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Abstract

This thests will devell  material regarding the Korteweg-de Vries (KdV)
equation, a noulinear partial differential equation which has soliton solutions.
We introduce the equation witl its history and establish some preliminaries
in §1. In §2, we will examine the soliton solutions and the uniqueness of such.
We will also speak of the construction of multiple soliton solutions, as well as
other solutions. Next, the const  ation properties of the KdV equation will
be visited, then the properties of interacting solitons. In §3 we will discuss the
historical numerical schemes for the KdV equation, including finite difference
methods, pscudospectral metho , collocation, and finite element methods.
We will comment on their accuracy and cfficiency. Contained within §4 is
a selection of numerical scherr  which were iniplemented (and in one case.
improved!) by the author.
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where we used the fact that w — 0 as £ — oo since v and v each approach
zero as 0o, which are our bc 1dary conditions.
A . e e
Defining E(t) [~ jw?® dx, we have

d 1, < 1
—w dr = w (v, 511‘.1-) dr,

dt ) .2 -
y < L
FEO = [ et guyde

~ 1 1
= / —w? T, — ) da,
2 2

| o 1
< —] |2 MY | —_—— . v
< .[WQU dr /_XQ(II zlh)d-l,

> 1
= FE(t) '2/ (v, — E-u_,) dr.

E(t). (2.12)
where m := 2 max|v, — %u,,\. We clearly have an ordinary differential equa-
tion,

AdFE(t
E ) = mE(t), (2.13)
[ ¢

which of course has the solution E(t)  E(0)¢™'. If our initial condition
vanishes, then 7 ¢) is also forced to zero. Since we had assumed that
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u(x,0) = v(r,0) = f(x), we have that w(x,0) w(r.0) —v(r,0) = 0 and
thus that

E0) = —/ w?(r,0) dr =0 (2.14)
From above, E(0) 0 E(t) — 0. Thus. w(r, t) = 0. Explicitly. we have
w(w,t) = ulr,t) —v(x.t) = 0. Therefore w(a,t) = wv(w,t), meaning that
the two solutions are identical, and that a solution of the KdV equation is
unique.

2.3 Construction and ..ehaviour of Soliton Solutions

A solution which has the form of multiple solitons is actually set from the
initial condition. If the initial prc le can be written in the form

u(z,0) = (n+ 1) sech?(x) (2.15)

for n a positive integer, then the solution will evolve into a svstem of exaetly
n solitons [7][also see §2.7].

In the case that the coefficient for the initial condition caunot be con-
structed in this manner, then a dispersive wave will occur [7, p. 83, 15-18].
We leave the soliton solutions with a remark taken from Drazin and Johu-
son [7]. There is a dispersive-v  -c-only solution which occurs only when the
initial profile is a positive sech? function, ic

w(r,0) = a sech?(x) (2.16)

for some a € IR.

2.4 Rational Solutions

Another class of solutions « > KdV equation are called rational solu-
tions. and all of tl are simg S i« in from the KdV cquation

12



up — O6un, + gy = 0, assume that the solution u is a function of only r, i.e.
u = u(xr), and that v and its derivatives 0 as r — Foc. Then we have

that

—6uu’ + u”

We integrate this and then solve:

which is clearly singular at @ = 0.

!

=0 (2.17)

Gu? - o’

ule t) = (2.18)

The *next” rational solution, which corresponds to the solution which

involves two solitous [7], is

wl(r,t) = Gr(r® — 248) /(% + 124)2 (2.19)

which becomes singular when @

to n solitons 7], where cach init

; =

12¢.

As one might infer at this point, there is a rational solution for cach
solution which involves 1y number of solitons. The rational solutions can be
found by taking an appropriate limit in each initial profile whicli corresponds

profile is as mentioned above in §2.3.




2.5 Conserved 1antities

Starting . in from the KdV equation.

Uy — Guu, + Upry = 0
we note that it is already in conservation form
0 ¢
=T+ X))
ot :

where T := v and X := u,, — 3u>
T and X, are int  -able  lu  isf

/ uder=A

plies for all solutions of the KdV

the KdV equation, then

for some constant A. This condition

equation which vanish at infinity.
Multiply the KdV equation by u and retrieve

9
wuy — Ou iy + Uity = 1,

which is equivalent to
g (1, J Ly o)
— | =u — | wu,, — zul = 2w ) =0,
ot \ 2 or 2

which is already in conservation form — T') + %(,\) where T and X are now

defined by 7":= 3u* and X := wue, — jul — 2u®. Thus

/ W= A (2.21)
-2

for sonie constant A.

2.6 An Infinity of Conservation Laws

Surprisingly, there are an unlimited number of conservation laws for the
KdV. Perhaps even more +  prising is the situation swrounding the proof

14



of the claim. The discovery was made rather sinultancously in a rigorous

sense of the termy; I{ruskal and Miura v e in one location. having proven the

existelice of such laws. As they were examining the result. Garduer called to

inform the two gentlemen of b (different) proof of the existence of the laws.
Starting from the Gardner transformation [7. p. 92-95],

202
U=+ i, + 7w, (

o
o
~

we apply this to the KdV equation:

ty — Oult, + Uy, = Wy + S+ 252u'u',
200 9
— O(w+ceuw, +e7w)Nuw, +ewe, + 257wy,
S0 J£
9
+ u“.’l'.l‘:l‘ + E"LUJTI.I'.I' + 25—(11"1[’.1').1'1"

The u in the above equation is  solition of the KdV equation if « is a solution
of the cquation

wy —6(w +¢ 0Py + W =0,

which is already in conservation form (again)

0 s
() + 7= (e, = 3u? = 2%07%)

ot ar

(the Gardner equation). that is, (;%(T) + (.%(‘\') with 77 = w and X :=
wpr — 3w? — 2e%0®. Noting that w — u as ¢ — 0, we represent w as an

asymptotic expansion. As ¢ — 0, we have a formal power series in ¢

>0

w(r,tie) ~ Zs”w“(;z:z‘)

y )
= Wy fuw;+ g’ + ...
2 2
= U — Uy — (0 — Upy) T
with the coefficient of cach power ¢ ¢ being a conservation law for the KdV.

Also. only the coefficients of the even powers of = are nc  rivial conservation
laws. For a full proof of these points. see the work of Garduer et al. [10].









3 Numerical Schemes for KdV

It is important to note that some authors write the KdV cquation with
a change of coefficient in the nonlintear term. . or instance. wy + Gue, + o,
is used instead of w, — Guu, + . In the case that the literature makes
a change in this manner, then the references to the KdV equation with the
nonlittear terin written as either —Guu,. +Guir,, —u,. or +uu, will be called
KdV, +KdV. KdV_, and KdV, respectively. In the case that the KdV, or
the +KdV equation is used. then the initial conditions will have their signs
changed with respect to how they are wri  n in the rest of this paper.

3.1 Explicit Finite Difference Methods

In both the implicit and explicit finite difference methods, we use a mesh
on the spatial domain of N equidistant points, with the distance between
cach point being I Az (unl ; otherwise stated). The temporal domain

is discretized uniformly in  eps of A := At. The subscripts of a function u
refer to the spatial steps and the superscripts refer to the temporal steps.
For example, u‘;’;?l ~u(e+ " b= ) =ulr+2h t = k).

3.1.1 Zabusky & Kruskal

Zabusky and Kruskal 1 the first to publish numerical results on the
interaction of solitons on the KdV,  uation.

U + ity + €uppy = 0. (3.1)
r € (—o00,00).t >0,
with initial condition of u(x,0)  cos(mr).
The presence of the €2 often appe 5 in literature concerning the numer-
ical solution of the KdV prob The main focus of their paper was the
interaction of the solitons and the recurren  of the mitial condition that
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nonlinear term u,.

Q

T ULU

1
E(“J‘H —uj-1) ) uy
1

= ——(wp1u; —uj_yuy)

1
= — (Ui Uiy — Wi Uiny).
2AJ:< JHLEGT J ] ))

where the references to tin  ste  have been temporarily omitted for the
sake of simplicity. The two occurances of the function u are approximated
differently. The first is approximated by a forward explicit average () =~
2(u; + uj41) and the second by a backward explicit average u s ~ sy +
uj-1). Goda’s method is largely implicit, with the exception of the ap-
proximations for u(y and w). Goda’s approximation for the KdV equation
(ty + ulty + Uper = 0) 18

1 n 7 ] mn T I n
E(ujJrl —uj) + e (uj:f(uj’ +ujyy) — u}‘fll(uj’ + “J‘-l))
1 ‘
+m (u}’f:zl - Qu}:ff + 2ul ) — '11?1".3) =0. (3.4)

The method has a truncation error of O(At) + O((Ax)?) and is uncondi-
tionally stable, meaning that stability is achieved for any choice of ~

3.3 Fourier / Pseudospectral Methods

T'  Fourier/pseudosp  t a global approximation method
which has several ad 1ti s over finite difference  thods. Due to the
properties of the Fourier transf F for derivatives for a function f, that is
F (j—fl) = (¢k)"F(f), no aj . oximation for the spatial derivatives is neces-

sary. Thus, a smaller number of "1 points are required for the algorithm.
Overall, the computing memory ¢~ number of computations can be reduced
significantly in a given problem. Detailed descriptions can be found in the
hooks [28]. [15], and especially [8].




3.3.1 Fornberg & Whitham’s method

This method uses the Fourier transform. Because of this. the spatial
domain [—p, p| is normalized to [0,27] under the change of variable & —
rm/p+ 7. The normalized KdV  uation is

3

s T
U+ 6~y + Uy = 0, (3.5)
p P

w(0,t) = u(2m,t)

(see [9]). For NV equally spaced points, define Ar = 27/N. On the discrete
Fourier space, the solution u(x.t) takes the form

N—1

1 T
Fu=i = —=> u(jAr t)c 77k,
VN j=0
e .
u=FHFW)=. i = ik, )TN,
K

N N

k e U

Using a leapfrog time step, we apply the Fourier transform to the spatial
domain.
FUE () = FYURPF)  —iF7Y) T(u))
F'F(uy) = iF Y kF(u))
= wu, = iuF TN (EF(u)),
where we have used F ‘ :l = (1k)"F(u).
We can now approximate the solution:

7_J

iy € Uy + l—'su.zxr.r = (-3())
p i
3
o+ Giu—F  (kF(0)) = i FT B F () = 0
p v
3
W 4 Gilzif'ul(lx'F(ll)) — i —F Y F ) =0
AN J p PE

n n - . A . ™ — :
uj“—uj Lo 21./_\1{(>11.j]—)‘ ’(A‘F(u))—pF HAPEQ)) ) = 0.



Thus we have obtained a pseudospectral method for the INdV equation.
However. Fornberg and Whitham's original work included a modification to
the final tern:

3 . JETE
—2iAt F YR F(u) — =2iF™! {sm < 2 At) F(u)} .
P I

This modification is intended to v 1 higher accuracy at  igh wavemunnbers.
and requires three Fourier transtors per tii - step, just as before the mod-
ification.

The truncation error of this method is of order (O(A#)? + O(Ar)). The
requircment for the first pscudospectral method is At < (Ar)?/7®, and for
the second is At < 3(Ar)®/27% {9, p.L.J]. Since Ax < 1, it is kunown that
(Ax)® < (Ax)?, that is, a la 1 time step At can be used, which saves on
computation tine.

3.3.2 Taha & Ablowitz

Tahia and Ablowitz compared (1982) six different methods in the nmner-
ical computation of the KdV e tic  [27):

o Zabuskv-Kruskal schen

e Greig-Morris Hopscoteh method

e Scheme due to Goda

e Proposed local scheme

e Scheme suggested by Kruskal

e Split step Fourier meth by Tappert

e Pscudospectral method by Fornberg and Whitham












Using a piecewise line  thme interpolant, the initial condition becomes
B(a”(1 —,) + b)) = Ba'¥ = o.

The algorithm is as follows. First, solve the equation dircetly above for
al®. Next, for a given al™:

o Solve (& =(1-1, M+ 4 b for b i order to get w(t) on the
interval [t,,t,11].

e Solve for U, t) anywhere on the strip [a, b] x [t,. t41].
e Obtain a"*V from bi™.

Using Gauss points at the mesh points in time yields superconvergent
error estimates O((A¢)*, " ¢ r g and 0 Gauss points in cach subinterval
of time and space, respectively. Regarding stability of tI  method, Brunner
and Roth state that “On a uniform mesh [...] and working in the spatial spline
spaces S(4,3, IT3,) and S(5,3, I1;,), we found no evidence of instability with
q=1orq=2."[4, p. 379, 380]

3.5 Finite Element Methods
3.5.1 Petrov-Galerkin Method

Sanz-Scrna and Christier 1 Petrov-Galerkin (“PG”) method to evalu-
ate the KdV, equation [25]. The reader could recall that the Petrov-Galerkin
method is similar to the Galerkin method with the exception of the allowance
for the basis functions of the test and trial functions to differ. Sanz-Serna
and Christie’s method used the typical hat functions for the trial function
[the u) and Hermite cubic polynomials for the test function [the ¢]. These
authors state: “The Petrov-Galerkin approach enables us to use a C¥ inter-
polant, resulting in a much lower computational effort than that associated
with the standard Galerkin method based on splines or Hermite cubics.”



Starting from the KdV, equation. multiply by a test function ¢ and
integrate the dispersion term by parts twice.

Uy + ity + Sitgy, = 0,

U+ UL+ Sty = (),

o x b
/ e dr + / uu  dr + ¢ <u”v|i‘x - / T d.r)
- — 0 (e &

o
(g, v) + (v, 0) + € <u,,_,‘n|_°U —u |+ / U Uy d.r) = (),

-

0.

(ug, vy + (uugp v) + < (u”v|iC T S T 1'_,3,.)) = 0.

. N o
where (-, -) denotes the Ly inner product: (f.g) = [T f(r)g(a
Above, we have implicitly demanded that v(.) € C*. Pretending that we
have taken v as a hostage, wther ¢ nand that o(r) — 0 as || — x
and we retrieve that

(g, v) 4 (uug, e} + e(ue, ve) = 0. (3.7)
Using the finite element method. introduce the unifornilv-spaced mesh
rog < &y < ... <o, with ¢ ing b and use finite eler nts in the spatial

domain for both test and tr functions:

Uz t) = N Ui(t) o).
vlat) =~ vi(t)ey(r)

and demand that the trial = tions ¢; have compact support. The capital
U denotes the approximate ition. Equation (3.8) then becomes

(Urovjey) + (U0 vjg) + (U (04 )aa) = 0,
(Upovji) + (UU v05) + € U, vile)) ) = 0
l"(Lt v >+" ((-[-I L )+ (L‘J)-l‘.l‘):(l
Uhowy) + (LU 0y) + E(L Ay)er) = 0
where j =0:n
Next. we choose the trial function o(r) to be the familiar piecewise linear

‘hat function’ at cach node ;. Th r;) =4d;. themoref 7" r Kronecker

29



delta function. Thus, U;(r;.t) = Ui(t)oi(x;) = Ui(t)d,; = Ui(¢) when i = j.
Next, we choose the test function (). Since we are using a Petrov-Galerkin
method rather than the Galerkin me  »d, we are no longer forced to use the
same function as both the test and the tr  function. We define

U“(.l‘) — (J‘ _h.l‘() _ 1) .

For purposes of accuracy, we want a five-point approximi  t for w,,,. Thus ¢
must have support on [—2, 2], which means that it will be a cubic polynomial
in each interval 1.7+ 1] for i —2,—-1.0. 1. Choosing Hermite polyuomials,
we have that

o(r) = { (lel = 1)20(2|&z-| +1) if o] < 1

otherwise,

{ (o] = 1)2 if o] < 1

0 otherwise.
with
0) = #(0) = 1,
l)=0o(1)=0.
a(=1) J(0) o'(1)=0.
p ) =p0) p(1)=0,
J(=1) = p'(1) = 0.
Finally,

() =c¢ o(r+ 1)+ apo(a) + ol —1) +
Boiple + 1) + Fplr) + Fplr —1).

where o = (i) and 3; = 0'(i).
With these at our disposal, t1 - system (Up, v)+H(UU, 0)+e(Ur () 0e) =

30






UU, = (1/120h)(18a — U2, + (24a — 1)U 2Uisy

+(24 = 360U, + 720)U, 1 U — (23 — T20) U0,
—(24 = 360)U2 | — (2da — DU, Ui 5 — (18a — 2)U7 5.

and

1
Uf.rar = g \U,'y_) — QU,‘_H -+ ‘2(,[,‘_1 - U,;Q).

3.5.2 The ‘modified’ I rov-Galerkin method

The modified Petrov-Galerkin method (inPG) for the KdV is simplistic
in nature; in fact, it takes t| same Hproximation approach  the method
by Greig and Morris. The nonlinear term wwu, is written as (%) and is

z ).

approximated by

4—;5((12a — NUZ, + (14 = 210)U2, — (1 = 24a)U7 | — (120 — DUZ,).
which mak:  the method fc  "h-order accurate [25].

The results were astounding.!' As mentioned in the introduction, the
mPG method was superior to the other  ethods used. Due to the fourth-
order accuracy in space, the crror in the PG method shrar  more quickly
than the regular PG method.

3.5.3 Local Discontinuous Galerkin Method

In what might be the called the most significant [and interesting] nmumer-
ical method development of the 21st century with respect to the KdV equa-
tion, Yan & Shu (2001) [28] use a combination of a discontinuous Galerkin

1 Sanz-Serna and Christie used t ial condition f(x)

= 3¢ sech?(hr + d) with the
parameters ¢ = 0.3, £ = 0.000434, a ~k. and a = %



finite elements and stable nonlinecar high order Runge-Kutta methods. Re-
spectively, these are applied to the spatial and temporal dimensions. First
thev write the equation as a first order system and apply the LDG method
to it. As a result, three systemns of first order ise, each of which is assigned
a corresponding test function.

The method is stable for general nonlinearities of the form

e+ flu)e + (' (Wg(r(w))e). = 0.

Introduce the variables

q=1r(u),
I 9(@)e

and then the above equation ¢ be written as

w4+ (f(w) + r'(u)p), = 0.
p—9(q). = 0.
qg—r(u), =0.

Discretizing with the discontinuous Galerkin method. we use three test fune-
M 3 ~ e y g yr R . N ;o . N7 .
tious v, w. z, integrate over the interval I; := [‘1_];%.‘1”%] (j=1:N)and
integrate by parts. We ¢ lookir  for piccewise polynomials w,p.¢ € Vi,
such that

/uw dr — /(f(u) + M (Wpho, de + (f + ‘1:’}3)j+% v

f IA"[))J-_U'WL 0.

1
2 J7a

~ N s -~ . "~ ~ [ ~t
/q~ dr+ / r(w)z, drv — rj+%~J+% -+ 'J"%”j—% 0.

where all [ arc over [;. Definition of what we mean by the hatted func-
tions (numerical fluxes) is necessary, and it is these choices that will ensure
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stability:

) .
ut u

p = pr.

g 9(q=.q™).

ro= r(u’),

where cach hatted function m(u™, u™) is a monaotone flux for m(w). That is,
m(u~.u™) is Lipschitz continuous in both arguments. has consistency such
that ri(u, u) = m(u). and is noninc  sing in «* and nondecreasing in ™.
Define the flux as the Lax-Friedrichs flux

(fu™)+ flu™) = au™ — u)) .

Sy
Ve
j
'"+
A
I
po| =

where a = max,|f'(u)].
This scheme is L? stable:

/ 2(0,t : :
: (L”—)> de+ (Hypy - 12y). (3.11)

dt 2

where the H are numerical entropy fluxes. This expression can be summed
over all j to show L? stability [28.  776].
The error estimate for this scheme is

(e t) = U )]s < CALFFZ

is method with an implieit € schen

nttl _gn

[{(un—H))‘
W= (1= )t + GuT

where we lipose the restriction % < f# < 1, is stable as long as it isfies a
Wb

cell entre v inequality and the L? ility (3.11). The proof of this can be
found upon [28, p. 777].
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4 Chosen Experimental Methods

The author of this paper chose the following methods to employ. Starred
(%) methods indicate that the author has included a modification to that
method.

e Zabusky-Kruskal Finite Difference Method ()
e Pscudospectral Nethod

e Fornberg-Whithamm I udospeetral Method

The reader should uote that for graphs which compare the analytical
solution to the experimental solution, the former will be represented by a
solid line. and the experimental solution will be represented by a dashed
line.

4.1 Zabusky-Krusl | FDM

Similar to previously discussed, we apply the method of Zab  <y-Kruskal
to the +KdV. u; + 6uw, + tpp, = 0. Assume a uniform mesh in the spatial
domain with step size 2

The KdV equation is approximated just as before, with the addition of the
coefficient +6 in front of the nonlinear term. The interim steps are omitted
to evade the possibility of the reader conducting narcolepsy:

Uy 4 Guiy + Uppe = 0,

n+l1 __ n—1 c ' n oon n n n
uj = U] —./_E(ujﬂ+uj+11J_])(uj+1 )
. n n n
- AIg(ujJr2 = 2u )+ 20— Uy
requires that
At 9 N 1 - 2
“NIU.I‘ ‘ —
Au (Ar)? 3V3

in order to be stable.
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For simplicity. both the initial condition «(.r, 0) and the tirst step (. At)
were given to the program (a copy of whiclt is located in the Appendices).

Figure 2: ZK Finite Difference method with N = 2V, At = 3.8641¢ — 004, plotted
at 2At. }T. %T. —TT T where T = 5.0, The crror of the method for the parameters
s 0.0881.
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05
Figure 3: ZK Finite Difference method with N =2 - = 3.8641c — 004. plotted
at —iT T where T = 10.0. The error of t thod for these parameters is 0.4661.



Figure 4: ZK Finite Difference method  th N 27, At = 3.8641¢—004. plotted at
T where T = 0.25, after a large (unshown) Hliton splits into two smaller solitons,
The error of the method for tI - pa  neters is 0.1769.







Figure 5: mZK Finite Difference method with N = 29 At = 3.8361 - 004. plotted
at 28¢5 ., '51‘ v+ wherc . = 0. Tl ror of the niethod for these parameters
is 0.0503.
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Figure 6: mZK Finite Difference me o with N = 29, At = 3.8641c¢ — 004, plotted
at %T T where T = 10.0. The error of the m1 1od for these pe neters is 0.2717.



Figure 7: mZK Finite Difference method with N = 290 At = 3.8641¢ — 001, plotted
at T where T = (1 ). The error of the method for these par neters is (L1443,

4.3 Pseudospectral } nd . ornberg-Whitham Pseu-
dospectral Method

y demonstrate the pseudospecti method emploved by Fornberg &
Whitham. we will first develop the code which uses a pse  lospectral method.
Starting from the +KdV which he - beennorn —ized to [0, 27] (3.5). we have

T
uy + ( L, Lppr = 0.
P’






Figure 8: Pseudospectral method with N = 27, plotted at %T. %'I —1‘1 T where
T =1.0.



Figure 9: Due to the accuracy of the idosp  ral method. errors at this scale
are nearly indistinguishable by t = naked eve. In this graph. we have redneed the
number of points to N 2% to show that the method is less accurate with fewer
points, and so that it is clear that both tI  experimental and true solutions are

being graphed!
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Figure 10: The pseudospectral method with & =2 T =5.0. At 5.1903¢ — 005.
The solution is plotted for ¢t 2A¢t. '7.T. The crror T is 3.1994¢ — 004,

With such a small error, it is clear that the program cau reasonably
estimate the true solution u for : ¢ soliton solution. But what about
a two soliton solution, and an in ol between two solitons moving at
different speeds?

The program was again - 1 with a « wmge in the ini | condition. which
was replaced™ with
osh™™ ) + cosh{4r)

rt)y= :
wlr-H) (3coshi(a) + cosh(3r))’

Figure 11 shows the solitons split Graphied are both {7 and « for the
tinles ¢ = %T, T With N = 2% the method  roduces an ervor of 2.51 10 2

BWe  also gave  the  program  the it time  step: U ) -
12 3+ feosh (20 —-8eAt)tcost -0

= (Beosh{c 28A0) 4cosh(3
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Figure 11: U and v are o rvationally similar.

Figure 12 plots two solitons cracting and subsequently  litting. Also
2 I g { : g

seen is how the larger wave bri - “tran: 5" some of s energy (altitude)
to the slower wave.






Figure 13: The FW psceudospectral method with N =29 T = 5.0, Af = 2.3459¢ —
004. The solution is plotted for ¢ . Ioo. The error at T 1s 0.0015.



Figure 14: The FW pscudospect  method with N = 2% T = 5.0, At 5.1903¢ —
005. The At has been changed to the v 1~ #/7% the same  the unmodified
psceudospectral method. The solution is plotted for t = 2A¢. %7 1. The ervor at
T is 3.2169¢ — 004, which is less than the error for the unm it pscudospectral
method for the same Af.



5 Outlook

5.1 KdV “Family” of equations

The KdV equations as ¢ lier presented is not the only ‘version’ of the
KdV equation. We examine some of them now.

5.1.1 Modified Korteweg-de Vries Equation
We first consider the modified Korteweg-de Viies equation:

Ou ,du P

which is accomplished by usii  the a transformation in the KdV. This trans-
formation, au = £(68)"%u, — Bu?, was discovered by Miura in 1968 [20].

5.1.2 Generalized Kortew  Vries ..quation

The generalized Korteweg-de Vries equation is as follows:

% Ou N Pu
Ot dr O3

where p is an integer such t D> 2.

As if there were not eno sions” of the KAV, there is another KdV
family member: comnmon lite 1 fers to the “Critical” General Korteweg-
de Vries equation (CgKdV). Thisis e e when the gkdV has p = 5. It
is called the critical general KdV equation because the value p 5 is the

HGibbon: “[The mKdV cquation] was nar with less imagination [than the KdV

equation].” [12]



critical point at which the solutions may blowup in finite time. That is, the
solitary wave solucions of the glkdV equation are stable if and only if the
aforcmentioned p is such that p < 4 [1].  owup of solutions in finite thne
may occur if p > 5 [19]. The existence of blowup in finite time when p > 5
in the Sobolev space H' is still an open prol .

These equations have been solved analytically for various function spaces,
including the points in time where the solution experiences blowup.

5.2 Two-Dimensional dV Equation

The KAV equation in two dimensions is called Kadomtseo-Petviashoili
equation (hereafter AP equation) and is written

(ug + Guuy + Ugpe)r + 30y, =0

and has a large set of exact quasiperiodic solutions. cach of which consist of
N independent phases. Somie ‘real-life” applications of the KP equation have
been observed, such as in the Strait of Gibraltar and the Dordogne River in
southwestern France. One such ob  vation was made in 1984 by the NASA
space shuttle STS 41-G.
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- v2 *(u2(i+2) - 2*%u2(i+1) + 2%u2(i-1) - u2(i-2));

end

counter = counter + 1

ul = u2;

u2 = u;
end
u_ans = 2.*(sech(xx - 4*ti1t )."2;
time
error = max' »o>s(u_ar - u))
plot(xx,u, '--’,xx, u_ans, ’-’)
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A.2 MATLA. Code for ‘modified’ Zabusky-Kruskal
Finite Difference Method

2°9;
= 10.0;
100;
2*p/N;
= N;
= [0:1:j-1];
=2*pix*xJ/ N;
or ii = 1:j
xx(ii) = p * (x(ii)/pi - 1);
end
% Set initial condition.
for i = 1:j '
ul(i) = 2.*(sech(xx(1)))."2;

Hh X G« o g =
1]

end
dt = h™3 / (4+6*(h"2*max(ul)));
for i = 1:j
u2(i) = 2.*(sech(xx(i) - *dt)) . "2;
end
time = dt;
counter = 0;
b2 = -dt/(h) * 3;
v2 = dt/(h"3);
while time<(T)
time = time + dt

u(l) = ul() + b2+ ((u2(2)).72 - (u2(j))."2)
- v2 *(u2(3) - 2*u2(2) + 2*u2(j) - u2(j-1));
u(2) =ut(2) +1t « (C )."2 - (u2(1)).72)

- v2 *(u2(4) - 2+#u2(3) + u2(1) - u2(jd));
u(j-1 11(3-1) + b2x ((u2(j))."2  (u2(_ )).72)

-7 (U 1) - 2% ) o+ 2xu2(j-2)- u2(j-3));
u(j) = ul(j) + 1 (¢ 1)).72 - (u2(j-1)."2)

- v2 *(u2(2) - 2%u2(1) + 2¥u2(j-1)- u2(j-2));
for 1 = 3:j-2

u(i)  ul (i) + b2*x((u2(i+1))."2 - i-1)).°2)
- v2  u2{i+2) - 2% Do+ 2%u2(i-1) - u2(i-2));

end
counter = counter + 1
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uil

u2
end
u_ans
time
error

2.

uz;
u;

*

wch(xx -

max(abs(u_a
plot(xx,u, ’--’,xx, u_ans, ’-’)

time)) . " 2;

- w)






end
u

for ii = 1:N

post(ii) = first(ii) + third(ii);
end
for ii 1:N

u(ii)  w0(ii) + 2 * dt * post(ii);
end
for ii = 1:N

u0(ii) = ul(ii);

ul(ii)  u(ii);

end

time = time + dt;

counter = count +1

s = 2.*xsech(xx - 4*(dt * counter))."2;

error = max(abs(u_a: - ul))



A.4 MATLAB Code for . ornberg-Whitham Pseudospec-

tral Method

N = 279;

T 10.0;
p = 100;

norm = pi/p;

dx  2*p/N ;

dt = 3*x(dx)"3 /(2 * (pi)’
j [0:1:N-1];

x =2 *pix*xj /N,
ii = 1:N

xx (ii)

for

end
for

=

ii = 1:
u0 (ii)
ul(ii)

end
counter = 0;
time dt;
while time < T
time
for ii = 1:N
U(ii) = (-1)"(ii-1)*ul(ii);
id
U fft(U);
for iii = 1:N

- 0.00001;

p * (x(ii) /pi - 1);

2, xgech(xx(ii)) . 2;
2.%sech(xx(ii) - 4. * dt)."2;

FFT(iii) = (iii-1-N/2)*U(iii);

FFT3(iii)=sin(norm~3 * (iii-1-N,

end
IFFT = ifft(FFT);
IFFT3= ifft 53
i sqrt(-1);
ii = 1:N
first(ii) =
third(ii)
end
for

l=
for

ii 1:N
u(ii) =

u0(ii) + 2 * (dt =

"3

(-1)"(ii-1) * -6 * 1
(-1)"(ii-1) * i * IFFT3(ii);

dt)*U(iii);

norm * ul(ii) * IFFT(ii);

rst(ii) + third(ii));



d
for ii = 1:N
u0(ii) = ul(ii);
ul(ii) u(ii);
end
time = time + dt;
counter = counter + 1

end
u_ans = 2.xsech(xx - 4x(dt * counter)). 2;
error = max! i_ar - ul))
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B Boussinesq’s Paper
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{756)
{itots rectilignes ot paralicles de vitesses assez pent différentes, on pourrail,
muwe le prousent de nombrenses ex-

avec une cedlaine approximanon,
peviences de N , fe supposer immolale par rapport & des axes coor-
donmis anies de Lo moyenne de ces vitesses, et rapporter les ondes 4 ce
systeme d'axen.

» Les mouvenents ¢achiés étant Tes o ar toule la largenr dn ca-
pal, it suffit de Jes consulérer dans un plan sertical dungé suivaut sa lou-
guenr Tans ce plan, je prendrai, snivant le sens de s propagation des
ondes, le fond harizontal pour axe des x, et une verticale dirgee en hant
porr axe des 5 cofin jappellerar 1 la prolondear constante du hquide
er 18, gy o+ & ln profondenr dans les parties agitées, h, la valeur
manmum de b vatear dont le rapport a H sera NéAmoiny suppasé assex
petity g la et somposantes, a lépoque & de lu vitesse
[ORE SR STRN omuasaues pateiley ea un puint de la surlace Tibve s
enfin w la viwsse ae pro e des ondes,

» Je weoccuperai d abora aes oudes solitaires, dont les cavacteres dis-
Lnetfs sont + 2 de produire, au moment de Jeur passage, des vilesses sen-
stbiement coustantes du fund a la suface, de mamere que w el sa dérivée
an e varient pen avee v 2° de parcour de grandes d.stances avec wue
on notabla. 11 suit de ce

vitess de propugalion coustantc gl it aledra
deuxieme caractere que e, & sont seulement fonctions de x — wt ), et
aussi qne les frottements sont mseosibles of quon peut slappuyer sur les
mme d'arlleurs #, v sont ouls

eqnatians ovduraires dv by drodynamuue. C
antour de chague weleeale avant que Uonde y passe, \s 8’y frouveront, a
toute epague., Paprés un Ihioréme counu de Lagrange el de Cauchy, les
derivees partielles en x ot + o lune fonction 3 et une formuly usuelic don-

uery, p designaot exces la g W en uu point sur celle de Fatmo-

sphere,

. LAy o1

i) ‘5‘“'-'/—%“" TR + v
» Mais i et v n'8tant fonctions que de 2 — wi, | I'on a

. 'y dly Loy dy -

3) e e doin @ T e fonee il de

Cette fonenon arhitraire «stuulle; cary potr .r wt = U, pu, ¢ sonl
nuls; ety dapres o Jadenvee de g en £ Vest pgalnoumt Celle-ci peut donc

Ldans iy, par — it 1l vésulte d'asl fe Fuvompressibiline

élreremplace

o . _
du liquide que le volume & |« dy, pinsé A Lravers une section normale
Vo

Figure 17: Boussin s paper, page 2
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75
duraut un instant 5, esl (o3l 3 celur, w8k, quose trouve de phis au dali de
cette sechien a bowut dy i Imatank. A une premtere approximation,
e e dépend pas de y, et i vient successivement

&
ar

» Multiphoos la derniere (3) t ng en determinant la con-
wante aw moyen de la conditivn preceaciue w acompressibilite, nous au-
rous

o A wh bW A

4 e - P T A KO o — [
[ w= g g+ g e (B - A7 deb =gy e

Dortaut dats la relation 1}, spéaifide pour Ja surface hibre, les valenrs de ¢
et de uy donndes par (3} et (4} il vient

™ Y i
5 e S“|'+ LN Wwd A].

shde sk

» L'imégrale premiere de cette ¢quauon, si Van appelle G une con-
stante, est

ihi fhy® w0 A h

6 LI LS SN A WPy
) T 3 ll] a1 a) Co ',
on sensiblement, en ¢ inant C de maniere qua la derivée de Aen o
s'annule pour b = o, aeveloppan I'exnoventielle jusqu'au terme eu X,
ot observant quon peut, d'aprést 5}, acer, dans ce terme, »® par g1,
dn?

ol

e a
EE (E - ”—/l) i

Au sommet de Vomdo, ot &e= by et ol L dérivée de hen atest nulle, cette
formanle {7} devient w?

par 1. Bussctl et vérilice par M. Bann, St I'ande était ndgative ou que k,

§(TT-+ A}, qui ncte trouvée experimentalement

(alors valeur minimum de 4 fat < o, 1o méie dérivée, nulle pour k= A,
serailimagina:re, d'apres (65, pour A2 b, on e pent done pasappliquer aux
ondes négatives Ja théorie actuelle, ni, par ste, Vhypothése consistant &
wdinettee que 22, v dépendent seulement de e — wt, 7, 0w que, méme A une
veconde upproximation, I'n spage uniformément et sans se détor-
suer. En effet, J. Ruosscll et ont reconnu que ces ondes s'alterent
promptement et qu'elles sun quneurs suivies de plusienrs antres, alter-
nativemnent positives et négatives : on doit se contenter jusqu'h présent, &

Figure 18: Boussinesq's paper, page 3
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leur égard, de la premitre approximation, due a Lagrange el résunce par
les deux formnles «* = glf, nll = wh.
w St wt désigne I'abscisse pour laquetle b= hr,, Vimegrate de ) es)

= . T
(% 41,.=[=+c\n- e ge VAT h.
» Lasutlaco hibsre aet dane symétvique par rappnta b vertivale mobile
= wt, ot est toul P densuy i miveau p = 1 8a courbure, sensi-
hlement mesaree pa vée seconde de A en 2 pour expression,

dlapres (31 e quotent par atl? de Shtwho— 30 ol y o dewn poinls
d'mflexion seulement, pour A épal ain deus ters dhe B,y ety par suite, une
seule convexité vu vode formée par Lo hiquirde. Le valume (luide (3, nqut
constitie eetle onde. est, par unte de

‘gvur.
H,
] \ =

intigrale dont Ja vabour soblient en substuiuant la deévivée de aen fison

T
2 ‘f) h j; dh =

expression tirée de 61 ¢ o en déduit ket @ en functen de ().

» Supposons actucllement que Vonde ne se termine jas i son iere,
comme il wrevs walia est produite par vue effusion peomancnte de hquide
Qi par un | continu de U'eau vers les & positifs. Loy vitesses &, v

ne pourront pis eue Poriou! de simples fonctions de 3= wt, ¥; car, sl

l'onde sa prov Papres les loin pre Gdentes, la siurlace, 1eprésentée
par (B, Huir “abaisser, din cid des o néganfs, Jusqulau niveon
y = H, ot Mev corur immnbile, ¢ 1ence impossible dans I'bypothese
d'une side nees as M. Bazin, tout en montrant ume
formite du agation de la Jame liquide, dune Lauteur
constante A de Punde, me parassent ¢tablir, en effet,
qne les ren étry ot dont il appelte le premive ethe phs

Sleve onde untate, st res-vanables de forme et de hauteur la Whéotie
précedente ne sapphique done plus. Towtetuis, une demonsliation donnde
par M, de SontVenant “Comples rendus, L LXFY o6, 18 pullen 1870)
permet d' la ¢ experimentals de M n,

w? o gtH 1,50,

meme dans | e ropport de fig 3 H e it pas tresspetit, Cette des
mansttation, supie apphestion du théoreme sue Jes quaniites de monves

4

nent, coumsle a considérer fanl o iustant § le voluwe hiquide con-

pris, au commencement de cet instant, cutie denx svetions = w0, 0U IEY

profoudenr est 11 Jigy ot r

a4, ow elle est H, et a égaler lo produit

Figure 19: Boussi: q's paper, page 4



















