••• • ~ •••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

-48.8 -48.75 -48.7 -48.65 -48.6 -48.55 -48.5 -48.45 -48.4 -48.35 -48.3 

Longitude 

Figure 4.26: Iceberg Prediction Variation by Size in Mete.rs 

1his sensitivity indicates a key parameter. The waterline length is extrapolated in the 

water column to form the third dimension of the iceberg. The interaction of the 

iceberg with various layers of the water column determines its drift. 
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4.4.2 Size Interpolation 

From the initial analysis of the system, it was determined that the system can be used to 

help determine the size of an iceberg when no iceberg size data is available or where 

size information might have been misreported. By forecasting several icebergs from 

the same iceberg detection position, but with varying waterline lengths, a distribution of 

iceberg motion can be observed. The appropriate size is determined by finding which 

of these forecasts are substantiated by further iceberg detections. A size estimate could 

be determined by the relationship between the forecasts and the detected iceberg 

position, such as by interpolation between two forecasted paths. 

From empirical examination, the distribution of movement appears somewhat 

logarithmically related to iceberg waterline length. Thus, three sizes were chosen for 

forecasting, 20, 100, and 300-meter lengths, to represent the range of iceberg drift for 

most circumstances. 

4.4.3 Dnfter Model Example 

The following is an example of a tracking system usmg the CIO output as a 

maneuvering model and implemented in MATLAB®. As described in Section 4.2, the 

system must be capable of receiving data on position, heading, speed, and size of 

icebergs from many sensors, at irregular times, and from over a very large area. From 

these data, it must extrapolate a best estimate of the actual positions, heading, speed, 
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and size of icebergs at any point in time. It also must account for errors m the 

measurement systems and for the reliability of the data. 

The system begins its analysis with some set of sensor data. Subsequently, new data are 

added and the relationships between the new data and those in the system are assessed. 

For all data sets after the first, the data being added are associated with data already in 

the fusion database. The data in this case are those iceberg parameters that are 

available to be recorded. These will usually consist of latitude and longitude of 

detection, size and shape characteristics if available, the type of sensor from which the 

detection occurred. Given the type of sensor, the environmental conditions and the 

range from the target to the sensor, a probability of detection and a probability of false 

alarms can be determined. These parameters determine the sensor's ability to ensure 

confidence in the target. 

Once new data become available, iceberg positions are predicted to the point in time 

that the new detections occurred. A gating area around the prediction point is 

determined. This area is proportional to the amount of error in the prediction model's 

accuracy. New detections that are within a previous detection's gate area are associated 

with that previous detection. The relative confidence in the new detection will affect 

the confidence in the previous associated target based on the track score calculations. 

The coverage area of the sensor is also taken into account. Should there have been no 
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association, the relative portion of the gating area that has been searched is used to 

diminish the confidence of the previous detection to which the gating area belonged. 

Once associations have been made and confidence levels adjusted, the confidence 

levels or 'scores' are examined and prediction paths with low confidence are eliminated. 

Thus, new data are combined with old while taking into account the parameters of the 

sensors. The major benefit to such a methodology is the ability to use low confidence 

data from sensors whose parameters are less than optimal. The steps outlined in 

Section 4.2.2 are described in more detail below. 

4.4.3.1 Gating 

The gating area is a geographical area within which the predicted target should lie with 

a high degree of certainty. One method of calculating this is to take the estimated 

variance of the error of the model and use three standard deviations of this to produce 

a region that should contain the target in most cases. The variance is additive so that as 

the time from the last known position increases, the gating area increases as well. The 

shape of the gating area can vary; an ellipse is used in this implementation. The error in 

speed and rate of turn are estimated to form the major and semi-major axes of the 

ellipse. The large rate of turn that can be experienced by icebergs causes the 

quantification of the gating area to be difficult. One must choose whether the gating 

area should follow the prediction path, or the imaginary line from the predicted 

position to the last known position. 
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Figure 4.27 shows an example of a gating area computed using the detected position 

and the predicted position as an axis for the error ellipse. In the figure, the line leading 

away from the April 17, 2003 label indicates the detected position of the iceberg and 

the forecasted path. The circle on the line, next to the April 22, 2003 label, indicates 

the forecasted position on April 22, 2003. The ellipse centered on the small circle 

indicates the gating area. The orientation of the ellipse is with respect to the original 

position, as opposed to being orientated with the predicted direction of the iceberg's 

travel. The use of an ellipse orientated towards the original detection location is the 

current method for the implementation; it was chosen based on examination of actual 

and predicted paths, which indicate a larger error in the estimated speed of the iceberg 

than in its direction from the detection point. 

4.4.3.2 Association and Coverage 

Essential to the operation of the MHT is the association of new iceberg detections to 

previous detections that may be the same iceberg, detected at an earlier time. These 

associations are essential to account for all previously detected icebergs. The presence 

of icebergs that cannot be accounted for in the association process with previously 

detected icebergs can be an indication of potential 'gaps' in sensor geographical 

coverage. This can provide a means to decide if additional reconnaissance might be 

necessary to fill in the missing data. 
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Figure 4.27: Gating Area/ Error Estimation, 5 Days. 

The gate area is used to determine which of the new iceberg detections can be 

associated to previously stored detections. For each previous detection, the gate area is 

determined through the maneuvering model at the time of the new detection. For that 

gate area, each new detection is examined to determine if it falls within the gate. Figure 

4.28 shows several targets near the predicted location of a previous target. Two targets 

fall within the gating area, and solid green lines connect them to the predicted location. 

Additional targets are shown outside the gating area, but are not associated with the 
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previously detected iceberg. These targets are depicted as triangles and 'x's. The 

triangles represent visually confirmed icebergs and the 'x's represent detected radar 

targets which have not been visually confirmed as icebergs. 
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Figure 4.28: Association of Targets inside Gating Area. 

Association of newly detected icebergs to preVlous ones 1s used as evidence to 

corroborate the previous targets, thus increasing confidence that a target exists at a 
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certain location. To aid in this, a confidence metric is used. Given that a detection 

does exist within the gate area, the confidence metric of the original detection is 

increased based on the parameters of the sensor and of the maneuvering model. That 

is, the ability of that sensor to detect targets or present false positives to the system is 

accounted for in the corroboration of the original detection based on the Baye 

discussion in Section 4.2.3. 

In addition to this, the adjustment of the confidence metric could include the error in 

prediction location, such as by being defined by the distance from the predicted 

position at the time of new detections in combination with the false positive (false 

alarm) rate of the most recently used sensor. Thus, new targets that are detected within 

the gating area, but far from the actual forecasted position will be less effective in 

increasing the confidence of the original target than new targets that are close to the 

predicted position. Likewise, sensors that generate many false positives will have a 

smaller effect on confidence than those that produce few false positives. Notably, the 

initial confidence score is set by the sensor used to find the original target, relative to its 

probability of detection of icebergs. 

Should no association occur to a gate area, the area covered by the sensor is examined 

to determine if the gate area was included in the sensor scan. For example, Figure 4.29 

shows the radar coverage and iceberg detections from an aerial reconnaissance flight. 

Note that this represents the radar area and not the area covered by visual observation 
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from the aircraft. The radar area is a function of the recorded altitude. If the gate area 

was included in the sensor scan and no target was observed, the confidence in the 

prediction is diminished. 
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Figure 4.29: Radar Coverage from an Aerial Reconnaissance Flight. 

4.4.3.3 Track Maintenance 

The track maintenance function of the 111-IT refers to the management of the 

confidence, or track score, associated with each iceberg detection and the generation of 

a path from detection to detection through time. In particular, management of the 

confidence score implies the increasing and decreasing of a confidence score, the 

initialization of new detections with an appropriate confidence, and the de-activation of 
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detections whose confidence falls below a minimum. The rules for the confidence 

metric adjustment are based around Bayes Theorem. An example of the track score 

process was illustrated in Section 4.2.3. Bayes takes into account conditional 

probabilities. Through its use, the probability that a target exists can be adjusted by 

either increasing it, due to a positive result (subsequent detections), or decreasing it, due 

to a negative result (no further associated detections). 

The initial values in this implementation are based on the sensor with which detection 

occurred. Currently, the probability of detection of icebergs by the given sensor is used 

as an initial value. 

The lower limit for the confidence score is set empirically, prior to a detection being 

de-activated to stop further predictions and save processing resources. This is set low 

enough to allow false positives and other incorrect predictions to be removed easily but 

high enough to prevent accidental removal of predictions that should be kept. 

4.4.3.4 System Output 

The primary output consists of the positions of icebergs as determined from the 

combinations of sensor information entered into the system. False positives and other 

eliminated tracks can be removed leaving only the remaining 'likely' paths and 

associations. Utilizing the hypothetical nature of the MHT, multiple outputs can be 

generated. Each hypothesis displays combinations of the paths and associations from 

the multiple sensor data entries based on their degree of confidence. 
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In general, the results of the analysis of the system are available subsequent to the 

addition of new detection information - after every track maintenance iteration. As 

well, at intervals past this, the drift prediction system and gating functions defined here 

could be used to show areas where icebergs are likely to be located, allowing the 

planning of future sensor iterations. 

In addition to this output, the coverage calculations can be used to define the 

geographical areas that require examination by sensors. The limits of this area would 

be defined by the sensors coverage contracted by limits of iceberg movement at the 

edges of the area based on the elapsed time. The limits of iceberg movement can be 

defined generically, or could be outputted by a query of the drift prediction model. 

4.4.4 Drifter Model Maneuven·ngApplication 

The following is a sample application with the CIS maneuvering model and the MHT 

implementation described above. Figure 4.30 shows a forecast with the 20, 100, and 

300-meter waterline length predictions; the estimated error ellipses related to the drift 

predictions are not shown. Iceberg with ID 87 was detected on March 3, 2003, the 

subsequent detection labeled 235, was detected on March 17, 2003. No detections 

were found near the estimates for the 20 or 300-m predictions, the only relevant 

detection was a single iceberg very close to the 100-m prediction. In this case, the 

iceberg was determined by ground truthing to have an effective size very close to 100 

min waterline length. 
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Figure 4.30: Iceberg Size Estimate. 

Figure 4.31 shows the flight path of the April 17 flight, along with radar targets and 

visually confirmed iceberg targets. For purposes of illustration, the seventh iceberg 

from this set is examined more closely. This iceberg, ID 7, is shown in Figure 4.32 

along with its predicted paths for 191 hours (1.9 Days). 
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Figure 4.32: Berg #7 Predicted Paths, April 17 to April 25, 2003. 

Once a second set of data is entered into the database, the appropriate predicted 

position from the first set is found and the gating area is determined. Figure 4.33 

shows the gating areas at the time of the second detections, as well as iceberg ID 120, 

detected during the April 19 flight. Iceberg ID 120 is the only detection from April 19 

that falls within the three gate areas for the three predicted iceberg lengths of iceberg 

ID 7. 
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Figure 4.33: Berg #7 Gating Areas, Berg #120 Detection Position. 

Circles on the dashed prediction tracks of iceberg ID 7 represent its predicted position 

at the time of iceberg ID 120's detection. A line connects iceberg ID 120 to the 

predicted position of iceberg ID 7 that represents the path of a 20-meter iceberg (the 

rightmost predicted path, see Figure 4.32). 
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---------------------------------------~------------------

The association of iceberg ID 120 to the 20-m prediction of iceberg ID 7 increases the 

confidence in that path. Likewise, the absence of detections with the 100 and 300-m 

paths decrease the confidence in those paths. The amount of the decrease is 

proportional to the amount of the gate area covered and the probability of detection of 

the sensor. If the flight's detection coverage does not contain any of the gate area, then 

no adjustment to the confidence of that particular path can be made. 

Note that the detection of one association with the 20-m prediction of iceberg ID 7, 

and the lack of corroborating evidence for the 100 and 300-m paths, does not prevent 

the further prediction and analysis of these paths. Instead, the evidence causes an 

adjustment to the confidence scores; only when the confidence is reduced below a 

defined threshold does the prediction and analysis of a particular path stop. This 

allows multiple icebergs to be associated to a single iceberg and so forth. Additional 

routines are used to select the most probable set of associations from those available. 

These different hypotheses can be selected on criteria such as probability of association 

(proximity to forecasted position), confidence scores, or relative size indexes and shape 

parameters, if available. 

Thus, when the information from the April 17 aerial reconnaissance is combined with 

the data from April 19, the April 19 set suggests iceberg ID 7 to be between 20 and 100 

m, from Figure 4.33 the size can be estimated at approximately 40 m. Iceberg ID 7 

was reported as having a waterline length between 15 and 60 m. 
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Three of the icebergs (ID 126, 140 and 141) from the April 21 aerial reconnaissance 

were found in the gate areas predicted for the detection times of the April 21 targets. 

The active gate area for this analysis now includes prediction paths from iceberg IDs 7 

and 120. Although iceberg 120 was previously associated with iceberg 7, the gate areas 

from the paths of the two icebergs are provided so as not to rule out the possibility that 

120 and 7 are not the same iceberg. Figure 4.34 shows the predicted paths from 

iceberg ID 120, April 19, and the associations from these to iceberg ID 126 from April 

21. As can be seen from Figure 4.34 the most likely association is with the 100-m 

prediction from iceberg ID 120. Iceberg ID 141 is not depicted. Also present i the 

possible association with the 300-m prediction, though the 100-m appears far more 

likely. Iceberg ID 126 was reported as having an unknown size. 

Figure 4.35 shows the predicted paths from iceberg ID 120 to iceberg 140, also 

detected on April 21. Again, the association with the 100-m path seems the most 

likely. Iceberg ID 140 was reported as having a size of 121- 200 meters. 
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Figure 4.36 shows the predicted paths from iceberg ID 7, detected April 17, to iceberg 

ID 140, detected April21, even though icebergs were detected in the general area April 

19. Iceberg ID 141 is associated with both the 100-m and the 300-m predictions of 

iceberg ID 7. As can be seen in Figure 4.36, the association that is most likely is that 

with the 100-m path. Iceberg ID 141 was reported as having an unknown size. 
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Given the associations available to iceberg ID 7 several hypothetical results are 

available. Note that there is some uncertainty in the sizes reported, as size estimates are 

difficult to gauge precisely, particularly from aircraft. As well, the predicted paths can 

have sizable errors; the gate area attempts to account for this, but cannot efficiently 

account for those cases where very large errors occur. 

162 



---~------------------------------------~------

In this manner and as new informacion is added to the database, predicted paths, 

particularly various size estimates for single icebergs, will be de~accivated. Essentially, 

these will be removed from those processed by the system, where processing refers to 

the prediction, and attempts to associate new detections with these previous detections. 

This will occur as more detection and sensor coverage data are entered, and some of 

the predicted paths remain uncorroborated. In a similar, manner low confidence 

detection data, for example from low probability of detection or high false positive 

sensors, can be used. Incorrect data supplied by these sensors will fail to have 

corroborating detections in future scans or from other sensors, while correct detections 

will have corroborating evidence, at least a portion of the time. Figure 4.37 shows the 

data collected for this small example, including the tracks de~accivated by lack of 

corroborating evidence and those tracks that are still active and will continue to be 

predicted and have associations connected with them. 

From the available associations, along with the parametric data collected such as size 

and shape, a 'most probable' set of associations can be selected. Figure 4.38 shows 

such an output for this case. Here, the size information along with the probability of 

association between predicted paths and detected icebergs is used to select the 

displayed paths and associations. Detections that had been associated, but are not in 

the final output seen in Figure 4.38, may be false positives, but are most likely other 

icebergs detected on April 17 from similar regions as iceberg ID 7. Notably, other 

icebergs from April 17 were associated with the excluded icebergs, ID 126 and 141. 
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However, the selection of the best representation is computationally intensive and not 

depicted here . 
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Figure 4.37: Berg #7 and Associations. 
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The MHT software, written in MA TL.AB®, includes a visual interface. The interface is 

under development and modifications to increase its ease-of-use are best performed 

while it is used in an operational setting. Figure 4.39 shows a screen capture of the 

current interface and output window. 
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Figure 4.39: MHT MA TLAB® Software Interface. 
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4.4.5 Assessment of Results 

The MHT software outlined in this report has the capability to accept multiple inputs 

from a wide range of sensors and integrate them into a single data product. The 

sensors can be spread geographically and have a variety of performance levels. They 

can have various update rates from very frequent to rare, and at constant or sporadic 

intervals. 

The use of the CIS CIO model appears to significantly improve the target association 

of the system. mpirically, the inference of the iceberg waterline length should allow 

for the system to tune itself to the behaviour of targets over multiple iterations. 

As well as the functionality described above, there exists the capability to create 

multiple paths for any one iceberg. This may be done, for example, in cases where the 

size of the detected iceberg is unknown. In the case where multiple paths are followed, 

it is expected that the confidence in all but one path will reduce to such a point as 

multiple paths are eliminated. In this manner, size estimations of iceberg detections 

can be performed. 
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4.5 Analysis 

The data fusion system differs from the sensor fusion method in that it acts solely with 

the combination of sensor data. That is, it is concerned with how to relate data points 

to one another. It makes use of the probability curves of the sensors themselves, but 

only to determine the certainty of the result. 

The analysis of Bayesian statistics in application to the sensor data and the redetection 

of targets clearly indicate detection probability effectively increases over the long term. 

The iterations required to acquire a significant portion of targets is inversely 

proportional to Pr(det). The maximum maintainable real target tracks as a percentage 

of the actual tracks is inversely proportional to the track elimination value. The ratio of 

false tracks to real target tracks is inversely proportional to the track elimination score 

and Pr(det), and is proportional to PFA and Bayes prior value. 

It is worth noting that the impact of PF A is generally underestimated and 

misunderstood. In the Bayes paradigm the PFA value is responsible for the rate at 

which sensor iterations that report a target provide an increase in the target confidence. 

Conversely, the Pr(det) is responsible for how quickly sensor iterations that do not 

report a target decrease confidence. Distinctions between statistical PF A and the PF A 

excluding false 'real' targets, such as ships identified as icebergs, need to be made. 

The attempt to implement the statistics-based association portion of the tracking-based 

fusion system was hindered by problems relating to the adaptation of single point 
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target information to velocity and acceleration statistics. As well, it is clear that the 

movement of iceberg targets in periods greater than six hours was too complicated for 

the metrics used. This method may be applicable to other targets or in situations 

where frequent sensor iterations are guaranteed. 

The implementation of a fusion system utilizing the CIS CIO prediction model for the 

generation of prediction and gating was largely successful in the tested application. A 

larger scale test of this system has been hindered by light ice seasons in years 

subsequent to the research. 

This implementation has applications in both strategic and tactical ice management, 

and in the tasking of iceberg detection sensors. This methodology has the primary 

benefit of utilizing all available information. This is accomplished by taking into 

account the parameters of the sensor, such as probability of detection and probability 

of false positives. 
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Chapter 5 Summary 

5.1 Conclusions 

This thesis provides information on the application of sensor and data fusion to target 

detection, particularly to iceberg detection and redetection. 

Within the context of this thesis sensor fusion has been defined as referring to the 

combination of sensor parameters, and data fusion has been defined as the 

combination of data from detection events. 

Sensor fusion provides a means of evaluating the performance of a network of sensors. 

Presented herein has been an examination of methods that can be applied to provide 

for the combination of detection performance statistics for disparate sensors. Methods 

of dealing wjth data latency, geographical and temporal separation have been proposed. 

This methodology has applications in strategic planning and for risk analysis 

simulations. Stochastic simulation methods will likely provide additional versatility in 

analyzing more complex sensor arrangements. 
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This data fusion system can provide ice management operators with a tool to 

statistically and systematically combine detection information for a wide variety of 

sensors over a large geographical area. This document has examined a proposed 

simple track score method and demonstrated through simulation the significant 

benefits. Through this simulation it has been demonstrated that sensors currently 

considered to have low detection probability can be used reliably as a sen ing method 

within a data fusion framework. 

The simulation provides interesting insight into the detection problem. The key 

tradeoff to most applications will be the tolerance of false target tracks, which will 

persist for short durations within the system. As well, the use of Bayes points out the 

importance of PF A parameters in the assessment of a sen or's performance. In some 

applications, PFA will exceed Pr(det) as the key parameter considered when deflning a 

sensor regtme. 

Additionally, two methods of target association have been implemented. The first 

utilizes historical kinematics to characterize the target movement; the second employs a 

third-party target drift model. These methods have been demonstrated and tested 

against real target data. Historical statistical kinematic modeling appears limited to 

short sub-day durations while more sophisticated target prediction models allow for 

longer sensor iteration periods. 
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For operational integration it should be possible to include metrics such as cost and 

practical availability into the evaluation for sensor selection and optimization studies. 

The data fusion method described here may have effective applications in other fields, 

such as security and monitoring, or state space based applications. 

5.2 Areas for Further Study 

There are a number of areas that warrant further study and development, both in the 

sensor fusion application, and the data fusion application. 

At a high level, new additional data sources are becoming available for inclusion in the 

data source set, which may provide additional detection capabilities and feature 

information. These new sensors include a new generation of multi-polarization, high 

resolution SAR satellites. These sensors will have to be taken into account when 

performing sensor fusion and in data fusion methodologies where their sensor data are 

to be included. 

For sensor fusion methods, a wide variety of stochastic simulation methods could be 

applied, such as Monte Carlo analysis. Simulation methods will likely increase the 

adaptability of the methods presented here for handling the variety of configurations 

that may be po sible in a modern sensor regime. 

For data fusion, additional iceberg maneuvering models are becoming available that 

could improve the prediction and gating steps of iceberg tracking systems. Alternatives 
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to the CIS CIO model exist and new systems such as regional models based on the 

MERCATOR (2008) system may provide enhanced marine target prediction. 

Although the easily implemented Bayes track score system defined here works quite 

well, a wide array of alternate track score methods exist. The investigations into the 

optimization of track initialization and elimination values should be part of the 

deployment of any practical system developed for real-world applications. Likewise, 

data handling in terms of the fusion and inference of feature information should be 

undertaken. Such information will help with identification of targets where target 

density is high and there is the possibility for track cross-over and target 

misidentification. 

The natural progression of this research is a full practical test of the implementation 

during an ice season. Partial tests have been carried out with success, both technically 

and in terms of industry support. This level of implementation has been hindered in 

recent years by a lack of iceberg activity in the region of interest. 

To be used on an industry level, the current implementation should be developed in a 

proper GIS software package with a supporting database. Such GIS interfaces are now 

the standard for mapping related applications. The current data fusion system has been 

proto typed in MA TLAB®. 
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At a more general level, the data fusion work could be expanded and included in a 

wider threat assessment system that would examine the estimated iceberg conditions 

and determine the level of threat to offshore structures and vessels. Some progress has 

been made in this area by C-CORE. 

Finally, the material presented here focused mainly on the application of ice detection 

in the Northwestern Atlantic Ocean. These methods certainly have other applications, 

specifically surveillance and monitoring for wide-area applications, and could be 

applied to security and sovereignty at regional and national levels. 
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Appendix A Parameters of Iceberg Detection Sensors 

This appendix briefly summarizes the parameters considered most important in the 

East Coast iceberg detection sensor regime. 
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A.l Terms and Definitions 

CFAR Constance False Alarm Rate noise filtering 

HFSWR High Frequency Surface Wave Radar 

PRF Pulse Repetition Frequency, a radar parameter for the number of short 

electromagnetic bursts per second. 

SAR Synthetic Aperture Radar 

STC Sensitivity Time Control, a radar processmg technique for remoVlng 

range dependent clutter. 

SWH Significant Wave Height, a measure of sea roughness. 
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A.2 Parameters 

The parameters considered most important are briefly defined below. 

A.2.1 Coverage Area: 

The area over wruch a sensor can provide a probably of detection as a function of 

iceberg size (for systems using rugher frequencies that have negligible super-refraction 

(ducting) effects) can be approximated by calculating the 'line-of-sight' distance to the 

horizon: 

Horizon(nmi) = ~5 · height(m) Eq. A. I 

A.2.2 Probabiliry ofDetection: 

The probability of detection of an iceberg. It is a function of range, sea state, and 

iceberg size. 

A .2.3 Resolution 

The ability of a system to determine the spatial location of a target. 

A .2.4 Speci.ftciry: 

Specificity is the probability of identifying correctly a negative detection (such as open 

water, as opposed to an iceberg). 
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A.2.5 Cost: 

The operating costs of the sensor. 

A.2.6 Update Frequency: 

The rate at which information from the sensor is updated. 

A .2.7 Data Latency: 

The delay between data capture and data availability (most often due to processing of 

the data). 

A.2.8 Avaifabifiry: 

The time period in which a sensor is available to operate or provides reliable data. 

A .2.9 Refiabifiry: 

The susceptibility to adverse conditions (for example: fog for visual observation). 

A .2.1 0 Abifiry to Classify: 

The ability of the sensor to identify a target and provide relevant information such as 

direction, velocity, and size. 
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A.3 Sensors Discussed 

The parameters for the following sensors are cliscussed here: 

• Marine Radar 

o X-Band 

o S-Band 

o Enhanced Radar 

• Titan 

• SeaScan 

• Airborne SAR (Litton APS-504 (V) 5) 

• Satellite SAR (RADARSA T -1) 

• HF SWR (Surface Wave Radar) 

• Visual bservation 

o Ship based 

o Platform based 

o Airborne 
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A.4 Discussion of Parameters, Marine Radar, X-Band 

A.4. 1 Coverage Area: 

The coverage area for marine radar is based on the line of sight to the horizon. For 

support vessels for the Hibernia platform having an antenna mounted at 15 meters this 

range is 17 km (9 nmi), for the Hibernia platform itself with a derrick mounted antenna 

the horizon is 48 km (26 nmi) radius [1]. X-Band is credited with longer range (then S

Band) [1]. 

A.4.2 Probability of Detection (Sensitivity) 

Systems typically are capable of pulse to pulse integration and STC (Sensitivity Time 

Control) which remove range dependent clutter. 

A.4.2.1 Grmvlers: 

Undetectable [3]. 

A .4.2.2 Bergy Bits 

Undetectable [3]. 

A.4.2.3 Small Icebergs 

MV Polar Circle, 1985: 9-13 km (5 to 7 nmi) with the average detection at 11 km for 

average sizes of 40 m wide by 9 m (X and S-Bands) [1]. 
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20m bergs detectable up to 23 km at significant wave height (SWH) 1 m, 60 m bergs 

detectable up to 36 km at SWH 9 m [3]. 

A .4.2.4 Medium Icebergs 

MV Polar Circle, 1985: Ranges from 12 to 24 km (6.4 to 13.3 nmi), average detection at 

16 km (10 nmi) . Average sizes were 26m high and 100m wide. X and S-Band. [1:102] 

A .4.2.5 Large Icebergs 

Presumably as good or better then smaller icebergs. 

A.4.3 Resolution 

One percent of the range used for detection [1]. X-Band has a horizontal beamwidth 

of0.8° [1:107]. 

A.4.4 Specijiciry 

No data. 

A.4.5 Cost 

Operating costs would primarily consist of only an operator's salary. 

A .4.6 Update Frequenry 

Real time. (1600 PRF, 30 RPM [1: 1 07]) 
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A.4.7 Data Latenry 

None. 

A.4.8 Availability 

Constant. 

A.4.9 Reliability 

X-Band is adversely affected by rain and heavy fog. [1] 

A .4.10Ability to Classify 

Operator interpretation. The monitoring of detections can determine the speed and 

direction of the object detected. 

Speed is a reliable method of identifying an iceberg, assuming that all ships are moving. 

However, anchored or drifting ships may be mistaken for icebergs until they are once 

again underway. 
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A.5 Discussion of Parameters, Marine Radar, S-Band 

A.5.1 Coverage Area 

The coverage area for marine radar is based on the line of sight to the horizon. For 

support vessels for the Hibernia platform having an antenna mounted at 15 meters this 

range is 17 km (9 nmi), for the Hibernia platform itself with a derrick mounted antenna 

the horizon is 48 km (26 nmi) radius [1). 

A .5.2 Probability of Detection (S ensitiviry) 

Systems typically are capable of pulse to pulse integration and STC, which removes 

range dependent clutter. 

A .5.2.1 Grmv/ers 

Insufficient data [1]. Undetectable [3]. 

A .5.2.2 Bergy Bits 

Insufficient data [1). Detectable up to 13 km by platform mount systems, 6.5 km for 

vessel mounted systems [3). 

A .5.2.3 Small Icebergs 

MV Polar Circle, 1985: 9-13 km (5 to 7 nm.i) with the average detection at 11 km for 

average sizes of 40 m wide by 9 m (X and S-Bands) [1]. 

A-9 



In the region of 5 to 20 km, sea clutter presents a significant decrease in the ability to 

detect icebergs [1: 1 07]. 

Twenty meter bergs detectable up to 19 km at SWH 1 m, 60 m bergs detectable 31 km 

at SWH of 9 m [3]. 

A.5.2.4 Medium Icebergs 

ERSF No. 22, 1991: Reliable at ranges for S-Band of 25 to 31 km (13.5 to 16.7 nmi) 

[1:61] 

MV Polar Circle, 1985: Ranges from 12 to 24 km (6.4 to 13.3 nmi), average detection at 

16 km (10 nmi). Average size was 26 m heights and 100 m widths (X and S-Band) 

[1:102]. 

A .5.2.5 Lorge Icebergs 

Presumably as good or better then smaller icebergs. 

A .5.3 Resolution 

1% of the range used for detection [1]. S-Band has a horizontal beamwidth of 2.0° 

[1:107]. 

A.5.4 Speczficiry 

No data. 
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A.5.5 Cost 

Operating costs would primarily consist of only an operator's salary. 

A.5.6 Update Frequenry 

Real time. (1600 PRF, 30 RPM [1: 1 07]) 

A.5. 7 Data Latenry 

None. 

A .5.8 Availability 

Constant. 

A .5.9 Reliability 

S-Band provides better performance than X in sea clutter and adverse weather 

conditions. Provides good penetration through moderate rain (4 mm/ h). Adversely 

affected by heavy rain (16 mm/h). [1] 

A .5. 10 Ability to Classify 

Operator interpretation. The monitoring of detections can determine the speed and 

direction of the object detected. 

Speed is a reliable method of identifying an iceberg, assuming that all ships are moving. 

However, anchored or drifting ships may be mistaken for icebergs until they are once 

again underway. 
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A.6 Discussion ofParameters, Marine Radar, Enhanced 

These systems are based on conventional X-Band and S-Band system, but include 

additional computer processing of the radar returns .. 

A. 6. 1 Coverage Area 

Same as for the X or S-Band Radar. 

A .6.2 Probability of Detection (Sensitivity) 

Systems typically are capable of pulse to pulse integration and STC, which remove 

range dependent clutter. This is then scan to scan averaged. For the Titan 16 scans 

can be averaged. 

Probability of detection graphs in [1] implies that even with a non-enhanced probability 

of detection of 10% is boosted to 100% using the TITAN system. 

A .6.2.1 GroJJJiers 

No specific data. Presumably undetectable as it relies on a conventional X or S-Band 

radar. 

A .6.2.2 Bergy Bits 

Presumably as good or better then the source X or S-Band system for this size iceberg. 

A.6.2.3 Small Icebetgs 

The Titan has a 100% capability of detecting a 30m iceberg to as far as 26 km [1:115). 
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A.6.2.4 Medium Icebergs 

Presumably as good or better then performance on smaller icebergs. 

A .6.2.5 Large Icebergs 

Presumably as good or better then performance on smaller icebergs. 

A .6.3 Resolution 

Dependent on whether the source of the data is X or S-Band radar. (Typically 37.5 m, 

0.8° or 2.0° horizontal beam width [1]) 

A.6.4 Specificity 

No Data. 

A .6.5 Cost 

Operating costs would primarily consist of only an operator's salary. 

A .6.6 Update Frequenry 

Real time. (1600 PRF, 30 RPM [1: 1 07]) 

A .6.7 Data Latenry 

Practically none. (Some latency could be accounted for by scan averagmg. For 

example, 32 seconds for a 16 scan average with a 30 RPM radar. This is negligible) . 
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A.6.8 Availability 

Constant. 

A. 6. 9 Reliability 

Susceptible to the same interference as regular X and S-Band system on which it is 

based. 

Due to CF AR averaging, icebergs covered in interference by precipitation or fog will 

appear as clear ocean. 

A. 6. 10 Ability to Classify 

The same as un-enhanced marine radar. Additionally, the software may have some 

features that make tracking easier or automated. 
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A.7 Discussion of Parameters, Marine Radar, SeaScan Enhanced Radar 

These systems are based on conventional X-Band and S-Band system, but include 

additional computer processing of the radar returns. 

A .1.1 Coverage Area 

Same as for the X or S-Band Radar. The SeaScan will be installed on the Terra Nova 

production platform at a height of 45 m, giving a radar horizon of 15 nmi [6]. 

A.7.2 Probability of Detection (S ensitiviry) 

Systems typically are capable of pulse to pulse integration and which remove range 

dependent clutter. This is then scan to scan averaged. 

A.7.2.1 Gr01vlers 

Detectable to a maximum range of 3.8 nmi (radar installed at a height of 90 m) [6]. 

A .7.2.2 Be®' Bits 

Detectable to a maximum range of 18 nmi (radar installed at a height of 90 m) [6]. 

Reliably detected bergy bits and small icebergs in sea states reaching 3 to 4 m with 

winds of 50 km/h gusting to 64 km/h [6]. 
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A.7.2.3 Sma/i Icebergs 

Consistently detected to the radar horizon of the test [6]. Reliably detected bergy bits 

and small icebergs in sea states reaching 3 to 4 m with winds of 50 km/ h gusting to 64 

km/h [6]. 

A.7.2.4 Medium Icebergs 

Consistently detected to the radar horizon of the test [6]. 

A . 7.2.5 Large Icebergs 

Consistently detected to the radar horizon of the test [6]. 

A.7.3 Resolution 

Dependent on whether the source of the data is X or S-Band radar. (Typically 37.5 m, 

0.8° (X) or 2.0° (S) horizontal beamwidth [1]) 

A.7.4 Specificity 

No Data. 

A.7.5 Cost 

Operating costs would primarily consist of only an operator's salary. 

A.7.6 Update Frequenry 

Real time. (1600 PRF [1:107], 120 RPM) 
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A.7.7 Data Latency 

Practically none. (Some latency could be accounted for by scan averaging, but this is 

negligible). 

A.7.8 Availability 

Constant. 

A . 7.9 Reliability 

Susceptible to the same interference as regular X and S-Band system on which it is 

based. 

Due to CF AR averaging icebergs covered in interference by precipitation or fog will 

appear as clear ocean. 

A. 7.10 Ability to Classify 

The same as un-enhanced marine radar. Additionally, the software may have some 

features that make tracking easier or automated. 
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A.S Discussion of Parameters, Airborne SAR (Litton APS-504(V)5) 

The only radar in use at the time of this report is the Litton APS-504(V)5, a SAR 

search radar [2]. This radar is also used by the International Ice Patrol [1] 

A.8. 1 Coverage Area 

The Litton search radar is found most effective at 150 to 450 m altitude. At his height 

it has a radar horizon of 50-87 krn (27 to 47 nmi) [1]. 

A .8.2 Probabiliry ofDetection (Sensitiviry) 

The Litton APS-504 uses pulse to pulse and scan to scan integration, CF AR and STC 

[1 :1 08]. 

A .8.2.1 Gr01vfers 

Detectable up to 29 krn at a SWH of 1 m [3]. 

A.8.2.2 Bergy Bits 

Detectable up to 39 krn at a SWH 1 m for 10 m bergs [3] . 

A.8.2.3 Smaff Icebergs 

Detected with up to 80% reliability up to sea state 5 for a line spacing of 37 krn (20 

nmi) [1:103]. 20m bergs detected up to 46 km at SWH of Sm. Bergs detectable up to 

58 krn at a SWH of 15m for 60 m waterline length [3]. 
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A.8.2.4 Medium Icebergs 

No specific data, presumably as good or better performance as smaller. 

A .8.2.5 Large Icebergs 

No specific data, presumably as good or better performance as smaller. 

A.8.3 Resolution 

The system has a range resolution of 4.5 m (it has 7 range options, 3, 6, 12, 25, 50, 100, 

200 nmi) [1]. The positional accuracy is 200 m2, given a 100 m accuracy of aircraft 

GPS navigation and a radar ranging error of 2% at the shortest range (3 nmi) [1]. 

Horizontal beamwidth of 2.3° [1 :108]. 

A .8.4 Specificity 

No Data. 

A .8.5 Cost 

Provincial Airlin s nvironmental Services operates chartered llights at a cost of 

approximately $4,500 to $5,000 per hour. 

A .8.6 Update Frequenry 

Real time. (PRF 1350Hz, 30 RPM) 
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A .8.7 Data Latenry 

The operator could relay data from the radar almost instantaneously over radio 

channels. However, if the data were not delivered until the end of the flight the latency 

could on the order of several hours. 

When the plane ts not over a particular area the data will become outdated 

proportionally. 

A .8.8 Availability 

Obviously the plane must be in the air to be of any use. Flights are relatively frequent 

and could be scheduled as needed given the resources. As well, areas of particular 

interested could be prioritized. 

A .8.9 Reliability 

The Litton operates over 16 frequencies in the range of 8.9 to 9.4 GHz Qt uses 

frequency agility to improve performance) [1]. As such it is susceptible to the 

interferences that will disturb other X-Band systems. 

Also the effects of fog and poor weather on aircraft flights must be considered. 

A.8.1 0 Ability to Classify 

The system is usually verified by visual confirmation whenever possibl . There does 

not appear to be a quantitative analysis of this available. 
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Considering the short dwell time, velocity measurement and subsequent identification 

from this data is likely not feasible. 

Radar return amplitude would give some indication as to the size of th target. 

A-21 



A.9 Discussion ofParameters, Satellite SAR (RADARSAT-1-1) 

RADARSAT-1 offers five modes of operation, offering a tradeoff between coverage 

area and resolution. Of these two, can AR arrow and Wide, provide the most 

useful coverage to area tradeoff. 

A .9.1 Coverage Area 

ScanSAR arrow: 300 km x 300 km coverage. 

Wide: 150 km x 150 km coverage. 

A .9.2 Probability if Detection (Sensitivity) 

A .9.2.1 Grotvlers 

Undetectable given the resolution of the modes in use. 

A .9.2.2 Bergy Bits 

Undetectable given the resolution of the modes in use. 

A.9.2.3 Small Icebergs 

Icebergs over 30m are detectable with a 98.1 % accuracy using visual identification and 

90% using software (4]. These probabilities were determined by comparison of 

RADARSAT-1 imagery to ground truthed data. As such they most likely represent 

favorable weather conditions and may d teriorate somewhat in poorer sea states. 
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A.9.2.4 Medium Icebergs 

Similar or better than smaller icebergs. 

A.9.2.5 Large Icebergs 

Similar or better than smaller icebergs. 

A.9.3 Resolution 

ScanSAR Narrow: 50 m resolution [4] 

Wide: 30m re olution [4] 

A .9.4 Specificity 

No data. 

A.9.5 Cost 

For RADAR AT-1 imagery ordered well in advance (min. 3 days) and returned as 

quickly as possible (3 hours), the cost would be approximately $2,025 (cdn) [5]. 

A.9.6 Update Frequenry 

RADARS T-1 has a 24-day repeat pattern [5]. However, with antenna redirection a 

three-day revisit schedule for any one point can be obtained [1]. ach visit consists of 

both an ascending and descending pass within one day of each other [5]. 
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A.9.7 Data Latenry 

"Real time" data tum around (3 hours) can be purchased at a premium, see cost. 

A.9.8 Availability 

RADARSAT -1 data is available at a cost whenever the satellite passes over the area of 

interest. However, if a particular scan mode is desired, the satellite must be tasked 

ahead of time. Hence, planning days ahead is required. 

A.9.9 Reliability 

Operating in the C-Band, RADARSAT-1 is not affected by cloud cover. swell, due 

to it's high angle of incidence, there is little or no interference from precipitation 

attenuation (5). 

A .9.1 0 Ability to Classify 

The size of objects can be determined easily with an accuracy dependent on the 

resolution size. 

With no data on motion the identity of the objects is somewhat difficult to ascertain. 

s metallic ships are much better reflectors of radar ignals then icebergs, an 

examination of the mean and variance of pixel intensities can be useful for identifying 

objects that cover an area of several pixels. Small or non-m tallic objects ar 

particularly difficult to identify. 
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A.10 Discussion of Parameters, H F Surface Wave Radar 

A . 10. 1 Coverage Area 

Covers approximately 200,000 krn2. ut to approximately 200 nmi for medium sized 

icebergs [4). Maximum coverage area is 120° wide and out to 250 nmi. 

A. 10.2 Probability ojDetection (Sensitivity) 

A .1 0.2.1 Grmvlers 

Undetectable except at very close range [4). 

A .1 0.2.2 Bergy Bits 

Undetectable except at very close range [4) . 

A .10.2.3 Small lcebeTgs 

Ten perc nt probability of detection in the 150 to 250 nmi range at an average SWH 

1.25 to 2.5 [4). 

A. 1 0.2.4 Medi11m IcebeTgs 

Twenty five percent probability of detection in the 150 to 250 nmi range at an averag 

SWH 1.25 to 2.5 [4). 
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A. 1 0.2.5 Large Icebergs 

Sixty-five percent probability of detection in the 150 to 250 nrni range at an average 

SWH 1.25 to 2.5 [4]. 

A.10.2.6 Very Large Icebergs 

One-hundred percent probability of detection in the 150 to 250 ruru range at an 

average SWH 1.25 to 2.5 [4]. 

A. 10.3 Resolution 

No D ata. 

A . 10.4 Specificity 

No D ata. 

A.10.5Cost 

Operator's salary, electrical power costs may become significant over long periods of 

time. 

A.10.6 Update Frequency 

Immediate. 

A.1 0. 7 Data Latency 

Data processing can be from 6 to 20 minutes. 
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A.1 0.8 Availability 

Daytime, during favorable ionosphere conditions. 

A .1 0.9 Reliability 

Not affected by weather conditions due to the operation at low frequencies. 

A .1 0.10 Ability to Classify 

HF SWR is able to determine velocity of the target. Given observation over a period 

of time it should be reliable to determine if a target is an iceberg, vessel, or false alarm. 

Like other radar systems, the size of the HF SWR return indicates the radar cross 

section of the target; radar returns are a good indication of the target size. 
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A.11 Discussion of Parameters, Visual Observation, Ship 

A.11. 1 Coverage Area 

Governed by the visible horizon, same formula as with radar horizon. For ship based, 

approximately 17 k.rn (1]. 

A .11.2 Probability of Detection (Sensitivity) 

No Data. 

A .11.3 Resolution 

The spatial resolution (minimum separation) of the human eye is 0.3 mrad (1 :125], 5.1 

mat 17 k.rn. 

A.11.4 Specificity 

o data. 

A .11.5 Cost 

Cost of salary as a function of time spent on ice observation. 

A .11.6 'Pdate Freq11enry 

For all intensive purposes instantaneous (25Hz) (1:125]. 

A.11.1 Data Latenry 

None. 
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A.11. 8 Availability 

D aytime. 

A .11.9 Reliability 

As with all visual observations they are adversely affected by poor weather (fog, 

precipitation, etc). 

A.11.1 0 Abziity to Classify 

Given a visual sighting, classification of identity is almost 100% certain. However, 

track and speed information can be difficult to ascertain. 
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A.12 Discussion of Parameters, Visual Observation, Platform 

A . 12. 1 Coverage Area 

Governed by the visible horizon, same formula as with radar horizon. For platform 

based, approximately 48 km [1]. 

A .12.2 Probability of Detection (Sensitivity) 

No Data. 

A. 12.3 Resolution 

The spatial resolution (minimum separation) of the human eye is 0.3 mrad [1:125], 

14.4 mat 48 km. 

A.12.4 Specificity 

No data. 

A .12.5Cost 

Cost of salary as a function of time spent on ice observation. 

A.12.6 'Pdate Frequenry 

For all inten ive purposes instantaneous (25Hz) [1:125]. 

A. 12. 7 Data Latenry 

None 
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A.12. 8 Availability 

Daytime. 

A.12.9 Reliabzlity 

As with all visual observations they are adversely affected by poor weather (fog, 

precipitation, etc). 

A .12.1 0 Ability to Classify 

Given a visual sighting, classification of identity is almost 100% certain. However, 

track and speed in£ rmation can be difficult to ascertain. 
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A.13 Discussion of Parameters, Visual Observation, Airborne 

A. 13.1 Coverage Area 

Governed by the visible horizon, same formula as with radar horizon. At 150 to 450 m 

altitude the horizon is at 50-87 km (27 to 47 nmi) [1]. 

A .13.2 Probability of Detection (Sensitiviry) 

No Data. 

A . 13.3 Resolution 

The spatial resolution (minimum separation) of the human eye is 0.3 mrad [1:125], 

26.1 mat 87 km. 

A.13.4 Specificity 

No data. 

A .13.5Cost 

Cost of salary as a function of time spent on ice observation plus flight costs of 

approximately $4,500 to $5,000 per hour. 

A.13.6 Update Frequency 

For all intensive purposes instantaneous (25Hz) [1:125]. 
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A.13. 7 Data Latenry 

D epends on when data is reported. Theoretically, if the observation were 'radioed in' 

immediately there would be no latency. However, if reports are not submitted until the 

end of a flight the latency could be in the order of several hours. 

A .13.8 A vailability 

Flights can be scheduled on an as required basis, typically one per day during the 

iceberg season. However, for visual observation these must be during the day. 

A .13.9 Reliability 

As with any flight, it can be grounded by poor weather (fog, snow, heavy rain). As 

well, low cloud cover will prevent visual observation. 

A.13.1 0 A bility to Classify 

Given a visual sighting, classification of identity is almost 100% certain. However, 

track and speed information can be difficult to ascertain. 
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Appendix B CPBS Method 

This generabzation of the CPBS method is based on the document: 

Chankong, Vira, Yacov Y. Haimes, Herbert S. Rosenkranz and Julia Pet

Edwards, The Carcinogenicity prediction and battery selection (CPBS) 

method: a Bayesian approach, Mutation Research, v153 (1985) pp135-166 
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8.1 Terms and Definitions 

Sensitivity The fraction of positive elements correctly identified. (i.e. the fraction of 

icebergs correctly identified by a sensor; the fraction of tests correctly 

returned positive). 

Selectivity The characteristics which are represented by the parameters of sensitivity 

and specificity. It indicates the ability to correctly identify positive and 

negative elements. 

Specificity The fraction of negative elements correctly identified (i .e. the area of 

open sea, correctly identified (e.g. not mistaken for an iceberg) divided by 

the total area of open sea; the fraction of tests correctly return negative). 

Predictivity The degree of confidence (reliability) of the positive or negative outcome 

of a test (sensor output) . 

Elements A set of positive and negative elements, that is, a set containing both 

icebergs and ocean. Please note that when Empty Ocean is referred to it 

only indicates a section of ocean devoid of icebergs. The existence of 

other non-iceberg objects (ships, buoys, etc.) is possible. 

Ep A positive element (i.e. an area of ocean with an iceberg). 

E A negative element (i.e. an area of ocean without an iceberg). 
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B.2 Summary 

The CPBS method, as published, consists generally of five tasks: 

1. Data Consolidation 

2. Parameter estimation 

3. Predictivity Calculation 

4. Battery S lection 

5. Risk Assessment 

The original PB method defined a set of tests, which returned cith r positive or 

negative, and had an associated degree of confidence as to this result. The confidence 

of the test is calculated from its selective and predictive statistics. 

The goal is to choose a battery of tests that have the most confident outcome from the 

whole set of tests. 

For our purposes these 'tests' are actually sensor returns, indicating the existence of an 

iceberg (positive element) or open water (negative element). This di tinction between 

positive elements and negative elements is made because we are not only detecting 

icebergs, but open water as well. Misidentify open water (i.e. a false alarm) will have an 

implication on the performance of a sensor. 

This document attempts to apply the CPBS method to iceberg detection. That i , 

instead of tests and assays on suspected carcinogens; we will be examining the results 

of sensors on ocean suspected of containing icebergs. Hence, not all aspects of the 

B-3 



CPBS method examined in the original document are applicable here. nly tho e 

aspects of relevance are examined and even then may they not be entirely necessary for 

in tegration into an iceberg sensor ystem. 

B.3 Introduction to this Application 

There exists a need for quantifying the predictivity of sensors used in iceberg detection. 

T his quality implies a quantifiable certainty in a positive or negative re ult, if an iceberg 

is detected by a sensor or group of sensors we want to be confident that the detection 

is correct and relatively certain that icebergs do not exists where they have not been 

detected. To this end the CPBS method may be of use. 

The method has two purposes: to develop a method for determining the reliability and 

predictive capability of individual short-term tests and batteries of such tests, and t 

develop a strategy for formulating and selecting batteries of these. 

To begin, the appropriate performance measure for each test must be determined. 

These are generally sensitivity, and specificity. These two together are indicative of the 

selective property of the test. 

The information of sensitivity and specificity constitute a criterion for electing essays 

to form a battery of tests that is highly selective and predictive. electivity indicates the 

probability that an iceberg will be detected or not, given one is or is not pres nt. 

Predictivity indicates the probability that an iceberg is present or not, given one was 
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detected or not detected respectively. They also provide a basis for predicting the 

nature of an element (i.e. positive or negative) through a Bayesian approach based on 

sensor results. An a priori probability that an iceberg is present can be used to improve 

this calculation; this can be provided by intuitive feeling, knowledge of prevalence, 

and/ or other statistical information. 

To determine the predictive capability of a test or a battery of tests we need to know 

with what degree of confidence a positive or negative result would correctly determine 

the nature of an element (i.e. whether there truly exists a positive element or a negative 

element). These make up the measures of predictivity. The predictivity of one or more 

sensors can be computed using the above information and Bayes' Theorem. 

B.4 Selectivity of an Assay 

Selectivity is easily measured and is used to calculate predictivity. A test is said to be 

perfectly selective if it always shows a positive response for a positive element and 

always a negative response for a negative element. 

+ = p ( IE ) _ #of correct positive responses 
a - r + P-

total number of positiveelelments 
Eq. B.l 

Sensitivity (a+) is the probability that the sensor return will indicate an iceberg (positive 

result) given that an iceberg is present (positive element) . 
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a _ = Pr( -I EN) = #of correct negative responses 
total number of negative ele/ments 

Eq. B.2 

Specificity (a-) is the probability that the sensor return will indicate a ection of open 

water, and not a false alarm, (negative result) given there is no iceberg (negative 

element). 

For assays where the selectivity is unknown, the parameters can be determined and 

confirmed through testing. Because the assays that give the same positive and negative 

responses on a set of elements should have the same sensitivities and specificities, there 

exists a method of determining whether the approximate sensitiviti s and specificity 

actually reflect the true specificity and sensitivity. This involves assuming that assays 

that are determined to be within one group have the same sensitivity and the same 

specificity. If the sen itivity and/ or specificity of an assay within the group are known 

with a high degree of assurance, than the estimates of the other assays within the group 

can be strengthened by this information. The method consists of four steps: 

1. Estimate the sensitivity and specificity of each assay employing the above 

equations. 

2. Compute the confidence interface for sensitivity and selectivity as: 

Eq. B.3 

B-6 



Where, n is the number of elements used in the calculation. p is the estimate 

for sensitivity or specificity and p is the true value. y is the level of significance, 

and z is the standard normal variate (this shows how 'good' the estimate is). 

3. Use cluster analysis on the database to group the assay by similarity of 

responses. 

4. Try to 'improve' the estimates for the specificity and sensitivity usmg the 

information provided by cluster analysis. 

This allows more accurate estimations of the selectivity statistics to be made. 

B.S Predictivity of an Assay 

An assay is said to be predictive if, based on the results alone, we can conclude with a 

reasonable degree of confidence that the positive or negative element returned is 

correct. 

The degree of confidence associated with the correctness of an assay's prediction 

reflects a measure of its predictivity. 

probability that a positive element e + = Pr( E p I +) = 
actually exi ts given a positive result. 

probability that a negative element 
e- = Pr(En 1- ) = actually exists given a negative result. 
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With the sensitivity, specificity, and the expectation that a positive element, Pr r), 

exists (the Bayes prior), the associated predictivity indices of an assay can be computed 

using Bayes' formula as follows: 

e+ = Pr(Ep I+) Eq. B.6 

Pr(Ep)Pr(+ I Ep) 
=--------~~~~~~-------

Pr(E P) Pr( + I E P) + Pr(E N) Pr( + I EN) 
Eq. B.7 

e- = Pr(EN 1-) Eq. B.S 

Pr( EN ) Pr(- I E ) 
=--------~~~~~~-------

Pr( EN ) Pr( -I E ) + Pr( E P) Pr( -I E P) 
Eq. B.9 

E)+ is the probability that a iceberg actually exists given a positive result, e- is the 

probability that there is no iceberg present given a negative result. 

If a good estimate of Pr(Er) is not available, a worst case estimate may be made (i.e. 

Pr(Er) = 0.5). Thus, a positive or negative result will modify the original estimate of an 

iceberg being present. The test result can be viewed as an aid that helps us improve a 

subjective judgment or enhances the present state of knowledge. 

B.6 Strategy for Battery Selection 

An assay with high sensitivity (a +:::::1) but with low to moderate specificity (a -::::::0.7) will 

be highly elective for icebergs (Er), but not for clear ocean (E ). This means that the 

assay will give a positive result when it encounters an iceberg and can give a positive or 

negative response when it encounters pen water. That is to say, it may generate a 
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'false alarm'. Thus, if we use such a sensor to predict the existence of an iceberg, a 

positive response can occur from an iceberg or misclassified empty ocean, and a 

negative response occurs only from empty ocean. This implies that a sensor with high 

sensitivity and low specificity is a good predictor of empty ocean and a poor-to-

moderate predictor of icebergs. 

From this we see that sensors can be divided into 4 classes: 

Table B.1: Classes of Assays 

Potential Use Class I Class II Class III Class IV 

0.75 <a+< 1 0.75 <a+< 1 0 <a+< 0.75 0 <a+< 0.75 

0.75 <a· < 1 0 <a· < 0.75 0.75 <a· < 1 0 < a· < 0.75 

Detecting Moderate to Moderate to Poor to Poor to 

Icebergs Good Good Moderate Moderate 

Detecting Open Moderate to Poor to Moderate to Poor to 

Water Good Moderate Good Moderate 

Predicting Moderate to Poor to Moderate to Poor to 

Icebergs Good Moderate Good Moderate 

Predicting Moderate to Moderate to Poor to Poor to 

Open Water Good Good Moderate Moderate 

NOTE: the use of 0.75 as a bounda ry for a ' ood' assa g y is arbitta ry As well the division into four clas e is also 

arbitrary, that is, more classes could be used, and thi would increase the complexity exponentially. 
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From the above we can conclude: 

1. Use as many sensors of Class I as possible. 

2. Combine sensors of Class II with Class III. 

3. Do not use sensors of Class IV. 

The final selection will depend on the estimated predictivity and specificity indices and 

associated costs, including the cost of misclassification. 

B.6.1 Statistical Independence and Association rif Asscrys 

Totally statistically dependent tests will consistently give exactly the same result on a 

given set of elements. A test battery consisting of these two assays is no better than 

using either one of them alone since each gives exactly the same information about the 

elements. Partially dependent assays may furnish partially overlapping information. 

Hence to maximize the amount of information obtainable from the tests, statistically 

independent assays should be used. 

Formally, two assays are said to be statistically independent if knowing the test results 

of one assay on a set of elements does not alter the likelihood of getting a certain set of 

outcomes when the other assay is applied to the same set. Knowing the test result of 

one will neither improve nor decrease the probabilities of the second. 
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B.6.2 Detem1ining the Performance of the Test Battery 

The performance of a battery is measured as a function of the preclictivity and 

selectivity of the battery. This method of combining multiple tests to find the effective 

overall selectivity may be useful in sensor fu ion methods. 

To compute the selectivity of a test package, we must first decide on how we wish to 

interpret the test results. 

Because the test result of each individual assay is independent of the other assay results, 

the probability of occurrence of each combination can then be easily computed using 

the multiplication law of probability. For example if a best two-of-three scheme is used 

and if the test returns a positive element then the probability that combination No.1 (of 

the chart below) will occur can be found as described below: 

Pr(No.l l Ep) = Pr(A1 =+ I Ep)Pr(A2 =+ I Ep)Pr(A3 =+ I Ep) 

= 0.8 ° 0.9 ° 0.6 = 0.432 
Eq. B. IO 

Similarly ,the results of all the possible battery outcomes can be written as in Table B.2. 
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Table B.2: Battery Example 

Combination Possible result Conclusion of Pr(No.i I Ep) Pr(No.i I EN) 

No. Test Package 

AJ Az AJ 

1 + + + + 0.432 0.008 

2 + + - + 0.048 0.072 

3 + - + + 0.288 0.012 

4 + - - - 0.032 0.108 

5 - + + + 0.108 0.032 

6 - + - - 0.012 0.288 

7 - - + - 0.072 0.048 

8 - - - - 0.008 0.432 

Then, the sensitivity and specificity can be found for the combinations of these three 

tests: 

sensitivity = Pr( + I E P) = 0.432 + 0.048 + 0.288 + 0.108 = 0.876 Eq. B.JJ 
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specificity = Pr( - IE N) = 0.108 + 0.288 + 0.048 + 0.432 = 0.876 Eg. B.12 

This result is subjective however, due to the two-of-three criteria. If one-of-three 

criteria were chosen the results would be different, for example 

sensitivity= Pr(+ I E P) = 0.432 + 0.048 + 0.288 + 0.032 + 0.108 + 0.012 + 0.072 = 0.992 Eg. B.13 

specificity = Pr( - I EN) = 0.432 g. B.14 

As well, the predictivity of the test package can be determined. As per our previous 

equation: 

e+ = Pr(Ep I+) Eg. B. IS 

Pr(Ep)Pr(+ I Ep) 
=--------~~~~~~------

Pr(Ep)Pr(+ I Ep) + Pr(EN)Pr(+ I EN) 
Eg. B.16 

0.876 · Pr(Ep) = ______ __:..---'--':....._-
0.124- 0.752 · Pr(E, ) 

Eg.B.17 

Given total uncertainty of the existence of an element, Pr(Ep)=O.S, then the probability 

of an iceberg existing, given an overall positive result of this battery of tests is: 

e+ = 0.876 · Pr(Ep) = 0.876 · (0.5) = 0.876 
0.124-0.752 · Pr(Ep) 0.124-0.752 · (0.5) 

Eg. 13.18 
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Likewise the probability that no iceberg is present given a negative result can b 

determined. 

B.7 Iterative CPBS Method 

The above method can be performed iteratively. Staring with a certainty of existence, 

subsequent sensor results either improve or decrease the certainty of the overall result. 

This approach may be very useful for the integration of sensor data: data fusion. 

Consider a senes of tests 1, Az, ... An, whose sensitivities a +1, a +z . ... a + n and 

specificities a ·1, a·z, ... a -n are known. Let these tests be applied sequentially. 

Let E)+i be the estimate of Pr(Er), given the results of the first i tests. Mathematically 

E)+i can be written as Pr(Ep I 1, 2, ... Ai), where A1, Az, .. . A i represent the results of 

the first i tests. I et 8 +o be our initial guess of the likelihood of a po itive element. 

If A1 shows positive, it can be derived: 

et = Pr(Ep I A,=+) Eq. B.l9 

Pr(Ep)Pr(A1 =+ I Ep) 
=----------~~~~~--~~--------- Eq. B.20 

Pr(Ep)Pr(A, =+I Ep) + Pr(EN )Pr(A1 =+ I EN) 

Repeated application of Bayes' theorem in the above manner yi lds a general recursi 

formula for positive element predictivity. 
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For a positive result: 

Eq. B.2 1 

For a negative result: 

Eq. B.22 

In this manner multiple sensor inputs could be added one after another, ad infinitum. 

The general formulae can be used to calculate predictivity indices for any combination 

and any number of assays (assuming that the assays are independent). The problem of 

predicting the existence of an iceberg on the basis of the assay results already available 

in a database can also be easily handled. 

B.S Conclusions 

The CPBS method could provide a method for the addition of multipl sensor outputs 

over a quantified geographical area. The results of sensor iterations could be overlaid 

geographically and processed by area to determine a combined result and associated 

confidence. 

As well, sensor outputs over quantified periods of time might be combined as a 

method of integrating with respect to time. 
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