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Abstract

A numerical implementation of the equations of magnetohydrodynamics has been
developed using the Smoothed Particle Hydrodynamics (spH) method. Self gravita-
tional forces have been included using the Barnes Hut octree algoritlim. A nearest
neighbour search algorithin has I n devised which links adjacent, spatially exclu-
sive nodes from a spatial decomposition tree to create a mesh facilitating cfficient
searching. Visualisatioo of sPH fluids were created using Delaunay triangulation

with particles serving as triangle vertices.
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CHAPTER 1. INTRODUCTION 2

defines a set of operators that will be used, allowing for choice between which physics
to model, and which model to use for those physics. This also provides a systematic
avenue for the addition of new physics, allowing the software to grow in a responsible
Manner.

The code is structured such that the numerical integration scheme holds the set of
operators, along with a user chosen adaptive time stepping scheme. The user decides
which operators to use, but it is the numerical integration scheme which dictates how
those operators are to be used. Similarly for the adaptive time stepping scheme.

The numerical integrator interacts with cach operator through a standard set of
protocol functions, with the iuside workings of these functions being implemented
individually per operator. Each operator has an initialisation function, which is
run once at the beginning of a simulation, and an operate function which carries the
primary workload. Analagously, the mnnerical integration scheme has an initialisation
function, and a step function, which advaices a system of data forward one step in
time.

The simulation software utilises the Smoothed Particle Hydrodyvnamic method to
model fluid mechanics, and incorporates the latest techniques for simulating magneto-
hydrodynamics with this method. As will be shown later in this thesis, the Smoothed
Particle Hydrodynamic method has many possible implementations, which may have
variable component choices, making the operator archetype deseribed previously ex-
ceptionally suited for this method. It is currently an active area of interest to im-
prove upon the magnetohydrodynamic implementations of Smoothed Particle Hydro-
dynamics. The Barnes Hut octree approach for the purposes of calculating gravita-
tional forces has been implemented as an operator choice. Due to the design of the
software, it is simple to run a purely hydrodynamic system by excluding magnetic

and gravitational operators, or as a pure gravitational N body code by exluding all
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hydrodynamic operators.

A necessary step for implementation of Smoothed Particle Hydrodynamics is near-
est neighbour searching, and an efficient nearest neighbour search algorithm was de-
veloped in this work. The premise of this algorithm is to use the octree generated in
the Barnes Hut gravitational routine as an aid for the search. While using spatial de-
composition trees have been employed in the past for nearest neighbour searches, the
algorithin developed in this thesis uses the tree structure as an intermediary towards
creating a search mesh. This scarch mesh allows for the nearest neighbour search to
be conducted with greater efficiency than when using the tree structure directly.

A visualisation technique using a triangulation method was created for the analysis
and visualisation softwarc. Using the Delaunay triangulation method, a surface can
be generated using the partic  of the Smoothed Particle Hydrodynamic method
serving as triangle vertices, and vahues of fluid properties read from the particles can

be used as weightings with which to colour the triangles.

1.1 OQOutline

This thesis is divided into eight chapters. Chapter 2 will discuss plasmas in greater
detail. Starting from simple Euler fluid flow and using Maxwell’s equations, the
equations of magnetohydrodynamics will be built up. Properties of plasmas, and the
types of wave motion that are possible in plasmas will be discussed.

Chapter 3 will introduce the numerical fluid model, and show how the equations
of magnetohydrodynamics are implemented using it.

Chapter 4 will focus upon the Barnes Hut octree gravitational force algorithm.

Numerical methods which are not a core part of the previous numerical models will

be discussed in chapter 5. These include the embedded seripting used for simulation
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initialisation, the nearest neighbour search algorithm, numerical integration methods,
and the approaches for adaptive time stepping,.

Chapter 6 will discuss the visualisation techniques used for Smoothed Particle
Hydrodynamics.

Chapter 7 will present the test cases which were used development of the simula-
tion progran to verify its correctness.

The final chapter, Chapter 8, will conclude the thesis. Considerations towards

future work will be examined.







CHAPTER 2. MAGNETOHYDRODYNAMIC'S 6

ductivity of the plasma is considered infinite. This is an acceptable approximation for
many plasmas. We begin by discussing the Euler fluid, into which we will integrate

clectromaguetisim.

2.1 Euler Flow

The simplest fluid deseription is that given by Euler in 1755, and is known as Euler
flow. It regards the fluid as a continuous medium, which has the property that any
arbitrary scction of the medium is itself a continuum. While all fluids are made
of molecules, and are anything but continuous at this resolution, we suppose that
any small clement of the fluid under examination is considered large in relation to
inter-molecular distances. This allows for differential caleulus to be a valid method
of analysis of the fluid.

Euler flow is ideal, in that the system contains no dissipation, either through the
viscosity of the fluid or thirough thermal conduction. This means its motion must be
adiabatic, as there are no sources of eutropy generation.

We now discuss the equations governing the rate of change of density and velocity
of an element of fluid, which combined with an equation of state, form a complete
systemn of equations. The presentation of these equations follows that of Landau and

Lifshitz [25].

2.1.1 Continuity Equation

Cousider a volume of fluid Vy enclosed by a surface S. The total mass flowing out of

the volunie can be given by
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}épv'ds (2.1)

where the integration is over { : surface S. This decrease in the mass of the volume

may also be written as

—(;—) pdV, (2.2)

and by cquating the two we have

)
—i /pdV = j{pv - ds. (2.3)

Using Green’s theorem, we can transforin the surface integral to a volune integral,

yielding

_%/pdv _ /V-(pv)dV (2.4)

and therefore

/ (2 +V. (/)v)> dV = 0. (2.5)

Since equation 2.5 is true for any arbitrary volume, this implies that

dp B
a + V- (/)V) = 0. (26)

Equation 2.6 is known as the equation of continuity, and states that the mass
in any portion of fluid can only change by mass flowing into or out of that portion.
Taken for the systen: as a whole, this implies mass is conserved.

Expanding the second term, and introducing the material derivative
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d J
AN_ (2 . 2.7
(dl.) (0/“’ V)’ (27)

we can write the continuity equation as

— =—pV - v. (2.8)

The material derivative denotes the rate of change of a quantity, p in this case, for

an clement of fluid along a streamline.

2.1.2 Momentum Equation

As with the continuity equation, we begin by considering a volume of fluid V4 enclosed

by a surface S. The total force exerted by thermal pressure I” on this surface is given

by

= 7{ Pds (2.9)

which can be converted to a volume integral to yield

— %1’(1,5 = —/VPdV. (2.10)

From this, we can state that the force exerted on any element of fluid is =V P,

By Newton's law, this means then that

{
/)% - v (2.11)

where d/dl is the material derivative, and equation 2.11 is known as the momentun

equationl.
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2.2 Maxwell’s Equations

Maxwell’s equations are four of the fundamental equations of classical clectrodynamic

theory. In SI units, they are

vV.E=_ (2.12)
4]
V-B=0 (2.13)
V xE = —(),—B (2.14)
ol
OE
V x B = ppd + /10(0% (2.15)

where are referred to, in order, as Gauss’s law, the div B constraint!, Faraday's law,
and Ampere’s law. These equations describes the propertics and evolutions of the
electric field, E, and magnetic field, B, in terms of their sources, chiarge density 7 and
current density J. The ] ameters ¢ and o are the permitivity and permeability of

free space.

2.3 Ideal Magnetohydrodynamics

Ideal MiiD is derived under the:  unption that the conductivity of the fluid is infinite.
This is the first major assumption imposed. The second major assumption is that
the distribution of negative and positive charges are effectively homogeneous. While
some fluctuations in the char  density are sure to exist, the time and length scales

are large cnough to aver  : these out. Under these circumstances, the charge density

'In literature on electromagnetics, this is usually cither referred to as “the absence of free mag-
netic monopoles”™, or “Ganss's law for magnetism”, of which both are cqually apt. However, in
computational settings, it becomes convienient to refer to it as above.
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can be neglected, and without a source, the electric field is taken to be negligable.
This is in agreement with the electric field inside a perfect conduetor.
Where not otherwise specified, several textbook sources [10, 18, 5, 7] have served

as references for the following material.

2.3.1 Momentum Equation

The motion of plasma is governed by forces generated from the thermal pressure, as
well as forces arising from the magnetic fields. We will derive the form for the latter

forces starting from the Lorentz force law.

Given as

F=¢qg(E+vxB), (2.16)

the Lorentz force law descrili  the force exerted on a particle of charge ¢ moving at
velocity v by the electric and magnetic fields. Under the assumptions of ideal M,
the clectric field contribution to the force can be taken to be zero. We recast, equation

2.106 as

f—~JxB, (2.17)

which is given in terms of force per unit voluine.

Substituting Ampere’s law into equation 2.17, where JE/Ot = 0, we obtain

f:i(VxB)xB. (2.18)

Ho

Using the vector calculus identity
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(VxA)xA=(A-V)A—-1V(A-A), (2.19)
we can rewrite equation 2.18 as

f= 1 ((B -V)B - %VBZ> . (2.20)

fo
Including a (V - BYB term, which equals zero via the div B constraint, it becomes
3 b
possible to express equation 2.20 in tensor notation. Declaring the Maxwell stress

tensor to he

N U NV B
MY = — (B’BJ - 5@}#) : (2.21)
Ho

we can write equation 2.20 as

f=V.-M. (2.22)

Formulating the Lorentz force law in this way is attractive because it describes
the force entirely in terms of the magnetic field. The underlying currents which are
generating those fields do not need to be considered. With this, it is easy to include
the Lorentz force in the hydrodynamic model yielding the momentum equation

dv

1 1
— =—--VP+-V-M (2.23)
dl P P

2.3.2 Magnetic Pressure

If we define a local coordinate system such that the magnetic field is directed along

a given axis, say B = BZ, the Maxwell stress tensor simplifies to
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—B?/(2p10) 0 0
M = 0 —132/(2110) 0 : (2.24)
0 0 +B2%/(2410)

From this, we can see that there exists a repulsive force of — 132 /(2410) in all direc-
tions, which acts like a pressure term and is accordingly called the magnetic pressure.
However, a sccond force, 132/(jig), exists which is directed along the magnetice field
lines. This foree is anal:  us to a tension exerted on a string, and is referred to as

the magnetic tension.

2.3.3 Induction ~ U tion

To describe the evolution of the magnetic field inside the plasina, we can use Faraday’s
law. The difficulty how is that this describes the time change of the magnetic
field in terms of the clectric field. Remember that the assumption about the electric
field is not that it is precisely zero, just that it is weak cuough to have its effect be
considered negligable in compar 1 to effeets from the magnetic field.

To remove mention of the electric field, we can use Ohin's taw which deseribes the

current. density as

J=0(E+vxB). (2.25)

As the conductivity in ideal MHD is taken to be infinite, yet J remains finite, this
implies that (E+v x B) — 0. This allows us to replace the clectric field in Faraday’s
equation with (—v x B), yielding

JB

— =V x (v xB}, (2.26)
Ol
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and is known as the induction equation.

2.3.4 Frozen Field Theorem

An interesting consequence exists because of the induction equation. Considering a
surface S(t) bounded by a closed contour ('(f) which moves with the fluid, the rate

of change of magnetic flux through the surface is given by

d

2 B(r.i1)ds. (2.27)
(” S(t)

We can use Leibniz’s rule in two dimensions to bring the differentiation inside the
integral, obtaining
a B I)-ds:/ ?—B-(ler?{ B-(ve xdl). (2.28)
dt Jse S(1) ot 0
where ve is the velocity of the contour. Using the vector identity A - (B x C) =
C - (A x B), and subsequently applying Stoke's theorem, we can rewrite the line

integral in equation 2.28 to a surface integral, vielding

{ )
‘ B(r,l)-ds:/ Q-(Ier% (B x ve) - dl
s Jew

dt Jsq sty O
B
:/ (,—‘(ls+ V x (B x v¢)-ds
s O 0]
B
_ / 9B ds— [ W x(vexB)-ds
JSs) ot S()
0B
_ / (L ~V x (v B)) . ds. (2.29)
Jsi 3]

However, by the induction equation, this then equals zero. Thus, the magnetic

flux through any arbitrary portion of the fluid remains constant in time. Owing to
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this, it is said that the magnetic field lines are frozen in to the fluid, and are dragged

along with the motion of the fluid.

2.3.5 Complete Set of Ideal MHD Equations

We now present a summary of the set of ideal MHD equations:

{
P Vv (2.30)
dt
d
N __lgpilvom (2.31)
dt ) P
B
(),—:Vx(va), (2.32)
ot

V. B =0, (2.33)

P=f(p). (2.34)

These describe the rate of change for the density, velocity, and magnetic field within
the plasma through the continuity, momentum, and induction equations. The div
B constraint is present, which enforces restrictions on the magnetic field. Lastly, an

equation of state is used to close the set of equations.

2.4 Magnetohydrodynamic Waves

In hydrodynamic systems, the only type of wave propagation that exists is of longi-
tudinal sound waves. However the addition of magnetic forces allow for a variety of
other wave types.

To demonstrate these waves, we consider a svstem at equilibrium in which small

perturbations are added to the density, magnetic field, and velocity of the form
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p(r.t) = po + pa(r, 1), (2.35)
(r,t) = Bo + By(r, 1), (2.36)
v(r,!) = vq(r.t). (2.37)

The equilibrium values By and pg are uniform and constant, and the fluid medium is

otherwise at rest.

Inserting equations 2.35, 2.36, and 2.37 into the MHD equations, and neglecting

terims of second order, we obtain

()
g+v-Vp:—PV'V
ol
0 J
% + % =—pV -vi—=mV-vi—viVp,—v Vp
Jd
% Y, (2.38)
ilé =V xvxB
ot
OB 0B
(’9—t0+(‘T!]:VXVI x (By + By)
B
(’)_[‘ =V x v, x By, (2.39)
(

and, using VI = ¢*Vp,
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( 1
p(,)—v+p(v-V)v: -VP+—(VxB)xB
ol Ho
v, )
(po+ p1) 7+ (o + ) (Vi - V) vi = ="V (po + 1)

+ L (Y x (B4 B))) x (By + By)

Ho
O ‘ 1
ot = =Vpi+ —(V x B)) x (Bo + By)
{ 10
' 2 1
ﬁ - _Cwp - Bo x (V x By).  (2.40)
ol o HopPo

Taking the time derivative of 2.40,

6)2V1 C2 d[)] 1 ()B]
=——V—- B V x — 2.41
or? po Ol opo 0 8 a )’ (2-41)

equations 2.38 and 2.39 can be substituted to yield

82\/1

ot?

— V(Y - v)) 4 v X (V x (V x (v xV,))) =0. (2.42)

Here we have introduced the Alfvén velocity, given as

By

Vo = . (2.43)
vV HoPo
Equation 2.42 can be scen to have plane wave solutions of the form
vy = veexp (ik-r —iwl). (2.44)

Inserting 2.44 into 2.42, we see that the /0! operators are replaced by (—iw), and

V by (ik), which yields
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wivi — (k- vi) k+ v, x (k x (k x (v X vg))) = 0. (2.45)

Using the vector identity A x (B x (') = (A-C)B — (A- B) (', we can rewrite

the third term as

= vo x (k x (k x (Vi X V4)))

= v % (k% [(K - Va) Vi — (K- Vi) Vo)

= (K- Vo) Va X (K x Vi) — (K- Vi) Vo X (K X V)

= (K Va) [(Va - Vi) K = (Vo k) Vi = (k- Vi) [(Va - Vo) k = (Vi - k) V]
= (k- va) (Vo vi) k= (k- Vo) (va- k) vy

- (k'vk)(va 'Va)k+ (k'vk) (vn, . k) Va- (2‘1())

Inserting this into equation 2.45, and collecting the like terms of vy, v,, and k, we

obtain

[w? — (Ve k)z]vk + [(k vi) (k- va)}va

- [(('2 +12) (K- vi) = (K- vg) (Vo - vk.)]k —0. (2.47)

Equation 2.47 is a set of thiree equations for the three components of the wave

vector vi. Also, note that if By = 0, this reduces to

wivi—ct(k-v)k=0 (2.48)

and ordinary sound wav  arc produced with phase velocity w/k = c.
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Following the example of Boyd and Sanderson [10], we can choose the coordinate
system such that, without any loss of generality, the z axis is along the direction of the
magnetic field lines, with the direction of wave propagation selected to lie in the y-z
plane. This allows the wave vector to be parallel, orthogonal, or of some intermediate

angle to the magnetic field. Sucecinetly stated,

V, = V.2, (2.49)

k= ki §+ k2. (2.50)

With these definitions, the vy, k, and v, components of 2.47 reduce to

= [w2 ~ (vaz - (koy + A’NZ))Q]V“

= [w2 - 1’2A‘ﬁ] (v, X+ v,¥ +v.2), (2.51)

= = (4 02) (kuy + ki) - (0% + 03 + 0:2)
— (kay + Ri2) - (0% + 0,9+ 0.2) |k
= — [ ((72 + 17(21) (ki vy + ky U;) — Ufk||'u:] (kiy + k”i)

= —[(F+ o) huvy + Py (19 + ky2) (2.52)

and
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— [ (kg + ki) - (0o + 0,9 + 0:3) (k1§ + ky2) - (va2) | va
_ I I

— (klvy + Is:”'na) (k”v,,) ]mi

= —vakﬂf”vy + vakﬁv:} VoZ. (2.53)

This leads to the system of equations

w? —viki 0 0 v, 0
0 w? — Akt -2k =Rk v, | =10]- (2.54)
0 —Ekyky w? — czkﬁ D, 0

To have non-trivial solutions, the determinant of the coefficients must equal zero.

This yields the dispersion relation
(W — uzk,ﬁ) (w' = Wk (P +02) + 'uz(:Qkaﬁ) =0. (2.55)

2.4.1 Pure Alvén Waves

The first mode, (w2 — 'ugkﬁ), is decoupled from the others, and it oscillates along the
x axis, orthogonal to both the magnetic field aud the direction of wave propagation.
Therefore, this is a transverse wave.

Recognizing that the vgkﬁ termn was originally (v, - k)z, we can instead write the

dot product as v, - k = |v4| |k| cos @ to obtain the phase velocity

% = v, Cos 0, (2.56)

where 6 is the angle between the magnetic field and the wave vector. When these are
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parallel to cach other, the phase velocity is at a maximun of v,, the Alfvén speed,
and vanishes when perpendicular.

Previously we noted that there exists a tension force along the magnetic field lines
of B?/p1g. By analogy with elastric strings, it is unsurprising that there should exist
transverse waves which propagate along the magnetic field lines. The transverse wave
motion of elastic strings has phase velocity w/k = /T/p where T is the tension on

the string. Replacing T by the magnetic tension, we obtain the Alfvén velocity.

2.4.2 Magnetoacoustic Waves

The other modes can be solved to obtain phase velocities of

1/2

. k2
((_-'2+pg)ié (2 +02)" L] (2.57)

o2
12

BN | =

These two modes, called the fast and slow Alfvén waves, propagate along the direction
of the wave vector and are longitudinal. Due to this, and because of the coupling of
the speed of sound and the Alfvén velocity, they are referred to as magnetoacoustic
or magnetosonic waves.

When the magnetic field is perpendicular to the wave vector, that is k = k1 y,

equation 2.57 simplifies to

(3%

w

k-

(¢ +v7) & % (® +07). (2.58)

(3%
(NN

Thus the fast mode will have velocity /c? + v2, while the slow mode vanishes for this
case.
The other extreme is when the magnetic field and wave vector are parallel to each

other. For this case, k = k2, and equation 2.57 will become
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2

((32 + l'i) + % |:("1 + 172 — 2('21'2] i . (259)

This presents an interesting scenario, in that the square root term can be de-
. 9 ) . . .
composed in two ways: as (¢2 — v2), or as (12 — ¢?). Either way, this yields the two

solutions

o)
—_ = —_ =
li'

which are pure sound waves and pure Alfén waves. However, it is not possible to
definitively label cither of these as the fast or slow MHD waves. Instead, the usual
practice is to refer to v, as the fast wave if v, > ¢, or ¢ as the fast wave if ¢ > v, and
vice versa for the slow wave.

From these two cases, we can sce that the fast wave is at a maximum of \/c? + v2
when the magnetic field is parallel to the wave propagation, decreasing to v, (or ¢, if
¢ > v,) when they are perpendicular. Conversely, the slow wave is at a minimum of 0

when they are parallel, increasing to ¢ (or v, if ¢ > v,) when they are perpendicular.




“For this reason, the deliberations of the wise conmander are sure
to assess jointly both advantages and disadvantages. In taking full
acount of what is advantageous, he can fulfill his responsibilities;
in taking full account of what is disadvantageous, his difficulties
become resolvable.”

Sun T'zu

Smoothed Particle Hydrodynamics

Smootlied Particle Hydrodynamics (SPH) is a Lagrangian method for solving the
partial differential equations of hydrodynamics developed by Gingold and Monaghan
[17], and independently by Lucy [27] in 1979. It models a fluid by discretizing it into
a set of particles containing tI  mass, momentum, cnergy, and other properties of
the fluid. Hydrodynamical forces act upon the particles, moving them such that they
naturally model fluid flow. these respects, SPH is similar to molecular dynamics
simulation, and indeed many of the approaches used in molecular dynamics can be

adapted to work with SpIIL.

The key difference between sPH and molecular dynamics simulations is that the
SPH particles have some spatial extent over which their properties are smoothed,
giving them a type of “fuzziness”. This voluine encompasses a nuinber of neighbouring
particles, which all combined form an overlapping patchwork of smoothing volumes.
It is precisely this which bridges the gap between continuum and fragmentation,

allowing this particle based method to function as a quasi-continuun.

22
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3.1 Interpolation

As cach particle is smoothed over its local volume, a fluid property, for example A(r),
at. any point in our model fluid will have a value which is blended or smoothed from

particles contributing at this point. For a continuum fluid, the equation

A@%:/AWN@—NM& (3.1)

is used to obtain the value of A at r , where the Dirac delta function acts to “pull
out” the value at r. In spH, the Dirac delta function is replaced with an interpolating

kernel W(r, i) to obtain an integral interpolant

Ay(r) = /A(r’)W(r —r' h)dr' (3.2)

where I is the radius of the smoothing volume, known as the smoothing length.

The interpolating kernel has properties

/W(r -1, h)dr' =1 (3.3)

and
}}ing) W —r' h)=46r-r). (3.4)

Since the system is modeled by a set of discrete particles, the integral interpolant
is replaced by a summation over the particles
.

~ A
Aa(ra) = ) iy =W (rs — x4, h). (3.5)
b
b

Here, the quantity my/ps, that is the mass and density of particle b, acts as the






CHAPTER 3. SMOOTHED PARTICLE HYDRODYNAMICS 25

was above. The important aspect is that equation 3.9 has much nicer properties than
equation 3.6. This will be the first example of how different spH formulisms can be

derived from the same governing equations.

3.1.1 M4 Kernel

Early work in SPH used Gaussian functions for the smoothing kernel. Today, the M4
cubic spline introduced by Monaghan and Lattanzio [31] has becone the most widely

used. This function, given by

(
1-6(5)°+6(2)° 0<L<05
T 3 )
W h) = $2(1-zy 05 << (3.11)
0 P>

\
is piecewise continuous for hoth the first and second derivatives, and goes to zero
at the smoothing length. The  rameter v is the number of the dimensions of the
system, and ¢ is the normalisation with values 2/3, 10/(77), and 1/7 for one, two,
and three dimensions respectively.

This kernel is radial, such that it only depends upon the absolute value of r, — 1y,
and W (re, h) = W(rh,, h). We also note that the spatial derivative of the kerncl may

be written as

OW (Tap, )

= (uFa, 3.12
Jr, Fabfab ( )

where Fyy <0, and is a scalar function of |rg|. By interchauging the indices a and b,

this allows for clear understanding that
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NV h) OW (res, h)
OT, - Jry,

. (3.13)

These properties will be utilised throughout this chapter.

3.2 Euler Flow

Using just these interpolation basics, we can now proceed to derive the SPH equations

for Euler fluid flow.

3.2.1 Continuity Equation

The continuity equation is a statement of the conservation of mass. While this equa-
tion can be transformed into sPH for the purpose of evolving particle densities, this is
not required. When particle m:  is held fixed, the couservation of mass within the

system is inherently preserved. Instead, densities can be calculated anew using

fa = Z"nblvnb (314)

b

which follows straight from equation 3.5, the definition of sru interpolation. ‘To
further simplify the presentation of the equations, the notation Wy, — W{ra,. /1) will
be used.

The continuity equation may indeed still be used, instead. Using the definition of

the SPH derivative, in this case from equation 3.10, we can transform

to become
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n
=\ myVap - VaoWas, (3.16)
ar !
b
where we use the notational shorthand v, = v, — v similar to that introduced

previously.

3.2.2 Momentum Equations

The momentum equations can be derived through a Lagrangian approach using only
the density definition from equation 3.14. We begin with the Lagrangian for the spi

system

1 .
L(r,v) = 5 Z MyVe — Z Myt (3.17)
b

b

which is the sum of kinetic and internal energics from each particle. Here the internal
energy is expressed per unit mass.
Next, we use equation 3.17 with the Euler-Lagrange equations,
d oL 0L

— = 0. 3.18
dt ov, 0r, ( )

The first term simplifies casily to

d ol dv,
dov,  Tar

(3.19)

For the second term, the internal energy is rewritten into a more convienient form.

From the first law of thermodynamics,

TdS = dUJ — PdV, (3.20)
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where 7', S, P, and V are as usual the temperature, entropy, pressure and voluine.
As the system is dissipationless, the change in entropy is zero, and rewriting dV in
terms of density, we can achieve
I)
du = —dp, (3.21)
P
and by associating this equation with the expression for internal enegy in terms of its

natural variables

ou ou
du = (8_;>3d'0+ (a—:)pds, (3.22)
we can obtain
ou P
— ] = —. 3.2:
((‘)ﬂ)s r? (3:25)

Moving back to the second term in the Lagrangian, we can usc this along with the

definition of the density to obtain

L 0
E — a—ru Eb mylly
Z ()ub ()pb
— nl/ ———
Y b ()p,, ()I‘a

Z Py dpy
— my—5 ~—
— ", O,

P
== m,,/Tg PR AL (3.24)
b b .

I

Here we have a double summation over the particles. The gradient will pluck out

particle a from the outer sumination, and seperately a from the inner summation.
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This gives

Il

JL P, W . P,
,( - my _‘b me Va I'/Vbréba - mg '—’ me Va H/('b(sra
Or I b

@ b ¢ b c

P, P,
= —mu;; Z meV Wy, — Z 771,1,—/)—:)mﬂvu W
a ¢ b

P, B -
= —my, Z my | — + = | VaWa (3.25)

b p a /)b

Putting the two lhalves together, the Euler-Lagrange equations become

dv,
4

P, D o
= — E myl — + — | V. W, (3.20)
d b Pa Po
giving us our equation for momentum evolution.
This equation will conserve both linear and angular momentum. It satisfies New-
ton’s third law, as the force from particle b on a will be equal and opposite that of a

on b. Angular momentum can be scen to be conserved by taking the time derivative

of the total angular momentuin of the system,

d - jvu
FAPILETE ( o )
P. B
- Z Z7n‘un7'b (;5‘ =+ _’> (ra X (ra - rb)) El()
a b a

o
Po B .
= _\" z,: Mg (E + ;)z) r, Xyl (3.27)

This Huble summation is antisynunetric in a and b. Expanding the list of terims,
each particle pair will appear twice - once as an addition and once as a subtraction,

cancelling cach other out. Thus, the whole expression is zero, and angular momentuin

|
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is conserved.
This equation can more simply be derived by applying the interpolation derivative

rule to the identity

vr P\ P
=V (—) +2Vp (3.28)

which produces equation 3.26.

3.2.3 Energy Equation

To simulate the thermodynamics of the system properly, the internal energy of each
particle needs to be updated in time. This can be doue by either calculating the rate
of change of the the internal energy, the thermokinetic energy, or the entropy of each
particle.

Evolving the internal energy  straightforward. Taking the thermodynamic rela-

tion from equation 3.21, we can write

du  Pd
e (3.29)
dt — p?di
Taking the form of the continuity equation in equation 3.16, we obtain
du, %
Zla o . / 3.
T e 2’: mpVab * VaolWa. (3.30)
The thermokinetic energy is > sum of internal and kinetic energies,
e Vit (3.31)

given per unit mass. Taking the time derivative,
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Ao dv  du
_y v, s 3.32
ar M di di ( )

we can substitute in equations 3.26 and 3.30 to obtain

dta _ S <}—);v;, + ﬁgv) VW (3.33)
di b Pu Py
As should be expected, the total energy change of the system is zero, since this relation
is antisymunetric in @ and b. From the thermokinetic energy, the internal energy can
be recalculated from equation 3.31 by subtracting out the kinetic cnergy.

Thirdly, the entropy can be used. For an adiabatic system, we associate the

entropy with an entropic function A(s), given from the thermodynamic relation

P — A(s)p” (3.34)

for an ideal gas. The internal energy can be evaluated from A(s) using

u = Lﬁ)p”—'. (3.35)
v—1

We can see that the time evolution of the entropic function will be zero by

dAL . d(y — 1u,

_(if n (Ipz_l
_ (7 - 1) <(I“(L &dpa>

y—1 B
Pa

di P2 di

= 0. (3.36)

By monitoring the entropy of the system instead of the energy, it becomes very casy
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to control any sources of entropy, which will only arise from dissipative effects or

sources outside the system.

3.3 Variable Resolution Smoothing Lengths

So far the $PH equations have been presented with the smoothing length being con-
stant over space and time. This can lead to problems when the length scale of a
system changes substantially. In the extreme case, particles in regions of sufficiently
low density can become isolated, which breaks the method. Conversely, when densi-
tics become extreme, such regions become increasingly oversmoothed.

To alleviate the resolution concerns outlined, smoothing lengths may be set indi-
vidually per particle. The smoothing length of each particle is allowed to vary with
time so that it encloses a roughly constant number of neighbouring particles.

The methodologies which have emerged to adapt smoothing lengths can be consid-
ered as divided into two seperate  yles. The first uses criteria based on the density to
adapt the smoothing length. For example, the method of Benz [6] takes the derivative

of the scaling law
1/+
he =1 (ﬂ) (3.37)
/)(l
to obtain

dhgy 1 hadp,
dt— vp, dl

(3.38)

where v is the dimmension of the system and 5 is a constant ~ 1.5. The time derivative
on p can be replaced by the continuity equation 3.16. In this way, I is evolved as a

system variable.
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The second methodology uses the mmber of neighbours to adjust the smoothing
length. When the neighbour count is below the ideal, h is increased, and conversely
so when the neighbour count is too high. The method of Hernquist and Katz [22]

defines the new smoothing length as

’I'Uld < Nideal ) 173
poew — Da |y [ Dideal (3.39)
2 Nn(‘igh

which predicts the next smoothing length as the average of the current smoothing
length and the smoothing length implied by the current number of neighbours.
Both of these methods aim to keep the nuniber of neighbours ronghly constant over
time. As they are only estimation methods, strict coutrol over the neighbour count
is not guaranteed, but their efficiency is appealing. In fact, a third class of methods
exist, those which are not estimation methods, but which provide sioothing lengths
to keep the neighbour count precisely constant. Such a method was developed during

the course of this research, and is described further in section 5.2.2.

3.3.1 V§h Correction Terms

Allowing the smoothing lengths to vary in space complicates the sph fluid equations.
Gradients of the smoothing kernel now produce additional dW/dh terns, called the
Vh terms.

Nelson and Papaloizou [34] derived a form of these terms using a symmetrized

kernel

Wy = L[Wa(ha) + Wan(h)] (3.40)

in the definition of interpolation, and obtained the additional terms,
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pe pE oh,

. mpme (P P\ OWy ()
+ Tyl -+ =) —,
' Z bFabm Z: m, ( pf) dhy,

]
My

Py P\ OWa(ha
fu my (_ + _'> (_ﬁ
b (3.41)

in the momentum equation. Here £y = ryy,, / |7k, | where the subseript &, denotes the
most distant neighbour of k. Neglecting these terms leads to an unphysical entropy
generation [21, 35, 43, 1], but even so, their inclusion has not found widespread use

due to their complicated form.

3.3.2 A Fully Conservative Formulation

Springel and Hernquist [50] developed a new formulation which accounts for the Vi
terms in a simple manner. The canonical variables of the Lagrangian system are
extended to include the smoc ing lengths, q = (ry,...,ry, ... hy). Smoothing
lengths are selected to encompass a fixed amount of mass (which translates to a

constant neighbour count for particles of uniform and fixed mass), by the relation

.
-371/;-;@, =M (3.42)

where A/ is the desired enclosed mass. This places a constraint on the Euler-Lagrange

equations of the form

4 .

Then from the Euler-Lagrange equations,
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d oL OL Z O
Al 04, Oqa boq.

we can find the Lagrange multipliers, A, to be

-1
3 mgy 12, 3pa [ Opa !
— |1 )
Ao = am h p? l: * hy ((’)h,,)

This yields equations of motion

dv,
dt

P, P
- - Z my [.fa_zvawab(ha) + fb_gvaVab(hb)]
b Pa Py

where

he Opa\ !
a — L
/ ( + 3pa (‘)hu>

B he OWap(ha) |
= (1 + 3/)(1 z mb*——ahn

Monaghan [29] also derived this form of equation by realising that.

a/)h . a”/bc(hb) (‘)’I,b 0/)},
= ¢ Wy a1 A : -
or, & (V Veello) & =50, 9, o,

By collecting the dp,/dr, terms, we obtain

dpy, 1 /
. " o chvaw,,p(hb)

where

(‘)ha (t)”/n.b (h'a )
=1 == b—— | -
Q2 ( Opa Z T oh,

b

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)
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Placing equation 3.50 into 3.24, the equations of motion of the form

dv 1P 1P
Ny [ =0 W (hy) + — 2 W 3.52
(11( My (Q,,v ,0(21 a (Lb(ha) + S)b ﬂé b( 11) ( J )

12

cmerge. We can sec that if the smoothing length is adapted as in equation 3.37, then

(‘)ha _ _1h, (3.53)
0pq U Pa

which shows that ;' = f,. ..is can be understood more clearly by recognizing that
this sioothing length relation and Springel and Hernquist’s constraint have the same

ncaning.

m . .
T'hese factors appear in t  cnergy equation as

du, 1 P,
= ——2% mVa - VaWap(ha). (3.54)
dt Q, p2 .

3.4 Artificial Viscosity

It is necessary to include an artificial viscosity in order to model shocks correctly. The
smallest structures that can be modeled with spi are on the order of the smoothing
length, which causes the width of shocks to broaden out to this length. Post shock
oscillations are similar in width to the shock, but due to broadening of the shock
they become unphysically macroscopic. To remove these post shock oscillations, an
artificial viscosity is introduced into the fluid equations, appearing in the form of a

pressure like term, which dissipates kinetic energy into internal energy.

,,
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3.4.1 von Neumann-Richtymer Analogy; the “Standard” Form

Monaghan and Gingold [30} introduced an artifical viscosity which commonly became
referred to as the “stanc " viscosity due to its popularity. Its forni is analagous to
the von Neumann-Richtmyer v osity used in finite-difference methods. The artificial

viscosity, I, is given by

- 2
QCapllab + /3/1 h
——— B vyt <0

I, — Pab (3.55)

0 otherwise

with

hvab *Tab

Habh = — .
“ rﬁb+ (’]

(3.56)

The parameter ¢ ~ 0.01 is used to guard against numerical divergences, and «a and
8 are constants typically with values o = 1 and 3 = 2a. The speed of sound, ¢,
is given by ¢, = /7P /pa for an ideal gas, with ¢,, = %(r“ + ¢3) being the average
speed of sound between the two  rticles. When using individual smoothing lengths,
h is similarly averaged to h, = %(h,, + hy). As the artificial viscosity is intended only

to provide the dissipation requ at a shock, it is only applied when the condition

Vb Top < 0 1s fulfilled, which occurs for approaching particles.

The first term involving the speed of sound in the artificial viscosity represents
a bulk viscosity. The second term is present to simulate a shear viscosity, and its
inclusion is necessary to prevent inter-particle penetration during high Mach numiber

collisions and shocks.

The artificial viscosity is added te the momentiuim equation as
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v,
( ‘[Vf > = =3 1V W, (3.57)
( e

I

To find the corresponding increase in internal energy from the viscous dissipation, we

examine the equation for change in total thermokinetic energy of the system,

dF deg, .
T Zmam—. (3.58)

Naturally, this will equal zero, but from it we can isolate the change in kinetie energy
from the artificial viscosity to find the form for (du,/dt)is. By recognising that the

non-dissipative changes already balance, this yields

du, | v
E mg (T = MaVa "
Al / vise a at/ yise
= § My E n"bHabvu : ral)Fah
@ b

1 T 1 «
- 5 n’(znl'bnabva *Tap Fab + 5 E 77)‘bn7'anlmvb " Tpa Fba
b

w u a

1 v 1
- i § 7”'(17"bnabva : rthFab - 5 } § 777’[;7”'(Lnl)avh ' rahFah
a 4 b a

1
= D ma > mpllaVay - VoW (3.59)
a b

From this, we sce that

du, 1
( (;[[ ) = 5 Z 7”’()Hnbvab . Vn‘/vnl) ('3()0)
/ visce b
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3.4.2 Riemann Solver Analagy; the “New” Standard

A new form for artificial viscosity was introduced by Monaghan in 1997 [28] based
on analogy from1 Riemann solvers. It uses the signal velocity between two particles a
and b which are treated as left and right Riemann states. This artificial viscosity has

the form

st

2,518 ]
U Vap c Tap

2 (3.61)
Pab

H(Lb =

where Fop = rg/ |tep]- This is similarly ouly applied during compression, when vy, -
I < 0 is satisfied. The term vy - Bop represents the velocity difference taken along
the line joining the particles, since during shocks only the component perpindicular

to the shock is expected to change. The signal velocity, v¥8, is given by

v:i,f =Ca+cp— BVap - Tap (3.62)

which is the speed of two approaching sound waves adjusted for the relative motion
of the two particles.

This will increase thermokinetic energy at a rate of

d ‘a Sl =€ ~
( (;L > S ST i S S v R LT (3.63)
visc b

ab
where ¢ = %a(va-f‘ab)’“’nta“u,,,,. The kinetic energy terin in this definition is projected
along the line joining the particles. Seperate viscosity parameters have been used for
the kinetic and internal energy terms.

From the rate of change of the thermokinctic energy (equation 3.32), we can
substitute equations 3.63 and 3.57 to obtain a form for the rate of change of internal

energy given as
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du, 258
( U ) = Z my 1_’(,,,, ((y“’(.u,,, —up) — %(an . fab)Z) fop e VoW, (3.64)

dt b Pab

Of the two terms in this equation, the o termm provides the increase in internal energy
from the viscous dissipation, while the a, acts as an artificial thermal conductivity,

transferring internal energy between particles.

3.4.3 Viscosity Limiters

The inclusion of artificial viscosity is necessary to properly model shock phenomena,
however its dissipative effects can be too great when applied universally to the system.
Viscosity limiting strategics have been developed to address this issue.

Balsara [2] multiplied the viscosity tensor, 4, by a factor, fu, to suppress the

viscosity in pure shear flows. This factor is given by [, = %(fa + fy) with

|V - v

— 3.65
IV v + |V X V| + na/N’ (3.65)

f(L

where a safety term is added to the denominator to avoid numerical divergences.
In pure compression regions such as shocks, |V x v,| = 0 and the full force of the
artificial viscosity is applied. During pure shear flows however, |V - v,| = 0 and the
viscosity is restrained.

A different approach by Morris and Monaghan [33] is to use time dependent
artificial parameters set individually per particle, replacing o in the artificial viscosity
equations with %(a“ + ap). They are evolved as

de, (g — pin)

TR — + Sas (3.60)
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where the first term decays the strength of the artificial viscosity, and S, is a source

term for increasing the strength. The timescale for decay, 7, has been calculated as

hy

Cey

= (3.67)

As the post shock Mach number for strong shocks is \/m ~ (0.447 for v =
5/3, values for the constant (! are typically chosen to be ~ 0.1—0.2, which corresponds
to the decay being spread over 5 to 2 smoothing length. The decay is limited to a
minimum value of «a,,;,.

Rosswog et al. [44] suggested a source term of

Se = max (—V - vg, 0) (uax — ). (3.68)

This increases the strength of the viscosity in regions of compression, which makes it
function shmilar to Balsara's limiter. Analagously to the decay, the source contribu-
tion is limited to a maximum vahie of cvyay.

This strategy may also be employed for the artificial thermal conductivity parani-

eter. For this case, the source terin can bhe calculated as

Sp=0.1h . (3.69)

as suggested by Price and Monaghan [43]. Using the second derivative is found to be

preferable since it responds only to sharp discontinuities in the internal energy.

3.5 Magnetohydrodynamics

While spil has matured since its inception, its implementation of the equations of

magnetoliydrodynainics remains wanting. A conservative formulation can easily be
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derived for the equations of motion, but it was found that straightforward application
of the spit method to the MHD equations can lead to instabilities related to the non-
zero divergence of the magnetic field [37]. When the magnetic pressure is greater
than the thermal pressure, negative stress produces a foree parallel to the magnetic
field and porportional to V - B whiclt causes particles to clump together.

Simply enforcing the div B constraint does not resolve the problem. The con-
servative formulation calculat.  gradients which do not equal zero even for constant
functions. Several strategies have been implemented to combat this instability, some
with more success than others. Two approaches have enterged which have proven the
most effective and popu -, and will be discussed.

Of course, even though the tensile instability may exist for zero V - B, it still
remains important to fulfill this constraint. Price and Monaghan examined parabolic
and hyperbolic divergence cl techniques [43], which were found to yield good
results for two dimensional test problems, but which performed poorly for real three
dimensional applications such . star formation [41]. Present approaches formulate
the magnetic field in terms of Euler potentials, and will be discussed.

To round out things out, I ns for the induction equation will be discussed, along

with equations for implementing an artificial magnetic resistivity.

3.5.1 Momentum Equation

The first form of the SPMHD momentum cquations were derived by Phillips and

Monaghan [37] using the Maxwell stress tensor, M. This straightforwardly gives

v, M, M i
(‘V ) =N\ ‘m,,[ e A A (9 (3.70)
dt mag ) b Pa Py

or in compouent form
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Figure 3.1: Example of particlk clumping together under negative stress from the
instability in the conservative SPMHD momentum equation.

dvi 1 B B OWa
N my | —2 + —= -
At/ o 210 4 b p: o pi] ox

1 BiBJ  BiBl| OWa
Z my, + .

+ — — (3.71)
Ho = /)3 /)E orl

However, as discussed previously, this equation produces an instability when the
magnetic pressure is greater than the thermal pressure. This can be seen more clearly
by examining the two summation terms in 3.71. While the isotropic terms in the first
summation are guaranteed to yield positive stress, no such guarantee ean be made
for the anisotropic terms. This is the source of the chunping instability, for which an

example is presented in figure 3.1.

3.5.1.1 Bgrve V -B Subtraction

The approach by Berve et al. [8] has proved simple yet effective in preventing the

instability. Their idea is straightforward: calculate the force that arises from non-zero
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V - B and subtract it from the net force. As previously mentioned, the force in the
instability is aligned along the magnetic field and is proportional to V - B, so they

convert, the expression BV - B into spii format vielding

dv, B. B, )
= -B, my | — + —= ) - Ve 3.72
( dt )div B 5 ’ <Qa/’3 Qo ' 372)

The © terms have been included to account for spatially varying smoothing
lengths, which were not included in the original formulation. Note that including
this term breaks the momentum conservation of the system, but this sacrifice is con-

sidered preferable to the clumping instability.

3.5.1.2 Morris Approach

Morris modified the anisotropic part of the momentum equation to use a differencing
formula, which vanishes for constant stress [32]. The isotropic and thermal pressure

terms are computed as previous. This leads to a form

1 a 1 [ RR? R?
= =~ 5 V‘ my ’—V,,”Y,,h(h,,) + Va‘/"ah(hh)
dt mag 210 o L“aﬂé \ppp
1 BB - BB | =
+— my — — | - V(l”/(lhv (373)
Ho Lh‘ PaPb

which has been modified from his initial description so that the isotropic terins account
for variable smoothing lengths. The 2 factors are not applied to the anisotropic terins,
since they use a different definition for the spi derivative, and instead the averaged
kernel is used.

This form for the moinentum equation breaks the momentun conservation of

the system, but as with the Borve approach, removal of the instability has more
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importance. The Morris formulation is found to effectively remove the clumping

instability.

3.5.2 Induction Equation

As with the momentim equation, the sein form of the induction equation can casily

be derived, yielding

1B, 1 . -
(—‘ - Z my [vab(Bu : Va”/ab) - Ba(vab -V, M/ab)l (3' (4)
dt Pa
or alternatively,
1 (B, 1
(— — - - 7"'bvab(Ba - Vn ‘/Vab)' (‘575)
dt \ pa pr 4

These forms, however, do not account for variable smoothing lengths. To incor-
porate their effects into the induction equation, we first begin with the continuity

equation accounting for the @ terms, given as

n 1 .
'(” — iz_ Z Vab - Vrlu/ab- (37())

By expanding the left hand side of equation 3.75 using the identity V(A/p) = VA/p—

A/p*V p, and using 3.76, we can sce that

dB, 1 B, dp
= — g a’ (7,‘ ab ——
7 S z’:mbvnh(B VW) + o di
1 . 1 .
= _/)_ § my [vn[)(Bn : Va” nh) - aBn(vnh . Vn”’ah) . (377)
a Ty a

Since the induction equation should equal zero for one dimensional systems, this
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imposes the requirement that the two terms cancel. Thus, the correct form should

contain the £ factors on both terms, producing

dB, 1 ‘ , )
Ty 2{: M [Vab(Ba - VaWas) — Ba(Vay - VoWa)] (3.78)
and
d /B 1
— =) == 'bYab Ba . Va‘/vn) . 3.79
i (5) = gz SmovaBa: Vb (3.79)

3.5.3 Ohmic Dissipation

Price and Monaghan investigated incorporating an artificial resitivity into the induc-
tion equation to simulate Ohmic dissipation [42, 43]. A process similar to that of
Monaghan'’s artificial viscosity based on analogy to Riemann solvers [28] was used to
derive their form.

As before, the rate of change of energy per particle from dissipative sources will

be given as

deg B U:'f P s 50
W diss - ; " ﬁab ((’11 a {'b)rab ‘ attab ( ) )

but with the magnetic component of the total energy included in the ¢* terms as

2
C:;, - '(Zvﬁ + oy + ap Bf_ . (381)
2 240D ap

This differs from the Monaghan’s artificial viscosity in that the velocity is not
taken along the line between the two particles, and neither is the magnetic field. This
deviation was motivated by the assumption that the div B constraint may not be

upheld exactly, and components of the velocity and maguetic ficld not perpendicular

.
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to a shock may be involved.

The rate of change of internal energy due to viscous and resistive heating can be

found then to be

du, v:l',f’ v 9 ap o] .
d - - E my—— —2_(v(1 - vb) + (Yu,(/“a - “b) +2___(B(L - Bb) P V(LH/u,ba
't/ diss b Pab 110Pap

(3.82)

which has been formulated so that the viscous and resistive components will be a

positive contribution to the internal encrgy.!

This requires the dissipation terms to have form

dv av’E
( ") = 7711,_—”')(V,1 - vb>i\‘n,b . vu‘vaba (383)
di diss b Pab
B, V8
(( 1 > = fa Z 7”’1)0(’_}#(Bn - Bb)f‘uh . V(z ”",ab- (384)
dt diss b Pab

As before, the artificial viscosity is only applied during compression, when v, Fqp < 0,
but the artificial resistivity is applied universally across the system. It is important. to
mention that this equation for artificial viscosity no longer conserves angular momen-
tum (though linear momentum remains conserved), which oceurs since the viscosity
is 110 longer directed along the line between the two particles.

When applying the artificial viscosity and resistivity for magnetohydrodynamic
systems, the signal velocity should be changed to use the speed of the fast M1ID wave

instead of the speed of sound. This is given by

This can be seen more clearly by recognising that V W, = repby, where Fy, < 0, and
uh - Cab I{ab = |ruh| Fub-
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- S
: 1 , I3 B2\*  2(B,-tw)’
Ut = — (C(ZL"F , >+ (C?l‘i‘ ) ) - S ' (3.85)
\/§ tofa oPa f0a
with the signal velocity becoming
U = g 1y — BVah + b (3.86)

The strength of the artificial resistivity can be regulated using individual time
varying parameters in the same mamner as the artificial viscosity and thermal con-

duction parameters (see section 3.4.3.) The source term is chosen to be

V xB| |[V-B
Sp = max (l |, | l) . (3.87)

VHOP  /Hop
The decay timescale is similarly  ljusted to use the maguetic wave speed described
above instead of the sp of sound. Since the definition in equation 3.85 depends

upon particle b, the largest value of the computed signal velocities is used, to give

I

T= .
C'max(vy)

(3.88)

3.5.4 WV -B =0 Const1 int : Euler Potentials

Rosswog and Price used Euler potentials to represent the magnetic field in their
SPMHD code [45], which satisfies the div B constraint exactly. The magnetic field in

terms of the Euler potentials is given by

B =Vax V. (3.89)
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Taking the divergence of the above definition shows that the div B constraint is upheld
by construction. Geometrically, the magnetic ficld as defined by the Euler potentials
can be considered as the ne tangent to surfaces of constant o and constant 3 [51].
For ideal Mnn, the potentials will stay constant in time
ey di3

— =0 = 0. 3.90
! Tt ( )

Due to this, the variation of the magnetic ficld only occurs due to the motion of
the particle, which corresponds to the frozen field theoremi. By using the Euler
potential formulism, the induction equations described in section 3.5.2 do not need
to be followed.

While the momentum equation can be written to use the Euler potentials, this
introduces second derivatives and it is no longer possible to maintain momentum
conservation. Thus, the procedure is to use equation 3.89 to obtain the magnetic
field, and use it in the standard forms for the momentum equation.

To calculate the gradients of the Euler potentials, the equations

Via, = (Xif)_l Z mp(y, — ag) VI Wai(Ra), (3.91)
b
Vig, = (\uy1 Zm,,(d,, - 3)VIW(0y) (3.92)
b
are uscd, where
,Xij =Y 77),,([‘,, — I‘a)iV{l”'vab(ha). (393)

0

T'he use of Euler potentials does contain some disadvantages. First, given the state

of the itial magnetie field, it can be challenging to find Euler potentials which create
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that configuration. In addition, certain geometries simply cannot be represented, such
as a linked poloidal and toroidal field [52], and it leads to constraints on magnetic
helicity [24].

Rosswog and Price incorporated dissipative effects into the Euler potential for-

mulisi by evolving the potentials as

g W O .

( dt )(“HS - Z e (va — ) VoW, (3.94)
a O

- = (o = 15) VW 3.95

( dt )(liss ; my m (/ /b) [ ( 0)

They recognise that this does not rigourously represent Ohinic dissipation, and energy
conservation is not strictly observed, but find it satisfactory for one dimensional shock

tube tests.



“Sure, slingshot around the sun. If you pick up
enough speed you're in time warp.”

Leonard “Bones” McCoy

Gravity

With the hydrodyuamics beit  modeled using particles, incorporating gravitational
forces into the systemn dynamics is an easy task. This reproduces the well studied
gravitational N -body problem, which is to find the gravitational attraction between
N bodies. This is labelled a problem because the gravitational force is long range,
and cach particle needs to interact with the entire system. T'wo approaches are imple-
mented to compute the gravitational force in this rescarch. One is the straightforward
brute ree approacl, which scales as O(IN?). The other is through the Barnes Hut,

octrec, which scales as O(N lg V).

4.1 Gravitational rotential

The Newtonian gravitational potential is used, modificd with Plummer softening.

Between a. pair of masses m, and my, this is given by



CHAPTER 4. GRAVITY H2

MMy

(,.2 +(2)1/2’

ab

o =-G (4.1)

where (0 is the gravitational constant and 74, is the separation distance between
the two masses. Here, ¢ is the softening parameter, a small value added to prevent
numerical divergences for close encounters. Its value should be small enough so as
to not greatly affect the force outside of those situations. Physically, it sunounts to
computing the potential as if a small distance was added to the seperation. This

potential results in a gravitational force of
. MMy .
¥ = -Gty (4.2)

) 2
Tab +¢

directed along the line between the two masses.

4.2 Brute Force Algorithm

The straightforward approach to calculating the gravitational forces is done by di-
rectly implementing equation 4.2. Each particle pair in the system is iterated over,

with the total force on any one particle being

N
. May
F¢ = -G g ———— T 4.3
’ — (riy + #) “ (4:3)

Computing this sum for all particles leads this scheme to scale as O(N?), and is thus
rarely used. One benefit to this approach, however, is that momentum will be exactly
conserved. The force between each pair of particles is applied equally, thus obeying

Newton’s third law.
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4.3 Barnes—Hut Octree Algorithm

The Barnes Hut (BH) octree algorithm [4] is a method for grouping together the
masses of particles so they act as a single entity for the caleulation of their gravita-
tional force upon a target particle. The scale of this grouping is based upon their
proximity to each other and the distance from the target particle,

A lhierarchical grouping s me is used called an octree (or quadtree for two di-
mensions). This recursively subdivides a cubice volume of space into eight children
cubes, halting once a cube contains one or fewer particles. This formms a tree data
structure, with the root node containing the full volumne of space and all particles,
and leaf nodes containing one particle. Empty nodes uced not be stored. The interior
nodes of the tree are thus of varying spatial resolution and population count.

To ealculate the gravitational force on a particle, we walk down the tree, using
an opening criterion to detennine how far down a branch of the tree to traverse.
Each node in the tree will contain the total mass and center of mass for the particles
it contains. Once a noc  satisfies the opening criterion, the force on the target is
calculated using the value stored in that node, and further walking down that branch
is discontinued. This saves the computational effort of individually interacting with

cach member particle of that node.

4.3.1 Opening Critera

The siinplest opening criterion as introduced by Barnes and Hut is

[
f < —. -
< 7 (1.4)

Here [ represents the w o h of the cell, and 1) is the distance from the target to the
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center of mass of the cell. A tunable parameter € is used to control how deep down the
tree to traverse. It can be viewed as the tangent of the angle subtended by the width
of the node from the perspective of the target particle. This compactly combines
node  mension and distance into one parameter, letting nodes grow in size relative
to distance. Typically, values chosen are € ~ 1, as this results in an error value of
approximately 1% [20].

Salmon and Warren [46] show that criterion 4.4 can canse large errors in some
cases where the center of mass is near the edge of the cell. A modified opening

criterion which circumvents this problent is

! .
) < — 4+ 0 4.5
H < 5+ (4.5)

where 4 is the distance between the center of the mass and the geometric center of
the cell. This addition ensures that if the center of mass is near the cell edge, it is
only used for a force evaluation if removed by an extra distance of 4. If the center of

mass is near the geometric center, it reverts to the previous criterton.

4.3.2 Complexity

Bv using the BH octree, we can compute a close approximation of the gravitational
force in O (N 1g N) time. There are two steps to the process, that of constructing the
octree, and that of walking the tree to compute the forces.

Tree construction can proceed by iteratively inserting particles.  Each particle
insertion will walk down the tree, resulting in the addition of a new leaf node. As the
height of the tree will scale as O(lg N), inserting all particles will scale as O(N g N).

The force computation for a single particle will scale as O(lg N) for large N. This

can be demonstrated by considering the example of a homogencously distributed
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system whose particle count is increased by a factor of eight. This is similar to
adjoining seven root nodes onto an initial root node. The amount of additional force
terms will increase by a constant amount depeudent upon €, not on the total number
of particles in the system. Thus, while systein size is increased by a factor of cight,
force ealculations per particle increase only by a constant factor. The scaling of a

single force calculation is therefore O(lg V), and for the whole system O(N 1g N).
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inputted text file containing paranicter values and switches, but this does not match
the power and expressiveness that seripting provides.

Initial particle data (position. velocity, ete) is caleulated in the Lua seript, and
then passed in to the main program. Seripts are also granted the ability to instantiate
new systems, add operators, and specify the choice of integrator. Once the seript 1s
finished, execution of the main program begins.

Another type of functionality implemented is the ability for seripts to apply a set
of operators to a partially iitialised systenn, as well as to read data from that system.
An example of the applicability of this functionality is the gas collapse test case of
chapter 7. The initial conditions specify the internal energy of cach particle. ‘To
instead initialise the system using entropy requires knowledge of particle densities, as
the conversion between internal energy and entropy is a function of density. However,
the densities are not known. To obtain the densities, the script applies the operators to
calculate sinoothing lengths, generate neighbour lists, and then compute the densities

of cach particle which are then read back in to the Lua script.

5.2 Nearest Neighbour Search

Neighbour finding in spi simulations is an important optimisation. Each particle
interacts only with a small subset, Ny, of the total set of particles, NV, and much
computational effort can be wasted on inefficient searching for that subset. The ¢
linked list method is popular in molecular dynamics because of its O(N) sealing, how-
ever this efficiency is not preserved in astrophysical sSPH simulations where interaction
lengths can vary immensely over space. The uniform mesh, which is a cornerstone of
the cell linked list method, is not suitable for these types of simulations.

Many of the astrophysical SPH codes developed recognize this problem and perform
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neighbour searching through use of an space partitioning tree 49, 45, 54, 22]. This
has two main benefits. First, the resolution of the tree is adapted to the particle
distribution, creating a mesh that fits the density profile of the system. Second, in
these codes the tree structure will already have been created during gravity routines,
allowing the O(N lg N) computational effort spent in its construction to be considered
as free work.

The method presented in this thesis constructs a new mesh from the nodes of the
tree. In this mesh, all nodes are spatially exclusive, and each stores a local map of its
physically adjacent neighbours. This provides the ability to hop laterally between tree
brauclies without needing to traverse vertically through the tree. Thus, the scarch
can discover outwards from the target, scarching only those nodes which lie inside
the search radius. An octree has been used for the choice of tree, but the principles

are straightforwardly applicable to other space partitioning trees.

5.2.1 Linked List Cell Method

For the linked list cell method, the simulation space is overlayed with a rectangular
mesh that bins all particles. For this mesh, the width of each cell is greater than or
equal to the interaction length. By construction then, all neighbours of a particle are
guaranteed to lie within the current and surrounding cells, as the cube this forms will
completely enclose the spliere of interaction for all particles in the center cell. The
remaining cells in the mesh need not be checked. For a homogeneous particle density
(which, for molecular dynamics sinnilations, holds true on average), cach particle will
perform a constant amount of computational work to search these cells regardless of

the total simulation size. This makes the total cost scale as O(N).

Each cell in the mesh uses a linked list to store the particles it contains. This
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Algorithm 1 Linked list een construcuon

1: for cach cell 7 in the mesn ao

2 cset the link of 7’s head node

3: end for

4: for cach particle 7 in N do

5. Compute cell j which contains i

6:  Attach the list node of i to cell j's linked list
7: end for

allows for an efficient way to handle the issue of variable list sizes, as there is only a
ore time cost of allocating the memory for NV list nodes (one for cach particle), after
which on cach time step ouly the links of the nodes need to be updated. The process
for list construction proceeds as given in algorithm 1 and is run cach time step. Tt
is possible to use a scheme which updates only those portions of the list which have
alterc  between steps, but constructing the lists anew is simple and runs in O(N)
time, so potential savings are minimal.

Particle neighbours can found using the linked lists as shown in algoritlun 2.
The procedure is to iterate through all cells in the mesh, and for cach cell, through
tlicir linked list. To avoid double chiecking particle pairs, only particles that are past
the target particle in the list are checked, and only half of the surrounding cells
arce checked. For example, in two dimensions, only the four cells to the northeast,
due north. northwest, and due st need to be checked. This cuts this cight cell
ring around the target cell synunetrically in half, ensuring that all cell pairs are
checked and no cell pair is checked twice. A similar arrangement is used for the three

dimensional case.

5.2.2 Octree Ne‘~hbour Searching

However, the linked list cell method has particular problems with spi that make it

undesireable.  Since the density of the fluid may vary greatly over space and cach
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Algorithm 2 Linked list cell method.
i: for cach cell / in the mesh do
2. for each particle j in i's linked list do

3 Scan particles past j in s linked list

4: Scan all particles in the cells surrounding ¢
5. end for

6: end for

particle has its own value for the smmoothing length, the neighbour search may ielude
too many particles for too coarse of a mesh, or have to search beyond the surrounding
cells to find all neighbours. A constant cell size is not optimal for the whole simulation

space.

Using a mesh whose resolution is adapted to the density topography of the systemn
would alleviate the previous concerns. One such mesh is the octree, which has the

benefit that it will have been already ereated during gravity routines.

The method of Hernquist and Katz [22] performs a tree walk of an octree to
scarch for nodes that overlap -l a cubical search radius, pruning paths of the tree
that fall outside the scarch arca. This has two main disadvantages. First, nodes
that are outside the search region need to be explicitly checked and cut. Second,
the height of the tree has to be traversed to access those nodes containing the set of
neighbour particles. Thus, this scarch miethod will scale as O(Nyeign + lg N), that is,
with the sum of the desired number of particle neighbours, plus all the paths (correct
and incorreet) down the tree. What is desired then is a method that removes these
problewns, that is, which  “ves direct access to the nodes containing the neighbouring

particles, and that does not need to explicitly cut out distant regions.
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5.2.3 Local Map Searching

To alleviate the problems of tree walking scarches, a new method for nearest neighbour
scarching was developed. Using the nodes of the octree, a new mesh is created that is
commected in a manner that is logistically appropriate for nearest neighbour secarches.
In much the way a tree node retains information about its children, it now also retains
information in a local map about physically adjacent nodes. As node dimensions can
vary between neighbouring nodes, adjacent nodes are those that share a common
boundary. A node may have multiple smaller nodes along one boundary, and they
are all stored in its local map.

These nodes connect together to form a web of local maps, and this web can be
generated alongside the construction of the octree itself. This is accomplished by
applying three steps during a node split, when a parent node is subdivided into eight
children nodes. The parent, which contains a local map of its neighbours, needs to

push its local map downwards onto its children. The three steps are:

1. Make children appropriate neighbours of each other.
2. Remove parent from the local maps of its neighbours.

3. For each parents neighbour, add it to the local map of adjacent children, and

add such children to its local map.

The result of these steps is that as the tree deepens, the parent node is replaced by
its children in the web. This ensures spatial exclusion.

Given a particle and the node in the local map web which contains it, we can find
its neighbours by perforining a breadth first search (BFS) out through the local map

web. This method puts priority on those nodes that have the shortest connection
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distance from the target, expanding the fronticer of the search volume in a uniform
1NAILICT.

The BFS proceeds by adding search targets to a queue, which get marked to
prevent their readdition. When a node is popped from the queue, the particles it
contains are examined, and all unmarked nodes in its local map which overlap the
search region are added into the quene. The search can be initialised by adding the
node containing the target particle to the queue, and once the queue is exhausted,
the neighbour list will be complete.

Using only the leaf nodes of the octree to form the local nap web is undesirable
because this then requires the inclusion of emipty leaf nodes to prevent gaps from
forming. Not only do such nodes then have to be stored, but since they do not
contain any particles, se.  hing them is only a waste of time. For three dimensional
octrees, up to six of the eight nodes created during a split may be empty, and this
adds a considerable amount of wasted nodes. To circumvent their inclusion in the
web, whenever a node split will create an empty child, the propagation of the local
map is halted at that node.

Of course, other tree choices, such as kd-trees, will inherently avoid this problem
of empty leaf nodes. However, the meshes produced may still be too fine grain. In
terms of floating point operations, the chieck to sce if a node overlaps the search region
is roughly equal to checking if  particle is inside that search region. Thus, the desire
is to let nodes increase in size so that we scarch the same volume with fewer cells,
while at the same time preventing thein from growing too large to avoid searching
too much excess volume, and correspoudingly, too many particles.

This has been controlled by a parameter o, which defines a population limit for
nodes and regulates the coarsity of the local map web. During construction, nodes

only propagate their local map while they are above this limit. Figure 5.1 shows
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Figure 5.1: Efficiency  ns for increasing o with an ideal neighbour count of 60.

dramatic efficiency gains by increasing o only even slightly, and an overall good
choice for o is about parity  h the ideal neighbour count.

A list of the nodes composing the local map web is kept. to allow for quick iteration
without the need for a tree walk. This list can be created alongside the octree con-
struction. A linked list is also used to track which node cach particle belongs to. As
in the cell linked list method, the size of this list can be fixed to N, since no particle
needs to be doubly stored, and this allows for quick retrieval of particles within cach

node.

5.2.3.1 Adaptive Smoothing Length Update

It is understood that when the smoothing length is individually set per particle, it is
best to minimize the variance of the number of particles enclosed by the smoothing
length to improve the conservation of energy [35]. Additionally, recent sPH formalisms

derived through a variational approach [50, 29] require the mumber of particle mimbers
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to be held exactly constant. For these reasons, the impetus exists to completely
remove the variance of the number of neighbours, something which is not strictly

guara ced through current smoothing length estimation methods.

The BFS search method may be adjusted to accommodate this requirement, and
set. the smoothing length to encompass precisely the desired mumber of neighbours.
Since the search moves radially outward from the target, we can locate the closest
Nueigh particles, adaptively refining the smoothing length as the scarch progresses.
This incurs some extra cost, as before we could blindly add all particles inside the

k) .
smoothing length to the neighbour list. Now we are scarching for exactly Nyigh
particles, and cach particle has to be compared against the others to sce if it should

be added to the neighbour list or not.

The procedure used is to first trivially accept nodes into the scarch queue, and
particles into the neighbour list, until the list contains Vg, particles. This gives an
initial estimate for the smoothing length, at which point the search can start being
refine  Future nodes are checked against the current sioothing length estimate as to
whether they should be added to the search queue, and similarly for particles with the
neighbour list. If a particle is found to be nside the smoothing length estimate, the
most.  stant particle in the neighbour list is removed and thie new particle is inserted
to the list. The simoothing length estimate is then updated to be midway between the
removed particle and the subsequent mnost distant particle in the neighbour list, which
may not necessarily be the one just inserted. This requires an extra search through
the neighbour list to find this most distant particle, which is the primary source of
extra computational cost. Once the search queue is exhausted, the neighbour list will
be populated with only the closest Nyegn particles, and the smoothing length w

wrap only those particles.
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5.2.3.2 Performance

In estimating the complexity of this algoritlim, there are two aspects to consider.
First is the creation of the local maps. This is embedded inside the construction of
the tree by applving the three rules of local map generation at the time of a node split.
This adds only a constant amount of work to this step, and the tree construction will

retain its O(N lg N) nature.

The search portion of the algorithm revolves about the breadth first search. which
scales with the sum of edges and vertices traversed in a graph. Here we can identify
the munber of edges traversed with the number of nodes examined. The vertices of
the graph represent the number of searched items, which are the particles contained
in the nodes. Since the search is constrained to nodes inside the smoothing length,
the number of particles searc.  will correspondingly scale with the mumber of desired
neighbours, Nyeigh. In the worst case of one particle per node, the number of nodes
visited will similarly scale with Nyeign. However, by using the optimisations detailed
carlier to scale the popt tion size of nodes i the local map web with Nyeign, the
number of nodes visited can be reduced to a constant amount. Thus, the total search

scales as O(Npeigh)-

The BFS search method was compared against Hernquist and Katz's tree walk
approach. The test case used was of a three dimensional spherical ball of gas which
has a ! density profile. Both methods were run for the same particle positions and
smoothing lengths. Figure 5.2 presents the ratio of scarch times, where there is a
clearly observed efficiency gain, which grows for increasing particle counts. Tlis is
to be expected as the tree walking approach depends upon the size of the tree, while
the BFS method does not. Of importance to note is that the additional time to create

the local maps during octree construction has heen added to the BFS values.
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Figure 5.3: Runtimes of adaptive smoothing length updates, scaled in terms of equiv-
alent number of searches, for the embedded BrS and iterative methods. The first,
second, and fourth curves from the top represent the 10%, 5% and 1% iterative sce-
narios, with the third curve for the embedded BFS method.
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The adaptive smoothing length update can be compared with Springel’s iterative
approach [49], since both will produce smoothing lengths containing exactly Nyeign
particles. His approach performs repeated neighbour searches iteratively adjusting
the smoothing length between steps until a smoothing length is found which contains
the exact number of neighbours desired. The first step begins with an initial seed
for the smoothing length chosen in some manner. This approach can be measured in
terms of the number of searches performed per particle. In the best case, this will
be a single search if the itial seed is perfect. The average or worst case will depend
on the quality of the sced, and the number of steps required to reach convergence.
What is important to consider  this variability in execution times. The embedded
Brs approach performs only one search, but with additional overhead per searched
particle. While it cannot achieve the best case scenario of the iterative approach, the

runtime variability of simmoothing length update step is removed.,

An example is presented to demonstrate this effect. The same system as above is
uscd, and the smoothing leny s are first updated with the embedded Brs method.
These ideal values are then perturbed randomly within ranges of 1, 5, and 10 percent
and the iterative approach is used to recalculate the smoothing length. Here we use
the more efficient. BFS method for the iterative method, not tree walking searches.
From figure 5.3, the vari e of the iterative method by altering the initial seeds can
be seen. For sceds which are close to the ideal simoothing length, we approach the
best case seenario and can outperfori the cimbedded BrS method. As the seed grows
further from the ideal smoothing length, the munber of iterations required increase

and performance drops.
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5.3 Methods for the Numerical Integration of Or-
dinary Diuerential Equations

In this thesis, "numerical integration” refers to numerical estimation of solutions
to sets of ordinary differential equations. In initial value problems, the integration
procedure transfornis an initial state to some future state. The role of the integrator
is to follow the path determined by the physics as faithfully as possible. The choice
of numerical integration technique las a significant impact on the speed, accuracy,
and overall quality of simuation, and a poor or improper choice can lead to incorrect
results.

The integration methods which were implemented in this work are detailed below.
The methods are discussed in the context of solutions of equations of motion, where
the symbol 7" represents the veetor of positions, v the vector of velocities, and a™ the
vector of accelerations for the system at step n. The size of the time step is denoted

by At.

5.3.1 Euler

The simplest integration scl; ~ is the Euler method. It calculates the derivative
of a system variable, and then uses that to advance one step forward in time. For

example, position and velocity variables are updated as

7,n+l oty 'U"Af, (51(1)

e L R A (5.1b)

Alternatively, one can use the derivative at the end of the time step, given as
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Pl A (5.2a)

e =t T AL (5.2b)

This is known as the implicit Euler method, and requires a root finding procedure to
find the solution.

However, for partitioned systems, we can evolve one variable using the explicit
Euler and the other by implicit Euler. For our position and velocity example, we can

create a scheme of

S PR S N (5.3a)

"t =" A A (5.3b)

which is known as the symplectic Euler method. Symplectic methods will be discussed
in more detail in section 5.3.5. In this example, the implicit step can be computed
exactly by first advancing the velocities, and then using them to advance the positions.
Alternatively, the positions can be advanced first, this being feasible if the acceeleration

is a function of r only (as is usual for gravitational problems.)

C sidering the Tavlor series of a variable y(f),
g ) Y

1 .
y' =yt YA+ 5'1/” (AN + 0O ((Af)") , (5.4)

we can see that the leading truncation error in an individual Euler step will be pro-

portional to () ((Al‘)z). Thus, this scheme is said to be first order accurate.
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5.3.2 Leapfrog

70

Leapfrog integration, also known as Verlet integration, is a second order symplectic

integrator. It is applied to partitioned systems, but advances the two equations out

of phase with each other yielding a scheme of

7,n+l/.2 — rnf]/Z + ’U”Af,

1n+1

1 — " £ a"t2AL

Each variable advances using information half a step forward in time, but since the

two equations arc out of phase by half a step, this inforination is always explicitly

available.

The above steps can be rewritten in the following equivalent form:

7_n+l/2 — gt n %UHA["

,Un+1 =" + (1”+l/2Af,,

5 1
,’_n.+l — ,’,n+l/2 n —’U”+]Af,

so that both variables arc evolved with matching initial and end time positions. It may

also be seen more clearly from this that one leapfrog step is actually the composition of

two symplectic Euler steps, where the integration of cach variable alternates between

mmplicit and explicit Euler steps.

S
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5.3.3 Runge-Kutta

Runge-Kutta integration encompasses a family of iterative methods. The philosophy
behin - such methods is to produce derivative values at different points across a time
step, and then to complete a step forward using a weighted average of those points.
Sccond and fourth order Runge-Kutta methods have been implemented in this work
using 1¢ common weighting values, and will be discussed. It is worth noting that

the Euler method can be considered a first order Runge-Kutta method.

The trapezoidal rule is used for the second order Runge-Kutta method (RK2),

which is given by the scheme

o= 1 570
ke = [(y" + kAl (5.7h)

1
y”+1 = yn + 5 (1\7] + 1\'72) At (57()

which can represented more conveniently using a tableau format as

The fourth order Runge-Kutta method (RK4), also known as “The” Runge-Kutta

method because of its popularity, has a schieme of
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These methods will have higher accuracy than the Euler method, but at an in-
creased computational cost. Two derivative evaluations are required per time step
for RK2, and RK4 requires four derivative evalnations. The accuracy gained from
using a higher order method, however, should allow for the use of larger time steps,

thereby reducing the impact of these inereased computational costs.

5.3.4 Runge-Kutta-Fehlberg

Runge-Kutta-Fehlberg integrators falls into a class of technigues known as embedded
Runge-Kutta methods. The premise of such methods is to perform two Runge-Kutta
integrations of seperate orders per step, but to choose them such that some of the
intermediate steps of the lower order method coincide with steps of the higher order
method. The higher order method is used to generate a measure of error of the lower
order step, and by using an embedded Runge-Kutta method, the computational effort
necessary to compute this error can be reduced.

Such a procedure was first developed by Fehlberg, and is conmmonly known as
Runge-Kutta-Fehlberg (RKF) integration. The method implemented here is the “com-
mon” fourth order scheme [15], which is of a fourth order Runge-Kutta embedded in

a fifth order, and is known as RKF4(5).

The scheme,
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eval s six derivatives to produce a fourth order step, y**!, and a fifth order step,

n+1

ntb_ g+ o compute the leading trunca-

We can then use the difference, § = |z
tion error of the lower order method. Based upon this error measure, we can cither
accept the lower order step as being accurate within some tolerance, or reject it for
being too inaccurate. If it is rejected, y" is not advanced, and instead this integration
step is repeated for a st ler step size. Otherwise, if it is accepted, y is advanced

n+1 1

to ¥ It is tempting to use z instead, since it is a result from a higher order
method, but it is the error of the lower order scheme which is known. The error
associated with the higher order schenie is uncertain, and therefore should not be

used. Details regarding step size control using the error estiimate are given in section

0.4.3.

5.3.5 Symplectic Integration

For 77 It 7 svs ad transfo  tion is one which preserves the arca

of phase space. Owing to this, phase space can be considered as a symplectic manifold,
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since though its shape may change over time, its arca remains constant. A mnneri-
cal integration method is then considered sympleetic if it transforms a Hamiltonian
svstem from time " to t"*! as a canonical transforniation.

"This property of a numerical integrator will ensure that the svstem remains Hamil-
tonian. and provides exceptional long term stability.  An example to highlight the
power of this property is presented. It consists of a six body system representative of
the solar system, where the Sun has the mass of the inner terrestial planets added to
it, and the outer planets are individually modeled (including Pluto.) The reference
frame  fixed to the Sun so that it remains at rest. The initial conditions correspond
to Sep mber 5, 1994 at 0h00 [19] and are given in Table 5.1. The system is described

using distances of AU, time in Earth days, and with the gravitational constant of

() = 2.95912208286 - 10"

The systemn is evolved seperately using the symplectic leapfrog and the non-
symplectic RK4 integrators using a fixed step size of 200 Earth days. Figure 5.4
shows the resulting evolution. While initially the orbits of Jupiter are more accurate
using the higher order RK4 integrator, its long term behaviour fails. The cumulative
effeets of the non-symplectic time integration leads to an energy leak, causing Jupiter

to spiral inwards towards the  m and eventually be ejected.

5.4 Time Step C ntrol

The size of the integration time step is of critical importance to the acceuracy and
stability of a simulation. An infinitesimal tinie step would be most representative of

the continuous flow of time, but this is not possible. Instead, we take discrete, finite
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Body “ Mass Position | Velocity
0.0 0.0

Sun 1.00000597682 0.0 0.0
0.0 0.0

-3.5023653 | 0.00565429

Jupiter || 0.000954786104043 | -3.8169847 | -0.00412490
-1.5507963 | -0.00190589

0.0755314 | 0.00168318

Saturn | 0.000285583733151 | -3.0458353 | 0.00483525
-1.6483708 | 0.00192462

8.3101420 | 0.00354178

Uranus || 0.0000437273164546 | -16.2901086 | 0.00137102
-7.2521278 | 0.00055029

11.4707666 | 0.00288930

Neptune || 0.0000517759138449 | -25.7294829 | 0.00114527
-10.8169456 | 0.00039677

-15.5387357 | 0.00276725

Pluto (1.3 108)_I -25.2225594 | -0.00170702
-3.1902382 | -0.00136504

“able 5.1: Masses and initial positions and velocities for the outer solar system. The
mass of the Sun has the terrestial planets added into it. Quantities are given in solar
mass, AU, and AU per Earth day, respectively.
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sized steps, the size of which should be chosen to balance the competing desires for
short steps to improve accuracy, and longer steps to reduce computational workload.
The primary question can be stated as thus: how large of a step can be taken and
still faithfully simulate the physies?

A simulation mayv gain incredible efficiency by asking this question of every in-
tegration step. This is known as adaptive time stepping. where the size of the time
step is chosen anew cacl step. The variety of methods available to make this choice

will be discussed.

5.4.1 Particle Kinematics

The first approach uses information from the current state of the system to estimate
a time step size. The size is calculated nsing the kinematics of the spi particles in
order to restrict their position change as a function of their smoothing lengths. By
choosing the time step in this way, the configuration of the particles is prevented from
being altered too greatly in any single step.
The relations used to calculate the time step size are derived from simple kinematic
cquations. The new step value is defined by
'h, ('h,

fhew = MiN ,

¢ 9.1l
'q 2f(1 ' {N} () )

where f refers to the net force. A Courant like hydrodynamic constant, (7, is used to
govern the degree of position change, with common valies between 0.3 - 0.5.

There exists a crucial flaw to this time stepping scheme, however. If we consider
the example depicted in figure 5.5 of a particle A which has information to communi-
cate to particle C, we see that A cannot directly commmunicate this information since

cach particle can only interact with particles inside its sinoothing length. Thus, A
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Figure 5.5: Information from A to C has to travel through B.

must first communicate to B, who in turn communicates to C. If the physics of the
system dictate that the information should be relayed in real time ¢, then the net
time for these two steps should not exceed this amount otherwise this event will fail
to be modeled properly. However, the kinematic time stepping scheme provides no

measure of this situations veracity.

5.4.2 Signal Velocity

The solution to the problem presented in the preceeding section is straightforward. A
similar calculation can be perforimed using the speed of the fastest information wave
to dictate step size instead of the kinematics of the particles. Between two moving
observers this quantity is known as the signal velocity, of which a good cstimate for

it in hydrodynamic systeims is

sig . . ~ .
=Cp+Cp— /}vul) s Tab, (512)

Vab

where /3 is one of the viscosity parameters, and cqqp) is the speed of sound. This is
similarly restricted to travel within a fraction of the smoothing length, with typical

values of C ~ 0.15 — 0.20. The step size is defined then as
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("h,
Sig

ab

(5.13)

{hew = N1AX
IY

In maguetohvdrodviamic svstems where there exists a variety of other possible
mformation waves, the definition of the signal velocity is adjusted to use the speed of

the fastest magnetic wave instead of the speed of sound. This is given by

1/2
I , R? CoB2N\? 2(B,-fw)’
LI —— ((‘f, + ) + ((7: + — ) - 4——"( ) ; (5.14)
\/‘E 0P 10 a 10 a
with the signal velocity beconing
Ul = U + 0y = BV - B 5.15
ab

In M1 systems, values between 0.075 - 0.1 are typically used for the Courant like

factor, half that of pure hydrodynamic systems.

5.4.3 RKF45 Time Stepping

In section 5.3.4, the fourth order Runge-Kutta-Felhlberg (RK145) integrator was in-
troduced. By its design, each = egration step produces an estimate of the error of
that step, which is used as part of an acceptance criterion and to caleulate the size
of the next time step. A constant value is used for an acceptable level of error per
step, called the tolerance, and is used as a comparison against the error to accomplish
these two tasks.

The difference between the two estimated solutions, 8, is used as the measure of

error. It is important to note that 4 is actually a vector of differences, since not ouly
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may the integrated variable be a vector quantity (such as position and velocity), but
there may be multiple integrated quantities. The conmonly used approach is to take
the Euclidean norm of 8 and use the resultant value for the tiume step adjustment.
We define

(5.16)

Crr —

with e sum being over the vector components of 4 [39]. An individual tolerance,
tol;, may be specified for each component.
Using err, the new time step size is caleulated as
L[
Alpew = sQlga |—1| - (5.17)
err
The parameter p customarily has its value chosen to equal the order of the integrator
used. A safety factor s. a few percent smaller than unity, is included to help guard

against overestimations of the step size.

5.4.4 Step Halving

The step halving approach, also commonly referred to as step doubling, is similar
in principle to the RKr45 method. An error estimate is calculated cachr step which
is used to adjust the time step, but this method is able to be applied to a wide
range of integration technicques. The step halving method operates by repeating
cach integration step with two steps of half size. The two short steps provide a higher
precision solution which can contrasted with the long step to obtain an error estimate.
As in the RKF45 method. this error is then used in an acceptance criterion and to

adjust. the size of the next tinme step.
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The implemented time step adjustment procedure is a modified version of the
scheme used for the RKF4A5 method. After a successful step, the time step is increased
with the RKF45 approach, but after a rejected step, it is decreased instead by a factor
of two. This contains an inherent advantage in efficiency, as the previous first half

step can be reused as the next long step.

5.4.5 Constant Step Size

While adaptive time stepping has many benefits, it is worthwhile to investigate some
of the secondary effects it has on symplectic integration. Adjusting the time step is
equivalent. to a reparameterisation of the time variable in a Hamiltonian system from

{ — 7. This changes the differentiation of a system variable y from

di
Y= I (5.18)
dl
to
dy dl e

which follows simply from the chain rule. The desire then is to reparameterise ¢ so
that f(y)(‘i{—: will retain the same geometric features as f(y).

The simplest solution to achicve this is to hold the time step size constant, that
is, to not reparameterise t. This trivially guarantees that the integration will remain
symplectic.

An example to illustrate the danger of improper adaptive step sizing is presented,

based upon an example from Hairer [19]. We consider the perturbed Kepler problein

with dynamics




CHAPTER 5. NUMERICAL METHODS 32
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where § = 0.015 and the initial state is given as v = [0, /(1 +¢€)/(1 —¢)] and »r =
[1 —¢,0]. The problem considered has eccentricity ¢ = 0.6. The system is advanced
using the symplectic leapfrog independently with both a fixed step size 0.065, and
using the step halving schemne with a tolerance of 0.002.

The two evolutions are presented in figure 5.6 along with the exact solution. It can
he scen that although the adaptive step size implementation initially yields accurate
results, the effects of the repeated non-canonical time transformations significantly
affect its long term evolution. The defining characteristic of the system, that is of the
clliptical orbit, is lost as the orbit decays towards circular. On the other hand, though
the orbit from the fixed step implementation is different from the exact solution from
the outset, it retains its cccentricity over long durations. For this reason, using a
constant step size should still be given consideration when choosing a time stepping

scheme.






“What men are poets who can speak of Jupiter if he
were a mai, but if he is an immense spinning sphere

of methane and anunonia must be silent?”

Richard Fevnman

Visualisation

A software suite was developed to analyse and interpret data generated from the spi
phvsics engine. Its design goal was to provide a siimple way of performing the types
of analysis connmonly needed. There are two principle components: one plots system
variables such as encergy and momentun, and the sccond provides visualisation of the
matter and fields which comprise the systeim.

The cut (Graphical User In  face) elements of this program were built using Qt
[16], which is a cross platform application and Ul framework. The plotting program
gnuplot [56] is used to handle the generation of plots. with this software functioning as
a GUI frontend for it. This removes the direct handling and low-level manipulation of
data away from the user, who can then focus on the essentials of data representation.

System visualisation is displayed using OpenGL. The user is given free range with
the camera so that he is not locked into fixed viewpoints, and still images may be
captured from the OpenGL window. Several types of visualisation techniques have

been implemented, which are described below.

34
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6.1 Particle View

The simplest way to visualise sPH simulations is with a particle representation, in
wlhicli each particle is rendered as a simple sphere in the OpenGL scene. Figure 6.1
shows an example of this view. This connmon method provides a quick first check of
system behaviour, but it is nevertheless a erude approach. Since the P11 particles are
smoothed out over their local volume and overlap cach other, it is more appropiate
to represent this system as a continuum than discrete particles.

In this view, trajectory or “comet” tails may be turned on for each particle. This
highlights the pathis of particles over previous steps, with the number of steps being

a user tunable value.

6.2 Kernel Imaging

Since the srH particles represent a fluid, an approach that lets us visualise them as
a fluid is of great value. Oue of the approaches used to accomplish this is the kernel
imaging technique first used in the SPH visualisation program SPLASII [40].

A bitmap can be considered as a regular grid of pixels. If that is overlayed onto the
system, each pixel will map to a specific point in the system. Using spH interpolation,
we can caleulate values at cach of these pixel sites, which in turn are used to define
the colour of that pixel.

The procedure followed is to iterate over the particles, adding the contribution
from cach particle to the pixel sites within its smoothing length. A square arca about
the particle with width of the sinoothing length is defined, and the pixel sites inside
can be located quickly because of their regularly distributed nature. Figure 6.2 shows

an example of the kernel imaging technique.
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If the pixel count of the generated image is too small in relation to the particle
count, features of the systemn could fail to be represented. In the Ihniting case of a
one pixel image, there clearly will be a significant loss of information. The threshold
at which this loss of information begins to occur is when the inter-pixel distance is
greater than twice the smoothing length, as particles then can be “lost™ inside the
cracks between pixel sites. In practice, this situation is rarely a concern, as even for
a small image of 100? pixels, it requires a particle count ~ 10° before such worry is

1Neeessary.

6.3 Triangulated Imaging

A second method for visualising the srH fluid as a continuum is to generate a surface
using a triangulation technique, with the particles serving as the triangle vertices.
This surface can then be colonred using the particle data directly. The triangulation
technique chosen is Delaunay triangulation, and the implementation has been adapted
from Numerical Recipes [39].

Their code has been extended to include the special case of points lving on the
sanie line, which they avoided with the reasoning that such oceurences would be rare.
The proper handling for such ¢; s has been added, beeause for spi. such occurences
arc common. Initial positions are often arranged on a lattice, and evolved states tend
to form lattice-like structures.

The Delaunay triangulation algoritlim used is an incremental one where vertices
arc added one at a time to the triangulation. A heirarchical storage schenie is used,
and this gives an average runtime scaling as O(V 1g V') [47, 33], where Vs the number
of vertices. In the worst case of a heavily lopsided tree, this will scale as O(172), but

can be (ahmost) guaranteed to be avoided by using randomised insertion of vertices
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Algorithm 3 Uniform 1-article Skipping,
Require: V < N and npts > 0

I: ratio e« N / V

2: forj — Nto1ldo

3. if j / V < ratio then
1: vertices[V] « j - 1
5. end if

6: Ve—V-1

7: end for

to keep the tree evenly distributed.

The resolution of the triangulated image can be adjusted by limiting the number
of particles to use as triangle vertices. The difficulty is how to decide the subset
of particles to use. Ideally, this set should he representative of the systein with the
coarsity of resolution being equal i all areas. A randomised selection works well, but
a different approach has been implemented.

This approach sclects a mniform sampling of particles from the initial system
state, and uses this set for all future states. The initial particle arrangeiments are on
a lattice, so clioosing vertices in this manner is near optimal. As the particles follow
the streamlines of the system, the quality of this selection remains high as the fluid
evolves. Figure 6.3 shows an image generated with the triangulated image technique,
and figure 6.4 is a compar 1 image with only 10% the munber of vertices.

The wniform skip sclection algorithin is detailed in algoritlun 3. It utilises the
ratio of N to V to determine when a particle is added to the vertex set. As all the
particles in set V are iterated over, a counter initially set to NV is deeremented. A
secon  counter initially set to V' is decremented when a particle is added to the set.
of vertices. The decision of when to declare a particle as a vertex is made when the
ratio of these counters falls below the target ratio. This procedure will select vertiees

unifo Wy across the set of particles, and works for any vertex count.
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6.3.1 Delaunay Triangulation

A triangulation aims to subdivide an area into a set. of contiguous and non-overlapping
triangles, of which the arca is defined by a set of points. These points act as the tri-
angle vertices. Delaunay triangulation refers to a particular method of triangulation
created by Boris Nikolacvich Delone in 1934 [39]. It is widely used still today be-
cause of its simplicity, but often more importantly, because it strives toward creating
cquiangular triangles. These are well balanced triangles that avoid pathological cases,
such as the “long and skinny” type triangles generated by large angles.

The key design to accomplish this is through the use of circumeireles. Take for
example the case in figure 6.5. . .iangle ABC's circameircle encloses the point D. Fhis
is considered “bad”, and ABC would be undesireable. To remedy this, we perform
an cdge flip, flipping cdge AC, creating edge BD and triangles ABD and BCD. The
result, shown in figure 6.6, is that the circumcireles of both new triangles are now
cmpty.

If all triangles in the triangulation satisfy this property of empty circumeireles,
it is called a Delaunay triangulation. For any quadrilateral, one of the diagonals is
guaranteed to yield triangles that have empty circunicireles. As such, a Delaunay
triangulation is always possible to be generated. This diagonal bisects the largest
angle of the quadrilateral. Doing so maximizes the minimun angle of the two triangles
(bisecting a smaller angle would create even smaller angles), and this implies that
triangles created will be as close to equiangular as possible.

Eacl edge in a Delaunay triangulation also have a similar circumeirele property.
Any edge can be enclosed by a circle such that 1o otlier points lie inside it, and such
edges are called Delaunay ed, All the edges of a Delaunay triangle are Delaunay

edges, and a triangle formed from three Delamay edges is a Delaunay triangle.
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Figure 6.5: Example of circumeireles. Figure 6.6: After the edge flip of AC. Both
Point D lies inside the circunceirele of tri-  triangles circumeircles are now empty.

angle ABC.

The algorithin used is an incremental one, where points are individually added to
an existing triangulation, subdividing a triangle to accomodate the new point.  As
shown in figure 6.7, when a new point E is added to triangle ABC. it is subdivided
into triangles EAB, EBC, and ECA.

We then check cach of the three new triangles to see if any edges need to be flipped.
The three inmer edges are gnaranteed to be valid. This can be seen by considering
the circuineirele for ABC. We know that it was previously enipty before the addition
of E, and if it is shrunk in size to wrap around any of the inner edges, it will continue
to reniain empty. This proves they are Delaunay edges, and thus, the only edges that
need to be checked are the tl > outer edges.

We must also consider the case of an inserted point lying on the edge of an existing
triangle. In this casc, we break this edge into two, and subdivide each triangle sharing
that edge into two as shown in figure 6.8. Similarly, we only need to check the four
outer edges for validity.

Let us examine when it is necessary to perforn edge flips after the insertion of E.
If we consider edge AB in triangle EAB (for either case), it is a conmmon edge with
another triangle GBA for some exterior point G. We know that GBA was a Delaunay

triangle before the insertion of E, and so if AB does not need to be flipped, than
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A A
B B
D
C C
Figure 6.7: Addition of point E subdi- Figure 6.8: Insertion of a poiut onto the
vides the parent triangle ABC into three existing edge AC. Triangles ABC and
triangles ABE, BCE, and CAE. ACD are subdivided to create triangles

EAB., EBC, ECD, and EDA.

both EAB and GBA are Delaunay triangles, all their edges are valid and the full
triangulation is Delaunay. If hov  rer AB is flipped. we still know that EA, BE and
the newly forined EG are Delaunay edges, though this now puts the validity of edges
AG and GB into question. While EAG and GBE are now locally Delaunay triangles
when viewing just these pair of triangles in isolation, it is uncertain if they are globally
Delaunay triangles. We need to exainine them paired with the adjacent triangle along
cach questionable edge. Here, the situation is the same as the previous, and we can
repeat this process until all edges are valid. The framework of the algorithim is given

in algorithm 4.

An important detail to e ler is how to handle the insertion of point that does
not lie inside any triangle. A similar conundrum is how to perforin the insertion of the
first point. These situations can be averted by ensuring that points are always inserted
inside a larger existing triangle. This is achieved by ereating a huge “fictitous” triangle
bounding all points to be inserted. After all point insertions are completed, any
triangles that share a vertex with this triangle are discarded. This leaves the desired

triangulation, which is still Delaunay since all edges remain Delaunay edges.

A tree data structure is used to store the triangles. When a triangle is subdivided,
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Algorithm 4 Delaunay Trianguation
1: for each point R do
2:  Locate the triangle A containing R
3
4

if R lics inside A then
: Subdivide A creating three child triangles
5: Delete the parent triangle A

6:  else if R lines on the edge between triangles A and B then
7 Subdivide A and B into two child triangles

8 Delete both parent triangles A and B

9:  end if

10:  Recursively check validity of all outer edges

I1: end for

its child triangles are added as leaves of that node, and in the case of edge flips, both
new triangles are added as children to both parent triangles. Since cach node contains
at most three children, searching for the triangle containing a point to be inserted

can be done in O(h) time, where h is the height of the tree. 12, 11]

Finding adjacent triangles when performing edge flips can be done in O(1) using
hash tables. There are tables used. One uses the three points of a triangle to
find its index in the above tree data structure, and the other finds the third point
of at mgle when given the opposite edge. For the edge hash, a complication arises
hecause each edge belongs to two triangles, and therefore has two points opposite
it. This is handled by alwa  referencing triangl in clockwise order. Thus, edges
conmon to two triangles can be differentiated by the order of their reference. For
example, in figure 6.8, triangle ABC references the shared edge with ACD as CA,
while ACD references it as AC. We can nse this terminology to store a reference to
point  using key (h(C} — h(A)), and the negation of this key, (h(A) — h(()), to

reference point D. Here /i is a hash function.

The keys used in the triangle hash are stored as (h(A) & h(3) & W(C")) where

is the XOR operation. Therefore this key will have the same value regardless of the







“A process cannot be understood by stopping it. Un-
derstanding must move with the flow of the process,

must join it and flow with it.”

The First Law of Mentat

Test Cases

Several common test problems were used to verify the correctness of the code. There
were three primary aspects that were examined: gravitational force calculations,

hydrodynamic simulation, and magnetohydrodynamic simulation.

7.1 Gravity and __ydrodynamics

7.1.1 Solar System

A simple test performed of the gravitational routines was to model our solar system.
This is the same system first. presented in section 5.3.5. The leapfrog integrator with
fixed step size 0.01 Earth days was used to conduct the evolution of the systemn.
The sidereal orbital period of each body from simulation, along with the expected
real v rld values, is presented in table 7.1. We find close agreement between the
two values, providing initial confirmation to the gravitational routines validity. The

largest deviations exhibited are for the orbit of smallest radius (Jupiter), and orbit of
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Body | Simulation Real Difference
Jupiter 4334 4332.589  0.033%
Saturn 10761 10759.22  0.017%
Uranus 30681 30685.4 0.014%

Neptune 60198 60189 0.015%
Pluto 90574 90465 0.121%

Table 7.1: Sidercal orbital periods for the solar system gravitational test. Values are
given in Barth days. Real world values obtained from the NASA planctary fact sheet

I55].

largest. eccentricity (Pluto), which conform with expectations of errors arising from

integration.

7.1.2 Spherical Gas Cloud Collapse

The primary test problem for the hydrodynamic routines was the adiabatic collapse
of a spherical gas cloud, first presented by Evrard [14]. It served not only as verifica-
tion of the hydrodynamic routines, but also further verification of the gravitational
routines. As the gas cloud initially contracts under the influence of its gravity, its
temperature and pressure will inerease. Once the outward directed force of the pres-
sure surpasses the inward directed foree of gravity, a shock wave is sent from the
interior to the outer regions of the system.

The gas cloud is spherically symmetric with an initial density profile of

A1

T orR?r

p(r) (7.1)

where M is the total mass of the clond and R is the clond’s radius. The units are
chosen such that A/ = R = ¢ 1. The internal energy per unit mass is set to
u = 0.05% with the specific heat ratio at 5/3. All particles are initially at rest.

The initial positions of the particles are distributed using Evrard’s radial streteh
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Figure 7.1: System energics of the gas collapse test case. Around t = 1, the forces
from thermal pressure begin to exceed gravitational forces, and the gas cloud stops

contracting,.

technique. Starting from a uniform cubic lattice, cach particle is displaced radially

inwards by

I ,,.old
Jqnew — LOIC n . 7.2
e =g () (72)

This ates a density profile proportional to 7~!. To achieve the exact profile as in

equation 7.1, we modify the ¢ Hslacement function to be

a a

) 1—a old La
,,,n(W _ T()l(l (( ”)I:)u U) . (7‘5)

wliere a can be tuned to achicve to profile required.

The results presented are for a run using 1.02208 x 10° particles. Figure 7.1.2 shows
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i ]

Figure 7.2: The “light” colour scale used for colour images. Black corresponds to the
minimum values of the image, with white being the maximum values.

thie evolution of internal, kinetie, gravitational, and total energies of the system up
to time ¢ = 3.0. We can see the internal energy and gravitational energy extrema
coincide with each other, as this corresponds to the point of maximum compression
and peak temperature. There is slight non-conservation of the total energy around
this peak, which arises  m the errors involved in using the BH octree to calculate

gravitational forces. Total energy is otherwise conserved well.

7.2 Magnetol--drodynamics

Three main test cases were used for the magnetohydrodynaniics. The colour images
sresented in this section use the “light” colour scale in figure 7.2, where black is the
)

minimum value and white is the maximum value.

7.2.1 Fast Rotor

The first test of the MHD code is the two dimensional fast rotor problem introduced
by Balsara and Spicer [3]. It consists of a rotating dense disc of fluid situated in an
ambient background medium, with a uniform magnetic field threading the system.
As the disc rotates, the centrifugal forces cause it spread outwards, but this rotation

also v 1d the magnetic fields inside it which confine it into an oblate shape.

The values used follow that of the first rotor case of T6th [53]. The disce, with
radius 1 = 0.1, is situated in the center of a periodic domain of —0.5 < &,y < 0.5. It

has a density pq = 10 with angular velocity w = 20, while the background is at rest

-
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with py = 1. The disc and bacl  ound are set in pressure cquilibrinm /2 = 1, and
the adiabatic index is chosen to be 4 = 1.4, The magnetic field is oriented along the
x-axis with 3, = 5/v/ 4.

The ambient fluid particles are distributed using a regular square lattice, with the
region r < 1y excluded. This arca is filled with particles of the same mass also on a
square lattice, but with smaller inter-particle seperation to achieve the higher density
of the disc. Téth uses a taper function between the dise and background to reduce
the impact of the initial density contrast between the two. However, for our tests the
taper function was not used. as the smoothing of the densities present in sPit already
compensate for the density contrast to a certain extent.

Presented are the results for a system containing 7.21296 x 10° particles, of which
1.76488 x 10° particles comprise the dise. Figures 7.3 and 7.5 show the thermal and
magnetic pressure of the svstem at = 0.1, and may be compared with the results
from Dolag and Stasyszyn [13]. while figures 7.4 and 7.6 are at { = 0.15 and may
be compared with Téth [53] and Price and Monaghan [43]. A cut of the density
following the diagonal r = y through the system at ¢ = 0.1 is presented in figure 7.7
and can be compared with Dolag and Stasyszyn [13]. The features of the thermal and
magnetic pressure correspond quite well for both times examined, and the density cut

is reproduced almost precisely.

7.2.2 Strong Blast

A second test problem presented by Balsara and Spicer is the modeling of a strong
hydrodvnamic blast wave in a magnetohydrodynamic system. A cireular region of a
homogeneous medinn is iner ed in pressure a hundred fold and then released. An

initially uniform magnetic field is present, which affects the resultant shock wave to
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Figure 7.7: Density of the fast rotor test Figure 7.8: Density of the strong blast test
case along a diagonal ¥ =y at f = 0.1.  casc along the horizontal line y = 0 at
t = 0.02.

preferentially propogate along the field lines. The system s initialised according to

Londrillo and Del Zanna's specifications [26].

The fluid medium is situated in a periodic domain of —0.5 < @,y < 0.5 with
density p = 1. The circular r _ m is chosen at the center with radius r, = 0.125. Its
pressure is set to Py = 100, while the outside pressure is [, = 1. The magnetic ficld

is oriented along the x-axis with strength B, = 10.

Reseults are presented for a system of size 7.225 10° particles, and are examined
at time £ = 0.02. Figure 7.8 shows a density cut through the middle of the system
along the x-axis, which may be compared with Dolag and Stasyszyn [13]. There is a
discrepancy in the height of the two peaks, but this can be explained by the stronger
viseosity term they use. Figures 7.9 and 7.10 showcase the density and magnetic
pressure distributions for the system. which corresponds well to Dolag and Stasyszyn

[13] and Londrillo and Del Zanna [26].
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igure 7.14: Pressure of the Orszag-Tang
Fig 7.14: P f the Orszag g
vortex along the horizontal line y =

0.4277 at t = 0.5.
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Figure 7.13: Pressure of the
vortex along the horizontal line y

0.3125 at { = 0.5.




“Iello. Farewell. Hello. Farewell.”

Tralfamadorian greeting

Summary

This thesis has described the theory of magnetohydrodynamics and the numerical
scheme for its implementation. A simulation software lias been developed for research
involving astrophysical plasmas, and also for continued research into the numerical
methods of simulating plasmas. The operator design philosophy of this software

allows for the ideal environment to develop new numerical methods.

The nearest neighbour scarch algorithm devised has significant efficiency gains
over previously employed methods.  For the test cases examined, a several times
decrease in search runtime was exhibited. Removal of the lg N scaling factor allows
the efficiencey of this algorithm to grow more pronounced as the systenn size ereases.
This scarch algorithm was also modified for the purposes of determining smoothing
lengths, which enabled this task to be performed with a consistency of runtime that
is not matched by iterative methods.

Finally, visnalisation techniques were investigated, which used the s particles

as ve ces in a Delaunay triangulation. Data values from the particles serve as
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weightings with which to colour the triangles.

8.1 Future Work

There are several avenues in which this work can be continued. First. the simulation
software itself can be improved in a couple of ways. Presently, the software executes
serially. and parallelising the code would be of benefit. The seripting used for initial-
isation could also be extended to allow users to seript the flow of the whole program,
truly extracting the full power that scripting languages bring,

The second avenue is to improve upon the algorithing of spu. Development of
a code to perform spit on GrU's (Graphics Processing Units) is highly desireable
since their computational capacity far exceeds that of desktop ¢rt’s. In terms of
SPMHD, there are a number of issues that are nnresolved. The negative stress from
magnetic forces has been circumvented, but at the cost of momentumn conservation.
How can this be fixed? The div B constraint has been uphield through the use of Euler
potentials, but introduces restrictions on the types of ficlds capable of representation.
Is there a better way?

Future research is planned to improve the simulation software, and to investigate

solutions to the problems regarding SPMHD.




Appendix A
Optimal V lues for Viscosity

Parameters

The artificial viscosity and resistivity parameters, 3, o, and ag, were examined in
greater detail to find optimal values for MIID simulation. The Orszag-Tang vortex
problem served as the test bed owing to its complexity. The initial conditions de-
scribed in section 7.2.3 were used, with the simulations run at 1.6 x 10% particles.
Pressure cuts along the w-axis for y=0.3215 were used as the measure of quality.
The sixteen permutations of the values 3 = [1.0, 1.5, 2.0, 3.0}, o = [1.0, 1.5], and
ap = [0.5, 1.0] were tested, with follow up tests for ap = (0.1, 0.2, 0.3, 0.4]. These
values were chosen for their previous use in the literature. Monaghan [28] suggested
to use 4 = 3.0 and « = 1.5, but these values were for his form of the artificial
viscosity and for pure hydrodynamic systems. Price and Monaghan [43] redesigned
the artificial viscosity for multidimensional MIID systems, where they suggest to use 3
= [1.0, 2.0], @ = 1.0, ap = 1.0, though they use a switch to control the strength of o
and a. Dolag and Stasyszyn [13] pair Monaghan’s artificial viscosity with Price and

Monaghan’s artificial resistivity formulation, and find that 4 = 1.5, & = 2.0, and a3

106
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— 0.1 works best. Given the range of values cited, it was decided to examine which

set of values provided optimal results.

A.1 [ Values

The parameter 4 appears solely in the definition of the signal velocity, but the signal
velocity is used for both viscosity and resistivity. When .3 is varied between the four
values [1.0, 1.5, 2.0, 3.0], there appears to be minimal difference in results. Due to
this scemingly indifference. it was decided to use a middleground value of 3 = 2.0 for

our si ulations.

A.2 « Values

The values for . which controls the strength of the artificial viscosity, does have
significant impact on the system dynamics. Increasing the value of o from 1.0 to 1.5
results in the lowering of the central peak, which only serves to deviate the result

further from the expected. Thus, the lower value of 1.0 was chosen to be used.

A.3 «p Values

The resistivity parameter ap was found to give better results for the lower value.
As Dolag and Stasyszyn had used values even lower than 0.5, the set of tests was
extended to examine the range ap = (0.1, 0.2, 0.3, 0.4] for 4 — 2.0, a = 1.0. The
pressure cnts through the system show increased quality as ap is deereased, with
optimal results at 0.1. At this level, not only do the peaks and dips of the pressure

cut align with expected values, but the small range oscillation between . = 0.0 to 0.1
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begins to emerge. Hence, the value of ap in shmulations was chosen to be 0.1
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Figure A.1: Orszag-Tang vortex for /3 = 3.0, a = 1.5, ag = 1.0
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Figure A.2: Orszag-Tang vortex for 3 = 2.0, a« = 1.5, oy = 1.0
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Figure A.3: Orszag-Tang vortex for 3 = 1.5, « = 1.5, ap = 1.0
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Figure A.4: Orszag-Tang vortex for 4 = 1.0, o« — 1.5, ap = 1.0
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Figure A.5: Orszag-Tang vortex for 7 = 3.0, « = 1.0, ap = 1.0
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Figure A.6: Orszag-Tang vortex for 4 = 2.0, « = 1.0, ap = 1.0



APPENDIX A. OPTIMAL VALUES FOR VISCOSITY PARAMETERS 111

Fras:ure

Figure A.7: Orszag-Tang vortex for 3 = 1.5, o = 1.0, ag = 1.0
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Figure A.8: Orszag-Tang vortex for ,3 = 1.0, o = 1.0, ap = 1.0
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Figure A.11: Orszag-Tang vortex for 3 = 1.5, « = 1.0, vy = 0.5
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Figure A.12: Orszag-Tang vortex for # = 1.0, o = 1.0, ap = 0.9
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Figure A.13: Orszag-Tang vortex for 7 = 3.0, « = 1.5, ap = 0.5
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Figure A.14: Orszag-Tang vortex for /3 = 2.0, v = 1.5, ap = 0.5
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Figure A.19: Orszag-Tang vortex for 3 = 2.0, o« — 1.0, ap = 0.2
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Figure A.20: Orszag-Tang vortex for # = 2.0, o« = 1.0, ap = 0.1
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