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block cipher, which has pipelined architecture, and Counter(CTR) mode iustead of
OFB mode which is used in conventional SCFB mode.

Based on the synthesis results, the throughput of the SCI sing serial transfer
and parallel transfer (block transt size equal to 4 bits) can reach 100 Mbps and
222 Mbps, respectively. .ae total number of gates of these o SCFB systems are
41600 and 43697, respectively. For the pipelined SCFB moc the throughput and
area complexity are 333 Mbps and 39963 gates.

The perfc 1ance analysis of pipelined SCFB mode is also provided with respect to
characteristics such as synchronization recovery di 1y (SRD) ad error propagation
factor (EPF'). Moreover, the analysis of system queues such ¢ e number of bits in
the plaintext queue, the queue size requirements a | probabil - of queue overflow is
also provided.

Among these different implementations, the pipelined SCF mode based on paral-
lel transfer mode can obtain the highest throughpt and the SCFB mode using serial
transfer mode has the lowest area complexity. Hence, the pipelined SCFB mode using

parallel transfer is more suitable for high speed physical layer :curity.
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[ S]

CHAPTER 1. INTRODUCTION

data received is exactly as sent by an authorized entity without odification, insertion
or deletion. The authentication of the information means the communicating entity
is the one that it claims to be without being processed during the transmission [1].
A cryptographic system normally involves an encryption s :em and a decryption
system. Before we define encryption and decryption, we shoulc  now what is plaintext
and ciphertext. Plaintext is the data that can be read and u lerstood without any
specii measures. Ciphertext is the information that has been encrypted into seem-
ingly meaningless code. Encryption is the process of transforr ng plaintext using an
algorithm and keys to make it unreadable to anyone except for e intended recipient.
Decryption is the process of reverting ciphertext to its original plaintext. There are
two types of encryption, symn ric-key encryption and public-key encryption. We

will discuss them in the following sections.

1.1 Symmetric-Key Ciphers

In a symmetric-key cryptosystem, encryption and decryption se the same key. The
Data Encryption Standard (L ..3) [2] in an example of a symn  ric-key cryptosystein
that has been widely deployed by the U.S. Government and the banking industry.
Nowadays, DES is being  >lac | by the Advanced Encryptior _tandard (A.3) [3]. A
syminetric encryption scheme has five ingredients which incluc  plaintext, ciphertext,
encryption algorithm, decryption algorithin and secret key. N mally, the encryption
and decryption algorithms are published, but the key is kept b, In a symimetric-
key cipher, maintaining the secrecy of the key is the pricipal security problem.

For the symmetric-key ciphers, there are two requirements to make it secure [2].

1. The encryption/decryption algorithm nn  be rong. Even if the attacker

knows the ciphertext and the encryption/decryption algorithm, he/she can not
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get the secret key or decrypt the ciphertext.

2. The sccret key mnust be kept sccure by both sender and receiver. If the attacker
can get the secret key and knows the encryption algori m, all the ciphertext

going through the communication can be deciphered an rcadable.

Substitution and transposition are two basic operations eod in symmetric-key
encryption. In the substitution operation, the symbols of plaintext are substituted
by other symbols. In the transposition technique, the plainte:  symbol positions are

permuted.

1.2 Public-Key Ciphers

Public-key cryptography, also known as asymmetric cryptography, utilizes two differ-
ent keys, a public key and a private key, for encryption and decryption. The public
key may be widely distributed, but the private key is kept s ret except for the in-
tended recipient. The keys are related mathematically, but the private key cannot be
practically derived or can not be derived in a reasonable time limit from the public
key. Normally, at the transmitter, the plaintext is encrypted  th the public key. At
the receiver, the ciphertext can be deciphered only with the corresponding private
key. In some algorithms, such as RSA, the plaintext can be encrypted with either
the public key or the private key depending on the nature of the application. For the

public-key cryptosystem, the e basically four essential steps as following.

1. We aysuppose ‘' reareseve users, USER_1, USElI ~ ..., and cach of them
mera a , 1blic. - and a private key and ut the former in a public register.

Each user collects all the public keys from others.






o

CHAPTER 1. INTRODUCTION

1.4 Objective of the Thesis

The main focus of the thesis is the digital hardware implementation of SCFB mode.
The detailed hardware design characteristics, in 1ding the Advanced Encryption
Standard and the SCFB system hardware structure, are discussed. We also investigate
the hardware characteristics with respect to the relationship of laintext queue and
ciphe :xt queue, queue overflow,  ationship of clock domains, serial transfer mode
versus parallel transfer mode, and implementation throughput and efficiency. We do

the functional simulations for 3 implementation structures:

1. SCFB mode using serial transfer.
2. SCFB mode using parallel transfer.

3. Pipelined SCFB mode.

The secondary objective of the thesis is to consider an analysis of the error prop-
agation delay, synchronization recovery delay and probability distribution of number
of bits in the plaintext queue.

The research considers the comparison of hardware structure and performance
between serial transfer mode, parallel transfer mode and pipelined SCFB mode. As
a result, we draw the conclusions regarding which mode is 1iitable for low-area im-

plementation and which moc is suitable for high speed networks.

1.5 Thesis Outline

In this thesis, " re > sters. Chapter 1 is the introduction. Chapter 2

provi s the background of statistical cipher feedback (SCFB) mode and considers
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previous related research. Spec iy, several block cipher modes of operation, Ad-
vance Encryption Standard (AES) algorithm [6] and SCFB mode of operation are
discussed. In addition we consider our implementation of the AES S-box in three dif-
ferent methods and compare them with respect to timing delay and arca complexity.
The structure and performance analysis of SCFB niode are briefly introduced.

Chapter 3 provides a hardware implementation of SCFB mode using serial trans-
fer. In this chapter, the implementation of AES where the S-boxes are constructed
to perform inversion in GF(2%) using a composite field based on GF(2") [7] is pro-
vided. The detailed I 1ware 1plementation of SCFB mode using serial transfer is
detailed. At the end of this chapter, the hardware characteristics such as the area
complexity and timing analysis are discussed. Also the analysis of the queuing systeimn
is investigated.

Chapter 4 provides hardware implementation of SCFB mode using parallel trans-
fer. In this chapter, the implementation of AES where the S-boxes utilize simple
boolean function implementation in order to obtain high speed is provided. The
detailed hardware implementation of SCFB mode using parallel transfer for block
transfer size equal to 4 (N=4 bits) is investigated. The hardware characteristics such
as the area complexity and timing analysis are discussed. The a1 lysis of the queuing
system characterized by the number of bits in the pl: © "ext queue also investigated
in this chapter.

Chapter 5 provides hardware implementation « pipelined SCFB mode using par-
allel transfer (N=8). In th chapter, the implementation of AES with 11-pipeline
stages where the S-boxes utilize simple boolean function impler mtation in order to
obtain " "1 speed is provided. The detailed hardware implementation of pipelined
SCFB mode based on parallel transfer mode is discussed. Further, the hardware

characteristics such as the area complexity and timing analysis are compared with
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the non-pipelined SCFB mode.

Chapter 6 provides the performance analysis of SCFB mode with respect to syn-
chronization recovery delay (SRD) and error propagation factor (EPF) [8]. In this
chapter, we investigate the EPF and SRD of the pipelined SCFB mode versus vari-
ous pipeline stages and various sync pattern sizes.

Chapter 7 draws a conclusion for this thesis and provides direction for some future

work.



Chapter 2

background

This chapter introduces the background on block cipher modes and provides sone
preliminary implementation results of the Advanced Encryption Standard (AES)[1]
[6]. This chapter also provides some results of previous work on SCFB mode, which
can be used to compare with our work.

Normally, an encryption/decryption system is realized by using an operational
mode. Security and efficiency are two important aspects for a cipher system imple-
mentation. The mode of operation chosen for an application has a great influence on
these two aspects. Thus, it is significant to study the modes of operation. We will

introduce five different block ) her modes of operation in this ¢l >ter.

2.1 Block Ciphers

A block cipher is one in which a block of plaintext is treated as a whole and used
to produce a block of ciphertext with the same length as the plaintext. Usually, a
block size of 64 or 128 bi is applied. In general, the block cipher I  a broader

range of applications than stream ciphers, which encrypt a digital data stream one
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bit or one symbol at a time. Nowadays, the majority of network-based symmetric key
cryptographic applications are making use of block ciphers. Inre ut years, Advanced
Encryption Standard (AES) [1] has come to be the widely applied block cipher. Later

in this chapter, we will discuss AES in detail.

2.2 Stream Ciphers

A stream cipher is an important method of encryption in which the plaintext is
encrypted bit-by-bit or symbol-by-symbol to produce the corresponding ciphertext
[9]. A stream cipher can be used to generate a pseudo-random keystream by using a
block cipher output to exclusive-or (XOR) with the plaintext to produce ciphertext at
the transmitter. At the receiver, the plaintext is recovered by generating the i :ntical
keystream which is then XORed with the ciphertext. Stream ciphers can be used for
high-speed networks at the physical layer in a communication system.

I a typical strcamn ciphier cot  ruration, a single bit of ciphertext error only results
in a single bit of recovered plaintext error. However, for such stream ciphers complete
nonsense data will result for the rest of the recovered plaintext if bit slips or insertions
happen in the communication channel. Hence, it is important to keep the keystream
of both the transmitter and receiver synchronized. Output feedback (OFB) mode and
cipher feedback (CFB) mode are two conventional modes of operation of block ciphers
that allow their use as stream ciphers. However, they both have disadvanatges. In
this work, we are concerned with statistical cipher feedback (SC B) mode, proposed
in [4] and investigated in [8], which is a hybrid of CFB and OFB mode. This SCFB
mode configures block ciphers, such as the Advanced Encryption Standard (AES) [0],
as stream ciphers capable of self-s  hronization. SCFB mode has been proposed to

provide physical layer security for a SONET/SDH environmer and is iitable for
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many other applications as well.

2.3 Block Cipher Modes of Operation

The National Institute of Standards and Technology (NIST) has expanded the list of
“modes of operation” to five in Spe 1l Publication 800-38A [10]. Electronic codebook
(ECB) mode [1], as shown in F' re ™ 1, is the simplest mode of Block Ciphers. In
this and the following figures. B is used to represent the block size. In ECB mode, the
plaintext is encrypted in blocks of I3 bits using the same key cach time. The reason
we use the term codebook is that for every B-bit I ck of plaintext there is a unique
ciphertext for a given key as a paper codebook would have been used in early ciphers
[1]. For short messages, ECB mode is ideal. However, for a large amount of data
ECB mode may not be secure. The same block of plaintext always produces the same
ciphertext if the former appears in the message more than once. If a lengthy message

is highly structured, a cryptanalyst may have chance to exploit t1 e regularities.

Time= 1 Time = 2 Time=N
P P2 Pn
Crrrrrim s o e e e s s | Crrrrrao
I | N
K———»| Er ' K ————| Encryption
l; 7
- ° a
v v
| et g o jan |
(o] [of} .
Encryption
Cs 2 Tn
o s s e e s o o o e | i s o |
8 8 L l
Ke——»| D ption oz K K————— | Decryption
I
/] [ A
v
s s — ——— — ] jo ] jums o
P . PN
Decryption

Figure 2.1: Electronic Codebook (ECB) Mode
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For the encryption, CFB mode feeds back m bits ciphertext into the input shift reg-
ister at the input of the block cipher in order to produce the next B bits output. For
decryption, the same scheme is applied, except that the received ciphertext unit is
XORed with the keystream from the block cipher to produce the plaintext unit. One
should notice that it is the encryption function that is used, not the decryption func-
tion. CFB mode can be considered to fall into the class of stream ciphers. However,
for this mode, one single bit error in the communication channel (i.e., an error in a
ciphertext bit) will cause the recovered plaintext bit to be in error and the next whole
block of B recovered plaintext bits » be corrupted while the corrupted bit works its
way through the shift register of the receiver. In Figure 2.3, when m > 1 and a single
bit slip occurs (that is, one bit is deleted from the ciphertext stream), the input to
the block cipher at the receiver will become misaligned and resynchronization will not
occur. When m = 1, CFB mode has the ability to resynchronize for a slip or inser-
tion of any number of bits. However, because each bit encryption requires a complete
encryption of the block cij™ r, wi a much slower throughput than straightforward
block encryption, CFB mode with m = 1 is very ineflicient.

O put feedback (OFB) mode [1], as shown in Figure 2.4, takes the previous
output of the block cipher as the next input to the block cipher to produce the next
keystream block at the transmitter. OFB moc also a stream cipler configuration.
Of all the operational modes, OFB mode offers minimal error propagation. A bit
error in ciphertext will merely cause one bit error in the recovered plaintext because
the keystream generation only depends on the output of the block cipher rather than
the ¢ hertext. That is, errors om the communication channel are not multiplied
through the decryption process. High throughput can be achieved in this mode by
performing the XOR of the plaintext with the keystream in blocks of m = B bits.

However, OFB mode does not ' wve '’ : ability to resynchronize. C. 3 needs an extra
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Counter Counter + 1 Counter + N - 1
A ——— — — | D S S —— — — | N 2 —— - - |
B I a | B
K———| Encryption K—p| " B B K————| Encryption
¥ P - s
Py 2 P2 2 N .
B a‘ 8
s o s —— — o= f e e o we S— ——
Ci . Cn
ryption
Counter Counter+ 1 Counter + N - 1

'l

K————| Encrvotion ke K » 8 = K——p
1
C,;"’? Cz—“»? CNe—t—Pp
s s ®
:Ezﬁzm L__::E::E
Decryption

Figure 2.5: Counter (C . 3) Mode

first century [6]. In this work, AES is adopted for the block cipher to generate the

keystream block.

In our design, we only apply the key length equal to 128 bits. In AES, the input
data is a 4 X 4 array of bytes, i.e., 4 x4 x 8 = 128 bits. The AES algorithm repecats a
series of operations for 10 rour = F' re 2.6 shows the steps of the AES algorithm.
In each round, except for the I  round, there are four operations: Substitute Bytes,
Shift ows, Mix Column and Add Round Keys. In the last round, there is no Mix
Column phase. The round function is performed iteratively 10 times, and the data
path is shared for different rounds of the algorithm. Among the four operations, Byte
Substitution is the most critical part of this algorithm in terins of performance for
hardware designs, while the other three operatic : are implemented only by using

simple linear operations such as rotations and XC s.
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3

= W[40,43]

[

Figure 2.6: AES

2.4.1 In _lemer at 1 of AES S-box

—x

The forward substitute byte transformation is conceptually a simple looki table
(LUT). The SubByte operation is a nonlinear byte substitute that operates inde-
pendently on each byte of the state (i.e., a state is a 4 x 4 arrary of bytes) using a
substitution table (i.e., S-box), which is shown in Figure 2.7 and Figure 2.8. The
AES S-box is a 256-entry table composed of two transformations: first each input
byte is replaced with its multiplicative inverse in GF(28) with the element 00 being
mapped onto itself; followed by an 1e transformation. For decryption, the inverse
S-box is obtained by applying inverse affine transformation followed by multiplicative

inversion in GF(28). In cach rot 1, we have to apply the SubByte operation, so






CHAPTER 2. BACKGROUND 18

LR implementation of S-box

The linear redundancy in the AES S-box was discovered by J. Fuller and W. Millan
[13]. In order to gain high nonlinearity, the AES S-box uses finite field arithinetic.
However the relationship between the S-box outpt functions still remains linear be-
cause of the inherent characteristics of the finite field multiplicative inverse. Fuller
and Millan discovered a new efficient algorithm to determine equivalence between
functions [13]. As noted in [13], letting b;(z) indicate the output boolean function,
c represent a binary constant and D represent a binary matrix, the output Boolean
function b;(x)(0 < j < 7) can be represented by the form b;(z) = b;(D;;x) ®¢;, where
(0<i<7),i%#j. Inthe LR imp nentation, the output Boolean functions b; (the
first 7 bits of the 8-bit S-box output) can be represented by b;(x) = bo(Dy;x) @ ¢j,
where by is the least significant bit of the 8-bit S-box output. In the hardware imple-
mentation, we only need the D m: ‘ix block and the by logic. F 1re 2.9 illustrates

the block diagram of the LR hardware implementation of the AES S-box [14].

Simy : Boolean Function

Compared with the LR impli mtation of an S-box, the simple boolean function
implementation of S-box has a smaller area and higher speed. The simple boolean
function implementation is the most straightforward way to in lement the AES S-
box. High speed (e.g., low latency) can be obtained for the S-box by using this
method. In the byte substitution phase for the tables of Figure 2.7 and 2.8, the
individual byte is mapped into a new byte in the following way: the leftmost 4 bits of
the byte are used as arow v ue 1d the rightmost 4 bits are used as a column value.
We select an 8-bit S-box output value by the indices which are represented by 1¢ 1

and column values. T!  S-box 8-bit lookup table can be input to EDA (electronic
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based on 4 bit operations. Every « ment of GF(2%) can be represented as  lincar
polynomial with coefficients in GF(2%) (i.e., bx + ¢). We represent the irreducible
polynomial as 2 + Az + B and the multiplicative inverse for an arbitrary polynomial
br +cis given by (bx+c¢)~! = b(b*B+bcA+c*) 1z + (c+bA)?*B+bcA+ )71 [12).
The problem of calculating the inverse in GF(2%) is now translated to calculating
the inverse in GF(2%), some multiplications, squ. mgs and additions over GF(2).

Figure 2.10 gives a schematic representation of multiplicative inverse calculations.

Figure 2.10: Schematic Representation of Multiplicative Inverse [12]

2.4.2 Hardware Analysis of Ai.o S-box

In the analysis of AES S-box implementations in [15], the Synopsys Design Analyzer
standard cell library based on 0.18 micron CMOS TSMC (Taiwan Semiconductor
M wcturing Company) process, version 2002 provided by Canadian Microclec-

tronic Corporation (CMC) is used to synthes :the S-box implementation. Applying
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Figure 2.12: Inve : Shift Rows Transformation [6]

2.4.4 Mix Column and Inverse Mix Column

For the Mix Column operation, each column of the state (i.e., a statc is a 4 x 4
arrary of bytes) is treated as a polynomial over GF(28), and multiplied by the fixed
polynomial, C(z) = {03}z + {01}2* + {01}z + {02} modulo z* + 1. The mix column
operation is given in Figure 2.13. In GF(28), addition is the bitwise XOR operation.
Multiplication of a value by 01 is equal to the value itself. Multiplication of a value
by 02 can be implemented as a one-bit left shift followed by a conditional bitwise
XOR with (00011011) if the tmost bit of the original value is 1. This operation is

often called Xtimes, which is 1own in Figure 2.14 [16].

— — —_ —

b,] (02 03 01 o01] [a,
b.| (01 02 03 01| |a,
b, | lo1 o1 02 03| |a,
b, | |03 01 01 02] |a,

F re 2.13: Mix Column Operation

The Inverse Mix Column operation is defined by the matrix multiplication, which
is shown in Figure 2.15. For e: nple, we can express z-0F as (z-08)+(z-04) x-02),

for any z € GF(2®%). The only difference betwe  forward MixColumn and Inverse
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MixColumn is that the latter has extra multiplication with 04 and 08. We can do this
operation like this: 04- X =02-(02-(X)) and 08- X = 02-(02-(02-(X))). The block
diagram of the joint Mix Cc unn and Inverse Mix Colunmin implementation is shown
in Figure 2.16 [17] [18]. This figure only illustrates the sii ‘e byte output, and we
applied 16 joint Mix Column and Inverse Mix Column blocks in parallel to process
"3 bits data in our des’ " F e 2.16, the four inputs, “a”, “b”, “c” and “d”
represent four bytes in a column of the state. The variables “invmix” and “mix” are

two outcomes by applying Mix Columns and Inv Mix Columns, respectively.

) ) J
/LA(%
a’ 7 a’ 6 a’ls a’T4 a’I3 a’ 2 a’ 1 a’ 0

Figure 2.14: Xtimes Block Diagram [16]

02 03 01 01] [a,] [08 08 08 08] [a,] [04 00 04 00] [a,
01 02 03 01| |a, | |08 08 08 08| |a.| |00 04 00 04| |a,
01 01 02 03| |a, | |08 08 08 08| |a, | |04 00 04 00| |a,
03 01 01 02 |a, | [08 08 08 08] |a, | (00 04 00 04] |a,

F 1 Inve :Mix Column Operation
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The other one is to precompute all the round keys before-hand and store them in
memory. Saving area is the advantage of the first method because it does not need
any extra memory to store all keys, and it can change initial keys fast with low or
no delay. The precompute schenme has no extra delay while supplying the decryption
key, but it takes more area in order ) store all the »>und keys. In this thesis, we will
use the on-the-fly computaion scheme for most designs. However, for the pipelined
SCFB design using parallel transfer (Chapter 5), we need the block cipher to generate
the keystream as fast as possible, and, hence, use e pre-computation scheme.

The 128-bit initial key is used to XOR with the plaintext as pre-whitening before
the first round of operations. Subsequently, round keys are derived and applied at each
round. In general, the current round key is represented as [wai, Wait1, Wait2, Waiys],
where ¢ indicates the round number. The next round key [wagit1), Wag+1)+1, Wait1)+2,
wagis1y+3) is generated as illustrated in Figure 2.17 [1], where the F' represents a
complex three-step function. The . function includes three operations, a one-byte
circul: left shift operation, a byte ibstitution operation and a leftmost byte XOR.
with t :round constant Reonli]. T 'on[i] is defined as Rcon[i+1] = 02 x Rconli].
For the first round, the Reon[i] is initialized as 01. All the multip! tions through the
key scheduling are defined in the finite field GF(2%). The round-dependent constant
Rconli] eliminates the symmetry o1 milarity in the round keys [1].

When we apply the key sc 1t 7 to both encryption and decryption in AES,
the key scheduling processes are differeut. For the encryption process, the round keys
are applied to the datapath in the forward order. However, for the decryption, the
round keys are calculated in the backward direction starting from the last round key.
Firstly, the decryption key scl luling h  to compute the round :ys in the forward
direction to obtain the last round key, and then compute in the backward direction

to get the corresponding round keys in each round. In this case, the setup time is
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obtain the same ciphertext. The sketch of SCFB mode is shown in Figure 2.18 where
E represents the block cipher and the input register is needed to store the input
data of the block cipher. The Sync Pattern Recognition Blo is needed to scan
the ciphertext to find a sync pattern and then collect the new IV for the next B bits
after the sync pattern is recognized. The sync pattern is a fixed small size sequence.
For example, a sync pattern size of 8 and sync pattern of 10000000 could be used [4].
If the sync pattern is not found in the ciphertext the input of the block cipher comes
from the previous output of the block cipher, and hence, in this case SCFB mode can
be thought of as OFB mode with m = B. When the sync pattern occurs and the
collection of new IV is completed, the new IV will be loaded into the input register as
the input to the block cipher, ad SCFB mode can be thought of as momentarily in
CFB mode. Thus, SCFB mode is a combination of CFB and OFB mode. Obviously,
SCFB mode can provide the capacity of self-synchronization, which conquers the de-
ficiency of OFB mode. As well, comparing to the conventional CFB, the efficiency
of SCFB mode is impro 1 umatically since SCFB mode works as OFB mode with
m = B most of time. From F~ 1re 2.18, the decr, | tion system has the same structure

as the encryption system with the roles of plaintext and ciphertext reversed.

2.5.2 Discussion on Queuing System

For SCFB mode, a queueing rstem consisting of 2 queues (plaintext queue and ci-
phert queue) is needed [8]. The plaintext qu e is needed to store the incoming
bits and transfer them out to XOR with the keystream bit by bit. The ciphertext
queue is needed to store the ciphertext bits and send them out of SCFB system bit
by bit. ..ie queuing s3 >m provides the elasticity necessary to accomodate riods

during which the keyst im is not available due  resynchronization. A previous
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implementation of SCFB mode transfered data between queues in blocks of 128 bits
[19].  >wever, the resulting design required a large amount of hardware. The plain-
text queue is initialized to be empty and the ciphertext queue is full initially with all
‘1’s. The plaintext data is sent to the plaintext queue at a fixed rate, the ciphertext
queue sends data out of the system at the same fixed rate. The transfer of data into
the plaintext queue has the same rate as the transfer of data out of the ciphertext
queue, so, the ciphertext queue becomes empty when the plaintext queue fills up.
The plaintext queue becomes empty and the ciphertext queue ls up because the
plaintext queue is designed to send data to XOR with the keystream to produce the
corresponding ciphertext which is sent to the ciphertext queue at a higher rate than
the incoming speed of the plaintext or outgoing speed of the ciphertext queue. When
resyn: ronizations occur, data transfer out of the plaintext queue is stalled until the
new keystream is produced based on the new IV. During such period, since data ar-
rives continuously at input, the data in the plaintext queue increases. The higher rate
of data transfer out ensures that during periods of SCFB mode the plaintext queue
recovers its stability. Th process oresents the elastic property of the queues [19].
The plaintext queue will overflow if resynchronization occurs frequently. In order to
avoid the overflow, the size of the queuing system has to be large enough to reduce
the probability of overflow to as small as possible {19].

" ot M represent the size of plaintext queue and ciphertext queue and & represent
the ¢t ent number of bits in the plaintext queue, the ciphertext queue should have
(M — k) bits because the incoming speed of the plaintext queue is identical with the
outgoing speed of the ciphertext queue when the resynchronization does not occur.
e ¢ "ytl ughthesyst isde edask (M t) M bits . The buffer size
M has an influence on the delay when data passes through the system. In order to

minimize the delay, the buffer size M should be as small as possible. However, when
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the block cipher gets delayed and queues get held due to the resynchronization, the
buffer size M has to be large enough to collect the incoming plaintext. If I represents
the size of the block cipher, the buffer size A7 should be greater than or equal to B
because the plaintext queue continues to collect incoming data without outgoing data
until the new keystream is ready in the block cipher by using the new IV while the
system collects all B bits of the new IV after the sync pattern is recognized. It is
possible that the last bit of the new IV could happen anywhere within a block of
ciphertext and there is a scenario where only part of the block eeds to be XORed
with some delay since all bits following the last bit of new IV can not be encrypted
until e new block of keystream is ready. If the last bit of [V rea  happens closed to
the b inning of the block of ciphetext, it is necessary that the buffer size A should
be at least equal to B to make sure overflow does not happen in the plaintext queue.
Hence, M should be greater than or equal to B so that the plaintext queue has enough
space to store the data and does not have data overflow [8]. An appropriate value for
M will depend on the ratio of the ¢ intext queue outgoing rate to the incoming rate,
the speed at which a new block is produced, and the requirements for the probability

of error [8].

2.5.3 Serial Transf{ ' vs. Paral =~ Transfer

Serial transfer and parallel transfer are different methods for the transfer of data from
the plaintext queue to the ciphertext queue. In parallel transfer the incoming data
which is stored in the plaintext quer are removed from the queue and sent to XOR
with the keystream in a unit of block transfer size N which is more than one bit.
The resulting N bits of ciphertext are placed into e ciphertext queue at the output

of the system. When SCFB mode is working in OFB mode and the sync pattern



CHAPTER 2. BACKGROUND 32

1s not recognized, the plaintext queue sends N bits of data to XOR with N bits of

keystream at a time.

In serial transfer mode, the plaintext queue sends plaintext data bit by bit to
XOR with keystream to produce the corresponding ciphertext data and the ciphertext
queue receives the ciphertext data bit by bit as well. Serial transfer generally requires
a simpler circuit than parallel transfer.

In this thesis, we will invest’ te different parallel transfer sizes N which varies
from 2 to 8. Both the serial transfer and the parallel transfer have clock limitation

which constrains the system efficiency. The clock limitation will be discussed later.

2.5.4 Relationships of clocks

In SCFB mode, there are three clocks, clkl, clk2 and clk3, to control the running
speeds of the data transfer and the block cipher: clkl is used to clock the transfer
of data out of the plaintext queue and into the ciphertext queue, clk2 is e¢d to
clock data into and out of SCFB system, and clk3 is used to clock a round of the
block cipher. The clkl frequency is designed to be faster than c/k2. This ensures
that | intext queue does not back up due to periods during wk 1 outgoing bits are
stalled because of resynchron tion. This relationship of clocks becomes the clock
limitation which constrains the system efficiency. For simplicity of design, the c/kl
frequency is set to two times faster than the clf ™~ frequency, and  a result underflow
happens frequently in plaintext queue. Overflow happens infrequently in plaintext
queue, except when the buffer size is too small, or the ¢lk3 is too slow. Because the
total number of bits in plaintext queue and ciphertext queue is fixed, unc Jow may
happen in ciphertext queue when overflow happens in plaintext 1eue. Overflow will

never happen in the ciphertext queue, because of the complementary relationship of
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the number of bits in the queues. When underflow happens in the plaintext queue,
then plaintext queue will spend 2 clkl cycles to : ift out 1 valid data bit. So, the
actual rate of the incoming data of ciphertext queue will be equal to the rate of c¢lk2.
This will result in a balance between the rates of e incoming and outgoing data in

ciphertext queue, which will lead to no overflow in ciphertext qucue.

2.5.5 Synchronization Cycle

For SCFB mode, we assume that the ciphertext bits transmitted in the communica-
tion channel can be categorized as illustrated in Figure 2.19. In this figure, it is clear
that n represents the length (in bits) of the sync pattern, B represents the length
(in bits) of the subsequent 1V, and k represents the length of the remaining bits,
which is labelled as OFB block. These & bits of data occur between the end of the
[V and the beginning of the next sync pattern. The variable & is a random variable
depending on the placement of the next sync pattern in the ciphertext. The system
works in CFB mode from when the sync pattern is recognized until the end of the
new IV. Correspondingly, the system works in OFB mode from when the new IV is
all collected until the next sync pattern is found. Hence, a synchronization cycle can
be defined as the set of bits from the beginning of the sync pattern to the beginning

of the next sync pattern. A synchronization cycle consists of n + B + & bits.

sync I OFB block sync v sesees

Figure 2.19: Synchronization Cycle for Serial Transfer Mode SCFB
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and in our work we adopt and iny ment AES algorithin with 128-bit block length
for the block cipher. For encryption, while the plaintext data is being collected, a
counter block (B bits) generated by the counter function is eni spted by the block
cipher to produce the keystream block (B bits). The input of the block cipht is the
counter block (B bits) generated by the counter function. The ¢ nter function keeps
supplying the pseudo random counter block to the block cipher by typically using a
linear feedback shift register (LFSR) which is a st -module of e counter function.
The input signal “Init_CTI" Tlock(B-1:0)" is used to initialize = e counter function.
When the resynchronization does not occur, the counter function does not need any
input, but when the sync pattern is recognized the new IV is sent to the counter
function as the new initial block (B bits). After a block of keystream is rei y and
sent to the output register when the sync pattern is not recognized, the keystream
will be XORed with the plaintext data in a unit of N bits to produce the same length
of ciphertext data which is then stored into the ciphertext queue. For decryption, the
structure is similar to the encryption system except that the position of checkin  the
sync pattern occuring on the ciphertext side. The same sequence of counter values is
encrypted. The result is XORed with a ciphertext block to recover the corresponding
plaintext block. The block cipher uses encrypt 1 function and does not need the

decryption function.

2.5.7 Previous SCFB Implementations

In [19], Yang has already investigated an SCFB system in full parallel transfer mode
(i.e., 128 bits transfered from the plaintext queue to the ciphertext queue at once).
In [19], the hardware imp nentation of SCFB mode utilizes the Des” 1 Analyzer

based on 0.18um CMOS technoli - to perform the fron md synthesis. The hard-
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In Eq.(2.1), D represents the number of bits transmitted. The n nerator represents
the number of blocks corresponding to the encryption of D bits. The denominator
represents the expected number of block cipher operations required in SCFB mode.
The theoretical efficiency is a measure of the rate at which the stream cipher can
encry] compared with the rate of the block cipher. For OFB mode, n can be 1 when
all B bits are used in the XOR operation. For conventional CFB mode, n ¢¢  be 1
with m = B. However, if it is guaranteed to resynchronize from individual bit slips,
CFB must operate with m = 1 and, n = 1/B << 1. In this case, CFB mode is a very

inefficient mode. These are reasons why we are so interested in SCFB mode so far.

Synchronization Recovery Delay

The synchronization recovery delay (SRD) is defined as the expected number of
bits following a sync loss due to a slip before synchronization is regained. We will
investigate the SRD for a | allel transfer implementation of SCFB and pipelined
SCFB mode in Chapter 6. It should be noted that SRD does not include the lost
bits directly due to the slip and no explicit assumptions are made about the number

of bits lost in the slip [8].

Error propagation factor

Error propagation factor (EPF’) is the bit error rate at the out] t of the decryption
divided by the probability of a error in the communication channel (i.c., in the
cipher! t). That is, the EPF measures = av number  bit errors on the
output of the decryption when a bit error occurs. We will discuss the . PF for the

parallel transfer implementation of SC. . and pipelined SCT™ mc ~ - in Chapter 6.
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2.6 Conclusion

The chapter introduces the concepts of block cipher, stream cip! - and block cipher
modes of operation. The structures of hardware in lementations of AES and SC. o
system are also descrit . In the hardware implementation « SCFB niode, the
parallel transfer mode and serial transfer mode are discussed, respectively. In SCFB
mode, we have investigated the nature of the plaintext queue and the ciphertext
queue, the relationship between different clocks, the relationship between queue sizes,
and the data delay during the transmission from the plaintext queue to the ciphertext
queue. As parts of performance analysis, such as theoretical iciency, SRD and

EPF, is discussed in this chapter as well.



Chapter 3

SC.'B Mode Using Serial Transfer

In this chapter, the hardware implementation of Statistical Cipher Feedback (SCFB)
using serial transfer from the plaintext queue to the ciphertext queue is investigated.
An iterative iinplementation of the Advanced Encryption Strandard (AES) is adopted
as the block cipher in this SC. 3 sy m. The S-box of AES is based on the composite
field based on GF(2*) implementation. By using this composite field implemenation
of S-box, the hardware comp ity is minimized. Although the hardware complexity
is low and the throughput of the block cipher is high, the throughput of the plaintext
queue can only reach 100 Mby  which results in the throughput of the SCFB system
only reaching 100 Mbps. By doing the functional simulations for differeut buffer
sizes, we select out an appropriate buffer size of 64 bits which has no queue overflow
inc " lations. We also investigate how the various sync pati 1 sizes affect the
probability ¢ ributic of bi the plaintext queue 1 e

number of bits inn the plaintext queue.

39
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3.1 AES Implementation

In our SCFB mode, we adopt the S-boxes which are constructed to perform inversion
in GF(2%) using a composite field based on GF(2*) [7]. Compared with straightfor-
ward implementation in G F(2%), implementation in GF(2%) is su 1ble for a hardware
implementation using combinational logic for all boolean equations which depend only

on 4 input bits. The resulting circuit area is significantly reduced.

The AES controller is needed to take control of the block cipher. The block
diagram is shown in Figure 3.1. On the input side, the “hold_on” signal comes from
the sync pattern checking model, which we will discuss in the next section. The
“Init_Data_Load” signal comes from the input port of AES, and it indicates that the
initial input text data is loaded to AES. The “Reg_Load” signal comes from the SCFB
system controller, which will be introduced in the next section. On the output side,

”

the “load_data_rcg” signal triggers the register in e first round of AES to load in
the input text data. The “lo¢ * ™ 2y_reg” signal triggers the corresponding register in
the key scheduling block in order to load the proper initial round key/sub-roundkey
to the keys register. The “key_ri mux_sel” signal also goes to multiplexer in the key
scheduling block. It acts as a select signal to choose either the initial key or round
key. The “done” signal indicates whether the keystream is ready or not in the last
round of AES. The “data_reg.mux_sel” signal is used to select the proper round data
to go through the 128-bit register. We re-use the 128-bit r«  ster in order to decrease

the complexity of AES. The “rour const” signal is needed in the F function of key

scheduling, which we ha introdu d in the previous chapter.
The finite state machine (F7V) of 7 . AES controller is illustrated in Figure

3.2. At any state, if “v »t” is b™ 1, t] 1t ate will transfer to Init immedi-

ately. From any state of Round0 to Roundl0 or hold state, the state will transfer to
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LoadInput state on the next clk3 cycle if “init_data_ct]” or “hold_on” or “Reg_Load”
is high. From state Round0 to Roundl0, the output “round_const” varics. From
state Round0 to Round9, the outputs are the same except for “round_const”. The
output “key_reg_mux_sel” is high to generate the round key by Key Scheduling block.
The output “load_key.reg” and “load_data_reg” are also high for these ten states
for loading the round keys and data in the corresponding registers. The output
“data_reg_mux_sel” is set to “01” for these ten states indicating the input ta to
the reused register will be the output of Roundl to Round9, :spectively. When
the state is Load Input, “key_reg_mux_sel” is low, which indicates the Multiplexer
in the Key Scheduling will select the initial keys for the first round. The output
“data_reg_mux_sel” is set to “11”7; = input to the register will be input data to the
block cipher, i.e., “aes_data_in”. If the current state is Roundl(), the only different
output from the previous state is the “load_key_reg”, which is set to low indicating
there will be no round keys offering for the next state. When the current state is
hold, “load_key_reg” and “load.data.r " will both be set to low because there will
be no new round keys or data to be processed. Because the Shift Register spends
more time to shift out a block of keystream than the block cipher to generate one
block of keystream, it is possible the block cipher can not begin to do the encryption

until the Shift Register finishes. So we add a hold state in the AES Controller design.

clk3t —1;;—Dload_data_reg
resetl %;-E}Ioad_key_reg
hold_onE %L——{Dkey_reg_mux_sel
Init_Data_Load- J-/; done
Reg_LoadC %;Ddata_reg_mux_selﬂ 0)
%round_const(? 1)

Figure 3.1: Block Diagram of the AES Controller
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F' re 3.2: FSM of AES Controller
3.2 SCFB Mode Hardware Implementation wetails
The hardware implemen

1 of SCFB mode using serial transfer from the plaintext
queue to the ciphertext queue is illustrated in F

re 3.3. In this section we «plore
an implementation that serially transfers bits and as a result keeps the circuit arca

reduced. In the serial design, there are three clocks, c¢lk1, clk2 and clk3, to control the
running speeds of data transfer and block cipher: clkl is used to clock the transfer
of data out of the plaintext queue and into the ciphertext queue, clk2 is used to
clock data into and out of the SCFB system, and clk3 is used to clock a round of

the block cipher. The plaintext queue and the ciphertext queue are initialized to be
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Figure 3.6: Block Diagram of the System Controller

state and “ChoMUX” will be set to low, which 1 ‘ans that the input to the block
cipher will load in the initial data as its data input. When the system is in Gen_Key
state, the block cipher is in the process of generating the keystream. If “Cipher_Done”
is low or “RD_Done” is low, the system will be kept in Gen_Key state. The system
will not be in Reg_Taking_Key state until “Cipher_Done” is high and “RD_Done” is
high. “Reg_Load” will be set to high when the system is in Reg_Taking_Key state,
which means the Block Register is in the process of load in the 128 keystream from
the block cipher. The state will transfer to Reg_Occupied if input “SR_Done” is low.
When the system is in Reg_Occupied state, which indicates the Block Register has
been occupied by the new keystream and has not transfered them out yet, the output
“Reg_Load” will be set to low and “ChoMUX” will be set to high to get ready to load
the new data from the shift_r. “ster into the block cipher. When the input “SR_Done”
is high, the system state will transfer to SR_Loading_Key from Reg_Taking_ Key or
Reg_Occupied state. When the system is in the state SR_Loading_I ey state, output
“Reg_Load” is set to low and “SR_Load”, “Unhold_on” and “ChoMUX” are set to
high. If “SR_Done” is low, the output “Unhold_on” and “SR_Load” will be set to low

“er one clkl cycle and the system will be in state Wait_State. After a clkl cycle,

the state will transfer from Wait_State to Gen_Key state. At any time, if the 128 bits
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3.2.3 Plaintext Queue and Ciphertext Queue

The architectures of the plaintext queue and ciphertext queue are similar, except for
their initialization mechanisms. The plaintext queue is initialized to be empty, and
ciphertext queue is initialized to be full, i.e., all ‘1’'s. The clock clkl is designed to
be faster than clk2. This ensures that the plaintext queue does not have overflow
due to periods during which outgoing bits are stalled because of resynchronization.
For simplicity of design, the clkl frequency is set to two times faster than the c¢lk2
frequency, and as a result underflow happens frequently in the plaintext queue. So,
we have designed a special sche  : to handle this issue to avoid any data lost in the
queue. Overflow happens infrequently in the plaintext queue (i ‘ally never), except
when the queue size is too small, or the ¢lk3 cycle is too large. Because the total
number of bits in the plaintext queue and the ciphertext queue is fixed, underflow
may happen in the ciphertext queue when overflow happens in the plaintext queue.
Overflow will never happen in the ciphertext queue, because of the complementary
relationship of thie mumber of bits in the queues. When unde  ow happens in the
plaintext queue, the plaintext queue will spend 2 clk1 cycles to shift out 1 valid data
bit. So, the actual rate of the incoming data of the ciphertext queue will be equal to
the rate of clk2. This will result in a balance between the rates of the © o1 * 3 and
« =~ data’ the ciphertext queue, which will lead to no overflow in the cipher it

queue.
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3.3 Synthesis Results, Analysis and C mments on
the Design

As we mentioned before, there are three clock domains in this system. Among these
clocks, clk1 is the fastest clock and it can be the base system clock in the implemen-
tation. The clocks clk2 and clk3 can be derived from clkl. As shown in Figure 3.3,
the ri : R of incoming plaintext data to the plaintext queue is directly equal to the
frequency of clk2, since the data collection of the plaintext queue is based on clh2.
The system efficiency can be contro d by adjustment of these three clock frequencies.
The plaintext queue collects incoming data at the rate R (clk2) and outputs the data
at the rate of clk1l. The ciphertext queue has the reverse situation. The interfaces
(Block Register, Shift Register, etc.) of the block cipher also use clk1 to keep the
same pace as the two queues. The block cipher, which is clocked at a per-round rate
of clk3, has to run as fast as possible in order to reduce the idle time that stalls the
queue bit transfer due to neratii the keystream when resynchronization occurs.
We undertook functional simulations for different buffer sizes for the plaintext

queue of 48 to 256 bits. It was discovered that the overflow only happens when the

queue size is 48 bits. Frc¢ ~ *  simulations, an appropriate buffer -of 64 bits, 1ich
results in no queue o is selected. iae simulation paran s are ade ed as
follows:

1. The sync pattern size, n, is equal to 8.

2. The sync pattern format is “10000000”.

3. The size of the block cipher, B, is equal to 128.

4. clkl, clk2 and clk3 are set to have periods of 5 ns, 10 and 25 ns, respectively.
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These values are selected to give a minimum possible given critical path ming,.

Figure 3.8 illustrates the probability distribution of number of bits in the plaintext
queue for varying sync pattern sizes. This curve is derived from the simulation results.

The simulation parameters are adopted as follows:

1. The sync pattern ze, n, varies from 4 to 8.
2. The sync pattern format is “10...00".
3. The size of the block cipher, B, is equal to 128.

4. clkl, clk2 and clk3 are set to have periods of 5 ns, 10 ns and 25 ns, respectively.

We take the values after 1000 periods of c[k2 in the simulation when the systemn is
working in stable state. In general, with high probability there wi be fewer than 6 bits
in the queue. At times, with non-zero probability, as many as 45 bits were found in the
queue. This results from tI r /nchronization of the SCFB system. The number of
stored bits continuously increases without any outgoing bits for the plaintext queue
when the new IV is used to generate a keystream block. Since resynchronization
happens more frequently for the smaller size of sync pattern, the queue would have
more chances to be filled with incoming bits without any outgoing bits during the
resynchronization for the uller size of sync pattern. The same queue would have
less time for the normal ope tion where the resyn  ronization does not happen. This
is why the peak for the smal size sync pattern is lower than that for the larger size
sync pattern.

We did an ASIC synt! is with 0.18 micron CMOS TSMC (Taiwan Semicon-
ductor Manufacturin  Comyj 1y) standard cell technology using Synopsys 2002 tools

supported by Canadian Microelectronics Corporations (CMC) [20]. We can get a
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Figure 3.8: Probability Distribution of # Bits in the Plaintext Queue

report indicating a number of different gates, tiining and a total overall area when
the circuit is synthesized. We use the number of equivalent 2-input NAND gates for
the total area as a metric of circuit size. The synthesis results of the block cipler,

the plaintext queue and the ciphertext queue are shown in Table 3.1.

Compared to the results of [19] which uses full block parallel transfer, the complex-
ity of the SCFB system is much reduced. The complexity of hardware implementation
of [19] is also shown in Table 3.1. The constraint of the system clock (i.e., clk1) was
10 ns and the total number of gates of the encryption system is 1255644 according to

the synthesis result in [19]. In our design, the synthesis results have been improved
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GF(2%) implementation in order to minimize the ardware complexity. For the in-
vestigation of ASIC synthesis with .18 micron CMOS standard cell technology, the
throughput of the SCFB usii  serial transfer can recach 100 Mbps and the overall
complexity of the system is equivalent to about 42k gates. The efliciency of SCFB
using arallel transfer is about 23.4%. Compared to the results of [19] which applies
full block parallel transfer, the hardware complexity of the SCFB system based on

serial transfer mode s much reduc
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Cl apter

SCFB Mode Using Parallel
Tr nsfer

In this chapter, the hardware implementation of statistical cipher feedback (SCFB)
using parallel transfer from the plaintext queue to the ciphertext queue is investigated.
We have studied SCFB using serial transfer in Chapter 2, wh ~ we kuow that the
throughput of the plaintext queue has become the ottleneck of the system. In order
to solve this problem, we improve the design by enlarging the transfer size of the
queuing system. By changing the serial transfer to parallel transfer in the queues,
a higher throughput of the plaintext queue is obtained comparing with that in the
serial transfer mode SCFB system, which is discussed in the last chapter. For SCFB
mode using parallel transfer, the input and output of the system becomes NV bits in
parallel where N is the number of bits tranferred in paral between qucues.
Compared with the serial transfer mode SCFB, the SCFB using parallel transfer
has more complex architect : while dealing with the data transfer among plain-
text queue, ciphertext queue and IV_Shift_Register. The external signals also have

some changes. For example, the “plaintext” inp . port and the “ciphertext” out-

o4
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put port become multiple bit s als. For the block cipher, we still use the iterative
implementation of Advanced Encr:  tion Standard (AES) as the block cipher in this
parallel SCFB system. We discuss the detailed hardware implementation of e par-
allel transfer mode and compare it to the serial tra fer mode wl h has alrea r been
investigated in Chapter 3. We do the analysis and synthesis as well on this parallel
transfer mode in this chapter.

Through this chapter, the ideal throughput of the block cipher is 128 bits /(12x
clk3 cycle), where clk3 cycle represents the clock period of the block cipher. However,
because of the resynchronizations, for SCFB mode, the throughput is reduced to be
about 50% to 60% of the ideal - ue [8]. On the other hand, the input throughput
of the plaintext queue is N/clk2 cycle, where N is the block transfer size and clk2
cycle represents the clock period of transfer of data into and out of the system. In
the last chapter, we have investigated the serial transfer mode SCFB, and the low
throughput of the plaintext queue has limited the throughput increase of the system.
In our investigation of parallel transfer mode in this chapter, we set the block transfer
size to 4 bits and investigate how is change may improve the throughputs of both
plaintext queue and the system. By doir this, we can make the throughput of the

block cipher as high as possible.

4.1 Hardware In.,..] mentation Details

In our implementation of SCFB using parallel t1 1sfer, AES is still using the key-
on-fly scheme. However, in " 's chapter, we adopt the simple boolean function in
the S-box of AES. Figure 4.1 illustrates the hardware implemen :ion of SCFB mode
using parallel transfer (N =  bits) from the plaintext queue to the ciphertext queue.

Compared with the serial transfer mode, the parallel transfer mode has more complex
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bit long with the last 4-bit block, having a more complex architecture. After the
keystream is successfully loaded to the shift register, this 128-bit keystream will be
transferred out of the shift register to be XOR’d with the plaintext from the plaintext
queue to generate the corresponding ciphertext in a unit of 4 bits. The ciphertext
data will be transferred to both the ciphertext qu e and IV_Shift_Register in a unit
of 4 bits. Since the sync pattern can be generated anywhere while the system is
working in the OFB mode, the last transfer block of the new IV might nced less than
4 bits depending on where the sync pattern is recognized. In this case, the Shift
Register moves data out in a unit of 4 bits, which may contain 1 — 4 valid bits and
0 — 3 invalid bits correspondingly. The same thing happens in 1e plaintext queue,
ciphertext queue, and the IV _Shift_Register. In the upcoming sections, we discuss the
details of the hardware design for the parallel transfer mode, especially for the shift
register, plaintext queue, ciphertext queue and IV shift_register. The VHDL code of

the SCFB system controller is shown in the Appendix A.

clkt
reset-

SR_Load!

Last IV_Length(2:0F
New IV Done:
Unhad_on-

CQ Fullt

L* SR Done
=D keystreaniOut(3:0)

— L>SR Valid

Key_Stream_Out(127:0F

Figure 4.2: Shift Register for Parallel Transfer (N=4)

4.1.1 Shift Register

Figure 4.2 illustrates the blo of *"™re  ter in parallel transfer. Compared
with the shift register in the serial trans i > entation, the shift register in the

parallel transfer mode has a 4-bit keystream output signal and an extra input signal,
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Figure 4.4: Sync Pattern Recc ition for Parallel ..ansfer (N=4)

and {IVi(0) ... IV{(3)}) have already been loaded into the first 8 bits positions in
[V_Shift_Register by using 2 c¢lk1 cycles, where clk1 is needed to clock the transfer of
data into the IV_Shift_Register. The 2"¢ moment describes that at most 4 compar-
isons are complete for every clkl cycle. For example, if the sync pattern is recognized
in the 2"¢ comparison the IV_Shift_Register will begin to collect the 128-bit new IV,
and the first bit of the new IV will be IV5(1). In this case, the “Last_IV_Length”
is set to 2, which indicates that both the shift register and the plaintext queue will
transfer only 2 bits in their transfer blocks after 31 clk1 cycles (i.e., 31 ¢lk1 cycles
are nceded in order to collect 128-bit new IV while the block transfer size is equal to
4 bits). Actually everytin a block of ciphertext data is transferred into the
1V_Shift_Register except for during IV collection, there are four comparisons needed

to be done in order to recognize the sync pattern.

For the block transfer size which is equal to 4 bits, after the sync pattern is
recognized, IV _Shift_Register will spend 32 clk1 cycles to collect the 128 bits new IV.
When the new IV is ready, IV "h legister will provide this new IV to the block
cipher. Figure 4.5 shows how the 128-bit new IV block transfers to IV_Shift_Register

when the sync pattern is recc ized. In the first block of Figure 4.5, we assume
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queue. The block Writer Pointer provides the writing address to the FIFO. The
FIFO is actually a 2-port RAM which is used to store and read the data through
write port and read port, respectively. RFSM, (i.e., read finite statc machine), is
needed to control the behavior of the read port in the plaintext queue. The block
Reader Pointer provides the reading address to the FIFO.

F e 4.7 shows how the plaintext queue adjusts the boundary of each 4-bit
transfer block. We apply three 4-bit registers in order to handle the boundary of the
transfer block when the last block of the new IV is smaller than bits. In Figure 4.7,
Regl is used to transfer the block of data, which contains 1 to4  lid data bits, out of
plaintext queue. Reg?2 is used to store the interme ate data which may contain data
from two successive blocks of plaintext. Reg3 is used to receive the data directly from
the read pipeline of the plaintext queue. When Reg2 is not filled, the next oncoming
block of data will first fill Reg2 and then put the remaining data to Reg3. In the first
block of Figure 4.7, we assume the “Last_IV_length” is equal to 3. Thus, when the
plaintext queue receives this signal, Reg2 will transfer the first 3 bits of data to Regl
in the next c¢lkl cycle. Simultaneously, the new 4-bit incoming data will be separated
into two parts which transfer to Reg2 for the first 3 bits and Reg3 for the last one
bit.

the second block of F 1re 7, we assume the “Last_IV _length” is equal to 4
after the previous block. Therefore, when p~ "atext queue receives this signal, Reg?2
will transfer all the 4 bits of data to Regl in the next clk1 cycle. At the same time, the
1-bit of data in the previous Reg3 will be transferred to Reg2 in e first position, and
the new 4-bit incoming data will be separated into two parts which are transferred
to Reg2 for the first 3 bits and Reg3 for '* : last one bit.

The structure of the ciphertext queue for the parallel transfer mode is similar

to that of the serial transfer mode except for the input pipeline design. Figure 4.8
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Figure 4.7: Plaintext Queue Output Buffer for Parallel Transfer (N=4)

illustrates the structure of the ciphertext queue in parallel transfer mode for block
transfer size which is equal to 4 bits. The output signals, “ODATA”, “OVAL " and
“CQ-Full” | are connected to the external output ports of the system. The “IDATA”
signal represents the ciphertext data, which will be loaded into the input pipeline
that is composed of several 4-bit rc “sters. . .en the ciphertext data will be stored
in the proper positions in the FIFO and read out of the FIFO when the control

3

signals, “wport_meb”, “wp.enab”, “renab” and “rport_meb”, are asserted properly.
rae “IVALID” signal, which comes from the plaintext queue, is used to identify the
validation of the input data. In Figure 4.8, WFSM, (i.e., write finite state machine),
is needed to control the behavior of the write port in the ciphertext queue. The
Writer Pointer provides the writing address to the FIFO. The F.. O is actually a
2-port RAM whi * is used to store and read the data through write port and read
port, respectively. RFSM, (i.e., read finite state machine), is needed to control the

behavior of the system on the read side of the plaintext queue. The block ..cader

Pointer provides the reading address to the . .. .
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ferred to Reg3 when neither Regl nor Reg2 is empty.

The reason we add Reg3 in our design is to detect the number of valid bits in the
upcoming ciphertext block. The new upcoming ciphertext block will be transferred
into the Reg3 in every clk1 cycle when neither Regl nor Reg?2 is empty.

Block 7 and I’ in Figure 4.9 show two different situations when the last block of
IV will be transferred and the number of valid bits in the upcoming ciphertext block
varies from 1 to 4. Block 77 illustrates the case when the sum of number of valid bits
in Reg2 and Reg3 is equal or smaller than 4 (assuming the number of valid bits in
the upcoming ciphertext block is 2 in block I7). Block I'T' illustrates the case when
the sum of number of valid bits in Reg2 and Reg3 is bigger than 4 (assun g the
number of valid bits in the upcoming ciphertext block is 4 in block 71). After this
last block of ciphertext data is transferred, in which the number of valid data varies
from 1 to 4, the block cipher will encypt the new IV to generate the corresponding
new keystream and the ciphertext queue will be frozen. The 4 bits of data in Regl
will not be transferred out until the next 4-bit ciphertext block comes in when the

ciphertext queue is released.

4.2 Synthesis nesults, Analysis and Comments on
the Design

We did the functional simulations i block transfer size equal to 4. Irom 2 sim-
ulatic s, an appropriate qu e size which is equal to 80 x 4 bits was found > have
no queue overflow for the block transfer size which is equal to 4 bits. We also did
the simulation for the queue size equal to 64 x 4 bits. In th ¢ : queue overf

happened frequently. In this chapter, we investigate the probability distribution of
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the current number of bits in the plaintext queue.

The simulation results are shown in Figure 4.10. In the simulation we ignore the
values before 70 ns because in the very beginning of the system, the queue is empty
and the icoming bits would continuously fill up the plaintext queue until e first
block of key stream is finished. Hence, we just consider the data when the system has
reached a steady state  normal operation. In Figure 4.10, clkl is the fastest clock
and it can be the base system clock. The clk2 rate is needed to clock the transfer
of data into the plaintext queue. The clk3 rate is the per-round rate for the block

cipher. The simulations parameters are adopted as follows:

1. The sync pattern size, n, is adopted as 8.
2. The sync pattern format is “10...00".
3. The size of the block cipher, B, is equal to 128.

4. The ¢ 1lation is run for 2 ms, that is, over 10° blocks of laintext data going

into the plaintext queue.

5. clkl, clk2 and clk3 are set to have periods of 9 us, 18 ns and 18 ns, respectively.

These values are selected as the minimum possible given  tical path timing.

The minimum number of bits in the plaintext queue is found to be 20. This
situation only appears about 200 times of the total simulation run of 2 ms after the
system is already working in the stable operation. In the plaintext queue, the 20
(i.e., current number of bits) are composed as follows, 3 x 4 = 12 bits in the input
pipeline, 4 bits in the FIFO, 1d 4 bits in the output pipeline.  this casc, recalling
the structure of the output pipeline of the plaintext queue, there is no valid bits in

Reg3.
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With high probability distribution in Figure 4.10, there are four different values
for the current number of bits in the plaintext queue, which are 21, 22, 23 and 24,
respectively. These four numbers indicate that there are 3 x 4 = 12 bits in the
input pipeline, 4 bits in the FIFO, and 5 or 6 or 7 or 8 bits in the output | Heline,
respectively. The Reg3 is filled with 1 or 2 or 3 or 4 bits of plaintext data for the

previous four situations, respectively.
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Figure 4.10: Probability . istribution of # Bits in the Plaintext Queue (Block Transfer

Size=4 Bits)

We did an ASIC synthesis wi  0.18 micron CMOS TSMC (Taiwan Semicon-
ductor Manufacturing Company) standard cell technology using Synopsys 2002 tools
supported by Canadian Microelectronics Corporations (CMC). We use the number
of equivalent ~ input NAND gates for the total area as a metric of circuit size. The
synthesis results of the block cipher, plaintext q ‘:ue and ciphertext queue in this

parallel transfer (4 bits) mode are shown in Table 4.1. T1 complexity of the SCFB
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system has become 43697 ites vs. 41600 gates for the serial transfer design. The
queuing system of the SCFB system using parallel transfer has more area consump-
tion than that of the serial transfer design. As we have mentioned, the clock clkl is
designed to be faster than clk2. This ensures that plaintext queue does not back up
due to periods during which outgoing bits are stalled because of resynchronization.
For simplicity of design, the clkl frequency is set to two times faster than the clA2
frequency. Based on thesis results, we adopt ¢lk3 to be 18 ns, 18ns as the ¢lk2 period
and 9ns as the clkl period. These clocks are slower than that of the last chapter
(e.g., clkl has become 9 ns vs. 5 ns for the serial transfer design) because the output
pipeline in the plaintext queue and the input pipeline in the ciphertext queue have
become more complicated than before. These changes have increased the delay in the
critical path. The throughput of the block cipher of SCFB mode is reduced compared
to the potential block cipher throughput because of the resynchronizations. The idecal
throughput of the block cipher is 128 bits/(12 x 18 ns) ~ 592 Mbps. On the other
hand, the input throughput of the plaintext queue is N /18 ns = =~ Mbps for N =4
bits. Thus, the " -ot "iput of the SCFB in parallel transfer (4 bits) mode can reach
222 Mbps. The efficiency of the system is 222/592 ~ 38%. Although the through-
put of the queuing system can be enhanced by increasing block transfer size, the
throughput of the block cipher can only reach 500 Mbps - 600 Mbps, which becomes
the bottleneck of the system efficiency and throughput. In the xt chapter, we will
apply the pipeline architecture to the block cipher and increase the block transfer size

of the queuing system in order to increase the throughput of the system.
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Table 4.1: Synthesic Reenlt Tleing (.18 Micron CMOS (Block Transfer Size = 4 Bits)

Total Area (# gates)
Plaintext Queue 721-1
Ciphertext Queue 7424
I Shift_Regi;ter 2375
Al 27180
IV _Shift_Register 1138
SCFB System 43697

4.3 Conclusion

4.4 Conclusion

This chapter investigates the hardware structure of statistical cipher feedback mode
using arallel transfer. Comj -ed with SCFB using serial transfer which is studied in
the last chapter, parallel transfer applied to the hardware implementation of SCFB
is able to improve the throughput of SCFB system. For the investigation of ASIC
synthesis with 0.18 micron CMOS standard cell technology, the throughput of the
SCFB using parallel transfer (block transfer size equal to 4 bits) can reach 222 Mbps,
which is about two times higher than that of the SCFB using serial transfer in Chapter
3. The complexity of the SC. 3 us g parallel transfer is 43697 gates, which is larger
than that of the SCFB using seric transfer. The efficiency of SCFB using parallel
transfer is about 38%, which is much higher than that of SCFB using serial transfer,

where the efficiency can only reach about 23%.
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Pipelined SCFB Moce Usi g
Parallel Transfer

In this chapter, the hardware implementation of pipelined statistical cipher feedback
(SCFB) using parallel transfer from the plaintext queue to the ciphertext queue is
investigated. As we have studied in Chapter 4, the throughput of the SCFB systemn
can only reach 222 Mbits/s. This results for two reasons: the limited throughput
of the block cipher operation (592 Mbits/s) and e necessity of keeping the SCFB
system throughput at less than about 50% of the block cipher throughput to avoid
buffer overflow in the plaintext queue. For this reason, in this chapter we investigate
pipelining the block cipher and increasing the block transfer size of the queuing sys-
tem. By doing this change to our system, we can increase the throughput of both the
block cipher and the plaintext queue so that the throughput of the whole system will
be improved significantly.

In the SCFB mode using serial transfer or parallel transfer, which we have inves-
tigated before, the input data to /.3 comes from the previous output of AES if the

syuc pattern is not recognized. That is, the block cipher works in OFB mode most

71
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of time.

However, OFB is not a suitable choice if we are trying to improve the throughput
of the block cipher by using pipelining. Counter (CTR) mode operation for the
block cipher is a better choice for the purpose of pipelining AES. The reason is that
encryption (or decryption) in CTR mode can be done in parallel on multiple blocks of
plaintext or ciphertext. This property makes it possible to pipeline the block cipher.
That is, the CTR function can provide pseudo random data to the block cipher as
the input in a way that does not depend on the previous output of the block cipher
while OFB mode does. By pipelining CTR mode, we are able to produce a block of
keystream in only 1 clk3 cycle. Hence, pipelined CTR mode operation for the block
cipher overcomes the throughput ¢ iciencies of non-pipelined OFB mode and allows
us to dramatically increase the throughput of the SCFB mode system. However, as
we discuss in the next section, it will be necessary to modify SCFB mode in order for

it to operate with pipelined CTR mode.

5.1 SCFB Based on Pipelined vounter mode (CTR)

SCFB mode based on pipelined CTR mode utilizes the block cipher which has pipeline
architecture in order to increase the throughput of the block cipher. Compared with
the conventional SCFB mode, the pipelined SCt . mode applies a pipelined CTR
mode instead of OFB mode when the synchronization does not happen. The input
data of the block cipher is only provided by the counter function. The counter function
utilizes a linear feedback ift register (LFSR) to produce a pseudo random count
which is sent to the block cipher as the input data every ti @ Wh  synchronization
happens, the new IV will be sent to the counter function for re *= tialization.

Figure 5.1 illustrates ' - :ure of ciphertext ta for pipelined SCFB mode. In
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the system is working in CTR mode, the last transfer block of the new IV might need
less than 8 bits depending on where the sync pattern is recognized. In this case, the
shift_register_1 or shift_register_2 moves data out, which may contain 1 — 8 valid bits
in a keystream block. The samie ing happens in the plaintext queue, ciphertext
queue, and the IV_Shift Register. 1 the upcoming scctions, we discuss the details
of the hardware design for pipelined SCFB using parallel transfer mode, focusing
on the shift register, plaintext queue, ciphertext 1eue and IV_Shift_Register. The
VHDL codes of the SCFB systeni controller and the top level RTL are shown in the

Appendix A.

5.2.1 Implementation of Counter N >de (CTR)

Linear feedback shift registers (LFSRs) [21] are widely used in many of the keystream
generators that have been proposed in the literature. Compared with other genera-
tors, LFSRs are suitable for hardware implementation. They can produce sequences
of large period and good statistical roperties. In our implementation based on AES,
we apply the whole 128-bit block . the incrementit function. Thus, the period of
the incrementing function should be n < 2128, We can select the primitive polynomial
C(D), which is used to construct the LFSR by using Table 4.8 in [21]. This primitive

polynomial C(D) is shown in Eq.(5.1).

C(D) =1+ D*+ D¥ 4+ D'® (5.1)

Then we can get the hardware implementation which is illustrated in Figure 5.3

with regard to Eq.(5.1). In Fig : 5.3, there : > 128 stages numbered stage 0,
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recognized. The “hold_on” signal is also set by the IV_Shift_Register. It just indicates
whether the new IV is complete. The “CTR_Func_Enab” is set by the system con-
troller. When the “CTR_Func_Enab” is high, LFSR will load in “Initial CTR_Block”
as the initial counter block at very beginning of the systemi. Then LFSR will do the
increment operation. For ev  clk3 cycle, if the AES is not frozen, the LFSR will
generate a block of “AES_Input_data” which will act as the input to the block cipher.
At any time, when “hold_on” is high, LFSR will load in the “New_IV” as the initial

counter block and then do the increment operation.

5.2.2 Advanced T icryption Standard (AES)

In our implementation of pipelined SCFB using parallel transfer, the AES implemen-
tation has all the round keys precomputed and stored in memory. This differs fromn
our implementations for the serial and parallel transfer modes in Chapter 3 and 4
where we computed the round key on-the-fly on each round for the data processing.
This precompute scheme has no extra delay while supplying the sub keys, but  takes
more area in order to store all the sub keys. We can not adopt the key on-the-fly on
each round for every encryption because each of the 11 round stages nced the round
keys simultaneously in the pipelinii -chitecture and the key scheduling hardware
can only generate one block of round key per clk3 cycle. After all the subkeys have
been calculated and stored in the 11 individual 128-bit Registers, the key schieduling
can provide the sub keys to each round stage in AES for the following encryption.
For the S-box implementation, we still adopt the simple boolean function.

Figure 5.5 shows the block ¢ 1 0of 11-pipeline stages of AES with key-scheduling.
We perform the outer round pipelining of the > algorithm. ..at is, we need 11

128-bit registers each of which is inserted right after each round operation. There-
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Figure 5.5: 11-Stage Pipelined AES Using Key-Scheduling

fore, every round is performed in one clk3 cycle. In this pipelining implementation, 11
pipeline stages are performed. All the four transformations (S Hstitute Byte, Shift
Rows, Mix Columns and Add Round Keys) in each round operation become the

critical path in AES.

F' wre 5.6 ™7 ‘ra ¢ o 75 controller.  The finite state ma-
chine of the AES Controller for the pipelined SCFB is shown in Figure 5.7. The

“Init 1ata_Load” signal indicates tl  the initial input text data should be loaded to
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when the new IV is ready, the AES does not need to be triggered to count 11
clk3 cycles in order to provide the “unhold_on” signal to the shift registers and
queuing system. Actually, there is no “unhold_on” signal in the pipelined SCFB
using parallel transfer mode because after the new IV is ready the system will
stay in the blackout period during which the sync pattern recognition is ignored

until the new keystream produced by the new IV is ready.

3. The signal “load_data_reg” is removed from the original AES controller because
the key scheduling does not need to re-use the register with the AES round
operation. The key scheduling now has its own registers to store the subround-

keys.

In Figure 5.7, if “reset” is high at any state, the next state will transfer to Init
immediately (i.e., asynchronous reset). From state Round0 to Round9, the output
“round_const” varies. From state Round0 to Round9, the outputs are the same except
for “round_const” and ‘“reg_select”. The output “key_reg mux sel” is high to generate
the round key by Key Scheduling block. The output “load key_reg” is also high for
these ten states for loading the round keys in the correspondin  registers. When
the state is Load Input, “key_reg mux sel” is low, which indicates the Multiplexer
in the Key Scheduling will select the initial keys for the first round. If the current
state is Roundl0, “load_key.reg” is set to low which indicates : the sub roundkeys
have already been calculated and stored in the 11 corresponding registers. When the
current state is hold, “load_key_reg” will be set to low because there will be no new
round keys to be processed. All these 13 states will be experienced again only when
the © 7" " key is char :d by the user because we apply the key scheme where all the

round keys are precomputed and stored in memory.
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2. “SR1_Load” and “SR2_Load” are used to trigger the shift_register_1 or shift_register_2

to load in the 128-bit keystream block, respectively.

. “Flag_SR1” and “Flag SR2” indicate whether shift_register_1 or shift_register_2

is in the middle of transfering keystream data.

. “AES_Frozen” is used to stall the block cipher while the shift registers are filled
or in the middle of transfering keystream. We have to freeze the block cipher
sometimes because the period during which a block of keystream (128 bits) is
XORed with plaintext bits is longer than that during which a block of keystream
is generated in the block cipher. We already entioned this point carlier in this

chapter. If “AES_Frozen” is low, the block cipher will do ¢ encryption.

. “Queue_Stall” is used to stall the shift registers for one clk3 cycle in order
to allow the block cipher to provide one block of keystream (128 bits) to

shift_register_1 or shift_register_2.
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The finite state machine of the system controller is shown in Figure 5.9. At
anytime if the “Reset” is high, the system will be in On_Rst state. The system
stays In the Gen_Key state until “Cipher_Donel” is high (i.e., the first block of
keystreamn (128 bits) is ready in the last pipeline register of the block cipher). Then
the system will go to SR1_LoadK ey state, where the “SR1_Load” is set to high to
trigger the shift_register_1 to load in the first block of keystream (128 bits) from the
block cipher. When the “Cipher_Done2” is high (i.e., the second block of keystream
(128 bits) is ready in the last pipeline register of the block cipher), the system will
switch to SR2_LoadKey state on the next rising edge of ¢lk1. Also the output signal
“AES_Frozen” is set to stall the block cipher for one clk3 cycle high because the
two shift registers are both occupied. Then the system will t nsfer to Wait_Init
state until shift_register_1 has finished its data transfer or the resynchronization hap-
pens. State SR1 " »ad_Norm indicates that shift gister_1 has finished up its data
shifting and will load in a new block of keystrcam (128 bits). It should be noted
that if the signal “AES_Frozen” is low it should go high on the rising edge of the
next clk3. Besides, the signal “AES_Frozen” is synchronized to clA3 domain. So, in
the state SR1_Load_Norm, the s 1al “AES_Frozen” is set to low to allow the block
cipher to do the encryption for one block of keystream. State Waitl_Norm indi-
cates shift_reg * se  is in the middle of shifting keystream data and shift_register_1 is
held. State SR2_Load_Norm indicates that shift_register 2 has finished up its data
shifting and will load in a new block of keystream 128 bits). State Wait2_Norm in-
dicates shift_register_1 is in the middle of shifting keystream data and shift_register_2
is held. States Queue_Stalled3 and Queue_Stalled4 (which will be explained in the
section of shift r “ster) represent if the next block of keystream (128 bits) is not
ready when either shift regisi ~ or shif “ster_2 runs out of ta, both shift reg-

isters and plaintext queue will be 1 d. When signal “AES_Frozen” is high, the
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system state will transfer to Resyncl or Resync2, where a new block of keystream
is loaded to the empty shift register shown in the previous state. Queue_Stalledl
and Queue_Stalled2 (which will be explained in the section of shift register) repre-
sent two special cases when resyn ' -onization happens. If the ‘stem is in either
of these two states, both shift_register.1 and shift _register.2 will be held. When
signal “AES_Frozen” is high, the system state wi transfer to SR1_Load_Norm or
SR2_Load_Norm, where a new block of keystream is loaded to the empty shi regis-
ter and another block of keystream is stored in the last pipeline :gister of the block
cipher. State Resyncl_Contd or Resync2_Contd indicates an intermediate state af-
ter state Resyncl or Resync2 when “SR1_Special Case” or “SR2 Spccial Case” is
low. The reason we add in the state Resyncl_Contd or Resync2_Contd is to set
“SR1 oad” or “SR2_Load” to low, also wait until shift_register 2 or shift_register_1

finishes its data transfering (i.e., “SR2_Fini” or “SR1_Fini” is high.)

5.2.4 IV Shift Register for Parallel Transfer Mode

The IV_Shift_Register block diagrami is shown in Figure 5.10. In the IV_Shift_Register
design for the pipelined SCFB using parallel transfer, both the “Unlhold_on” and
“Chose_New_IV” signals become tl internal signal compared with our designs for
the non-pipelined SCFB. ..ie reason is that the shift registers, plaintext queue and
ciphertext queue will not be held any more when “New_IV_Done” is high, and these
modules certainly do not need the “Unhold_on”. In this pipelined SCFB design,
the “Unhold_on” signal is only useful inside the IV _Shift_Register. The same thing
happens to the “Chose_New_,.” signal because the CTR function can take carc of
the new IV selection instead of the MUX module which we have applied in 2 non-

pipelined SC: o designs. The IV_.ST ™ 7L “ster keeps checking the 8-bit sync pattern
g Y
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bit new IV will be collected in the IV_Shift_Register and, simutancously, the system
will be in blackout period (shown in Figure 5.1). When the new IV is ready, it will
be transfered to the CTR function as the new initial value. The number of bits
in the transfer block right before the new boundary (i.e., the last transfer block of
the blackout period) and the number of bits in the first transfer block of the new
keystream produced by the new IV depend on where the sync f tern is recognized.
Figure 5.11 describes the process of sync pattern recognition. In Figure 5.11, fi  every
clk1 cycle there is at most 8 comparisons occuring in the IV_Shift_Register in order to
check the 8-bit sync pattern. ..e 1% moment describes the first two transfer blocks
of ciphertext data (i.e., {IV5(0) ... IVo(7)} and {/Vi(0) ... IV}(7)}) have already been
loaded into the first 16 bits positions in IV_Shift_Register by using 2 clkl cycles,
where clk1 is needed to clock the transfer of data into the IV_.Sh _Register. The 27¢
moment describes that at most 8 comparisons are complete for every clkl cycle. For
example, if the sync pattern is recognized in the 6** comparison, the IV_Shift_Register
will begin to collect the 128-bit new IV, and the first bit of the new IV will be IV,(1).
In this case, the number of bits in the new keystream’s first transfer block is set to
2, and the number of bits in the transfer block right before the new boundary (i.c.,
the last transfer block in the blackout period) should be 8 — 2 = 6. These two parts,
2 bits and 6 bits, will be combined to form an 8-bit transfer block of keystream and
then XORed with a plaintext transfer block to produce a ciphertext transfer block.
That is, the input transfer block to both the ciphertext queue and IV _Shift_Register
always contains 8 valid bits. Compared with the pattern re gnition using non-
pipelined SCFB, for every clkl cycle, there are always 8 bits of data coming in the
IV_Shift_Register.
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The data in the arrow diagr:  indicates the first transfer block of the new ciphertext
produced by the new keystrcam. The data in dark colour represents the new IV (row
a) or e first transfer block of new IV (row I to IV). The “New Boundary” indicates
where the the blackout period ends up and the new ciphertext produced by the new
keystream starts up. Row I indicates if the sync p: sern is recognized in the 8 com-
parison (shown in Figure 5.11) the first 8 bits of new IV should be the the  ansfer
block of ciphertext, {IV5(0) ... IV4(7)}, which is not shown in row /. The left side of
Row [ illustrates that signal “Sync_Ref_Vector” is equal to 7 (i.e., the syuc pattern is
recognized in the 8" comparison correspondingly) and the first transfer block of new
ciphertext produced by the new IV should contain 8 bits (i.e., {IVi77(0) ... [V172(7)}).
The index of the this first transfer block of new ciphertext is 177 because the blackout
period is 11 x 16 = 176 transfer blocks, which corresponds to 11 pipeline stages of
ciphe :xt blocks (i.e., each ciphertext block contains 128 bits equal to 16 transfer
blocks) in the blackout period before the new IV produced ciphertext block appears.
Row [/ indicates if the sync pattern is recognized in the 7' comparison (shown in
Figure 5.11) the new IV should start with 7V;(0). The left side of Row II illustrates
that signal “Sync_Ref_Vector” is equal to 8 (i.e., the sync pattern is recognized in the
7" comparison correspondingly) and the first transfer block of new ciphertext pro-
duced by the new IV should contain only 1 bit (i.e., {IV176(0)}). Row II] indicates
if the sync pattern is recc 1zed in the 6! comparison (shown in Figure 5.11) the
new IV should start with {/V;(0), IVi(1)}. The left side of Row II17 illustrates that if
signal “Sync_Ref_Vector” is equal to 9 (i.e., the sync pattern is recognized in the 6
comparison correspondingly) and the first transfer block of new ciphertext produced
by the new IV shc " 1lcont. = only 2 bits (i.e., {IVi76(0), I Vi76(1)}). Row [V indicates
if the sync pattern is recognized in the 1°* comparison (shown in  gure 5.11) the new

IV should start with {IVj(0) ... IVi(6)}. The left side of Row IV illustrates that
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stage of AES can not be transfered to the shift register until it is empty. To :solve
this, we have decided to apply two 128-bit shift registers. Figure 5.13 illustrates the
block diagram of shift registers for the pipelined SCFB. The “Syn_Ref(4:0)” signal
is provided by the IV _Shift_Register. It is needed to identify the number of valid
bits in the next transfer block. “Blackout_Period(7:0)” signal is also provided by the
IV_Shift_Register. It indicates how many bits are left in the Blackout mode, which has
been discussed earlier in Figure 5.1. On the input side, “KeyStream_In(127:0)” vector
is one block of the keystream which is produced by the block cipher. The “SR1_Load”
and “SR2_Load” signals indii e whether shift_register_1 or shift_register_2 should
load in the 128-bit keystream block. These two signals are provided by the system
controller, and they do not go h 1 simutaneously. The “Queue_Stall” signal is trig-
gered y the system controller. When “Queue_Stall” is high, the shift registers will
be stalled for one clk3 cycle in order to allow the block cipher to provide one block
of keystream (128 bits). The “SR1_Flag” or “SR2_Flag” signals represent whether
shift_register_1 or shift_register_2 is in the middle of transfering keystream data out to
be XORed with plaintext from the plaintext queue. On the output side, “SR1_Fini”
or “SR2_Fini”, which can not goh 1simutaneously, indicate whether shift_register_1
or shift_register_2 finishes transfering out the keystream. These two sighals go to the
system controller. The “SR1_Special Case” or “SR2_Special Case” signal represents
that the shift_register_1 or shift register 2 will be stalled for two clk3 cycles when
some special case happens on the boundary of the new keystream which is produced

by the new IV. The “KeyStream_Out(7:0)” signal is the output of the shift registers.
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Figure 5.14 represents how the shift registers deal with the new boundary of the
new keystream produced by the new IV which we have mentioned before. Block
(a — 1) in Figure 5.14 shows how the two shift registers deal with the new boundary
(shown in Figure 5.12) of the new keystream produced by the the new IV when resyn-
chronization happens. When the “Blackout_Peric =1 and “Sync_Ref_Vect: =10,
the new keystreamm should provide the first block, which contai 3 bits of data, to
combine with 5 bits in the last transfer block of blackout which is located right before
the new boundary when the next clkl event happens (the new boundary and signals
“Blackout_Period” and “Sync_Ref_Vector” have been explained in Section 5.2.4). All
the data in the diagonal line area is ignored because the blackout eriod has ended. If
the next block of keystream is not ready after the last 5 bits of ita has been trans-
ferred out of shift_register_1, both shift registers and plaintext queue will be held
until shift_register_1 successfully loads in a new block of keystream. In this case, the
system will be in state Queue_Stalled4 (or Queue_Stalled3d in the reverse situation)
which has been shown in F' 1re 5.9. Block (a — 2) shows that after 15 clk1 cycles
the last transfer block of the new keystream in block (a — 1) only contain 5 bits. In
the next clkl cycle, this 5-bit transfer block will be combined with the first 3 bits in
shift_register_1 to fill up the 8-bit register.

Blocks (b — 1) and (b — 2) represent a special case while determining the new
boundary of the new keystream. In block (b— 1), when the “Blackout_Period”=1 and
"Sync_Ref_Vector” =6, the new keystream should provide the first block which only
contains 2 bits of data to combine with 6 bits in the last transfer block of blackout
which are located right before the new boundary. These 6 bits are composed of two
parts, one is the last 5 bits in shift_r ‘ster ~ = shown in block (b— 1)), the other is
the first bit in shift_regis vooin v (b—1)). £ the new keystream

(128 bits) produced by the new IV is loaded in shift_register_2 in the next clk1 event
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(shown in block (b —2)), the first 2 bits of this new keystream w  be combined with
the previous 6 bits, and the remaining 126 bits in the new Keyst um is stored in the
shift_register_2. Then, both shift_register_1 and shift_register_2 will not transfer any
data out (represented in state Queue_Stalledl and Queue_Stalled2 from the systen
controller) until the two blocks of keystream are ready in the block cipher, in which
one block of keystream is trans red into the shift_register_1 and the other block of

keystream is stored in the last pipeline st¢ : of the block cipher.

5.2.6 Plaintext Queue and Ciphertext Queue

The structure of the plaintext queue and cipherte: queue for pipelined SCFB mode
using parallel transfer is simpler than that for the non-pipelined SCFB mode because

of the following factors:

1. The queuing system does not have to be stalled when the resynchronization

happens. This feature has simplified the hardware design.

2. The block transfer size is fixed for the que ng system ¢ the time cven for

the last transfer block of the new keystream of new IV. The queuing systeni in

the non-pipelined SCT'™  »de based on tl  parallel transfer mode has to han-
dle the various block transfer size, which makes the hardv : implem tation
complicated.

Although the structure is simple, it does not indicate the area complexity is small.
This is because the first in and © it out (FIFO) module in the queuing system has to
be mapped to 8-bit register per transfer block while 4-bit or 2-bit register per uuit is
mapped for the non-pipelined SCFB mode based on the parallel tr  fer mode. This

situation will lead to a la: r 1cc lexity for the synthesis results.
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Figure 5.16 illustrates the structure of the ciphertext queue in pipelined SCFB
mode based on parallel transfer mode for block transfer size which is equal to 8 bits.
The output signals, “ODATA”, “OVALID” and “CQ_Full”, are connected to the
external output ports of the system. The “IDA..\” signal represents the ciphertext
data, which will be loaded into the input pipeline that is composed of several 8-bit
registers. Then the ciphertext data will be stored in the proper positious in the FIFO
and read out of the FIFO when the control signals, “wport_meb” | “wp_cnab”, “renab”
and “rport_meb”, are asserted properly. The “IVALID” signal, v ich comes from the
plaintext queue, is used to identify the validation of the input data. In Figure 5.16,
a write finite state machine is needed to control the behavior of the write part in the
ciphertext queue. The Writer Pointer provides the writing address to the FIFO. The
FIFO is actually a 2-port RAM which is used to store and read the data throu; write
port and read port, respectively. A read finite state machine is needed to control the
behavior of the system on the read side of the plaintext queue. The block Reader

Pointer provides the reading address to the FIFO.

IDATAB: 0 YODATAG0)
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Figure 5.16: Ciphertext Queue for Pipelined SCFB Mode Based on Parallel Transfer
(N=8)
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simulation, clk1 is the fastest clock nd it can be e base system clock. The signal
clk2 is needed to clock the transfer of data into the plaintext queue and clk3 is the
per-round rate for the block cipher. The sync pattern is adopted as 1 followed by
seven Os. From the simulations, an appropriate queue size which is equal to 128 x 8
bits was found to have no queue overflow for the block transfer size which is equal to
8 bits. Because the total number of bits in plaintext queue and ciphertext queue is
fixed, underflow may happen in ciphertext queue when the overflow really happens
in plaintext queue. In our system for the queue size equal to 128 x 8 bits, overflow
never happens in ciphertext queue, because of the complementary relationship of the
number of bits in the queues. When underflow happened frequently in the plaintext
queue, plaintext queue spent 2 clk1 cycles to send out one block of plaintext data (8
bits). Thus, the actual rate of the incoming data of ciphertext queue will be equal to
the rate of clk2. This will result in a balance between the rates of the incoming and
outgo g data in ciphertext queue, which will lead to no overflow in ciphertext queue.
In the functional simulation underflow actually happens all the time in the plaintext
queue when the system is working in stable state.

According to the timing delay from the synthesis results, clk3 (i.e., clock period
of the block cipher) is equal to 24 ns, clk2 (i.e., clock period of transfer of data
into and out of the system ) is equ "to "I  and clkl (i.e., the basic system clock
period) is equal to 12 ns. These cloc are slower than that of the SCFB mode based
on the parallel transfer mode which is illustrated in the last chapter. Although the
hardware implementation of the output pipeline in the plaintext uveue and the input
pipeline in the ciphertext queue have become mu  simpler than the serial transfer,
the structures of the shift r “sters and IV_Shift_Register become more complex than
the serial transfer, which leads to a slow clk1. The ideal throughput of the block cipher

is 128 bits /24 ns = 5.333 Gt /s. On the other hand, the input throughput of the
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plaintext queue is V/24 ns 333 Mbits/s for N = 8 bits. Thus, the throughput of
the pipelined SCFB using parallel transfer 8 bits can reach 333 1 )>ps. The efficiency
of the system is 333/5333 ~ 6.24%.

Although the throughput of the block cipher can be enhanced by using pipeline
architecture, the throughput of the queuing system can only reach 333 Mbps, which
becomnes the bottleneck of the syst. 1 efficiency and throughput. The throughput of
the queuing system can be improved by increasing the block transfer size (e.g., 16 bits
or 32 bits or more). However, the hardware complexity of the queuing system will be
increased when the block transfer size increases. The plaintext queue or ciphertext
queue includes write state machine, read state machine, write counter, read counter
and a FIFO. Only the area of FIFO increases dramatically when 1e number of block
transfer size N ° :reases. For example, for tI _ pelined SCFB mode based on the
parallel transfer (N=8 bits) mode, the FIFO in the queuing system is composed of
128 memory units, and in each of them an 8-bit register is applied. If we incrcase N
to B (B=128), the hardware complexity of the FIFO can be increased by 16 times at
least. From the synthesis results, the area of the pipelined SCFB is around 7 times
larger than the serial transfer mo : but the throughput is only 1.5 times larger.
Apparently, from Table 5.2, the area of AES occupies 80% of the cost of SCFB.
Thus, we can make a conjecture, increasing the block transfer size to N=128 would
result in throughput up to 5 Gbps with modest increase in area of pipelined SCFB
because the hardwa; mplexity of AES does not incre:  when N increases. 7
incremental portion mainly comes from the la.  r ' Os in the plaintext queue and

the ciphertext queue.
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5.4 Conclusion

This chapter investigates the hardv e structure of the pipelined SCFB mode based
on parallel transfer mode. Compared with non-pipelined SCFB system based on
parallel transfer mode which is studied in the last chapter, pipelined SCFB mode
has a higher system throughput. For the investigation of ASIC synthesis with 0.18
micron CMOS standard cell technology, the throughput of the pipelined SCFB mode
bascd on parallel transfer (block transfer size equal to 8 bits) can reach 333 Mbps,
which is about 1.5 times than that ¢ the non-pipelined SCFB mode based on parallel
transfer mode in Chapter 4. But the penalty is area, that is, the area complexity is
over 7 times larger than that of SCFB mode based on the serial transfer mode. The
major cause of increased area is the pipelined implementation of AES because of the
11 128-bit registers inserted among the 10 rounds and another 10 128 bit registers to
store the subkey. We conjecture that increasing the transfer block size to 32 or 64 bits
should increase the throughput by a factor of about 4 or 8 with only modest increase
in hardware complexity becasue the area complexity of AES will not increase when

N increases.




Chapter o

A1 alysis of SRD and rPr

In this chapter, we invest’ e the error characteristics and the resynchronization
properties of the pipelined SCFB mode based CTR mode at the output of the de-
cryption. In particular, we study how various blackout periods and sync pattern sizes
affect the error characteristics and resynchronization characteristics in the pipelined

SCFB.

6.1 Error Propagation Factor

The error propagation factor (EPF) [8] is the bit error rate at the output of the
decryption divided by the probability of a bit error in the communication ck 1nel.
We shall consider the EPF of the pipelined SCFB versus different blackout eriods
and different sync pattern siz. as well. The number of blackout periods (i.e., blackout
period ranges from 1 to 13) represents the number of pip ™ : stages in the block
cipher. ..e 11-stage pipe” d SCFB used in our implementation based on AES is

adopted when the EPF \ us different sync pattern sizes is in  stigated.
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6.1.1 EPF ofthe Pipelined SCFB Mode Versus Various Black-

out Period Lengths

In the simulations relating to EPF', the bit errors are generated in a constant distance
in order to avoid the bit error interactions at the receiver. For larger probability of
error (P,), it is possible that the effect of one bit error at the output of decryption
may interfere with the effect of another error in the channel. This means when an
error already occurs in the sync pattern/IV, or a false sync pattern is generated, and

another error occurs in the following CTR mode, the second error will not increase

the EPF. In this case, the two error bits have interacted.

n | R I vR hitg k

B

sesese | yumms 1 . . [E—— it CTR

sync

v

Figure 6.1: Synchronization Cycle for Pipelined SCFB with Various Blackout Period

Figure 6.1, illustrates the ciphertext bits transmitted in the communication chan-
nel for the pipelined SCEB mode (based on CTR. ode). In this figure, n represents
the number of bits in the sync pattern, B is the cipher block size and length of the
subsequent IV, L represents the number of pipeline stages in the block cipher (e.g.,
typically the number of rounds in the block cij ' 'r), ¢ 1 the remaining bits, which
we refer to as the C™R block which has a size of k, occur between the end of the
blackout and the beginning of the next sync pattern. A synchronization cycle consists

of n+ B+ L x B k bits, which includes the set of bits from the beginning of the

sync pattern to the beginning of the next sync pattern.

In general, for the pipelined SCFB mode (based on CTR mode), the expected
error bits at the receiver can be roughly approximated for two cascs as follows.

In the first case, consider the occurrence of an error in the sync pattern or IV
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block. The resulting bound on EPF,y /v is

1 —
EPFsync/Ivzax(k‘+n+B+LXB) (G].)

where k is average length of CTR mode block. Assuming that all CTR mode blocks
are the length of the aver; : CTR mode block, we have k &~ 2", where n is the number
of bits in the sync pattern. Forn = 8, B = 128, L = 11, EPF;,,./;v is approximately
equal to 900. In Eq.(6.1), (L X B4+nx+n+ B) indicates the expected number of bits
at the receiver from where the end of the current sync cycle until the resynchronization
is re-achieved. The coeflicient % in 7 1.(6.1) indicates that on average half of the bits
will be in error before resynchroniz ion.

In the second case, consider the occurrence of an error during the blackout or

CTR mode blocks. The resulting EPFgo,crr is shown in Eq.(6.2).

EPFpoerr 2 1 (6.2)

Eq.(6.2) corresponds to a bit error which occurs in the blackout/CTR mode and
causes one bit error at the eiver such that it does not cause a false sync pattern.
Eq.(6.2) does not account for the circumstance that a bit error causes a false sync
pattern to occur resulting in the receiver improperly assuming a resynchronization.

So overall, weighting each case by its probabil s of occurrence, the lower bound

EPF can be approximated by

EPF = Probuync/ivy X ws®Fyynesrv + Probigoscrry X EPFpojcrr

-

X e/IV

I.x R4k
LxB+k+n+B
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where Probnc/ vy represents the probability of occurrence for a bit error occuring
in the sync pattern or IV and Probgo,crr) represents the probability of occurence
for a bit error occuring in the blackout or CTR mode. For n =8, B = 128, L = 11,
EPF is greater than or approximately equal to 69. For L equal to 1 to 13, EPF is
plotted in Figure 6.2. In Eq.(6.3), it should be noted that the probabilities are very
rough approximations based on assumption that all CTR mode blocks are exactly

the length of the average CTR mode block.

Pipelined CTR mode SCFB vs. various Rlarknit narinde
120 T T T T =
——

EPF == ™ ~=lined
CTR iCFB
Lowaer vound EPF for
Pipelined CTR mode SCFB

110

100 1

Error Propagation Factor
3
T
1

wol - — I L L
0 N - 6 [ - - 1 16

L (number of pipeline stages)

Figure 6.2: EPF of the Piy ined CTR mode vs. various Blackout Period

Figure 6.2 shows results of a simulation examining EPF versus L (i.e., pipeline

stages). .. simulation pa te are adopted as follows:

1. The sync pattern size, n, is equal to 8.



CHAPTER 6. ANALYSIS OF SRD AnD EPF 108
2. The sync pattern format is “10000000”.
3. The size of the block cipher, B, is equal to 128.
4. The number of pipeline stages, L, varies from 1 to 13.
5. The bit errors are inserted to the channel with a distance equal to 10°.

6. The simulation length (i.e., the number of plaintext bits) is equal to 10'.

The results from Figure 6.2 illustrate that the EPF trends 1 wards slowly when
the number of pipeline stages increases. The lower bound on EPF resulted from
Eq.(6.3) is also illustrated in this figure. The tren on the graph is the result of the
effects of false synchronizations. A false sync results in a loss of synchronization up
until the end of the next blackout. That is, much of a sync cycle will be unsynchro-
nized between transmit  and receiver. Since the size of sync cycle is dependent
on L, larger L implies greater EPF when false synchronization occurs at receiver.
Hence, as L increases in the graph the effects of false synchronizations become more
evident and EPF increases. False synchronizations are not incorporated into the

lower bound on EPF.

6.1.2 EF. of Pipelined SCFB Mode Versus Various Sync

Pattern Sizes

We also investigated the T PF versus different values of sync pattern size of n by
running simulations. F _ re 6.3 ustrates results of simulation examining EPF
versus n (i.e., the size of sync  ttern) for both the 11-stage pipelined £ B based
on CTR mode and the ¢ SCFB mode. The simulations parameters are

adopted as follows:



CHAPTER 6. ANALYSIS OF SRD anND EPF 109

1. The sync pattern size, n, varies from 4 to 12.

2. The sync pattern format is “10...00”.

3. The number of pipeline stage, L, is 11.

4. The size of the block cipher, B, is equal to 128.

5. The bit errors are inserted to the channel with a distance equal to 10°.
6. he simulation length (i.e., the number of plaintext bits) is equal to 10

EPF for Different Sync Pattern Sizes vs. Pipelined SCFB Mode / Conventional SCFB Mode

Qimulatinn |_gnnth=1,00-e09 Error Distance = 1.00-e05
260 ——— — T T

—d— Pipelined SCFB mode
—&— Conventional SCFB mode

220 -

nN

=]

=
T
i

&
S
i
i

Error Propagation Factor(EPF)
i g
T T
1 1

1204~ 1

100 T
8o~ ! B
— o—

60— —1L 1 | 1 !
0 4 6 8 10 12 14

Sync Pattern Sizes

Figure 6.3: EPF of Pipelined CTR mode SCFB vs various Sync Pattern Size

In Figure 6.3, the results for pipelined SCFB mode illustrates that the EPF
decreases sig "¢ ‘ly v’ 'n the size of sync pattern increases. For simall n, a false
sync pattern may take several nc cycles to clear up, and, hence, EPF is dramatically

higher for smaller n. For the conventional SCFB mode wherc pipeline stage, L, can
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be considered as 0, has a shorter sync | cle than the pipelined SCFB. So even when
the false sync pattern is frequently found for smaller n, it will not take so long before
resynchronization. This is why for the smaller n, the EPF is not significantly as high

as that for the pipelined SCFB mode.

6.2 Sync Recovery welay

Synchronization Recovery Delay (SRD) is the expected number of bits following a
sync loss due to a slip before synchronization is regained [8]. SRD does not include
the bits that are lost directly due to the slip.

We will consider the SRD of pipelined SCFB versus different blackout periods
and will also investigate the SRD versus different syne pattern sizes. The nu o ber of
blocks on a blackout periods range from 1 to 13. The standard CTR mode SCFDB is
adopted when the SRD for varying values of n is investigated in order to compare

the simulation results to the conventional SCFB in [8].

6.2.1 SRD Versus Various Blackout Period

In general cases, for the pipelined SCFB based on CTR mode, the expected synchro-
nization recovery delay at the receiver can be rouy ly approximated for two cases as
follows.

In the first case, consider the occurrence of a slip on the synce pattern or IV block.

The resulting SRDgyne/ v is

n-+ R _ i
SRDsync/]V% Y LXB+;€+TI+B+LXB (()4)
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where k is average length of CTR mode block, B is the length of the subsequent IV,
L is the number of pipeline stages in the block cipher, and n re « 1ts the number
of bits in the sync pattern. We assume that all CTR mode blocks are exactly the
length of the average CTR mode block (e.g., & = 2", where n is the number of bits in
the sync pattern). For n = 8, B =128, L = 11, SRD,,,/1v is approximately equal
to 3276. In Eq.(6.4), the right side indicates the expected number of bits following a
sync loss due to a slip before synclironization is regained at the receiver.

In the second case, consider the occurrence of a slip during the blackout or CTR

mode. The resulting SRDpo; 1 is

LxB+k
SRDBO/CTR%XT—*_-F'II-*—B-FLXB (65)

We assume that all CTR mode blocks are exactly the length of the average CTR
mode block (e.g., k & 2", where n is the number of bits in the sync pattern). For
n =38, B =128, L = 11, SRDgo,crr s approximately equal to 2376. Eq.(6.5)
indicates that if a bit slip occurs in the blackout/CTR part, sync loss will last until
the end of the next blackout period at the receiver.

So overall, weighting each case by its probability of occurrence, the SRD can be

approximated by

SRD =~ PTOb(sync/IV) X SRDsynC/n/ PTOb(BO/C’TR) X SRDBO/C'I‘R_

Q

—_ — X
n+B4+ " x 7k
I.x b+« (LX,_,—I-E
X —_—

LxB+k+n+B 2

nt (ﬁz +LxB+E+n+B+LxB>

+n+B+LxB>
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where Prob(sy../rv)y represents the robability of occurrence for a bit slip occuring
in the sync pattern or IV, Probgoscrr) represents the probability of occurc ce for
a bit slip occuring in the blackout or CTR mode. For n = 8, B = 128, L = 11,
SRD is approximately equal to 2444. The resulting approximations for SRD for
various values of L are plotted on Figure 6.4. In Eq.(6.3), it sho1 | be noted that the
probabilities are very rough >proximations based on assumption that all CTR mode
blocks are exactly the length of the average CTR mode block. This analysis does not

account for false synchronizations at receiver caused by slips.

For a larger slip rate (i.e., how often a bit slip occurs in the communication
channel), bit slip overlap may happen in the channel. The bit slip overlap represents
the following situation: wl  a bit slip already occurs in the channel, another bit slip

occurs before the new synchronization is achieved. These two bit slips overlap.

ipelinad CTR mode SCFB vs. L ( # pinatina ctanac)

————— T -
[ #»  Approximalions denved from Eq 6.6|

13 =

_8/'//—3/"'/6 "

1 JR—

L (the number of pipeline stages)

Figure 6.4: ... v various Blackout Period
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Figure 6.4 shows results of a simulation examining SRD versus various number of
pipeline stages from 1 up to 13 for the pipelined SCFB based on CTR mode. The
resulting approximations for SRD for various values of L derived from Eq.(6.3) are

also plotted in this graph. The simulation parameters are chosen as follows:
1. he sync pattern size, n, is equal to 8.
2. he sync pattern format is “10...00".
3. he number of pipeline stages, L, varies from 1 to 13.
4. The size of the block cipher, B, is equal to 128.
5. The bit slips are inserted to the channel with a distance equal to 10%.
6. The simulation length (i.e., the number of plaintext bits) is equal to 10%.

In order to avoid the bit slips overlap, we have to choose the proper value of bit
slip rate. We have run simulations for various values of bit slip rate and eventually
the upper bound of slip rate equal to 107 for the number of pipcline stages up to 13
was found to have no bit slip overlap occuring at the receiver. Hence, 10~* is adopted
as the bit slip rate for our simulation examining SRD versus various L.

The simulation results in Figure 6.4 show that the logarithm of SRD increases
when the number of pipeline stages increases. These results are comparable to the
approximations of Eq.(6.4), Eq.(6.5) and Eq.(6.6). The trends of the SRD from the

simulations are quite closed to the approximations in Figure 6.4.

6.2.2 SR. Versus Various Sync Pattern Si:

Weh  also ., wed the SRD versus different values of n (i | the ze of sync

pattern). Figure 6.5 shows results of a simulation examining ...J versus various sizes
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of sync pattern from 4 up to 12 for the pipelined SCFB (L = 11). The simulation

parameters are chosen as follows:

1. The sync pattern size, n, varies from 4 to 12.

2. The sync pattern format is “10...00".

3. he size of the block cipher, B, is equal to 128.

4. he bit slips are inserted to the channel with a distance cqual to 10°.

5. The simulation length (i.e., the number of plaintext bits) is equal to 10°.

Sy 1y vs. Sync Pz B = 12R hite Rit Qlin Rate = 1/100000)
Y— —_ —_— -

i '_'./‘// B
JE—

log(SRD)
w
T
N

5 ~—&— Conventional SCFB B
—— Pipeiined SCFB (L=11}

4 L | 1 L t L - J—
[+ 4 - 6 7 8 9 1w . - 13
Sync Pattem Size

Figure 6.5: SRD vs. various Sync Pattern size

In Figure 6.5, the cur  wi le »0 sents the conventional SCFB

mode, which is the hybrid of CFB mode and OFB mode as we have discussed in
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chapter 2. The curve with triangle symbols represents the C” , mode SCFB. For
convenience, the graph presents a plot of the logarithm base-2 of the SRD.

In [8], the lower bound and 1 der bound on SRD are discussed. In the SRD
simulation results from [8], the lower bound and upper bound converge as n gets
larger. In our simulation, the SRD simulation results of the CTR mode SCFB and
the conventional SCFB also converge as n gets larger. As discussed in [8], SRD

increases in an exponential manner when n gets larger.

6.3 Conclusion

This chapter investigates the error characteristics and the resynchronization prop-
erties of the pipelined SCI . mode. In the study of EPF, we do the simulations
examining EPF versus L. We also provide the lower bound of EPF versus L with-
out incorporating the false synchronizations. By running the simulations, we also
investigated the EPF versus ~rent values of syne pattern size. In the study of
SRD, we do the simulations examining SRD versus L and, we provide the er  ations
which approximate SRD versus L. We also run the simulation to investigate the

SRD versus various sync pattern sizes in this chapter.
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Conclusions and Futi r. Work

7.1 Conclusions

This thesis investigates the statistical cipher fee jack (SCFB) mode based serial
transfer mode and parallel transfer. In addition, we propose and analyze a p  elined
SCFB mode designe for high »eed implementations. SCFB mode can configure a
block cipher to operate as a stream cipher by sending in the plaintext and sending out
the ciphertext symbol by symbol or bit by bit. So, SCFB nmode can be categorized
as a self-synchronizing stream cipher.

In order to overcome CFB mode’s poor efficiency and OFB mode’s lack of resyn-
chronization, SCFB mode combines CFB mode and OFB mode to not ouly im-
prove the efficiency by working in OFB mode most of the tiime but also obtain self-
synchronization by searching for t  sync pattern in the ciphertext and working in
CFB mode to periodically obtain the IV after the sync pattern is recognized. The
hardware design and implementation is performed by using ModelSim SE 6.0, and
the synthesis is performed by using synopsys tool with 0.18 micron CMOS technology

from TSMC | .«iwan Semiconductor Manufact ‘ng C¢ pany) supported by Cana-
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dian Microelectronics Corporation (CMC) to study the timing delay and the area
complexity. We also did the functional simulations of the SCFB 1ode in software to
analyze error propagation factor (EPF') and synchronization recovery delay (SRD).
The AES adopts both composite field implementation to decrease the hardware com-
plexity and simple boolean function implementation to improve the throughput of
the block cipher. The former is used in SCFB mode using serial transfer mode and
the latter is applied for the parallel transfer mode.

We have implemented the SCFB mode using serial transfer mode, SCFB mode
using parallel transfer mode for the block transfer size equal to 4, and pipelined SCFB
mode based on parallel transfer mode. In the pipelined SCFB mode implementation,
the throughput of the pipelined SCFB system can reach up to 333 Mbps which is
approximately 1.5 times faster than the parallel ansfer mode (N=4), and the of-
ficiency is only approximately 6.24%. The plaintext queue is in underflow most of
time due to the high speed of key generation in the pipelined block cipher. The area
complexity of the pipelined SC. 3  rstem i droximately 7 times larger than the
serial transfer mode.

The probability distribution of the number of b 3 in the plaintext queue is 1vesti-
gated for both the serial transfer mode and the parallel transfer mode for varying sync
pattern sizes. This analysis reveals that resynchronization happens more frequently
for the smaller sizes of sync pattern, and the queue would have more chances to be
filled with incoming plaintext bits without any outgoing bits during the resynchro-
nization. From the functional simulations for different buffer sizes, an appropriate
buffer size of 64 (64 x N for the parallel transfer mode SCFB) bits, which results in
no queue overflow, is selected for SCFB mode using serial transfer mode and parallel
transfer mode (N=4). The b "er  : for the pipelined SCFB mode based on the

parallel transfer (N=8 bits) »de is finally equal to 128 x N in which no queuc over-
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flow is found. This results from the high speed of keystream generation in the AES
block cipher which has a 11-stage pipeline architecture.

From the synthesis results, the pipelined SCFB system based on parallel transfer
mode has the most complicated hardware implementation and the most complex
timing issues which constrain the efficiency but still allow higher speed. The SCFB
system based on serial transfer mode has the simplest hardware nplementation and
the timing delay for the critical path is the smallest but the throt "1put is con:  -ained
by the plaintext queue timing. The SCFB system based on parallel transfer mode
(N = 4) has an area complexity twice larger than serial transfer mode but the timing

delay is one half of the serial transfer mode.

7.2 Future Work

Compared with the SCFB mode using parallel transfer mode (N=4), the area com-
plexity of pipelined SCFB system (N=8) increases dramatically, while the throughput
increases only by 1.5 times. . wo possible directions can be taken to solve this prob-

lem.

1. Simplify the hardware structures of the two shift registers which is one of the
most complex modules in the pipelined SCFB mode in order to reduce the area

complexity.

2. 1crease the block transfer size (N) in order to improve the throughput of the
SCFB system as well as the efficiency of the SCFB system. Iu the extreme,
the design could have N = B (that is, transfer block size equal to cipher block

size).
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SCFB mode can be implemented in field-programimable gate arrays (FPGA) which
allows for re-programmable debugging and lower non-recurring engineering costs com-
pared with ASICs. Although FPGAs are normally slower than ASICs and draw nore
power, we can test the SCFB systemn on a real chip if we can successfully implement
the system on the FPGAs. We may also comipare the SCFB mode to other modes

which are widely used today in the physical layer of high speed networks.
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Aj pendix A

Partial VHDL Cod s for SCFB

Systems

A.1 ScrB System Controller using Serial Transfer

—Author: Liang Zhang

—Modification Date: 20th, Aug. 2006

-SCFB system Controller

lib
use icee.std_logic_1164.all;
use ieee.std_logic_arith.all,

use work.all;

entity Controller_SCFB is
port( clkl : in std_logic;

reset : in std_logic;
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New_IV _Done : in std_logic;
Cipher_Done : in std_logic;
RD_Done : in std_logic;
SR_Done : in std_logic;
Cho_Mux : out std_logic;
SR_Load : out std_logic;
Reg_Load : out std_logic;
Unhold_on : out std_logic);
end Controller SCFB ;

architecture structural of Controller SCFB is

type state_type is (On_Rst, Gen_Key, Reg Taking Key, Reg_Occupied, SR_Loading_Key,
Wait_State, New_IV_Found);

signal state, next ite: sta t _e;

begin —Next State Decoding:
Next_State_Decoding: process (state, New_IV_Done, Cipher_Done, RD_Done, SR_Done)
begin

case state 1s

when On_Rst =>

next_state <= Gen_Key;

when Gen_Key >

if (Nev ™7 Tone="1")tl
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next_state <= New_IV_Found;

elsif (Cipher_Done="1" and RD_Done="1") then
next_state <= Reg_Taking_Key;

elsif (Cipher_Done="0" or RD_Done="0") then
next_state <= Gen_Key;

end if;

when Reg_Taking Key =>

if (New_IV_Done="1") then
next_state < New_IV_Found;
elsif (SR_Done="0") then
next.state < Re¢  Dccupied;
elsif (SR_Donc '1") then
next_state <= SR_Loading_Key;
end if;

when Reg_Occupied =>

if (New_IV_Done '1’) then
next_state < New IV 70 d;
elsif (SR_Done="0") then
next_state <  Reg_Occupied,
elsif (SR-Done="1") then
next_state < SR_Loading_Key;
end if;

when SR_Loading Key >
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if (New_IV_Done="1") then

next_state <= New_IV_. cund;

elsif (New_IV_Done="0" and SR_Done="0") then
next_state <= Wait_State;

end if;

when Wait_State >

if (New IV _Done="1") then
next_state <= New_IV_Found;
else

next_state <= Gen_Key;

end if;

when others =>

next_state <= Gen_Key;

end case;

end process Next_State ~ 2coding;

— Clock the State Machine:
clock_state_machine: process (clkl, reset) begin
if (reset="1") then

state <= On_Rst;

elsif ( " V'event and clk.  )") then

state <= nex’ ‘ate;

end if;
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end process clock_state_machine;

—Generation of the Combinatorial Control Signals:

combinational logic: process (state, next_state)

begin

if (state = On_Rst) then

Cho Mux <="0";

SR_Load <= "0%

Unhold_on <= "0’;

Reg_Load <= "0';

elsif (state = Reg_Taking_Key) then
Reg_Load <= "1

elsif (state = Reg_Occupied) then
Reg_Load <= "0

Cho_Mux <= "1

elsif (state = SR_Loading.Key) then
SR_Load <= "1,

Unhold_on < 17

Reg_Load <= "0,

Cho_Mux <="17;

elsif (state = Wait_State) then
Unhold_on <= "0’;

SR _Load <= "0’;

elsif (state = New IV.F 1) " n
SR_Load <= "0";
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Unhol on <=0’
Reg_Load <= "0,
Cho_Mux <= "1,
end if;

if (next_state = Wait_State) then
SR_Load <= "0";

Unhold_on <= "0;

end if;

end process combinational logic;

end structural,

A.2 SCFB System Controller using Parallel Trans-

fer

library ieee;
use ieee.std_logic_1164.all;
use ieee.std logic_arith.all;

use work.all;

entity Controller SCFB is

port( clkl : in std_logic;
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reset : in std_logic;

New_IV _Done : in std_logic;
Cipher_Done : in std_logic;
RD_Done : in std_logic;

SR _Done : in std_logic;
Cho_Mux : out std_logic;
SR_Load : inout std_logic;
Reg_Load : out std_logic;
Unhold_on : out std_logic);
end Controller SCFB ;

architecture structural of Controller . SCFB is

type state_type is (On_Rst, Gen_Key, Reg_Taking Key, Reg_Occupied,
SR _Loading_Key, Wai' “tate, New_IV_Found);

signal state, next_state : state_type;

signal tmp : std_logic;

begin

process (clkl, reset, state)

begin

if (reset="1") then

tmp <= "0,

elsif (clkl’event and clk 0" and SR_Load = '1") then
tmp <= "1

elsif (state /= SR_Loading k ') then
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tmp <= "0’;
end if;

end process;

—Next State Decoding:

Next_State_Decoding: process (state, New_IV_Done, Cipher_Done,
RD_Done, SR_Done)

begin

case state is

when On_Rst =>

next_state <= Gen_Key;

when Gen_Key =>
if (New_IV_Done="1") then

| next_state <= New_IV_Found;

‘ elsif (Cipher_Done="1" and RD_Done="1") then
next_state <= Reg_Taking Key;
elsif (Cipher_-Done="0" or RI ~ on¢ 0’) then
next_. te <= Gen_Key;

end if;

when Reg_Taking Key >
if (New_IV_Done="1") then
next_state <= New_IV_Found;

elsif (SR_Done='0’) then
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next_state < Reg_Occupied,
elsif (SR_Done="1") then
next_state <= SR.Loadi1 Key;
end if;

when Reg_Occupied =>

if (New_IV_Done='1") then
next_state <= New_IV_Found;
elsif (SR_Done="0") then
next_state <= Reg_Occupied;
elsif (SR_Done="1") then
next.state <= SR_Loading.Key;
end if;

when SR.Loading.Key >
if (New_IV_Done='1" and
next_state /= Wait_State) then

next_state <= New_IV_Found;

elsif (New_IV_Done="0" and SR_Don

next_. ite <= Wait_State;

end if;

when Wait_State =>
if (New_IV_Don '1’) then
n state New_IV.

else
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next_state <= Gen_Key;

end if;

when others =>

next_state <= Gen_Key;

end case;

end process Next_State_Decoding;

— Clock the State Machine:
clock_state_machine: process (clkl, reset)
begin

if (reset="1") then

state <= On_Rst;

elsif (clkl’event and clk1="0") then

state <= next_state;

end if;

end process clock_state_machine;

—Generation of the Combinatorial Control Signals:
combinational_logic: process (state, next_state, tmp)
begin

if (state  On_Rst) then

Che " Tux <= "07;

SR_Load <= "0";



APPENDIX A. PARTIAL VHDL CoODES FOR SCFB SYSTEMS

Unhol on <= 07

Reg_Load < °0;

elsif (state = Reg_Taking Key) then
Reg_Load <= 17

elsif (state = Reg_Occupied) then
Reg_Load <= "0

Cho Mux <= "1"%

elsif (state = SR_Loading_Key) then
SR_Load <= "1

Unhold_on <= "17;

Reg_Load <= "0’;

Choll wx <="17

elsif (state = Wait_State) then
Unhold_on <= "0’;

SR_Load <="0;

elsif (state = New_IV_Found) then
SR_Load <="0’;

Unhold_on <= "0";

Reg_Load < 707

Cho_Mux <= 1%

end if;

if (next_state = Wait_State) then
Unhold_on <= "0’;

end if;
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if (tmp = ’1") then
SR_Load <= "0";
end if;

end process combinational_lc ¢

end structural;

A.3 Pipelined SCF System Controller

library icee;
use ieee.std_logic_1164.all;
use ieee.std_logic  “th.

use work.all;

entity Controller.CTR_SCFB is
port( clkl : in std_logic;

clk3 : in std_logic;

reset : in std_logic;
Cipher_Donel : in std_logic;
Cipher_Done2 : in st ' ")gic;
SR1_Fmi : in std logic;

SI' ™ Fini : in st ' "ogic;

Blackout_Period : in integer range 0 to 191;
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SR1_Special Case : in std_lc c;

SR2_Special Case : in std_le c;

CTR_Func_Enab : inout std_logic;
SR1_Load : out std_logic;
SR2_Load : out std_logic;
Flag SR1 : out std_ logic;
Flag_SR2 : out std_logic;
AES_Frozen : inout std_logic;
Queue_Stall : out std_logic );

end Controller CTR_SCFB ;

architecture structural of Controller CTR_SCFB is

type state_type is (On_Rst, ¢ 1.Key, SR1_LoadKey, SR2_LoadKey,

Wait_Init, SR1_Load_Norm, SR2_Load_Norm,
Waitl_Norm, Wait2_Norm, Resyncl, Resyncl_Contd,
Resync2, Resync2_Contd,

Queue_Stalled1, Queue_Stalled2,

Queue_Stalled3, Queue_Stalled4);

signal current_state, next_state : state_type;

begin

—Next State Decoding:

Next_State_Decoding: process (current_state,Cipher_Donel,

I8}
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Cipher_Done2, SR1_Fini,
SR2_Fini,Blackout_Period, AES_Fro 1,
SR2_Special_Case)

begin

case current_state is

when On_Rst =>

next_state <= Gen_Key;

when Gen_Key =>

if (Cipher_Donel=’0") then
next_state <= Gen_Key;

elsif (Cipher_Donel=’1") then
next_state <= SR1_LoadKey;

end if;

when SR1_LoadKey >

if (Cipher_Done2 = '0’)then
next_state <= SR1_LoadKey;
elsif (Cipher_Done2="1") then
next_state <= SR2_LoadKey;

end if;

when SR2_LoadKey =>

next_state <= Wait_Init;
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when Wait_Init =>

if (SR1.Fini ’1’) then
next_state < SR1_Load_Norm,;
elsif (SR1_Fini = '0’) then
next_state <= Wait_Init;

end if;

when SR1_Load Norm =>

next_state <= Waitl_Norm;

when Waitl_Norm =>

if (SR2_Fini = ’1’) then

next_state <= SR2_Load_Norm;

elsif ((Blackout_Period = 1) and AES_Frozen
next_state <  Resync2;

else next_state <= Waitl _Norm,;

end if;

when SR2_Load_Norm =>

next_state < Wait2_Norm;

when Wait2_Norm >

if (SR1_Fini = '1") then

next ate < SRIl.Load_Norm;

elsif (( ackout_Period = 1) and ozen

next_state <= Resyncl;

"1’)then

1) ¢l
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else next_state <= Wait2_Norm,;

end if;

when Queue_Stalled3 =>

if (AES_Frozen 1) then
next_state <= Resyncl;

else next_state <= Queue_Stalled3;

end if;

when Resyncl =>

if (SR2_Special Case = "0’ ) then
next_state <= Resyncl_Contd;
elsif (SR1_Special Case = '1") then
next_state <= Queue_Stalledl;

end if;

when Queue_Stalled4d =>

if (Al  Frozen '1’) then
next_state <= Resync2;

else next_state <= Queue_Stalled

end if;

when Resync2 =>
if (SR1._Special .Case = '0’) then
next_state <= ..esync2_Contd;

elsif (SR2_Special Case ’1’) then
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next_state <= Queue_Stalled?2;

end if;

when Resyncl_Contd =>

if (SR1_Special_Case = '0" and SR1_Fini = '1") then
next_state <= SR2_Load_Norm;

elsif (SR1_Special_Case '1’) then

next_state <= Queue_Stalledl,

else next_state <= Resyncl_Contd,

end if;

when Resync2_Contd =>

if (SR2_Special_Case = ’0’ and SR1 Fint = '1’) then
next_state <= SR1_Load_Norm;

elsif (SR2_Special_Case  ’1’) then

next_ ite <= Queue_Stalled2;

else next_state <= Resync2.Cont

end if;

when Queue_Stalledl =>

if (AES_Frozen = '1") then
next_state <= SR2_Load_Norn;
else next_state <= Queue_Stallec

end if;

when Queue_Stalled2 =>
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if (AES_Frozen = '1") then
next_state <= SR1_Load_Norm,;

else next_state <= Queuc_Stalled2;

end if;

when others =>

next_state <= Gen_Key;

end case;

end process Next_State_Decoding;

— Clock the State Machine:
clock_state_machine: process (clkl, reset)
begin

if (reset="1") then

current_state <= On_Rst;

elsif (clkl’event and clk1="0") then
current_state <= next_state;

end if;

end process clock_state_machine;

—Generation of the Combinatorial Control Signals:
combinational_logic: process (cur ate, clk3, next_state)
b n

if (current_state = On_Rst) then
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SR1_Load <= "0’
SR2_Load <= "0";
Flag SR1 <= "0’;
Flag SR2 <= "0";
AES Frozen < 0’

Queue_Stall <= "0’;

elsif (current_state = SR1_LoadKey) then
SR1_Load <= "1%

elsif (current_state = SR2_LoadKey) then
SR2_Load <= "1

SR1_Load <= "0’

AES Frozen <= "1";

Flag.SR1 < 1,

elsif (current_state = Wait_Init) then
SR1_Load <= "0,
SR2_Load <= "0,

elsif (current_state = SR1_Load_Nc n) then
SR1_Load <= "1’;

Queue_Stall <="0’;

elsif (current_state = Waitl_Norm) then

SR™ "had <= "0’
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SR2_Load <= "0’;
Flag{ 1 <=0’

Flag SR2 <= ’1’;

elsif (current_state ~ SR2_Load_Norm) then
SR2_Load <= "1’

Queue_Stall <= "0,

elsif (current_state = Wait2_Norm) then
SR1_Load <= "0";
SR2_Load <= "0’;
Flag SR1 <= "1,
Flag SR2 <= "0’;

elsif (v mt_state  Resyncl) then
AES _Frozen <= "0’;

SR1_Load <= "1’;

Queue_Stall <= "0;

Flag SR1 <= "0’;

Flag SR2 <= "1";

elsif (current_state = Resync2) then
AES_Frozen <= "0

SR2_Load < '1;

Queue_Stall <= "0’;

Flag SR1 <="1";
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Flag SR2 <= "0’;

elsif (current_state = Resync”™ Tontd) then

SR2_Load <= "0’;

elsif (current_state = Resyncl_Contd) then

SR1_Load <= "0’;

elsif (current_state = Queue_Stalled1) then
Queue_Stall <="1%;

SR1_Load <= "0’;

Flag SR1 <= "1’

Flag SR2 <="0;

elsif (current_state = Queue_Stalled2) then
Queune_Stall <= "1’;

SR2_Load < 07

Flag SR1 < 0’

Flag SF~ <="1";

elsif (current_state = Queue_Stalled3) then

Queue_Stall <="1";

elsif (current_state  Queue_Stalled4) then

Queue_Stall <="1";
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end if;

— To make the block cipher generate the key
— stream in 1 clkl cycle earlier

if (next_state = SR2_Load_Norm or
next_state = SR1_Load_Norm) then
AES_Frozen <= "0,

end if;

~ Constrain the Block Cipher to generate

— only one block of new Keystream per clk3
if (clk3’event and clk3  '1’) then

if (AES_Frozen = 0’ and

current_state /= On_Rst and

current_state /= Gen_Key and
current_state /= SR1_LoadkF _) then
AES_Frozen <= "1,

end if;

end if;

end process combinational_logic;

~To handle the "CTR_, anc_._aab”
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process (reset, current_state, clk3)
begin

if (reset '1’) then
CTR_Func_Enab < '0’;

elsif (current_state ~ On_Rst) then
CTR_Func_Enab <="1";

end if;

if (clk3’event and clk3 = ’1’ and CTR_Func_Enab = '1") then
CTR_Func_Enab <= "0’;
end if;

end process;

end structural;

A.4 Top Level RTL of Pipelined SCF b System

— Top-level design of the Pipelined SCFB

— Author : liang zhang

— July 23rd, 2007

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
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USE IEEE.numeric_std.ALL;
use work.mypackage.all;
use ieee.std_logic_unsigned.all;

use work.all;

entity SCFB is

port ( clk3 : in std_logic;

clkl : in std_logic;

clk2 : in std_logic;

reset : in std_logic;

aes_init_data_load : in std_logic;

ivalid : IN std_logic;

Plaintext_in : IN std_logic_vector(7 downto 0);

syn_pattern : in std_logic_vector(7 downto 0);

Num_PQ_Overflow_Bits : out std_logic_vector(11 DOWNTO 0);
Num_CQ_Underflow_Bits : out std_logic_vector(11 DOWNTO 0);
aver_Num_bit_in_PQ : out " " gic_vector(32 downto 0);
PQ_Full : inout std_logic;

CipherText : inout std_logic_vector(7 downto 0);

ovalid : OUT std_logic );

end SCFB;

architecture STRUCTUR "™ of SC B is
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— ===== Component Definition ===
component AES_en_fly_onKey withCTR is
PORT(

clk3 : IN STD_LOGIC;

rst : IN STD_LOGIC,;

aes_init_data_load : IN STD_LOGIC,;
hold_on : in std_logic;

AES_Frozen : IN std_logic;

CTR.Func_Enab : IN std_logic;

new_IV : IN std_logic_vector(127 downto 0);

ciphertext : OUT data_type;
donel : OUT STD_LOGIC;
done2 : OUT STD_LOGIC
);

end component;

component Shift_Register CTR_SCFB is
port( clkl, reset : in std_logic;

CQ_Full : in std_logic;

SR1_Load : in std_logic;

SR2 Load : in std_logic;

flagl 1:ins" "' ‘¢

flag SF™ : instd ™ ¢

Queue_Stall : in std_logic;
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Key_Stream_In : in data_type;
Sync_Ref : in std_logic_vector(4 downto 0);

Blackout_Period : in integer range 0 to 191;

SR1_Special_Case : inout st' "gic;
SR2_Special_Case : inout std_logic;
SR1_Fini : inout std_logic;

SR2_1 1i: inout std_logic;
SR_Valid : out std_logic;

Key_Stream_Out : inout std_logic_vector(7 downto 0)

)i

end component;

component Controller CTR_SCFB is

port( clkl : in std_logic;

clk3 : in std_logic;

reset, : in std_logic;

Cipher_Donel : in std_logic;

Cipher_Done2 : in std_logic;

SR1_Fini : in std_logic;

SR2_Fini : in std_logic;

Blackout_Period : in integer range 0 to 191;
SR1_Special_ Case : inst™ "~ 'c;

SR2_Special_Case : in std_logic;
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CTR_Func_Enab : inout std_lc ‘¢;
SR1 _Load : out std_logic;
SR2_Load : out std_logic;

Flag SR1 : out std_logic;
Flag_SR2 : out std_logic;

AES Frozen : inout std_logic;
Queue_Stall : out std_logic

);

end component ;

component FIFO_PQ is

PORT (

welk : IN std_logic;

rclk : IN std_logic;

rst : IN std_logic;

ivalid : IN std_logic;

idata : IN std_logic_vector(7 downto 0);
SR_Valid: in std_logic;

PQ_F 7! inout std_logic;

odata : mout std_logic_vector,. downto 0);
ovalid : OUT std_logic;

aver Num_bit_in_PQ : out std_l c_vector(32 dow o0 0)
);

END component;

component .« «.'O_.CQ is
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PORT (
welk : IN std_logic;
rclk : IN std_logic;

rst : IN std_logic;

ivalid : IN std_logic;

idata : IN std_logic_vector(7 downto 0);

odata : OUT std_logic_vector(7 downto 0);

ovalid : OUT std_logic;

CQ_Full: inout std_logic

)i

END component;

component IV_Queue is

port (clkl : in std_logic;

reset : in std_logic;

PQ-Valid : in std_logic;

IV_in : in std_logic_vector(7 downto 0);
syn_pattern : in std_lc ‘c_vector(7 downto 0);
SR._pointer : in natural range 0 to 8;

Las® "V_length_contd : in natural range 0 to 100;
SR_Valid : in std_logic;

1
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SR _Load : in std_logic;

new_IV_done : inout std_logic;
hold_on_for PQ_SR : inout std_logic;
last _I'V _notice : inout std_logic;

IV out : out std_logic_vector(127 downto 0);

IV_SR_counter : inout std_logic_vector(4 downto 0);
Blackout_Period : out integer range 0 to 191;
sync_ref : out std_logic_vector(4 downto 0)

);

end component;

component PQ_Overflow_Counter is

PORT(

clk2 : IN std logic;

rst : IN std_logic;

PQ_Full : IN std_logic;

N1 PQ_Overflow Bits : out si =~ ector(11 DOWNTO 0)
);

end component;

component CQ_Underflow_Counter is
PORTY(
clk2 : IN std_logic;

rst : IN std_logic;

J
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CipherText : IN std_logic_vector(7 downto 0);
Num_CQ_Underflow_Bits : out std-logic_vector(11 DOWNTO 0)
);

end component;

=== Signal Definition =====
signal New_1V_Done : std_logic;

signal AES_Frozen : std_logic;

signal CTR_Func_Enab : std_logic;

signal New_IV : std_logic_vector(127 downto 0);
signal Key_Stream_In : data_type;

signal Cipher_Done?2 : std_logic;

signal Cipher_Donel : std_logic;

signal SR1_Fini : std_logic;

signal SR2_Fini : std_logic;

signal Blackout_Period : integer range 0 to 191;
signal SR1_Special Case : st " gic;

signal SR2_Special_Case : std_lc ¢

signal SR1_Load : std_logic;

signal SR2_Load : std_logic;

signal Flag SR1 : std_logic;

signal Flag_ SR2 : std_logic;

signal Queuc.Stall : std_logic;

signal CQ_Full : std_logic;

signal sync_ref : std_logic_vector(4 downto 0);

signal SR_Valid : std_li c;

(@)
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signal Key_Stream_Out : std_lc c_vector(7 downto 0);
signal Plaintext_out : std_logic_vector(7 downto 0);
signal CipherKey_PQ_out : std_logic_vector,. downto 0);
signal ovalid_PQ : stdlogic;

signal SR_pointer : natural range 0 to 128;

signal Last_IV_length_contd : natural range 0 to 100;
signal SR_Load : std_logic;

signal hold.on_for PQ_SR : std_logic;

signal last_IV_notice : std_lc ‘c;

signal IV_SR_counter : std_logic_vector(4 downto 0);

for all: AES en_fly_onKey_ withCTR use entity work. AES_en_fly_onKey withCTR ;

for all: Shift_Register . CTR_SCFB use entity work.Shift_Register CTR_SCFB;

for all: Controller CTR_SCFB use entity work.Controller CTR_SCFB;

for all: FIFO_PQ use entity work. FIFO_PQ);
for all: FIFO_CQ use entity work. FIFO_CQ);

for all: IV_Queue use entity work.IV_Queue;

for all: PQ_Overflow_Counter use entity work.PQ_Overflow_Counter;

for all: CQ_Underflow_Counter use entity work.Ct  Underflow_counter;

begin

AES _core : AES_en_fly_onKey_withCTR port map

(
clk3 ,

reset, ,
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aes_init_data_load,

new_IV_done,

AES Frozen,

CTR_Func_Enab,
New_IV,

Key_Stream In ,
Cipher_Donel,

Cipher_Done2 );

State_Machine _SCFB: Controller CTR_.SCFB port map
( clkl,

clk3,

reset,
Cipher_Donel,
Cipher_Done2,
SR1_Fini,
SR2_Fini,
Blackout_Period,
SR1_Special_Case,
SR2_Special_Case,

CTR.Fun ™ ab,
SR1 _Load,
SR2_Load,



[1]
(2]
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Flag SR,
Flag SR2,
AES Frozen,
Queue_Stall );

Shift_Register SCFB: Shift_Register CTR_SCFB port map ( clkl,

reset,

CQ_Full,
SR1_Load,
SR2_Load,

Flag SR1,

Flag SR2,
Queue_Stall,
Key_Stream_In,
sync_ref,

Blackout_Period,

SR1_Special_Case,
SR2_Special_Case,
SR1_Fini,
SR2_Fini,
SR_Valid,

Key_Stream_Out

);

FIFO_PQ_component: FIFO_PQ
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(
clk2,

clkl,
reset,

ivalid,

Plaintext_in,

SR_Valid,

PQ_Full,
Plaintext_out,
ovalid_PQ),
aver_Num_bit_in_PQ

FIFO_CQ_component: FIFO_CQ port map

(
clk1,

clk2,

reset,

ovalid_PQ,

CipherKey _PQ_out,
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CipherText,

ovalid,

CQ_Full
);

IV_ShiftR: IV_Queue port map
(clkl1,

reset,

ovalid _PQ,
CipherKey _PQ_out,
syn_pattern,
SR_pointer,

Last_IV _length_contd,
SR_Valid,

SR_Load,
New_IV_Done,
hold_on_for PQ_SR,
last _IV _notice,

New_IV,

IV_SR _counter,
Blackout_Period,

sync_ref );

1
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PQOverflow: PQ_Overflow_Counter port map
(clk2,

reset,

PQ_Full ,

Num_PQ_Overflow_Bits );

CQUnderflow: CQ_Underflow_Counter port map
(

clk2 |

reset ,

CipherText,

Num_CQ_Underflov Tits );

CipherKey PQ _outj= Plaintext_out XOR Key ““ream_Out;
end STRUCTURAL;

-















