

New Methods for the Implementation of Statistical Cipher Feedback
Mode

ST. JOHN 'S

by

© Liang Zhang
Master of Engineering

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of
Master of Engineering.

Department of Electrical and Computer Engineering
Memorial University of Newfoundland

May 8, 2008

NEWFOUNDLAND

Contents

Abstract

Acknowledgements

List of Tables

List of Figures

Notation and List of Abbreviations

1 Introduction

1.1 Symmetric-Key Ciphers

1.2 Public-Key Ciphers

1.3 Motivation .

1.4 Objective of the Thesis

1.5 Thesis Out line .

2 Background

2.1 Block Ciphers

2.2 St ream Ciphers

2.3 Block Cipher Modes of Operation

11

V I

v iii

ix

X ll

X lll

1

2

3

4

5

5

8

8

9

10

2.4 Advanced Encryption Standard (AES) 14

20401 Implementation of AES S-box 0 16

2.402 Hardware Analysis of AES S-box 20

2.403 Shift Row and Inverse Shift Row 22

2.404 Mix Column and Inverse Mix Column 23

2.405 Add Round Key 0 25

2.406 Key Scheduling 25

205 Statistical Cipher Feedback Mode 27

20501 Implementation Structure of SCFB System 0 28

20502 Discussion on Queuing System 0 0 0 29

20503 Serial Transfer vso Parallel Transfer 31

205.4 Relationships of clocks 32

20505 Synchronization Cycle 33

20506 SCFB with CTR mode 34

20507 Previous SCFB Implementations 35

20508 Performance Analysis of SCFB Mode 36

206 Conclusion 0 0 0 0 0 0 0 0 0 0 0 0 0 0 38

3 SCFB Mode Using Serial Transfer 39

301 AES Implementation ••• 0 0 0 0 • 40

302 SCFB Mode Hardware Implementation Details 0 42

30201 Registers 0 0 0 0 0 0 44

30202 System Controller 0 45

30203 Plaintext Queue and Ciphertext Queue 48

303 Synthesis Results, Analysis and Comments on the Design 0 49

304 Conclusion 0 0 0 0 0 0 0 0 0 0 0 • 0 • • •• 0 • 0 0 ••• 52

lll

4 SCFB Mode Using Parallel Transfer 54

4.1 Hardware Implementation Details 55

4.1.1 Shift Register .. 57

4.1.2 IV _ShifLRegister 58

4.1.3 Plaintext Queue and Ciphertext Queue 61

4.2 Synthesis Results, Analysis and Comments on the Design . 66

4.3 Conclusion . 70

4.4 Conclusion . 70

5 Pipelined SCFB Mode Using Parallel Transfer 71

5.1 SCFB Based on Pipelined Counter mode (CTR) 72

5.2 Hardware Implementation Details 73

5.2.1 Implementation of Counter Mode (CTR) 75

5.2.2 Advanced Encryption Standard (AES) 77

5.2.3 System Controller 81

5.2.4 IV Shift Register for Parallel Thansfer Mode 86

5.2.5 Shift Registers 93

5.2.6 Plaintext Queue and Ciphertext Queue 97

5.3 Synthesis Results, Analysis and Comments on the Design . 100

5.4 Conclusion 0 0 0 ••••••• •• • 0 • 0 •• • 103

6 Analysis of SRD and EPF

6.1 Error Propagation Factor .

104

104

6.1.1 EPF of the Pipelined SCFB Mode Versus Various Blackout

Period Lengths . 105

6.1.2 EPF of Pipelined SCFB Mode Versus Various Sync Pattern Sizes108

6.2 Sync Recovery Delay 110

l V

6.2.1 SRD Versus Various Blackout Period ..

6.2.2 SRD Versus Various Sync Pattern Sizes .

6.3 Conclusion

7 Conclusions and Future Work

7.1 Conclusions .

7.2 Future Work .

Appendix A

A Partial VHDL Codes for SCFB Systems

A.1 SCFB System Controller using Serial Transfer

A.2 SCFB System Controller using Parallel Transfer

A.3 Pipelined SCFB System Controller

A.4 Top Level RTL of Pipelined SCFB System

Abstract

v

110

113

115

116

116

118

122

123

123

128

134

145

Abstract

In this thesis, we investigate a recently proposed mode of operation for block ciphers,

referred to as statistical cipher feedback (SCFB) mode. SCFB mode is designed for

high speed stream-oriented transmission wherE1 it is necessary to recover from any

number of bit slips or insertions in the communication channel, that is, SCFB has

the capability of self-synchronization. SCFB mo e is a hybrid of CFB mode and OFB

mode, and hence, it has a higher throughput han CFB mode and can obtain s If­

synchronization while OFB mode can not. As result, SCFB mode can be applied

physical layer security for applications such as SONET /SDH.

In this thesis, SCFB mode using both serial transfer and parallel transfer is im­

plemented in hardware. Additionally, we have: implemented pipelined SCFB mode

based on parallel transfer in hardware as well. 1 he hardware implementation of thes

SCFB structures is thoroughly investigated. ~hroughout this research, VHDL and

ModelSim SE 6.0 are used in the process of hardware design and verification. Further

these SCFB modes which have been implement/ dare synthesized by using Synopsys

tool (version 2002 and 2004) targeting to ASICs based on 0.18 micron CMOS technol­

ogy based on the TSMC (Taiwan Semiconductor Manufacturing Company) process

supported by Canadian Microelectronics Corporation (CMC).

As an outcome of our result, we have created a new modified version of SCFB

mode, which we refer to as pipelined SCFB mode. Pipelined SCFB mode applies a

VI

block cipher, which has pipelined architecture, and Counter(CTR) mode instead of

OFB mode which is used in conventional SCFB mode.

Based on the synthesis results, the throughput of the SCFB using serial transfer

and parallel transfer (block transfer size equal to 4 bits) can reach 100 Mbps and

222 Mbps, respectively. The total number of gates of these two SCFB systems are

41600 and 43697, respectively. For the pipelined SCFB mode, the throughput and

area complexity are 333 Mbps and 189963 gates.

The performance analysis of pipelined SCFB mode is also provided with respect to

characteristics such as synchronization recovery delay (SRD) and error propagation

factor (EP F). Moreover, the analysis of system queues such as the number of bits in

the plaintext queue, the queue size requirements and probability of queue overflow is

also provided.

Among these different implementations, the pipelined SCFB mode based on paral­

lel transfer mode can obtain the highest throughput and the SCFB mode using serial

transfer mode has the lowest area complexity. Hence, the pipelined SCFB mode using

parallel transfer is more suitable for high speed physical layer security.

Vll

Acknowledgements

I am very grateful to my supervisor, Dr. Howard Heys, for his constant guidance,

feedback, encouragement and for keeping me focussed in my research. During the

past two years, Dr. Howard has given me consistent trust and support which greatly

encouraged me to improve and finishi my work.

This is also a chance to thank all the members of Computer Engineering Research

Laboratory (CERL) in Memorial University of Newfoundland during these years.

Special thanks to Ling Wu, Reza Shahidi, Pu Wang, Tianqi Wang, Shenqiu Zhang,

Jonathan Anderson and Shi Chen for the precious friendship and generous support.

I am also indebted to my parents. Thank you for your continuous support and

love during two years of my Master 's study.

I would like to thank my wife, Yanan Ma for her selfless supporting and encour­

aging me to pursue this degree. Thank you for saving me from all the depressions I

have went through. Without my wifes encouragement, I would not have finished the

degree.

Vlll

List of Tables

2.1 Area Complexity of AES S-Box Using 0.18J1m CMOS Standard Cell

Technology [15] . 21

2.2 Timing Delay of AES S-Box Using 0.18p m CMOS Standard Cell Tech-

nology [15] . 22

2.3 Synthesis Result Using 0.18 Micron CMOS From [19] 36

3.1 Synthesis Result Using 0.18 Micron CMOS 52

4.1 Synthesis Result Using 0.18 Micron CMOS (Block Transfer Size = 4

Bits) . 70

5.1 Boundary Positions Where the Sync Pattern is Recognized 91

5.2 Synthesis Result Using 0.18 Micron CMOS (Block Transfer Size = 8

bits) . 100

IX

List of Figures

2.1 Electronic Codebook (ECB) Mode . 10

2.2 Cipher Block Chaining (CBC) Mode 11

2.3 m-bit Cipher Feedback (CFB) Mode 13

2.4 m-bit Output Cipher Feedback (OFB) Mode 14

2.5 Counter (CTR) Mode. 15

2.6 AES 16

2.7 S-Box: Substitution Values (in Hexadecimal Format) 17

2.8 Inverse S-Box: Substitution Values (in Hexadecimal Format) 17

2.9 Block Diagram of the LR Implementation of S-Box [13] 19

2.10 Schematic Representation of Multiplicative Inverse [12] 20

2.11 Shift Rows Transformation [6] 22

2.12 Inverse Shift Rows Transformation [6] . 23

2.13 Mix Column Operation . . . 23

2.14 Xtimes Block Diagram [16] . 24

2.15 Inverse Mix Column Operation 24

2.16 Joint Implementation of MixColumns and InvMixColumns Transfor-

mations [17] . . 25

2.17 Key Scheduling 27

2.18 SCFB System Compared to CFB and OFB. 28

X

2.19 Synchronization Cycle for Serial Transfer Mode SCFB . 33

2.20 SCFB with CTR Mode 34

3.1 Block Diagram of the AES Controller 41

3.2 FSM of AES Controller 42

3.3 Hardware Implementation of SCFB Using Serial Transfer 43

3.4 Shift Register . . 44

3.5 IV Shift Register 45

3.6 Block Diagram of the System Controller 46

3.7 FSM of System Controller 47

3.8 Probability Distribution of# Bits in the Plaintext Queue . 51

4.1 Hardware Implementation of SCFB Using Parallel Transfer (N=4) 56

4.2 Shift Register for Parallel Transfer (N=4) 57

4.3 IV Shift Register Using Parallel Transfer (N=4) 58

4.4 Sync Pattern Recognition for Parallel Transfer (N=4) 59

4. 5 Process of New IV Collecting for Parallel Transfer (N =4) 60

4.6 Plaintext Queue for Parallel Transfer (=4) 61

4.7 Plaintext Queue Output Buffer for Parallel 'n·ansfer (N=4) 63

4.8 Ciphertext Queue for Parallel 'n·ansfer (N=4) 64

4.9 Ciphertext Queue Input Buffer for Parallel Transfer (N=4) 65

4.10 Probability Distribution of# Bits in the Plaintext Queue (Block Trans-

fer Size=4 Bits) . 68

5.1 Synchronization Cycle for £-Stage Pipelined SCFB 73

5.2 Hardware Implementation of Pipelined SCFB Using Parallel Transfer 74

5.3 Block Diagram of Linear Feedback Shift Register (LFSR) 76

Xl

5.4 Block Diagram of Ports Specification of the LFSR . 76

5.5 11-Stage Pipelined AES Using Key-Scheduling . . . 78

5.6 Block Diagram of the AES Controller for Pipelined SCFB 79

5. 7 FSM of AES Controller for Pipelined SCFB 81

5.8 Port Specification of System Controller for Pipelined SCFB . 82

5.9 Finite State Machine of SCFB System Controller for Pipelined SCFB 84

5.10 IV Shift Register for Pipelined SCFB Using Parallel Transfer (N=8) . 87

5.11 Sync Pattern Recognition for Pipelined SCFB Using Parallel Transfer

(N=8) . 87

5.12 Boundary Adjustment for Resynchronization in Pipelined SCFB Using

CTR Mode . 89

5.13 Block Diagram of Shift Registers for Pipelined SCFB Using Parallel

Transfer (N=8) . 93

5.14 Data Flow of Shift Registers for Pipelined SCFB Using Parallel Trans-

fer (N=8) . 95

5.15 Plaintext Queue for Pipelined SCFB Mode Based on Parallel Transfer

(N=8) . 98

5.16 Ciphertext Queue for Pipelined SCFB Mode Based on Parallel Transfer

(N=8) . 99

6.1 Synchronization Cycle for P ipelined SCFB with Various Blackout Period105

6.2 EPF of the Pipelined CTR mode vs. various Blackout Period . . . 107

6.3 EPF of Pipelined CTR mode SCFB vs various Sync Pattern Size 109

6.4 SRD vs. various Blackout Period . 112

6.5 SRD vs. various Sync Pattern size . 114

Xll

.---------------------------------

Notation and List of Abbreviations

n The length of sync pattern

k The length of data bit between the previous sync pattern and the next sync

pattern in ciphertext data

B The lenth of a block

M The size of queue

TJ The theoretical efficiency

R The rate of incoming data of plaintext queue and outgoing data of

ciphertext queue

R' The rate of outgoing data of plaintext queue and incoming data of

ciphertext queue

m The number of data less than or equal to the length of a block

N Block transfer size

L The number of pipeline stages

k Average length of CTR mode block

SCFB Statistical Cipher Feedback

Xlll

NIST National Institute of Standards and Technology

ECB Electronic Code Book

CBC Cipher Block Chaining

CFB Cipher Feedback

OFB Output Feedback

CTR Counter mode

LUT Lookup Table

LR Linear Redundancy

EDA Electronic Design Automation

FSM Finite State Machine

FIFO First In First Out

WFSM Write Finite State Machine

SR Shift Register

ASIC Application-Specific Integrated Circuit

DES Data Encryption Standard

AES Advanced Encryption Standard

CAD Computer Aided Design

XOR Exclusive-or

XlV

IV Initialization Vector

HDL Hardware Description Language

VHDL VHSIC Hardware Description Language

IC Integrated Circuit

VLSI Very Large Scale Integration

CMC Canadian Microelectronics Corporation

CMOS Complementary MetalOxideSemiconductor

TSMC Taiwan Semiconductor Manufacturing Company

FPGA Field Programmable Gate Arrays

LFSR Linear Feedback Shift Register

ATM Asynchronous Transfer Mode

SRD Synchronization Recovery Delay

EPF Error Propagation Factor

XV

Chapter 1

Introduction

Cryptography is the practice and study of hiding information. We can also define

cryptography as the science of encrypting and decrypting data by using mathematics

[1] . Nowadays, this world is filled up with electronic connectivity, electronic fraud,

viruses, hackers and so on. The network security becomes more and more important.

The interconnections of computer systems via networks are growing fast ; hence, peo­

ple feel more and more dependant on the information which is communicated through

these systems. The discipline of cryptography has led to the development of practical

applications to enforce network security [1]. The sender is able to hide sensitive infor­

mation or transmit it across insecure networks with cryptography so that it can not

be read except by the intended recipient. Cryptanalysis is the study of methods of an­

alyzing and breaking secure communication. Cryptanalysts are also called attackers.

The areas of cryptography and cryptanalysis together are called cryptology.

There are three main requirements in information security, namely, confidentiality,

integrity, and authentication [1]. The confidentiality of the information represents the

protection of data from unauthorized disclosure. Only the authorized access to the

information is allowed. The integrity of the information means the assurance that

1

CHAPTER 1. INTRODUCTION 2

data received is exactly as sent by an authorized entity without modification, insertion

or deletion. The authentication of the information means the communicating entity

is the one that it claims to be without being processed during the transmission [1].

A cryptographic system normally involves an encryption system and a decryption

system. Before we define encryption and decryption, we should know what is plaintext

and ciphertext. Plaintext is the data that can be read and understood without any

special measures. Ciphertext is the information that has been encrypted into seem­

ingly meaningless code. Encryption is the process of transforming plaintext using an

algorithm and keys to make it unreadable to anyone except for the intended recipient.

Decryption is the process of reverting ciphertext to its original plaintext. There are

two types of encryption, symmetric-key encryption and public-key encryption. We

will discuss them in the following sections.

1.1 Symmetric-Key Ciphers

In a symmetric-key cryptosystem, encryption and decryption use the same key. The

Data Encryption Standard (DES) [2] in an example of a symmetric-key cryptosystem

that has been widely deployed by the U.S. Government and the banking industry.

Nowadays, DES is being replaced by the Advanced Encryption Standard (AES) [3]. A

symmetric encryption scheme has five ingredients which include plaintext, ciphertext,

encryption algorithm, decryption algorithm and secret key. Normally, the encryption

and decryption algorithms are published, but the key is kept secret. In a symmetric­

key cipher, maintaining the secrecy of the key is the pricipal security problem.

For the symmetric-key ciphers, there are two requirements to make it secure [2].

1. The encryption/decryption algorithm must be strong. Even if the attacker

knows the ciphertext and the encryption/decryption algorithm, he/she can not

CHAPTER 1. INTRODUCTION 3

get the secret key or decrypt the ciphertext.

2. The secret key must be kept secure by both sender and receiver. If the attacker

can get the secret key and knows the encryption algorithm, all the ciphertext

going through the communication can be deciphered and readable.

Substitution and transposition are two basic operations used in symmetric-key

encryption. In the substitution operation, the symbols of plaintext are substituted

by other symbols. In the transposition technique, the plaintext symbol positions are

permuted.

1.2 Public-Key Ciphers

Public-key cryptography, also known as asymmetric cryptography, utilizes two differ­

ent keys, a public key and a private key, for encryption and decryption. The public

key may be widely distributed, but the private key is kept secret except for the in­

tended recipient. The keys are related mathematically, but the private k y cannot be

practically derived or can not be derived in a reasonable time limit from the public

key. Normally, at the transmitter, the plaintext is encrypted with the public key. At

the receiver, the ciphertext can be deciphered only with the corresponding private

key. In some algorithms, such as RSA, the plaintext can be encrypted with either

the public key or the private key depending on the nature of the application. For the

public-key cryptosystem, there are basically four essential steps as following.

1. We may suppose there are several users, USER_l, USER_2 ... , and each of them

generates a public key and a private key and put the former in a public register.

Each user collects all the public keys from others.

.---------------------------- ---

CHAPTER 1. INTRODUCTION 4

2. If USER_1 needs to send a secret message to USER_2, USER_1 encrypts this

message with USER_2's public key.

3. When USER_2 receives the encrypted message from USER_1, USER_2 deciphers

it using his/her own private key. Only USER_2 can decrypt the message from

USER_1 because only USER_2 holds USER_2's private key.

Public-key cryptography is normally based on mathematical functions rather than

on substitution and transposition used in symmetric-key cryptography. Although

public-key cryptography is a great revolution in the history of cryptography, it does

not mean it is more secure from cryptanalysis than symmetric encryption because

basically the length of the key and the computational complexity of the algorithm

determine the security of an encryption/decryption scheme.

RSA was the first algorithm to be widespread for public-key encryption. It is

widely used in electronic commerce protocols. If the key size is long enough (currently

the typical key size is 1024 bits), RSA is believed to be secure.

1.3 Motivation

Today, more and more commerce activities, transactions and services are offered over

high-speed communications network. In order to take advantage of the big bandwidth

capacity of high-speed networks and also keep the data in a secure manner, modes of

operation are becoming more and more important. This thesis will study a r cently

proposed mode of operation, statistical cipher feedback (SCFB) mode [4] [5]. SCFB,

like cipher feedback (CFB) mode has the ability of self-synchronization to overcome

slips and error insertions, but can be implemented in digital hardware to have higher

throughput than CFB mode.

CHAPTER 1. INTRODUCTION 5

1.4 Objective of the Thesis

The main focus of the thesis is the digital hardware implementation of SCFB mode.

The detailed hardware design characteristics, including the Advanced Encryption

Standard and the SCFB system hardware structure, are discussed. We also investigate

the hardware characteristics with respect to the relationship of plaintext queue and

ciphertext queue, queue overflow, relationship of clock domains, serial transfer mode

versus parallel transfer mode, and implementation throughput and efficiency. We do

the functional simulations for 3 implementation structures:

1. SCFB mode using serial transfer.

2. SCFB mode using parallel transfer.

3. Pipelined SCFB mode.

The secondary objective of the thesis is to consider an analysis of the error prop­

agation delay, synchronization recovery delay and probability distribution of number

of bits in the plaintext queue.

The research considers the comparison of hardware structure and performance

between serial transfer mode, parallel transfer mode and pipelined SCFB mode. As

a result, we draw the conclusions regarding which mode is suitable for low-area im­

plementation and which mode is suitable for high speed networks.

1. 5 Thesis Outline

In this thesis, there are seven chapters. Chapter 1 is the introduction. Chapter 2

provides the background of statistical cipher feedback (SCFB) mode and considers

CHAPTER 1. INTRODUCTION 6

previous related research. Specifically, several block cipher modes of operation, Ad­

vanced Encryption Standard (AES) algorithm [6] and SCFB mode of operation are

discussed. In addition we consider our implementation of the AES S-box in three dif­

ferent methods and compare them with respect to timing delay and area complexity.

The structure and performance analysis of SCFB mode are briefly introduced.

Chapter 3 provides a hardware implementation of SCFB mode using serial trans­

fer. In this chapter, the implementation of AES where the S-boxes are constructed

to perform inversion in GF(28) using a composite field based on GF(24) [7] is pro­

vided. The detailed hardware implementation of SCFB mode using serial transfer is

detailed. At the end of this chapter, the hardware characteristics such as the area

complexity and timing analysis are discussed. Also the analysis of the queuing system

is investigated.

Chapter 4 provides hardware implementation of SCFB mode using parallel trans­

fer. In this chapter, the implementation of AES where the S-boxes utilize simple

boolean function implementation in order to obtain high speed is provided. The

detailed hardware implementation of SCFB mode using parallel transfer for block

transfer size equal to 4 (N =4 bits) is investigated. The hardware characteristics such

as the area complexity and timing analysis are discussed. The analysis of the queuing

system characterized by the number of bits in the plaintext queue is also investigated

in this chapter.

Chapter 5 provides hardware implementation of pipelined SCFB mode using par­

allel transfer (N=8). In this chapter, the implementation of AES with 11-pipeline

stages where the S-boxes utilize simple boolean function implementation in order to

obtain high speed is provided. The detailed hardware implementation of pipelined

SCFB mode based on parallel transfer mode is discussed. Further, the hardware

characteristics such as the area complexity and timing analysis are compared with

CHAPTER 1. INTRODUCTION 7

the non-pipelined SCFB mode.

Chapter 6 provides the performance analysis of SCFB mode with respect to syn­

chronization recovery delay (SRD) and error propagation factor (EP F) [8]. In this

chapter, we investigate the E P F and S RD of the pipelined SCFB mode versus vari­

ous pipeline stages and various sync pattern sizes.

Chapter 7 draws a conclusion for this thesis and provides direction for some future

work.

Chapter 2

Background

This chapter introduces the background on block cipher modes and provides some

preliminary implementation results of the Advanced Encryption Standard (AES)[l]

[6]. This chapter also provides some results of previous work on SCFB mode, which

can be used to compare with our work.

Normally, an encryption/decryption system is realized by using an operational

mode. Security and efficiency are two important aspects for a cipher system imple­

mentation. The mode of operation chosen for an application has a great influence ou

these two aspects. Thus, it is significant to study the modes of operation. We will

introduce five different block cipher modes of operation in this chapter.

2.1 Block Ciphers

A block cipher is one in which a block of plaintext is treated as a whole and used

to produce a block of ciphertext with the same length as the plaintext. Usually, a

block size of 64 or 128 bits is applied. In general, the block cipher has a broader

range of applications than stream ciphers, which encrypt a digital data stream one

8

CHAPTER 2 . BACKGROUND 9

bit or one symbol at a time. Nowadays, the majority of network-based symmetric key

cryptographic applications are making use of block ciphers. In recent years, Advanced

Encryption Standard (AES) [1] has come to be the widely applied block cipher. Later

in this chapter, we will discuss AES in detail.

2.2 Stream Ciphers

A stream cipher is an important method of encryption in which the plaintext is

encrypted bit-by-bit or symbol-by-symbol to produce the corresponding ciphertext

[9]. A stream cipher can be used to generate a pseudo-random keystream by using a

block cipher output to exclusive-or (XOR) with the plaintext to produce ciphertext at

the transmitter. At the receiver, the plaintext is recovered by generating the identical

keystream which is then XORed with the ciphertext. Stream ciphers can be used for

high-speed networks at the physical layer in a communication system.

In a typical stream cipher configuration, a single bit of ciphertext error only results

in a single bit of recovered plaintext error. However, for such stream ciphers complete

nonsense data will result for the rest of the recovered plaintext if bit slips or insertions

happen in the communication channel. Hence, it is important to keep the keystream

of both the transmitter and receiver synchronized. Output feedback (OFB) mode and

cipher feedback (CFB) mode are two conventional modes of operation of block ciphers

that allow their use as stream ciphers. However, they both have disadvanatges. In

this work, we are concerned with statistical cipher feedback (SCFB) mode, proposed

in [4] and investigated in [8], which is a hybrid of CFB and OFB mode. This SCFB

mode configures block ciphers, such as the Advanced Encryption Standard (AES) [6],

as stream ciphers capable of self-synchronization. SCFB mode has been proposed to

provide physical layer security for a SO NET /SDH environment and is suitable for

CHAPTER 2. BACKGROUND 10

many other applications as well.

2.3 Block Cipher Modes of Operation

The National Institute of Standards and Technology (NIST) has expanded the list of

"modes of operation" to five in Special Publicat ion 800-38A [10] . Electronic codebook

(ECB) mode [1], as shown in Figure 2.1, is the simplest mode of Block Ciphers. In

this and the following figures, B is used to represent the block size. In ECB mode, the

plaintext is encrypted in blocks of B bits using the same key each time. The reason

we use the term codebook is that for every B-bit block of plaintext there is a uniqu

ciphertext for a given key as a paper codebook would have been used in early cipher

[1]. For short messages, ECB mode is ideal. However , for a large amount of data

ECB mode may not be secure. The same block of plaintext always produces the same

ciphertext if the former appears in the message more than once. If a lengthy message

is highly structured, a cryptanalyst may have chance to exploit these regularities.

Time = 1
p ,

c,

Time = 2
p,

Encryption

Decryption

• • •

• • •

Figure 2.1: Electronic Codebook (ECB) Mode

Time = N

CHAPTER 2. BACKGROUND 11

Cipher block chaining (CBC) mode [1], as shown in Figure 2.2, is used to overcome

the security defects of ECB. CBC mode utilizes a technique in which the same B-bit

plaintext block, if repeated, produces different ciphertext blocks. In CBC mode, the

input to the encryption block cipher is the exclusive-or (XOR) of the current plain­

text block and the preceding ciphertext block. Therefore the input to the encryption

block will have no relationship to the plaintext block although the same key is used

for each block. For decryption, each B-bit cipher block is passed through the de­

cryption algorithm. The result from the decryption block cipher is XORed with the

preceding ciphertext block to produce the corresponding B-bit plaintext block. An

initialization vector (IV) is used to produce the first block of ciphertext/ plaintext on

encryption/ decryption. IV should be unique for every sequence [1].

Time= 1
p,

IV---"-~

p,

Time= 2

.
c,

Encryption

c,

p,

Deayption

•

•

• • K

• • K~

Figure 2.2: Cipher Block Chaining (CBC) Mode

Time= N

CH

CH

PN

Cipher feedback (CFB) mode [1], as shown in Figure 2.3, utilizes m bits pseudo­

random keystream, which is generated by a block cipher to XOR with the m bits

plaintext at the transmitter. In this figure, m is used to represent the feedback size.

CHAPTER 2. BACKGROUND 12

For the encryption, CFB mode feeds back m bits ciphertext into the input shift reg­

ister at the input of the block cipher in order to produce the next B bits output. For

decryption, the same scheme is applied, except that the received ciphertext unit is

XORed with the keystream from the block cipher to produce the plaintext unit. One

should notice that it is the encryption function that is used, not the decryption func­

tion. CFB mode can be considered to fall into the class of stream ciphers. However,

for this mode, one single bit error in the communication channel (i.e., an error in a

ciphertext bit) will cause the recovered plaintext bit to be in error and the next whole

block of B recovered plaintext bits to be corrupted while the corrupted bit works its

way through the shift register of the receiver. In Figure 2.3, when m > 1 and a single

bit slip occurs (that is, one bit is deleted from the ciphertext stream), the input to

the block cipher at the receiver will become misaligned and resynchronization will not

occur. When m = 1, CFB mode has the ability to resynchronize for a slip or inser­

tion of any number of bits. However, because each bit encryption requires a complete

encryption of the block cipher, with a much slower throughput than straightforward

block encryption, CFB mode with m = 1 is very inefficient.

Output feedback (OFB) mode [1], as shown in Figure 2.4, takes the previous

output of the block cipher as the next input to the block cipher to produce the next

keystream block at the transmitter. OFB mode is also a stream cipher configuration.

Of all the operational modes, OFB mode offers minimal error propagation. A bit

error in ciphertext will merely cause one bit error in the recovered plaintext because

the keystream generation only depends on the output of the block cipher rather than

the ciphertext. That is, errors from the communication channel are not multiplied

through the decryption process. High throughput can be achieved in this mode by

performing the XOR of the plaintext with the keystream in blocks of m = B bits.

However, OFB mode does not have the ability to resynchronize. OFB needs an extra

CHAPTER 2. BACKGROUND 13

lnlt~tlzal lon Vector (IV)

·~
I ~ '""'"·-··

- ~ Encryption K I Encryption ~

••
~ .-. ~ K • • •

'"" ·-........ - -
p, - p, -- -- -

c. c.

lnltlallzaUon Vector (IV)
Enayption

Ct C2 CN-t
p ,

Dea yption

Figure 2.3: m-bit Cipher Feedback (CFB) Mode

signaling channel to periodically transfer an IV from the transmitter to the receiver

in order to recover from any synchronization loss that may occur due to bit slips or

insertions.

Counter (CTR) mode was first proposed in [11]. Recently interest in CTR mode

has increased with applications to ATM (asynchronous transfer mode) network se-

curity and IPSec (IP security). Counter (CTR) mode [1], as shown in Figure 2.5

is a stream cipher mode and uses a counter, which is equal t o the plaintext block

size. The counter is initialized to some value and then incremented for each subse-

quent block (modulo 28
, where B is the block size). For encryption, a counter passes

through the block cipher and each block of plaintext is XORed with an encrypted

count. For decryption, the same sequence of counter values is encrypted. The result

is XORed with a ciphertext block to recover the corresponding plaintext block. The

block cipher uses encryption function instead of decrypt ion function.

CTR mode has several advantages compared to the three chaining modes (i.e.,

CHAPTER 2. BACKGROUND 14

Init ialization Vector {IV)

• • •

p , p , . ·-·······=r=
PN~

c.

Initialization Vector (IV)
Encryption

K K • • •

... ,~~. ... , ..
c. ... c. . .

p, p ,

Decryption

Figure 2.4: m-bit Output Cipher Feedback (OFB) Mode

CBC, CFB and OFB). For hardware efficiency, CTR mode can do the encryption (or

decryption) in parallel on multiple blocks of plaintext or ciphertext while the three

chaining modes can not . For software efficiency, parallel features, such as aggressive

pipelining, are supportable because of the parallel execution in CTR mode. Also , it

can be shown that CTR is at least as secure as the other modes.

A new block cipher mode, refered to as statistical cipher feedback (SCFB) [4] and

not standardized by NIST, is examined in this thesis and will be introduced in detail

in Section 2.5.

2.4 Advanced Encryption Standard (AES)

The AES algorithm [6] is a symmetric key block cipher that processes data blocks

of 128 bits using a cipher key of 128, 192, or 256 bits . It was developed by NIST

to replace DES and protect sensitive government information well into the twenty-

.---

CHAPTER 2. BACKGROUND

c.

Counter

K---+1

p,

p, -...;-.-liJo~EB .
c,

Encryption

Counter+ 1

p,

Decryption

• • •

• • •

Figure 2.5: Counter (CTR) Mode

15

Counter + N - 1

Counter + N - 1

K--+

first century [6]. In t his work, AES is adopted for the block cipher to generate the

keystream block.

In our design, we only apply the key length equal to 128 bits. In AES, the input

data is a 4 x 4 array of bytes, i.e., 4 x 4 x 8 = 128 bits. The AES algorithm repeats a

series of operations for 10 rounds. Figure 2.6 shows the steps of the AES algorithm.

In each round, except for the last round, there are four operations: Substitute Bytes,

Shift Rows , Mix Column and Add Round Keys. In the last round, there is no Mix

Column phase. The round function is performed it eratively 10 t imes, and the data

path is shared for different rounds of the algorithm. Among the four operations, Byte

Substitution is the most critical part of this algorithm in terms of performance for

hardware designs, while the other three operations are implemented only by using

simple linear operations such as rotations and XORs.

CHAPTER 2. BACKGROUND

Figure 2.6: AES

2 .4.1 Implementation of AES S-box

Key

<},
w [0, 31

w [4, 7)

W [8, II)
..[!,.

.

~
w (40, 43]

16

The forward substitute byte transformation is conceptually a simple lookup table

(L UT). The SubByte operation is a nonlinear byte substitute that operates inde­

pendently on each byte of the state (i.e., a state is a 4 x 4 arrary of bytes) using a

substitution table (i.e., S-box), which is shown in Figure 2.7 and Figure 2.8. The

AES S-box is a 256-entry table composed of two transformations: first each input

byte is replaced with its multiplicative inverse in GF(28) with the element 00 being

mapped onto itself; followed by an affine transformation. For decryption, the inverse

S-box is obtained by applying inverse affine transformation followed by multiplicative

inversion in GF(28). In each round, we have to apply the SubByte operation, so

CHAPTER 2. B ACK GROUND 17

the SubByte operation becomes the most crit ical part in this AES algorithm. The

AES S-box can be implemented in different methods such as: simple boolean func­

tion implementation [12], linear redundancy (LR) implementation [13], composite

field GF(24
) implementation [12], memory (e.g., RAM and ROM) implementation

and Fourier transform based implementation [6] and so on. However some of these

methods are not suitable for hardware implementation.

0 1 2 3 4 5 6 7 8 9 A B c D E F
0 63 7C 77 78 F2 68 6F C5 30 01 67 28 FE 07 .A8 76
1 CA 82 C9 70 FA 59 47 FO)ll) 04 A2 AF 9C A4 72 co
2 87 FD 93 26 36 3F F7 cc 34 ~ E5 F1 71 08 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 u~ I:Jj 2(.; 1A 18 bE SA I() 5:2 38 06 t:Jj :29 l:j :2r 84
5 53 01 DO ED 20 FC 81 58 6A CB BE 39 4A 4C 58 CF
6 DO EF M FB 43 40 33 85 45 F9 02 7F 50 3C 9F)l8

7 51 A1 40 BF 92 90 38 F5 BC EE DA 21 10 FF F3 02
8 CD DC 13 EC SF 97 44 17 C4 R 7E 30 64 50 19 73
!;! bO 1:11 4F DC 2:2 2A 9U 88 4b Et 1:11:1 14 Ut bt Ut:J UB
A EO 3:<' 3A OA 49 06 24 5C C2 03 AC 62 91 9b E4 79
B E7 C8 37 60 80 05 4E lfJ 6C 56 F4 EA 65 ?A .AE 08
c BA 78 25 2E 1 c ,A6 84 C6 E8 DO 74 1 F 48 BD 88 SA
D 70 3E ffi 66 48 03 F6 DE 61 35 57 89 86 C1 10 9E
E E1 F8 98 11 69 09 BE 94 98 1E 87 E9 CE 55 28 OF
F 8C A1 89 DO BF E6 42 68 41 99 20 OF BO 54 BB 16

Figure 2.7: S-Box: Substitution Values (in Hexadecimal Format)

0 1 2 3 4 5 6 7 8 9 A B c D E F
0 52 09 6A D5 30 36 1>6 38 BF 40 A:l 9E 81 t-3 U/ FB
1 7C E3 39 82 98 2F FF 87 34 BE 43 44 (;4 DE E9 CB
2 54 7B 94 32 ,A6 C2 23 3D EE 4C 95 DB 42 FA C3 4E
3 DB 2E A1 66 28 D9 24 82 76 58 f!V. 49 6D BB D1 25
4 72 FB F6 64 86 68 98 16 D4 A4 5C cc 50 65 t:l:i 9:<'
5 6(70 48 50 FD ED 89 DA 5E 15 46 57 R 80 9D 84
6 90 08 AB DO BC BC D3 DA F7 E4 58 05 88 B3 45 06
7 DO 2C 1 E BF CA 3F OF 02 C1 Pf BD 03 01 13 BA 68
ij 3A 91 11 41 4F 67 DC EA 97 F2 CF CE FO 84 F6 73
9 96 !lC 74 22 E7 ..AD 35 85 E2 F9 :21 til 1G lb ur bt
A 47 F1 1A 71 1 D 29 cs 89 6F 87 62 DE M 18 BE 18
B FC 56 3E 4B C6 D2 79 20 9A DB co FE /8 CD SA F4
c 1 F DO .A8 33 88 07 C7 31 81 12 10 59 27 80 EC SF
D 60 51 7F /l8 19 B5 4A DD 2D E5 ?A 9F 93 C9 9C EF
E)ll) ED 3B 4D AE 2A F5 80 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 06 26 E1 69 14 63 55 21 DC 70

Figure 2.8: Inverse S-Box: Substit ution Values (in Hexadecimal Format)

CHAPTER 2. BACKGROUND 18

LR implementation of S-box

The linear redundancy in the AES S-box was discovered by J. Fuller and W. Millan

[13]. In order to gain high nonlinearity, the AES S-box uses finite field arithmetic.

However the relationship between the S-box output functions still remains linear be­

cause of the inherent characteristics of the finite field multiplicative inverse. Fuller

and Millan discovered a new efficient algorithm to determine equivalence between

functions [13]. As noted in [13], letting bJ (x) indicate the output boolean function,

c represent a binary constant and D represent a binary matrix, the output Boolean

function bJ(x)(0 :=:; j :=:; 7) can be represented by the form bJ(x) = bi(Dijx) EB cj, where

(0 :=:; i :=:; 7), i # j. In the LR implementation, the output Boolean functions bj (the

first 7 bits of the 8-bit S-box output) can be represented by bJ(x) = b0 (D0Jx) EB cj,

where b0 is the least significant bit of the 8-bit S-box output. In the hardware imple­

mentation, we only need the D matrix block and the b0 logic. Figure 2.9 illustrates

the block diagram of the LR hardware implementation of the AES S-box [14].

Simple Boolean Function

Compared with the LR implementation of an S-box, the simple boolean function

implementation of S-box has a smaller area and higher speed. The simple boolean

function implementation is the most straightforward way to implement the AES S­

box. High speed (e.g., low latency) can be obtained for the S-box by using this

method. In the byte substitution phase for the tables of Figure 2. 7 and 2.8, the

individual byte is mapped into a new byte in the following way: the leftmost 4 bits of

the byte are used as a row value and the rightmost 4 bits are used as a column value.

We select an 8-bit S-box output value by the indices which are represented by the row

and column values. The S-box 8-bit lookup table can be input to EDA (electronic

CHAPTER 2. BACKGROUND 19

design automation) tools (Synopsys Design Analyzer is applied in our design) and

then the EDA can generate the corresponding combinational logic after we do the

analysis and elaboration operations resulting in each output bit of the S-box being

derived by an 8-bit boolean function .

·r---'

bO_IC>:;jic

Figure 2.9: Block Diagram of the LR Implementation of S-Box [13]

Composite Field in GF(24
)

The implementation of AES S-box usmg a composite field based on GF(24
) has

smaller hardware complexity but lower speed than the simple boolean function im­

plementation of S-box [12]. Normally the SubByte transformation for the AES al­

gorithm is implemented by using the simple boolean functions. In this approach,

the S-boxes are based on inversion in the finite field G F(28
) using composite field

in GF(24) [12]. Comparing with arithmetic operation in GF(28), arithmetic opera­

tion in GF(24) is suitable for a hardware implementation using combinational logic

CHAPTER 2. BACKGROUND 20

based on 4 bit operations. Every element of GF(28) can be represented as a lin ar

polynomial with coefficients in GF(24) (i.e. , bx +c). We represent the irreducible

polynomial as x2 +Ax+ B and the multiplicative inverse for an arbitrary polynomial

bx +cis given by (bx + c)-1 = b(b2 B + bcA + c2
)-

1x + (c + bA)(b2 B + bcA + c2
) -

1 [12].

The problem of calculating the inverse in GF(28) is now translated to calculating

the inverse in G F(24) , some multiplications, squarings and additions over G F(24
).

Figure 2.10 gives a schematic representation of multiplicative inverse calculations.

Figure 2.10: Schematic Repr sentation of Multiplicative Inverse [12]

2.4.2 Hardware Analysis of AES S-box

In the analysis of AES S-box implementations in [15], the Synopsys Design Analyzer

standard cell library based on 0.18 micron CMOS TSMC (Taiwan Semiconductor

Manufacturing Company) process, version 2002 provided by Canadian Microelec­

tronic Corporation (CMC) is used to synthesize the S-box implementation. Applying

CHAPTER 2. BACKGROUND 21

Synopsys synthesis tools to the implementations using simple boolean function, lin­

ear redundancy and composite field arithmetic based on GF(24
) , we compare the

implementations are compared in area complexity and timing delay.

Area Complexity

To examine the area complexity, we use the number of equivalent 2-input NAND gates

as a metric of circuit size. The area of the 2-input NAND gate is about 12.197f.Lm2
.

To determine the number of gates in the synthesized circuit, we divide the total area

by 12.197p.m 2
. From Table 2.1, we can see that the area of the LR implementation

is the largest, and the area of the arithmetic operation in G F(24
) is the smallest.

Table 2.1: Area Complexity of AES S-Box Using 0.18/Lm CMOS Standard Cell Tech­

nology [15]

area complexity (number of gates)

LR Implementation 908

Simple Boolean Function 677

Using arithmetic operation in GF(24
) 336

Timing Delay

The timing delay refers to the latency of the circuit critical data path under the

worst-case conditions. The system maximum clock frequency is decided by the criti­

cal data path delay. Applying the synthesis tools, in [15] the timing delay is examined

for the various S-box implementations. Table 2.2 illustrates the timing delay details

for each implementation method mentioned previously. From Table 2.2, we can see

that the simple boolean function implementation is the fastest among these three

.-----------------------------------

CHAPTER 2. BACKGROUND 22

implementations. However the area complexity of the simple boolean function imple­

mentation is larger than that of the GF(24
) implementation. Also we can see that

arithmetic operation in GF(24
) implementation has the longest timing delay among

all implementations, but it has the smallest area complexity.

Table 2.2: Timing Delay of AES S-Box Using 0.1811m CMOS Standard Cell Technol­

ogy [15]

Timing delay (ns)

Simple Boolean Function 4.70

LR Implementation 7.80

Using arithmetic operation in G F (24
) 17.02

2.4.3 Shift Row and Inverse Shift Row

The Shift Row operation is a cyclic shift operation where each row is rotated cyclically

to the left using 0, 1, 2 and 3-byte offset for encryption, while for decryption, the

circular shifts are performed in the opposite direction for each of the last three rows,

with 1, 2 and 3 byte right shift for the 2nd, 3rd and 4th rows. Figure 2.11 and

Figure 2.12 illustrate the forward Shift Row and Inverse Shift Row transformations,

respectively.

so.o so.t so.2 so.3 so.o so.t so.2 so.3

s1.o Su s1.2 su Su su su st.o

s2.o S1.1 s2. ~ s2.3 su s2.3 s 2.0 s - .1

sJ.o sl.l s3.2 s3.J su sl.o s3.t su

Figure 2.11: Shift Rows Transformation [6]

CHAPTER 2. BACKGROUND 23

so.o so. I so.! so.> so.o So.t So.2 So.>

sl.o su su Su su st.o Su Su

s2.o S1. 1 S2.2 sl.> S2.2 su s~.o S2.1

sl.o sl.t su s3.J s3.t su Su sJ.o

Figure 2.12: Inverse Shift Rows Transformation [6]

2.4.4 Mix Column and Inverse Mix Column

For the Mix Column operation, each column of the state (i.e., a state is a 4 x 4

arrary of bytes) is treated as a polynomial over GF(28), and multiplied by the fixed

polynomial, C(x) = {03}x3 + {01 }x2 + {01 }x + {02} modulo x4 + 1. The mix column

operation is given in Figure 2.13. In GF(28
), addition is the bitwise XOR operation.

Multiplication of a value by 01 is equal to the value itself. Multiplication of a value

by 02 can be implemented as a one-bit left shift followed by a conditional bitwise

XOR with (00011011) if the leftmost bit of the original value is 1. This operation is

often called Xtimes, which is shown in Figure 2.14 [16].

hoc 02 03 01 01 aoc

bl c 01 02 03 01 ale
•

b 2c 01 01 02 03 a2c

b3c 03 01 01 02 a3c

Figure 2.13: Mix Column Operation

The Inverse Mix Column operation is defined by the matrix multiplication, which

is shown in Figure 2.15. For example, we can express x·OE as (x ·08)+(x ·04)+(x·02),

for any x E GF(28) . The only difference between forward MixColumn and Inverse

CHAPTER 2. BACKGROUND 24

MixColumn is that the latter has extra multiplication with 04 and 08. We can do this

operation like this: 04 ·X = 02 · (02 ·(X)) and 08 ·X= 02 · (02 · (02 ·(X))). The block

diagram of the joint Mix Column and Inverse Mix Column implementation is shown

in Figure 2.16 [17] [18]. This figure only illustrates the single byte output, and we

applied 16 joint Mix Column and Inverse Mix Column blocks in parallel to process

128 bits data in our design. In Figure 2.16, the four inputs, "a" , "b", "c" and "d"

represent four bytes in a column of the state. The variables "invmix" and "mix" are

two outcomes by applying Mix Columns and Inv Mix Columns, respectively.

a7 a6 aS a4 a3 a2 al aO

a' 7 a' 6 a ' 5 a' 4 a' 3 a' 2 a' 1 a ' 0

Figure 2.14: Xtimes Block Diagram [16]

boc OE OB OD 09 0 oc

blc 09 OE OB OD 0 1c •
b2e OD 09 OE OB 0 2c

b3c OB OD 09 OE 0 Je

[02 OJ 01

Oil ["''

08 08 08 08 0 oc 04 00 04

00 ["~ l 01 02 03 01 a 1e 08 08 08 08 ale 00 04 00 04 • a"" • + • +
01 01 02 03 ale 08 08 08 08 0 l e 04 00 04 00 ale

03 01 01 02 a3e 08 08 08 08 0 Je 00 04 00 04 a Jc

Figure 2.15: Inverse Mix Column Operation

CHAPTER 2. BACKGROUND 25

Figure 2.16: Joint Implementation of MixColumns and InvMixColumns Transforma­

tions [17]

2.4.5 Add Round Key

The Add Round Key operation is a bit-wise exclusive OR operation of the whole

block and the corresponding round key. Before the first round is performed, there is

one key addition operation for pre-whitening.

2.4.6 Key Scheduling

The key scheduling is an important part of the AES algorithm. It can take an initial

key of length of 128 bits, 192 bits or 256 bits. In the design of this thesis, the key

scheduling takes 128-bit initial key as 4 words (i.e., 16 bytes) input, and it generates

40 words to provide each of the 10 rounds with a 4-word round key. Each of the

round keys depends on the key of the last round.

There are two typical methods used to implement the AES key expander. One

method is to compute the round key on-the-fly on each round for the data processing.

CHAPTER 2. BACKGROUND 26

The other one is to precompute all the round keys before-hand and store them in

memory. Saving area is the advantage of the first method because it does not need

any extra memory to store all keys, and it can change initial keys fast with low or

no delay. The precompute scheme has no extra delay while supplying the decryption

key, but it takes more area in order to store all the round keys. In this thesis, we will

usc the on-the-fly computaion scheme for most designs. However, for the pipelined

SCFB design using parallel transfer (Chapter 5), we need the block cipher to generate

the keystream as fast as possible, and, hence, use the pre-computation scheme.

The 128-bit initial key is used to XOR with the plaintext as pre-whitening before

the first round of operations. Subsequently, round keys are derived and applied at each

round. In general, the current round key is represented as [w4i, w 4i+l, w4i+2, w4i+3],

where i indicates the round number. The next round key [w4(i+ l), W4(i+l)+l, W4(i+1)+2,

w4(i+l)+3] is generated as illustrated in Figure 2.17 [1], where the F represents a

complex three-step function. The F function includes three operations, a one-byte

circular left shift operation, a byte substitution operation and a leftmost byte XOR

with the round constant Rcon[i]. The Rcon[i] is defined as Rcon[i+ 1] = 02 x Rcon[i].

For the first round, the Rcon[i] is initialized as 01. All the multiplications through the

key scheduling are defined in the finite field GF(28). The round-dependent constant

Rcon[i] eliminates the symmetry or similarity in the round keys [1].

When we apply the key scheduling to both encryption and decryption in AES,

the key scheduling processes are different. For the encryption process, the round keys

are applied to the datapath in the forward order. However, for the decryption, the

round keys are calculated in the backward direction starting from the last round key.

Firstly, the decryption key scheduling has to compute the round keys in the forward

direction to obtain the last round key, and then compute in the backward direction

to get the corresponding round keys in each round. In this case, the setup time is

------------- ------------- ------------------ ----- ----------

CHAPTER 2. BACKGROUND 27

longer than that of encryption.

Figure 2.17: Key Scheduling

2.5 Statistical Cipher Feedback Mode

We mentioned the statistical cipher feedback (SCFB) mode in Section 1.2. In this

section, we will further investigate the SCFB mode. The algorithm of SCFB was first

described in [4] . The name derives from the fact that the cipher feedback is working

in a statistical way to resynchronize based on recognition of a sync pattern. SCFB

works in the way of a stream cipher by utilizing a block cipher to produce a keystream

which is XOR'd with the plaintext data to produce the ciphertext data. Unlike other

conventional block cipher modes, when bit slips occur in the communication channel,

SCFB mode can achieve self-synchronization and SCFB can be implemented with

high efficiency to operate at high speeds. Additionally, the latency and buffer sizes

used to implement the system are reasonable.

r-------------------------------------~~~-~------ ------------

CHAPTER 2. BACKGROUND 28

Output Feedback (OFR) Mode

Output Fcrrlhack (OFn) Mode

Statisti•·al Cipher Feedback (SCFB) Mode

Figure 2.18: SCFB System Compared to CFB and OFB

2.5.1 Implementation Structure of SCFB System

In early sections of this chapter , we have discussed CFB mode with m = 1, which

is an inefficient mode with the property of self-synchronization. Hence, our re­

search direction becomes how to improve the system efficiency and to keep the self­

synchronization as well. To save communications bandwidth, we check for a sync

pattern in the ciphertext data to control synchronizations of the encryption system

and decryption system because the encryption system and the decryption system can

---·- -----------------------------------

CHAPTER 2. BACKGROUND 29

obtain the same ciphertext. The sketch of SCFB mode is shown in Figure 2.18 where

E represents the block cipher and the input register is needed to store the input

data of the block cipher. The Sync Pattern Recognition Block is needed to scan

the ciphertext to find a sync pattern and then collect the new IV for the next B bits

after t he sync pattern is recognized. The sync pattern is a fixed small size sequence.

For example, a sync pattern size of 8 and sync pattern of 10000000 could be used [4].

If the sync pattern is not found in the ciphertext the input of the block cipher comes

from the previous output of the block cipher, and hence, in this case SCFB mode can

be thought of as OFB mode with m = B. When the sync pattern occurs and the

collection of new IV is completed, the new IV will be loaded into the input register as

the input to the block cipher, and SCFB mode can be thought of as momentarily in

CFB mode. Thus, SCFB mode is a combination of CFB and OFB mode. Obviously,

SCFB mode can provide the capacity of self-synchronization, which conquers the de­

ficiency of OFB mode. As well, comparing to the conventional CFB, the efficiency

of SCFB mode is improved dramatically since SCFB mode works as OFB mode with

m = B most of time. From Figure 2.18, the decryption system has the same structure

as the encryption system with the roles of plaintext and ciphertext reversed.

2.5.2 Discussion on Queuing System

For SCFB mode, a queueing system consisting of 2 queues (plaintext queue and ci­

phertext queue) is needed [8]. The plaintext queue is needed to store the incoming

bits and transfer them out to XOR with the keystream bit by bit. The ciphertext

queue is needed to store the ciphertext bits and send them out of SCFB system bit

by bit. The queuing system provides the elasticity necessary to accomodate periods

during which the keystream is not available due to resynchronization. A previous

CHAPTER 2. BACKGROUND 30

implementation of SCFB mode transfered data between queues in blocks of 128 bits

[19]. However, the resulting design required a large amount of hardware. The plain­

text queue is initialized to be empty and the ciphertext queue is full initially with all

'1's. The plaintext data is sent to the plaintext queue at a fixed rate, the ciphertext

queue sends data out of the system at the same fixed rate. The transfer of data into

the plaintext queue has the same rate as the transfer of data out of the ciphertext

queue, so, the ciphertext queue becomes empty when the plaintext queue fills up.

The plaintext queue becomes empty and the ciphertext queue fills up because the

plaintext queue is designed to send data to XOR with the keystream to produce the

corresponding ciphertext which is sent to the ciphertext queue at a higher rate than

the incoming speed of the plaintext or outgoing speed of the ciphertext queue. When

resynchronizations occur, data transfer out of the plaintext queue is stalled until the

new keystream is produced based on the new IV. During such period, since data ar­

rives continuously at input, the data in the plaintext queue increases. The higher rate

of data transfer out ensures that during periods of SCFB mode the plaintext queue

recovers its stability. This process represents the elastic property of the queues [19].

The plaintext queue will overflow if resynchronization occurs frequently. In order to

avoid the overflow, the size of the queuing system has to be large enough to reduce

the probability of overflow to as small as possible [19].

Let M represent the size of plaintext queue and ciphertext queue and k represent

the current number of bits in the plaintext queue, the ciphertext queue should have

(M- k) bits because the incoming speed of the plaintext queue is identical with the

outgoing speed of the ciphertext queue when the resynchronization does not occur.

The delay through the system is defined ask+ (M - k) = M bits [8]. The buffer size

M has an influence on the delay when data passes through the system. In order to

minimize the delay, the buffer size M should be as small as possible. However, when

CHAPTER 2. BACKGROUND 31

the block cipher gets delayed and queues get held due to the resynchronization, the

buffer size M has to be large enough to collect the incoming plaintext. If B represents

the size of the block cipher, the buffer size M should be greater than or equal to B

because the plaintext queue continues to collect incoming data without outgoing data

until the new keystream is ready in the block cipher by using the new IV while the

system collects all B bits of the new IV after the sync pattern is recognized. It is

possible that the last bit of the new IV could happen anywhere within a block of

ciphertext and there is a scenario where only part of the block needs to be XORed

with some delay since all bits following the last bit of new IV can not be encrypted

until the new block of keystream is ready. If the last bit of IV really happens closed to

the beginning of the block of ciphetext, it is necessary that the buffer size !vf should

be at least equal to B to make sure overflow docs not happen in the plaintext queue.

Hence, !l;f should be greater than or equal to B so that the plaintext queue has enough

space to store the data and does not have data overflow [8] . An appropriate value for

M will depend on the ratio of the plaintext queue outgoing rate to the incoming rate,

the speed at which a new block is produced, and the requirements for the probability

of error [8] .

2.5.3 Serial Transfer vs. Parallel Transfer

Serial transfer and parallel transfer are different methods for the transfer of data from

the plaintext queue to the ciphertext queue. In parallel transfer the incoming data

which is stored in the plaintext queue are removed from the queue and sent to XOR

with the keystream in a unit of block transfer size N which is more than one bit.

The resulting N bits of ciphertext are placed into the ciphertext queue at the output

of the system. When SCFB mode is working in OFB mode and the sync pattern

CHAPTER 2. BACKGROUND 32

is not recognized, the plaintext queue sends N bits of data to XOR with N bits of

keystream at a time.

In serial transfer mode, the plaintext queue sends plaintext data bit by bit to

XOR with keystream to produce the corresponding ciphertext data and the ciphertext

queue receives the ciphertext data bit by bit as well. Serial transfer generally requires

a simpler circuit than parallel transfer.

In this thesis, we will investigate different parallel transfer sizes N which varies

from 2 to 8. Both the serial transfer and the parallel transfer have clock limitation

which constrains the system efficiency. The clock limitation will be discussed later.

2.5.4 Relationships of clocks

In SCFB mode, there are three clocks, clkl, clk2 and clk3, to control the running

speeds of the data transfer and the block cipher: clkl is used to clock the transfer

of data out of the plaintext queue and into the ciphertext queue, clk2 is used to

clock data into and out of SCFB system, and clk3 is used to clock a round of the

block cipher. The clkl frequency is designed to be faster than clk2. This ensures

that plaintext queue does not back up due to periods during which outgoing bits are

stalled because of resynchronization. This relationship of clocks becomes the clock

limitation which constrains the system efficiency. For simplicity of design, the clkl

frequency is set to two times faster than the clk2 frequency, and as a result underflow

happens frequently in plaintext queue. Overflow happens infrequently in plaintext

queue, except when the buffer size is too small, or the clk3 is too slow. Because the

total number of bits in plaintext queue and ciphertext queue is fixed, underflow may

happen in ciphertext queue when overflow happens in plaintext queue. Overflow will

never happen in the ciphertext queue, because of the complementary relationship of

CHAPTER 2. BACKGROUND 33

the number of bits in the queues. When underflow happens in the plaintext queue,

then plaintext queue will spend 2 clk1 cycles to shift out 1 valid data bit. So, the

actual rate of the incoming data of ciphertext queue will be equal to the rate of clk2.

This will result in a balance between the rates of the incoming and outgoing data in

ciphertext queue, which will lead to no overflow in ciphertext queue.

2.5.5 Synchronization Cycle

For SCFB mode, we assume that the ciphertext bits transmitted in the communica-

tion channel can be categorized as illustrated in Figure 2.19. In this figure, it is clear

that n represents the length (in bits) of the sync pattern, B represents the length

(in bits) of the subsequent IV, and k represents the length of the remaining bits,

which is labelled as OFB block. These k bits of data occur between the end of the

IV and the beginning of the next sync pattern. The variable k is a random variable

depending on the placement of the next sync pattern in the ciphertext. The system

works in CFB mode from when the sync pattern is recognized until the end of the

new IV. Correspondingly, the system works in OFB mode from when the new IV is

all collected until the next sync pattern is found. Hence, a synchronization cycle can

be defined as the set of bits from the beginning of the sync pattern to the beginning

of the next sync pattern. A synchronization cycle consists of n + B + k bits.

v n
'-IV

B
<v

k ,[v n
'/

B
' I' /I' /'- / I' ' /

. sync IV OFB block sync IV

Figure 2.19: Synchronization Cycle for Serial Transfer Mode SCFB

.---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---··-- --- ·--- -

CHAPTER 2. BACKGROUND 34

2.5.6 SCFB with CTR mode

Counter (CTR) mode is an important operation mode in this thesis because encryp­

tion (or decryption) in CTR mode can be done in parallel on multiple blocks of

plaintext or ciphertext, and, this property makes it possible to pipeline the block

cipher in order to improve the throughput. That is, the CTR function can provide

pseudo random data to the block cipher as the input in a higher speed than OFB

mode because it does not depend on the previous output of the block cipher while

OFB mode does.

lnit_CTR_Biock(B-1 :0)

lniti_Ke\(B·1 :0)D---t E E .---a lnili_Ke\(B·1 :0)

N
N
f----optaintex1(N·1 :0)

Ciphertext)D ~N -L.........j) >---'--'-7-----)D

Figure 2.20: SCFB with CTR Mode

As we have mentioned earlier in this chapter, counter mode is a stream cipher

mode and uses a counter which is initialized to some value and then incremented

for each subsequent block (modulo 28
, where B is the block size). For encryption,

a counter passes through the block cipher and each block of plaintext is XORed

with an encrypted counter (i.e., keystream). The general block diagram for SCFB

with CTR mode is shown in Figure 2.20. In this figure, B represents the size of the

block cipher or counter function output (i.e., a counter block) , and N indicates the

number of block transfer size. The variable E indicates the block cipher in this figure,

CHAPTER 2. BACKGROUND 35

and in our work we adopt and implement AES algorithm with 128-bit block length

for the block cipher. For encryption, while the plaintext data is being collected, a

counter block (B bits) generated by the counter function is encrypted by the block

cipher to produce the keystream block (B bits). The input of the block cipher is the

counter block (B bits) generated by the counter function. The counter function keeps

supplying the pseudo random counter block to the block cipher by typically using a

linear feedback shift register (LFSR) which is a sub-module of the counter function.

The input signal "IniLCTR_Block(B-1:0)" is used to initialize the counter function.

When the resynchronization does not occur, the counter function does not need any

input , but when the sync pattern is recognized the new IV is sent to the counter

function as the new initial block (B bits). After a block of keystream is ready and

sent to the output register when the sync pattern is not recognized, the keystream

will be XORed with the plaintext data in a unit of N bits to produce the same length

of ciphertext data which is then stored into the ciphertext queue. For decryption, the

structure is similar to the encryption system except that the position of checking the

sync pattern occuring on the ciphertext side. The same sequence of counter values is

encrypted. The result is XORed with a ciphertext block to recover the corresponding

plaintext block. The block cipher uses encryption function and does not need the

decryption function.

2.5.7 Previous SCFB Implementations

In [19], Yang has already investigated an SCFB system in full parallel transfer mode

(i.e., 128 bits transfered from the plaintext queue to the ciphertext queue at once) .

In [19] , the hardware implementation of SCFB mode ut ilizes the Design Analyzer

based on 0.18J.Lm CMOS technology to perform the front-end synthesis. The hard-

CHAPTER 2. BACKGROUND 36

ware complexity is shown in Table 2.3, which is reported by the design analyzer of

the Synopsis tool with the constraint of the system clock of IOns. The number of

equivalent 2-input NAND gates ·is used as a metric of the circuit size in order to

estimate the circuit size. According to synthesis results, the total number of gates of

the encryption system is 1255644, of which about 50% are the result of SCFB mode

configuration.

Table 2.3: Synthesis Result Using 0.18 Micron CMOS From [19]

Total Area (# gates)

Plaintext Subsystem 190788

Ciphertext Subsystem 313856

AES 612834

SCFB System 1255644

2.5.8 Performance Analysis of SCFB Mode

In this section, we will introduce some concepts of basic metrics of performance

analysis. These concepts include the theoretical efficiency, synchronization recovery

delay and error propagation factor.

Theoretical Efficiency

Compared with conventional CFB, SCFB has the advantage that the efficiency of

the implementation can approach that of straight block encryption, depending on the

sync pattern size. The theoretical efficiency can be defined as [8]:

l
. D/B

'rJ = llll
D-+oo E {#block cipher opemtions forD bits}

(2.1)

CHAPTER 2. BACKGROUND 37

In Eq.(2.1) , D represents the number of bits transmitted. The numerator represents

the number of blocks corresponding to the encryption of D bits. The denominator

represents the expected number of block cipher operations required in SCFB mode.

The theoretical efficiency is a measure of the rate at which the stream cipher can

encrypt compared with the rate of the block cipher. For OFB mode, T7 can be 1 when

all B bits are used in the XOR operation. For conventional CFB mode, 17 can be 1

with m = B. However, if it is guaranteed to resynchronize from individual bit slips,

CFB must operate with m = 1 and, T/ = 1/ B < < 1. In this case, CFB mode is a very

inefficient mode. These are reasons why we are so interested in SCFB mode so far.

Synchronization Recovery Delay

The synchronization recovery delay (SRD) is defined a,s the expected number of

bits following a sync loss due to a slip before synchronization is regained. We will

investigate the SRD for a parallel transfer implementation of SCFB and pipelined

SCFB mode in Chapter 6. It should be noted that SRD does not include the lost

bits directly due to the slip and no explicit assumptions are made about the number

of bits lost in the slip [8].

Error propagation factor

Error propagation factor (EP F) is the bit error rate at the output of the decryption

divided by the probability of a bit error in the communication channel (i .e., in the

ciphertext) . That is, the EP F measures the average number of bit errors on the

output of the decryption when a bit error occurs. We will discuss the EP F for the

parallel transfer implementation of SCFB and pipelined SCFB mode in Chapter 6.

CHAPTER 2. BACKGROUND 38

2.6 Conclusion

The chapter introduces the concepts of block cipher , stream cipher and block cipher

modes of operation. The structures of hardware implementations of AES and SCFB

system are also described. In the hardware implementation of SCFB mode, the

parallel transfer mode and serial transfer mode are discussed, respectively. In SCFB

mode, we have investigated the nature of the plaintext queue and the ciphertext

queue, t he relationship between different clocks, t he relationship between queue sizes,

and the data delay during the transmission from the plaintext queue to the ciphertext

queue. As parts of performance analysis, such as theoretical efficiency, S R D and

E P F , is discussed in this chapter as well.

Chapter 3

SCFB Mode Using Serial Transfer

In this chapter, the hardware implementation of Statistical Cipher Feedback (SCFB)

using serial transfer from the plaintext queue to the ciphertext queue is investigated.

An iterative implementation of the Advanced Encryption Strandard (AES) is adopted

as the block cipher in this SCFB system. The S-box of AES is based on the composite

field based on G F(24
) implementation. By using this composite field implemenation

of S-box, the hardware complexity is minimized. Although the hardware complexity

is low and the throughput of the block cipher is high, the throughput of the plaintext

queue can only reach 100 Mbps, which results in the throughput of the SCFB system

only reaching 100 Mbps. By doing the functional simulations for different buffer

sizes, we select out an appropriate buffer size of 64 bits which has no queue overflow

in our simulations . We also investigate how the various sync pattern sizes affect the

probability distribution of the number of bits in the plaintext queue and average

number of bits in the plaintext queue.

39

.---------------------------------------

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 40

3.1 AES Implementation

In our SCFB mode, we adopt the S-boxes which are constructed to perform inversion

in GF(28
) using a composite field based on GF(24

) [7]. Compared with straightfor­

ward implementation in GF(28
), implementation in GF(24

) is suitable for a hardware

implementation using combinational logic for all boolean equations which depend only

on 4 input bits. The result ing circuit area is significantly reduced.

The AES controller is needed to take control of the block cipher. The block

diagram is shown in Figure 3.1. On the input side, the "hold_on" signal comes from

the sync pattern checking model, which we will discuss in the next section. The

"lnit_Data_Load" signal comes from the input port of AES, and it indicates that the

initial input text data is loaded to AES. The "Reg_Load" signal comes from the SCFB

system controller, which will be introduced in the next section. On the output side,

the "load_data_rcg" signal triggers the register in the first round of AES to load in

the input text data. The "load _key _reg" signal triggers the corresponding register in

the key scheduling block in order to load the proper initial round key /sub-roundkey

to the keys register. The "key _reg_mux_sel" signal also goes to multiplexer in the key

scheduling block. It acts as a select signal to choose either the initial key or round

key. The "done" signal indicates whether the keystream is ready or not in the last

round of AES. The "data_reg_mux_sel" signal is used to select the proper round data

to go through the 128-bit register. We re-use the 128-bit register in order to decrease

the complexity of AES. The "round_const" signal is needed in the F function of key

scheduling, which we have introduced in the previous chapter.

The finite state machine (FSM) of the AES controller is illustrated in Figure

3.2. At any state, if "reset" is high, the next state will transfer to Init immedi­

ately. From any state of RoundO to Round10 or hold state, the state will transfer to

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 41

Load! nput state on the next clk3 cycle if "iniLdata_ctl" or "hold_on" or "Reg_Load"

is high. From state RoundO to Round10, the output "round_const" varies. From

state RoundO to Round9, the outputs are the same except for "round_const" . The

output "key _reg_mux_sel" is high to generate the round key by Key Scheduling block.

The output "load _key _reg" and "load_data_reg" are also high for these ten states

for loading the round keys and data in the corresponding registers. The output

"data_reg_mux_sel" is set to "01" for these ten states indicating the input data to

the reused register will be the output of Round1 to Round9 , respectively. When

the state is Load Input , "key_reg_mux_sel" is low, which indicates the Multiplexer

in the Key Scheduling will select the initial keys for the first round. The output

"data_reg_mux_sel" is set to "11"; the input to the register will be input data to the

block cipher, i.e. , "aes_data_in". If the current state is Round10, the only different

output from the previous state is the "load_key _reg", which is set to low indicating

there will be no round keys offering for the next state. When the current state is

hold, "load_key _reg" and "load_data_reg" will both be set to low because there will

be no new round keys or data to be processed. Because the Shift Register spends

more time to shift out a block of keystream than the block cipher to generate one

block of keystream , it is possible the block cipher can not begin to do the encryption

until the Shift Register finishes. So we add a hold state in the AES Controller design.

, clk3

rese -
,,..,.

cD

-~

hold_on

lnlt_Data_Loa

Reg_ load

1 1

1 I

/ /
1 L
I

1 I
I

1 1

{I
111

AES Controller 1' I
2',
8 1

I

~

.....

""

load_data_reg

load_key_reg

key_reg_mux_sel

done

data_reg_mux_sel(1 0)

round_const(7:0)

Figure 3.1 : Block Diagram of the AES Controller

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 42

/l:..:y reg IIIUX :.cl <• '0';

load_ key reg <.- '0';
data reg mux sci ...:- "Ill ":

load d~nn reg ..-.- '0':
round cunst , . "OOOOOUOO":

key reg mux sci < • '0' ;
load key reg <• '\';

datu reg mux sci <- " I I":
lnad data reg c.~- 'I':

round cons! < • "00000000":

key reg mux sci <- ' 1':
load key reg <• ' I' :

dnlfl reg mu.~ ,o;cl <• .,00";
lund data reg < • 'I':

round const <- "OOOO(l(lO 1":

key reg mux sci < • ' I ' ;
load key reg <• 'I';

data reg mux sci <• "0 1":
load dutu reg <• 'I ';

round "'onst <• "0(}0000 10";

key n:K mux :-.cl <• ' I ':
load key reg <- ' I ':

tlata reg mux !ocl <• "0 I";
load datn reg <• ' I ';

round ..:unst <• "01)000 IOU";

key reg mux sd ..-... 'I';
load key reg «..""' 'I ':

dnra reg mu:< sci,. "01 ":
load data reg <• 'I':

round const <• "O()()(It ()()()";

kl·y rc~ mux sci < .. '1 ' ,
load key reg <• '0';

data re t; mux J.CI <• " 10" ;
lond data reg <• '0':

key reg mux sci <• ' I ';
load key reg •:- ' I';

da111 reg mux set <• "0 I";
load data rcg <• ' I ':

round CO liSt <• "000 I (){)1)0";

key r..:g mu'(!old <• ' I '.
\nod key reg <• '0',

data reg mm: :-.e l <• " 10":
l o<~d ~ta la r..:g .-.- ' I ' :

kl·y reM mux sci ,_' I ':
lond key reg <• 'I ':

data reg mux s c i <'• "0 I":
load dalll reg <.• 'I';

round ..:un.~t ~~- "()() I I 0 I I 0";

key reg mux sd ' I ' ;
lnad key reg ,~.' I ':

dutn reg mu:" sd <• "(II " :
load d1ua reg ..:• ' I';

rouml cons• <• "000 I I 0 11 " :

key res lllU): !ocl <• 'I';
loa d key reg <• 'I':

cln1a reg mux sci <• "0 I " ;
loRd data reg <• 'I ' :

1011nd ~.:on)ol <• "I OOOOOCtO";

key reg mux sci <• ' 1' :
load key reg <• ' I ';

,\atn reg mux sci'~- " 0 l " :
lo ad dnt1t rc~;·:• ' l '.

T('IU!ld C('lll:.l ~.• " (1 1(1(100()1)" ;

key reg mu.~ sci <• '1 ':
lond key reg <• ' 1':

dutn reg mux !<>CI <• "() J";

hl:~d dnta reg ...::• ' I ';
ro und const <'• " 0() I(}()()()()";

Figure 3.2: FSM of AES Controller

3.2 SCFB Mode Hardware Implementation Details

The hardware implementation of SCFB mode using serial transfer from the plaintext

queue to the ciphertext queue is illustrated in Figure 3.3. In this section we explore

an implementation that serially transfers bits and as a result keeps the circuit area

reduced. In the serial design, there are three clocks, clkl , clk2 and clk3 , to control the

running speeds of data transfer and block cipher: clkl is used to clock the t ransfer

of data out of the plaintext queue and into the ciphertext queue, clk2 is used to

clock data into and out of the SCFB system, and clk3 is used to clock a round of

the block cipher. The plaintext queue and the ciphertext queue are initialized to be

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 43

clk3

n ew_IV_dcn•
IV_In

8 NrareaN(aoJ ·pulse·

1y ·o· 1' I Choose
/ Cho M.Jx 1, l MUX I New_IV

I r
8 -r chos Nekr.s

~

Data h ~vel'
~

M '1'
...... Block ~ u ·o·

Cipher X
lnit_D ata_Load

'--

~ 8,.. new_IV(a:O

aes_Datag 8 8

1
, ncl 1.-

Koy_9roorr(a 0)

ci~er dcne 1/ ~e new_I V _don

1

L I I I ""

Reg load
1 ~ 1 v J3lock Register (8 bls}

R O Dooe Key_Stream_Ou~ a 0)
n bits

i ~· fiR~ 1
f--+-1

ontroller ~ I ·~ I .l n ew_IY dcne I

I I I I IJ-
I R o1.o I I ~R (8 bitsj ~· unhd d on ---::::_j syn pattern - F I 1 111v Shin Register (128} .~

PI oin T e>d _au L...r-)D-= 1 CQ full I
11 L,t'

e-f I I I I -D

(n-1:0)

R eset

Iva lid oval ld

I I ffi*J R'
R 1 11 1 R

ext Is . 256)
clp

Plaintext Queue (4 - 256} lph ertext Queue(
pl aint her! ext

clk2
c lk1 ~

AanTe>C_V:alid

Figure 3.3: Hardware Implementation of SCFB Using Serial Transfer

empty and full , respectively. While the plaintext data is being collected bit by bit in

the plaintext queue, a keystream block of 128 bits is generated by the block cipher.

If a block of keystream is ready and the sync pattern is not recognized , the 128-bit

keystream will be loaded into Block Register. Also the same keystream will be loaded

into the block cipher as the new input data . Then , Shift Register (SR) will load in

this block of keystream if it is empty and then begin to shift bits out one by one. At

the same time, the plaintext queue will shift out the data bit by bit to XOR with

the keystream coming from Shift Register. When the sync pattern is recognized, the

system will continue working in the OFB mode for at least 128 clk1 cycles to collect

the complete IV. When the IV ..shift_register is in the middle of collecting 128 bits

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 44

for the new IV, the sync pattern scanning is t urned off so that any 8 bits matching

the sync pattern are ignored until the IV collection phase is complete. When the

128 bits of IV are ready in IV_ShifLRegister, Shift Register, plaintext queue and the

ciphertext queue will be held. That is to say, Shift Register and the plaintext queue

will not shift out bits any more, and the ciphertext queue will not have any incoming

data until the new IV is used to create a new keystream block. However , the plaintext

queue will continue to accept incoming data and the ciphertext queue will continue

to transmit outgoing data. The new IV block is sent into the block cipher as the new

"datajn", and the next block of key stream will be generated by the block cipher.

After this new keystream is ready, the controller will provide it to Shift Register and

simultaneously unhold the shift register, the plaintext queue, the ciphertext queue

and the IV _ShifLRegister. In the following , we will describe some basic components

in this system.

clk1

reseP
L..oad> SR_

-.1..01""" f\ew_IV_

l.hrd
co

d_ooD
_FLJ

Key_StrEBll1_0Jt(1 ·-27:0,

3.2.1 Registers

--

Shift_ Register
• Keystr631Tl0ut

• sR_Valid

Figure 3.4: Shift Register

The component Block Register is used to capture the output of the block cipher,

prior to transfer into Shift Register. Shift Register is used to shift keystream bits

into the XOR operation with the plaintext . The block diagram of the Shift Register

is shown in Figure 3.4. Shift Register will be held when "New_IV_Done" is high.

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 45

Shift Register will continue shifting when it is released, i.e., "Unhold_on" is high.

The "SR_Valid" signal will determine whether the plaintext queue can shift out data

or not, and it is triggered by both the "New _IV _Done" signal and "CQ_Full" signal.

The controller will decide when Block Register and Shift Register can load in new

keystream. IV _Shift_Register, shown in Figure 3. 5, will keep checking for the n bit

sync pattern all the time, except for the period from when the new IV is ready until

"Unhold_on" is high. When the 128 bit new IV is ready, IV _Shift_Register will provide

this new IV to the block cipher as the new input, and at the same time, it will set

the signal "New_IV_Done" high to hold Shift Register, plaintext queue and ciphertext

queue.

e..., 1 I
~ New_IV_Don

IV_Out(128:0
128

First 8hit

8 I

8 _,
Sync_P

n Unhold_o
c hose_N ew_IV

attern(7: 0)

1
I 1

1 I
I

IV Shift _Register ,.
-

1--
r-

hold_COIII I

1

~])-J-1- j ~ 1---

D_FF -
8 bit Syn_Villid ...

ornparator
1 Count_En11

/ ~ilid

i- .1.
Counter 1--

Figure 3.5: IV Shift Register

3.2.2 System Controller

1 1
I ;::;

I V_ln
PQ_Val id

reset
clk1

The controller is needed to take the control of the whole SCFB system. The block

diagram is shown in Figure 3.6. The Finite State Machine of the system controller is

shown in Figure 3. 7. At anytime if the "Reset" is high, the system will be in On_Rst

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER

clk1D-----4----:---:------~
" '>-----. 11---+·~Reg_Load rese .. _

RD _OonED- -:-1----t
New_IV_OonED--+--t

SR_Oon

Controller

Cipher_OonA:}- -1--t_ _________ __.

SR_Load

Figure 3.6: Block Diagram of the System Controller

46

state and "ChoMUX" will be set to low, which means that the input to the block

cipher will load in the initial data as its data input. When the system is in Gen_K ey

state, the block cipher is in the process of generating the keystream. If "Cipher_Done"

is low or "RD_Done" is low, the system will be kept in Gen_K ey state. The system

will not be in Reg_Taking_K ey state until "Cipher_Done" is high and "RD_Done" is

high. "Reg_Load" will be set to high when the system is in Reg_Taking_K ey state,

which means the Block Register is in the process of load in the 128 keystream from

the block cipher. The state will transfer to Reg_Occupied if input "SR_Done" is low.

When the system is in Reg_Occupied state, which indicates the Block Register has

been occupied by the new keystream and has not transfered them out yet, the output

"Reg_Load" will be set to low and "ChoMUX" will be set to high to get ready to load

the new data from the shifLregister into the block cipher. When the input "SR_Done"

is high, the system state will transfer to SR_Loading_Key from Reg_Taking_Key or

Reg_Occupied state. When the system is in the state SR_Loading_K ey state, output

"Reg_Load" is set to low and "SR_Load", "U nhold_on" and "ChoMUX" are set to

high. If "SR_Done" is low, the output "Unhold_on" and "SR_Load" will be set to low

after one clk1 cycle and the system will be in state W ait_State. After a clk1 cycle,

the state will transfer from W ait_State to Gen_K ey state. At any time, if the 128 bits

.----~~~~~~~~~~~~~~~~~~~~~--------

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 47

SR_Done = '0'

Figure 3.7: FSM of System Controller

new IV is ready in the IV _ShifLRegister, the system state will be in N ew_IV _Found

state in the next clkl cycle. When the system is in N ew_IV _Found, which indicates

the system is in the process of generating the new keystream by using the new IV s

from the IV_ShifLRegister, the output signals "Reg_Load", "SR_Load", "Unhold_on"

will be set to low and "ChoMUX" will be set to high. The system state will not

transfer to the Reg_Taking_K ey from N ew_IV _Found until the "Cipher_Done" is

high. The VHDL code of the SCFB system controller is shown in the Appendix A.

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 48

3.2.3 Plaintext Queue and Ciphertext Queue

The architectures of the plaintext queue and ciphertext queue are similar, except for

their initialization mechanisms. The plaintext queue is initialized to be empty, and

ciphertext queue is initialized to be full, i.e., all 'l's. The clock clkl is designed to

be faster than clk2. This ensures that the plaintext queue does not have overflow

due to periods during which outgoing bits are stalled because of resynchronization.

For simplicity of design, the clkl frequency is set to two times faster than the clk2

frequency, and as a result underflow happens frequently in the plaintext queue. So,

we have designed a special scheme to handle this issue to avoid any data lost in the

queue. Overflow happens infrequently in the plaintext queue (ideally never), except

when the queue size is too small, or the clk3 cycle is too large. Because the total

number of bits in the plaintext queue and the ciphertext queue is fixed, underflow

may happen in the ciphertext queue when overflow happens in the plaintext queue.

Overflow will never happen in the ciphertext queue, because of the complementary

relationship of the number of bits in the queues. When underflow happens in the

plaintext queue, the plaintext queue will spend 2 clkl cycles to shift out 1 valid data

bit. So, the actual rate of the incoming data of the ciphertext queue will be equal to

the rate of clk2. This will result in a balance between the rates of the incoming and

outgoing data in the ciphertext queue, which will lead to no overflow in the ciphertext

queue.

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 49

3.3 Synthesis Results, Analysis and Comments on

the D esign

As we mentioned before, there are three clock domains in this system. Among these

clocks, clkl is the fastest clock and it can be the base system clock in the implemen­

tation. The clocks clk2 and clk3 can be derived from clkl. As shown in Figure 3.3,

the rate R of incoming plaintext data to the plaintext queue is directly equal to the

frequency of clk2, since the data collection of the plaintext queue is based on clk2.

The system efficiency can be controlled by adjustment of these three clock frequencies.

The plaintext queue collects incoming data at the rate R (clk2) and outputs the data

at the rate of clkl. The ciphertext queue has the reverse situation. The interfaces

(Block Register, Shift Register, etc.) of the block cipher also use clkl to keep the

same pace as the two queues . The block cipher, which is clocked at a per-round rate

of clk3, has to run as fast as possible in order to reduce the idle time that stalls the

queue bit transfer due to generating the keystream when resynchronization occurs.

We undertook functional simulations for different buffer sizes for the plaintext

queue of 48 to 256 bits. It was discovered that the overflow only happens when the

queue size is 48 bits. From the simulations, an appropriate buffer size of 64 bits, which

results in no queue overflow, is selected. The simulation parameters are adopted as

follows:

1. The sync pattern size, n, is equal to 8.

2. The sync pattern format is "10000000".

3. The size of the block cipher, B, is equal to 128.

4. clk1, clk2 and clk3 are set to have periods of 5 ns, 10 ns and 25 ns, respectively.

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 50

These values are selected to give a minimum possible given critical path t iming.

Figure 3.8 illustrates the probability distribution of number of bits in the plaintext

queue for varying sync pattern sizes. This curve is derived from the simulation results.

The simulation parameters are adopted as follows:

1. The sync pattern size, n, varies from 4 to 8.

2. The sync pattern format is "10 ... 00" .

3. The size of the block cipher, B , is equal to 128.

4. clk1 , clk2 and clk3 are set to have periods of 5 ns, 10 ns and 25 ns , respectively.

We take the values after 1000 periods of clk2 in the simulation when the system is

working in stable state. In general, with high probability there will be fewer than 6 bits

in the queue. At times, with non-zero probability, as many as 45 bits were found in the

queue. This results from the resynchronization of the SCFB system. The number of

stored bits continuously increases without any outgoing bits for the plaintext queue

when the new IV is used to generate a keystream block. Since resynchronization

happens more frequently for the smaller size of sync pattern, the queue would have

more chances to be filled with incoming bits without any outgoing bits during the

resynchronization for the smaller size of sync pattern. The same queue would have

less time for the normal operation where the resynchronization does not happen. This

is why the peak for the smaller size sync pattern is lower than that for the larger size

sync pattern.

We did an ASIC synthesis with 0.18 micron CMOS TSMC (Taiwan Semicon­

ductor Manufacturing Company) standard cell technology using Synopsys 2002 tools

supported by Canadian Microelectronics Corporations (CMC) [20]. We can get a

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 51

Probability distribution of# bits In the queue

50%
(PQ-slze = 64 bits; clk3 = 25 ns; sync-pattern-size= 4, 6, 8, respectively, Running time = 1000000 ns)

40%

-z;- 35%
c:
g
0
0 g
~ 30%
2 ..
c:

0
0
0

25% ~

E

~ ..
E

20% "' "' c: ·c:
c:

" IX

0 15% ..
"' .!!
c: ..
~ .. 10%

"'
5%

+ ,,
• I

I I

I •
I I
I I

I I
I

'J:
I I

I I

I (

'\Q._<lo <lo <lo <lo<lo·O<lo<lo<loO<lo 0 <f><lo 00 00 0 0 0 0 ·00 00 0~060 Oo
......... + +-+~ +·+ +-+-+ + t +-+-t- + ~ +-+-+ + ·~ +-+-+ + +-+-+ + ~

10 15 20 25 30 35 40 45

#bits In the Plaintext Queue

I
~ sync-alze :~: 4

--- sync-size • 6
-+- sync-size • 8

60 64

Figure 3.8: Probability Distribution of# Bits in the Plaintext Queue

report indicating a number of different gates, timing and a total overall area when

the circuit is synthesized. We use the number of equivalent 2-input NAND gates for

the total area as a metric of circuit size. The synthesis results of the block cipher,

the plaintext queue and the ciphertext queue are shown in Table 3.1.

Compared to the results of [19] which uses full block parallel transfer, the complex­

ity of the SCFB system is much reduced. The complexity of hardware implementation

of [19] is also shown in Table 3.1. The constraint of the system clock (i .e., clkl) was

10 ns and the total number of gates of the encryption system is 1255644 according to

the synthesis result in [19]. In our design, the synthesis results have been improved

~--- ----

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 52

significantly, both for the AES design and the SCFB mode circuitry. The complexity

of hardware implementation is reduced.

In our SCFB system, based on the critical path timing information derived through

synthesis, the speed of the block cipher is set to 128/12 x 25 ns ~ 426.67 Mbps using

clk3 to have period of 25 ns which is 5 times the 5 ns period clkl. The throughput

of the SCFB system is 1/10 ns = 100 Mbps since clk2 is half of clk1 and hence has

a period of 10 ns. Hence, the efficiency is 100/426.67 ~ 23.4%.

Thus, the throughput of the plaintext queue becomes the bottleneck of the system.

To improve the throughput of the system we can change the serial-in and serial-out

mode into parallel-in and parallel-out mode for the transfer of data from the plaintext

queue to the ciphertext queue. This will be investigated in the next chapters.

Table 3.1: Synthesis Result Using 0.18 Micron CMOS

Total Area (# gates)

Serial Transfer Mode Full Block

(This thesis) Parallel Transfer [19]

plaintext queue 1232 190788

ciphertext queue 2291 313856

PQ_CQ_Integrated 3525 -

AES 16919 612834

SCFB System 25361 1255644

3.4 Conclusion

This chapter investigates the hardware structure of statistical cipher feedback mode

using serial transfer. The S-box of AES is based on the composite field based on

CHAPTER 3. SCFB MODE USING SERIAL TRANSFER 53

G F(24
) implementation in order to minimize the hardware complexity. For the in­

vestigation of ASIC synthesis with 0.18 micron CMOS standard cell technology, the

throughput of the SCFB using serial transfer can reach 100 Mbps and the overall

complexity of the system is equivalent to about 42k gates. The efficiency of SCFB

using parallel transfer is about 23.4%. Compared to the results of [19] which applies

full block parallel transfer, the hardware complexity of the SCFB system based on

serial transfer mode is much reduced.

Chapter 4

SCFB Mode Using Parallel

Transfer

In this chapter, the hardware implementation of statistical cipher feedback (SCFB)

using parallel transfer from the plaintext queue to the ciphertext queue is investigated.

We have studied SCFB using serial transfer in Chapter 2, where we know that the

throughput of the plaintext queue has become the bottleneck of the system. In order

to solve this problem, we improve the design by enlarging the transfer size of the

queuing system. By changing the serial transfer to parallel transfer in the queues,

a higher throughput of the plaintext queue is obtained comparing with that in the

serial transfer mode SCFB system, which is discussed in the last chapter. For SCFB

mode using parallel transfer, the input and output of the system becomes N bits in

parallel where N is the number of bits tranferred in parallel between queues.

Compared with the serial transfer mode SCFB, the SCFB using parallel transfer

has more complex architecture while dealing with the data transfer among plain­

text queue, ciphertext queue and IV _Shift_Register. The external signals also have

some changes. For example, the "plaintext" input port and the "ciphertext" out-

54

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 55

put port become multiple bit signals. For the block cipher, we still use the iterative

implementation of Advanced Encryption Standard (AES) as the block cipher in this

parallel SCFB system. We discuss the detailed hardware implementation of the par­

allel transfer mode and compare it to the serial transfer mode which has already been

investigated in Chapter 3. We do the analysis and synthesis as well on this parallel

transfer mode in this chapter.

Through this chapter, the ideal throughput of the block cipher is 128 bits /(12 x

clk3 cycle) , where clk3 cycle represents the clock period of the block cipher. However,

because of the resynchronizations, for SCFB mode, the throughput is reduced to be

about 50% to 60% of the ideal value [8]. On the other hand, the input throughput

of the plaintext queue is N / clk2 cycle, where N is the block transfer size and clk2

cycle represents the clock period of transfer of data into and out of the system. In

the last chapter, we have investigated the serial transfer mode SCFB, and the low

throughput of the plaintext queue has limited the throughput increase of the system.

In our investigation of parallel transfer mode in this chapter, we set the block transfer

size to 4 bits and investigate how this change may improve the throughputs of both

plaintext queue and the system. By doing this, we can make the throughput of the

block cipher as high as possible.

4.1 Hardware Implementation Details

In our implementation of SCFB using parallel transfer , AES is still using the key­

on-fly scheme. However, in this chapter, we adopt t he simple boolean function in

the S-box of AES. Figure 4.1 illustrates the hardware implementation of SCFB mode

using parallel transfer (N = 4 bits) from the plaintext queue to the ciphertext queue.

Compared with the serial transfer mode, the parallel transfer mode has more complex

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER

ret-~ IV

clk3

lnit_Data_Load Block
Cipher

Key_ Strean(B-1:0)

OON_J\1(8:0

B

OONjV_

PlainTeld_Vc:M
cfk2D----+-_._-----I----------l----_l

clk1

Figure 4.1: Hardware Implementation of SCFB Using Parallel Transfer (N= 4)

56

structures for the shift register, IV _Shift_Register, plaintext queue and ciphertext

queue. Only a small modification on the system controller is made because the

behavior of the system does not change so much except that the speed of transfer of

data and the keystream generation in the AES becomes faster than the serial transfer

mode. When the 128-bit keystream is generated in the block cipher, it will be loaded

into the block register , which contains a 4 x 32-bit long register. Then this keystream

will be moved to the shift register when the system controller gives a proper control

signal to the shift register. The shifter register also has a register which is 4 x 32-

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 57

bit long with the last 4-bit block, having a more complex architecture. After the

keystream is successfully loaded to the shift register , this 128-bit keystream will be

transferred out of the shift register to be XOR'd with the plaintext from the plaintext

queue to generate the corresponding ciphertext in a unit of 4 bits. The ciphertext

data will be transferred to both the ciphertext queue and IV _ShifLRegister in a unit

of 4 bits. Since the sync pattern can be generated anywhere while the system is

working in the OFB mode, the last transfer block of the new IV might need less than

4 bits depending on where the sync pattern is recognized. In this case, the Shift

Register moves data out in a unit of 4 bits, which may contain 1 - 4 valid bits and

0 - 3 invalid bits correspondingly. The same thing happens in the plaintext queue,

ciphertext queue, and the IV _Shift_Regist er. In the upcoming sections, we discuss the

details of the hardware design for the parallel transfer mode, especially for the shift

register , plaintext queue, ciphertext queue and IV _shift_register. The VHDL code of

the SCFB system controller is shown in the Appendix A.

Shift_ Register

SR_COre

II---Dkeystrean"Out(3:0)

SR_Valid

Key_Strwn_c:ut(127:oP·----t. __________ _j

Figure 4.2: Shift Register for Parallel Transfer (N=4)

4.1.1 Shift Register

Figure 4.2 illustrates the block diagram of shift register in parallel transfer. Compared

with the shift register in the serial transfer implementation, the shift register in the

parallel transfer mode has a 4-bit keystream output signal and an extra input signal,

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 58

the latter indicates the length of the last block in the new IV. The shift register

transfers out 4 bits of keystream block for every clk1 cycle. The input signal (i.e.,

"LasLIV _Length") represents the number of valid bits which will be needed in the

next keystream transfer block. For example, if "LasLIV _Length"= "001" the next

keystream block will only contain 1 valid bit.

4.1.2 IV _Shift_Register

The IV _Shift_Register component is illustrated in Figure 4.3. Unlike serial transfer

mode, parallel transfer mode, where block transfer size is equal to 4 bits, for every clk1

cycle, has up to 4 valid bits of ciphertext coming in the IV _ShifLRegister. However,

for the last block of IV while collecting new IV, there may be less than 4 valid bits of

data transferring to the IV _ShifLRegister. This number of valid bits of data in the

last block of IV depends on where the sync pattern is recognized. For every clk1 cycle

there is at most 4 comparisons occuring in the IV _Shift_Register in order to recognize

the 8-bit sync pattern.

New _IV_ dare

IV_Out(127

Sync_Pattem(7:

:0

0)

1

1281

8

-

2~

4

IV_ Shift_Register
f---
1-

r.~L 1

hold_cou

D~
~

Court- EJ1ab. ~ V< id
~ li

1-

Unhold_
Chose_New_

Last_IV Jmgth(1

Last IV block lencrth 1/
Counter f---

~\P 1
2 I 1-

:Or

11
1

I 1! •

I V_in(3:0)
PQ_Vaid
reset
clk1

Hdd_m _fa-_PQ_SR

Figure 4.3: IV Shift Register Using Parallel Transfer (N=4)

The process of sync pattern recognition is described in Figure 4.4. The 1 st

moment describes the first two blocks of ciphertext data (i.e., {IVo(O) ... IV0 (3)}

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 59

'---------------------' 4" comporis01t if recognizee!
"LasLfV_lenglh" • 4

Figure 4.4: Sync Pattern Recognition for Parallel Transfer (N=4)

and { JV1 (0) ... !Vi (3)}) have already been loaded into the first 8 bits positions in

IV _Shift_Register by using 2 clk1 cycles, where clk1 is needed to clock the transfer of

data into the IV _ShifLRegister. The 2nd moment describes that at most 4 com par-

isons are complete for every clk1 cycle. For example, if the sync pattern is recognized

in the 2nd comparison the IV_Shift_Register will begin to collect the 128-bit new IV,

and the first bit of the new IV will be IV2(1). In this case, the "LasLIV_Length"

is set to 2, which indicates that both the shift register and the plaintext queue will

transfer only 2 bits in their transfer blocks after 31 clk1 cycles (i.e., 31 clk1 cycles

are needed in order to collect 128-bit new IV while the block transfer size is equal to

4 bits). Actually everytime when a block of ciphertext data is transferred into the

IV _Shift_Register except for during IV collection, there are four comparisons needed

to be done in order to recognize the sync pattern.

For the block transfer size which is equal to 4 bits, after the sync pattern is

recognized, IV _Shift_Register will spend 32 clk1 cycles to collect the 128 bits new IV.

When the new IV is ready, IV _Shift _Register will provide this new IV to the block

cipher. Figure 4.5 shows how the 128-bit new IV block transfers to IV _Shift_Register

when the sync pattern is recognized. In the first block of Figure 4.5, we assume

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER

... new IV collectln~f----
S}'W P•tttr•il nce1.U.td

" L..1t_I V _MIIjltll" •I

60

...... Fe 1 , ,E ~_J...:..v..C:. •• ;.:..;, '-'-'·"""·"~, L..;;.IV...;;::·":.:...., L.._-L.__L.._-L.___J _ _,___J _ _,___Jc__ ________ .lbk• "

4 blll~
........ Shirt 4 bill ~ -...... ······_

... the JOdi block of new IV

...... I X I X I X w ~-'---'-'-1'----"-'-'---'-'-'--''-'---'-'-'----'-'-'--...;__;_j.---'-'-'--....:..:....O.---'-'-'--....:..:...J..----"''-'---"'--'--'-'---'-"-'-'...o....;_'-'-'---""-'
~

Plaintext Queue IV _Shift_Register

Figure 4.5: Process of New IV Collecting for Parallel Transfer (N=4)

that the sync pattern is recognized in the pt comparison (shown in Figure 4.4) of

IV _ShifLRegister. Then the first 3 bits of ciphertext are collected in the first 3

positions of the new IV. The second and third block of Figure 4.5 represent the

following 31 clk1 cycles, where for every clk1 cycle, there are 4 valid bits of ciphertext

bits which are transferred to the IV _Shift_Register. Simutaneously, the bits in the

IV _ShifLRegister are shifted 4 bits to the right per clk1 cycle. In the last block of

Figure 4.5, the plaintext queue only sends 1 valid bit which is XORed with 1 bit

keystream from the shift register, and then this 1 bit of ciphertext is transferred to

the IV _ShifLRegister. Simultaneously, the bits in the IV _ShifLRegister are shifted 1

bit to the right. If the length of the last IV block is 4 bits the PQ will transfer a

block of 4 bits with 4 valid bits to XOR with 4 bits of keystream, then transfer to the

IV _ShifLRegister. If the length of the last IV block is 2 bits the PQ will transfer a

block of data which contains only 2 valid bits to XOR with 2 bits of keystream, then

these 2 bits ciphertext bits come into the IV _ShifLRegister to complete the 128-bit

new IV collection.

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 61

4.1.3 Plaintext Queue and Ciphertext Queue

The structure of the plaintext queue for the parallel transfer mode is similar to that

of the serial transfer mode except for the output pipeline design, which becomes more

complex. Figure 4.6 illustrates the structure of the plaintext queue in parallel transfer

mode for block transfer size which is equal to 4 bits.

IDAT A(3:0r

IVAUI:J> - EED-

•
R ST

WCLJ<

4
Vlklte_PipeUne ~ ~ Reed_Pipellne

3 ;
4 /

l

VIFSM -):...
- WPORT_OATA(:tO) RFSM

""-""' ~ f--- RPORJ"_Or\TA(30 - Rsader

~ f¥- -+-
Poirter -

..,_rod ~ WPORT..AOOA(J'O i RfOi - ~·0
,.,...,

.......... ,..,

I I
NOTE : AI the COfl'l'OOBlts <re syncrroniliXI reset

Figure 4.6: Plaintext Queue for Parallel Transfer (N=4)

Last_ IV l<ngth(2.0)
ODATA(3:0) ~

+ •
--7f-

-tiE]

PQ__pipe_rdd
SR_Vaid

~ RCLJ<

The input signals, "IDATA", "!VALID", "RST" and "WCLK", are connected

to the external ports of the system. The "!DATA" signal represents the plaintext

data, which will be loaded into the input pipeline which is composed of several 4-bit

registers. Then the plaintext data will be stored in the proper positions in the FIFO

and read out of the FIFO when the control signals, "wport_meb" , "wp_enab" , "renab"

and "rporLmeb", are asserted properly. The "LasLIV Jength" signal comes from the

IV _Shift_Register and represents the number of valid bits that the read pipeline should

transfer. The "PQ_pipe_hold" signal also comes from the IV _Shift_Register. It is used

to freeze the read pipeline when resynchronization happens. The "SR_Valid" signal,

which comes from the shift register, is used to synchronize the output data from

the shift register and the plaintext queue. In Figure 4.6, WFSM, (i.e., write finite

state machine), is needed to control the behavior of the write part in the plaintext

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 62

queue. The block Writer Pointer provides the writing address to the FIFO. The

FIFO is actually a 2-port RAM which is used to store and read the data through

write port and read port, respectively. RFSM, (i.e., read finite state machine), is

needed to control the behavior of the read port in the plaintext queue. The block

Reader Pointer provides the reading address to the FIFO.

Figure 4. 7 shows how the plaintext queue adjusts the boundary of each 4-bit

transfer block. We apply three 4-bit registers in order to handle the boundary of the

transfer block when the last block of the new IV is smaller than 4 bits. In Figure 4. 7,

Reg1 is used to transfer the block of data, which contains 1 to 4 valid data bits, out of

plaintext queue. R eg2 is used to store the intermediate data which may contain data

from two successive blocks of plaintext. R eg3 is used to receive the data directly from

the read pipeline of the plaintext queue. When R eg2 is not filled, the next oncoming

block of data will first fill Reg2 and then put the remaining data to Reg3. In the first

block of Figure 4. 7, we assume the "LasLIV Jength" is equal to 3. Thus, when the

plaintext queue receives this signal, Reg2 will transfer the first 3 bits of data to Reg1

in the next clk1 cycle. Simultaneously, the new 4-bit incoming data will be separated

into two parts which transfer to R eg2 for the first 3 bits and Reg3 for the last one

bit.

In the second block of Figure 4.7, we assume the "Last_IV Jength" is equal to 4

after the previous block. Therefore, when plaintext queue receives this signal, R eg2

will transfer all the 4 bits of data to R eg1 in the next clk1 cycle. At the same time, the

1-bit of data in the previous R eg3 will be transferred to R eg2 in the first position, and

the new 4-bit incoming data will be separated into two parts which are transferred

to Reg2 for the first 3 bits and Reg3 for the last one bit.

The structure of the ciphertext queue for the parallel transfer mode is similar

to that of the serial transfer mode except for the input pipeline design. Figure 4.8

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 63

Reg'!

X I X I X I Pl(3)

~ "' Last_ IV_lcnglh'" = 3

Data_in~ Pt(2) Pt(l) I Pt(O) Po(3) I ~ I X I Po(2) I Po(l) I Po(O)

I ' 1 moment:
Reg:! Rcgl

2nd moment:
Reg'!

I X I X I X I Pl~)

~ '"LasUV_Icngth'" = 4

Data_in~ Pl(2) Pl(l) I Pl(O) Pt(3) I ~ Pt(2) Pt(l) I Pt(O) Po(J)

Reg:! Regl

Figure 4.7: Plaintext Queue Output Buffer for Parallel Transfer (N=4)

illustrates the structure of the ciphertext queue in parallel t ransfer mode for block

transfer size which is equal to 4 bits. The output signals, "ODATA", "OVALID" and

"CQ_Full", are connected to the external output ports of the system. The "IDATA"

signal represents the ciphertext data, which will be loaded into the input pipeline

that is composed of several 4-bit registers. Then the ciphertext data will be stored

in the proper positions in the FIFO and read out of the FIFO when the control

signals, "wport....meb", "wp_enab" , "renab" and "rport....meb", are asserted properly.

The "!VALID" signal, which comes from the plaintext queue, is used to identify the

validation of the input data. In Figure 4.8, WFSM, (i.e., write finite state machine),

is needed to control the behavior of the write port in the ciphertext queue. The

Writer Pointer provides the writing address to the FIFO. The FIFO is actually a

2-port RAM which is used to store and read the data through write port and read

port, respectively. RFSM, (i.e., read finite state machine), is needed to control the

behavior of the system on the read side of the plaintext queue. The block Reader

Pointer provides the reading address to the FIFO.

,---------------------------- ----

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER

3:0 IDATA(

IVAUI:P' ----£EE:]-

•
RS T

clk2 .

:Y

I
W:SM .,_ ...

.. _
""""-

I

Write_Pipellne P ~ Read_Pipeline

I I
co._p .. _ r-r- 'NPORT_r».TA(3•0)

Rn_Wiggor_<NMC ~-
V- Writer Reader

Pl:llrter
APORT _llATA(l.O - Pl:llrter p.-; -

~ -.>(7:0 ~--- ; AF0 1 ~ """'17:0) v- -

II

NOTE : All the CClfl'lX>I'Ml'l!S ore synciTonized reset

!)-

I
RFSM

"""
'"'"'

, ..

I

Figure 4.8: Ciphertext Queue for Parallel Transfer (N=4)

64

0 DATA(3:0)

EEE:]-

y -clk1
CQ_Fti l

F igure 4.9 shows how the ciphertext queue adjusts the boundary of each 4-bit

ciphertext block when the number of valid bits in the ciphertext block is smaller

than 4. The data in darker colour represents the valid data in the new upcoming

ciphertext block. The first three blocks, (i.e., block a, band c), in Figure 4.9 describe

the behaviour of ciphertext queue input pipeline at very beginning, (i.e., initialization

process in t he queue). The remaining parts in the figure show the behavior when the

ciphertext queue is working in normal situation. Block I I and I I' are two separated

cases followed by block I . Blocks a-b-c represent a successive process, one of which

spends one elk 1 cycle. Blocks I , I I or I , I I' represent a successive process, one of

which also spends one clk1 cycle.

In block a of Figure 4.9, we assume the number of valid bits in ciphertext block

IS 4 at the very beginning. The first ciphertext block of data is represented as

C0 (0) ... C0 (3) . These 4 bits of data will be transferred to Reg1 directly for the

initialization. In the next clk1 cycle it will be output to the ciphertext queue.

In block b of Figure 4.9, we assume the number of valid bits in the 2nd ciphertext

block (i.e., C1 (0)) is 1. This 1 bit of data is transferred to Reg1 after the first

ciphertext block has been transferred out of Regl. After this 1 bit of ciphertext data

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER

RegJ

(a) X I X I X X I

~
Data_ in~ LlCx----'.1--'..:...x _L_....Cx----LI--'..:...x _JI- I C.(J) I C~l) I Co(l) I Co(O) I

R egl R eg I

R egJ

(b) I X I X I X I X I
~

Data_ln~ x I x I x I x I - Ll _x----l.l_x --'---x----'-1 --=c.::..~•.:....JJ I
R egl Reg I

R egJ

(c) I X I X X I X I

Data_ in~ X I X I X I C~J) I - I Co(l) I Co(l) I C.(O) I C~O) I
R egl Reg I

... -............................ . --·
R egJ

Data_in~ 1 C•Pl 1 C>(l) I C.(l) I c~Ol I

(I) ~

Oata_in!.L,..

(II)

Onta_in~

(II')

I X I X I X I C~3) I
R egl

RegJ

I X I X I C.(l) I C~O) I

x l x l x lc~»l
Regl

RegJ

I C~J) I C>(l) I Co(l) I 0(0) I

I C o(l) I C(l) I C~O) I C o(l) I
R eg I

CASE 1:
Swn of# va lid bit in Rcg2 & Rcg3 -< 4

I Co(l) I C.(l) I C~O) I C o(3) I
R eg I

CASE 1:
Sum of# valid bit in Rcg2 & Reg.] > 4

I X X I X I C.(J) I _ .,.. I Co(1) I Co(l) I C~O) I C~J) I
Rcgl R eg I

Figure 4.9: Ciphertext Queue Input Buffer for Parallel Transfer (N=4)

65

is transfered, the block cipher will encypt the new IV to generate the corresponding

new keystream and the ciphertext queue will be held. This 1 bit of data will not

be output until the next 4-bit ciphertext block (i.e., the 3rd ciphertext block which

contains C2 (0) ... C2 (3)) comes in and the number of bits in R egl reaches 4 when

ciphertext queue is released. This process is shown in block c of Figure 4.9.

Block I in Figure 4.9 shows the next oncoming ciphertext block (i.e., C2 (0) ... C2 (3),

t hat is, we assume the number of valid bits in this ciphertext block is 4) will be trans-

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 66

ferred to Reg3 when neither Reg1 nor Reg2 is empty.

The reason we add Reg3 in our design is to detect the number of valid bits in the

upcoming ciphertext block. The new upcoming ciphertext block will be transferred

into the Reg3 in every clk1 cycle when neither Reg1 nor Reg2 is empty.

Block I I and I I' in Figure 4.9 show two different situations when the last block of

IV will be transferred and the number of valid bits in the upcoming ciphertext block

varies from 1 to 4. Block I I illustrates the case when the sum of number of valid bits

in Reg2 and Reg3 is equal or smaller than 4 (assuming the number of valid bits in

the upcoming ciphertext block is 2 in block I I). Block I I' illustrates the case when

the sum of number of valid bits in Reg2 and R eg3 is bigger than 4 (assuming the

number of valid bits in the upcoming ciphertext block is 4 in block I I'). After this

last block of ciphertext data is transferred, in which the number of valid data varies

from 1 to 4, the block cipher will encypt the new IV to generate the corresponding

new keystream and the ciphertext queue will be frozen. The 4 bits of data in R eg1

will not be transferred out until the next 4-bit ciphertext block comes in when the

ciphertext queue is released.

4.2 Synthesis Results, Analysis and Comments on

the Design

We did the functional simulations for block transfer size equal to 4. From the sim­

ulations, an appropriate queue size which is equal to 80 x 4 bits was found to have

no queue overflow for the block transfer size which is equal to 4 bits. We also did

the simulation for the queue size equal to 64 x 4 bits. In this case queue overflow

happened frequently. In this chapter, we investigate the probability distribution of

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 67

the current number of bits in the plaintext queue.

The simulation results are shown in Figure 4.10. In the simulation we ignore the

values before 70 ns because in the very beginning of the system, the queue is empty

and the incoming bits would continuously fill up the plaintext queue until the first

block of key stream is finished . Hence, we just consider the data when the system has

reached a steady state in normal operation. In Figure 4.10, clk1 is the fastest clock

and it can be the base system clock. The clk2 rate is needed to clock the transfer

of data into the plaintext queue. The clk3 rate is the per-round rate for the block

cipher. The simulations parameters are adopted as follows:

1. The sync pattern size, n, is adopted as 8.

2. The sync pattern format is "10 ... 00".

3. The size of the block cipher, B , is equal to 128.

4. The simulation is run for 2 ms, that is, over 105 blocks of plaintext data going

into the plaintext queue.

5. clk1, clk2 and clk3 are set to have periods of 9 ns, 18 ns and 18 ns, respectively.

These values are selected as the minimum possible given critical path timing.

The minimum number of bits in the plaintext queue is found to be 20. This

situation only appears about 200 times of the total simulation run of 2 ms after the

system is already working in the stable operation. In the plaintext queue, the 20

(i.e., current number of bits) are composed as follows, 3 x 4 = 12 bits in the input

pipeline, 4 bits in the FIFO, and 4 bits in the output pipeline. In this case, recalling

the structure of the output pipeline of the plaintext queue, there is no valid bits in

Reg3.

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 68

With high probability distribution in Figure 4.10, there are four different values

for the current number of bits in the plaintext queue, which are 21, 22, 23 and 24,

respectively. These four numbers indicate that there are 3 x 4 = 12 bits in the

input pipeline, 4 bits in the FIFO, and 5 or 6 or 7 or 8 bits in the output pipeline,

respectively. The R eg3 is filled with 1 or 2 or 3 or 4 bits of plaintext data for the

previous four situations, respectively.

Probability Distribution of II bits In the Queue
{Queue-Size • 80x4; clk3 •18 ns; clk2 c 18 ns; clk1 • 9 ns; Sync-Pattern • "10000000"; Running Time • 2 ms}

17% ,-----,---,----,---,---,----T----.----,---',-------,----,

12.5%

e
I=

"' c c
c
~

" 8% 0
G

"' ~ c

1! . ..
4%

o~~~·~w'(~~~·~, ·~~~~~
0 10 20 30 40 50 60 70 80 90 100 110

II bits In the Plaintext Queue

Figure 4.10: Probability Distribution of# Bits in the Plaintext Queue (Block Transfer

Size=4 Bits)

We did an ASIC synthesis with 0.18 micron CMOS TSMC (Taiwan Semicon­

ductor Manufacturing Company) standard cell technology using Synopsys 2002 tools

supported by Canadian Microelectronics Corporations (CMC) . We use the number

of equivalent 2-input NA D gates for the total area as a metric of circuit size. The

synthesis results of the block cipher, plaintext queue and ciphertext queue in this

parallel transfer (4 bits) mode are shown in Table 4.1. The complexity of the SCFB

.------------------------ - --------------------

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 69

system has become 43697 gates vs. 41600 gates for the serial transfer design. The

queuing system of the SCFB system using parallel transfer has more area consump­

tion than that of the serial transfer design. As we have mentioned, the clock clk1 is

designed to be faster than clk2. This ensures that plaintext queue does not back up

due to periods during which outgoing bits are stalled because of resynchronization.

For simplicity of design, the clk1 frequency is set to two times faster than the clk2

frequency. Based on thesis results, we adopt clk3 to be 18 ns, 18ns as the clk2 period

and 9ns as the clk1 period. These clocks are slower than that of the last chapter

(e.g., clk1 has become 9 ns vs. 5 ns for the serial transfer design) because the output

pipeline in the plaintext queue and the input pipeline in the ciphertext queue have

become more complicated than before. These changes have increased the delay in the

critical path. The throughput of the block cipher of SCFB mode is reduced compared

to the potential block cipher throughput because of the resynchronizations. The ideal

throughput of the block cipher is 128 bits/ (12 x 18 ns) :::::; 592 Mbps. On the other

hand, the input throughput of the plaintext queue is N /18 ns = 222 Mbps for N = 4

bits. Thus, the throughput of the SCFB in parallel transfer (4 bits) mode can reach

222 Mbps. The efficiency of the system is 222/592 :::::; 38%. Although the through­

put of the queuing system can be enhanced by increasing block transfer size, the

throughput of the block cipher can only reach 500 Mbps - 600 Mbps, which becomes

the bottleneck of the system efficiency and throughput . In the next chapter, we will

apply the pipeline architecture to the block cipher and increase the block transfer size

of the queuing system in order to increase the throughput of the system.

CHAPTER 4. SCFB MODE USING PARALLEL TRANSFER 70

Table 4.1: Synthesis Result Using 0.18 Micron CMOS (Block Transfer Size= 4 Bits)

Total Area (# gates)

Plaintext Queue 7211

Ciphertext Queue 7424

Shift_Register 2375

AES 27180

IV _Shift_Register 1138

SCFB System 43697

4.3 Conclusion

4.4 Conclusion

This chapter investigates the hardware structure of statistical cipher feedback mode

using parallel transfer. Compared with SCFB using serial transfer which is studied in

the last chapter, parallel transfer applied to the hardware implementation of SCFB

is able to improve the throughput of SCFB system. For the investigation of ASIC

synthesis with 0.18 micron CMOS standard cell technology, the throughput of the

SCFB using parallel transfer (block transfer size equal to 4 bits) can reach 222 Mbps,

which is about two times higher than that of the SCFB using serial transfer in Chapter

3. The complexity of the SCFB using parallel t ransfer is 43697 gates, which is larger

than that of the SCFB using serial transfer. The efficiency of SCFB using parallel

transfer is about 38%, which is much higher than that of SCFB using serial transfer,

where the efficiency can only reach about 23%.

Chapter 5

Pipelined SCFB Mode U sing

Parallel 'Iransfer

In this chapter, the hardware implementation of pipelined statistical cipher feedback

(SCFB) using parallel transfer from the plaintext queue to the ciphertext queue is

investigated. As we have studied in Chapter 4, the throughput of the SCFB system

can only reach 222 Mbitsjs. This results for two reasons: the limited throughput

of the block cipher operation (592 Mbits/s) and the necessity of keeping the SCFB

system throughput at less than about 50% of the block cipher throughput to avoid

buffer overflow in the plaintext queue. For this reason, in this chapter we investigate

pipelining the block cipher and increasing the block transfer size of the queuing sys­

tem. By doing this change to our system, we can increase the throughput of both the

block cipher and the plaintext queue so that the throughput of the whole system will

be improved significantly.

In the SCFB mode using serial transfer or parallel transfer, which we have inves­

tigated before, the input data to AES comes from the previous output of AES if the

sync pattern is not recognized. That is, the block cipher works in OFB mode most

71

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 72

of time.

However, OFB is not a suitable choice if we are trying to improve the throughput

of the block cipher by using pipelining. Counter (CTR) mode operation for the

block cipher is a better choice for the purpose of pipelining AES. The reason is that

encryption (or decryption) in CTR mode can be done in parallel on multiple blocks of

plaintext or ciphertext. This property makes it possible to pipeline the block cipher.

That is, the CTR function can provide pseudo random data to the block cipher as

the input in a way that does not depend on the previous output of the block cipher

while OFB mode does. By pipelining CTR mode, we are able to produce a block of

keystream in only 1 clk3 cycle. Hence, pipelined CTR mode operation for the block

cipher overcomes the throughput deficiencies of non-pipelined OFB mode and allows

us to dramatically increase the throughput of the SCFB mode system. However, as

we discuss in the next section, it will be necessary to modify SCFB mode in order for

it to operate with pipelined CTR mode.

5.1 SCFB Based on Pipelined Counter mode (CTR)

SCFB mode based on pipelined CTR mode utilizes the block cipher which has pipeline

architecture in order to increase the throughput of the block cipher. Compared with

the conventional SCFB mode, the pipelined SCFB mode applies a pipelined CTR

mode instead of OFB mode when the synchronization does not happen. The input

data of the block cipher is only provided by the counter function. The counter function

utilizes a linear feedback shift register (LFSR) to produce a pseudo random count

which is sent to the block cipher as the input data every time. When synchronization

happens, the new IV will be sent to the counter function for re-initialization.

Figure 5.1 illustrates the nature of ciphertext data for pipelined SCFB mode. In

,--- - ----

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 73

n B
J/

LxB bits
'

k
'

n 8
I' / I' -'1' / I' I' 'I' /

...... sync IV Blackout CTR sync IV

Figure 5.1: Synchronization Cycle for £-Stage Pipelined SCFB

the figure, n represents the number of bits in the sync pattern, B is the length of

the subsequent IV and k indicates the duration of CTR mode in bits. The pattern

of data is similar in nature to SCFB mode, except for the added "Blackout" period.

CTR mode occurs between the end of the blackout and the beginning of the next

sync pattern. For the blackout period, L x B indicates there are L pipeline stages

(in parallel working on B bits of data) before the new IV produced ciphertext block

appears at the output of the block cipher (that is, there is a pipeline latency of L

stages, each stage producing B bits). The system does not begin to check the sync

pattern until CTR mode begins and the ciphertext data in the blackout period is still

produced using the previous IV as it resulting from the flushing out of the data caught

in the pipeline when the sync pattern is detected. Following the blackout period, the

new IV has propagated through the block cipher and the ciphertext data for CTR

mode period is produced using the new IV. Hence, a synchronization cycle consists

of n + B + L x B + k bits, which includes the set of bits from the beginning of the

sync pattern to the beginning of the next sync pattern. Note that a non-pipelined

SCFB mode using CTR mode, can be considered to the scenario of L = 0.

5.2 Hardware Implementation Details

Figure 5.2 illustrates the hardware implementation of pipelined SCFB mode using

parallel transfer (where N represents the block transfer size). In the implementation

of t his chapter, we shall assume N = 8. Compared with the SCFB using parallel

r---------------------------------

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 74

..,..., IVIR.1 ·nl

CTR_.Funcl

~1 I Data_ln

newj V_d:lne
_..

c 11<3-

I nit_ Data_ Load Block
Cipher

1 8

I~
.. J...-..

.., g ~ en I
R

I I I~ In I
~ R.>l"4·nl !!!

I~ i l ~ I I ~ BlackaJt_Piriod(7:0

~ ·~ ·~
SR1 LDar ~ ~ 1 1 I...,

Contrdler .J_sR1_Rni ~ f ~ ~ f ~ I~ r-~ ~~ I:D :II I I:II ·~ --'~
s l ~ 0!. I I 1

"'-1

ivai li~ t - I

Plain text(N-1:0)

lk2 -c
clk1 •

SR_Valic
L..t MUX

R
L~ I I I~

l PQ(128x8)

,-J
IV Shift Register (128) syn_pattem

1
(rt-1:0)

lea Full N 1 XOR ·1 I f·+
N R 1 1 R Ci

-.....-

PlainTwct_Valid 1 00(128x8)

CNalid

pherteJd.(N-1 0)

Figure 5.2: Hardware Implementation of Pipelined SCFB Using Parallel Transfer

transfer mode (N = 4 bits), the SCFB using a pipeline architecture has more complex

structures for the shift register, IV_ShifLRegister, plaintext queue and ciphertext

queue. We also did some modifications to the system controller in order to control

the behaviour of the counter function, pipelined AES and the two shift registers, which

are quite different from the previous SCFB mode implementations of Chapters 3 and

4. When the 128-bit keystream is generated in the block cipher, it will be loaded into

the shift_register_l or shifLregister_2 depending on which is activated by the system

controller. Then the selected shift register will transfer keystream out to be XORed

with the plaintext to generate the corresponding ciphertext. The ciphertext data will

be transfered to both the ciphertext queue and IV _ShifLRegister in a unit of N = 8

bits . Since the sync pattern can be recognized anywhere in the ciphertext data while

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 75

the system is working in CTR mode, the last transfer block of the new IV might need

less than 8 bits depending on where the sync pattern is recognized. In this case, the

shifLregister _1 or shifLregister _2 moves data out, which may contain 1 - 8 valid bits

in a keystream block. The same thing happens in the plaintext queue, ciphertext

queue, and the IV _Shift_Register. In the upcoming sections, we discuss the details

of the hardware design for pipelined SCFB using parallel transfer mode, fo cusing

on the shift register, plaintext queue, ciphertext queue and IV _ShifLRegister. The

VHDL codes of the SCFB system controller and the top level RTL are shown in the

Appendix A.

5.2.1 Implementation of Counter Mode (CTR)

Linear feedback shift registers (LFSRs) [21] are widely used in many of the keystream

generators that have been proposed in the literature. Compared with other genera­

tors, LFSRs are suitable for hardware implementation. They can produce sequences

of large period and good statistical properties. In our implementation based on AES,

we apply the whole 128-bit block as the incrementing function. Thus, the period of

the incrementing function should be n ~ 2128 . We can select the primitive polynomial

C(D), which is used to construct the LFSR by using Table 4.8 in [21]. This primitive

polynomial C(D) is shown in Eq.(5.1).

C(D) = 1 + D2 + D27 + D128 (5.1)

Then we can get the hardware implementation which is illustrated in Figure 5.3

with regard to Eq.(5.1). In Figure 5.3, there are 128 stages numbered stage 0,

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 76

Output

Figure 5.3: Block Diagram of Linear Feedback Shift Register (LFSR)

stage 1, ... ,stage 127, each capable of storing one bit and having one input and one

output. The clock clk3 controls the movement of data where clk3 is also used to clock

the block cipher at a per-round rate. The output sequence from this polynomial C(D)

strictly has a period 2128 - 1. During each unit of time, the following operations are

performed.

1. The contents of stages are output to the input of the block cipher,

2. The content of stage i is moved to stage i- 1, where 1 ::; i ::; 127,

3. The content of stage 127 is calculated by adding together MOD 2 the previous

contents based on Eq.(5.1).

New_IV(1 27:o-n---..,L:JlZa.._..r---~-:-------,

AES _ Input_ data(1 27:o'I(J----,'...~.~oo:~'--__.

el k

hold o

CTR Furc Ena

128-bit Register

Initial
CTRBiock

Figure 5.4: Block Diagram of Ports Specification of the LFSR

The ports specification of the LFSR is illustrated in Figure 5.4. The "New _IV"

vector (128 bits) is provided by the IV_Shift_Register right after the sync pattern is

,---·-----

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 77

recognized. The "hold_on" signal is also set by the IV _Shift_Register. It just indicates

whether the new IV is complete. The "CTR_Func_Enab" is set by the system con­

troller. When the "CTR_Func_Enab" is high, LFSR will load in "InitiaLCTR_Block"

as the init ial counter block at very beginning of the system. Then LFSR will do the

increment operation. For every clk3 cycle, if the AES is not frozen , the LFSR will

generate a block of "AES_Input_data" which will act as the input to the block cipher.

At any time, when "hold_on" is high, LFSR will load in the "New_IV" as the initial

counter block and then do the increment operation.

5.2.2 Advanced Encryption Standard (AES)

In our implementation of pipelined SCFB using parallel transfer, the AES implemen­

tation has all the round keys precomputed and stored in memory. This differs from

our implementations for the serial and parallel transfer modes in Chapter 3 and 4

where we computed t he round key on-the-fly on each round for the data processing.

This precompute scheme has no extra delay while supplying the sub keys, but it takes

more area in order to store all the sub keys. We can not adopt the key on-the-fly on

each round for every encryption because each of the 11 round stages need the round

keys simultaneously in the pipelining architecture and the key scheduling hardware

can only generate one block of round key per clk3 cycle. After all the subkeys have

been calculated and stored in the 11 individual 128-bit Registers, the key scheduling

can provide the sub keys to each round stage in AES for the following encryption.

For the S-box implementation, we still adopt the simple boolean function.

Figure 5.5 shows the block diagram of 11-pipeline stages of AES with key-scheduling.

We perform the outer round pipelining of the AES algorithm. That is, we need 11

128-bit registers each of which is inserted right after each round operation. There-

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 78

Figure 5.5: 11-Stage Pipelined AES Using Key-Scheduling

fore, every round is performed in one clk3 cycle. In this pipelining implementation, 11

pipeline stages are performed. All the four transformations (Substitute Byte, Shift

Rows, Mix Columns and Add Round Keys) in each round operation become the

critical path in AES.

Figure 5.6 illustrates the ports in the AES controller. The finite state ma­

chine of the AES Controller for the pipelined SCFB is shown in Figure 5. 7. The

"IniLData_Load" signal indicates that the initial input t ext data should be loaded to

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 79

lnit Data L

1
load_ key _reg

key_reg_ mux _ sel

----l...f-4 AES Controller~-¥----1Dreg_select(3:0)
round_const(?:O)

Figure 5.6: Block Diagram of the AES Controller for Pipelined SCFB

AES when it is high. The "load_key _reg" signal triggers the corresponding register

in the key scheduling module in order to load in the proper initial key /subkey to the

keys register. The "round_const" signal is needed in the F function of key schedul­

ing, which we have introduced in Chapter 2. Compared with the AES controller in

the serial transfer mode, we did some modification on the new AES controller of the

pipelined SCFB system using parallel transfer:

1. A new signal "reg...select(3:0)" is introduced, which is needed to select the 11

128-bit Registers which are used to store the subkeys for each round either at

the initialization of key scheduling or when the user changes the initial key.

For example, when the "reg...select" = "0010", only the second subkey register

can load the subkeys resulted from the key scheduling. Simultaneously the first

and other subkey registers are held. When the "Reg...select" = "1011" and the

current state is "hold", all the subkey registers are complete because all the 10

blocks of subkeys have already been stored in the corresponding subkey registers.

We do not need to re-generate all the subkeys even when the resynchronization

happens unless the user wants to change the initial key. Also, one thing we

need to note is that AES should be frozen while the shift registers arc filled or

in the middle of transfering keystream out as we have mentioned before. We

will further discuss this point in the system controller.

2. The system does not need the "hold_on" signal as input any more because

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 80

when the new IV is ready, the AES does not need to be triggered to count 11

clk3 cycles in order to provide the "unhold_on" signal to the shift registers and

queuing system. Actually, there is no "unhold_on" signal in the pipelined SCFB

using parallel transfer mode because after the new IV is ready the system will

stay in the blackout period during which the sync pattern recognition is ignored

until the new keystream produced by the new IV is ready.

3. The signal "load_data_reg" is removed from the original AES controller because

the key scheduling does not need to re-use the register with the AES round

operation. The key scheduling now has its own registers to store the subround­

keys.

In Figure 5.7, if "reset" is high at any state, the next state will transfer to ! nit

immediately (i.e., asynchronous reset) . From state RoundO to Round9, the output

"round_const" varies. From state RoundO to Round9 , the outputs are the same except

for "round_const" and "reg_select". The output "key _reg_mux_sel" is high to generate

the round key by Key Scheduling block. The output "load_key _reg" is also high for

these ten states for loading the round keys in the corresponding registers. When

the state is Load Input, "key_reg_mux_sel" is low, which indicates the Multiplexer

in the Key Scheduling will select the initial keys for the first round. If the current

state is Round10, "load_key _reg" is set to low which indicates all the sub roundkeys

have already been calculated and stored in the 11 corresponding registers. When the

current state is hold, "load _key _reg" will be set to low because there will be no new

round keys to be processed. All these 13 states will be experienced again only when

the initial key is changed by the user because we apply the key scheme where all the

round keys are precomputed and stored in memory.

.-- ---

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER

/key_reg_mux_sel <= D';
load_key_reg <= D';
round cons! <= "00000000"· - '
reg select <= "0000";

key_reg_mux_sel <= '1 ';
Joad_key_reg <= '1 ';
round_const <= "00000001 ";
reg select <= "0000";

load_key _reg <= D';
reg_ select <= "1 011 ";

81

round_const <= "00100000";
re select <= "0101 ";

Figure 5.7: FSM of AES Controller for Pipelined SCFB

5.2 .3 System Controller

The system controller is needed to take the control of the whole SCFB system. Com­

pared with the controllers of the SCFB based on the serial transfer mode and non­

pipelined parallel transfer mode, the controller in the pipelined SCFB using parallel

transfer is much more complicated. The port specifications of the system controller

is shown in Figure 5.8. On the input side, t he port specification is as follows.

1. The signal "clkl" is the base system clock in the implementation. The signal

,-----------------------------------

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 82

"clk3" is used to control the running speeds of the block cipher .

2. "Cipher_Donel " and "Cipher_Done2" indicate the completion of the first and

second keystream from the block cipher at very beginning.

3. "SRLFini" and "SR2_Fini" indicat e whether shifL register_l or shifLregister_2

finishes transfering out its keystream.

4. "SRLSpeciaLCase" and "SR2_SpeciaLCase" represent that the shift_register _l

or shift_register_2 will be stalled for two clk3 cycles when some special cases

happen, which will be discussed later in the Section 5.2.5.

5. "BlackouLPeriod(7:0)" indicates the number of bits left in the Blackout mode,

which has been discussed earlier in Figure 5.1.

1
CTR Furc Enab - -

1
SR1 Load rese

Cipher_ Done1 1
• sR2 Load

Cipher_ Done Controller 1
SR1 Fini • Fiag_SR1
SR2 Fini 1

Flag_SR2
SR1_Speciai_Cas 1
SR2_Speciai_Cas • AES Frozen

Blackout_Peiod(9:0
1

• Queue_ Stal l

Figure 5.8: Port Specification of System Controller for Pipelined SCFB

On the output side, the ports specification is as follows.

1. "CTR_Func_Enab" is needed to trigger the LFSR to load in "InitiaLCTR_Block"

as the initial counter block at very beginning of the system. Then LFSR will

do the increment operation .

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 83

2. "SRLLoad" and "SR2_Load" are used to t rigger the shift_register_l or shift_register_2

to load in the 128-bit keystream block, respectively.

3. "Flag_SRl" and "Flag_SR2" indicate whether shift_register_1 or shift_register_2

is in the middle of transfering keystream data.

4. "AES_Frozen" is used to stall t he block cipher while the shift registers are filled

or in the middle of transfering keystream. We have to freeze the block cipher

sometimes because the period during which a block of keystream (128 bits) is

XORed with plaintext bits is longer than that during which a block of keystream

is generated in the block cipher. We already mentioned this point earlier in this

chapter. If "AES_Frozen" is low, the block cipher will do the encryption.

5. "Queue_Stall" is used to stall the shift registers for one clk3 cycle in order

to allow the block cipher to provide one block of keystream (128 bits) to

shift_register _1 or shift_register _2.

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER

Oueue_Stall• ·o· :
Flaa_SR1 • '0';
flag_SR2 • '1'

84

''AES_Frozen·· = '1 ' will be synchronized to clk3 domain, which Indicates that the Block Cipher will be frozen;
"AEs_Frozen" = 'O ' wlll be synchronized to clk3 domain and goes high In the next clk3 cycle. "AES_Froze" = ·o·

allow the Block Cipher1o do the encryption for one round.

Figure 5.9: Finite State Machine of SCFB System Controller for Pipelined SCFB

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 85

The finite state machine of the system controller is shown in Figure 5.9. At

anytime if the "Reset" is high, the system will be in On_Rst state. The system

stays in the Gen_Key state until "Cipher_Done1" is high (i.e., the first block of

keystream (128 bits) is ready in the last pipeline register of the block cipher). Then

the system will go to SRLLaadK ey state, where the "SRLLoad" is set to high to

trigger the shift_register_1 to load in the first block of keystrcam (128 bits) from the

block cipher. When the "Cipher_Done2" is high (i.e., the second block of keystream

(128 bits) is ready in the last pipeline register of the block cipher), the system will

switch to SR2_LoadKey state on the next rising edge of clkl. Also the output signal

"AES_Frozen" is set to stall the block cipher for one clk3 cycle high because the

two shift registers are both occupied. Then the system will transfer to WaitJnit

state until shifLregister _1 has finished its data transfer or the rcsyuchronization hap­

pens. State SRLLaad_N arm indicates that shifLregister_1 has finished up its data

shifting and will load in a new block of keystream (128 bits). It should be noted

that if the signal "AES_Frozen" is low it should go high on the rising edge of th

next clk3. Besides, the signal "AES_Frozen" is synchronized to clk3 domain. So, in

the state S RLLaad_N arm, the signal "AES_Frozen" is set to low to allow the block

cipher to do the encryption for one block of keystream. State W aitLN arm indi­

cates shift _register _2 is in the middle of shifting keystream data and shifLregister_1 is

held. State S R2_Laad_N arm indicates that shift_register_2 has finished up its data

shifting and will load in a new block of keystream (128 bits). State Wait2_Narm in­

dicates shift_register _1 is in the middle of shifting keystream data and shifLregister _2

is held. States Queue_Stalled3 and Q'ueue_Stalled4 (which will be explained in the

section of shift register) represent if the next block of keystream (128 bits) is not

ready when either shifLregister_l or shift_register_2 runs out of data, both shift reg­

isters and plaintext queue will be held. When signal "AES_Frozen" is high, the

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 86

system state will transfer to Resyncl or R esync2, where a new block of keystream

is loaded to the empty shift register shown in the previous state. Queue_Stalledl

and Queue_Stalled2 (which will be explained in the section of shift register) repre­

sent two special cases when resynchronization happens. If the system is in either

of these two states, both shifLregister _l and shift_register _2 will be held. When

signal "AES_Frozen" is high, the system state will transfer to SRLLoad_Norm or

SR2_Load_Norm, where a new block of keystream is loaded to the empty shift regis­

ter and another block of keystream is stored in the last pipeline register of the block

cipher. State ResyncLContd or Resync2_Contd indicates an intermediate state af­

ter state Resyncl or Resync2 when "SRLSpeciaLCase" or "SR2_SpeciaLCase" is

low. The reason we add in the state ResyncLC ontd or R esync2_C ontd is to set

"SRLLoad" or "SR2_Load" to low, also wait until shift_register_2 or shifLregister_l

finishes its data transfering (i.e. , "SR.2_Fini" or "SRLFini" is high.)

5.2.4 IV Shift Register for Parallel Transfer Mode

The IV _Shift_Register block diagram is shown in Figure 5.10. In the IV _Shift_Register

design for the pipelined SCFB using parallel transfer, both the "Unhold_on" and

"Chose_New_IV" signals become the internal signal compared with our designs for

the non-pipelined SCFB. The reason is that the shift registers, plaintext queue and

ciphertext queue will not be held any more when "New_IV _Done" is high , and these

modules certainly do not need the "Unhold_on" . In this pipelined SCFB design,

the "Unhold_on" signal is only useful inside the IV_Shift_Register. The same thing

happens to the "Chose_N ew _IV" signal because the CTR function can take care of

the new IV selection instead of the MUX module which we have applied in the non­

pipelined SCFB designs. The IV _Shift_Register keeps checking the 8-bit sync pattern

CHAPTER 5. PIPELINED SCFB MODE U SING P ARALLEL T RANSFER 87

all the time, except for t he blackout period which has been mentioned in Figure 5.1.

When the 128 bit new IV is ready, IV _Shift_Register will provide this new IV to the

CTR function module, and at the same time, it will set the signal "New_IV_Done"

high to trigger the CTR function to load in this new IV as its new init ial value.

New_IV_done

IV_Out(127:0

Sync _Pattem(7:0)
Blackout _Period(7:0

r--::. ,-

1 I

12~1
; J
FJJ

I

I~
,f
<

-

s=
[
,o..
g

8 1
I

IV_ Shift_Register
-
-

~
hold_cou t

~:DP OFF -
~~---- ~

~
/

Count_Enal;l.
Va id

Svn Valid 1 J ; I
i=-1 I

Counter I

1 I
1 1 I

1 1 I
I

.... -
• •

IV_in(7:0)
PQ_Va id
reset
cl k1

Figure 5.10: IV Shift Register for Pipelined SCFB Using Parallel Transfer (N= 8)

Figure 5.11 : Sync Pattern Recognition for Pipelined SCFB Using Parallel Transfer

(N= 8)

Unlike the non-pipelined SCFB designs, the pipelined SCFB design using block

transfer size equal to 8 bits, for every clk1 cycle, has up to 8 valid bits of cipher text

coming into the IV _Shift_Register. After the sync pattern is recognized, the 128-

-----· ----

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 88

bit new IV will be collected in the IV _Shift_Register and, simutaneously, the system

will be in blackout period (shown in Figure 5.1). When the new IV is ready, it will

be transfered to the CTR function as the new initial value. The number of bits

in the transfer block right before the new boundary (i.e., the last transfer block of

the blackout period) and the number of bits in the first transfer block of the new

keystream produced by the new IV depend on where the sync pattern is recognized.

Figure 5.11 describes the process of sync pattern recognition. In Figure 5.11, for every

clk1 cycle there is at most 8 comparisons occuring in the IV_Shift_Register in order to

check the 8-bit sync pattern. The 1 st moment describes the first two transfer blocks

of ciphertext data (i.e., {IV0 (0) ... IV0 (7)} and {IV1(0) ... IVi (7)}) have already been

loaded into the first 16 bits positions in IV _Shift_Register by using 2 clk1 cycles,

where clk1 is needed to clock the transfer of data into the IV _Shift_Register. The 2 nd

moment describes that at most 8 comparisons are complete for every clk1 cycle. For

example, if the sync pattern is recognized in the 6th comparison, the IV _Shift_Register

will begin to collect the 128-bit new IV, and the first bit of the new IV will be IV2 (1).

In this case, the number of bits in the new keystream's first transfer block is set to

2, and the number of bits in the transfer block right before the new boundary (i.e.,

the last transfer block in the blackout period) should be 8- 2 = 6. These two parts,

2 bits and 6 bits, will be combined to form an 8-bit transfer block of keystream and

then XORed with a plaintext transfer block to produce a ciphertext transfer block.

That is, the input transfer block to both the ciphertext queue and IV _ShifLRegister

always contains 8 valid bits. Compared with the pattern recognition using non­

pipelined SCFB, for every clk1 cycle, there are always 8 bits of data coming in the

IV _Shift_Register.

Ol
00

C lrllw1n1Hiortl

o•~>•tol

~~~lre:Mn 
PrO(h.cW 

d lht.rtul 
Cl!lllfl'lnttlor k 

1-< ·lollo) 
f"l,loo11••1Hbdio 

(Jb.l llh) 

T 

C'lfiiiW i tUM•IIt 

(Milt•) 

f ' 11..- ~ ultwll , ...... , 
4... I Ntw_l\' ::.::.1 

Cipherttll-t-------t-,.----<"'---::c--f;:~:---+-------------ii-----+-L--.;:_+--I~:::...J....--1--
•-.. • "'<.. Ntw ~, 

ll.e finl new ciJ)htreul block produced by 

' \. "New_IV " cont•ln.s8 bits 

···-·l ~~~~., I IV•fl I ,,.~11 I II' •Ol I 1Vo'f41 I IV .. "l I ll' •"'t• l I ll'o'(l) 

( II ) 

( Ill ) 

1be fin tnew ciJ)ftwlr.xt block 

produced by " Nt:w _tv•· 
c:on tains lbi ts r-

... ...... lu· .. ,., 

Th~ first new dphtrtu t block product 
by " New_IV" contain s lbits 

The first new dphertext bloc.k produc-ed by 
I. .. Nr:w IV" contAin s 7 bits 

Bowtdary 

_· 1'-"-·~ ...J....I _"•__J·· 1_··-·· ..~.... 1 •_'"•--~.• 1_""-"' .._ I·_· .. ...LI _···_,· !-"-""' ..._I · •• ( I v ) 

~~happened on lhe 
BlackOut 

\ 100 .... • . . . ( I ) 
T he first New IV bloc Sync_ 

contains o~y f!. i~ 

~--~~--~~--~ L IVI(It J\'1(1) ' '"'IH 11\' I(J) I IV•<• I 
llu: first " New_ IV" Sync_ 

blofk contains only 2 bill 

I l\'1(1 ) I IVl(l) 

Sync_ 

L Tbe&rst " New IV '' blockuntaius onJy7bits 

I IVI(t) I I VI(O I IVICII} I , .... (.., I IV1(4) I IV!(S) I IVI(ft IVI(J) I 1\\1(1) I IVI( I ) I JVI(:Q I 
Syn(_ 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 90 

In order to recognize the sync pattern, the IV _Shift_Register has to do up to 8 

comparisons for every clk1 cycle except for the blackout period. In order to deal 

with the number of bits in the new keystream's first transfer block and the number 

of bits in the transfer block right before the new boundary (i.e. , the last transfer 

block in the blackout period), an internal signal, "Sync_ReLVector" , is introduced to 

the design. Table 5.1 illustrates how the pattern recognition is related to the signal 

"Sync_ReLVector" and the other two parameters which we just mentioned. In this 

table, the first column indicates the number of comparisons in which the sync pattern 

is recognized in the IV_Shift_Register. The second column, "Sync_ReLVector", is an 

internal signal depending on the "Xth comparison". The third column, the number of 

bits in new keystream's 1st transfer block, indicates how many bits the first transfer 

block of the new keystream should contain after the new boundary, depending on 

the first column (i.e., where the sync pattern is recognized). The fourth column 

represents the number of bits in the transfer block which is right before the new 

boundary (i.e., the last transfer block of the blackout period) depending on the first 

column. Actually, the value in the fourth column is equal to 8 minus the value 

in the third column except for the case where the 8th comparison happens in the 

IV _Shift_Register. This is because the bits in new keystream's 1st transfer block and 

the bits in the transfer block which is right before the new boundary will be combined 

to form an 8-bit transfer block of keystream and then XORed with a plaintext transfer 

block to produce a ciphertext transfer block except that there are 8 bits in the new 

keystream's pt transfer block and the transfer block right before the new boundary. 

For the block transfer size equal to 8 bits in the pipelined SCFB, after the sync 

pattern is recognized, IV_Shift_Register will spend 16 clk1 cycles to collect the 128 bit 

new IV. When the new IV is ready, IV _Shift_Register will provide this new IV to the 

CTR function tore-initialize the LFSR. Then the system will stay in blackout period. 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 91 

Table 5.1: Boundary Positions Where the Sync Pattern is Recognized 

xth Sync_ReLVector #bits #bits 

companson in new keystream's in the transfer block 

1st transfer block right before 

the new boundary 

8th 7 8 8 

7th 8 1 7 

6th 9 2 6 

5th 10 3 5 

4th 11 4 4 

3rd 12 5 3 

2nd 13 6 2 

1st 14 7 1 

Figure 5.12 illustrates how to deal with the new boundary of the new keystream. 

There are five rows of data flow in Figure 5.12. In this Figure, {IV0 (0) ... IVo(7)} 

and { IV1 (0) ... !Vi (7)} represent the first and the second transfer block of ciphertext 

going into the IV _Shift_Register. In Figure 5.12, rows I to IV data flow illustrate 

some examples of where the new IV should start and how many bits the first transfer 

block of the ciphertext produced by the new keystream should provide depending 

on where the sync pattern is recognized in the IV _Shift_Register. Actually we have 

shown four different situations for the sync pattern recognition in row I to row IV, 

respectively. 

In the first row of Figure 5.12, where T represents the blackout period after the 

sync pattern is recognized, each "Ciphertext Block" indicates a 128-bit block of ci-

phertext produced by a 128-bit block of keystream generated by the block cipher. 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 92 

The data in the arrow diagram indicates the first transfer block of the new ciphertext 

produced by the new keystream. The data in dark colour represents the new IV (row 

a) or the first transfer block of new IV (row I to IV). The "New Boundary" indicates 

where the the blackout period ends up and the new ciphertext produced by the new 

keystream starts up. Row I indicates if the sync pat tern is recognized in the 8th com­

parison (shown in Figure 5.11) the first 8 bits of new IV should be the the transfer 

block of ciphertext, { IV2(0) ... IV2 (7)}, which is not shown in row I. The left side of 

Row I illustrates that signal "Sync_ReLVector" is equal to 7 (i.e., the sync pattern is 

recognized in the 8th comparison correspondingly) and the first transfer block of new 

ciphertext produced by the new IV should contain 8 bits (i.e., {IV177 (0) ... I~77 (7)} ). 

The index of the this first transfer block of new ciphertext is 177 because the blackout 

period is 11 x 16 = 176 transfer blocks, which corresponds to 11 pipeline stages of 

ciphertext blocks (i.e., each ciphertext block contains 128 bits equal to 16 transfer 

blocks) in the blackout period before the new IV produced ciphertext block appears. 

Row I I indicates if the sync pattern is recognized in the 7th comparison (shown in 

Figure 5.11) the new IV should start with IV1(0) . The left side of Row II illustrates 

that signal "Sync_ReLVector" is equal to 8 (i.e., the sync pattern is recognized in the 

7th comparison correspondingly) and the first transfer block of new ciphertext pro­

duced by the new IV should contain only 1 bit (i.e., {IV176 (0)} ). Row I I I indicates 

if the sync pattern is recognized in the 6th comparison (shown in Figure 5.11) the 

new IV should start with {IV1 (0), I~ (1)}. The left side of Row I I I illustrates that if 

signal "Sync_ReL Vector" is equal to 9 (i.e., the sync pattern is recognized in the 6th 

comparison correspondingly) and the first transfer block of new ciphertext produced 

by the new IV should contain only 2 bits (i.e. , {IV176 (0), I~76 (1)} ). Row IV indicates 

if the sync pattern is recognized in the pt comparison (shown in Figure 5.11) the new 

IV should start with {I~ (0) ... I~ (6)} . The left side of Row IV illustrates that 



CHAPTER 5. PIPELINED SCFB MODE U SING PARALLEL TRANSFER 93 

signal "Sync_ReLVector" is equal to 14 (i.e., the sync pattern is recognized in the pt 

comparison correspondingly) the first t ransfer block of new ciphertext produced by 

the new IV should contain only 7 bits (i.e., {1Vi76 (0) ... IVi 76 (6)} ). 

5.2.5 Shift Registers 

Syn _Ref(4:Qt:::>-------, 

Blackout _Pffi od(7:0) 
cl k1 ---~-t--t-----.-----, 

SR1 Loa 

SR2 _Special_ Case 
SR2 Rni ----+----~~ 

SR2 Loa 
SR 1 Fl a D--------,L--___. 

SR2 Fla 

KeyStream _ Out(7:0) 

Figure 5.13: Block Diagram of Shift Registers for Pipelined SCFB Using Parallel 

Transfer (N=8) 

Compared to the shift register in the serial/parallel transfer mode, the shift reg-

ister in pipelined SCFB has a more complex hardware implementation. As we have 

mentioned, the throughput of the block cipher is higher than that of one keystream 

block (i.e. , 128 bits) XORed with plaintext. If we still use one shift register, that 

will result in a big delay because the keystream block which is ready in the last 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 94 

stage of AES can not be transfered to the shift register until it is empty. To resolve 

this, we have decided to apply two 128-bit shift registers. Figure 5.13 illustrates the 

block diagram of shift registers for the pipelined SCFB. The "Syn_Ref( 4:0)" signal 

is provided by the IV _Shift_Register. It is needed to identify the number of valid 

bits in the next transfer block. "Blackout_Period(7:0)" signal is also provided by the 

IV _Shift_Register. It indicates how many bits are left in the Blackout mode, which has 

been discussed earlier in Figure 5.1. On the input side, "KeyStream_In(127:0)" vector 

is one block of the keystream which is produced by the block cipher. The "SRLLoad" 

and "SR2_Load" signals indicate whether shift_register_1 or shift_register_2 should 

load in the 128-bit keystream block. These two signals are provided by the system 

controller, and they do not go high simutaneously. The "Queue_Stall" signal is trig­

gered by the system controller. When "Queue_Stall" is high, the shift registers will 

be stalled for one clk3 cycle in order to allow the block cipher to provide one block 

of keystream (128 bits). The "SRLFlag" or "SR2_Flag" signals represent whether 

shift_register _l or shift_register _2 is in the middle of transfering keystream data out to 

be XORed with plaintext from the plaintext queue. On the output side, "SRLFini" 

or "SR2_Fini", which can not go high simutaneously, indicate whether shift_register_l 

or shift_register _2 finishes transfering out the keystream. These two signals go to the 

system controller. The "SRLSpeciaLCase" or "SR2_SpeciaLCase" signal represents 

that the shift_register_l or shift_register_2 will be stalled for two clk3 cycles when 

some special case happens on the boundary of the new keystream which is produced 

by the new IV. The "KeyStream_Out(7:0)" signal is the output of the shift registers. 



.------------------------------ - ----------

CHAPTER 5 . PIPELINED SCFB MODE USING PARALLEL TRANSFER 95 

.... 
Shift_Register2 

Shift_Register2 

Shift_Register2 

Shift_Register1 

Shlft_Reglster2 

Figure 5.14: Data Flow of Shift Registers for Pipelined SCFB Using Parallel Transfer 

(N=8) 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 96 

Figure 5.14 represents how the shift registers deal with the new boundary of the 

new keystream produced by the new IV which we have mentioned before. Block 

(a - 1) in Figure 5.14 shows how the two shift registers deal with the new boundary 

(shown in Figure 5.12) of the new keystream produced by the the new IV when resyn­

chronization happens. When the "BlackouLPeriod" =1 and "Sync_ReLVector" = 10, 

the new keystrearn should provide the first block, which contains 3 bits of data, to 

combine with 5 bits in the last transfer block of blackout which is located right before 

the new boundary when the next clk1 event happens (the new boundary and signals 

"BlackouLPeriod" and "Sync_ReLVector" have been explained in Section 5.2.4). All 

the data in the diagonal line area is ignored because the blackout period has ended. If 

the next block of keystream is not ready after the last 5 bits of data has been trans­

ferred out of shiftJegister_1, both shift registers and plaintext queue will be held 

until shiftJegister_1 successfully loads in a new block of keystream. In this case, the 

system will be in state Queue_Stalled4 (or Queue_Stalled3 in the reverse situation) 

which has been shown in Figure 5.9. Block (a- 2) shows that after 15 clk1 cycles 

the last transfer block of the new keystream in block (a- 1) only contain 5 bits. In 

the next clk1 cycle, this 5-bit transfer block will be combined with the first 3 bits in 

shiftJegister_1 to fill up the 8-bit register. 

Blocks (b - 1) and (b - 2) represent a special case while determining the new 

boundary of the new keystream. In block (b-1) , when the "BlackouLPeriod"=1 and 

"Sync_ReLVector" =6, t he new keystream should provide the first block which only 

contains 2 bits of data to combine with 6 bits in the last transfer block of blackout 

which are located right before the new boundary. These 6 bits are composed of two 

parts, one is the last 5 bits in shift_register_2 (as shown in block (b - 1)) , the other is 

the first bit in shifLregister_1 (still shown in block (b -1)). After the new keystream 

(128 bits) produced by the new IV is loaded in shiftJegister_2 in the next clk1 event 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 97 

(shown in block (b- 2)), the first 2 bits of this new keystream will be combined with 

the previous 6 bits, and the remaining 126 bits in the new Keystream is stored in the 

shift_register_2. Then, both shift_register_l and shift_register_2 will not transfer any 

data out (represented in state Queue_Stalledl and Queue_Stalled2 from the system 

controller) until the two blocks of keystream are ready in the block cipher, in which 

one block of keystream is transferred into the shift _register _l and the other block of 

keystream is stored in the last pipeline stage of the block cipher. 

5.2.6 Plaintext Queue and Ciphertext Queue 

The structure of the plaintext queue and ciphertext queue for pipelined SCFB mode 

using parallel transfer is simpler than that for the non-pipelin d SCFB mode because 

of the following factors: 

1. The queuing system does not have to be stalled when the resynchronization 

happens. This feature has simplified the hardware design. 

2. The block transfer size is fixed for the queuing system all the time even for 

the last transfer block of the new keystream of new IV. The queuing system in 

the non-pipelined SCFB mode based on the parallel transfer mode has to han­

dle the various block transfer size, which makes the hardware implementation 

complicated. 

Although the structure is simple, it does not indicate the area complexity is small. 

This is because the first in and first out (FIFO) module in the queuing system has to 

be mapped to 8-bit register per transfer block while 4-bit or 2-bit register per unit is 

mapped for the non-pipelined SCFB mode based on the parallel transfer mode. This 

situation will lead to a larger area complexity for the synthesis results. 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 98 

IDA 
4/ l Wite_Pipeline 

4 4 
TA(3:0 Raad_~lnA 

W:SM ll--
'- 'M'ORI_OATA(:!<O) 

~e(' Reader .. _ ... - RPORT'_Q,t,TA(l:O -
~ +--- --+-- Poirter 

o>-EED- ~ WPORT-~0 AFO: -~:0 
'""()_m"t ' IV AU 

Vo\)O._ ITf! 

..... 
I 

RST 

• WCLK 

OOTE : All the C0flll011E11Is a-e synciYonilEd reset 

3 
4 

RFSM 
"""' ,...., 
IJ)O(.nllb 

l 

L.ast..!_V J 61Qih(2:0) 
ODATA(3:0) 

~---71 s 
PO__pip3_hdd 

R_Vaid 

EED 

• RCLK 

Figure 5.15: Plaintext Queue for Pipelined SCFB Mode Based on Parallel Transfer 

(N=8) 

Figure 5.15 illustrates the structure of the plaintext queue in pipelined SCFB 

mode based on parallel transfer mode for block transfer size which is equal to 8 bits. 

The input signals, "IDATA", "!VALID", "RST" "clk2" and "clk1" , are connected 

to the external ports of the system. The signal "clk1" is the base system clock 

used for the transfer of data out of plaintext queue and into ciphertext queue. The 

signal "clk2" is needed to clock the transfer of data into and out of the system. The 

"IDATA" signal represents the plaintext data, which will be loaded into the input 

pipeline which is composed of several 8-bit registers. Then the plaintext data will be 

stored in the proper positions in the FIFO and read out of the FIFO when the control 

signals, "wporLmeb", "wp_enab" , "renab" and "rport_meb", are asserted properly. 

The "SR_Valid" signal, which comes from the shift registers, is used to synchronize 

the output data from the shift register and the plaintext queue. In Figure 5.15, a 

write finite state machine is needed to control the behavior of the write part in the 

plaintext queue. The block Writer Pointer provides t he writing address to the FIFO. 

A read finite state machine, is needed to control the behavior of the read part in the 

plaintext queue. The block Reader Pointer provides the reading address to the FIFO. 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 99 

Figure 5.16 illustrates the structure of the ciphertext queue in pipelined SCFB 

mode based on parallel transfer mode for block transfer size which is equal to 8 bits. 

The output signals, "ODATA", "OVALID" and "CQ_Full", are connected to the 

external output ports of the system. The "IDATA" signal represents the ciphertext 

data, which will be loaded into the input pipeline that is composed of several 8-bit 

registers. Then the ciphertext data will be stored in the proper positions in the FIFO 

and read out of the FIFO when the control signals, "wporLmeb", "wp_enab", "renab" 

and "rport_meb", are asserted properly. The "!VALID" signal, which comes from the 

plaintext queue, is used to identify the validation of the input data. In Figure 5.16, 

a write finite state machine is needed to control the behavior of the write part in the 

ciphertext queue. The Writer Pointer provides the writing address to the FIFO. The 

FIFO is actually a 2-port RAM which is used to store and read the data through write 

port and read port, respectively. A read finite state machine is needed to control the 

behavior of the system on the read side of the plaintext queue. The block Reader 

Pointer provides the reading address to the FIFO. 

IDATA(3 :0,-

IVAI.J~ - EEU-

• 
RST 

clk2 • 

~ t Write_Pipellne ~ Rsad_Pipeline] / I 
I 
~-"*' L -

VIIFSM b.L 1- 1- WPORT_C>ITA{aO) 
Flo_...,. .. JI"(Icl ~-

Writer Reader 
., __ 

Poirter 
RPORT_C>\TA(l:O -

Poirter ~-

""'-~"' b.L ~0 ~~ i FIFO ; ~- """'17:0) v-
""""'-"~ I 

I 
NOTE : /JJ the corrponents ae synclToni:zed reset 

9-

RFSM -"""' 
Jlub 

I 

ODATA(3:0) 

-EEL]-- • ovALJo 

y clk1 
• ca_FUI 

Figure 5.16: Ciphertext Queue for Pipelined SCFB Mode Based on Parallel TI:ansfer 

(N=8) 



.----------------------------------------

CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 100 

5.3 Synthesis Results, Analysis and Comments on 

the Design 

We did an ASIC synthesis with 0.18 micron CMOS standard cell technology from 

TSMC (Taiwan Semiconductor Manufacturing Company) using Synopsys 2002 tools 

supported by Canadian Microelectronics Corporations (CMC). The synthesis results 

of the block cipher, plaintext queue and ciphertext queue for the pipelined SCFB 

mode based on the parallel transfer mode (block transfer size equal to 8 bits) are 

shown in Table 5.2. 

Table 5.2: Synthesis Result Using 0.18 Micron CMOS (Block Transfer Size = 8 bits) 

Total Area ( # gates) 

Plaintext Queue 14128 

Ciphertext Queue 11935 

Shift_Register 7883 

AES 150674 

IV _Shift_Register 4974 

SCFB System 189963 

We still adopt the same clock design as in Chapter 4, that is , the elk! frequency 

is set to two times faster than the elk2 frequency. Although the queuing system is 

not held due to the resynchronization in this pipelined SCFB mode, the plaintext 

queue and the ciphertext queue may still be held when the shift registers deal with 

the new boundary of the new keystream, which we have mentioned earlier in this 

chapter. For simplicity of design, we just set elk! is two times faster than elk2, which 

ensures that plaintext queue does not back up due to the previous reasons. We did 

the functional simulations for queue size varying from 64 x 8 to 128 x 8 bits. In the 



CHAPTER 5 . PIPELINED SCFB MODE USING PARALLEL TRANSFER 101 

simulation, clk1 is the fastest clock and it can be the base system clock. The signal 

clk2 is needed to clock the transfer of data into the plaintext queue and clk3 is the 

per-round rate for the block cipher. The sync pattern is adopted as 1 followed by 

seven Os. From the simulations, an appropriate queue size which is equal to 128 x 8 

bits was found to have no queue overflow for the block transfer size which is equal to 

8 bits. Because the total number of bits in plaintext queue and ciphertext queue is 

fixed, underflow may happen in ciphertext queue when the overflow really happens 

in plaintext queue. In our system for the queue size equal to 128 x 8 bits, overflow 

never happens in ciphertext queue, because of the complementary relationship of the 

number of bits in the queues. When underflow happened frequently in the plaintext 

queue, plaintext queue spent 2 clk1 cycles to send out one block of plaintext data (8 

bits). Thus, the actual rate of the incoming data of ciphertext queue will be equal to 

the rate of clk2. This will result in a balance between the rates of the incoming and 

outgoing data in ciphertext queue, which will lead to no overflow in ciphertext queue. 

In the functional simulation underflow actually happens all the time in the plaintext 

queue when the system is working in stable state. 

According to the timing delay from the synthesis results, clk3 (i.e., clock period 

of the block cipher) is equal to 24 ns, clk2 (i.e., clock period of transfer of data 

into and out of the system ) is equal to 24 ns and clk1 (i.e., the basic system clock 

period) is equal to 12 ns. These clocks are slower than that of the SCFB mode based 

on the parallel transfer mode which is illustrated in the last chapter. Although the 

hardware implementation of the output pipeline in the plaintext queue and the input 

pipeline in the ciphertext queue have become much simpler than the serial transfer, 

the structures of the shift registers and IV _Shift_Register become more complex than 

the serial transfer, which leads to a slow clkl. The ideal throughput of the block cipher 

is 128 bits /24 ns ~ 5.333 Gbits/s. On the other hand, the input throughput of the 



CHAPTER 5. PIPELINED SCFB MODE USING PARALLEL TRANSFER 102 

plaintext queue is N /24 ns = 333 Mbits/s for N = 8 bits. Thus, the throughput of 

the pipelined SCFB using parallel transfer 8 bits can reach 333 Mbps. The efficiency 

of the system is 333/5333 ~ 6.24%. 

Although the throughput of the block cipher can be enhanced by using pipeline 

architecture, the throughput of the queuing system can only reach 333 Mbps, which 

becomes the bottleneck of the system efficiency and throughput. The throughput of 

the queuing system can be improved by increasing the block transfer size (e.g., 16 bits 

or 32 bits or more). However, the hardware complexity of the queuing system will be 

increased when the block transfer size increases. The plaintext queue or ciphertext 

queue includes write state machine, read state machine, write counter, read counter 

and a FIFO. Only the area of FIFO increases dramatically when the number of block 

transfer size N increases. For example, for the pipelined SCFB mode based on the 

parallel transfer (N=8 bits) mode, the FIFO in the queuing system is composed of 

128 memory units, and in each of them an 8-bit register is applied. If we increase N 

to B (B=128), the hardware complexity of the FIFO can be increased by 16 times at 

least. From the synthesis results, the area of the pipelined SCFB is around 7 times 

larger than the serial transfer mode, but the throughput is only 1.5 times larger. 

Apparently, from Table 5.2, the area of AES occupies 80% of the cost of SCFB. 

Thus, we can make a conjecture, increasing the block transfer size to N=128 would 

result in throughput up to 5 Gbps with modest increase in area of pipelined SCFB 

because the hardware complexity of AES does not increase when N increases. This 

incremental portion mainly comes from the larger FIFOs in the plaintext queue and 

the ciphertext queue. 



CHAPTER 5. PIPELINED SCFB MODE USI G PARALLEL TRANSFER 103 

5.4 Conclusion 

This chapter investigates the hardware structure of the pipelined SCFB mode based 

on parallel transfer mode. Compared with non-pipelin d SCFB system based on 

parallel transfer mode which is studied in the last chapter, pipelined SCFB mode 

has a higher system throughput. For the investigation of ASIC synthesis with 0.1 

micron CMOS standard cell technology, the throughput of the pipelined SCFB mod 

based on parallel transfer (block transfer size equal to 8 bits) can reach 333 Mbps, 

which is about 1.5 times than that of the non-pipelined SCFB mode based on parall l 

transfer mode in Chapter 4. But the penalty is area, that is, th area complexity is 

over 7 times larger than that of SCFB mode based on the serial transfer mode. The 

major cause of increased area is the pipelined implementation of AES because of the 

11 128-bit registers inserted among the 10 rounds and another 10 128 bit registers to 

store the subkey. We conjecture that increasing the transfer block size to 32 or 64 bits 

should increase the throughput by a factor of about 4 or 8 with only modest incr ase 

in hardware complexity becasue the area complexity of AES will not increase when 

N increases. 



Chapter 6 

Analysis of SRD and EPF 

In this chapter, we investigate the error characteristics and the resynchronization 

properties of the pipelined SCFB mode based CTR mode at the output of the de­

cryption. In particular, we study how various blackout periods and sync pattern sizes 

affect the error characteristics and resynchronization characteristics in the pipelined 

SCFB. 

6.1 Error Propagation Factor 

The error propagation factor (EP F) [8] is the bit error rate at the output of the 

decryption divided by the probability of a bit error in the communication channel. 

We shall consider the EP F of the pipelined SCFB versus different blackout periods 

and different sync pattern sizes as well. The number of blackout periods (i .e., blackout 

period ranges from 1 to 13) represents the number of pipeline stages in the block 

cipher. The 11-stage pipelined SCFB used in our implementation based on AES is 

adopted when the EP F versus different sync pattern sizes is investigated. 

104 



r-------------------------------------

CHAPTER 6. ANALYSIS OF SRD AND EPF 105 

6.1.1 EPF of the Pipelined SCFB Mode Versus Various Black­

out Period Lengths 

In the simulations relating to EP F , the bit errors are generated in a constant distance 

in order to avoid the bit error interactions at the receiver. For larger probability of 

error (Pe), it is possible that the effect of one bit error at the output of decryption 

may interfere with the effect of another error in the channel. This means when an 

error already occurs in the sync pattern/IV, or a false sync pattern is generated, and 

another error occurs in the following CTR mode, the second error will not increase 

the EP F. In this case, the two error bits have interacted. 

n B LxB bits k n B 

...... sync IV Blackout CTR sync IV ...... 

Figure 6.1 : Synchronization Cycle for Pipelined SCFB with Various Blackout Period 

Figure 6.1 , illustrates the ciphertext bits transmitted in the communication chan­

nel for the pipelincd SCFB mode (based on CTR mode). In this figure, n represents 

the number of bits in the sync pattern, B is the cipher block size and length of the 

subsequent IV, L represents the number of pipeline stages in the block cipher (e.g., 

typically the number of rounds in the block cipher), and the remaining bits, which 

we refer to as the CTR block which has a size of k, occur between the end of the 

blackout and the beginning of the next sync pattern. A synchronization cycle consists 

of n + B + L x B + k bits, which includes the set of bits from the beginning of the 

sync pattern to the beginning of the next sync pattern. 

In general, for the pipelined SCFB mode (based on CTR mode), the expected 

error bits at the receiver can be roughly approximated for two cases as follows. 

In the first case, consider the occurrence of an error in the sync pattern or IV 



CHAPTER 6. ANALYSIS OF SRD AND EPF 106 

block. The resulting bound on EP Fsync/IV is 

1 (-E p Fsync/ IV ~ 2 X k + n + B + L X B) (6.1) 

where k is average length of CTR mode block. Assuming that all CTR mode blocks 

are the length of the average CTR mode block, we have k ~ 2n , where n is the number 

of bits in the sync pattern. For n = 8, B = 128, L = 11, EP Fsync/ IV is approximately 

equal to 900. In Eq.(6.1), (L x B + k + n +B) indicates the expected number of bits 

at the receiver from where the end of the current sync cycle until the resynchronization 

is re-achieved. The coefficient ~ in Eq.(6.1) indicates that on average half of the bits 

will be in error before resynchronization. 

In the second case, consider the occurrence of an error during the blackout or 

CTR mode blocks. The resulting EPF8 o;crR is shown in Eq.(6.2). 

EP Fao;crR 2: 1 (6.2) 

Eq.(6.2) corresponds to a bit error which occurs in the blackout/CTR mode and 

causes one bit error at the receiver such that it does not cause a false sync pattern. 

Eq.(6.2) does not account for the circumstance that a bit error causes a false sync 

pattern to occur resulting in the receiver improperly assuming a resynchronization. 

So overall, weighting each case by its probability of occurrence, the lower bound 

EP F can be approximated by 

EPF ~ Prob(sync/IV) X EP Fsync/IV + Prob(BO/CTR) X EP Fao jCTR 

n+B 
-----=:------ X EPFsyncjiV 
LxB+k+n+B 

LxB+k + -----==------
LxB+k+n+B 

(6.3) 



.---------------------------------·- --

CHAPTER 6. ANALYSIS OF SRD AND EPF 107 

where Prob(sync/IV) represents the probability of occurrence for a bit error occuring 

in the sync pattern or IV and Prob(BO/CTR) represents the probability of occurence 

for a bit error occuring in the blackout or CTR mode. For n = 8, B = 128, L = 11, 

EP F is greater than or approximately equal to 69. For L equal to 1 to 13, EP F is 

plotted in Figure 6.2. In Eq.(6.3), it should be noted that the probabilities are very 

rough approximations based on assumption that all CTR mode blocks are exactly 

the length of the average CTR mode block. 

EPF for the Pipelined CTR mode SCFB vs. various Blackout periods 
120,---.-----,----,----,----,-----r;:====:::::::::=r:==.==::::;, 

__._ ~~~ ~~~;~ 
110 

100 

.9 90 
~ 
LL 

g 
~ 80 

~ 
Cl. 

l5 .n 70 

60 

50 

......._ Lower bound EPF for 
Pipellned CTR mode SCFB 

400L---~---~---~--~a---~1o----1~2---~14~--_J1s· 

L (number of pipeline stages) 

Figure 6.2: EPF of the Pipelined CTR mode vs. various Blackout Period 

Figure 6.2 shows results of a simulation examining EP F versus L (i.e., pipeline 

stages). The simulation parameters are adopted as follows: 

1. The sync pattern size, n, is equal to 8. 



CHAPTER 6. ANALYSIS OF SRD AND EPF 108 

2. The sync pattern format is "10000000". 

3. The size of the block cipher, B, is equal to 128. 

4. The number of pipeline stages, L, varies from 1 to 13. 

5. The bit errors are inserted to the channel with a distance equal to 105 . 

6. The simulation length (i.e., the number of plaintext bits) is equal to 1010 . 

The results from Figure 6.2 illustrate that the EP F trends upwards slowly when 

the number of pipeline stages increases. The lower bound on EP F resulted from 

Eq.(6.3) is also illustrated in this figure. The trend on the graph is the result of the 

effects of false synchronizations. A false sync results in a loss of synchronization up 

until the end of the next blackout. That is, much of a sync cycle will be unsynchro­

nized between transmitter and receiver. Since the size of sync cycle is dependent 

on L, larger L implies greater EP F when false synchronization occurs at receiver. 

Hence, as L increases in the graph the effects of false synchronizations become more 

evident and EP F increases. False synchronizations are not incorporated into the 

lower bound on EP F. 

6.1.2 EPF of Pipelined SCFB Mode Versus Various Sync 

Pattern Sizes 

We also investigated the EP F versus different values of sync pattern size of n by 

running simulations. Figure 6.3 illustrates results of simulation examining EP F 

versus n (i.e., the size of sync pattern) for both the 11-stage pipelined SCFB based 

on CTR mode and the conventional SCFB mode. The simulations parameters are 

adopted as follows: 



CHAPT ER 6. ANALYSIS OF SRD AND EPF 109 

1. The sync pa ttern size, n, varies from 4 to 12. 

2. The sync pa ttern format is "10 . . . 00" . 

3. The number of pipeline stage, L , is 11. 

4. The size of the block cipher, B , is equal to 128. 

5. The bit errors are inserted to the channel with a distance equal to 105 . 

6. The simulation length (i.e., the number of plaintext bits) is equal to 109 . 

EPF for Different Sync Pattern Sizes vs. Pipelined SCFB Mode I Conventional SCFB Mode 
Simulation Length=1.00- e09 Error Distance = 1.00- e05 

200~--------~--------,---~-----.---------,----~=;~=.=;;;===~ 
_,._ PlpeHned SCFB mode 
~Conventional SCFB mode 

240 

220 

200 
u:-
a. 
w I 180 

~ 

g 160 

"' J 140 

~ 
w 

120 

100 

60 

600~--------L---------~--------~8~------~170 --------~12--------~,4 

Sync Pattern Sizes 

Figure 6.3: EPF of Pipelined CTR mode SCFB vs various Sync Pattern Size 

In Figure 6.3, the results for pipelined SCFB mode illustrates that the EP F 

decreases significantly when the size of sync pattern increases. For small n, a false 

sync pattern may take several sync cycles to clear up, and , hence, EP F is dramatically 

higher for smaller n . For the conventional SCFB mode where pipeline stage, L , can 



CHAPTER 6. ANALYSIS OF SRD AND EPF 110 

be considered as 0, has a shorter sync cycle than the pipelined SCFB. So even when 

the false sync pattern is frequently found for smaller n, it will not take so long before 

resynchronization. This is why for the smaller n, the EP F is not significantly as high 

as that for the pipelined SCFB mode. 

6.2 Sync Recovery Delay 

Synchronization R ecovery Delay (SRD) is the expected number of bits following a 

sync loss due to a slip before synchronization is regained [8]. SRD does not include 

the bits that are lost directly due to the slip. 

We will consider the SRD of pipelined SCFB versus different blackout periods 

and will also investigate the SRD versus different sync pattern sizes. The number of 

blocks on a blackout periods range from 1 to 13. The standard CTR mode SCFB is 

adopted when the SRD for varying values of n is investigated in order to compare 

the simulation results to the conventional SCFB in [8]. 

6.2.1 SRD Versus Various Blackout P eriod 

In general cases, for the pipelined SCFB based on CTR mode, the expected synchro-

nization recovery delay at the receiver can be roughly approximated for two cases as 

follows. 

In t he first case, consider the occurrence of a slip on t he sync pattern or IV block. 

The resulting SRDsync/IV is 

n+B -s RD sync/ IV ~ 2 + L X B + k + n + B + L X B (6.4) 



CHAPTER 6 . ANALYSIS OF SRD AND EPF 111 

where k is average length of CTR mode block, B is the length of the subsequent IV, 

L is the number of pipeline stages in the block cipher , and n represents the number 

of bits in the sync pattern. We assume that all CTR mode blocks are exactly the 

length of the average CTR mode block (e.g., k ~ 2n, where n is the number of bits in 

the sync pattern). For n = 8, B = 128, L = 11 , S RDsync/IV is approximately equal 

to 3276. In Eq.(6.4) , the right side indicates the expected number of bits following a 

sync loss due to a slip before synchronization is regained at the receiver. 

In the second case, consider the occurrence of a slip during the blackout or CTR 

mode. The resulting SRDso;crR is 

L X B+k 
SRDso;crR ~ 

2 
+n+B+L x B (6.5) 

We assume that all CTR mode blocks are exactly the length of the average CTR 

mode block (e.g., k ~ 2n, where n is the number of bits in the sync pattern). For 

n = 8, B = 128, L = 11, SRD8 o;crR is approximately equal to 2376. Eq.(6.5) 

indicates that if a bit slip occurs in the blackout/CTR part, sync loss will last until 

the end of the next blackout period at the receiver. 

So overall, weighting each case by its probability of occurrence, the SRD can be 

approximated by 

SRD ~ Prob(sync/ IV) X SRDsync/IV + Prob(BO/CTR) X SRDso;crR 

n + B x ( n + B + L x B + k + n + B + L x B) 
n+B+LxB+k 2 

L x B + k ( L x B + k B L B) 
+ L x B+k+ n+ B x 2 +n+ + x 

(6.6) 



,-------------------------------------- -

CHAPTER 6. ANALYSIS OF SRD AND EPF 112 

where Prob(sync/ IV) represents the probability of occurrence for a bit slip occuring 

in the sync pattern or IV, Prob(BO/CTR) represents the probability of occurence for 

a bit slip occuring in the blackout or CTR mode. For n = 8, B = 128, L = 11, 

SRD is approximately equal to 2444. The resulting approximations for SRD for 

various values of L are plotted on Figure 6.4. In Eq.(6.3) , it should be noted that the 

probabilities are very rough approximations based on assumption that all CTR mode 

blocks are exactly the length of the average CTR mode block. This analysis does not 

account for false synchronizations at receiver caused by slips. 

For a larger slip rate (i.e., how often a bit slip occurs in the communication 

channel) , bit slip overlap may happen in the channel. The bit slip overlap represents 

the following situation: when a bit slip already occurs in the channel, another bit slip 

occurs before the new synchronization is achieved. These two bit slips overlap . 

~ 

Sync Recovery Delay for Pipelined CTR mode SCFB vs. L (#pipeline stages) 
14,-----~--~--~-~-------.-r===============~ 

- e-- Simulation resulls 
-A- Approximations derived from Eq. 6.6 

13 

12 

11 

(/) 10 

~ 

6oL---------~---------~,o---------~,s 
L (the number of pipeline stages) 

Figure 6.4: SRD vs. various Blackout Period 



,-------------------------------------------------------------------- -

CHAPTER 6. ANALYSIS OF SRD AND EPF 113 

Figure 6.4 shows results of a simulation examining SRD versus various number of 

pipeline stages from 1 up to 13 for the pipelined SCFB based on CTR mode. The 

resulting approximations for SRD for various values of L derived from Eq.(6 .3) are 

also plotted in this graph. The simulation parameters are chosen as follows: 

1. The sync pattern size, n, is equal to 8. 

2. The sync pattern format is "10 ... 00" . 

3. The number of pipeline stages, L , varies from 1 to 13. 

4. The size of the block cipher, B , is equal to 128. 

5. The bit slips are inserted to the channel with a distance equal to 104 . 

6. The simulation length (i.e., the number of plaintext bits) is equal to 108 . 

In order to avoid the bit slips overlap, we have to choose the proper value of bit 

slip rate. We have run simulations for various values of bit slip rate and eventually 

the upper bound of slip rate equal to 10- 4 for the number of pipeline stages up to 13 

was found to have no bit slip overlap occuring at the receiver. Hence, 10- 4 is adopted 

as the bit slip rate for our simulation examining SRD versus various L. 

The simulation results in Figure 6.4 show that the logarithm of SRD increases 

when the number of pipeline stages increases. These results are comparable to the 

approximations of Eq.(6.4) , Eq.(6.5) and Eq.(6.6). The trends of the SRD from the 

simulations are quite closed to the approximations in Figure 6.4. 

6.2.2 SRD Versus Various Sync P attern Sizes 

We have also investigated the SRD versus different values of n (i.e., the size of sync 

pattern). Figure 6.5 shows results of a simulation examining SRD versus various sizes 



CHAPTER 6. ANALYSIS OF SRD AND EPF 114 

of sync pattern from 4 up to 12 for the pipelined SCFB (L = 11) . The simulation 

parameters are chosen as follows: 

1. The sync pattern size, n, varies from 4 to 12. 

2. The sync pattern format is "10 ... 00,. 

3. The size of the block cipher, B, is equal to 128. 

4. The bit slips are inserted to the channel with a distance equal to 105 . 

5. The simulation length (i.e., the number of plaintext bits) is equal to 109 . 

Sync Recovery Delay vs. Sync Pattern Size {B = 128 bits, Bit Slip Rate= 1/100000) 
14,-----.-----.-----.-----.-----~----~-----.-----.-----.-----. 

13 

12 

11 

10 

_..,_ Conventional SCFB 
_.,_ Plpelined SCFB (L• 11 ) 

.L_ ____ L_ ____ ~----~----J_ ____ ~ ____ _L ____ _L ____ _L ____ _L ____ _J 

0 8 10 11 12 13 
Sync Pattern Size 

Figure 6.5: SRD vs. various Sync Pattern size 

In Figure 6.5, the curve with circle symbols represents the conventional SCFB 

mode, which is the hybrid of CFB mode and OFB mode as we have discussed in 



.---------------------- - ---

CHAPTER 6. ANALYSIS OF SRD AND EPF 115 

chapter 2. The curve with triangle symbols represents the CTR mode SCFB. For 

convenience, the graph presents a plot of the logarithm base-2 of the SRD. 

In [8], the lower bound and upper bound on S RD are discussed. In the S RD 

simulation results from [8], the lower bound and upper bound converge as n gets 

larger. In our simulation, the SRD simulation results of the CTR mode SCFB and 

the conventional SCFB also converge as n gets larger. As discussed in [8], S RD 

increases in an exponential manner when n gets larger. 

6. 3 Conclusion 

This chapter investigates the error characteristics and the resynchronization prop­

erties of the pipelined SCFB mode. In the study of EP F, we do the simulations 

examining EP F versus L. We also provide the lower bound of EP F versus L with­

out incorporating the false synchronizations. By running the simulations, we also 

investigated the EP F versus different values of sync pattern size. In the study of 

SRD, we do the simulations examining SRD versus Land, we provide the equations 

which approximate S RD versus L. We also run the simulation to investigate the 

S RD versus various sync pattern sizes in this chapter. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

This thesis investigates the statistical cipher feedback (SCFB) mode based serial 

transfer mode and parallel transfer. In addition, we propose and analyze a pipelined 

SCFB mode designed for high speed implementations. SCFB mode can configure a. 

block cipher to operate as a stream cipher by sending in the plaintext and sending out 

the ciphertext symbol by symbol or bit by bit . So, SCFB mode can be categorized 

as a self-synchronizing stream cipher. 

In order to overcome CFB modes poor efficiency and OFB mode 's lack of resyn­

chronization, SCFB mode combines CFB mode and OFB mode to not only im­

prove the efficiency by working in OFB mode most of the time but also obtain self­

synchronization by searching for the sync pattern in the ciphertext and working in 

CFB mode to periodically obtain the IV after the sync pattern is recognized. The 

hardware design and implementation is performed by using ModelSim SE 6.0, and 

the synthesis is performed by using synopsys tool with 0.18 micron CMOS technology 

from TSMC (Taiwan Semiconductor Manufacturing Company) supported by Cana-

116 



r---------------------------------------

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 117 

dian Microelectronics Corporation (CMC) to study the timing delay and the area 

complexity. We also did the functional simulations of the SCFB mode in software to 

analyze error propagation factor (EP F) and synchronization recovery delay (SRD). 

The AES adopts both composite field implementation to decrease the hardware com­

plexity and simple boolean function implementation to improve the throughput of 

the block cipher. The former is used in SCFB mode using serial transfer mode and 

the latter is applied for the parallel transfer mode. 

We have implemented the SCFB mode using serial transfer mode, SCFB mode 

using parallel transfer mode for the block transfer size equal to 4, and pipelined SCFB 

mode based on parallel transfer mode. In the pipelined SCFB mode implementation, 

the throughput of the pipelined SCFB system can reach up to 333 Mbps which is 

approximately 1.5 times faster than the parallel transfer mode (N=4) , and the ef­

ficiency is only approximately 6.24%. The plaintext queue is in underflow most of 

time due to the high speed of key generation in the pipelined block cipher. The area 

complexity of the pipelined SCFB system is approximately 7 times larger than the 

serial transfer mode. 

The probability distribution of the number of bits in the plaintext queue is investi­

gated for both the serial transfer mode and the parallel transfer mode for varying sync 

pattern sizes. This analysis reveals that resynchronization happens more frequently 

for the smaller sizes of sync pattern, and the queue would have more chances to be 

filled with incoming plaintext bits without any outgoing bits during the resynchro­

nization. From the functional simulations for different buffer sizes, an appropriate 

buffer size of 64 (64 x N for the parallel transfer mode SCFB) bits, which results in 

no queue overflow, is selected for SCFB mode using serial transfer mode and parallel 

transfer mode (N=4). The buffer size for the pipelined SCFB mode based on the 

parallel transfer (N=8 bits) mode is finally equal to 128 x N in which no queue over-



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 118 

flow is found. This results from the high speed of keystream generation in the AES 

block cipher which has a 11-stage pipeline architecture. 

From the synthesis results, the pipelined SCFB system based on parallel transfer 

mode has the most complicated hardware implementation and the most complex 

timing issues which constrain the efficiency but still allow higher speed. The SCFB 

system based on serial transfer mode has the simplest hardware implementation and 

the timing delay for the critical path is the smallest but the throughput is constrained 

by the plaintext queue timing. The SCFB system based on parallel transfer mode 

(N = 4) has an area complexity twice larger than serial transfer mode but the timing 

delay is one half of the serial transfer mode. 

7.2 Future Work 

Compared with the SCFB mode using parallel transfer mode (N= 4), the area com­

plexity of pipelined SCFB system (N = 8) increases dramatically, while the throughput 

increases only by 1.5 t imes. Two possible directions can be taken to solve this prob­

lem. 

1. Simplify the hardware structures of the two shift registers which is one of the 

most complex modules in the pipelined SCFB mode in order to reduce the area 

complexity. 

2. Increase the block transfer size (N) in order to improve the throughput of the 

SCFB system as well as the efficiency of the SCFB system. In the extreme, 

the design could have N = B (that is, transfer block size equal to cipher block 

size). 



- - ------

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 119 

SCFB mode can be implemented in field-programmable gate arrays (FPGA) which 

allows for re-programmable debugging and lower non-recurring engineering costs com­

pared with ASICs. Although FPGAs are normally slower than ASICs and draw more 

power, we can test the SCFB system on a real chip if we can successfully implement 

the system on the FPGAs. We may also compare the SCFB mode to other modes 

which are widely used today in the physical layer of high speed networks. 



References 

[1] William Stallings, Cryptography and N etwork Security, Principles and Practice, 

3rd ed. Prentice Hall, 2003. 

[2] M. Bellare, A. Desai, E. Jokipii and P. Rogaway, "A concrete security treatment 

of symmetric encryption: Analysis of the des modes of operation," Proceedings 

of 38th Annual Symposium on Foundations of Computer Science, IEEE, pp. 

394- 403, 1997. 

[3] W. Stallings, "The advanced encryption standard," vol. XXVI, no.3, July 2002. 

[4] 0. Jung and C. Ruland, "Encryption with statistical self-synchronization in syn­

chronious broadband networks," Cryptographic Hardware and Embedded Systems 

- CHES'99s, Lecture Notes in Computer Science, vol. 1717, pp. 340- 352, 1999. 

[5] A. Alkassar, A. Geraldy, B. Pfitzmann and A-R. Sadeghi, "Optimized self­

synchronizing mode of operation," Fast Software Encryption Workshop - FSE 

2001, Yokohama, Japan, Apr 2001. 

[6] National institute of standards and technology. [Online]. Available: AES web 

site, http:/ /www.csrc.nist.gov/encrytion/aes 

120 



REFERENCES 121 

[7] J. Wolkerstorfer, E. Oswald, M. Lamberger , "An ASIC implementation of the 

AES sboxes,, The Cryptographer's Track at the RSA Conference (CT-RSA 

2002}, Lecture Notes in Computer Science, vol. 2271 , Feb 2002. 

[8] Howard M. Heys, "Analysis of the statistical cipher feedback mode of block 

ciphers,, IEEE Transactions on Computers, vol. 52, Issue 1, pp. 77- 92, Jan 

2003. 

[9] U.M. Maurer, "New approaches to the design of self-synchronization stream ci­

phers,, Advances in Cryptology - EUROCRYPT '91 , pp. 458 - 471, 1991. 

[10] M. Dworkin, Recommendation for Block Cipher Modes of Operation. NIST 

Special Publication 800-38A, 2001. 

[11] Diffie, W., and Hellman, M., "Privacy and authentication: An introduction to 

cryptography,, Proceedings of the IEEE, vol. 67, pp. 397 - 427, March 1979. 

[12] V. Rijmen. Efficient implementation of the rijndael sbox. [Online] . Available: 

http:/ /www.esat.kuleuven.ac.be/ rijmen/rijndael/sbox.pdf 

[13] J . Fuller, W. Millan, "Linear redundancy ins-boxes,, FSE 2003, vol. 2887, 2003. 

[14] N. Yu, "Compact hardware implementation of AES with concurrent error detec­

tion,, Master 's Thesis, Memorial University of Newfoundland, 2005. 

[15] L. Zhang, "Fully pipelined implementation of advanced encryption standard,, 

Project Report , Memorial University of Newfoundland, 2005. 

[16] Hua Li; Friggstad Z, "An efficient architecture for the AES mix columns opera­

tion,, Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium 

on, vol. 5, pp. 4637 - 4640, May 2005. 



REFERENCES 122 

[17] Xinmiao Zhang and Keshab K. Parhi, "Implementation approaches for the ad­

vanced encryption standard algorithm," IEEE Circuits and System Magazine, 

pp. 24- 26, 2002. 

[18] Xinmiao Zhang and Par hi , K.K., "High-speed VLSI architectures for the AES 

algorithm," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 

vol. 12, Issue 9, pp. 957- 967, Sep 2004. 

[19] F. Yang, "Analysis and implementation of statistical cipher feedback mode and 

optimized cipher feedback mode," Master's Thesis, Memorial University of New­

foundland , 2004. 

[20] Canadian Microelectronics Corporation, "Tutorial on CMC's digital ic design 

flow," Document ICI-096, 2002. 

[21] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptogra­

phy, 1st ed. CRC Press, 1997. 



.---------------------------------------

Appendix A 

Partial VHDL Codes for SCFB 

Systems 

A.l SCFB System Controller using Serial Thansfer 

- Author: Liang Zhang 

- Modification Date: 20th, Aug. 2006 

- SCFB system Controller 

library ieee; 

use ieee.stdJogic_l164.all; 

use ieee.stdJogic_arith.all; 

use work.all; 

entity Controller_SCFB is 

port( clkl : in stdJogic; 

reset : in stdJogic; 

123 



APPENDIX A . PARTIAL VHDL CODES FOR SCFB SYSTEMS 

New _IV _Done : in stdJogic; 

Cipher _Done : in stdJogic; 

RD_Done : in std_logic; 

SR_Done : in stdJogic; 

Cho_Mux : out stdJogic; 

SR_Load : out stdJogic; 

Reg_Load : out stdJogic; 

Unhold_on : out stdJogic); 

end Controller _SCFB ; 

architecture structural of Controller _SCFB is 

124 

type state_type is (On_Rst, Gen_Key, Reg_Taking_Key, Reg_Occupied, SR_Loading_Key, 

Wait_State, New_IV_Found); 

signal state, next_state : state_type; 

begin - Next State Decoding: 

Next_State_Decoding: process (state, New_IV _Done, Cipher_Done, RD_Done, SR_Done) 

begin 

case state is 

when On_Rst => 

next_state <= Gen_Key; 

when Gen_Key => 

if (New_IV _Done='l') then 



,--------------------------------------

APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

nexLstate <= New_IV_Found; 

elsif (Cipher_Done='l' and RD_Done=' l ') then 

nexLstate <= Reg_Taking_Key; 

elsif (Cipher_Done='O' or RD_Done= 'O') then 

nexLstate <= Gen_Key; 

end if; 

when Reg_Taking_Key => 

if (New_IV_Done='l ') then 

nexLstate <= New_IV_Found; 

elsif (SR_Done='O') then 

nexLstate <= Reg_Occupied; 

elsif (SR_Done='l ') then 

nexLstate <= SR.Loading_Key; 

end if; 

when Reg_Occupied => 

if (New_IV_Done='l ') then 

nexLstate < = New _IV _Found; 

elsif (SR_Done= 'O') then 

nexLstate <= Reg_Occupied; 

elsif (SR_Done=' l ') then 

nexLstate <= SR_Loading_Key; 

end if; 

when SR_Loading_Key => 

125 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

if (New _IV _Done=' 1 ') then 

nexLstate <= New_IV_Found; 

elsif (New_IV_Done='O' and SR_Done='O') then 

next_state <= WaiLState; 

end if; 

when WaiLState => 

if (New_IV _Done='1 ') then 

next_state <= New_IV_Found; 

else 

next_state <= Gen_Key; 

end if; 

when others => 

next_state <= Gen_Key; 

end case; 

end process N exLState_Decoding; 

- Clock the State Machine: 

clock_state_machine: process (clk1, reset) begin 

if (reset= '1') then 

state <= On_Rst; 

elsif ( clk1 'event and clk1='0') then 

state <= next_state; 

end if; 

126 



APPE OIX A. PARTIAL VHDL CODES FOR SCFB SYSTEM S 

end process clock_sta te_machine; 

- Generation of the Combinatorial Control Signals: 

combinationalJogic: process (state, next ....state) 

begin 

if (state = On_Rst) then 

Cho_Mux <= '0'; 

SRLoad < = '0 ; 

Unhold_on <= '0'; 

Reg_Load <= '0'; 

elsif (state = Reg_ Taking_Key) then 

Reg_Load <= '1'; 

elsif (state = Reg_Occupied) then 

Reg.Load <= '0'; 

Cho_Mux <= '1 '; 

elsif (state = SR_Loading_Key) then 

SR_Load <= '1 '; 

Unhold_on <= '1'; 

Reg_Load <= '0'; 

Cho_Mux <= '1'; 

elsif (state = Wait_State) then 

Unhold_on <= '0'; 

SR_Load <= '0'; 

elsif (st ate = ew _IV _Found) then 

SR_Load <= '0'; 

127 



APPE DIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

Unhold_on <= '0' ; 

Reg_Load <= '0'; 

Cho_Mux <= '1 ' ; 

end if; 

if (next_state = Wait_State) then 

SR_Load <= '0'; 

Unhold_on <= '0'; 

end if; 

end process combinationalJogic; 

end structural; 

12 

A.2 SCFB System Controller using Paralle l Trans­

fer 

library ieee; 

use ieee.stdJ.ogic_l164.all; 

use ieee.stdJ.ogic_arith.all; 

use work.all; 

entity Controller_SCFB is 

port( clk1 : in stdJ.ogic· 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

reset : in std_logic; 

New _IV _Done : in stdJogic; 

Cipher _Done : in std_logic; 

RD_Done : in stdJogic; 

SR_Done : in stdJogic; 

Cho_Mux : out stdJogic; 

SR_Load : inout stdJogic; 

Reg_Load : out stdJogic; 

Unhold_on : out stdJogic); 

end Controller _SCFB ; 

architecture structural of Controller_SCFB is 

type state_type is (On_Rst, Gen_Key, Reg_Taking_Key, Reg_Occupied, 

SR_Loading_Key, Wait_State, New_IV_Found); 

signal state, next..state : state_type; 

signal tmp : stdJogic; 

begin 

process ( clk1, reset, state) 

begin 

if (reset=' 1 ') then 

tmp <= '0'; 

elsif (clk1'event and clk1='0' and SR_Load = '1') then 

tmp <= '1'; 

elsif (state /= SR_Loading_Key) then 

129 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB S YST EMS 

tmp <= '0'; 

end if; 

end process; 

- Next State Decoding: 

NexLStat e_Decoding: process (state , New_IV _Done, Cipher_Done, 

RD_Done, SR_Done) 

begin 

case state is 

when On_Rst => 

next__state <= Gen_Key; 

when Gen_Key => 

if (New _IV _Done=' 1 ') then 

next __stat e < = New _IV _Found; 

elsif (Cipher_Done=' l ' and RD_Done='l ') then 

nexLstate <= Reg_Taking_Key; 

elsif (Cipher_Done='O' or RD_Done='O') then 

next ..st ate <= Gen_Key; 

end if; 

when Reg_TakingJ {ey => 

if (New_IV_Done=' l ') then 

next..st at e <= New_IV_Found; 

elsif (SR_Done='O') then 

130 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

next_state <= Reg_Occupied; 

elsif (SR_Done='1 ') then 

next_state <= SR_Loading_Key; 

end if; 

when Reg_Occupied => 

if (New_IV_Done='1') then 

next...state <= New_IV_Found; 

elsif (SR_Done='O') then 

next...state <= Reg_Occupied; 

elsif (SR_Done='1 ') then 

next_state <= SR_Loading_Key; 

end if; 

when SR_Loading_Key = > 

if (New _IV _Done= ' 1' and 

next ...state / = WaiLS tate) then 

next...state <= New_IV_Found; 

elsif (New_IV_Done='O' and SR_Done='O') then 

next...state <= Wait_State; 

end if; 

when Wait_State => 

if (New _IV _Done=' 1 ') then 

next...state < = New_IV_Found; 

else 

131 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

next_state <= Gen_Key; 

end if; 

when others => 

next_state < = Gen_Key; 

end case; 

end process N ext_State_Decoding; 

- Clock the State Machine: 

clock_state_machine: process (clkl , reset) 

begin 

if (reset= ' l ') then 

state <= On_Rst; 

elsif (clkl'event and clkl='O') then 

state <= next_state; 

end if; 

end process clock_state_machine; 

- Generation of the Combinatorial Control Signals: 

combinationaLlogic: process (state, next_state, tmp) 

begin 

if (state = On_Rst) then 

Cho_Mux <= '0'; 

SR_Load <= '0'; 

132 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

Unhold_on <= '0'; 

Reg_Load <= '0'; 

elsif (state = Reg_Taking_Key) then 

Reg_Load <= '1'; 

elsif (state = Reg_Occupied) then 

Reg_Load <= '0'; 

Cho_Mux <= '1'; 

elsif (state = SR_Loading_Key) then 

SR_Load <= '1'; 

Unhold_on <= '1'; 

Reg_Load <= '0'; 

Cho_Mux <= '1'; 

elsif (state = Wait_State) then 

Unhold_on <= '0'; 

SR_Load <= '0' ; 

elsif (state = New _IV _Found) then 

SR_Load <= '0'; 

Unhold_on <= '0'; 

Reg_Load <= '0'; 

Cho_Mux <= '1'; 

end if; 

if (next_state = WaiLState) then 

Unhold_on <= '0'; 

end if; 

133 



APPE DIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

if (tmp = '1') then 

SR_Load <= '0'; 

end if; 

end process combinationalJogic; 

end structural; 

A.3 Pipelined SCFB System Controller 

library ieee; 

use ieee.stdJogic_ll64.all; 

use ieee.stdJogic_arith.all; 

use work. all ; 

entity Controller_CTR_SCFB is 

port( clk1 : in stdJogic; 

clk3 : in stdJogic; 

reset : in stdJogic; 

Cipher_Done1 : in stdJogic; 

Cipher_Done2 : in stdJogic; 

SRLFini : in stdJogic; 

SR2_Fini : in stdJogic; 

Blackout_Period : in integer range 0 to 191· 

134 



.-------------------------------------------

APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

SRLSpeciaLCase : in stdJogic; 

SR2_SpeciaLCase : in stdJogic; 

CTR_Func_Enab : inout stdJogic; 

SRLLoad : out stdJogic; 

SR2_Load : out stdJogic; 

Flag_SR1 : out stdJogic; 

Flag_SR2 : out stdJogic; 

AES_Frozen : inout stdJogic; 

Queue_Stall : out stdJogic ) ; 

end Controller _CTR_SCFB ; 

architecture structural of Controller_CTR_SCFB is 

type state_type is (On_Rst , Gen_Key, SRLLoadKey, SR2_LoadKey, 

WaiLinit, SRLLoad_Norm, SR2_Load_Norm, 

WaitLNorm, Wait2_Norm, Resync1 , ResyncLContd, 

Resync2, Resync2_Contd, 

Queue_Stalled1, Queue_Stalled2, 

Queue_Stalled3, Queue_Stalled4); 

signal currenLstate, next_.state : state_type; 

begin 

- Next State Decoding: 

N ext_State_Decoding: process ( current_state, Cipher _Done 1, 

135 



APPE DIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

Cipher_Done2, SRLFini, 

SR2_Fini,BlackouLPeriod,AES_Frozen, 

SR2_SpeciaLCase) 

begin 

case current....state is 

when On_Rst => 

next....state <= Gen_Key; 

when Gen_Key => 

if (Cipher_Donel='O') then 

nexLstate <= Gen_Key; 

elsif (Cipher_Donel='l ' ) then 

next....state < = SRLLoadKey; 

end if; 

when SRLLoadKey => 

if (Cipher_Done2 = 'O')then 

next....state <= SRLLoadKey; 

elsif (Cipher_Done2='1') then 

next....state <= SR2_LoadKey; 

end if; 

when SR2_LoadKey => 

next....state <= WaiLinit; 

136 



-------- ----------------------

APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

when Wait_Init => 

if (SRLFini = '1') then 

next_state <= SRLLoad_Norm; 

elsif (SRLFini = '0') then 

nexLstate <= Wait_Init; 

end if; 

when SRLLoad_Norm => 

nexLstate <= WaitLNorm; 

when WaitLNorm => 

if (SR2_Fini = '1 ') then 

next_state <= SR2_Load_Norm; 

elsif ((Blackout_Period = 1) and AES_Frozen = '1')then 

next_state <= Resync2; 

else nexLstate <= WaitLNorm; 

end if; 

when SR2_Load_Norm => 

next_state <= Wait2_Norm; 

when Wait2_Norm => 

if (SRLFini = '1 ') then 

next_state <= SRLLoad_Norm; 

elsif ((Blackout_Period = 1) and AES_Frozen = '1') then 

next_state <= Resyncl; 

137 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

else nexLstate <= Wait2_Norm; 

end if; 

when Queue_Stalled3 => 

if (AES_Frozen = '1') then 

nexLstate <= Resync1; 

else next_state <= Queue_Stalled3; 

end if; 

when Resyncl = > 

if (SR2_SpeciaLCase = '0' ) then 

nexLstate <= ResyncLContd; 

elsif (SRLSpeciaLCase = '1 ') then 

next_state <= Queue_Stalled1; 

end if; 

when Queue_Stalled4 => 

if (AES_Frozen = T) then 

next_state <= Resync2; 

else next_state <= Queue_Stalled4; 

end if; 

when Resync2 => 

if (SRLSpeciaLCase = '0') then 

next_state <= Resync2_Contd; 

elsif (SR2_SpeciaLCase = T) then 

138 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

nexLstate <= Queue_Stalled2; 

end if; 

when ResyncLContd => 

if (SRLSpeciaLCa.se = '0' and SRLFini = '1 ') then 

nexLstate <= SR2_Load_Norm; 

elsif (SRLSpeciaLCa.se = '1 ') then 

nexL.state <= Queue_Stalled1; 

else next....state <= ResyncLContd; 

end if; 

when Resync2_Contd => 

if (SR2_SpeciaLCa.se = '0' and SRLFini = '1 ') then 

next....state <= SRLLoad_Norm; 

elsif (SR2_SpeciaLCa.se = '1 ') then 

next....state <= Queue_Stalled2; 

else next....state <= Resync2_Contd; 

end if; 

when Queue_Stalled1 => 

if (AES_Frozen = '1') then 

nexLstate <= SR2_Load_Norm; 

else next....state <= Queue_Stalled1; 

end if; 

when Queue_Stalled2 => 

139 



APPENDIX A . PARTIAL VHDL CODES FOR SCFB SYSTEMS 

if (AES_Frozen = '1') then 

next....state <= SRLLoad_Norm; 

else next....state <= Queue_Stalled2; 

end if; 

when others => 

nexLstate <= Gen_Key; 

end case; 

end process NexLState_Decoding; 

- Clock the State Machine: 

clock....state_machine: process (clk1, reset) 

begin 

if (reset='1 ') then 

current....state <= On_Rst; 

elsif ( clk1 'event and clk1= '0') then 

current....state <= nexLstate; 

end if; 

end process clock....state_machine; 

- Generation of the Combinatorial Control Signals: 

combinationaLlogic: process ( current....state, clk3, next ....state) 

begin 

if ( current....state = On_Rst) then 

140 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEM S 

SRLLoad <= '0'; 

SR2_Load <= '0'; 

Flag_SR1 <= '0'; 

Flag_SR2 <= '0'; 

AES_Frozen <= '0'; 

Queue_Stall <= '0 ; 

elsif ( currenLstate = SRLLoadKey) then 

SRLLoad <= '1 '; 

elsif ( current...st ate = SR2_LoadKey) then 

SR2_Load <= '1'; 

SRLLoad <= '0'; 

AES_Frozen <= '1'; 

Flag_SR1 <= '1'; 

elsif ( current...state = WaiLinit) then 

SRLLoad <= '0' ; 

SR2_Load <= '0' ; 

elsif (current...state = SRLLoad_Norm) then 

SRLLoad <= '1' ; 

Queue_Stall <= '0' ; 

elsif ( current...st ate = WaitL orm) then 

SRLLoad <= '0'; 

141 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

SR2_Load <= '0'; 

Flag_SR1 <= '0'; 

Flag_SR2 <= '1'; 

elsif (current....state = SR2_Load_Norm) then 

SR2_Load <= '1'; 

Queue_Stall <= '0'; 

elsif ( current....state = Wait2_Norm) then 

SRLLoad <= '0'; 

SR2_Load <= '0'; 

Flag_SR1 <= '1'; 

Flag_SR2 <= '0' ; 

elsif (current ....state = Resync1) then 

AES_Frozen <= '0'; 

SRLLoad <= '1'; 

Queue_Stall <= '0'; 

Flag_SR1 <= '0' ; 

Flag_SR2 <= '1'; 

elsif ( current....state = Resync2) then 

AES_Frozen <= '0'; 

SR2_Load <= '1'; 

Queue_Stall <= '0 ' ; 

Flag_SR1 <= '1'; 

142 



APPENDIX A. PART IAL VHDL CODES FOR SCFB SYSTEMS 

Flag_SR2 <= '0'; 

elsif ( currenLstate = Resync2_Contd) then 

SR2_Load <= '0'; 

elsif ( currenLstate = ResyncL Contd) then 

SRLLoad <= '0'; 

elsif ( currenLstate = Queue_Stalledl) then 

Queue_Stall < = '1 '; 

SRLLoad <= '0'; 

Flag_SR1 <= '1'; 

Flag_SR2 <= '0'; 

elsif ( currenLstat e = Queue_Stalled2) then 

Queue_Stall <= '1 '; 

SR2_Load <= '0'; 

Flag_SR1 <= '0'; 

Flag_SR2 <= '1'; 

elsif ( currenL.state = Queue_Stalled3) then 

Queue_Stall <= '1'; 

elsif ( currenL.state = Queue_Stalled4) then 

Queue_Stall <= '1 '; 

143 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

end if; 

- To make the block cipher generate the key 

- stream in 1 clk1 cycle earlier 

if ( next...state = SR2_Load_N orm or 

next..state = SRLLoad_Norm) then 

AES_Frozen <= '0'; 

end if; 

- Constrain the Block Cipher to generate 

- only one block of new Keystream per clk3 

if (clk3'event and clk3 = '1') then 

if (AES_Frozen = '0' and 

current..state I= On_Rst and 

current...state I= Gen_Key and 

current_state I= SRLLoadKey) then 

AES_Frozen <= '1'; 

end if; 

end if; 

end process combinationalJogic; 

- To handle the "CTR_Func_Enab" 

144 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

process (reset, currenLstate, clk3) 

begin 

if (reset = '1 ') then 

CTR_F\mc_Enab <= '0'; 

elsif ( currenLstate = On_Rst) then 

CTR_Func_Enab < = '1 '; 

end if; 

if (clk3'event and clk3 = '1' and CTR_Func_Enab = '1' ) then 

CTR_Func_Enab <= '0'; 

end if; 

end process; 

end structural; 

A.4 Top Level RTL of Pipelined SCFB System 

- Top-level design of the Pipelined SCFB 

- Author : liang zhang 

- July 23rd, 2007 

LIBRARY IEEE; 

USE IEEE.stdJogic_1164.all; 

145 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

USE IEEE.numeric...std.ALL; 

use work.mypackage.all; 

use ieee.stdJ.ogic_unsigned.all; 

use work.all; 

entity SCFB is 

port ( clk3 : in stdJ.ogic; 

clkl : in stdJ.ogic; 

clk2 : in stdJ.ogic; 

reset : in stdJ.ogic; 

aesJniLdataJoad : in stdJ.ogic; 

ivalid : IN stdJ.ogic; 

PlaintextJn : I stdJ.ogic_vector(7 downto 0) ; 

syn_pattern : in stdJogic_vector(7 downto 0) ; 

Num_PQ_Ov rfiow_Bits : out stdJogic_vector(ll DOWNTO 0) ; 

Num_CQ_Undcrflow_Bits : out stdJogic_vector(ll DOWNTO 0) ; 

aver_Num_bitJn_PQ : out stdJ.ogic_vector(32 downto 0) ; 

PQ_Full : inout stdJ.ogic; 

CipherText : inout stdJ.ogic_vector(7 downto 0); 

ovalid : OUT stdJogic ); 

end SCFB; 

architecture STRUCTURAL of SCFB is 

146 



APPE DIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

- ===== Component Definition === 

component AES_en_:fly_onKey_withCTR is 

PORT( 

clk3 : IN STD_LOGIC; 

rst : I STD_LOGIC; 

aesJnit_dataJoad : I STD_LOGIC; 

hold_on : in stdJogic; 

AES_Frozen : IN stdJogic; 

CTR_F\mc_Enab : IN stdJogic; 

new_IV : IN stdJogic_vector(127 downto 0) ; 

ciphertext : OUT data_type; 

donel : OUT STD_LOGIC; 

done2 : OUT STD_LOGIC 

) ; 

end component; 

component Shift_Register _CTR_SCFB is 

port( clkl , reset : in stdJogic; 

CQ__Full : in stdJogic; 

SRLLoad : in stdJogic; 

SR2_Load : in stdJogic; 

flag_SRl : in stdJogic; 

:flag_SR2 : in tdJogic; 

Queue_Stall : in std_logic; 

147 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

Key _Stream_In : in data_ type; 

Sync_Ref : in stdJogic_ vector( 4 down to 0); 

Blackout_Period : in integer range 0 to 191; 

SRLSpeciaLCase : inout std_logic; 

SR2_SpeciaLCase : inout stdJogic; 

SRLFini : inout stdJogic; 

SR2_Fini : inout stdJogic; 

SR_Valid : out stdJogic; 

Key_Stream_Out : inout stdJogic_vector(7 downto 0) 

) ; 

end component; 

component Controller_CTR_SCFB is 

port( clk1 : in stdJogic; 

clk3 : in stdJogic; 

reset : in stdJogic; 

Cipher _Done1 : in stdJogic; 

Cipher _Done2 : in stdJogic; 

SRLFini : in stdJogic; 

SR2_Fini : in stdJogic; 

Blackout-Period : in integer range 0 to 191; 

SRLSpeciaLCase : in stdJogic; 

SR2_SpeciaLCase : in stdJogic; 

148 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

CTR_Func_Enab : inout stdJogic; 

SRLLoad : out stdJogic; 

SR2_Load : out stdJogic; 

Flag_SRl : out stdJogic; 

Flag_SR2 : out stdJogic; 

AES_Frozen : inout stdJogic; 

Queue_Stall : out stdJogic 

) ; 

end component ; 

component FIFO_PQ is 

PORT ( 

wclk : IN stdJogic; 

rclk : IN stdJogic; 

rst : IN stdJogic; 

ivalid : I stdJogic; 

idata : IN stdJogic_vector(7 downto 0); 

SR_Valid: in stdJogic; 

PQ_Full: inout stdJogic; 

odata : inout stdJogic_vector(7 downto 0) ; 

ovalid : OUT stdJogic; 

aver_Num_biLin_PQ : out stdJogic_vector(32 downto 0) 

) ; 

END component; 

component FIFO_CQ is 

149 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

PORT ( 

wclk : IN stdJogic; 

rclk : IN stdJogic; 

rst : IN stdJogic; 

ivalid : IN stdJogic; 

idata : IN stdJogic_vector(7 downto 0); 

odata : OUT stdJogic_vector(7 downto 0) ; 

ovalid : OUT stdJogic; 

CQ_F\.111: inout stdJogic 

) ; 

END component; 

component IV _Queue is 

port ( clk1 : in stdJogic; 

reset : in stdJogic; 

PQ_Valid : in stdJogic; 

IV _in : in stdJogic_vector(7 downto 0); 

syn_pattern : in stdJogic_vector(7 downto 0); 

SR_pointer : in natural range 0 to 128; 

LasLIV Jength_contd : in natural range 0 to 100; 

SR_Valid : in stdJogic; 

150 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

SR_Load : in stdJogic; 

new _IV _done : inout stdJogic; 

hold_on_for_pQ_SR : inout stdJogic; 

lasLIV _notice : inout stdJogic; 

IV_out : out stdJogic_vector(127 downto 0) ; 

IV_SR_counter : inout stdJogic_vector(4 downto 0) ; 

Blackout_P riod : out integer range 0 to 191; 

sync_ref : out stdJogic_vector( 4 downto 0) 

) ; 

end component; 

component PQ_Ov rfl.ow _Counter is 

PORT( 

clk2 : IN stdJogic; 

rst : IN stdJogic; 

PQ_Full : IN stdJogic; 

Num_PQ_Overfl.ow_Bits : out stdJogic_vector(ll DOW TO 0) 

) ; 

end component; 

component CQ_Underfl.ow_Count r is 

PORT( 

clk2 : I stdJogic; 

rst : I stdJogic; 

151 



APPE DIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

CipherText : IN stdJogic_vector(7 downto 0); 

Num_CQ_Underflow_Bits : out stdJogic_vector(ll DOWNTO 0) 

) ; 

end compon nt; 

- ========= Signal Definition ===== 

signal New_IV_Done : stdJogic; 

signal AES_Frozen : std_logic; 

signal CTR_Func_Enab : stdJogic; 

signal ew _IV : std_logic_ vector ( 127 down to 0) ; 

signal Key _Str am_In : data_type; 

signal Cipher _Done2 : stdJogic; 

signal Cipher _Donel : stdJogic; 

signal SRLFini : std_logic; 

signal SR2_Fini : stdJogic; 

signal Blackout-Period : integer range 0 to 191; 

signal SRLSpeciaLCase : stdJogic; 

signal SR2_SpeciaLCase : std_logic; 

signal SRLLoad : stdJogic; 

signal SR2_Load : std_logic; 

signal Flag_SRl : std_logic; 

signal Flag_SR2 : stdJogic; 

signal Queue_Stall : stdJogic; 

signal CQ_Full : std_logic; 

signal sync....ref : std_logic_ vector( 4 down to 0) · 

signal SR_Valid : std_logic; 

152 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

signal Key_Stream_Out: stdJogic_vector(7 downto 0) ; 

signal Plaintext_out : stdJogic_vector(7 downto 0); 

signal CipherKey_PQ_out : stdJogic_vector(7 downto 0); 

signal ovalid_PQ : stdJogic; 

signal SR_pointer : natural range 0 to 128; 

signal Last_IV Jength_contd : natural range 0 to 100; 

signal SR_Load : stdJogic; 

signal hold_on_for _PQ_SR : stdJogic; 

signal lasLIV _notice : stdJogic; 

signal IV_SR_counter: stdJogic_vector(4 downto 0); 

153 

for all: AES_en_fiy_onKey_withCTR use entity work.AES_en_fiy_onKey_withCTR; 

for all: Shift_Register_CTR_SCFB use entity work.Shift_Register_CTR_SCFB; 

for all: Controller_CTR_SCFB use entity work.Controller_CTR_SCFB; 

for all: FIFO_PQ use entity work.FIFO_PQ; 

for all: FIFO_CQ use entity work.FIFO_CQ; 

for all: IV _Queue use entity work. IV _Queue; 

for all: PQ_Ovcrflow _Counter use entity work.PQ_Ovcrflow _Counter; 

for all: CQ_Underflow_Counter use entity work.CQ_Underflow_Counter ; 

begin 

AES_core : AES_en_fiy_onKey_withCTR port map 

clk3) 

reset , 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

aesJniLdataJoad, 

new _IV _done, 

AES_Frozen, 

CTR_Func_Enab, 

New_IV, 

Key _Stream_In , 

Cipher_Donel, 

Cipher_Done2 ) ; 

State_Machine_SCFB: Controller_CTR_SCFB port map 

( clkl, 

clk3, 

reset , 

Cipher_Donel , 

Cipher_Done2, 

SRLFini, 

SR2_Fini, 

Blackout_Period, 

SRLSpeciaLCase, 

SR2_SpeciaLCase, 

CTR_Func_Enab, 

SRLLoad, 

SR2_Load, 

154 



~-----------------------------------------------------------------------

APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

Flag_SRl , 

Flag_SR2, 

AES_Frozen, 

Queue_Stall ) ; 

Shift_Register_SCFB: ShifLRegister_CTR_SCFB port map ( clkl, 

reset, 

CQ_Full, 

SRLLoad, 

SR2_Load, 

Flag_SRl, 

Flag_SR2, 

Queue_Stall, 

Key _Stream_In, 

sync_ref, 

BlackouLPeriod, 

SRLSpeciaLCase, 

SR2_SpeciaLCase, 

SRLFini, 

SR2_Fini, 

SR_Valid , 

Key _Stream_ Out 

) ; 

FIFO_PQ_component: FIFOYQ port map 

155 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

( 

clk2, 

clkl, 

reset , 

ivalid, 

Plaintextjn, 

SR_Valid, 

PQ_Full, 

PlaintexLout, 

ovalid_PQ, 

aver _N um_bi Lin_PQ 

) ; 

FIFO_CQ_component: FIFO_CQ port map 

( 

clkl , 

clk2, 

reset, 

ovalid_PQ, 

Cipher Key _PQ_out, 

156 



APPENDIX A . PARTIAL VHDL CODES FOR SCFB SYSTEMS 

CipherText, 

ovalid, 

CQ_Full 

) ; 

IV _ShiftR: IV _Queue port map 

( clkl, 

reset, 

ovalid_PQ, 

Cipher Key _PQ_out, 

syn_pattern, 

SR_pointer, 

LasLIV Jength_contd, 

SR_Valid, 

SR_Load, 

New_IV_Done, 

hold_on_for _PQ_SR, 

last_IV _notice, 

New_IV, 

IV _SR_counter, 

Blackout_Period, 

sync_ref ); 

157 



APPENDIX A. PARTIAL VHDL CODES FOR SCFB SYSTEMS 

PQOverfl.ow: PQ_Overflow_Counter port map 

(clk2, 

reset, 

PQ_Full, 

Num_PQ_Overflow_Bits ); 

CQ Underflow: CQ_ Underflow _Counter port map 

clk2 ' 

reset , 

CipherText, 

Num_CQ_Undcrfl.ow_Bits ); 

CipherKey_PQ_outj= Plaintext_out XOR Key_Stream_Out; 

end STRUCTURAL; 

158 










