






Performance Study of Podded 

Propulsors with Varied Geometry and 

Azimuthing Conditions 

By 

© Mohammed Fakhrul Islam, B. Eng., B. Sc., M. Eng. 

A thesis submitted to the School of Graduate Studies in 

partial fulfilment of the requirements for the degree of 

Doctor of Philosophy 

St. John's 

Ocean and Naval Architectural Engineering 

Faculty of Engineering & Applied Science 

Memorial University of Newfoundland 

March 2009 

Newfoundland Canada 



Abstract 

Abstract 

The current research investigates the performance of podded propulsors with varied 

geometry at different azimuthing conditions for pusher and puller configurations in open 

water. 

In order to determine the prominent geometric parameters and to establish their effects on 

the hydrodynamic performance, the first part of the research concentrated on the 

geometry of pusher- and puller-podded propulsors. This experimental study consisted of 

investigating five geometrical parameters and their effects on propeller thrust, torque and 

efficiency, unit thrust and efficiency of podded propulsors. The work used a factorial 

design (a design of experiment technique) and analysis approach to study these effects. 

The second part of the research focussed on the hydrodynamic properties of the podded 

propulsors in static and dynamic azimuthing conditions. This study implemented two 

investigations using two separate experimental apparatus. In the first investigation, two 

podded propulsors were tested to measure the forces and moments on the propeller and 

on the unit at different static azimuthing angles within the range of - 30° to 30°. In the 

second investigation, a separate dynamometer system was used to measure forces and 

moments of a model pod unit at different static and dynamic azimuthing conditions 

within the range of 0° to 360°. An additional study evaluated the effects of azimuthing 

ii 



Abstract 

rate and propeller shaft speed on the performance parameters under consideration at 

dynamic azimuthing conditions. 

The study of pods with varied geometry showed that the geometric parameters have 

noticeable effect on propulsive characteristics of the propulsor. The analysis provided 

valuable information to the podded propulsor designers. In static azimuthing conditions 

in the range of+ 30° to -30°, the propeller and unit performance coefficients changed with 

the change of propeller loading and azimuthing angles. In the dynamic azimuthing study, 

the coefficients of the propeller and the pod unit showed a strong dependence on the 

propeller loading and azimuthing angle. Further, these results can be used as a base for 

validation of numerical modelling. 

The uncertainty analysis of the measurements provided strong evidence that the presented 

results revealed the true performance characteristics of the model scale podded 

propulsors under consideration. 
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Introduction 

1 Introduction 

1.1 Chapter Objectives 

This chapter provides the background and motivation of this doctoral research work. It 

describes the research problems that are addressed as well as the approaches followed are 

described. In addition, the scope of the current research is presented in the context of 

other relevant work. Finally, this chapter presents a layout of this thesis. 

1.2 Background and Motivation 

For the last eighteen years, the marine industry has witnessed a rapid growth of integral 

electric-driven pod propulsors in the cruise, ferry and other shipping sectors. The 

application of this propulsor has outpaced the understanding of the hydrodynamics. There 

are similarities between a conventional propeller-rudder propulsion system and an 

azimuthing podded propulsion system in terms of hydrodynamic behaviour. Roughly, an 

azimuthing-podded propulsor may be thought of as an integrated propulsion unit entirely 

replacing the actions of a separate propeller and rudder. However, the podded propulsor 

is not merely a replacement of a propeller and a rudder. In this system, the propeller 

accelerates flow over the strut body and the propeller induced flow stays parallel to the 

strut for all azimuthing angles, which is not true for a conventional rudder at steering 

(azimuthing) angles. Again, the propeller in this system receives asymmetric inflow at 

azimuthing positions and the resulting forces and moments are very different from a 
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conventional propeller-rudder system. The technology is relatively new, and as of 

present, there is little scientific information available in the public domain to assist in 

understanding the hydrodynamics. 

In a study on podded propulsor optimization, Goubault and Perree (2004) concluded that 

the pod motor parameters are not as influential on the hydrodynamic performance as the 

external geometric (hydrodynamic) parameters. This emphasizes the need for further 

research on pod-strut outer shape to better understand the effect of geometry on podded 

propulsors' hydrodynamic performance. Also, while there are claims of improved flow to 

the propeller, hence improved cavitation behaviour, this has only been shown in the 

puller or tractor pod (where the propeller is fitted on the forward end of the pod body), 

and not in the pusher pod (where the propeller is fitted on the aft end of the pod body, 

Karafiath and Lyons, 1998 and 1999). It is thus important that the study of geometry of 

the propulsors is done in pusher and puller configurations separately because of different 

flow conditions. Again, there has been no clear evidence that shows how the pod, strut 

and propeller combination can be optimized to improve hydrodynamic performance. In 

this doctoral research work, five geometric parameters of the pod, strut and propeller 

were studied to evaluate the relative importance of the parameters and combinations of 

the parameters on the thrust, torque and propulsive efficiency of podded propulsors. 

In 2005, during the 241
h International Towing Tank Conference, the Specialist Committee 

on Azimuthing Podded Propulsion provided a final report and recommendations for 
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procedures for podded propulsor tests and extrapolation, procedures for carrying out 

podded propulsor cavitation and open water experiments, and procedures to study the 

impact of off-design conditions on loads at steady and dynamic azimuthing conditions 

(Atlar et al. 2005). The report emphasized the requirement of performing extensive 

experimental and numerical investigations on podded propulsors' hydrodynamic 

performance in cavitating and non-cavitating open water conditions both in regular 

straight course and off-design loading conditions. This is primarily because of inadequate 

knowledge about the hydrodynamics of the propulsors at different operating conditions. 

One of the most attractive features of a podded propulsor is its ability to direct its thrust 

toward any direction in a 360° horizon. However, this feature also raised a number of 

concerns such as the nature of forces and moments on the unit that result from the 

hydrodynamic interactions between its components at different loading conditions. 

Bearing forces, transverse force, and steering moment are particularly important in 

conditions such as manoeuvring, steering at high speed, and sailing in a seaway. Failures 

on early pod units led to a study about the sources of failure of podded propulsors 

(Carlton, 2002). This showed that bearings and seals were the sources of over one-half of 

the failures, thus highlighting the importance of predicting bearing and other propulsion 

forces accurately. Moreover, the propeller forces and moments are by no means 

stationary and important contributions to the vibration excitation may arise from the 

propeller working in an irregular hull wake. A thorough investigation of the 

hydrodynamics of the fluctuation of these forces and moments while operating in straight 
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course and azimuthing conditions is required for a proper understanding of the issue. This 

doctoral study focuses on the experimental measurement of propeller shaft thrust and 

torque as well as the forces and moments on the entire pod unit of several model podded 

propulsors in static and dynamic azimuthing conditions. 

1.3 Scope of the Research 

The doctoral research work is focussed on podded propulsors. Primarily, the work 

addresses two research questions regarding the performance evaluation of podded 

propulsors as outlined below: 

First: How do the performance coefficients of a podded propulsor change with the 

change of a number of geometric parameters in pusher and puller configurations in open 

water? 

In answering the first question, the current work concentrates on the hydrodynamic 

performance evaluation for varied geometry of pusher- and puller-podded propulsors. 

Three geometric parameters of the pod namely, length, diameter and taper length, as well 

as propeller hub taper angle and lateral strut distance from the propeller plane were 

selected for the experimental study. Karafiath and Lyons ( 1998) offer the first report that 

presents a study on the effect of variation in pod geometry on the performance of podded 

propulsors (details in section 1.4.2.). This study offers some opportunity for comparison 
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with the current research work. To date, there are no other published results showing the 

effects of geometric parameters on podded propulsors' performance. 

The work used a Design of Experiment (DOE) technique, namely, fractional factorial 

design and analysis approach (Montgomery 2005) to produce a systematic series of 

physical pod models to study the five geometric parameters of pusher and puller 

propulsors. This study dealt with the effects of both individual geometric parameters and 

their interaction on the thrust and efficiency of both the propeller and the whole unit, and 

on the torque on propeller shaft. The outcome of this study was a quantification of the 

most significant geometric parameters of podded propulsors in defining thrust, torque and 

efficiency. The results also provide guidelines to designers to design podded propulsors 

with a geometric shape suitable for a specific configuration. 

Second: How do the performance coefficients of a podded propulsor change with 

different static and dynamic azimuthing conditions in open water? 

For the second question, the research work focuses on hydrodynamic properties of the 

podded propulsors in static and dynamic azimuthing conditions. There are a few recently 

published works that address the behaviour of podded propulsors at static and dynamic 

azimuthing angles. The following did the most relevant research: Szantyr (2001a and 

2001 b), Grygorowicz and Szantyr (2004), Woodward et al. (2004), Heinke (2004), 

Stettler (2004), and Woodward (2006) are the most relevant ones (details in section 
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1.4.3). These papers discuss different aspects of pushing and pulling podded propulsors 

operating at different static and dynamic azimuthing conditions. Atlar et al. 2005 

encouraged further experimental and numerical studies to evaluate the nature of the 

forces and moments that act on the propulsor at different static and dynamic azimuthing 

conditions for a better understanding of the hydrodynamics. 

To address the research question, two separate experimental studies were carried out. In 

the first study, two podded propulsors were tested to measure the force and moments on 

the propeller and the unit at different static azimuthing angles within the range from -30° 

to 30°. The tests were performed both with puller and pusher configurations. The results 

facilitated an evaluation of the variations of the pod performance coefficients at different 

loading conditions and configurations at static azimuthing positions. In the second study, 

another dynamometer system was used to measure forces and moments of a pod unit at 

different dynamic azimuthing conditions in the range of oo to 360° azimuthing positions. 

The results helped to evaluate the variation of the forces and moments on the pod unit as 

the propulsor azimuthed dynamically, providing some fundamental information with 

respect to manoeuvring loads from the pod as well as providing a base for the validation 

of numerical modeling. An additional study was carried out to evaluate the effects of 

azimuthing rate and propeller shaft rps on the performance coefficients at dynamic 

azimuthing conditions. 
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1.4 Literature Review on Pods 

Podded propulsors are considered as an alternative propulsion system for most 

commercial vessels. Among the claimed benefits are better manoeuvrability, enhanced 

propeller location, flexibility in the layout of the ship, freedom in hull-form design, 

potentially reduced vibrations and noise, novel propeller arrangements such as contra

rotating propellers, and improved cavitation properties because of more uniform inflow 

(Pakaste et al. 1999). A further discussion on the advantages and disadvantages of 

podded propulsion technology is provided in Islam (2004). Section 1.4.1 provides a 

general literature review on the experimental work on pod technology. Section 1.4.2 and 

1.4.3 provide a comprehensive literature review on the previous experimental work, the 

scope of which is limited to work of direct relevance to this doctoral work. 

1.4.1 Study on Pod Technology 

Podded propulsors were first used on harbour tugs and then introduced to the cruise and 

shipping industries in 1990 by ABB and Kvaemer Masa (Anon, 2000). Arctic tankers 

were retrofitted with ABE's Azipod® to prove the concept, and their pods have 

subsequently been used to power a range of vessels including cruise ships, tankers and 

icebreakers (Anon, 2001). Since the introduction of the ABB Azipod®, other companies 

have introduced similar systems. Podded propulsion systems have been installed on 

tankers, military vessels, oceanographic vessels and seismic survey vessels, to name a 

few. The commercial pods now being produced are the ABE's Azipod®, the Mermaid 
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from Rolls-Royce, the SSP from Schottel and Siemens, the Dolphin from STN Atlas, and 

the French DCN pod. 

An early but detailed investigation into some hydrodynamic issues such as pod-strut total 

drag and full-scale power prediction of vessels fitted with podded propulsors (not 

azimuthing) was done by Rains and Vanlandingham (1981). Halstensen and Leivdal 

(1990) discussed various hydrodynamic and mechanical aspects of a tractor type podded 

propulsion system, SpeedZ. Several model tests and full-scale measurements of this high

speed craft propulsion system were discussed and the system was recommended as a 

promising alternative for speeds up to 50 knots. Chen and Tseng (1995) presented a 

design procedure of a contra-rotating propeller with a tractor pod for a high-speed patrol 

boat and measurements of power and cavitation behaviour. Laukia (1996) discussed 

various hydrodynamic issues related to the design and use of a commercial azimuthing 

podded drive Azipod®. Niini (1997) performed a similar study and discussed various 

hydrodynamic aspects of Azipod®, especially from efficiency and manoeuvrability points 

of view as applied to large cruise ships. Kurimo ( 1998) presented sea trial results on 

general hydrodynamic issues such as speed trials, cavitation observation, pressure pulse 

measurement and manoeuvring tests. Raynor (1998) discussed the prospects, design 

issues and some manoeuvring characteristics of podded propulsion in the offshore market 

especially for monohull and semi-submersibles. Kanerva (1999) discussed various 

aspects of Ro-Ro passenger ferries and the prospects of podded propulsion as the primary 

propulsion unit. Bose et al. (1999) briefly discussed general power extrapolation methods 
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and test procedures for podded propulsors. Karafiath and Lyons (1999) presented detailed 

measurements and analyses of tests conducted with a view to have better understanding 

on the hydrodynamic characteristics of podded propeller concepts as applied to fast naval 

vessels. 

Backlund and Kuuskoski (2000) discussed various design features and benefits of using a 

contra-rotating propeller with a podded drive, demonstrated with a case study. Lepeix 

(2001) discussed different hydrodynamic issues such as power/speed curve, ship wake 

and pressure fluctuation and manoeuvring performance of large cruise ships with podded 

propulsors and discussed the new trends in hull lines of large podded driven cruise ships. 

In the paper by Terwisga et al. (2001), the authors discussed some critical hydrodynamic 

issues and design consequences of several steerable thrusters and podded propulsors and 

put them in an historic perspective. 

Mewis (2001) described model test procedures and presented the results obtained on 

podded propulsors giving the effects of the presence of pods and propeller gap pressure 

on the propulsive efficiency of the pod unit. Tozer and Penfold (2002) discussed various 

design features of an ultra-large container ship and applicability of podded propulsors as 

the main propulsion unit for those vessels. Kim and Choi (2002) investigated powering 

performance of three different propulsion systems for ultra-large container vessels 

through various model tests and concluded that the contra-rotating azimuthing podded 

propulsor is a serious alternative. Toxopeus and Loeff (2002) presented various aspects 

10 



Introduction 

of application of pods from a manoeuvring viewpoint, comparing the manoeuvrability 

between a ship designed with conventional propulsion and pod propulsion and 

highlighted the benefits and points of attention of using pod propulsion. Tragardh et al. 

(2004) presented the results of model tests and sea trials done on Double Acting Tankers 

(DAT) showing good propulsive, manoeuvring and cavitation performance. Sasaki et al. 

(2004) presented the scale effects on open sea performance and the ice breaking capacity 

of the double acting tankers, Tempera and Mastera based on extensive model tests and 

full-scale trials. 

Several research projects on podded propulsors have been done on various aspects of the 

propulsors. OPTIPOD, PODs-in-service and FASTPOD are some of the projects carried 

out under the EU framework program (FP5). These projects basically looked into various 

design and operation aspects of the propulsors (Atlar et al. 2005). 

A five-year research programme, entitled "Systematic Investigation of Azimuthing 

Podded Propeller Performance", was started in 2002 in Canada with the collaboration of 

Memorial University of Newfoundland (MUN), the Institute for Ocean Technology 

(lOT) of National Research Council (NRC), Oceanic Consulting Corporation Inc., and 

Thordon Bearings Inc. This research program aimed to quantify the effects of podded 

propulsor configuration on its performance; develop computational methods for 

performance prediction; develop an extrapolation method for power prediction; quantify 

the blade-loading effects in open water and in ice at off-design conditions and develop 
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new instrumentation for performance evaluation. Amongst the hydrodynamic issues that 

have been identified and addressed are questions regarding the effects of hub taper angle 

(Islam 2004, Islam et al. 2004, Islam et al. 2005, Islam et al. 2006a, Taylor 2006, Taylor 

et al. 2005), pod-strut configuration (Islam 2004, Islam et al. 2006c, and Taylor 2006), 

pod-strut interactions (He et al. 2005a, He et al. 2005b, He 2006), gap pressure 

(MacNeill et al. 2004), pod-strut geometry (Molly et al. 2005, Islam et al. 2006b and 

Islam et al. 2008a), pod gap effect (Islam et al. 2007a), static azimuthing conditions 

(Islam et al. 2008b) and dynamic azimuthing conditions (Islam et al. 2007b) on podded 

propulsor performance. A technical overview of the numerical and experimental 

investigations done to study various hydrodynamic aspects of podded propulsors in open 

water conditions are presented in Islam et al. 2008c and 2008d. 

1.4.2 Study on Pod Geometry 

As mentioned in section 1.3, Karafiath and Lyons (1998) offered the first report that 

presents a study on the effect of variation in pod geometry. Pod length and strut position 

were varied using four pods to study their effects on pod drag and pod-propeller 

interactions. 

The study by Karafiath and Lyons (1998) involved a number of different experiments 

performed over the past 30 years. Each set of tests was limited in its scope. In the first 

set of pods, four non-azimuthing pods were tested in pusher and puller configurations and 

the pod drag and pod-propeller interactions were studied. The pods varied in their body 
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length and strut position. The first two pods, 1 and 2, were pusher pods with a centre strut 

and different pod body lengths. The remaining two, 3 and 4, were the same length and 

had significantly shorter pod lengths; about half the length of the smaller of 1 and 2, with 

a forward strut. Pods 3 and 4 were tested in pushing and tractor configurations, 

respectively. The propeller diameter for pods 3 and 4 was 406.4 mm. The distance from 

the top of the pod to the groundboard was not kept constant. The drag of the pod and 

strut was measured by a block gauge system mounted at the top of the strut. The thrust of 

the pod unit, Tunit. was also measured at the top of the strut. The propulsion tests on these 

pods were conducted in a manner similar to the conduct of propeller open water tests. 

Table 1.1 shows the summary of propeller to pod-strut interaction coefficients as 

measured for the configurations with 25% propeller clearance and at an advance 

coefficient of 1=1.20. At this advance coefficient, both the pusher and puller propellers 

were operating at or very near the maximum efficiency. The results (see Table 1.1 ) show 

that the largest pod, 1, had the largest wake (wr) and thrust deduction fraction (t) and the 

smallest thrust ratio (thrust of the unit compared to the thrust of the propeller, TunitiTProp). 

Here the wake fraction and thrust deduction fraction were calculated using the traditional 

naval architectural approach (self propulsion tests, Lewis 1990). The smallest pusher 

pod, pod 3, had the highest thrust ratio and the highest efficiency. The propeller wash on 

the strut increased the drag of the tractor pod 4. This is shown by an increased thrust 

deduction fraction and the decreased thrust ratio of pod 4 compared to the equivalent 

pusher pod, pod 3. The inflow to the propeller for pod 4 was very uniform. 
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Table 11 I t f ffi . ts t th R dd P d (K fi th & L . : n erac ton coe Icten or e 0 IY 0 s ara ta ,yons, 1998) 
Pod Type 1-wr 1-t T Unit/T Prop 1-tll-wr 

Roddy l.pusher 0.932 0.921 0.78 0.988 

Roddy 2 pusher 0.957 0.928 0.82 0.969 

Roddy 3 pusher 0.973 0.975 0.89 1.002 

Roddy 4 tractor 0.988 0.939 0.85 0.950 

The test series looked at two geometric parameters and the tests were done in a fashion 

that the effects of individual parameters were assessed. It is required to study how other 

prominent geometric parameters affect the performance coefficients. It is also essential to 

study the effects of individual parameters as well as their interaction. It was thought that a 

more comprehensive study on the geometry of the propulsor that evaluates the individual, 

as well as interaction effect of the parameters, would help in enhancing the knowledge on 

the propulsive effect of the geometry of the propulsor and hence this led to the work done 

here. 

1.4.3 Study of Pod in Azimuthing Conditions 

There is very little information in the literature regarding hydrodynamic performance of 

podded propulsors in static and dynamic azimuthing conditions. Prior to 2001, there have 

been only general literature notes regarding the effectiveness of podded propulsion in 

terms of manoeuvring, and slow speed manoeuvrability with low-power thrusters. Van 

Terwisga et al. (2001 ) provided a general overview of the history of mechanical and 

electrical steerable propulsion units, and address general hydrodynamic issues associated 

with their design and use. Toxopeus and Loeff (2002) discussed recent applications of 
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podded propulsion from a manoeuvring perspective, comparing manoeuvrability between 

specific ship designs with conventional propulsion and podded propulsion, and 

highlighting the general benefits and points of attention. Additional comparative 

manoeuvring testing has been conducted under the auspices of the OPTIPOD and 

FASTPOD research programs funded by the European Union, with some results 

published in the first international conference on technological advances in podded 

propulsion held in 2004. 

Szantyr (2001 a and 2001 b) published one of the first sets of systematic experimental data 

on podded propulsors as the main propulsion unit with static azimuthing angles. This test 

series was performed to provide data to validate a numerical hydrodynamic analysis 

program. The tests measured the axial and transverse loads and used traditional non

dimensional coefficients to analyze the data. Szantyr (2001a and 2001b) tested a twin

screw pod with propellers fitted at both ends and puller and pusher type pods in a 

cavitation tunnel. The pods were tested at straight courses and at ±15° static azimuthing 

angles. It was concluded that the azimuth angle had a pronounced effect upon the axial 

hydrodynamic force on the twin-screw podded unit and a similar, though smaller effect, 

upon the system with a single puller-type propulsor. Additional investigation revealed 

that the direction of propeller rotation influenced the axial and transversal hydrodynamic 

force with the azimuth angle; the force increase was greater with turns coinciding with 

the propeller rotation direction (the pod azimuths in clockwise direction i.e. starboard 

looking from behind, with a right hand screw propeller). Hydrodynamic characteristics of 
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the podded drive were found to be asymmetric with respect to the static azimuth angle. 

The study was limited to ±15° angles and the effect of an azimuthing angle on propeller 

torque was not studied. 

Grygorowicz and Szantyr (2004) presented open-water measurements of podded 

propulsors both in puller and pusher configurations in a circulating water channel. A 

complete pod was mounted on a six-component dynamometer and measurements were 

made of the resulting forces and moments in a range of advance coefficients combined 

with a range of azimuthing angles ±30° for puller- and pusher-type podded propulsors. 

The published results show that with both puller and pusher units, axial and transverse 

forces and vertical moments were complex functions of the azimuth angle, propeller 

loading, and of the external flow velocity, but in a completely different manner (different 

functional relationship between the forces and moments with the azimuth angle). This 

emphasizes that the puller and pusher propulsors should be studied separately. The 

complete range of loading condition was not presented in the study. 

Heinke (2004) reported on comprehensive and systematic model test results, with 4- and 

5-bladed propellers fitted to a generic pod housing in pull- and push-mode. In the report, 

Heinke presented systematic data for forces and moments on the propeller and pod body 

at different static azimuthing angles. The study also included the effect of cavitation at 

conditions for a blocked propeller (no propeller rotation), low number of revolutions 

(simulating crash stop) and at the design speed and revolutions with dynamically turning 
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pod. Both push and pull modes of the propulsors were tested. The forces and moments of 

the propeller and podded drive showed a strong dependency on the propeller loading and 

azimuthing angle. The results showed that the open water characteristics were mostly 

irregular for the astern thrust conditions in the azimuthing angle range 90° to 270° due to 

flow separation at the propeller blades and pod housing. It was also claimed that the 

maximum forces and moments observed in the dynamic azimuthing conditions were 

slightly higher than those obtained in tests at fixed azimuthing angles. The increase of the 

azimuthing rate led to a small increase in the maximum forces and moments. 

Nevertheless, the obtained results demonstrated that the pseudo-steady approach is quite 

acceptable for predicting forces and moments on propellers and podded drive systems. 

Stettler (2004) in his doctoral work investigated steady and unsteady dynamic 

manoeuvring forces associated with an azimuthing podded propulsor, and also provided 

supporting theoretical insight toward understanding their mechanisms and prediction. The 

work included quasi-steady vectored manoeuvring forces, of importance to all 

manoeuvring vehicles or ships, as well as unsteady or transient manoeuvring forces, 

which have more significance to the manoeuvrability of smaller vehicles, particularly for 

precision control applications. Stettler also published part of his doctoral work in the first 

international conference on technological advances in podded propulsion conference 

(Stettler et al., 2004 ). 

Stettler's (2004) efforts were focused in four main areas. Firstly, a number of relevant 

dynamic models for the manoeuvring of a surface vehicle with an azimuthing propulsor 
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were developed. Secondly, an extensive test program measured and characterized the 

nature of quasi-steady vectored manoeuvring forces associated with a podded propulsor 

in azimuth to ±180° for the entire range of forward propeller speeds, as well as unsteady 

or transient manoeuvring forces due to rapid changes in azimuth angle or propeller rate. 

Stettler's test program was aimed at quantifying the steady and unsteady parameters 

associated with the developed dynamic models. Thirdly, two flow visualization 

techniques were utilized to visualize, document, and correlate the helical wake 

characteristics, velocities and forces for both quasi-steady and unsteady propulsor states. 

A new fluorescent paint flow visualization technique was developed and applied for 

small, moderate and large propulsor azimuth angles, and a laser particle image 

velocimetry (PIV) technique was adapted for small and moderate propulsor azimuth 

angles. Finally, a set of comprehensive physics-based models were developed to foster 

the understanding of the mechanisms associated with the steady and unsteady force 

dynamics. The quasi-steady models were based upon a combination of momentum-based, 

blade-element, and vortex wake propeller theories, as applied to an azimuthing podded 

propulsor. The unsteady force models were based upon unsteady wake or "dynamic 

inflow" methods. Additionally, an interesting phenomenon associated with the formation 

of a vortex ring during rapid propeller rate increase was presented and discussed. 

In the study by Stettler, the steady and unsteady test results, flow visualizations, and 

theoretical models, were shown to be consistent in terms of the magnitudes and character 

of the azimuthing manoeuvring forces. Limited comparisons of quasi-steady propulsor 

18 



Introduction 

forces at small, moderate and large azimuth angles were also made with forces predicted 

by a modified combined blade-element-momentum method, as well as the unsteady 

vortex-lattice propeller code MPUF-3A, with and without modified inflows to account 

for propulsor pod wake. The results illustrated inherent complexities related to use of 

existing computational fluid dynamics tools with azimuthing-podded propulsors. The 

study was carried out only for a pod unit in pusher configuration and a very basic pod

strut shape was used. 

Woodward (2006) identified a few new methods for modelling the hydrodynamic 

reaction for both the ship hull and pod drive. A dedicated numerical simulation study was 

conducted exploring systematic variation of applied helm angles and comparison of time

and frequency-domain response. The study reached the definitive conclusion that the 

IMO manoeuvring criteria provide equivalent information about the manoeuvring 

response of pod-driven ships as for conventionally propelled ships; and can thus be 

applied directly. Woodward's study identified that hull-forms suited to the application of 

pods can have poor course stability characteristics. It was also identified that pod drives 

experience significant spike loads that are in origin related to dynamic manoeuvring. The 

loads did not impact directly on the manoeuvring response assessment; however they had 

significant implications for the structural design and may also impact on the roll stability 

of the vessel. 
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Reichel (2007) presented the preliminary part of comprehensive maneuvering open

water tests of a gas carrier model primarily focusing on open water experiments with an 

azimuthing podded propulsor. The test program was carried out in the cavitation tunnel 

and the large towing tank of Ship Hydromechanics Division, Ship Design and Research 

Centre, Gdansk. Steering forces were measured in the range of advance coefficient from 

0.0 to 0.8 combined with the range of deflection angles from -45° up to +45°. 

Measurements on the pod without propeller were also performed. Reichel concluded that 

the asymmetries in values of the force coefficients for positive and negative deflection 

angles are due to the influence of the direction of propeller rotation. It was also concluded 

that with positive azimuthing angle (counter clockwise rotation of the unit looking from 

top) a negative normal force is produced and vice versa, which results in a destabilizing 

moment tending to increase the turn rate. Reichel (2007) also found that for azimuthing 

angles larger than 15° the thrust and normal force coefficients are from 10% to 30% 

smaller than for the corresponding positive azimuthing angles, which is caused due to the 

interaction between right - handed propeller and podded drive. The pod was only tested 

in pusher configuration. The detailed account of the forces and moments of the pod unit 

in three coordinate directions are not presented in the paper. 

Wang (2007) performed a study to understand propeller-ice interaction phenomena and 

developed a numerical method to predict the interaction ice loads at different azimuthing 

conditions. A model podded propulsor was tested in an ice tank with scaled model ice. 

Three six-component dynamometers and six single-axis dynamometers measured the ice 
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loads acting on various azimuthing positions of the experimental model. In order to 

achieve the desired numerical simulations, both a panel method and empirical formulae 

were used. Numerical results were compared and validated with the experimental results. 

The numerical model was valid for the first quadrant operating conditions with various 

azimuthing (yaw) angles. 

1.5 Layout of thesis 

This thesis documents the work done to characterize and understand the effects of five 

geometric parameters of podded propulsors on the propulsive performance of puller and 

pusher configurations. Also, this thesis reports a detailed quantitative study on the nature 

of forces and moments of podded propulsors at various static and dynamic azimuthing 

conditions. 

The overall goal of this research work is to investigate two aspects of a podded 

propulsor's hydrodynamics: geometric variations and azimuthing conditions. The first 

step in the research is to design, modify, model and construct an instrumentation system 

to test certain pod unit models at specified loading conditions. Chapter 2 provides a basic 

overview of the design and construction of two pod instrumentation systems, which have 

been utilized for this research. The chapter also includes details of the propulsor and 

propeller geometries, and a brief discussion of the experimental set-up and test matrices 

and the data reduction equations used to present the results. In addition, the chapter 

provides a brief discussion on the Reynolds Number effect in the measurement. 
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Chapter 3 presents details of uncertainty analyses of the two dynamometer systems used 

to obtain the experimental data for the podded propulsor's study on pod geometry, and at 

static and dynamic azimuthing conditions. A brief overview of the analysis methodology 

has been provided, with a particular focus on specific elements that are unique to the 

experiments. Also, the chapter presents a general discussion on the uncertainty data, 

followed by a few recommendations of possible ways to reduce the overall uncertainty 

levels. 

Chapter 4 deals with the experimental results and the subsequent analysis to evaluate the 

most significant geometric parameters in the study of podded propulsor's performance 

with varied geometry. The experimental results in the pod geometry study at different 

loading conditions and two pod configurations are presented first. An interpretation of the 

analyzed data using a design of experiment technique is then described for each of the 

five geometric parameters. A general discussion on the significant parameters and 

interaction of parameters in the two configurations is presented at the end of the chapter. 

Chapter 5 deals with the results and analyses of the experimental study into the variations 

of propulsive characteristics of puller and pusher podded propulsors in static azimuthing 

open water conditions. The variations in forces and moments of the pod unit tested with 

change of azimuthing angle and advance speed are presented in non-dimensional forms. 
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A general discussion of the companson of the performance coefficients of the two 

configurations is also presented. 

Chapter 6 presents results and analyses of the experimental study into the effects of 

dynamic azimuthing conditions on the propulsive characteristics of a puller-podded unit 

in open water conditions. A comparative study of static and dynamic azimuthing 

conditions is presented first followed by studies into the effect of azimuthing rate and 

shaft rps in dynamic azimuthing conditions. 

Chapter 7 summarizes the objectives of this thesis. A summary of the experimental 

results with the trends observed is given. Specific conclusions based on the results and 

the subsequent analysis on the podded propulsor's study with varied geometry and 

azimuthing conditions are presented. A few recommendations for future research in this 

area are also provided. 

Next, a list of references is provided that covers the citations in the thesis. Appendices A 

and B present the relevant supplementary data tables, and the detailed uncertainty data, 

respectively. Appendix C provides a brief discussion of the use of Fractional Factorial 

Design (FFD). 
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2 Methods, Models and Instruments 

2.1 Chapter Objectives 

The objective of this chapter is to describe in detail the methods and equipment utilized 

to conduct experiments in this investigation. The chapter presents the details of the 

propeller geometry as well as the pod and strut particulars. In addition, it presents a brief 

description of the test facilities used in conducting the experiments. Lastly, a brief 

account of the Reynolds Number effect on the measurements is presented. 

2.2 Methods 

The experimental study ofthe research work is divided into two parts. 

I. The first part focuses on the hydrodynamic performance of podded propulsors with 

varied geometry and configurations. In this part, a systematic investigation was done 

to test the effect of geometric parameters of pod-strut-propeller combinations on the 

propulsive performance of a series of pusher and puller podded propulsors. Five 

geometric parameters were selected and a fractional factorial design of experiment 

technique (see section 2.2.1) was used to combine these parameters to obtain a series 

of 16 pods. 

2. The second part focuses on the hydrodynamic performance of podded propulsors at 

static and dynamic azimuthing conditions. This part has two sections. 
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2.1 . In the first section, two pod models were tested at different static azimuth angles 

ranging from -30° to 30° at increments of 5° and 1 oo both in pusher and puller 

configurations (using a custom-designed pod dynamometer system, see section 

2.4.1). 

2.2. In the second section, a pod model was tested at dynamic azimuthing angles 

ranging from 0° to 360° to measure the propeller and unit forces and moments of 

the propulsors at different azimuthing rate and shaft rps (using a second custom

designed pod dynamometer system, see section 2.4.2). 

2.2.1 DOE Methodology to Study Pod Geometry 

A brief introduction to the design of experiment technique can be found in Montgomery 

(2005), Lye (2002), Anderson and Whitcomb (1996), Hawkins and Lye (2006), Myers 

and Montgomery (2002) and Ryan (2007). The method has two main aspects: design and 

statistical analysis. This is a very structured approach to experimentation, especially 

involving large number of variables. The following steps were followed to study the 

performance of podded propulsors using the method. 

1. Statement of the problem: Consider five geometric particulars of the podded 

propulsors. Evaluate how the geometric parameters and interaction of the parameters 

affect the performance coefficients of the propulsors in open water conditions and in 

puller and pusher configurations. 
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2. Choice of factors, levels, ranges and response variables: Using existing 

commercial pods as a reference, the parameters were selected to study their effects on 

the performance. The selection of the parameters allowed the variations in the 

primary dimensions of the propulsor primarily focusing on pod-strut body. The pod 

length, diameter and taper length, as well as strut distance from the propeller plane, 

and propeller hub taper angle were chosen as defining parameters of the propulsor 

(Figure 2.1 ). The response variables under consideration were thrust and efficiency 

of both the propeller and the entire unit and the torque in the propeller shaft. 

l'od 
Diameter 

Strut 
Height 

Strut Chord Length , ... 

J>od Length 

Strut Distance 

\ l'ropeller 
_:.... l>iumeter 

Hub Tape•· Angle 

t 

Figure 2.1: Geometric parameters used to define pod-strut geometry. 

3. Choice of experimental design: Molloy (2003) first initiated a detailed study of the 

effects of geometric parameters on propulsive performance of podded propulsors 

using a factorial design of experiment (DOE) technique. A Fractional Factorial 
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Design (FFD) was used to design the experiments. Appendix C provides a brief 

discussion on the use of DOE. As mentioned in the appendix and in Montgomery 

(2005), the half fractional factorial design for the 5 factors resulted in 16 pods with 

the combination of the factors with the dimensions shown in Table 2.1. The high, low 

and the average values of the parameters were obtained from the existing commercial 

pod dimensions. 

Table 2.1: Series and avera~e desi~n of podded propulsors (from Molloy, 2003). 

External Dimensions of Model Pod Average Values Low Values High Values 

Propeller Diameter, DProp in mm 270 270 270 

Pod Diameter, DPod in mm 139 128 166 

Pod Length, LPod in mm 430 430 524 

Strut Distance, Soist in mm 100 75 133 

Aft Taper Length, LTaper in mm 110 69 150 

Hub Angle, H Angle in degree 15° & 20° 15° 20° 

4. Conduct the experiments: Each of the pod models was tested individually in puller 

and pusher configurations, separately. Each pod was tested at 17 different advance 

coefficients as shown in Table 2.3 . The tests were done at the fixed propeller shaft rps 

of 11 at various carriage speeds. The details of the experimental technique and the 

apparatus are provided in section 2.2.2 and 2.4.1, respectively. It is a standard 

practice that the series tests that use factorial design are done in a uniform manner 

and under similar test conditions; mainly the research team, temperature, and 

humidity should be same. This uniformity ensures that the experimental error (bias 

error) is minimized throughout the whole process. In most cases, this means running 

all of the tests in one session, if possible. However, with the size of podded 
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propulsion model tests and test facility limitations, this was not possible. A method 

of separating the test series into blocks of runs performed in a prescribed order, which 

balances the tests so that the experimental error is reduced, is discussed in 

Montgomery (2005). This method is called "confounding" and it essentially reduces 

the number of runs per day and gives provisions to repeat runs. The commercial 

software, Design Expert® (2005) can automate fractional factorial experimental 

design and analysis process and was used to design and analyze these experiments 

and the results. 

5. Statistical analysis of the data: Statistical analysis of the experimental results is a 

major step in the design of experiment methods. The Analysis of Variance Approach 

(ANOV A, see Montgomery 2005) incorporating 95% confidence interval was used to 

examine the geometric parameters of the series that have the most significant impact 

on the performance of the podded propulsors. The significance of individual factors is 

ranked in an ascending order based on the estimate of their effects on the overall 

result of the experiments. A separate analysis was completed for each advance 

coefficient. 

6. Conclusion and recommendations: The analysis of the data resulted in the 

identification of the most significant factors and interactions of factors that affect the 

propulsive performance of the podded propulsors both in puller and pusher 

configurations. 
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2.2.2 Physical Model Tests 

The research work was primarily involved towing tank physical model tests in open 

water conditions. The tests of the pod series consisting of 16 pods, the static azimuthing 

conditions consisting of two pods and the dynamic azimuthing conditions consisting of 

one pod were performed in accordance with the ITTC recommended procedure (ITTC 

Recommended Procedure, 2002) using the test configurations shown in Figure 2.2. A 

custom-designed dynamometer system called NSERC dynamometer system (MacNeill et 

al. 2004) was used to test the pod units in the geometric series and static azimuthing 

conditions. Another custom-designed dynamometer system called lOT dynamometer 

system was used to test the pod units in dynamic azimuthing conditions. A brief 

description of the two apparatus is provided in section 2.4.1 and 2.4.2, respectively. 

Motor 

Balance for Unit 
forces and moments \ I \ 

Propeller s;t l'- II ( II). 
- Propeller gap 

weage 

Strut body 
~ 

Propeller 

~ 
-......: '-.....: 

)""\ 

'-.. ,.....--: v 
Pod Body """'---

Figure 2.2: Podded propulsors in open water test set-up (Atlar eta/. 2005). 
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For the pod series tests, a dynamometer was used to measure the following items: 

./ Propeller thrust (TProp) 

./ Propeller torque (Q) 

./ Unit axial force (Fx) and moment (Mx) 

./ Unit transverse force (Fv) and moment (Mv) 

./ Unit vertical force (Fz) and moment (Mz) 

Here the unit thrust was measured in these experiments as it is of particular relevance for 

powering predictions for podded propulsors. The unit thrust means the net available 

thrust for propelling the ship and includes not only the thrust of the propeller, but also the 

drag and other hydrodynamic forces acting on the pod-strut body. Also the water 

temperature, carriage speed, VA and the propeller shaft rps, n, were measured. 

Table 2.2 shows the test matrix for the geometric pod series tests. The test plan is for one 

pod configuration. All of the 16 pods in the pod series were tested at the same test points. 

This ensured a systematic test of the pod series and also facilitated the analysis process. 

T bl 2 2 T t t . fi t f t . a e .. es rna nx or sys ema ac geome rae po d t t senes es s. 
Configuration Run Number Shaft rps Carriage speed (rnls) 

0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 
Pusher Mode 17 11 1.4, 1.6, 1.8, 2.0,2.2, 2.4, 2.6, 

2.8, 3.0, 3.2 (randomized) 
0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 

Puller Mode 17 11 1.4, 1.6, 1.8, 2.0,2.2, 2.4, 2.6, 
2.8, 3.0, 3.2 (randomized) 
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The open water static azimuthing angle tests were performed using the NSERC pod 

dynamometer system. The system (section 2.4.1) was modified to adapt it to different 

static azimuthing positions and was used to measure similar items, as done in case of the 

pod series tests. 

Table 2.3 shows the test matrix for the static azimuthing tests performed using the two 

average pods. Both of the pods were tested at the same test points. This ensured a 

systematic test of the pods and facilitated the analysis process. 

Table 2 3: Test matnx for systematic statac azamuthing podded propu sors' tests. 

Mode 

s... Q) 
~"'0 
- 0 
~::E 

Pod Name 
Azimuthing 

Angle 
Shaft rps 

11 

11 

Carriage speed (m/s) 

0.0, 0.2, 0.4, 0.6, 0.8, 
1.0, 1.2, 1.4, 1.6, 1.8, 
2.0,2.2, 2.4, 2.6, 2.8, 
3.0, 3.2 (randomized) 

0.0, 0.2, 0.4, 0.6, 0.8, 
1.0, 1.2, 1.4, 1.6, 1.8, 
2.0,2.2, 2.4, 2.6, 2.8, 
3.0, 3.2 (randomized) 

The podded propulsor study in dynamic azimuthing conditions was performed using a 

custom-designed dynamometer and pod system designed and fabricated at National 

Research Council's Institute for Ocean Technology (lOT). The propeller and unit 

performance were measured and analyzed at dynamically varying azimuthing angles 

under different operating conditions. Firstly, a dynamically-azimuthing podded propulsor 

was tested in puller configurations in open water conditions with 0° to 360° azimuthing. 
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Secondly, the podded propulsor was tested at different static azimuthing angles for 

comparison purposes with the dynamic test results. The following measurements were 

taken: 

../ Propeller thrust (TProp) 

../ Propeller torque (Q) 

../ Unit axial force (Fx) and moment (Mx) 

../ Unit transverse force (Fv) and moment (Mv) 

../ Unit vertical force (Fz) and moment (Mz) 

In dynamic azimuthing tests, the pod unit with the propeller was rotated about the vertical 

axis passing through the centre of the strut in a continuous motion as the whole test unit 

moved forward with a specific advance speed, and the propeller rotated at a certain shaft 

rps. Measurements were taken for the forces and moments acting on the propeller and the 

whole pod unit at different advance coefficients, and at different dynamic azimuthing 

rates. For the dynamic azimuthing study, the tests were done for dynamic azimuthing 

angles ranging from oo to 360° at different azimuthing (steering) rates (2°, 5°, 10°, 15° 

and 20° per second) in puller configurations. Measurements were taken at different 

advance coefficients ranging from J=O.O to J= 1.20 at propeller shaft rps of 15. Additional 

tests were conducted at propeller shaft rps of 8 at the mentioned azimuthing rate to 

investigate the effects of shaft rps on the performance coefficients at dynamic azimuthing 

conditions. The same pod unit was used to do the tests at different static azimuthing 
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angles for comparison purposes with the dynamic test results. Table 2.4 shows the test 

matrix for the experiments in dynamic azimuthing conditions. 

T bl 2 4 T a e .. est matnx or S)'Stemahc lynam•c az1mu . f, . d th ' 102 po dd d e propu sors ' t t es s. 

Mode Azimuth angle (degrees) 
Shaft 

Carriage speed (m/s) 
rps, n 

Static 
0, ±5,±10,±15,±20,±30, 0.0, 0.3, 0.45, 0.6, 0.75, 1.05, 

Azimuth ±45, ±60, ±90,±120,±150, 15 1.2, 1.8, 2.1 , 2.4, 2.7, 3.0, 
±160,±170, ±175, 180 3.3, 3.6 (randomized) 

Dynamic 
0 to 360 at different turning 

0, 8 and 
0.0, 0.3, 0.45, 0.6, 0.75, 1.05, 

rates (2, 5. 10, 15, and 20 1.2, 1.8, 2.1, 2.4, 2.7, 3.0, 
Azimuth 

per seconds) 
15 3.3, 3.6 (randomized) 

2.3 Propeller and Pod Models 

2.3.1 Propeller Geometry 

Four model propellers were used in the pod series and static azimuthing studies. Two of 

the propellers were used in the test for the puller configuration and the other two fo r the 

pusher configuration. The propellers had the same blade sections with different hub taper 

angles. The basic geometric particulars of the propellers are given in Table 2.5 . Liu 

(2006) gives the details of the geometry of the model propellers. The four propellers had 

hub taper angles of 15° (right handed pusher configuration, Push+ 15°), 20° (right handed 

pusher configuration, Push+ 20°), -15° (left handed puller configuration, Pull-15°), -20° 

(right-handed puller configuration, Pull-20°). Following ITTC definition, a left-handed 

propeller is a propeller, which rotates in the counter clockwise direction when viewed 
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from astern. A right-handed propeller is a propeller which rotates in the clockwise 

direction when viewed from astern. Figure 2.3 shows a rendered view and a photograph 

of the model propellers. 

Table 2.5: Basic 
Diameter 
Number of blade 
Design advance coefficient, J 
Hub-Diameter ratio, (HID) 
Shaft rps, n 
Section thickness form 
Section meanline 
Blade planform shape 

Expanded area ratio, EAR 
Pitch distribution 
Skew distribution 
Rake distribution 

ro ellers. 

0.26 (based on regular straight hub) 
15 
NACA 66 (DTMB Modified) 
NACA = 0.8 
Blade planform shape was based on David 
Taylor Model Basin model P4119 
0.60 
Constant, PID=l.O 
Zero 
Zero 

Figure 2.3: Four model propellers (Left hand side - rendered numerical model; 
Right hand side- physical model): a, b, c, dare the propellers with hub taper angles 

of+ 15° (push), +20° (push), -15° (pull), -20° (pull), respectively. 
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2.3.2 Pod Geometry 

As mentioned in Section 2.2.1, 16 pods were manufactured and tested, which were 

combinations of the five geometric parameters. The combinations that were used in the 

series tests are listed in Table 2.6 and were selected to include one combination with all 

dimensions low and one with all dimensions high (Table 2.1). As shown in Table 2.6, 

propeller diameter was used to obtain non-dimensional forms of the geometrical 

parameters. The pod HiLo _ 1 has low values of all the parameters normalized by propeller 

diameter and the pod HiLo_ 16 has high values of all the parameters normalized by 

propeller diameter. This decision was made to allow further testing to compare two pods 

directly and compare these pods with a pod having intermediate dimensions (Molloy et 

a/. 2005). The 16 model pods that were tested in the geometric series tests are shown in 

Figure 2.4. 
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T bl 2 6 C b. f a e .. om ma aons o fd. amensaons o fth 16 d . th e po s m e seraes. 
Factor A Factor B Factor C Factor D Factor E 

Pod Name 
Randomized Drror/Drod Drror/Lrod Drror/Soist Drror/TL HAngle 

Order Pod Strut Aft Taper Hub 
Diameter 

Pod Length 
Distance Length Angle 

I Fixed Propeller Diameter, Drrop=270 mm I 
1 1.63 0.52 2.05 1.8 15 HiLo 1 -
2 2.11 0.63 2.05 1.8 15 HiLo 4 

3 2.11 0.52 2.7 1.8 15 HiLo 10 
4 1.63 0.63 2.7 1.8 15 HiLo 11 

5 1.63 0.52 2.05 3.91 15 HiLo 5 

6 2.11 0.63 2.05 3.91 15 HiLo 8 
7 2.11 0.52 2.7 3.91 15 HiLo 14 

8 1.63 0.63 2.7 3.91 15 HiLo 15 

9 2.11 0.52 2.05 1.8 20 HiLo 2 
10 1.63 0.63 2.05 1.8 20 HiLo 3 

II 1.63 0.52 2.7 1.8 20 HiLo 9 

12 2.11 0.63 2.7 1.8 20 HiLo 12 

13 2.11 0.52 2.05 3.91 20 HiLo 6 
14 1.63 0.63 2.05 3.91 20 HiLo 7 

15 1.63 0.52 2.7 3.91 20 HiLo 13 

16 2.11 0.63 2.7 3.91 20 HiLo 16 

Figure 2.4: Geometric models of the pod series. 
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For the study of static azimuthing conditions, the two model pod units were used together 

with the four model propellers mentioned in section 2.3.1. The average values of the 

parameters (Table 2.1) excluding hub taper angle were used to create two pods (called 

pod 01 and pod 02, designed to fit the two propellers with hub angles of 15° and 20°, 

respectively). These two pods were used to perform tests at static azimuthing angles as 

discussed in section 2.2.2. Two propellers with hub taper angles of 15° and 20° (named 

as Push+ ]5° and Push+ 20°, respectively) were used in combination with the pod series 

in pusher configurations, and two propellers with hub taper angles of -15° and -20° 

(named as Pull-15° and Pull-20°, respectively) were used in combination with the pod 

series in puller configurations. The pod models had the same geometrical particulars 

except the fore (propeller) ends, which had two different angles to provide smooth 

transition between the propeller hub and the subsequent sections of the units. The 

particulars of the pod-strut body tested are shown in Table 2.7. The geometric particulars 

of the pod-strut models were defined using the parameters depicted in Figure 2.1. Figure 

2.5 shows the rendered and physical model of the two average pods. 

Table 2.7. Geometric particulars of the two average pod models. 
Geometric Parameters Pod 01 Pod 02 
Propeller Diameter, D Prop 270mm 270mm 
Pod Diameter, DPod 139mm 139 mm 
Pod Length, LPod 410 mm 410mm 
Strut Height, SHeight 300mm 300mm 
Strut Chord Length 225 mm 225 mm 
Strut Distance, SDist 100mm 100 mm 
Strut Width 60mm 60mm 
Fore Taper Length 85mm 85 mm 
Fore Taper Angle 15° 20° 
Aft Taper Length 110 mm 110 mm 
Aft Taper Angle 25° 25° 
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Figure 2.5: Two pod models (top - rendered model; bottom - physical model fitted 
with propeller): left- Pod 01 and right- Pod02, respectively. 

The geometry of the pod unit (pod-strut and the propeller) used in the dynamic 

azimuthing tests was essentially the same as the dimensions of the Pull-15° (left-handed) 

propeller and the pod-strut body, Pod 01 , as mentioned above, only on a reduced scale 

based on the propeller diameter. The principal dimensions of the pod and the propeller 

are provided in Table 2.8 below. 

Propeller Diameter 
Hub Angle (degrees) 

Pod Diameter 
Pod Length 

Strut Distance 
Taper Length 

Strut Length at Top 
Strut Len h at Pod 
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15° 
102.9 
318.5 
74.1 
81.5 
132.9 
232.0 
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2.4 Experimental Set-up 

The experimental study of the podded propulsors with varied geometry and static 

azimuthing conditions was performed using the modified version of the custom-designed 

dynamometer system called the NSERC pod dynamometer system. The performance 

study of podded propulsors under various dynamic azimuthing conditions were 

performed using a custom-designed dynamometer and pod system called the JOT pod 

dynamometer system. A brief discussion of the two systems is provided in the following 

sections. 

2.4.1 NSERC Pod Dynamometer System 

Figure 2.6 is a picture of the experimental apparatus, which has the following major 

components. For more details, refer to MacNeill eta/. (2004). 

1. Lift System Drive Train: Consists of the electric drive motor, timing pulleys and drive 

belts to operate lead screws. Each lead screw has a timing pulley to allow for 

synchronous operation of all four screws to raise or lower the pod unit. 

2. Lift System Frameworks: Supporting structure for lift system. 

3. Fixed Frame: Frame that rests on the towing carriage rai ls and provides stability for the 

rest of the instrumentation package. 

4. Live Frame: This frame houses the global dynamometer instrumentation package 

(which measures the unit forces and moments). This first major part of the NSERC 

system is mounted on four lead screws that allow the entire pod unit to be raised out 
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of the water. This frame moves with the pod unit during lifting and it secured to the 

fixed frame during testing. 

5. Main Drive Train: Consists of a 3hp electric motor coupled to a 90° gearbox. This 

gearbox is connected to the main pulley, which drives the belt that rotates the 

propeller shaft. 

6. Instrumented Pod Unit: This second major part of the NSERC system houses the 

propeller and pod geometry and contains the sensors for thrust, torque, drag and gap 

pressure. With the exception of torque, all forces are measured with off the shelf load 

cells. Torque is measured using strain gauges. 

In the instrumentation, a boat shaped body called a wave shroud was attached to the 

frame of the test equipment and placed just above the water surface. The bottom of the 

shroud stayed 3 mm to 5 mm above the water surface to suppress waves caused by the 

strut piercing the surface. A motor fitted above the shroud drove the propeller via a belt 

system. The centre of the propeller shaft was 1.5D below the water surface. The part of 

the shaft above the strut (the shaft connected the pod unit to the main drive) went through 

the shroud. Water temperature, carriage speed, VA, and the propeller shaft rps, n, were 

also measured. 
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Figure 2.6: Different parts of the experimental apparatus used in the podded 
propulsor tests. The picture shows the apparatus installed in the OERC (MUN) 

towing tank. 
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As shown in Figure 2.6, the dynamometer system has two major parts. The first part is 

the pod dynamometer, which measures the thrust and torque of the propeller at the 

propeller shaft. The second part of the system is the global dynamometer, which 

measures the unit forces in three coordinate directions at a location vertically 1.68m 

above the pod centre. The moments at the same location about the three coordinate 

directions are calculated based on the forces at the load cell centre and their relative 

distance from the pod centre using force and moment balance. The entire lower part hung 

on a round plate, which had machined marks that defined the azimuth angles. The 

propulsor was placed at different static azimuthing conditions by rotating the entire lower 

part of the instrumentation (instrumented pod unit and the main drive as shown in Figure 

2.6). In the study of the pod geometry, the 16 model pod units were tested only in 

straight-ahead conditions. In the static azimuthing tests, the two average pod units were 

tested at different static azimuthing conditions (from 30° on the port side to -30° on the 

starboard side at increments of 5° and I 0°). At each of the II static azimuthing angular 

positions, the unit was tested at a fixed propeller shaft rps of Il with varying carriage 

advance speeds from 0 to 3.56 m/s- a total of 17 speeds. The tests were conducted in the 

puller configuration first. The propellers, Pull-15° and Pull-20° were used in these tests. 

The entire instrumentation was then set up in reverse position to obtain the pusher 

configuration propulsor by replacing the Pull-15° and Pull-20° propellers with the 

Push+ ]5° and Push+ 20°, respectively. Similar experiments were carried out in this 

configuration. 
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2.4.2 JOT Pod Dynamometer System 

The lOT pod dynamometer system, Figure 2.7, the equipment has two major parts. The 

pod dynamometer measures the thrust and the torque of the propeller at the propeller 

shaft very close to the hub. The global dynamometer measures the unit forces and 

moments in three coordinate directions. A motor mounted at the top of the global 

dynamometer drives the propeller shaft through internal gear arrangement. Another 

motor arrangement mounted at the top of the seal plate turns the whole pod arrangement 

in a continuous motion over the horizontal plane (thus providing dynamic azimuthing). 

The six-component global dynamometer has three load cells measuring forces in the Z 

(vertically downward) direction; one load cell measuring forces in the X direction (in the 

direction of propeller advance) and two load cells measuring forces in the Y direction 

(across the propeller advance direction). 

Figure 2.8 shows the propeller boat that was used to hold the dynamometer system. The 

boat protected the global unit and the data acquisition system from the water spray 

created by the pod unit. The boat was designed to be round so that it could be installed in 

any orientation and facilitate the installation of the pod units at any direction in the 360° 

horizon. 
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Propeller Drive Motor 

Figure 2.7: Pod and the global dynamometer system designed and fabricated at 
lOT. 
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(a) Bottom ofthe open boat 

(c) Open boat fitted with a podded propulsor. 
Figure 2.8: The open boat to tests the podded propulsors at static and dynamic 

azimuthing conditions, designed and fabricated at lOT. 

2.5 Experimental Facilities 

The open water experiments were performed in the Ocean Engineering Research Centre' s 

(OERC) towing tank at Memorial University of Newfoundland (MUN) and in the large 

towing tank at the Institute for Ocean Technology (lOT), National Research Council 

(NRC) Canada. 

Memorial University has a testing facility with the following parameters (Table 2.9) 

(www.engr.mun.ca/naval): 
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Table 2.9: Particulars of the 

Length 
Width 
Water Depth 

Parameters 

Tow Carriage Speed 
Max. Wave Height (Regular Waves) 
Max. Sig. Wave Height (Irregular Waves) 
Ran e ofWavelen ths 

MUN towin tank. 
Dimensions 

58 m 
4.5 m 
2.2m 
5 m/sec 
0.7 m 
0.2m 
0.9 m to 17m 

Figure 2.9: NSERC pod dynamometer system installed in the OERC towing tank 
facility. 

The test facilities at MUN were used to perform the systematic geometric series tests in 

puller and pusher configurations and the static azimuthing angle tests of two average 

pods in pusher and puller configurations using NSERC pod dynamometer system. Figure 

2.9 shows the NSERC pod dynamometer system installed in the OERC towing tank. 
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lOT has a long towing tank where open water tests with a pod in dynamic azimuthing 

conditions were performed. The carriage is designed with a central testing area where a 

test frame, mounted to the carriage frame, allows the experimental setup to move 

transversely across the entire width of the tank. The parameters of the test facility are 

given in Table 2.10. Figure 2.10 shows the lOT pod dynamometer system installed in the 

lOT towing tank. 

Table 2.10: Particulars of the lOT Towin Tank. 
Parameters 
Length 
Width 
Sti II Water Depth 
Tow Carriage Speed 
Max. Wave Height 
Max. Sig. Wave Height 
Range of Wavelengths at 7 m Depth 
Max. Wind Speed 1 m from Fans 
Max. WindS eed 5 m from Fan 

Dimensions 
200m 
12m 
7m 
10m/sec. 
(Regular Waves) 1.0 m 
(Irregular Waves) .50 m 
0.50 m-40 m 
11 m/sec. 
5 m/sec 

Figure 2.10: lOT pod dynamometer system installed in the lOT towing tank facility. 
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2.6 Coordinate System 

The definitions of the forces, moments and co-ordinates that were used to analyze the 

data and present the results in the study of pod geometry, static and dynamic azimuthing 

conditions are shown in Figure 2.11. For the NSERC pod instrumentation, the coordinate 

centre situated vertically 1.68m above the pod centre, which is the intersection of the 

horizontal axis through the propeller shaft centre and the vertical axis through the strut 

shaft centre. However, for the lOT pod instrumentation, the coordinate centre was located 

vertically O.Sm above the pod centre. 

Figure 2.11: Definitions of forces, moments, coordinate of the puller azimuthing 
podded propulsors. 
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2. 7 Data Reduction Equations 

In the current study, both pod dynamometer systems measured propeller and pod forces 

and moments, namely: propeller shaft thrust (TProp), propeller shaft torque (Q), unit thrust 

(Tunit) or unit axial force (Fx) and moment (Mx), unit transverse force (Fv) and moment 

(Mv), and unit vertical force (Fz) and moment (Mz). 

In both cases, the global dynamometer was calibrated using the method as described by 

Hess et a!. (2000) and Galway (1980). The method takes into account cross-talk between 

the six load cells and produces an interaction matrix to convert the voltage output into the 

forces and moments in the three coordinate directions. The propeller thrust and torque, 

unit forces and moments are presented in the form of traditional non-dimensional 

coefficients as defined in Table 2.11. 
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Table 2.11: Data reduction equations and definitions of different parameters used to 
resent the ex erimental data. 

Performance Characteristics Data Reduction E uation 
KTProp - propeller thrust coefficient T. 1 pn2 D4 

Prop 

Krunit- unit thrust coefficient, 
or unit axial force coefficient, KFX 
1 OKQ- propeller torque coefficient 

J - propeller advance coefficient 

'7Prop - propeller efficiency 

'7Unit- unit efficiency 

T unir I pn2 D 4 or Fx I pn2 D4 

10QI pn2 D 5 

VA lnD 

Kpy- transverse force coefficient 

KFZ- vertical force coefficient 

KMX- moment coefficient about x axis 

KMY- moment coefficient about y axis 

J I 2;rr X (K7Prop I K Q) 

J I 2;rr X (K7Unit I K Q) 

Fr I pn2 D 4 

F2 I pn2 D 4 

M x I pn2 D 5 

Mr I pn2 D 5 

M z I pnzDs 

General definitions 
TProp - propeller thrust 

p - water density 
Tunit- unit thrust 

n - propeller shaft rps 
Q - propeller torque 

D - propeller diameter 
VA- propeller advance speed, in the direction of carriage motion 

F x, v, z - components of the hydrodynamic force on the pod 
Mx, v,z -components ofthe hydrodynamic moment on the pod 

It should be noted that propeller advance coefficient, J is defined using the propeller 

advance speed, VA in the direction of carriage motion (in the direction of X in the inertia 

frame), not in the direction of propeller axis. The propeller thrust, TProp is defined in the 

direction of the propeller axis, and Fx is the projected forces on the X-axis in the inertia 

frame. 
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2.8 Study of Reynolds Number Effects 

Testing done on model propellers must be at shaft rps that allows the propeller to operate 

in a flow regime that minimizes laminar flow on the suction side or flow separation on 

the trailing edge. In the case of open-water measurements, a convenient procedure is to 

perform tests at a shaft rps that allows operation in a flow regime where laminar flow on 

the blade suction side, or flow separation at the trailing edge are minimized. Hence, a 

closer similarity to full-scale conditions is achieved. For the present study, two separate 

scale effect tests were carried out, namely: the ' propeller only case' and the ' propeller 

with pod-strut or unit case'. Table 2.12 shows the combination of propeller shaft rps and 

advance speed used to study the Reynolds Number effect for the two propellers used in 

the experimentation of the podded propulsors in static and dynamic azimuthing 

conditions. 
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Table 2.12: A List of Reynolds Number and the operating condition used to study the 
R ld M b n t ~ II I eyno s um er e ec s or prope er only cases. 

Reynolds Number based on propeller chord Reynolds Number based on propeller chord 
length at 0.7R, 

R,rc0_7Rx" (VA
2+0.7rrn02)/v, 0=200 mm 

length at 0.7R, 
Rrr:co.rRx" ( VA 2+0. 7rrn02)/v, 0=270 mm 

Shaft Adv speed, Adv. Shaft Adv speed, Adv. 
rps, n VA coeff., J RN rps, n VA coeff., J RN 

10 0.00 0.00 3.19E+05 10 0.00 0.00 5.81E+05 
10 1.60 0.80 3.39E+05 10 2.16 0.80 6.19E+05 
10 2.50 1.25 3.67E+05 10 3.38 1.25 6.69E+05 
15 0.00 0.00 4.78E+05 15 0.00 0.00 8.72E+05 
15 2.40 0.80 5.09E+05 15 3.24 0.80 9.28E+05 
15 3.75 1.25 5.50E+05 15 5.06 1.25 1.00E+06 
20 0.00 0.00 6.38E+05 20 0.00 0.00 1.16E+06 
20 3.20 0.80 6.79E+05 20 4.32 0.80 1.24E+06 
20 5.00 1.25 7.34E+05 20 6.75 1.25 1.34E+06 
25 0.00 0.00 7.97E+05 25 0.00 0.00 1.45E+06 
25 4.00 0.80 8.48E+05 25 5.40 0.80 1.55E+06 
25 6.25 1.25 9.17E+05 25 8.44 1.25 1.67E+06 
30 0.00 0.00 9.57E+05 30 0.00 0.00 1.74E+06 
30 4.80 0.80 1.02E+06 30 6.48 0.80 1.86E+06 
30 7.50 1.25 1.10E+06 30 10.13 1.25 2.01E+06 
35 0.00 0.00 1.12E+06 35 0.00 0.00 2.03E+06 
35 5.60 0.80 1.19E+06 35 7.56 0.80 2.17E+06 
35 8.75 1.25 1.28E+06 35 11.81 1.25 2.34E+06 

MaxRN 1.28E+06 MaxRN 2.34E+06 
MinRN 3.19E+05 Min RN 5.81E+05 

As shown in Table 2.12, for the larger propeller, the shaft rps and the speed of advance 

must be very high to reach the recommended value of the Reynolds Number of I x I 06 

(shaft rps of 15 and advance speed of 5.06 m/s is required). Again, for the smaller 

propeller, a shaft rps of 30 and advance speed of 4.8 m/s is required to obtain Reynolds 

Number of 1 x I 06
. 

The Reynolds Number effect study was carried out with the two propellers (propeller only 

case) using a Kemph and Remmers dynamometer. Figure 2.12 shows the curves of the 

propeller coefficients of the 270 mm diameter and 200 mm diameter propellers, 
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respectively for different Reynolds Number (by changing shaft rps and carriage advance 

speed) at fixed advance coefficients. It can be noticed that for the propeller with 270 mm 

diameter, for shaft rps 10 or higher (corresponding Reynolds Number of 5.8! x l05 or 

higher), the performance coefficients do not change significantly, which confirms 

minimized Reynolds Number effect. Again, for the 200 mm diameter propeller, for shaft 

rps 15 or higher (corresponding Reynolds Number of 4.78x!05 or higher), the 

performance coefficients do not change significantly. It is also noticed that that the 

performance coefficients of the smaller propeller stabilized at lower Reynolds Numbers 

than expected as also observed by Jessup eta!. (2002). 

Reynolds Number (Scale) Effects on Shaft Thrust and Torque 
with Error Bars; Prop Dia: 200 mm and 270 mm 
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Figure 2.12: Open water coefficients of the podded propellers (large propeller with 
diameter 270 mm and small propeller with diameter 200 mm). 
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The NSERC dynamometer system was used to investigate the Reynolds Number effect of 

the pod model, average Pod 01. A various combinations of propeller shaft rps and 

carriage advance speed were used to study the performance of the model pod at various 

Reynolds Numbers both in puller and pusher configurations. In puller configuration, for 

the Pod 0 I, Figures 2.13a to 2.13c show the plots of propeller thrust, torque and unit 

thrust coefficients against Reynolds Number at different advance coefficients, 

respectively. It is observed that the value of the performance coefficients started to 

stabilize at Reynolds Number of 6.5 x 105 or above (equivalent to propeller shaft rps of 11 

or more). This is approximately true for all other advance coefficients. This suggests that 

the propeller tested at shaft rps of 11 or above would be at minimized Reynolds Number 

effects. Figures 2.14a to 2.14c show the same performance coefficients in the same 

conditions for the pusher configurations. 

Reynolds Number Effect on Thrust Coeff. 
Pod #01 in Puller Configuration 
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Figure 2.13a: Reynolds Number effect 
tests on propeller thrust coefficient in 

puller configuration podded propulsors. 
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Reynolds Number Effect on Thrust Coeff. 
Pod #01 in Pusher Configuration 
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Reynolds Number Effect on Torque Coeff. 
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Figure 2.13b: Reynolds Number effect 
tests on propeller torque coefficient in 

puller configuration podded propulsors. 

Reynolds Number Effect on Unit Thrust Coeff. 
Pod #01 In Puller Configuration 
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Figure 2.13c: Reynolds Number effect 
tests on unit thrust coefficient in puller 

configuration podded propulsors. 
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Reynolds Number Effect on Torque Coeff. 
Pod #01 In Pusher Configuration 
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Figure 2.14b: Reynolds Number effect 
tests on propeller torque coefficient in 

pusher configuration podded propulsors. 

Reynolds Number Effect on Unit Thrust Coeff. 
Pod #01 In Pusher Configuration 
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2.9 Summary 

This chapter has provided a presentation of the experimental methods, model geometry, 

test program and test facilities utilized in conducting the experimentation on the podded 

propulsor model units with a view to carry out quantitative investigations on the 

hydrodynamic performance with varied geometry and azimuthing conditions. The design 

of experiment technique used to obtain the pod series consisting of 16 pods with 

combinations of five geometrid parameters is detailed. The test program and technique to 

carry out the open water experiments at static and dynamic azimuthing conditions are 

presented. The geometric particulars of the propellers and pods used in the testing are 

also provided. The test equipment used to conduct the tests with the pods both in static 

and dynamic azimuthing tests are described. A brief description of the test facilities used 

for both static and dynamic azimuthing studies is presented. A brief discussion on the 

Reynolds Number effect study of the bare propellers and the pod unit is also provided. 
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3 Uncertainty Analysis 

3.1 Chapter Objectives 

This chapter presents details of uncertainty analysis of the experimental data obtained for 

the podded propulsor's study on pod geometry, and at static and dynamic azimuthing 

conditions using the dynamometer systems (NSERC pod dynamometer system and lOT 

pod dynamometer system). The general recommendations and guidelines provided by the 

International Towing Tank Conference (ITTC) for uncertainty analysis for resistance and 

propulsion tests are most closely aligned with the testing techniques used to study the 

uncertainty in the dynamometers. The methodology used in the analysis of the 

uncertainty in the experimentation of puller and pusher podded propulsors follows the 

recommended guidelines set out by the ITTC in combination with approaches described 

by Bose and Luznik (1996), Coleman and Steele (1999), and Hess et al. (2000). A brief 

overview of the analysis methodology is provided, with a particular focus on specific 

elements that are unique to these experiments. A general discussion on the uncertainty 

data is provided, followed by a few recommendations of possible ways to reduce the 

overall uncertainty levels. 

3.2 Components of Measurement Uncertainty 

As described in Coleman and Steele (1999), uncertainty in a measurement consists of two 

major components: bias error and precision error. Bias error is a constant, systematic 
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error in the system or process, which may be reduced through calibration, whereas, 

precision error is the random contribution often referred to as repeatability error, which 

can be reduced through the use of multiple readings. 

3.2.1 Bias Error 

Considering the forces and moments applied to a dynamometer during calibration and 

testing, analysis of the sources of bias error depends upon the calibration as well as 

testing methods employed. For example, consider a calibration stand using weight pans 

connected to cables passing through pulleys to apply loading to a dynamometer. If the 

calibration stand has not been accurately levelled, applied forces and moments will not be 

as expected. If various geometrical distances associated with the calibration stand are 

inaccurately measured, applied forces and moments will be affected by this inaccuracy. If 

the weights used to load the pans have drifted such that their true weight is not their 

stated weight, additional bias errors will creep into the calibration. If the pulleys do not 

have ideal, frictionless bearings, the true applied forces and moments will be altered by 

pulley resistance. Variation in physical constants can lead to bias errors as well; this is 

often the case when thermal variations are present. Incorrect experimental methods can 

lead to bias errors. For example, application of forces and moments during calibration in 

ascending or descending order as opposed to a random order can lead to a bias 

uncertainty. Identification of elemental bias errors for other types of dynamometer 

calibration equipment, such as load cells, would proceed in a similar fashion. 
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Sources of bias error are also present in the output from the dynamometer. For example, 

biases may be present in the ND converter, the amplifier gain, and the applied excitation 

voltage. For example, a quantization bias error in the analog to digital converter is usually 

taken to be one half of the least significant bit. Biases from the amplifier and power 

supply should be identified from manufacturer's specifications and should include factors 

such as gain, linearity and zero errors. Hess et al. (2000) suggested that the biases in the 

output from the dynamometer be calculated using the following equation. 

f.1V =bits*(~~)*(wooooof.lV)*(-1 )*(-1 ) 
Vex 4096 bit V Gain V,x 

Where, v.x is the excitation voltage used to power the dynamometer. 

A detailed accounting of the sources of bias error is often difficult and requires a careful 

analysis of the calibration device, physical constants and geometrical data, associated 

experimental equipment and calibration procedures. Because of the expense that such a 

thorough examination may entail, one should perform a cursory investigation to estimate 

the order of magnitude of the biases. If all biases are negligible when compared to 

precision uncertainties, then clearly precision uncertainty will dominate, and setting the 

biases to zero will not significantly alter the calculation. 

3.2.2 Precision Error 

Precision error is determined by repetition. For the dynamometer calibration device, the 

ability to repeatedly apply a given force or moment must be quantified. IfF; is a force 
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component applied by the calibration device during the i1
h repetition, and N is the total 

number of measurements (spots) by an independent force gauge (calibration standard), 

then compute a mean and a standard deviation using: 

- 1 N 

Mean of forces or moments, F = - L F; 
N i=l 

[ 
1 N ]l/2 

Standard deviation of forces or moments, SF = --_-L (F; - F Y 
N 1 i=l 

A 95% confidence estimate of the precision uncertainty at a specific magnitude of 

applied force is estimated as: PF=tSFf,.JN; where, t represents a value drawn from the 

Student's t distribution for a 95% confidence level and N -1 degrees of freedom. It should 

be carefully noted that, if N is small, then a 95% confidence level estimate will be large 

due to the paucity of the data; 5 to 10 trials should be sufficient to characterize the 

uncertainty level for a given force magnitude. One must perform this computation for a 

selection of force magnitudes throughout the dynamic range of the device. Similarly, the 

precision uncertainty of the output from the dynamometer, expressed in ftVIVex (see 

equation 1.1), should be determined from repetitions with the same applied force or 

moment combination for a selection of force magnitudes throughout the dynamic range 

of the device. If all precision errors are negligible when compared to bias uncertainties, 

then clearly bias uncertainty will dominate, and setting the precision errors to zero will 

not significantly alter the calculation. 
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3.3 The Uncertainty Expressions 

The overall uncertainty in the non-dimensional performance coefficients, as shown in 

Table 2.12 in section 2.6, of the podded propulsors require proper identification of all the 

variables contained within the data reduction expressions. Thus, the variables of interest 

in the podded propulsors uncertainty analysis were propeller thrust, unit thrust, propeller 

torque, forces and moments on the propulsor in the three orthogonal directions, propeller 

shaft rps, carriage advance speed, azimuthing angle, water density (function of water 

temperature) and propeller diameter. Figure 3.1 shows a block diagram for the podded 

propulsor open water tests including the individual measurement systems, measurement 

of individual variables, data reduction and experimental results. 

KTP~,= T..,.,t pn2d 0 Krunit =Tunit / pn 2 D4 
or Fx I pn1 D 4 

0 KQ = 10Q/pn2 D' / =VA I nD 

111Pft>p = J 1 211 x (K1Pft>p/ Ke). ll ronit = J 1 21t x (Kro., I Kf!). K FT = F, l pn1 
D

4
• 

Kn = F1 l pn1 D
4

• K J4){ = M x l pn1 D$. Kllll' =M , l pn
2 D$. KJG. = M 1 l pn

2 D$ 

KTP~•· Kru.., .KQ .J. KFT. Kn ,KMX • Klill' . K10. 

Br,..,, Be,... . B rg ,BJ. Bc,., ,Bc,. . BciJZ .Be"' _Bc,.. 

PK-. Pe,.,. ,P.r., .Jj ,Pe,., .Pe,. .Pewx .Pc"' ,Pe,.. 

U c-,Uc,...,U.r,.uJ,ue,.,,ue,.,uc""·uc"" ,ue"" 

Individual 
Measurement 

Systems 

Measurement 
or Individual 

Variables 

Data 
Reduction 
Equations 

Experimental 
Results & 

Uncertainty 
Analysis 

Figure 3.1: Block diagram for podded propulsor open water tests and uncertainty 
analysis. 
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The experimental approaches used to obtain the data for each of these variables were 

influenced by a variety of elemental sources of error. These elemental sources were 

estimated, as detailed in Appendix B, and combined using the root sum square (RSS) 

method to give the bias and precision limits for each of the variables. The bias errors were 

consisted of many elemental sources of error, which depended on the approaches followed 

to measure the variables. However, for the precision error estimates of most variables, only 

one source of error (repeatability) was considered significant. 

The error estimates used in the determination of the bias and precision errors in this study 

were considered to be a 95% coverage estimates. The bias uncertainty and the precision 

uncertainty were combined using the root sum square (RSS) method shown below to 

provide estimates of overall uncertainty levels in these variables. The overall uncertainty 

was thus considered to be a 95% coverage estimate. 

The final step in the methodology of uncertainty analysis was to determine how 

uncertainties in each of the variables propagate through the data reduction equations (see 

Table 3.12). Using the approaches described by Bose and Luznik (1996), and Coleman and 

Steele (1999) the uncertainty expressions for each set of experiments were developed as 

shown in equation 3.1 to 3.9. 

(3.1 ) 

(3.2) 
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(3 .3) 

(3.4) 

(3.5) 

(3.6) 

(3 .7) 

(3.8) 

(3 .9) 

In the expressions for the podded propulsors ' tests, it should be noted that for thrust and 

torque coefficient uncertainties, the tare thrust and frictional torque were imbedded in the 

corresponding measurements. Since the tare thrust and frictional torque were part of the 

same data stream as the thrust and torque readings, it had not been treated as an 

independent contributor of error to the corresponding coefficients, but rather has been 

treated as a bias error on the static zero value of the thrust and the torque measurements. 

3.3.1 Uncertainty in the Six-Component Global Dynamometer 

The calibration of the six degree of freedom NSERC and lOT global dynamometer yielded 

an NxM array of applied force and moment components, F, and an NxM array of 

corresponding output voltages, V (Islam 2006c). To each element of the F and V arrays 

65 



---- --------

Uncertainty Analysis 

there was a corresponding bias and precision uncertainty that had been determined as 

described in Appendix B. 

In order to calculate uncertainty in a six-component dynamometer measurement, one must 

determine how the uncertainties in the calibration data propagates into each element of the 

interaction matrix and into future measured forces and moments. As described in Hess et 

al. (2000), the solution for interaction matrix is given as: 

If we consider one dynamometer axis at a time (one column of C and F), then the equation 

can be rewritten as: 

which is a classic form of the normal equations for a least squares fit problem. To 

determine the bias and precision uncertainty propagated into each column of the interaction 

matrix, one must determine how uncertainty in input data propagates into the coefficients 

of a least squares fit. Similarly, to determine the uncertainty present in future measured 

forces and moments from the fit (F=VA), one must understand how uncertainty propagates 

through a least squares fit into the output. 

As given in Hess et al. (2000), the uncertainty propagated into the slope, m , for a linear 

least square fit of the form, y=mx+b is of the form: 

u = m 

(am ux )2 +(am ux )2 +(am ux )2 + ... ... .. ..... +(~ux )2 ax I ax 1 ax 3 ax N 
I 2 3 N 

112 

(am )
2 

(am )
2 

(am )
2 

(am )
2 

+ - UY + - UY + - UY + .. .. ....... + --UY ay, I ay2 2 ay3 3 ay N N 

(3.10) 
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Thus, the uncertainty in the slope depends upon the uncertainties in each of the abscissas 

and ordinates of the raw data used to construct the fit. Thus, one must determine the partial 

derivatives, dm/ dx; and dml dy;, which are found to be of the form: 

and 

where, 
N N N 

NLX;Y;- LX;LY; 
m = _,:=·=J=------------'i.=.:=l_..:.:i=C!..J _ 

Nt,x,' -(t,x,)' 

For a six degree of freedom dynamometer system, the uncertainty in each of the element of 

the interaction matrix is obtained using equation 3.10 where U x, and U y, are the 

uncertainties in the voltage and applied load measurements for each of the N loading 

conditions. 

In the present case, a total loading cases of N=195 was obtained. The applied loads to the 

calibration frame designed specifically for the dynamometer system (Islam 2006c) were 

converted to forces and moments in the three coordinate directions. In the matrix form, the 

forces and moments and the corresponding voltage output from the six-component 

dynamometer are expressed as: 
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Fl,l Fl,6 Vl,l VI,6 

F= and V= 

F195,1 F195,6 V195,1 V195,6 

The F and V matrices used to calculate the uncertainties in the global components of the 

dynamometer are given in Islam (2006c). The uncertainties in the interaction matrix were 

then obtained using the equation 3.10. Each of the 36 elements of the interaction matrix 

had corresponding uncertainties that were calculated using equation 3.10. It is to be noted 

that the uncertainties in each elements in the F and V matrix is assumed to be equal for 

simplicity. 

The next thing to do in the uncertainty analysis of the dynamometer is to consider how the 

uncertainties in the calibration matrix propagate into a future calculation. A general 

formula for the uncertainty, UR, which propagates into a results, R, from uncertainties in M 

different variables, X;; i=l ,2, ...... ,M, where R=R(X,, X2, ... . . ... XM) is given by equation 

3.11 (Hess et al. 1999): 

(3. 11) 

In the present case of the six component dynamometer, the defining equation, F=VA, 

where F=F(Fx, Fr, Fz, Mx, Mr, Mz) gives us: 

Fx = C11V1 +C,2V2 +C,3V3 + C,4V4 +C,5V5 + C,6V6 

Fr = c 2,v, +C22v2 +C23v3 +C24v4 +C25v5 +C26v6 
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Fz = c 31vl + c 32 v2 + c 33 v3 + c 34 v4 + c 35 v5 + c 36 v6 

M x = c 41 vi + c 42 v2 + c 43 v3 + c 44 v4 + c 45 v5 + c 46 v6 

M r = c 51 VI + c 52 v2 + c 53 V3 + c 54 v4 + c 55 v5 + c 56 v6 
Mz = C61VI +C62V2 +C63V3 +C64V4 +C65V5 +C66V6 

Now applying equation 3.11 to these equations yielded: 

(
()Fx U )

1 
(()Fx U )

2 
(()Fx U )

2 
(()Fx U )

1 
(dFx U )

2 
(()Fx U )

1 
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These equations and the rest four components when put into the matrix form yielded: 

VI 

v1 

v3 

UF u u u u u u e ll c l2 cl3 cl4 c l5 c l6 v4 
X ell e,2 e" e,. eu e,6 

U" u u u c 21 c 26 vs 
r e2, e22 e26 
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UM Uv 

X I 

UM y 
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UM u u u c 61 c 66 Uv, z e6, e62 e66 

Uv 
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Uv 
l 

Uv 6 
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3.4 Uncertainty Estimates for NSERC Pod Measurements 

The details of the uncertainty calculation for each component of the NSERC pod 

dynamometer are provided in Table B.l in Appendix B. The table summarizes the bias and 

precision limit estimated for the podded propulsors obtained using the approach described 

in section 3.3. The biases and precision limits were combined using RSS to determine the 

overall uncertainty estimates for each of the variables of interests as shown in Table 3 .1 . 

Table 3.1: Overall uncertainty estimates for the podded propulsor variables (NSERC 
po d) . 

J UP Uv UAA Un UvA UTProp UQ Uronit Urv UFZ UMX UMY UMz 

0.0 0.094 0.0001 0.695 0.05 13 0.0154 2.3 132 0.0728 2.7266 - 1.7834 -4.1103 2.0086 6.3 168 -1.1673 

0.1 0.094 0.0001 0.695 0.0525 0 .0 154 2.2984 0 .0768 2.8 147 - 1.5395 4.2045 1.7203 6.7964 - 1.1824 

0.2 0.094 0.0001 0 .695 0.0525 0.0 154 2.2910 0.0730 2.9994 -2.02 19 4. 1391 1.7305 7.5522 -1.1247 

0.3 0.094 0.0001 0 .695 0.0526 0 .0 154 2.3026 0.07 14 3.2612 - 1.837 1 4.0256 1.8760 6.8058 - 1. 111 3 

0.4 0.094 0.000 1 0.695 0.053 1 0.0 154 2.2622 0.0869 3.0933 -2.4209 4.1940 1.9230 6.4301 -1.1629 

0.5 0.094 0.000 1 0 .695 0.0523 0 .0 154 2.2938 0.0742 3.0972 - 1.9250 4.0775 2 .2374 5.9553 1.1432 

0.6 0.094 0.0001 0.695 0.0525 0.0 154 2.2668 0.0800 2.3796 - 1.6698 4.0351 1.6845 6.6246 1.1795 

0.7 0.094 0.0001 0.695 0.0521 0.0 154 2.2742 0.0824 2.1842 - 1.7539 4.023 1 1.6578 7.5308 1.2073 

0.8 0.094 0.0001 0.695 0.0528 0.0 154 2.2616 0.0838 2.4774 - 1.78 19 4.0912 1.8021 6.5 109 1.2106 

0.9 0.094 0.0001 0.695 0.0531 0.0 154 2.2725 0.0779 2.4737 - 1.8024 4.0289 1.5671 6.2548 1. 1719 

1.0 0.094 0.0001 0.695 0.0531 0.01 54 2.2602 0.0802 2.3 119 - 1.59 10 4.0468 1.8575 6.9945 1.1646 

1.1 0.094 0.0001 0.695 0.0528 0.0 154 2.2564 0.0793 -2.5 187 -2.2933 4.0827 1.9865 -4.6496 1.2097 

1.2 0.094 0.0001 0.695 0.0525 0.0 154 -2.2435 -0.084 1 -2.3048 - 1.9824 3.9229 -1.9229 -4.8499 1.2382 

Substitution of the uncertainty values from Table 3.1 into the appropriate uncertainty 

equations (equations 3.1 to 3.9) yielded the overall uncertainty levels for the propulsive 

performance coefficients of the podded propulsors as summarized in Table 3.2 and 3.3. 

The uncertainty estimates were based on the test and calibration data presented in the 

reports by Islam, (2006a, 2006b and 2006c). 
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Table 3.2: Overall uncertainties in advance coefficients, propeller thrust and torque 
coe ffi . ts d •tth t ffi . ts (NSERC d) ICien an UDI rus coe ICien po . 

Advance Advance Advance 
Propeller Propeller Propeller Propeller Unit Unit 

Coefficient Coefficient Coefficient 
Thrust Thrust Torque Torque Thrust Thrust 

J J ( +1-) Error(+/-) 
Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient 
KTProp ( +/-) Error(+/-) KQ (+!-) Error ( +1-) Krunit ( +1-) Error ( +1-) 

0.00 - - 0.0059 1.19 0.0008 1.16 0.0071 1.46 

0.10 0.0052 5.21 0.0058 1.25 0.0008 1. 18 0.0066 1.46 

0.20 0.0053 2.63 0.0055 1.29 0.0007 1.22 0.0057 1.40 

0.30 0.0054 1.79 0.0052 1.34 0.0007 1.24 0.0063 1.70 

0.40 0.0056 1.41 0.0049 1.43 0.0007 1.42 0.0058 1.77 

0.50 0.0058 1.16 0.0046 1.54 0.0006 1.37 0.0053 1.88 

0.60 0.0060 1.00 0.0043 1.71 0.0006 1.48 0.0042 1.80 

0.70 0.0063 0.90 0.0041 1.96 0.0006 1.65 0.0035 1.84 

0.80 0.0065 0.81 0.0039 2.44 0.0006 1.89 0.0032 2.38 

0.90 0.0068 0.75 0.0037 3.11 0.0005 2.24 0.0048 5.6 1 

1.00 0.0071 0.71 0.0035 5.06 0.0005 2.71 0.0042 15.25 

1.10 0.0074 0.68 0.0035 13 .60 0.0004 4.91 -0.0051 2.80 

1.20 0.0 103 0.86 -0.0035 9.62 -0.0005 97.34 -0.0044 3.66 

Table 3.3: Overall uncertainties in global forces and moments in the three orthogonal 
d. f f th dd d I (NSERC d) 1rec IOns or epo e propu sors po . 

Trans. Trans. Vertical Vertical Axial Axial Vertical Vertical Steering Steering 
Advance Force Force Force Force Moment Moment Moment Moment Moment Moment 

Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 
J KFY Error Kn Error KMx Error Krx Error Kzx Error 

(+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) 

0.00 -0.003 1 19.66 -0.0052 221.33 0.0108 8.26 0.0498 1.40 -0.0069 42.30 

0.10 -0.0031 17.34 0.0048 141.29 0.0087 8.31 0.0449 1.39 -0.0070 40.98 

0.20 -0.0030 13.97 0.0052 38.44 0.0111 8.60 0.0466 !.56 -0.0068 56.58 

0.30 -0.0034 13.90 0.0055 17.21 0.0074 5.67 0.0429 1.58 -0.0066 72.40 

0.40 -0.0026 10.07 0.0048 12.69 0.0077 3.52 0.0428 1.79 -0.0065 3606.84 

0.50 -0.0028 9.34 0.0047 9.48 0.0128 5.07 0.0464 2.25 0.0062 41.37 

0.60 -0.0036 12.86 0.0048 8. 16 0.0124 4.74 0.0438 2.58 0.0071 40.79 

0.70 -0.0026 11.66 0.0049 7.46 0.0138 7.50 0.0323 2.36 0.007 1 35.84 

0.80 -0.0024 11.14 0.0052 6.41 0.0075 4.16 0.0426 4.36 0.0072 38.33 

0.90 -0.0040 14.22 0.0048 6.15 0.0112 6.20 0.0402 6.59 0.0066 36.98 

1.00 -0.0030 13.08 0.0047 7.06 0.0138 4.76 0.0387 17.07 0.0067 39.11 

1.10 -0.0027 12.7 1 0.0050 9.85 0.0123 12.76 -0.0266 12.30 0.0070 25.05 

1.20 -0.0034 25.35 0.0050 18.51 -0.0116 18.50 -0.0314 4.33 0.0073 25.92 
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From Table 3.2 and 3.3, it can be seen that the uncertainty levels of the propeller thrust 

coefficient are higher than those of the unit thrust coefficient. However, the uncertainty in 

torque coefficient is comparable with that of the bare propeller test uncertainty presented in 

Bose and Luznik (1996). Applying the uncertainty limits to the performance curves of the 

average pod 01 in the form of error bars results in a plot as shown in Figure 3.2. 

From Figure 3.2, it is observed that the curves fitted to the data lie inside the error bars. 

Therefore, the fitted curves provide a good representation of the trends indicated by the 

results. 

Open Water Propulsive Performance Curves with Error Bars 
Pod 01 in Straight Course Puller Configuration 

o.1 r-------...;;...-,...1 .----.==-----:------, 4 .. .. .. K1Pod 3.5 .. 
K TUnit 3 
lOKQ 
KFY 2.5 

~ KFZ 
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KMY 1.5 
KMZ 

"'<~ 1 
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:::c :::c 
:::c :I: :::c :::c -1 

-1.5 

"
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•
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Advance Coefficient, J 

Figure 3.2: Performance curves for NSERC pod 01 (270 mm propeller diameter) in 
straight-course puller configuration with uncertainty (error) bars. 
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3.5 Uncertainty Estimates for lOT Pod Measurements 

Table B.2 in Appendix B summarizes the bias and precision limit estimated for the 

measurements using lOT dynamometer system using the approach described in section 3.3. 

Similar to the NSERC Pod dynamometer system, the biases and precision limits were 

combined using RSS to determine the overall uncertainty estimates for each of the 

variables of interests as shown in Table 3.4. 

T bl 3 4 0 a e . : vera II uncer ta' t f t t m~y es Ima es or po dd d e . bl (lOT d) propu sor vana es po . 
J up Uo UAA u, UvA U7Prop UQ Uronit UFY Un UMX UMY UMz 

0.0 0.0721 0.0001 0.692 0.0506 0.0154 4.2767 0.071 1 0.9258 - 1.5418 4.7359 0.0589 0.1901 -0.0611 

0.2 0.0721 0.0001 0.692 0.0506 0.0058 4.2767 0.07 11 0.8067 - 1.3296 4.0243 0 .0587 0.1644 -0.0611 

0.4 0.0721 0.0001 0.692 0.0506 0.0058 4.2767 0.07 11 0.6738 - 1.0895 3.2018 0.0585 0.1355 -0.0610 

0.6 0.0721 0.0001 0.692 0.0506 0.0058 4.2767 0.0711 0.5554 -0.8703 2.4200 0.0584 0.1092 -0.0610 

0.7 0.072 1 0.0001 0 .692 0.0506 0.0058 4.2767 0.0711 0.4860 -0.7379 1.9176 0.0583 0.0935 -0.0610 

0.8 0.072 1 0.0001 0 .692 0.0506 0.0058 4 .2767 0.0711 0.4205 -0.6080 1.3737 0.0582 0.0783 -0.0610 

0.9 0.0721 0.0001 0.692 0.0506 0.0058 4 .2767 0.071 1 0.3650 -0.4917 0.7590 0.0582 0.0650 -0.0610 

1.0 0.0721 0.0001 0.692 0.0506 0.0058 4.2767 0.07 11 0.3403 -0.4374 0.2397 0.0582 0.0588 -0.0610 

1.1 0.0721 0.000 1 0.692 0.0506 0.0058 4.2767 0.0711 -0.3737 -0.5132 0.8885 0.0582 -0.0673 -0.0610 

1.2 0.0721 0.0001 0.692 0.0506 0.0058 -4.2767 -0.0711 -0.4675 0 .7059 1.7853 -0.0583 -0.0896 -0.0610 

Substitution of the uncertainty values from Table 3.4 into the appropriate uncertainty 

equations (equations 3.1 to 3.9) yielded the overall uncertainty levels for the propulsive 

performance coefficients of the podded propulsors as summarized in Table 3.5 and 3.6. 
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Table 3.5: Overall uncertainties in advance coefficients, propeller thrust and torque 
coe ffi . ts d "tth t ffi . ts (lOT d) ICien an um rus coe ICien po . 

Advance Advance Advance 
Propeller Propeller Propeller Propeller Unit Unit 

Coefficient, Coefficient Coefficient 
Thrust Thrust Torque Torque Thrust Thrust 

Coefficient Coefficient Coefficient Coefficient Coefficien ~oefficient 
J J (+/-) Error(+/-) 

K7l'rop ( +/-) Error (+/-) Ko(+l-) Error(+/-) Krunit (+/-) Error(+/-) 

0.00 - - 0.0069 2.54 0.0005 1.62 0.0023 0.90 

0.20 0.0020 1.02 0.0069 2.90 0.0004 1.79 0.0020 0.91 

0.40 0.0024 0.59 0.0068 3.53 0.0004 2 .05 0.0016 0.94 

0.60 0.0028 0.47 0.0067 4.68 0.0004 2.51 0.0012 1.00 

0.70 0.0031 0.44 0.0067 5.61 0.0004 2.86 0.0010 1.05 

0.80 0.0033 0.42 0.0067 7.16 0.0004 3.47 0.0008 1.16 

0.90 0.0036 0.40 0.0067 9.96 0.0004 4.42 0.0006 1.47 

1.00 0.0039 0.39 0.0067 16.93 0.0004 6.33 0.0005 3.50 

1. 10 0.0042 0.38 0.0067 72.98 0.0004 12.83 -0.0006 3.87 

1.20 0.0045 0.38 -0.0067 28.16 -0.0004 82.33 -0.0008 1.65 

Table 3.6: Overall uncertainties in global forces and moments in the three orthogonal 
d" f ~ th dd d I (lOT d) 1rec IOnS or e )0 e >ropu sors po . 

Trans. Trans. Vertical Vertical Axial Axial Vertical Vertical Steering Steering 
Advance Force Force Force Force Moment Moment Moment Moment Moment Moment 

Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 
J KFr Error Kn Error KMx Error Krx Error Kzx Error 

(+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) (+/-) 

0.00 -0.0024 11 0.94 0.0074 633.92 0.0004 1.34 0.0021 0.86 -0.0004 4.90 

0.20 -0.0021 31.8 1 0.0063 100.09 0.0004 1.30 0.0018 0.86 -0.0004 4.79 

0.40 -0.0017 15.0 1 0.0050 53.09 0.0004 1.28 0.0014 0.87 -0.0004 5.53 

0.60 -0.0014 8.73 0.0038 37. 10 0.0004 1.33 0.0010 0.91 -0.0004 5.80 

0.70 -0.0012 7.00 0 .0030 25.16 0.0004 1.39 0.0009 0.93 -0.0004 6.14 

0.80 -0.0010 6.07 0.0021 14.76 0.0004 1.53 0.0007 0.99 -0.0004 6.65 

0.90 -0.0008 5.75 0.0012 6.88 0.0004 1.82 0.0005 1.16 -0.0004 8.30 

1.00 -0.0007 6.82 0.0004 1.98 0.0004 2.5 I 0.0004 2.47 -0.0004 10.44 

1. 10 -0.0008 30.32 0.0014 5.77 0.0003 7.14 -0.0004 2.77 -0.0004 20.06 

1.20 0.001 1 26.00 0.0028 9.95 -0.0003 6.90 -0.0006 1.34 -0.0004 1655.98 

From Table 3.5 and 3.6, it can be seen that the uncertainty levels of the propeller thrust 

coefficient are higher than those of the unit thrust coefficient as observed for the case of 

NSERC pod measurement system. It is also observed that the uncertainty limit for the 
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global unit for the lOT pod system were less than that of the NSERC system. This can be 

attributed to the compactness of the lOT pod system and due to the fact that the pod unit in 

the NSERC system was 1.68m vertically below the global unit system as compared to only 

0.5m below for the lOT system. The uncertainty in torque coefficient was comparable with 

that of the bare propeller test uncertainty presented in Bose and Luznik (1996). Applying 

the uncertainty limits to the performance curves of pod unit used in the lOT system in the 

form of error bars results in a plot as shown in Figure 3.3. 

~ 

Propulsive Performance Curves with Error Bars 
Pod A in Straight Course Puller Configuration 

0.7~------~------------~----~--------~----------------~ 

~~ of==z±===~~~ -~•~------~T~~•~~&~~~~~~--

"
0
•
1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Advance Coefficien J 

Figure 3.3: Performance curves for lOT pod 01 (200 mm propeller diameter) in 
straight-course puller configuration with uncertainty (error) bars. 

From Figure 3.3, it is observed that the curves fitted to the data lie inside the error bars. 

Therefore, the fitted curves provide a good representation of the trends indicated by the 

results. 
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3.6 Discussion on Uncer tainty 

The podded propulsor tests to study the effect of pod geometry and static azimuthing 

conditions were conducted using the NSERC pod dynamometer system. The lOT pod 

dynamometer system was used to conduct pod unit tests at static and dynamic azimuthing 

conditions. The uncertainty analysis results of these systems were compared to that of a 

previous measurements (tests done in the lOT towing tank to measure the performance of 

some bare podded propellers and using the NSERC dynamometer to conduce podded 

propulsor tests, Taylor 2006) similar to the current experiments using the same equipment. 

The uncertainties of the bare propeller tests results were used as a benchmark to compare 

the uncertainty levels of the new dynamometer system. When the results provided in Table 

3.1 were compared with the corresponding results given in Taylor (2006) for the bare 

propellers and the pod test results, it was seen that the podded propulsor tests using both 

the NSERC and lOT pod systems in the current phase of tests provided the level of 

accuracy comparable with the established equipment. The uncertainty levels observed in 

the propeller thrust and unit thrust in the podded propulsor tests using both pieces of 

equipment were found to be higher than the thrust uncertainty for the baseline tests, but 

less than the corresponding uncertainties in the pod tests as given in Taylor (2006). 

It can be seen in Table B.l and B.2 in Appendix B that for majority of the cases, the 

primary element of the uncertainty of the propeller performance coefficients was the bias 

error (60% or more on the total uncertainty for the NSERC pod system and 80% or more 

the lOT pod system). The high precision limit of the lOT pod system can be attributed to 

the compactness of the system. To reduce the overall uncertainty in the final results, the 
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primary focus should be to reduce the bias error in the equipment. Each individual variable 

in Table B. I and B.2 should be examined for possible ways to improve the bias errors. 

Given the high degree of accuracy found in the temperature, density, propeller diameter, 

azimuthing angle, shaft rps and advance speed, these variables have not been given any 

further consideration for improvement. It can be seen from Table B. l that the major 

component influencing the bias limits of propeller thrust and torque for the podded 

propulsor tests was the curve fit error. As suggested in Taylor (2006), the Sum of Square 

Error (SEE) analysis was incorporated into the calibration procedure and the error was 

reduced substantially (compare corresponding results in the uncertainty of the pod tests as 

given in Taylor, 2006). The calibration of the propeller thrust and torque measurement 

gauges were repeated 5 to 8 times and SEE analysis applied to the results determined 

whether or not a curve fit was acceptable and ascertained the functionality of the 

equipment. The uncertainty levels of the propeller torque were less than the baseline 

propellers or the pod tests as given in Taylor (2006). This is primarily because of smaller 

weight and curve fit errors. The uncertainty level of the unit thrust was less than the pod 

test results as given in Taylor (2006). This is primarily because of the different calibration 

approaches. 

Another way to improve the calibration error is by selecting calibration weights so as to 

provide adequate resolution over the expected loading range. Selection of poor weight 

distribution over the expected loading range might contribute to the error in the calibration 

curve obtained for the propeller thrust or torque readings in the podded propulsor tests. For 
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the test series in the pod geometry and static azimuthing study, the NSERC dynamometer 

system had been calibrated to a maximum load of approximately SOON. From the test 

results, it was found that, for the selected shaft rps of 11, a maximum calibration load of 

300N with a finer resolution of calibration data points would have likely produced a better 

set of calibration data. 

One possible approach to improve accuracy of the uncertainties in propeller thrust and 

torque of the podded propulsor tests is to conduct tests at higher shaft rps. As identified in 

Table B.l, for the torque readings of the podded propeller experiments, there was not any 

single dominant factor influencing the overall uncertainty. Despite low error levels in the 

variables in the torque uncertainty expression, the magnitudes of the actual test 

measurements were small which resulted in larger overall error. At higher shaft rps, higher 

advance speeds will be required to achieve the desired advance coefficients. Under these 

conditions the magnitudes of the thrust and torque will be larger relative to the uncertainty 

levels. Correspondingly, the percent error for each of the~e measured variables would be 

reduced, which would result in less overall uncertainty in the thrust and torque coefficients. 

3.7 Summary 

The results of the uncertainty analysis for the NSERC and lOT pod dynamometer systems 

are presented. The uncertainty limits were comparable with those calculated for similar 

tests conducted by Bose and Luznik (1996) and Taylor (2006). It has been shown that both 

of the instrumentations were capable of providing levels of accuracy comparable with 

commercial standard equipment. In case of propeller thrust and torque, the uncertainty 
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limits observed for the NSERC pod system were very close to that observed for the lOT 

pod system. For the global forces and moments, however, the uncertainty level of the lOT 

system was much less than that of the NSERC system. 
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4 Study of Pod with Varied Geometry 

4.1 Chapter Objectives 

This chapter presents results and analyses of the experimental study into the effects of 

geometric parameters on the propulsive characteristics of puller and pusher podded 

propulsors in straight course open water conditions. Test results on the 16 different pod

strut-propeller combinations in puller and pusher configurations are presented first. 

Details of the statistical analysis and the subsequent interpretation follow. 

4.2 Test Results 

The propeller thrust coefficient, KTProp. propeller torque coefficient, IOKQ and propulsive 

efficiency, ?}Prop. unit thrust coefficient, Krunit. and unit efficiency, ?}Unit values for each of 

the 16 pods in the pod series experiments (in the range of advance coefficient of 

1=0.0-1.20) in both puller and pusher configurations are presented in this section. 

4.2.1 Pod Series in Puller Configurations 

The propulsive performance coefficients (propeller thrust coefficient, KTProp. propeller 

torque coefficient, IOKQ and propulsive efficiency, ?}Prop) for each of the pods in the puller 

pod series experiments are presented in Figures 4.1, 4.2 and 4.3, respectively. With 

reference to the Figures, for the puller propulsors in the series, the KTProp values at J = 0 

ranged from 0.464-0.495, an approximately 7% spread based on the lowest KTProp given 
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by pod HiLo_15. At 1 = 0.8, the KTProp values covered 0.152-0.179 (approximately 17% 

spread based on the lowest KTProp). At 1=0.8, the highest KTProp was given by pod 

HiLo_16 and the lowest KTProp was given by pod HiLo_3. The torque coefficient (lOKQ) 

values of the different pods ranged from 0.679-0.692 (approximately 2% spread based on 

the lowest 10KQ given by pod HiLo_3) at 1 = 0 and 0.275-0.312 (approximately 14% 

spread based on the lowest 10KQ given by pod HiLo_ 4) at 1 = 0.8. The I)Prop values of the 

different pods ranged from 0.647-0.753 at 1 = 0.8 and 0.625-0.824 at 1 = 1.0. The trends 

showed that for puller configuration propulsors, there was significant variation in KTProp• 

lOKQ and IJProp values with the change of the geometric parameters. At 1=0, the thrust 

coefficients of the pods HiLo_l, HiLo_3, HiLo_6, HiLo_7, HiLo_12, HiLo_14 and 

HiLo_l5 were lower than those of pod HiLo_9 and the thrust coefficients of the 

remaining pods were higher than those of pod HiLo_9. At 1=0.8, the propulsive 

efficiencies of the pods HiLo_1 , HiLo_3, HiLo_6, HiLo_7, HiLo_l2, HiLo_l4 and 

HiLo_l5 were lower than those of pod HiLo_9 and the propulsive efficiencies of the 

remaining pods were higher than those of pod HiLo_9. This indicated that the efficiency 

of the propeller attached to pod HiLo_9 was approximately the average of all the other 

pods. Among the pods, pod HiLo_3 had the lowest efficiency (IJProp =0.647) and pod 

HiLo_16 had the highest efficiency (I)Prop =0.753) at the design advance coefficient of 

1=0.8. Tables A.l and A.2 present the KTProp and IOKQ values, respectively, for the pods 

in puller configuration. 
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Figure 4.1: Experimental results: Propeller thrust coefficient of the pods in the 

series in puller configuration. 
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Figure 4.2: Experimental results: Propeller torque coefficient of the pods in the 

series in puller configuration. 
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Figure 4.3: Experimental results: propeller efficiency of the pods in the series in 

puller configuration. 

The unit thrust coefficient, Krunit and unit efficiency, ?Junit values for each of the pods in 

the pod series experiments (in the range of 1=0.0-1.20) are presented in Figures 4.4 and 

4.5. The unit thrust coefficient values at 1 = 0 for the different pods ranged from 0.458 to 

0.484, an approximately 6% spread based on the lowest Krunit given by pod HiLo_7. At 

1 = 0.8, the Krunit values ranged from 0.13 and 0.153, an approximately 18% spread 

based on the lowest Krunit given by pod HiLo_ 4. The ?Junit values of the different pods 

ranged from 0.564 to 0.645 at 1 = 0.8 and from 0.366 to 0.565 at 1 = 1.0. The trends 

showed that there was significant variation in Krunit and ?;~unit values with the change of 

the geometric parameters. At 1=0, the unit thrust coefficients of the pods HiLo_1, 

HiLo_3, HiLo_6, HiLo_7, HiLo_12, HiLo_14 and HiLo_15 were lower than those of pod 

HiLo_9 and the thrust coefficients of the remaining pods were higher than those of pod 
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HiLo_9. Among these pods, pod HiLo_9 had the lowest unit efficiency (?Junit =0.565) and 

pod HiLo_5 had the highest unit efficiency (?Junit =0.645) at the design advance 

coefficient of 1=0.8. Table A.3 presents the Krunit values for the pods in puller 

configuration. 

Advance Coefficient, J 
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Figure 4.4: Experimental results: unit thrust or axial force coefficient of the pods in 
the series in puller configuration. 
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Propulsive Performance Curves 
Podded Propulsors in Puller Configurations with Varied Geometry 
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Figure 4.5: Experimental results: unit efficiency of the pods in the series in puller 
configuration. 

4.2.2 Pod Series in Pusher Configurations 

The propeller thrust coefficient, K1Prop. propeller torque coefficient, lOKQ and propulsive 

efficiency, ~Prop values for each of the pods in the pusher pod series experiments (in the 

range of 1=0.0-1.20) are presented in Figures 4.6, 4.7 and 4.8, respectively. 

For the pusher propulsors in the series, the K1Prop values at J = 0 of the pods ranged from 

0.4564 to 0.4715, an approximately 4% spread based on the lowest K1Prop given by pod 

HiLo_7. At J = 0.8, the K1Prop values were in a range of 0.1469-0.1724 (approximately 

17% spread based on the lowest K1Prop). At 1=0.8, the highest K1Prop was given by pod 

HiLo_ 4 and the lowest K1Prop was given by pod HiLo_13. The torque coefficient (lOKQ) 
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values of the different pods ranged from 0.6532 to 0.6852 (approximately 5% spread 

based on the lowest 10KQ given by pod HiLo_12) at 1 = 0, and from 0.275 to 0.312 

(approximately 14% spread based on the lowest 10KQ given by pod HiLo_1) at 1 = 0.8. 

The ?]Prop values of the different pods ranged from 0.666-0.712 at 1 = 0.8 and 0.580-0.702 

at 1 = 1.0. The trends showed that for the pusher propulsors, there was significant 

variation in KTProp. lOKQ and ?]Prop values with changes of the geometric parameters. At 

1=0, the thrust coefficients of the pods HiLo_2, HiLo_7, HiLo_8, HiLo_l2, HiLo_ l3 and 

HiLo_l4 were lower than those of pod HiLo_9 and the thrust coefficients of the 

remaining pods were higher than those of pod HiLo_9. At 1=0.8, the propulsive 

efficiencies of the pods HiLo_5, HiLo_7, HiLo_9, HiLo_l3, HiLo_l4, HiLo_ l5, 

HiLo_l6 were lower than those of pod HiLo_8 and the propulsive efficiencies of the 

remaining pods were higher than those of pod HiLo_8. This indicated that the efficiency 

of the propeller attached with pod HiLo_8 was approximately the average of all the other 

pods. Among the pods, pod HiLo_l3 had the lowest efficiency (?]Prop =0.666) and pod 

HiLo_l2 had the highest efficiency (?]Prop =0. 712) at the design advance coefficient of 

1=0.8. Tables A.4 and A.5 present the KTProp and IOKQ values, respectively, for the pods 

in pusher configuration. 
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Figure 4.6: Experimental results: Propeller thrust coefficient of the pods in the 

series in pusher configuration. 
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Figure 4.7: Experimental results: Propeller torque coefficient of the pods in the 

series in pusher configuration. 
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Figure 4.8: Experimental results: Propeller efficiency of the pods in the series in 
pusher configuration. 

The Krunit and ~Unit values for each of the pods in the pusher pod series experiments (in 

the range of 1=0.0-1.20) are presented in Figures 4.9 and 4.10, respectively. The unit 

thrust coefficient (Krunit) values at 1 = 0 of the different pods ranged from 0.440-0.462, 

an approximately 5% spread based on the lowest Krunit given by pod HiLo_1. At 1 = 0.8, 

the Krunit values cover a ranged of 0.112-0.143 (approximately 18% spread based on the 

lowest Krunit given by pod HiLo_12). The ~Unit values of the different pods ranged from 

0.514-0.634 at 1 = 0.8 and 0.232-0.415 at 1 = 1.0. The trends showed that there was 

significant variation in Krunit and ~Unit values with the change of the geometric 

parameters. At 1=0, the unit thrust coefficients of the pods HiLo_1 , HiLo_3, HiLo_ 4, 

HiLo_5, HiLo_6, HiLo_8, HiLo_16 were lower than those of pod HiLo_9 and the thrust 
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coefficients of the remaining pods were higher than those of pod HiLo_9. Among the 

pods, pod HiLo_ 4 had the lowest unit efficiency (?Junit =0.514) and pod HiLo_ll had the 

highest unit efficiency (?Junit =0.634) at the advance coefficient of 1=0.8. Table A.6 

presents the Krunit values for the pods in pusher configuration. 
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Figure 4.9: Experimental results: unit thrust or axial force coefficient of the pods in 
the series in pusher configuration. 
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Figure 4.10: Experimental results: unit efficiency of the pods in the series in puller 
configuration. 

4.3 DOE Analyses and Discussions 

Design Expert® 7.03 (2005) from Statease, a stand-alone software for design of 

experiments was used to design the experiments and analyze the test series data. The 

analysis of the data resulted in the identification of the most significant factors and 

interactions of factors that affect the propulsive performance of the podded propulsors 

both in puller and pusher configurations. It is noted that the resulting model for the 

response is only valid within the ranges of the factors. The study was intended to be an 

extreme design based on the extreme dimensions used by the commercial pods. The 

method was used to determine how the interaction of the five parameters affected the 
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overall performance. Only the effects of the factors and interactions of factors were 

studied, not the quantitative values; although the quantitative values are important. 

4.3.1 Discussion on Puller Configuration 

Table 4.1 lists all the factors and interactions of factors that have significant influence on 

the performance coefficients: propeller thrust coefficient, KTProp. propeller torque 

coefficient, KQ, propeller efficiency, ?JProp. unit thrust coefficient, Krunit and unit 

efficiency, ?Junit for the puller propulsors in the pod series. The factors are designated as 

shown in Table 2.7 in Chapter 2. Table 4.1 shows that the significant factors that come up 

repeatedly over the range of advance coefficient values are A (the ratio of pod diameter 

to propeller diameter, DPod/DProp). D (the ratio of strut distance to propeller diameter, 

SoistiDProp), E (hub taper angle, HAngJe), AE (interaction of DPod/DProp and H AngJe) and BD 

(interaction of LPod/DProp and SoistiDProp). The factor C (the ratio of pod aft taper length to 

propeller diameter, TL/DProp) did not show any significant influence on the performance 

coefficients at any advance coefficient. 

The factors HAngle and DPod/DProp had significant impact on propeller thrust coefficient 

(KTProp), unit thrust coefficient (Krunit) and torque coefficient (KQ) for almost all values of 

advance coefficients, but as the value of advance coefficient increased from 0, interaction 

of DPod/DProp and HAngle became as significant as the single factors DPod/DProp and H Angle 

(in the range of advance coefficient, 1=0.3-1.0). The factor B (LPod/DProp) appeared to 

have significant effect in the form of interaction with D (SoistiDProp) on Krunit at high 
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values of 1 (in the range of 1=0.75-0.95). The factor D (Sois1/DProp) appeared to have 

significant effect on KTProp and KQ at moderate advance coefficients, as shown in Table 

4.1. The propeller and unit efficiencies, ?}Prop and ?Junit were mostly affected by H Angle and 

Dp00/ D Prop; H Angle being the most influential one at all advance coefficients. Dp00/DProp 

played an important role when the advance coefficient was higher than 0.6. 

Table 4.1: Fractional factorial design results: List of significant factors and 
interaction of factors for puller propulsors. Here, A is the ratio of pod diameter to 
propeller diameter, DPod/DProp, B is the ratio of pod length to propeller diameter , 

LPod/DProp' Cis the ratio of pod taper length to propeller diameter , TL/DProp' Dis the 
ratio of strut distance to propeller diameter, SmstiDProp, and E is the propeller hub 

taper angle, H Angie· 

s· ifl t f t d · t r f f t 11 fi r 1gn 1can ac or an m erac IOn o ac ors m pu er con 1gura wns 
1 KTPro~ K runit Ko ?}Prop ?}Unit 

0.00 A,E E A,E - - - -
0.10 A,E E A,E E E 
0.20 A,E E A,E E E 
0.30 A,E AE A,E AE A, E AE E E 
0.40 A,E AE A,E AE A,E AE E E 
0.50 A, E AE A,E AE A,E AE E E 
0.60 A, D,E AE A,E AE A,D,E AE A,E E 
0.70 A, D,E AE A,E AE A,D,E AE A, E E 
0.80 A, D,E AE A,E AE, BD A,D,E AE A, E E 
0.90 A, D,E AE A AE, BD A, D,E AE A,E A,E 
1.00 A,E A BD A,E A,E A,E 
1.10 A,E A BD A,E A, E AE A,E 

As shown in Figures 4. 11 and 4.12, the parameter D Pod/DProp had a significant effect on 

KTProp at 1=0.0 and 1=0.8, respectively. For a fixed propeller diameter, as the pod 

diameter increased the KTProp increased. In the puller configuration, the larger pod 

diameter created larger blockage to the flow behind the propeller. The flow blockage 

reduced the local inflow velocity, thus the propeller operated at a lower effective advance 
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coefficient, which resulted in increases in the KTProp· As shown in Figure 4.12, the 

analysis also indicated that the factor A (Dp00/DProp) was involved in an interaction at 

higher J values. This means that while the information in Figure 4.12 is valid, there might 

be indirect impact on KTProp due to the interaction of DPod/DProp and B Angle· The parameter 

A (DPod/DProp) had an effect on Krunit. KQ, !}Prop and !}Unit similar to that of KTProp for the 

advance coefficient values shown in Table 4.1. It is noted that the unusual scale of the 

ordinates of all figures in this section makes a direct comparison almost impossible. The 

plots were created using the Design Expert® software, which does not allow controlling 

the scale. However, the figures are not intended to compare to each other as each plot is 

different from the others by more than one factor and direct comparison would not make 

any physical sense. 

One Factor Plo 
0.4950 

Actu•l Fec:tora 
B: Len_Pod/DI•_Prop • 1.786 
C: TUDI•_Prop • 0.4100 
D: SD/DI8_Prop " 0.4300 
E: Hub Angle • 17.50 

0.4873 

0.4796 

J = 0.00 
0.4719 

0.4642 

Figure 4.11: DOE Analysis: The effect 
of DPod/ DProp (A) on propeller thrust at 

1=0.0 for puller propulsors. 
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0.159 
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Figure 4.12: DOE Analysis: The effect 
of DPoJ DProp (A) on propeller thrust at 

1=0.8 for puller propulsors. 
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Figures 4.13 and 4.14 show the effect of the strut distance, D (So;stiDProp) on KTprop at 

advance coefficients of 1=0.6 and 0.8, respectively. The Figures show that as the strut 

distance increased the KTProp tended to decrease slightly because of the decreasing 

blockage effect of the strut. A similar effect was found for KQ. SDistiDProp did not show 

any effect on Krunit as an individual factor but had influence on Krunit as an interaction 

effect as described later (Figure 4.20). 

One Factor Plot 
0.2604 Actu•l Factors 

A: DI8_Pod/DI•_Prop • 0.6400 
B: Leo_Pod!DI•_Pn>p = 1.711 
C: TLIDI•_Prop • 0.4100 
E: Hub Angle • 17.60 

0.2!147 

J = 0.60 
0.2411 

~ 

Q, -i: 
0.2434- e 

Q, 
I ... 

:IC: 

0.2378 - D: SD/Dia_Prop 

D.3~00 0.4~00 0.4~00 0.4~00 0.4~ 

Figure 4.13: DOE Analysis: The effect 
of significant factors, So;st!DProp (D) on 

propeller thrust at 1=0.6 for puller 
propulsors. 
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E: Hub Angle • 17.5 
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J=0.80 
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0.159 
Q .. 
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E-4 
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ol,o 0.;00 0.~0 0.460 0.490 

Figure 4.14: DOE Analysis: The effect 
of significant factors, So;st!DProp (D) on 

propeller thrust at 1=0.8 for puller 
propulsors. 

Figure 4.15 and 4.16 show the effect of hub angle, E (BAngle) on KTprop at advance 

coefficients of 1=0 and 1=0.8. As the hub angle increased, the KTProp also increased. The 

increasing effect of the hub angle on KTProp was also found in a previous study using the 

same instrumentation (Islam et al., 2006c). It is also observed in the figures that as the 

advance coefficient increased, the effect of hub angle tended to reduce. This was also 
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observed in the previous study by the author (Islam et al. 2006a). Hub angle had a similar 

effect on Krunit. ?JProp and ?JUnit· 

It is likely that the higher hub angles lead to a lower overall inflow speed at the propeller 

due to the potential flow effect around the hub (and pod), whether in pusher or puller 

configuration. If this is the case, the influence would be greatest near the root sections 

and would diminish towards the tips. Another way to explain the higher thrust of the 

propellers with higher hub angle is to look at the blade geometry at the roots. For the 

pulling propeller with a high hub angle of 20° compared to that of 15°, the intersection 

between the blade root section and the hub surface makes the blade root section have a 

smaller angle of attack (this will reduce the thrust) and to have a substantially higher 

leading edge area (this will increase the thrust), the combined effect at this hub angle may 

have given an increase in thrust (for details see Islam et al. 2006a). 
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0.4950 

0.4673 

0.4796 

0.4719 

0.4642 

.----·One Factor Plot __ __, 

15.00 

Actual Factors 
A: Dla_Prop/Dia_Pod • 1.170 
B: Dla_Prop/Len_Pod = 0.5750 
C: Dla_Prop/TL_Pod • 2.155 
D: Dlll..l'rop/SD_Pod: 2.375 

E: Hub Angle 

16.25 17.60 18.75 20.00 

Figure 4.15: DOE Analysis: The effect 
of significant factor, BAngle (E) on 

propeller thrust at 1=0.0 for puller 
propulsors. 

.-----One Factor Plot __ , 
o.1787 Warning! Factor Involved In an Interaction. 

0.1721 

0.1654 

0 .1587 

0.1621 

Actual Factors 
A: Dla_Prop/Dia_Pod = 1.170 
B: Dla_PropJLen_Pod • O.B7SO 
C: Dla_Prop/TL_Pod = 2.155 
D: Dla_PropiSD_Pod • 2.375 

J=0.8 

Figure 4.16: DOE Analysis: The effect 
of significant factor, BAngle (E) on 

propeller thrust at 1=0.8 for puller 
propulsors. 

Figures 4.17 and 4.18 show that the parameter hub angle, H Angle. had a significant but 

opposite effect on KQ at 1=0 and 1=0.8, respectively. At the bollard pull condition, 

increasing the hub angle increased the propeller shaft torque, which can be attributed to 

the potential flow effect as mentioned in case of propeller thrust. However, at advance 

coefficient of 1=0.8, increasing the hub angle decreased propeller torque unlike propeller 

thrust at that loading condition. 
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0.6921 

0.6889 

0.6857 

0.6825 

0.6793 

,_ __ One Factor Plot __ ..., 

15.00 

Actual Factors 
A! DI8_Prop/DI8_Pod = 1.870 
II: Dla_Propil.en_Pod = 0.5760 
C: DI8_PropiTL_Pod = 2.166 
D: DI8_PropiSD_Pod = 2.376 

16.25 17.50 18.75 20.00 

Figure 4.17: DOE Analysis: The effect 
of significant factor, BAngle (E) on 
propeller torque at J=O for puller 

propulsors. 

.----One Factor Plot __ _, 
o.3121 Warning! Factor Involved In an Interaction. 

Actual F•ctors 
A! DI•.J'rop/DI8_Pod • 1.170 
a: DI•_Propllen.Pod s o.nso 
C: DI•.J'rop/TL_Pod • 2.155 

0.3027 D: Dla_Prop/SD_Pod = 2.375 

0.2933 

J=0.8 

0.2839 

0.2745 

15.00 16.25 17.50 18.75 20.00 

Figure 4.18: DOE Analysis: The effect 
of significant factor, BAngle (E) on 

propeller torque at 1=0.8 for puller 
propulsors. 

Figure 4.19 shows the interaction effect AE (Dp00/DProp and HAngJe) on KTProp; it shows 

that the influence of the factor Dp00/DProp was more obvious at a high hub angle i.e. 

increasing the ratio increased KTProp at a faster rate at high hub angle. When the factor 

Dp00/DProp was low, there was little change in KTProp (within 2% based on the lower K7Prop) 

due to change in hub angle. However, when the ratio was high, there was a highly 

significant effect of hub angle on K7Prop (approximately 8% based on the lower K7Prop). 

This indicated that for a fat pod with respect to the propeller (higher value of DPoctiDProp), 

the hub angle had more effect on KTProp (as the hub angle increases, the KTProp increases) 

than a slender pod with a low value of the factor DPoctiDProp· A similar interaction effect 

was also found on Krunit and KQ. 
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Figure 4.20 shows the interaction effect BD (Lpoo/DProp and So;stfDProp) on Krunit at 1=0.8; 

it shows that the effect of the factor Lp00/DProp was opposite at the high and low values of 

SoistiDProp· At the low LPod/DProp value, the increase of SoistiDProp increased the Krunit• 

whereas at high LPod/DProp value, the increase of So;stfDProp decreased the Krunit· In other 

words, for the low So;s1/DProp case, increasing LPod/DProp increased the Krunit. but for the 

high So;stfDProp case, increasing LPod/DProp decreased the Krunit· 

0.1787 

0.1721 

0.1664 

0.1 ~87 

0.1521 

• E-16.000 
4 E+ 20.000 

Actual F•ctol"8 
B: Len_Pod/Dio_Prop • 1. 786 
C: TUDio_Prop • 0.4100 
D: SD/Dio_Prop • 0.4300 

Figure 4.19: DOE Analysis: The 
interaction effect of significant factors, 

DPodl DProp (A) and BAngle (E) on 
propeller thrust at 1=0.8 for puller 

propulsors. 

0.1530 

0 .1-471 

0 .1413 

0.13&4 

0.1295 

• [).. 0.370 
• D+ 0.490 
Actual Facton: 
A: Dla_Pod/Dia _Prop :: 0.5400 
C: TL/Dio_Prop • 0.4100 
E: Hub Angle • 17.50 

Figure 4.20: DOE Analysis: The 
interaction effect of significant factors, 

LPod/DProp (B) and SoisJDProp (D) on 
unit thrust at 1=0.8 for puller 

propulsors. 

4.4.2 Discussion on Pusher Configuration 

Table 4.2 lists all the factors and interactions of factors that have significant influence on 

the performance coefficients K7Prop. KQ, lJProp. Krunit and lJUnit for the pusher propulsors in 

the pod series. Table 4.2 shows that the significant factors that came up repeatedly over 

the range of J values were A (Dp00/DProp), B (LPod/DProp), C (TL), D (So;stfDProp), E 
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(HAngJe). AB (interaction of DPoctfDProp and LPoctfDProp) and BC (interaction of Lpoct/DProp 

and TL). 

The factor HAngle had significant impact on KTProp. KQ, IJProp and IJUnit for all values of 

advance coefficient, whereas the factor A (DPoctfDProp) had significant impact at moderate 

and high values of advance coefficient (in the range of 1=0.4-1.1 ). The factor B 

(Lp0 ctiDProp) had significant influence in the form of interaction with D (SoistiDProp) on 

Krunit at moderate values of 1 (in the range of 1=0.4-0.7) and as an individual factor at 

high values of 1 (in the range of 1=0.9-1.1). The factor D (SoistiDProp) appeared to have 

significant effect on KTProp and IJProp at advance coefficients of 0.8 and higher. The factor 

C (TL/DProp) had a noticeable impact on Krunit at low and moderate values of advance 

coefficient as shown in Table 4.2. 
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Table 4.2: Fractional factorial design results: List of significant factors and 
interaction of factors for pusher propulsors. Here, A is the ratio of pod diameter to 

propeller diameter, DPoctiDProp' B isthe ratio of pod length to propeller diameter, 
LPoiDProp, Cis the ratio of pod taper length to propeller diameter, TLIDProp, Dis the 

ratio of strut distance to propeller diameter, SDistiDProp' and E is the propeller hub 
taper angle, HAn2le• 

Significant factor and interaction of factors 
1 KTPro Krunit KQ 1JProp 1JUnit 

0.00 E BC c AB E - - - -
0.10 E BC c AB E E E AB 
0.20 E BC c AB E E E AB 
0.30 E c AB E E A,E 
0.40 A,E A,C BD E A,E A,E 
0.50 A.E A,C BD A,E A,E A,E 
0.60 A,E A,C BD A,E A,E A,E 
0.70 A,E A,C BD A,E A,E A,E 
0.80 A,D,E A,C A,E A,D,E A,E 
0.90 A,D,E B,C A,E A,D,E A,E 
1.00 A,D,E B A,E A,D,E A,D,E 
1.10 A,E B A,E A,D,E A,D,E 

Figure 4.21 shows the effect of the factor DPoctiDProp on KTProp at 1=0.8. For a fixed 

propeller diameter, as the pod diameter increased the KTProp increased. The larger pod 

diameter created larger blockage to the flow in front of the propeller. The blockage in the 

flow reduced the local flow velocity, thus the propeller operated at lower effective 

advance coefficient, which resulted in an increase in KTProp· The parameter, DPoctiDProp had 

similar effect on KTProp• KQ, 1JProp and 1Junit for the other advance coefficient values shown 

in Table 4.2. Figure 4.22 shows the effect of the factor DPoctiDProp on Krunit at 1=0.8. For a 

fixed propeller diameter, as the pod diameter increased the KTProp decreased. A larger pod 

diameter means higher drag on the pod, along with a larger blockage effect, which 

resulted in lower unit thrust. 
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One Factor Plot 
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Figure 4.21: DOE Analysis: The effect 
of DPod/ DProp (A) on propeller thrust at 

1=0.8 for pusher propulsors. 
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Figure 4.22: DOE Analysis: The effect 
of DPod/ DProp (A) on unit thrust at 

1=0.8 for pusher propulsors. 

Figure 4.23 and 4.24 show the effect of the factor taper length, C (TL/DProp) on K runi t at 

1=0.0 and 1=0.8, respectively. For a fixed propeller diameter, as the pod taper length 

increased the Krunit increased. Taper length showed a similar effect on unit thrust at other 

advance coefficients but as the advance coefficient increased the effect decreased. The 

factor did not have significant effect on KTProp. KQ, ~Prop and ~Unit at any of the advance 

coefficients. 
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Figure 4.23: DOE Analysis: The effect 
of TL/ DProp (C) on unit thrust at 1=0.0 

for pusher propulsors. 
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Figure 4.24: DOE Analysis: The effect 
of TL/ DProp (C) on unit thrust at 1=0.8 

for pusher propulsors. 

Figure 4.25 shows the effect of pod length, Lp00/DProp on Krunit at 1=0.9. As the pod 

length increased, the Krunit decreased meaning longer pods had lower unit thrust. This 

can be associated with the increased drag on the pod body with the increase of pod 

length. The parameter Lp0ctiDProp showed a similar effect on only unit thrust at higher 

advance coefficients (1 greater than 0.9). Figure 4.26 shows the effect of the strut 

distance, D (SoistfDProp) on propeller thrust; it shows that at 1=0.8, as the strut distance 

increased, the KIProp tended to decrease slightly because of decreasing blockage effect of 

the strut. The factor, SoislDProp showed similar effect on ?;'Prop and ?;'Unit at high advance 

coefficients. 
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Figure 4.25: DOE Analysis: The effect 
of LPoi DProp (B) on unit thrust at 

1=0.9 for pusher propulsors. 
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Figure 4.26: DOE Analysis: The effect 
of Snistl DProp (D) on propeller thrust at 

1=0.8 for pusher propulsors. 

Figures 4.27 and 4.28 show the effect of hub angle, BAngle on KTProp at 1=0.0 and 1=0.8, 

respectively. As the hub angle increased, the KTProp also increased. The effects are similar 

as in the puller configuration. The parameter, B Angle had a similar effect on KTProp. KQ, 

?]Prop and ?]unit for the other advance coefficient values as shown in Table 4.2 but did not 

have any effect on Krunit at any advance coefficients. For the pusher propeller with a high 

hub angle of 20°, the angle of attack at the blade root section is increased substantially 

and the leading area is decreased; this combined effect at this hub angle range may have 

resulted in an increased thrust as well (Islam et al. 2006a). 
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Figure 4.27: DOE Analysis: The effect 
of H Angle (E) on propeller thrust at 

1=0.0 for pusher propulsors. 
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Figure 4.28: DOE Analysis: The effect 
of H Angle (E) on propeller thrust at 

1=0.8 for pusher propulsors. 

The interaction of factors B and C, i.e. BC, (Lp00/DProp and TL/DProp) had noticeable effect 

on KTProp when 1 was equal to 0.3 or less. Figure 4.29 shows that for constant propeller 

diameter, at 1=0 and at lower taper length, increasing pod length resulted in lower 

propeller thrust, whereas at higher taper length, increasing pod length resulted in higher 

propeller thrust. 

Figure 4.30 shows the interaction effect of AB (Dp00/DProp and LPod/DProp) on unit thrust at 

1=0. It shows that for constant propeller diameter, at lower pod diameter, increasing pod 

length resulted in an increase in unit thrust, whereas at higher pod diameter, increasing 

pod length produced a lower unit thrust. A similar effect was found in the range of 1=0 

to 0.4. 
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Figure 4.29: DOE Analysis: The 
interaction effect of LPod/DProp (B) and 
TL/DProp (C) on propeller thrust at 1=0 

for pusher propulsors. 
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Figure 4.30: DOE Analysis: The 
interaction effect of DPod/DProp (A) and 
LPod/DProp (B) on unit thrust at 1=0 for 

pusher propulsors. 

This chapter presents the results and analysis of the experimental study of a series of 16 

pods, which were designed using a fractional factorial design technique to study the 

effects of five geometric parameters (pod diameter, pod length, pod taper length, strut 

distance and propeller hub angle) of podded propulsors in pusher and puller 

configurations. The experimental data on the pod series were acquired using a custom-

designed pod testing system at the OERC towing tank at Memorial University. The 

factors and interaction of factors that have significant influence on the performance 

coefficients K7Prop, KQ, ?}Prop, Krunit and ?}Unit for both the puller and pusher propulsors in 

the pod series are presented. In puller configuration, the significant factors that come up 

repeatedly over the range of J values were A (the ratio of pod diameter to propeller 

diameter, DPod/DProp), D (the ratio of strut distance to propeller diameter, S DistiDProp), E 
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(hub taper angle, BAngle), AE (interaction of DPod/DProp and BAngle) and BD (interaction of 

LPod/DProp and SoistiDProp). The factor C (the ratio of pod taper length to propeller 

diameter, TL/DProp) did not show any significant influence on the performance 

coefficients at any advance coefficient. It was found that in the pusher configuration, the 

significant factors that came up repeatedly over the range of J values were A (DPod/DProp), 

B (LPod/DProp), c (TL), D (SoistiDProp). E (BAngle), AB (interaction of DPod/DProp and 

LPod/DProp) and BC (interaction of Lp00/DProp and TL). 
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5 Study of Pod at Static Azimuthing Conditions 

5.1 Chapter Objectives 

This chapter presents the results, analysis and the subsequent interpretation of the 

experimental results of the propulsive characteristics of puller and pusher podded 

propulsors in static azimuthing open water conditions. It presents the variations in the 

performance coefficients of one of the two average pod units with change of azimuthing 

angle and advance coefficients in non-dimensional forms. A comparison of the 

performance coefficients at different azimuthing angles between the puller and the pusher 

configurations is also provided. 

5.2 Test Results 

The propeller thrust coefficient, KTProp• propeller torque coefficient, IOKQ, unit thrust 

coefficient, Krunit. transverse force coefficient, KFY, vertical force coefficient, Kn, axial 

moment coefficient, KMX, transverse moment coefficient, KMY, and steering moment 

coefficient, KMZ, values versus advance coefficients at different static azimuthing angles 

for the pod unit in puller and pusher configurations are presented in this section. The 

static azimuthing angle was varied in the range of +30° to -30° with various increments 

(a total of 11 azimuthing angles) and the advance coefficient was varied from 0 to 1.2 as 

shown in section 3.2.2. The propeller thrust was defined in the direction of the propeller 

axis. The positive direction of azimuth angle for the pod unit is shown in Figure 2.11 in 
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Chapter 2. For example, in all Figures, the legend PortiO means the pod unit was placed 

at 10° away from the straight course position in an anticlockwise direction (looking 

toward the pod unit from the top). 

5.2.1 Puller Configuration 

The propeller thrust and torque coefficient curves of the model propulsor in puller 

configuration are shown in Figures 5.1 and 5.2, respectively. The propeller thrust 

coefficients remained approximately the same for 30° (Port) and -30° (Starboard) static 

azimuth angles. The same conclusion applies for other azimuthing conditions in the two 

opposite angular positions at all advance coefficient values. A few exceptions were 

observed, which might be attributed to experimental uncertainty or the variations in the 

local propeller blade induced axial velocity. At bollard pull condition, the propeller thrust 

remained approximately the same for all azimuthing conditions. In straight-ahead 

condition, the thrust curve crossed the zero thrust line when the advance coefficient 

exceeded 1.1. At azimuthing conditions, the positive thrust occurred beyond the advance 

coefficient values of zero thrust at the straight-ahead conditions. The propeller torque 

coefficients, as shown in Figure 5.2, showed a similar trend as the thrust coefficient in the 

corresponding operating conditions. Tables A.7 and A.8 present the propeller thrust and 

torque coefficients of the pod unit in all static azimuthing angles. 
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Variation of Propeller Thrust Coefficient, KTPro , with Azimuthing Angle 
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Figure 5.1: Propeller thrust coefficient vs. advance coefficient at constant values of 
azimuthing angles in the puller configuration. 
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Figure 5.2: Propeller torque coefficient vs. advance coefficient at constant values of 

azimuthing angles in the puller configuration. 
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For puller configuration, the unit thrust, transverse force and vertical force coefficients of 

the pod for the range of advance coefficients and azimuth angles tested are presented in 

Figures 5.3, 5.4 and 5.5, respectively. The unit thrust decreased as the advance coefficient 

increased for all static azimuthing angles. At bollard pull condition, it did not remain the 

same as propeller thrust; as the azimuthing angle increased the unit thrust decreased in 

both azimuthing directions. The transverse force coefficient curves show an increase in 

magnitude with both positive and negative azimuthing angles but in opposite directions 

with the increase of advance coefficient, J. In bollard pull condition, as the azimuthing 

angle was increased, the magnitude of the transverse force on the pod unit also increased. 

The vertical force coefficients (downward positive) for a positive azimuthing angle, 

increased with the increase of advance coefficient from 0 to 0.8 (approximately), and 

then tended to decrease. However, for negative azimuthing conditions the vertical force 

acted upwards. In that condition, the nature of the curves of the vertical force coefficients 

was similar to that of the positive azimuthing conditions but of lower magnitude. The 

vertical force remained approximately constant (slightly negative, upward) at all 

azimuthing conditions at the bollard pull condition. Tables A.9, A.lO and A.ll present 

the unit thrust, transverse force and vertical force coefficients of the pod unit in all static 

. azimuthing angles. 
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Variation of Unit Thrust Coefficient, K rurnt' with Azimuthing Angle 
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Figure 5.3: Unit thrust coefficient vs. advance coefficient at constant values of 
azimuthing angles in the puller configuration. 
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Figure 5.4: Transverse force coefficient vs. advance coefficient at constant values of 
azimuthing angles in the puller configuration. 
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Advance Coefficient, J 
Figure 5.5: Vertical force coefficient vs. advance coefficient at constant values of 

azimuthing angles in the puller configuration. 

The axial, transverse and steering moment curves are shown in Figures 5.6, 5.7 and 5.8, 

respectively. The trend of the axial moment coefficients, at all azimuthing angles is 

approximately similar to those of transverse force. Again, the trend of the transverse 

moment curves, at all azimuthing angles is approximately similar to those of unit thrust, 

which suggests that the primary contributor to the transverse moment is the unit thrust. 

Figure 5.8 shows the change of steering moment coefficients with advance coefficient 

and azimuth angles in puller configurations. The steering moment (vertical moment about 

z-axis) showed an increasing tendency in magnitude with the increase of advance 

coefficients for both positive and negative azimuthing angles but in opposite directions. 

At straight-ahead condition, the steering moment remained approximately the same with 
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the increase of advance coefficient. At bollard pull condition, the steering moment 

remained approximately constant (slightly less than zero) for all azimuthing angles. 

Tables A.l2, A.l3 and A.14 present the unit axial, transverse and steering moment 

coefficients of the pod unit in all static azimuthing angles. 
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Figure 5.6: Axial moment coefficient vs. advance coefficient at constant values of 
azimuthing angles in the puller configuration. 
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Figure 5.7: Transverse moment coefficient vs. advance coefficient at constant values 
of azimuthing angles in the puller configuration. 

Vanation of Steering Moment oefficient, KMZ' with Az1muthing Angle 

0 s A vera e Pod 01 In Puller Conti oration 
· Stbd30 

'<~ 0.4 [----+-

..: 0.3 = 1-----
Q,j 

·o o.2 s 1---4---

..... = S 011ii!!!lll 
0 

~-O.I 
~ 
CJ 
~-0.2 
Q,j 

> 
-0.3 

Stbd20 
StbdiS 
StbdiO 
StbdOS 
Straight 
PortOS 
PortiO 
PortiS 
Port20 
Po 

!-

Advance Coefficient, J 
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5.2.2 Pusher Configuration 

In the pusher configuration, the propeller thrust and torque coefficient curves, as shown 

in Figures 5.9 and 5.10, behaved differently for the opposite azimuthing conditions. For 

the range of advance coefficients considered, the propeller thrust coefficient was higher 

than those of the straight course conditions for positive (port) azimuth angles and were 

lower for negative (starboard) azimuth angles. An explanation for this trend is provided 

in section 5.3.1. At ballard pull condition, the thrust coefficient did not remain constant in 

contrast to puller configuration. The propeller torque coefficients showed a similar trend 

as the thrust coefficient in the corresponding operating conditions. Tables A.15 and A.16 

present the propeller thrust and torque coefficients of the pod unit in all static azimuthing 

angles. 
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Figure 5.9: Propeller thrust coefficient vs. advance coefficient at constant values of 

azimuthing angles in the pusher configuration. 

117 



Study of pod at static azimuthing conditions 

Variation of Propeller Torque Coefficient, 10KQ, with Azimuthing Angle 
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Figure 5.10: Propeller torque coefficient vs. advance coefficient at constant values of 

azimuthing angles in the pusher configuration. 

The unit, transverse and the vertical force coefficients of the pod in pusher configuration 

for the range of advance coefficients are shown in Figures 5.11 , 5.12 and 5.13, 

respectively. The nature and magnitude of the transverse force coefficient values with the 

change of advance coefficient and azimuthing conditions were different than those in 

puller configuration. The trend of the curves of the vertical force is different from the 

corresponding curves in the pull configuration. For straight-ahead condition, the vertical 

force acted upward and increased with increasing advance coefficients. At higher positive 

azimuthing angles, the vertical force acted downwards and tended to increase with 

increasing advance coefficient and azimuthing angles. For negative azimuthing 

conditions, the vertical force always acted upward and increased with increasing advance 
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coefficients and azimuthing angles. Tables A.17, A.18 and A.l9 present the unit thrust, 

transverse force and vertical force coefficients of the pod unit in all static azimuthing 

angles. 
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Figure 5.11: Unit thrust coefficient vs. advance coefficient at constant values of 

azimuthing angles in the pusher configuration. 
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Advance Coefficient, J 
Figure 5.12: Transverse force coefficient vs. advance coefficient at constant values of 

azimuthing angles in the pusher configuration. 
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Figure 5.13: Vertical force coefficient vs. advance coefficient at constant values of 
azimuthing angles in the pusher configuration. 
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The axial, transverse and steering moment curves are show in Figures 5 .14, 5.15 and 

5.16, respectively. The axial moment showed an increasing tendency with the increase of 

advance coefficients for positive azimuthing angles and a decreasing tendency with the 

increase of advance coefficients for negative azimuthing angles with a steady behaviour 

for straight course conditions. The transverse moment coefficient showed a different 

trend in the pusher configuration than the puller configuration with respect to advance 

coefficients and azimuthing conditions considered. A decreasing tendency with the 

increase of advance coefficients for all azimuthing conditions was observed. In this 

configuration, the transverse moment did not show any visible trend with the change of 

azimuthing conditions at fixed advance coefficients. The steering moment showed an 

increasing tendency with the increase of advance coefficients for positive azimuthing 

angles and a decreasing tendency with the increase of advance coefficients for negative 

azimuthing angles and a steady behaviour for straight course conditions. Tables A.20, 

A.21 and A.22 present the unit axial, transverse and steering moment coefficients of the 

pod unit in all static azimuthing angles. 
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Variation of Axial Moment Coefficient, KMX, with Azimuthing Angle 
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Figure 5.14: Axial moment coefficient vs. advance coefficient at constant values of 

azimuthing angles in the pusher configuration. 
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Figure 5.15: Transverse moment coefficient vs. advance coefficient at constant 

values of azimuthing angles in the pusher configuration. 
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Figure 5.16: Steering moment coefficient vs. advance coefficient at constant values 
of azimuthing angles in the pusher configuration. 

5.3 Discussion on Effects of Static Azimuthing Angles 

In a podded propulsor, the forces and moments on the propeller and on the whole unit in 

azimuthing condition can be seen as produced through the following mechanism. In any 

azimuthing condition, the effective axial inflow velocity relative to the uniform inflow is 

reduced (i.e. with the cosine of the angle). This reduction essentially reduces the effective 

advance coefficient defined along the propeller axis and thus increases propeller shaft 

thrust and torque. At an azimuthing angle, as the propeller blades pass through the 

oblique inflow, the unequal angles of incidence results in a normal force (normal to the 

propeller shaft and acting on the propeller centre, Stettler 2004). Also, at higher 

azimuthing angles and at higher advance speeds, the transverse roll-up of the blade wake 
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along its top and bottom edges forms two dominant yet unequal vortex bundles. 

Regardless of the direction of rotation of the propeller, the net normal force is in the same 

direction, away from the inflow (Stettler 2004). Again, because of the shape of the pod

strut body, it induces hydrodynamic lift (normal force perpendicular to its axis inducing 

transverse force and steering moment) and drag (axial force along its axis acting as pod 

drag) forces, as well as a hydrodynamic moment (Stettler 2004). In puller configuration, 

depending on the geometry, it is possible for the strut to recover some of the rotational 

energy in the propeller slipstream, by acting as lifting bodies, which generates a force 

with a forward acting component (Halstensen and Leivdal 1990). In pusher configuration, 

as mentioned in (Stettler 2004), two kinds of hydrodynamic interaction occurs : firstly, the 

interaction effects due to the effects of the propeller inflow on the flow past the propulsor 

pod (i.e. an added resistance analogous to the drag augmentation or thrust deduction used 

for normal shafted propellers), and secondly, the converse (i.e. the effect of the pod wake 

on the propulsor inflow, analogous to the wake fraction and inflow wake field used for 

normal shafted propellers). These forces and moments together with the interaction 

between the pod and the propeller play an important role in determination of the 

propulsor maneuvering forces and moments, especially at moderate to large azimuthing 

angles. 

Figure 5.17 illustrates the concept of propeller and pod wake inflow variations for a 

generic case for the puller and pusher podded propulsors in static azimuthing conditions. 

The figure shows the combination of pod and the propeller wake region due to the 
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uniform inflow and propeller blade rotation. In puller configuration there is a large region 

where the propeller wake interacts with the pod wake. In pusher configuration, a portion 

of the propeller blades works under the influence of pod wake. Thus, the inflow to the 

propeller disk can also possess circumferential variation due to the existence of the wake 

of the pod when the pod is azimuthed relative to the inflow. This conceptual wake 

interaction in pusher configuration was also observed in the flow visualization study by 

Stettler (2005). A brief discussion on the phenomena is followed next. 

Uniform Inflow 

Uniform Inflow 

Figure 5.17: Conceptual propeller and pod wake at static azimuthing angles with: 
left for puller configuration and right for pusher configuration. 

In the flow visualization and PIV studies, Stettler (2004) illustrated a wake distortion, 

which occurs when the propeller is subjected to oblique inflow. The upstream side of the 

wake is stretched, while the downstream side of the wake is compressed. The net effect is 

a slight difference in wake pitch as measured on the upstream and downstream sides of 

the wake. The magnitude of velocity (or induced velocity) is greater for the "upstream" 

or "outboard" side of the wake for the azimuthed case (for the horizontal wake cut). An 
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explanation for this wake velocity asymmetry can be understood by considering that the 

vortex wake undergoes distortion under the oblique inflow. Experiments for helicopters 

in forward flight have confirmed vortex wake distortion effects. Although the blade 

geometry and loading distribution of a helicopter blade is clearly different than a 

"typical" marine propeller, it can be expected that the same basic relationship between 

blade and tip helices would remain (Gray 1992, Done and Balmford 2001). For small 

azimuth angles, the effect is small, but noticeable. In the PIV study by Stettler (2004), it 

was found that the average total and average perturbation (induced) wake velocities for 

the conditions with azimuth are noticeably greater than the oo condition. This increase in 

wake velocity is intuitively linked to an increase in thrust. 

The unit thrust and the transverse force can be related to the propeller thrust and normal 

force components by equation 5.1. 

[Tunit] = [c~s B -sin B][TProp] 
Fy smB cosB N 

5.1 

The propulsor also produces vertical forces at azimuthing conditions due to the pressure 

difference on the top and bottom of the unit, which results from the interaction effect 

between the pod-strut body and the propeller wake. The axial moment of the unit 

(moment about X axis) is primarily attributed to the transverse force and the shaft torque. 

The transverse moment on the unit is attributed mainly to the unit thrust and vertical 

force. The steering moment can primarily be attributed to the transverse force produced 

by the pod unit. 
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The unit thrust, transverse force, and steering moment, are important from a steering and 

manoeuvring point of view, whereas the unit vertical force, axial and transverse moments 

are important from a structural point of view. The unit force is generally related to the 

ship powering prediction and the combination of unit transverse force and steering 

moment is related to the steering and manoeuvrability of the ship. Adequate knowledge 

about the nature of global forces and moments with the change of loading and azimuthing 

conditions is essential for the improvement of the design of podded propulsors. This 

section presents a detailed discussion of the trend of the coefficients of the propeller and 

the pod unit with the change of the propeller loading (advance velocity) and azimuthing 

angle in static azimuthing conditions. 

5.3.1 Propeller Shaft Local Thrust and Torque Coefficients 

The propeller thrust coefficient curves at constant advance coefficients for the model pod 

unit in puller and pusher configurations are shown in Figures 5.18 and 5.19, respectively. 

In the puller propulsor the propeller thrust coefficient increased with increasing 

magnitude of azimuthing angle for a given advance coefficient and were approximately 

symmetric about the straight ahead condition (zero azimuth angle), i.e. approximately the 

same value for equal port and starboard static azimuth angles. At azimuthing angles in 

puller configurations, the inflow to the propeller blades becomes unsteady, and there is a 

spanwise non-uniform local velocity distribution over the blade. These resulted in an 

increased thrust at the azimuthing conditions at any advance coefficient value as 

compared to those at straight-ahead conditions at the corresponding operating conditions. 
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It should be noted that the advance coefficient is defined in the X direction of the inertia 

frame and not in the direction of the propeller axis. This means the effective advance 

coefficient in the direction of the propeller axis was reduced, which resulted in higher 

thrust in the corresponding operating conditions. 

For a pusher propulsor, as shown in Figure 5.19, the propeller thrust coefficients were not 

symmetric at port and starboard azimuthing angles. For all advance coefficients, the 

propeller thrust coefficient was higher for positive (port) azimuthing angles than those in 

straight course conditions. On the other hand, the propeller thrust coefficients were lower 

for negative (starboard) azimuthing angles. In the tests, the maximum propeller thrust 

was found at a 30° azimuth angle on the port side and the lowest thrust was found at -30° 

azimuth angle on the starboard side. It was also observed that the propeller thrust was less 

sensitive to changes in the azimuthing angle (in the range from -30° to 30°) for starboard 

values than port values. This asymmetry in propeller thrust can be attributed to the 

presence of the pod-strut housing in front of the propeller (propeller works in the pod

strut wake) and the effect of the direction of propeller rotation (right-handed propeller). A 

possible explanation for these observations for pod in pusher configuration was reported 

in (Stettler 2004) as described below. 

In pusher configuration, the strut in front of the propeller creates a blockage of the flow 

into the propeller across the top of the pod, and results in an induced swirl around the pod 

housing and into the propeller, in addition to the clockwise swirl induced by the normal 
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right-handed propeller rotation (Stettler 2004). This additional induced swirl causes an 

asymmetric swirl inflow into the propeller. For a positive propulsor rotation angle (port), 

the strut induced swirl decreases the normal clockwise inflow swirl to the right-handed 

propeller, and for a negative propulsor angle, it increases the normal clockwise inflow 

swirl to the propeller (Stettler 2004). The net result was increased angle of attack at the 

blades for positive propulsor rotation (increased lift i.e. shaft thrust and lift-induced drag 

i.e. shaft torque) and decreased angle of attack at the blades for negative propulsor 

rotation (decreased lift i.e. shaft thrust and lift-induced drag i.e. shaft torque). Also, as the 

azimuthing angle increase, the strut induced effect increases, thus increasing or 

decreasing of the propeller thrust and torque occurs in the corresponding azimuthing 

directions. This type of force asymmetry for "pusher" type pods and thrusters was also 

noted in (Norrby and Ridley 1980), and more recently in (Heinke 2004) and 

(Grygorowicz and Szantyr 2004). 

Overall, the thrust from the puller propeller at any advance coefficient and at any 

azimuthing angle was found to be higher than the thrust for the pusher propeller in 

corresponding operating conditions. This is primarily attributed to the sign of the hub 

taper angle of the propellers in the two configurations (Islam et al. 2006a). 
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Variations of Propeller Thrust Coefficient with Azimuthing Angles 
Average Pod 01 in Puller Configuration 
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Figure 5.18: Propeller thrust coefficient vs. azimuthing angle at constant values of 
advance coefficient in the puller configuration (left handed propeller). 

Variations of Propeller Thrust Coefficient with Azimuthing Angles 
Average Pod 01 in Pusher Configuration 
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Figure 5.19: Propeller thrust coefficient vs. azimuthing angle at constant values of 
advance coefficient in the pusher configuration (right handed propeller). 

130 



Study of pod at static azimuthing conditions 

The propeller torque coefficient curves in puller and pusher configurations are shown in 

Figures 5.20 and 5.21, respectively. The propeller torque was defined about the propeller 

axis. For a puller propulsor, shaft torque coefficient remained approximately the same for 

opposite static azimuth angles; this is similar to the propeller thrust coefficient values. As 

for the thrust coefficient, the torque along the propeller axis was increased compared with 

that at straight ahead courses. In pusher configuration, the shaft torque behaved similarly 

to that of the shaft thrust at the corresponding advance coefficient and azimuthing angles. 

Similarly to the thrust coefficient, the shaft torque coefficient in the puller configuration 

was higher than that in the pusher configuration at all corresponding operating 

conditions. 

30 

Figure 5.20: Propeller torque coefficient vs. azimuthing angle at constant values of 
advance coefficient in the puller configuration (left handed propeller). 
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Variations of Propeller Torque Coefficient with Azimuthing Angles 
Average Pod 01 in Pusher Configuration 
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Figure 5.21: Propeller torque coefficient vs. azimuthing angle at constant values of 
advance coefficient in the pusher configuration (right handed propeller). 

5.3.2 Unit Thrust Coefficients 

For the pod in puller configuration, the unit thrust coefficients for the range of advance 

coefficients and azimuth angles tested are presented in Figure 5.22. The unit thrust 

coefficient, Krunit. sometimes also called the axial force coefficients, KFX refers to the 

thrust of the whole pod unit whereas the propeller thrust is the thrust of the propeller 

only. It is the unit thrust which is of importance in assessing the thrust available for ship 

propulsion. The unit thrust coefficient decreased as the advance coefficient increased for 

a given azimuth condition. As the azimuthing angle was changed from oo to 30° or from 

oo to -30°, generally the KFX decreased. However, there was an asymmetry such that the 

maximum thrust coefficient occurred at a positive (i.e. port) azimuthing angle of 10° for 
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most of the advance coefficients. The reduction of the axial force was stronger for the 

negative azimuth direction, i.e. for the left hand propeller and the clockwise azimuth 

direction (in the present case, oo to -30° azimuth angles, see Figure 5.22). In other words, 

the force increase was greater with the azimuthing direction coinciding with the propeller 

rotation direction (the pod azimuths in a counter clockwise direction, looking down on 

the pod from above with a left hand screw propeller, looking from downstream). The 

asymmetry in unit thrust due to the propeller turning direction results from the interaction 

between the propeller wake and the strut. The strut acts as a lifting body and due to the 

propeller-strut interaction, it is likely that at small positive azimuthing conditions, thrust 

is added, or drag is reduced, on the unit. It is well known that a rudder downstream of a 

propeller adds thrust in certain steering (most) conditions (Carlton 1994, Halstensen and 

Leivdal 1990). It is well known that a left-handed propeller produces a "pull" to the port 

side implying that the rotation is stronger on the lower blade pass than the upper blade 

pass, which is nearer to the surface (Gerr 1989). The stronger swirl on the lower side with 

the strut rotated to port azimuthing angles leads to a lift force that has a component 

forward. This might have resulted in higher unit thrust at the small port azimuthing 

angles ( <= 1 oo port) as compared to that of the corresponding starboard azimuthing angles 

as well as straight-ahead conditions. Detailed experimental studies for local flow 

measurements using PN or LDV are required to validate this speculation. 
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30 

Figure 5.22: Unit thrust coefficient vs. azimuthing angle at constant values of 
advance coefficient in the puller configuration (left handed propeller). 

For pusher configuration, Figure 5.23 shows the axial force or the unit thrust coefficient 

of the pod. As the azimuth angle was increased from oo to 30° or from oo to -30°, the 

KFX decreased. There was an asymmetry such that the maximum thrust coefficient 

occurred at a positive (i.e. port) azimuthing angle of 10°. Similarly to the puller 

configuration, the reduction of the unit thrust was stronger for the negative azimuth 

direction, i.e. for the right hand propeller (looking from downstream), the counter 

clockwise azimuth direction (in the present case, oo - 30° azimuth angles, looking down 

on the pod from above, see Figure 5.23). The asymmetry in unit thrust due to the 

propeller turning direction might have been due to the asymmetry of propeller thrust (see 

Figure 5.3). In pusher configuration, the total pod drag in opposite azimuthing angles 
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remains almost same, which means the differences in unit thrust in opposite azimuthing 

conditions was from the differences in the corresponding propeller thrust. Again, it could 

be because of the asymmetry due to the propeller rotation as for the puller propellers. 

Variations of Unit Thrust Coefficient with Azimuthing Angles 
A vemge Pod 01 in Pusher Configumtion 
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Figure 5.23: Unit thrust force coefficient vs. azimuthing angle at constant values of 

advance coefficient in the pusher configuration (right handed propeller). 

Overall, the pod unit thrust in the pusher configuration at any advance coefficient and any 

azimuthing condition was lower than that for the puller configuration at the 

corresponding operating conditions. 

135 



Study of pod at static azimuthing conditions 

5.3.3 Transverse Force Coefficients 

For the puller configuration, Figure 5.24 shows the change of transverse force 

coefficients with advance coefficient and azimuth angles. The propulsor showed an 

increase of transverse force with increase of advance coefficient, J, in both positive and 

negative azimuth angles but as expected in opposite directions. Zero transverse force was 

found in the range of azimuth angles from 0 to -3° for different advance coefficients. In 

puller configurations, a left hand propeller in straight-ahead operating conditions 

produced a transverse force in the port direction (positive azimuthing angle) because of 

the propeller wake and strut interactions. Zero transverse force was obtained at a small 

negative (starboard) azimuthing angle. 

Variations of Transve~e Force Coefficient with Azimuthing Angles 
Average Pod 01 in Puller Configuration 
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Figure 5.24: Unit transverse force coefficient vs. azimuthing angle at constant values 
of advance coefficient in the puller configuration (left handed propeller). 
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For pusher configuration pod, Figure 5.25 shows the change of transverse force 

coefficients with advance coefficient and azimuth angles. Zero transverse force was 

found in the range of azimuthing angles of oo to -1 o in starboard direction depending on 

the values of advance coefficients. The transverse force has two components: the pod 

drag component in the transverse direction and the propeller force component in the 

transverse direction. For pusher configurations in straight-ahead condition, the pod drag 

component in the transverse direction is near zero but the right-handed propeller still 

produces a small pull toward starboard direction. In this configuration, the difference in 

the transverse force coefficients in the two corresponding port and starboard azimuthing 

angles is more noticeable as compared to that in the puller configuration. 

Variations of Transverse Force Coefficient with Azimuthing Angles 
Average Pod 01 in Pusher Configuration 
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Figure 5.25: Unit transverse force coefficient vs. azimuthing angle at constant values 
of advance coefficient in the pusher configuration (right handed propeller). 
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5.3.4 Vertical Force Coefficients 

The pod vertical force coefficients for puller and pusher configurations are shown in 

Figures 5.26 and 5.27, respectively. The vertical force was defined positive vertically 

downward. In puller configuration, the vertical force was mostly positive for positive 

azimuthing angles (port) and generally increased with the increase of azimuthing angle 

and advance coefficient. At negative azimuthing directions, there were a small amount of 

negative vertical force and the force increased with the increase of azimuthing angle and 

advance coefficients. In positive azimuthing angles, the inflow direction, propeller 

rotational direction (left handed) and the position of the strut behind the propeller might 

have caused high pressure on the top of the pod thus producing high downward vertical 

force at positive azimuthing angles. In negative azimuthing angles, however, the opposite 

effect took place because of the propeller worked against the inflow, thus producing 

negative vertical force. In pusher configuration, the negative vertical force was produced 

at negative azimuthing angles and the force increased with the increase of azimuthing 

angles and advance coefficients. At negative azimuthing angle (starboard), the interaction 

between the strut wake and the propeller wake (right-handed) produced low pressure on 

top of the pod body, thus producing high negative (upward) vertical force. Overall, the 

magnitude of the vertical force coefficients for the pusher configuration was higher than 

that of the puller configuration. 
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30 

Figure 5.26: Unit vertical force coefficient vs. azimuthing angle at constant values of 
advance coefficient in the puller configuration (left handed propeller). 
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Figure 5.27: Unit vertical force coefficient vs. azimuthing angle at constant values of 
advance coefficient in the pusher configuration (right handed propeller). 
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5.3.5 Axial Moment Coefficients 

The axial moment coefficients plotted against azimuthing angles at constant advance 

coefficient for the puller and pusher configurations are shown in Figure 5.28 and 5.29, 

respectively. The trends of the curves in both configurations are generally similar to those 

of transverse force coefficients in the corresponding configurations, but of different signs. 

The axial moment is primarily attributed to the transverse force and the shaft torque. 

Also, the sign of the propeller rotational direction (left handed propeller for the puller 

configuration and right handed propeller for the pusher configuration) might have 

contributed to the difference in the axial moment coefficients for the two configurations. 

The high magnitude of the axial moment coefficient is because the moment was 

calculated about the global unit centre, which is 1.68m vertically above the pod centre. 

Variations of Axial Moment Coefficient with Azimuthing Angles 
Average Pod 01 in Puller Configuration 
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Figure 5.28: Unit axial moment coefficient vs. azimuthing angle at constant values of 
advance coefficient in the puller configuration (left handed propeller). 
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Variations of Axial Moment Coefficient with Azimuthing Angles 
Average Pod 01 in Pusher Configuration 

Figure 5.29: Unit axial moment coefficient vs. azimuthing angle at constant values of 
advance coefficient in the pusher configuration (right handed propeller). 

5.3.6 Transverse Moment Coefficients 

The transverse moment coefficient curves at constant advance coefficients are shown in 

Figure 5.30 and 5.31 for puller and pusher configurations, respectively. The trends of the 

curves in both configurations are generally similar to those of unit thrust coefficients in 

the corresponding configurations. The maximum transverse moment occurred at 

azimuthing angle of 1 oo Port in the both configurations and moment decreased from that 

angle in both directions of the azimuthing angles. This was observed at all advance 

coefficients except at bollard pull condition for puller configuration where the maximum 

moment occurred at straight-ahead condition. The transverse moment coefficient is 

primarily attributed to the unit thrust force. Similar to axial moment coefficient, the high 
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magnitude of the transverse moment coefficient is primarily due to the fact that the 

moment was calculated about the global unit centre, which is 1.68m vertically above the 

pod centre. 
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Variations of Transverse Moment Coefficient with Azimuthing Angles 
Average Pod 01 in Puller Configuration 
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Figure 5.30: Unit transverse moment coefficient vs. azimuthing angle at constant 
values of advance coefficient in the puller configuration (left handed propeller). 
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Figure 5.31: Unit transverse moment coefficient vs. azimuthing angle at constant 
values of advance coefficient in the pusher configuration (right handed propeller). 

5.3.7 Steering Moment Coefficients 

For puller configuration, the changes of steering moment coefficients with advance 

coefficients and azimuthing angles are shown in Figure 5.32. The steering moment 

(vertical moment about the z-axis) showed a decreasing tendency with increase of 

advance coefficient for positive azimuthing angles and an increasing tendency with the 

increase of advance coefficients for negative azimuthing angles. It was also observed that 

the steering moment was near zero for all advance coefficients in straight course 

conditions. For the puller propulsor, at straight-ahead condition, the transverse force 

generated small steering moments, which does not change with the increase of advance 

coefficients. The zero steering moments are generated in the range of azimuthing angles 
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between 0 and -2° at higher advance coefficients, which is essentially due to the non-zero 

transverse force at straight-ahead conditions. 

In pusher configurations, Figures 5.33 shows the change of steering moment coefficients 

with advance coefficient and azimuth angles. The steering moment showed an increasing 

tendency wi_th the increase of advance coefficients for positive azimuthing angles and a 

decreasing tendency with the increase of advance coefficients for negative azimuthing 

angles. The steering moment was near zero for all advance coefficients in straight course 

conditions, as in the puller configuration. The nature of the steering moment coefficient 

curves was different from those in puller configurations. At bollard pull conditions, the 

propeller thrust contributes significantly in providing the steering moments to the pod. In 

puller configuration and at the bollard pull condition, the propeller thrust remains almost 

the same for all of the azimuthing conditions, whereas in the pusher configurations it 

varies. This may have resulted in the variation of steering moment in the bollard pull 

condition for the pusher pod. The magnitude of the steering moments for the pusher pod 

was higher than for the puller propulsor at almost all corresponding azimuthing 

conditions and advance coefficients. 
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Variations of Steering Moment Coefficient with Azimuthing Angles 
Average Pod 01 in Puller Configuration 

Figure 5.32: Unit steering moment coefficient vs. azimuthing angle at constant 
values of advance coefficient in the puller configuration (left handed propeller). 
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Figure 5.33: Unit steering moment coefficient vs. azimuthing angle at constant 
values of advance coefficient in the pusher configuration (right handed propeller). 
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5.4 Summary 

The chapter presents the experimental study of shaft thrust and torque, unit forces and 

moments in the three orthogonal directions at different static azimuthing angles and 

advance coefficients for puller and pusher configurations. A model pod fitted with two 

propellers (for the two configurations) was tested using a custom designed pod testing 

system at various advance coefficients and at azimuthing angles ranging from - 30° to 

30°. The propeller shaft thrust and torque as well as the unit forces and moments were 

varied with the change of propeller loading and azimuthing angles and behaved 

differently for the two configurations, which justified separate study of the two 

configurations. 
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6 Study of pod at dynamic azimuthing conditions 

6.1 Chapter Objectives 

This chapter presents results and analyses of the experimental study into the effects of 

dynamic azimuthing conditions on the propulsive characteristics of a puller-podded unit 

in open water conditions. Results are presented for various sets of static azimuthing 

angles in the range of oo to -360° and with varying advance coefficients. A comparative 

study of static and dynamic azimuthing conditions is presented and is then followed by 

studies into the effect of azimuthing rate and shaft rps in dynamic azimuthing conditions. 

6.2 Static Azimuthing Conditions 

The propeller thrust coefficient, KTProp. propeller torque coefficient, 10KQ, unit thrust 

coefficient, Krunir. transverse force coefficient, KFY, vertical force coefficient, Krz, axial 

moment coefficient, KMX, transverse moment coefficient, KMY, and steering moment 

coefficient, KMz values for the pod unit in puller configuration are presented in this 

section. The static azimuthing angle was varied in the range of 0° to 360° (presented as 

+180° to -180°, 0° being the straight-ahead condition) with various increments and the 

advance coefficients at the values discussed in section 2.3.3 in Chapter 2. The tests were 

conducted at 28 different azimuthing angles and 10 different advance coefficients. The 

positive azimuthing angle means the pod unit was azimuthed in the port position looking 

forward (anticlockwise rotation looking from top of the unit). For advance coefficients 
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higher than 0.8, the performance coefficients were not measured when the azimuthing 

angles were higher than ±60°. This was mainly because of the limitations on the capacity 

of some of the load cells. Particularly, the thrust and the torque sensors of the pod unit 

were saturated at advance coefficients of 0.9 or higher and azimuthing angles larger than 

±60°. 

6.2.1 Propeller Thrust and Torque 

The plots for propeller thrust coefficient, K TProp• and propeller torque coefficient, 1 OKQ 

within the entire range of azimuthing angles (±180°) at constant advance coefficients are 

presented in Figures 6.1, and 6.2, respectively. 

The propeller thrust and torque coefficients of the puller propeller increased when the 

azimuthing angles were increased from the straight-ahead condition (0° angle) both in 

positive and negative azimuthing angles. In other words, the minimum thrust and torque 

were observed at straight-ahead condition at all of the advance coefficient values. The 

maximum propeller performance coefficients were observed at the azimuthing angles of 

±120°. The coefficients reduced when the azimuthing angles were greater than ±120°, 

where flow separation on the propeller blades and the pod-strut body dominated. These 

were observed for all advance coefficients above 0.2. At ballard pull condition of 1=0.0, 

the thrust and torque coefficients remained almost constant for all azimuthing angles as 

expected since there was no inflow to the propulsor. At an advance coefficient of 0.2, the 

thrust and torque coefficients in the positive azimuthing angles behaved similar to the 

149 



Study of pod at dynamic azimuthing conditions 

other higher advance coefficients but in the negative azimuthing angles, no clear pattern 

was observed. For a left-handed propeller and for low advance coefficients (i.e. 1=0.2), at 

negative azimuthing angles higher than 90°, the propeller works against the inflow and 

the propeller wash dominates over the inflow. At that low advance coefficient, the 

resultant inflow velocity into the propeller blade was smaller than that at the positive 

azimuthing conditions, where the propeller works along the inflow. At higher advance 

coefficients, the inflow was high enough to minimize the wash-inflow interaction and the 

inflow dominated in producing the thrust and the torque. There was some scatter at the 

large azimuthing angles, which can be attributed to the unsteady nature of the reverse 

wash and separation (at azimuthing angles greater than ±90°). The curves at different 

advance coefficients clearly show a non-linear trend, which can be associated with the 

changing inflow characteristics as the azimuthing angle changes. Small asymmetries in 

location and magnitude of the maxima might be due to the influences of propeller 

rotation direction and the interaction between the propeller wash and the pod-strut body. 

Propeller thrust and torque coefficient showed similar trends at corresponding azimuthing 

angles and advance coefficients, which confirms the proportional nature of lift and drag 

produced by the propeller blade elements. Tables A.23 and A.24 present the propeller 

thrust and torque coefficients data for the pod unit at all azimuthing angles, respectively. 
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Performance Variation with Static Azimuthing Angles 
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Figure 6.1: Experimental results: propeller thrust coefficient of the model pod unit 
in puller configuration (left-handed propeller in static azimuthing conditions). 

Performance Variation with Azimuthing Conditions 

~ ~--------------~P~r~o~e~l~le~r~To~r~u~e~C~o~ef~fi~c~ie~n~t~1~0~K~--------------~ 

a> 
0 

~ci 
0 .. ,... 
...ro 
c: 
G> "' • :!:1 0 
~Ill 
Oo 
0 
G> '<l: 
:::10 

[ ~ 
1-0 

(\J 

0 

0 
0 
0 

9 
Stbd 

···+- J=0.8 ···• ·- J=0.7 

--..- J=0.6 -4<- J =0.4 

_,._ J=0.2 _._. J =O.O 

- J=1.0 -"+-- J ~1.2 

Port 

-180 -160 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 

Azimuthlng Angle 

Figure 6.2: Experimental results: propeller torque coefficient of the model pod unit 
in puller configuration (left-handed propeller in static azimuthing conditions). 
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6.2.2 Unit Forces and Moments 

The unit thrust, transverse and vertical force coefficients, axial, transverse, and steering 

moment coefficients were calculated from the load cell outputs, applying a 

transformation from the load cell (global unit) coordinate system to the global unit centre 

(vertically above the pod centre), as discussed in section 2.5 in Chapter 2. 

The unit thrust coefficients KFX or Krunit for the pod unit at each of the azimuthing angles 

within the entire range of azimuthing angles (±180°) at constant advance coefficients is 

presented in Figure 6.3. The unit thrust coefficients decreased for both azimuthing 

directions but the reduction was visibly stronger for negative azimuthing angles 

particularly for higher J values and within the ±90° range of azimuthing angles. The unit 

thrust coefficients increased in magnitude for high advance coefficients (greater than 0.4) 

tested as the azimuthing angle was increased further beyond ±120°. There was some 

scatter at these larger azimuthing angles than ±90°, which can be attributed to the 

unsteady nature of the reverse wash and separation on the propeller and the pod-strut 

body. 
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Performance Variation with Azimuthing Conditions 
Unit Thrust Coefficient, K runlt 
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Figure 6.3: Experimental results: unit thrust coefficient of the model pod unit in 
puller configuration (left-handed propeller in static azimuthing conditions). 

The transverse force coefficient, as shown in Figure 6.4, showed strong dependency on 

propeller loading and azimuthing angle. The nature is similar to that of a classical rudder. 

For all advance coefficients, the transverse force coefficients increased with both positive 

and negative azimuthing angles from the straight-ahead position. The maximum 

transverse force coefficient was found in the range of ±60° to ±90° for different advance 

coefficients. For larger azimuthing angles, the transverse force decreased and approached 

zero at an azimuthing angle of 180°. For the pod unit with the puller propeller, the zero 

transverse force was observed to be in the range of 0° to -2° azimuthing angle depending 

upon the advance coefficient. 
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Performance Variation with Azimuthing Conditions 
Transverse Force Coefficient, K FY 
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Figure 6.4: Experimental results: transverse force coefficient of the model pod unit 
in puller configuration (left-handed propeller in static azimuthing conditions). 

The resultant horizontal force coefficient i.e. KFR=..f(Kn/+KFY2
), as shown in Figure 6.5, 

showed strong dependency on propeller loading and azimuthing angle. The resultant 

force was the least in straight-ahead conditions for all advance coefficients. The 

maximum resultant force was observed at ±90°. At positive azimuthing conditions, the 

resultant horizontal force was higher than that at the negative azimuthing conditions for 

all advance coefficients higher than 0.2. 

It was observed that the trends of the transverse and the resultant force coefficients in the 

moderate range of azimuthing angles of ±60°, were approximately linear. 
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Performance Variation with Azimuthing Conditions 
Resultant Force Coefficient, K FR 
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Figure 6.5: Experimental results: unit horizontal resultant force coefficient of the 
model pod unit in puller configuration (left-handed propeller in static azimuthing 

conditions). 

The vertical force coefficient curves at different static azimuthing angles and at constant 

advance coefficients are shown in Figure 6.6. The vertical force coefficients were 

positive (vertically downward) for azimuthing angles of oo to - 120° for all advance 

coefficients. The maximum vertical force was observed at azimuthing angle of -60°. In 

the azimuthing angle range of oo to 180°, the vertical force coefficients were negative 

(upward) or near zero at low advance coefficients (1<=0.4) and positive for higher 

advance coefficients. At the bollard pull condition, the vertical force on the unit was near 

zero for all azimuthing angles. With the increase of advance coefficients the vertical force 

increased at all azimuthing angles. The magnitude of the vertical force in the negative 
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azimuthing angles where much higher than at the positive azimuthing angles. The vertical 

force (lift on the propulsor) is the resultant of the interaction between the inflow velocity, 

the propeller wash and the wake of the pod-strut body, which resulted in a pressure 

difference between the top and bottom of the unit. The asymmetric nature of the vertical 

force coefficient between the positive and the negative azimuthing angles in the figure 

implies that the direction of rotation of the propeller plays an important role. Since the 

geometry is symmetric, the only variation between the cases of positive and negative of 

an azimuthing angle is the orientation of the propeller wash with respect to the inflow. 

For the negative azimuthing angles the propeller wash and the inflow are somewhat 

aligned whereas for positive azimuthing angles they oppose to each other. Tables A.25, 

A.26 and A.27 present the unit thrust, transverse and vertical force coefficients data for 

the pod unit at all azimuthing angles, respectively. 
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Performance Variation with Azimuthing Conditions 
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Figure 6.6: Experimental results: vertical force coefficient of the model pod unit in 
puller configuration (left-handed propeller in static azimuthing conditions). 

The plots for axial moment at constant advance coefficients are shown in Figure 6.7. The 

axial moment was calculated on the global centre, which is 0.5m above the pod centre 

and is primarily attributed to the transverse force. Thus the main contribution of the axial 

moment was from the transverse force. The nature of the axial moment coefficient curves 

is similar to those of transverse force coefficient curves only in the reverse order 

primarily because of the sign convention used. The maximum positive and negative axial 

moment occurred in the azimuthing angle range of ±60° to ±120°. 
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Figure 6.7: Experimental results: axial moment coefficient of the model pod unit in 
puller configuration (left-handed propeller in static azimuthing conditions). 

Figure 6.8 shows the transverse moment coefficient curves at different azimuthing angles 

and advance coefficients. The transverse moment depends on the propeller thrust, axial 

unit force and pod drag. The maximum transverse moment coefficient was observed 

around straight-ahead condition for all advance coefficients. The nature of the curves is 

similar to those of unit thrust component for all azimuthing angles. 
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Performance Variation with Azimuthing Conditions 
Transverse Moment Coefficient, KMv 
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Figure 6.8: Experimental results: transverse moment coefficient of the model pod 
unit in puller configuration (left-handed propeller in static azimuthing conditions). 

The steering moment coefficient, as shown in Figure 6.9, shows nonlinear nature with the 

change of advance coefficients and azimuthing angle. The steering moment coefficient 

increased with the larger azimuthing angles up to ±90°. For further increase in 

azimuthing angle up to ±180°, a decrease in steering moment was observed. These were 

observed for all advance coefficients but at the bollard pull condition. The steering 

moment on the propulsor was almost zero for the bollard pull conditions for all 

azimuthing angles. Tables A.28, A.29 and A.30 present the unit axial, transverse and 

steering moment coefficients data for the pod unit at all azimuthing angles, respectively. 
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Performance Variation with Azlmuthlng Conditions 
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Figure 6.9: Experimental results: steering moment coefficient of the model pod unit 
in puller configuration (left-handed propeller in static azimuthing conditions). 
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6.3 Dynamic Azimuthing Conditions 

In the present dynamic azimuthing tests, the pod unit with the propeller was rotated about 

the vertical axis, Z, (azimuthing) in a continuous motion at a certain azimuthing rate, 

while the whole test unit was moved forward at a specific advance velocity and propeller 

shaft rps. The conceptual pod and propeller wash at different operating conditions under 

dynamic azimuthing is shown in Figure 6.1 0. The figure shows the pod wake and the 

propeller wash due to the uniform inflow, the blade wake due to rotation and the 

interaction wake from the propeller and the pod. The figure shows that, roughly, the wake 

varies a lot with the change of azimuthing direction as well as the angular location of the 

unit. At any instance during dynamic azimuthing conditions, the local inflow into the 

propeller blade depends on three components, namely: contribution from the uniform 

inflow, contribution from the propeller rotation and contribution from the dynamic 

azimuthing. For example, in the top left sketch of Figure 6.1 0, the total inflow velocity is 

the addition of the contribution from the uniform inflow and the contribution from the 

propeller rotation with a deduction of the contribution from the dynamic azimuthing. 

Again, in the bottom left sketch of Figure 6.1 0, the total inflow velocity is the addition of 

the contribution from the azimuthing and the contribution from the propeller rotation with 

a deduction of the contribution from the uniform inflow. Thus, depending on the angular 

position of the pod, propeller rotation and azimuthing direction of the propulsor, the 

performance coefficients change even if the uniform inflow remains same. Certainly, the 

propeller rotation has opposite effect on top and bottom blade pass in the opposite 

azimuthing position. 
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Uniform Inflow 

Uniform Inflow 

Uniform Inflow 

Figure 6.10: Conceptual propeller wash and pod wake at dynamic azimuthing 
conditions for a left-handed propeller: from top left clockwise, clockwise azimuthing 

at the 1st quadrant (Port), counter-clockwise azimuthing in the 4th quadrant 
(Starboard), counter-clockwise azimuthing in the 1st quadrant (Port) and clockwise 

azimuthing in the 4th quadrant (Starboard). 

In the current study, measurements were taken of the forces and moments acting on the 

propeller and the whole pod unit at different advance coefficients, and at different 

dynamic azimuthing rates. Typically, a full scale podded propulsor azimuths at a rate of 

2.5°/s at the vessel's service speed (requirement from the SOLAS, Sorsimo 2006). 

During manoeuvring at slow speeds where less torque is required than in the full speed 

mode, the azimuthing rate is approximately 5°/s. Depending on the ratio of the maximum 

vessel speed to the maximum steering torque at the lower speeds, manoeuvring at 12°/s 

azimuthing rate can be considered as a special case (Sorsimo 2006). For the present 
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dynamic azimuthing study, the tests were conducted at the model scale rates of 2°, S0
, 

10°, 1S0 and 20°/s with azimuthing angles between oo and ±60°. Measurements were 

made at different advance coefficients ranging from 1=0.0 to 1=1.2 and at two different 

propeller shaft rps of IS and 8. 

6.3.1 Effects of Dynamic Azimuthing 

In the dynamic azimuthing tests, the sweep angle from oo to 360° could not be covered 

within a test run in the towing tank due to the restriction on the length of the tank. In 

order to complete the required range, the sweep range was divided into sections with 

overlaps and completed over a number of test runs. In the figures given for the 

comparison of performance parameters in static and dynamic azimuthing conditions, the 

merged raw data for the dynamic azimuthing was used unlike the static case in which the 

segment means are shown. In each range of sweep angle, an additional so was added to 

make sure that the acceleration and deceleration part to achieve the required azimuthing 

rate was not included in the considered sweep range. The data acquisition rate for both 

static and dynamic case was SOOO Hz for forces and moments and SOO Hz for azimuthing 

angle. An azimuthing rate of 10°/sec was used in this part of the study. A lOth order 

polynomial fit was used to represent the mean level of the dynamic test data to facilitate 

the comparison of the static and dynamic test results at corresponding operating 

conditions. The comparison for the two conditions was made at two advance coefficient 

values of 0.2 (low advance coefficient) and O.S (moderate advance coefficient). 
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Figures 6.11 and 6.12 compare the propeller thrust and torque coefficients between the 

static and dynamic azimuthing conditions in the azimuthing range from oo to 360°. The 

figures show the original unfiltered experimental results in dynamic azimuthing 

conditions and the averaged results in the static azimuthing conditions. In both figures, 

the left hand side figure is for low advance coefficient of J = 0.2 while the right hand side 

figure is given for J = 0.5. Both the thrust and torque coefficients at static azimuthing 

conditions (represented by the solid round black dots) fell close to the polynomial curve 

fit for the dynamic azimuthing data (black solid line). Thus, the mean values of the static 

case coincided well with the mean values the dynamic azimuthing results for both J = 0.2 

and J = 0.5 cases for oo to 360°. The discrepancy observed for J = 0.2 in the range of 

azimuthing angle from 120° to 270° can be attributed to the unsteady nature of the 

operating condition at these angles. Also the polynomial fit under estimates the second 

peak for the J = 0.5 case around 250°. The fluctuations in the magnitude of both the 

thrust and the torque coefficients (the shaded area in the figures) for both advance 

coefficients show that in dynamic azimuthing conditions, the propeller thrust and torque 

fluctuate over a considerable range and care should be taken in designing the propeller 

bearings which would be subjected to this kind of fluctuation force. A further discussion 

on the nature and accuracy of the fluctuation of the pod performance coefficients is 

provided later in this section. 
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Figure 6.11: Experimental results: comparison of propeller thrust coefficient of the 
model pod unit at static (black solid circle) and dynamic azimuthing conditions 

(black dots for raw unfiltered data and black line for lOth order polynomial fit to the 
raw data). 
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Figure 6.12: Experimental results: comparison of propeller torque coefficient of the 
model pod unit at static (black solid circle) and dynamic azimuthing conditions 

(black dots for raw unfiltered data and black line for lOth order polynomial fit to the 
raw data). 

The comparison between the static and dynamic azimuthing conditions in the azimuthing 

angle range from oo to 360° and at the advance coefficients of J = 0.2 and J = 0.5 for unit 

thrust, transverse force and horizontal resultant force coefficients are shown in Figures 

6.13, 6.14 and 6.15, respectively. High fluctuations in the magnitude of these global force 

coefficients were observed, specifically in the range of azimuthing angles between 90° to 

270° (reverse wash condition). At the higher advance coefficient of J = 0.5, the 
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fluctuations were larger than those at lower advance coefficient of J = 0.2. The mean 

force coefficients at static azimuthing conditions compare well with the 1 01
h order 

polynomial fit to the dynamic azimuthing data for most of the azimuthing angles. The 

fluctuation of the transverse force coefficient at dynamic azimuthing condition was less 

than the propeller or the unit thrust coefficient at all azimuthing angles. 
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Figure 6.13: Experimental results: comparison of unit thrust coefficient of the model 
pod unit at static (black solid circle) and dynamic azimuthing conditions (black dots 
for raw unfiltered data and black line for lOth order polynomial fit to the raw data). 
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Figure 6.14: Experimental results: comparison of transverse force coefficient of the 
model pod unit at static (black solid circle) and dynamic azimuthing conditions 

(black dots for raw unfiltered data and black line for lOth order polynomial fit to the 
raw data). 
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Figure 6.15: Experimental results: comparison of resultant horizontal force 
coefficient of the model pod unit at static (black solid circle) and dynamic 

azimuthing conditions (black dots for raw unfiltered data and black line for lOth 
order polynomial fit to the raw data). 

Figure 6.16 compares the steering moment coefficient between the static and dynamic 

azimuthing conditions at advance coefficients of 1=0.2 and J = 0.5. The steering moment 

coefficient at static azimuthing conditions (represented by the solid round black dots) fell 

close to the polynomial curve fit to the dynamic azimuthing data. Thus, the mean values 

of the static case coincide well with those of the dynamic azimuthing for both J = 0.2 and 

J = 0.5 cases for oo to 360°. Similarly to the other force coefficients mentioned above, the 

discrepancy observed both at J = 0.2 and J = 0.5 in the range of azimuthing angle from 

90° to 270° can be attributed to the unsteady nature of the operating condition and to the 

polynomial fit used. The fluctuation of the magnitude of the steering moment coefficient 

for both advance coefficients shows that at dynamic azimuthing conditions, the steering 

moment fluctuates within a considerable range and this should be taken into account 

when designing the radial and/or slewing bearing which would have to resist these large 

fluctuating moments. 
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Figure 6.16: Experimental results: comparison of steering moment coefficient of the 
model pod unit at static (black solid circle) and dynamic azimuthing conditions 

(black dots for raw unfiltered data and black line for lOth order polynomial fit to the 
raw data). 

Overall, for all forces and moments and especially in the reverse wash conditions, large 

fluctuations of forces and moments in the form of spikes were observed. For example, 

Figure 6.17 compares the fluctuations in the magnitude of the propeller thrust coefficient 

for static and dynamic azimuthing conditions at some high azimuthing angles (90° to 

270°, reverse wash condition) and at an advance coefficient of 1=0.5. In the figure, the 

oval markers indicate 5 azimuthing angles in dynamic condition and those are related to 

the unfiltered data for the corresponding static azimuthing angles. This illustrates the 

level of fluctuations observed in the static and dynamic cases. It shows that both cases, 

the propeller thrust fluctuated over a considerable range. It is also found that the range of 

fluctuation of the forces and moments in the static azimuthing tests (for a fixed 

azimuthing angle) was slightly lower than that in the dynamic azimuthing tests in the 

corresponding operating conditions. This difference can either be a reality or an 

uncertainty inherent to the measurements. A further study in evaluating the uncertainty of 

the measurements in the dynamic azimuthing cases is required to justify this difference. 
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Variation of Propeller Thrust Coeffi.cient 
Static and Dynamk Azimuthing Conditions 

Dynamic Azimutbing Rate: 1 0°/sec 
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Figure 6.17: Experimental results: comparison of propeller thrust coefficient of the 
model pod unit at static (black solid circle) and dynamic azimuthing conditions 

(black dots for raw unfiltered data and black solid line for lOth order polynomial fit 
to the raw data). 

This form of fluctuating loads was also reported in the study by Woodward (2006). 

Woodward found that these spike loads do not influence the manoeuvring response 

assessment and have only a minor impact on the manoeuvring response itself. Model test 

observations also indicate that the spike loads influence the roll behaviour of the ship 

and, in extreme cases, may even compromise the stability (Woodward 2006). 
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Nevertheless, the spike loads have a significant impact on the structural design, shaft and 

stock bearings and other related systems. Thus, careful attention should be paid to the 

manoeuvring related design and operational implications, to better understand and control 

the influence of the spike loads experienced by pod drives (Woodward 2006). 

6.3.2 Effects of Azimuthing Rate 

The experimental study into the effect of azimuthing rate on the propeller and unit forces 

and moments at dynamic azimuthing conditions within the range of +60° to -60° was 

carried out for two advance coefficients of J = 0.2 (low) and J = 0.8 (high). The propeller 

thrust and torque coefficients and the unit forces and moment coefficients were measured 

at azimuthing rates of 2°/sec, 5°/sec, 10°/sec, 15°/sec, and 20°/sec for the above operating 

conditions. The data at the dynamic azimuthing conditions are presented in terms of a 3rd 

order polynomial fit. The original unfiltered data at different azimuthing rates was too 

hard to distinguish as shown in Figure 6.18 for the case of propeller thrust coefficient. 

Each of the performance coefficients is presented in terms of a 3rd order polynomial for 

all of the azimuthing rates for each advance coefficient separately. 
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Variation of Propeller Thmst Coefficient 
Effects of Dynamic Azimuthing Rates 
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Figure 6.18: Experimental results: Original unfiltered data showing the variation of 
propeller thrust coefficient of the model pod unit with azimuthing rate in dynamic 

conditions. 

For propeller thrust and torque coefficients, as shown in Figures 6.19 and 6.20, 

respectively, the azimuthing rate did not have any noticeable effect when the azimuthing 

rate was equal to or higher than 5°/sec for positive azimuthing angles. This was observed 

for both advance coefficients. The slight difference in the performance coefficients with 

the change of azimuthing rate that was observed, especially in the azimuthing range of 0° 

to -60° was not consistence in terms of the change in azimuthing rate. The difference was 

not significant as it stayed within the uncertainty limit of the measurement (see chapter 3 

for details). Also, the uncertainty analysis was carried out only for the static cases and the 

applicability of the error bars in the test results in dynamic cases requires further study. 
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Figure 6.19: Experimental results: Variation of propeller thrust coefficient of the 
model pod unit with azimuthing rate in dynamic conditions. 
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Figure 6.20: Experimental results: Variation of propeller torque coefficient of the 
model pod unit with azimuthing rate in dynamic conditions. 

Figures 6.21, 6.22, and 6.23 show the effect of azimuthing rate on the unit thrust, 

transverse force and steering moment coefficients at two different advance coefficients. 

Overall, at advance coefficients of J = 0.2 and J = 0.8, the azimuthing rate did not show 

any appreciable effect on the performance coefficients. Similarly to propeller thrust and 

torque coefficients, the minor difference in the performance coefficients might be 

attributed to measurement error. 
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Figure 6.21: Experimental results: Variation of unit thrust coefficient of the model 
pod unit with azimuthing rate in dynamic conditions. 
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Figure 6.22: Experimental results: Variation of transverse force coefficient of the 
model pod unit with azimuthing rate in dynamic conditions. 
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Figure 6.23: Experimental results: Variation of steering moment coefficient of the 
model pod unit with azimuthing rate in dynamic conditions. 
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6.3.3 Effects of Propeller Shaft rps 

The study of the effect of propeller shaft rps on the performance coefficients at different 

azimuthing rates and advance coefficients at dynamic azimuthing conditions is presented 

in this section. The study was carried out at two propeller shaft rps of 8 and 15 and at the 

advance coefficients of J = 0.2 and J = 0.8 and at azimuthing rates of 2°/sec, 5°/sec, 

10°/sec, 20°/sec. The carriage speed was varied to maintain the same advance 

coefficients for the shaft rps of the two propellers. 

The propeller and the unit performance coefficients at the two shaft rps with various 

azimuthing rates and advance coefficients are shown in Figures 6.24 to 6.28. It was 

observed that at both advance coefficients of 0.2 and 0.8 as the shaft rps was increased 

from 8 to 15, the performance coefficients slightly increased and the increase was more 

obvious as the azimuthing angle increased. The increase in the performance coefficients 

due to the increase of propeller shaft rps was not noticeably affected by the change of 

azimuthing rate. 

The increase of the performance coefficient values with the increase of propeller shaft rps 

can be attributed to two factors, namely: Reynolds Number and the added mass effects. 

The Reynolds Number based on the propeller blade chord length at 70% of the radius at 

the propeller rps of 15 and 8 varied between 4.5x105 to 5.5x105 and 2.5x105 to 3.5x105
, 

respectively, depending upon the advance velocity range used. Thus, the increase in the 

performance coefficients might be attributed to the Reynolds Number effects. A detailed 

discussion of this effect is provided in section 2.8. The Reynolds Number in the tests at 
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shaft rps of 8 might be too low to produce any meaningful results. However, the results 

show the Scale Effect in the study. A simplified theoretical account for the added mass 

effect with constant propeller shaft rps with azimuthing range of oo to 180° was presented 

by Woodward (2006). Woodward (2006) found that the total effect of added mass was 

very small. Thus the difference in the performance coefficients due to the change of shaft 

rps can primarily be attributed to the change in flow condition (laminar, turbulent or 

transient) over the pod-strut-propeller bodies. It is noted that the difference fell inside the 

uncertainty band of the measurement. The increase in performance coefficients with the 

increase of shaft rps was consistent within the range of azimuthing angles. However, it 

might be attributed to the uncertainty in the measurements. 
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Figure 6.24: Experimental results: Variation of propeller thrust coefficient of the 
model pod unit with shaft rps and azimuthing rate in dynamic conditions. 
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Figure 6.25 Experimental results: Variation of propeller torque coefficient of the 
model pod unit with shaft rps and azimuthing rate in dynamic conditions. 
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Figure 6.26: Experimental results: Variation of unit thrust coefficient of the model 
pod unit with shaft rps and azimuthing rate in dynamic conditions. 
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Figure 6.27: Experimental results: Variation of transverse force coefficient of the 
model pod unit with shaft rps and azimuthing rate in dynamic conditions. 
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Figure 6.28: Experimental results: Variation of steering moment coefficient of the 
model pod unit with shaft rps and azimuthing rate in dynamic conditions. 
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6.4 Summary 

The experimental study into the effects of azimuthing angles, azimuthing rate and shaft 

rps on the propulsive characteristics of a puller podded unit in open water conditions at 

dynamic azimuthing conditions is presented in this chapter. The coefficients of the 

propeller and the pod unit showed a strong dependence on the propeller loading (advance 

velocity) and azimuthing angle. The open water characteristics were mostly irregular for 

the astern thrust conditions in the azimuthing angle beyond the range of 90° to 270°, 

where flow separation at the propeller blades and the pod-strut body might have occurred. 

The performance coefficients in static azimuthing conditions fit well with the 101
h order 

polynomial fit of the data obtained in the dynamic azimuthing condition in the 

corresponding azimuthing angles. The azimuthing rate did not show any noticeable effect 

on the performance coefficients in the range of azimuthing angles from +60° to -60°. At 

the advance coefficients of 0.2 and 0.8, as the shaft rps was increased from 8 rps to 15 

rps, the performance coefficients slightly increased and the increase was more obvious as 

the azimuthing angle increased. The increase in the performance coefficients due to the 

increase of propeller shaft rps was not noticeably affected by the change of azimuthing 

rate. 
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7 Conclusions 

7.1 Chapter Objectives 

In this experimental research work, the performance of puller and pusher types of podded 

propulsors with varied geometry at various static and dynamic azimuthing conditions in 

open water conditions was investigated. A summary of the objectives of this thesis work 

is provided first. Next, a summary of the results and analyses of the study is presented. 

The conclusions derived from the results and analyses are given. Finally, the chapter 

states a few recommendations for related future research work. 

7.2 Summary of the Objectives 

The thesis research consisted of two major parts. The first part focused on the propulsive 

performance of podded propulsors with varied geometry both in pusher and puller 

configurations in open water. An experimental study was made on the effects of five pod 

geometric parameters on propeller thrust, torque and efficiency, unit thrust and efficiency 

of the propulsors. The geometric parameters of the propulsors included three geometric 

parameters of the pod (length, diameter and taper length) as well as propeller hub taper 

angle and lateral strut distance from the propeller plane. The work used a fractional 

factorial design and analysis approach to study the parameters. A systematic series that 

varied the parameters within a range was used to determine the effect of the parameters 

on the performance coefficients. This provided a comprehensive set of data that was used 
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m the design and study of these propulsors. The outcome of this study was a 

quantification of the most significant geometric parameters of podded propulsors in 

affecting thrust, torque and efficiency. The results also provided guidelines to designers 

to design podded propulsors with a geometric shape suitable for a specific configuration. 

The second part of the research work focused on hydrodynamic properties of the podded 

propulsors in static and dynamic azimuthing conditions. To address the research question 

on the hydrodynamic behaviour of the podded propulsors at static and dynamic 

azimuthing conditions, two separate experimental studies were carried out. In the first 

study, two podded propulsors were tested to measure the forces and moments on the 

propeller and the unit at different static azimuthing angles within the range from -30° to 

30°. The tests were performed both with puller and pusher configurations. The results 

were used to evaluate the variations of the performance coefficients at different loading 

conditions and configurations at static azimuthing positions. In the second study, a 

second dynamometer system was used to measure forces and moments of a pod unit of 

smaller size at different dynamic azimuthing conditions in the range of oo to 360° 

azimuthing positions. The results helped to evaluate the nature of the forces and moments 

on the pod unit as the propulsor azimuths dynamically, supplying some fundamental 

information with respect to manoeuvring loads from the pod and also a base for the 

validation of numerical modeling. Additional study was carried out to evaluate the effects 

of azimuthing rate and propeller shaft rps on the performance coefficients at dynamic 

azimuthing conditions. 
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7.3 Summary of the Results 

7.3.1 Pods with Varied Geometry 

A series of 16 pods was designed using a fractional factorial design technique to study 

the effects of five geometric parameters (pod diameter, pod length, pod taper length, strut 

distance and propeller hub angle) of podded propulsors in pusher and puller 

configurations. The curves for each of the performance coefficients of the pods showed 

variations suggesting significant effects of the geometric parameters. The findings of the 

design of experiment analysis of the data are summarized at follows: 

For a fixed propeller diameter, as the pod diameter increased, the propeller thrust, torque 

and efficiency increased for both puller and pusher propulsors; this might be attributed to 

the blockage effect of the pod. However, the increase in pod diameter resulted in a 

decrease in unit thrust for the pusher propulsors. 

Pod length did not show an obvious effect on the performance coefficients of the puller 

propulsors, but it showed some effect on unit thrust coefficient of the pusher propulsors 

at higher advance coefficients. At advance coefficients of 0.9 or higher, for a fixed 

propeller diameter, as the pod length increased the propulsor unit thrust coefficient 

decreased, meaning that longer pods had lower unit thrust in the pusher configuration. 
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For the puller propulsors, as the hub taper angle increased, both propeller and propulsor 

unit thrust coefficients and efficiencies increased for all ranges of advance coefficients; 

this was more pronounced at low advance coefficients. However, hub angle had opposite 

effects on torque coefficients at low and high advance coefficients. The torque increased 

with increasing taper angle at advance coefficients of 0.7 or lower but decreased at higher 

advance coefficients. For the pusher propulsors, as the hub taper angle increased, 

propeller and unit thrusts and propeller torque coefficients and efficiencies increased for 

all ranges of advance coefficients. 

The ratio of strut distance to propeller diameter had moderate effects on propeller thrust 

and torque coefficients for puller propulsors at moderate advance coefficients but only on 

propeller thrust for pusher propulsors. As the distance of the strut leading edge from the 

propeller plane increased, the propeller thrust and torque coefficient decreased. 

Taper length of the pod aft end, the end away from the propeller, did not have any 

significant influence on performance of the puller propulsors within the range tested. 

However, it had significant effect on unit thrust of the pusher propulsors at all advance 

coefficients. For a fixed propeller diameter, as the pod taper length increased, the unit 

thrust also increased due to less pod drag on pods with high taper length. 

The interaction of the factors pod diameter and hub angle had significant effect on both 

propeller and unit thrust and torque coefficients at moderate advance coefficient for the 
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puller propulsors. For a fat pod, the influence of increased hub taper angle, which caused 

an increase in propeller and unit thrust coefficients, was more pronounced than the 

slender pod. The interaction of the factors showed little or no effect for the pusher 

propulsors. 

For the pusher propulsors, the interaction of the factors pod length and pod taper length 

had noticeable effect on propeller thrust for low advance coefficients. When the ratio of 

the pod taper length to propeller diameter was low, increasing pod length resulted in 

lower propeller thrust, whereas at higher taper length increasing pod length resulted in 

higher propeller thrust. 

For the pusher propulsors, the interaction effect of pod diameter and pod length was 

significant on unit thrust coefficient at low advance coefficients. The analysis showed 

that for a slender pod (low value of pod diameter to propeller diameter), increasing pod 

length resulted in an increase in unit thrust, whereas the opposite is true for the pod with a 

high value of the ratio of pod diameter to propeller diameter. 

For the puller propulsors, the interaction effect of pod length and strut distance was 

significant on unit thrust coefficient at moderate advance coefficients. The analysis 

showed that the impact of pod length was opposite at high and low values of strut 

distance. At the low pod length value, the increase of strut distance increased the unit 
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thrust, whereas at high pod length value, the increase of strut distance decreased the unit 

thrust. 

The measurements showed that there were significant variations in the propeller thrust, 

torque, unit thrust and propeller and unit efficiencies values due to the variations of the 

geometric parameters of the pods. The uncertainty analysis of the measurements showed 

that the level of uncertainty was within acceptable limits. The variations of the 

performance coefficients due to the geometry variations were outside the value of the 

errors, which implied that the results were significant. 

7.3.2 Pods at Static Azimuthing Conditions 

An experimental study of the performance coefficients of a model pod unit at different 

static azimuthing angles and advance coefficients was presented for puller and pusher 

configurations. A model pod fitted with two different propellers (for the two 

configurations) was tested using a custom designed pod testing system at various advance 

coefficients and at azimuthing angles ranging from -30° to 30°. Propeller thrust and 

torque and unit forces and moments in the three coordinate directions were measured at 

each of the operating conditions. 

For the puller propulsor with a left handed propeller (viewing upstream), the propeller 

thrust coefficient remained approximately the same for equal positive (port, counter

clockwise rotation viewing from top) and negative (starboard, clockwise rotation viewing 
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from top) static azimuth angles. The thrust along the propeller axis was increased at 

azimuthing angles in comparison to the straight-ahead condition. For a pusher propulsor 

with a right-handed propeller (viewing upstream), the propeller thrust coefficient was not 

symmetrical at port and starboard azimuthing angles. For all advance coefficients, the 

propeller thrust coefficient was higher for port azimuthing angles and lower for negative 

starboard azimuthing angles than those in straight course conditions. In the pusher 

configuration, the propeller thrust was less sensitive to changes in the azimuthing angle 

(in the range from -30° to 30°) for starboard values than port values. Overall, the thrust 

from the puller propeller at any advance coefficient and at any azimuthing angle was 

found to be higher than the thrust for the pusher propeller in corresponding operating 

conditions. The trend of the propeller torque coefficient curves was similar to those of the 

thrust coefficients in corresponding operating conditions. 

For puller and pusher configurations, the unit thrust coefficient decreased as the advance 

coefficient increased as expected. As the azimuthing angle was changed from oo to 30° or 

from oo to -30°, generally the unit thrust coefficient decreased. However there was an 

asymmetry such that the maximum unit thrust coefficient occurred at a positive (i.e. port) 

azimuthing angle of 10° for most of the advance coefficients. In both configurations, the 

reduction of the unit thrust was stronger for the negative azimuth direction. Overall, the 

pod unit thrust in the pusher configuration at any advance coefficient and at any 

azimuthing angle was lower than that for the puller configuration in the corresponding 

operating conditions. 
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Both in puller and pusher configurations, the propulsor showed an increase of transverse 

force with both positive and negative azimuth angles but in opposite directions with the 

increase of advance coefficient. The trend and magnitude of the transverse force in the 

pusher configuration, with the change of advance coefficient and azimuthing conditions, 

were different to those in the puller configuration. In the puller configuration, zero 

transverse force was found in the range of azimuth angles from 0 to -3° for different 

advance coefficients, but in pusher configuration, zero transverse force was found in the 

range of azimuth angles from 0 to -1 o for different advance coefficients. It should be 

noted that the propeller in the puller configuration was a left-handed and the propeller in 

the puller configuration was a right-handed, viewing from downstream. 

In puller configuration, the vertical force was mostly positive (vertically downward) for 

positive azimuthing angles (port) and generally increased with the increase of azimuthing 

angle and advance coefficient. At negative azimuthing directions, there was a small 

amount of negative vertical force and the force increased with the increase of azimuthing 

angle and advance coefficients. At positive azimuthing angles, the inflow direction, 

propeller rotational direction (left handed) and the position of the strut behind the 

propeller might have caused high pressure on the top of the pod thus producing high 

downward vertical force at positive azimuthing angles. At negative azimuthing angles, 

however, the opposite effect took place because of the propeller worked against the 

inflow, thus producing negative (vertically upward) vertical force. In pusher 

configuration with a right-handed propeller, the negative vertical force was produced at 
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negative azimuthing angles and the force increased with the increase of azimuthing 

angles and advance coefficients. At negative azimuthing angle (starboard), the interaction 

between the strut wake and the propeller wash might have produced low pressure on top 

of the pod body, thus producing high negative (upward) vertical force. Overall, the 

magnitude of the vertical force coefficients for the pusher configuration was higher than 

those of the puller configuration. 

The axial moment was defined as the moment about the X-axis (longitudinal) and was 

considered clockwise as positive. The trends of the axial moment curves in both 

configurations were generally similar to those of transverse force coefficients in the 

corresponding configurations, but of different signs. The axial moment coefficient was 

attributed to the transverse force and the shaft torque, with the transverse force being the 

main contributor. The high magnitude of the axial moment coefficient was primarily due 

to the fact that the moment was calculated about the global unit center, which was 1.68m 

vertically above the pod center. 

The transverse moment was defined as the moment about theY-axis (transverse) and was 

considered clockwise as positive. The transverse moment coefficient curves in both 

configurations are generally similar to those of unit thrust coefficients in the 

corresponding configurations. The maximum transverse moment occurred at azimuthing 

angle of + 1 oo (Port) in the both configurations and the moment decreased from that angle 

in both directions of the azimuthing angles. This was observed at all advance coefficients 
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except at ballard pull condition where the maximum moment occurred at straight-ahead 

condition. The transverse moment coefficient is primarily attributed to the unit thrust 

force. Similarly to axial moment coefficient, the high magnitude of the transverse 

moment coefficient is primarily due to the fact that the moment was calculated about the 

global unit center, which is 1.68m vertically above the pod center. 

The steering moment was defined as the moment about the Z-axis (vertical) and was 

considered clockwise as positive. The steering moment showed an increasing tendency 

with the increase of advance coefficients for both positive and negative azimuthing 

angles but in opposite direction. This was observed for both puller and pusher 

configurations. At the ballard pull condition, the steering moment remained almost 

constant with the change of azimuthing conditions in the puller configuration, but 

changed in the pusher configuration. Again, the magnitude of steering moments for the 

pusher pod was higher than the puller one at almost all corresponding azimuthing 

conditions and advance coefficients. Also, coupled with the higher transverse force 

generated by a pusher propulsor in corresponding conditions, means that higher steering 

forces would be generated by this pusher propulsor as compared with the puller 

propulsor. 

7.3.3 Pods at Dynamic Azimuthing Conditions 

The propeller thrust and torque coefficients of the puller propeller were increasing when 

the azimuthing angles were increased from straight-ahead condition (0° angle) both in 
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positive and negative azimuthing angles. The maximum propeller coefficients were 

observed at the azimuthing angles of ±120°. At the ballard pull condition, the thrust and 

torque coefficients remained almost constant for all azimuthing angles. There was some 

scatter at the large azimuthing angles, which can be attributed to the unsteady nature of 

the reverse wash and separation (at azimuthing angles greater than ±120°). The curves at 

different advance coefficients clearly show regular non-linear trends, which can be 

associated with the changing wake characteristics as the azimuthing angle changes. Small 

asymmetries in location and magnitude of the maxima might be due to the influences of 

propeller rotation direction and the interaction between the propeller wash and the pod

strut body. Propeller thrust and torque coefficient showed similar trends at corresponding 

azimuthing angles and advance coefficients. 

The unit thrust coefficients decreased for both azimuthing directions but the reduction 

was visibly stronger for negative azimuthing angles. A similar trend was found for all 

advance coefficients and within the range of azimuthing angles of ±90°. The unit thrust 

coefficients increased as the azimuthing angle was increased further beyond ±90°. 

The transverse force coefficient of the propulsor with left-handed propeller showed 

strong dependency on propeller loading and azimuthing angle. The nature is similar to 

that of a classical rudder. For all advance coefficients, the transverse force coefficients 

increased with both positive and negative azimuthing angles from straight-ahead 

condition. The maximum transverse force coefficient was found in the range of ±60° to 
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±90°. For the pod unit with the puller propeller, the zero transverse force was found for 

the azimuthing angle in the range of oo to -2° depending upon the advance coefficient. 

The vertical force coefficients were positive (vertically downward) for azimuthing angles 

of 0° to -120° for all advance coefficients. The maximum vertical force was observed at 

azimuthing angle of -60°. In the azimuthing angle range of 0° to 180°, the vertical force 

coefficients were negative (upward) or near zero at low advance coefficients (1<=0.4) 

and positive for higher advance coefficients and increased with the increase of advance 

coefficients. At the bollard pull conditions, the vertical force on the unit was near zero. 

The vertical force (lift on the propulsor) is the resultant on the interaction between the 

inflow velocity and the propeller wash, which resulted in a pressure difference between 

the top and bottom of the pod. 

The nature of the axial moment coefficient curves was similar to those of transverse force 

coefficient curves but of opposite sign primarily because of the sign convention used. The 

maximum positive and negative axial moment occurred in the azimuthing angle range of 

±60° to ± 120°. 

The maximum transverse moment coefficient was observed approximately at the straight

ahead condition for all advance coefficients. The nature of the curves was similar to those 

of unit thrust component for all azimuthing angles. 
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The steering moment coefficient varied in a nonlinear fashion with the change of advance 

coefficients and azimuthing angles. The steering moment coefficient was increasing with 

the larger azimuthing angles up to ±90°. For further increase in azimuthing angle up to 

±180°, a decrease in steering moment was observed. These were observed for all advance 

coefficients but at the ballard pull condition. The steering moment on the propulsor was 

almost zero for ballard pull conditions for all azimuthing angles. 

The comparative study of the propeller thrust and torque coefficients and unit forces and 

moments between the static and dynamic azimuthing conditions in the azimuthing range 

from oo to 360° and at advance coefficients of 0.2 and 0.5 shows that the performance 

coefficients at static azimuthing conditions coincided well onto the 101
h order polynomial 

curve fit for the dynamic azimuthing data. The discrepancy observed in the range of 

azimuthing angles from 120° to 270° might be attributed to the unsteady nature of the 

operating condition. In dynamic azimuthing conditions, the fluctuation of the magnitude 

of the performance coefficients for both advance coefficients shows a considerable range 

and care should be taken while designing the propeller and pod bearings, which would be 

subjected to the fluctuating forces. 

Propeller thrust and torque coefficients, unit thrust and transverse force coefficients and 

the steering moment coefficients were not noticeably affected by the azimuthing rate for 

both high and low advance coefficients. The slight difference in the performance 

coefficients with the change of azimuthing rate that was observed, especially in the 
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azimuthing range of oo to -60° was within the limit of uncertainty bar, hence was not 

significant. 

The propeller and the unit performance coefficients changed noticeably with the change 

of propeller shaft rps. It was observed that at both advance coefficients of 0.2 and 0.8, as 

the shaft rps was increased from 8 to 15, the performance coefficients slightly increased 

and the increase was more obvious as the azimuthing angle increased. The increase in the 

performance coefficients due to the increase of propeller shaft rps was not noticeably 

changed by the change of azimuthing rate. 

7.3.4 Uncertainty Analysis 

The calculated uncertainty levels in the podded propulsor experiments in both pod test 

equipment were found to be comparable with commercial standard equipment and similar 

analyses. The custom-made podded propulsor dynamometer systems demonstrated the 

capability of achieving uncertainty limits close to those of commercial standard 

equipment. 

The primary element of the uncertainty of the propeller performance coefficients was the 

bias error (60% or more of the total uncertainty for the NSERC pod system and 80% or 

more on the total uncertainty for the lOT pod system). To reduce the overall uncertainty 

in the final results, the primary focus should be to reduce the bias error in the equipment. 

However, for the global performance coefficients, generally, the primary element of the 
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uncertainty was precision error (about 60% or more of the total uncertainty). The lOT 

dynamometer system produced lower uncertainty limit for the global performance 

coefficients of the two systems. 

One possible approach to improve accuracy of the uncertainties in propeller thrust and 

torque of the podded propulsor tests is to run experiments at higher shaft rps. At higher 

shaft rps, higher advance speeds will be required to achieve the desired advance 

coefficients. Under these conditions the magnitudes of the thrust and torque will be larger 

relative to the uncertainty levels. Correspondingly, the percent error for each of these 

measured variables would be reduced, which results in less overall uncertainty in the 

thrust and torque coefficients. 

The uncertainty analysis results provided strong evidence that the experimental data 

obtained using both the NSERC and lOT pod dynamometer system presented the true 

performance characteristics of the model scale podded propulsors under consideration. 

7.4 Main Findings 

The Fractional Factorial Design of Experiment (FFD) technique was found to be very 

useful in designing a series of 16 pods and in the analysis of the test results to study the 

effects of five geometric parameters on the propulsive performance of model podded 

propulsor in straight-ahead conditions. 
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The analysis of the pod series test results provided information on the geometric 

parameters, which have noticeable effect on propulsive characteristics of the propulsor. 

The analysis provides valuable information to podded propulsor designers. 

Separate studies were carried out for puller and pusher configurations. Factors that were 

found significant in the puller configuration did not necessarily show to be significant in 

the pusher configuration. 

In static azimuthing conditions in the range of +30° to -30°, the propeller and unit 

performance coefficients changed in a non-linear fashion with the change of propeller 

loading and azimuthing angles. 

The static azimuthing test results also showed that the performance coefficient curves 

were different for the puller and pusher configurations, which justified separate study of 

the two configurations. 

In the dynamic azimuthing study, the coefficients of the propeller and the pod unit 

showed a strong dependence on the propeller loading (advance velocity) and azimuthing 

angle. The open water characteristics were mostly irregular for the astern thrust 

conditions in the azimuthing angle beyond the range 90° to 270°, where the flow 

separation at the propeller blades and the pod-strut body occurred. 
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The dynamic azimuthing rate did not show any noticeable effect on the performance 

coefficients in the range of azimuthing angles from +60° to -60° for the advance 

coefficients of 0.2 and 0.8. 

All of the performance coefficients, and at both advance coefficients of 0.2 and 0.8, as 

the shaft rps was increased from 8 rps to 15 rps, the performance coefficients slightly 

increased and the increase was more obvious as the azimuthing angle increased. The 

increase in the performance coefficients due to the increase of propeller shaft rps was not 

noticeably affected by the change of azimuthing rate. 

7.5 Recommendations for Further Study 

There are a few areas that are recommended for further study. Concerning the geometry 

of the podded propulsor, the next step should be the optimization of the pod body using 

possibly the response surface methods such as the central composite design (CCD) 

method based on the significant geometric parameters observed after the factorial design. 

In the current study, the propellers were not designed for each geomettic variation. In 

future, it will be worthwhile to carry out a propeller study that could be run factorially 

with one pod design so that interaction between the propeller parameters for a podded 

propulsor could be found. This would be useful for the propeller designers. 

In the current study, a symmetric strut design was used so that the same pod pieces in 

push and pull mode could be used and reduce the number of factors used in the factorial 
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design. A few commercial struts are asymmetric (wake adapted strut) and usually an 

extension is used in the aft side and around the base for strength purposes. The struts 

were made as a symmetric form, so as not to introduce any effects of the strut being used 

as a pusher in one set of tests, and a puller in the next set. This also had the benefit of 

reducing the machining time and kept the number of pieces to a minimum. However, the 

instrumentation design makes it possible to allow one to change geometric aspects of the 

strut as well. It would be interesting to design a series of experiments that alters the strut 

geometry. Some of the strut geometric parameters that could be altered are: strut foil 

shape, strut length, strut thickness, and strut asymmetry or twist angles. 

As a continuation of the podded propulsor' s study at azimuthing conditions, two pods 

could be studied simultaneously to examine the interaction effects between the pods at 

various configurations. The study could include the distance between the two pods, the 

position of the pods (transverse or tandem). The studies in the current research work are 

in open water condition. It is important to continue the studies in azimuthing conditions 

(single and dual pods) with the pod fitted behind a ship model, which would be very 

useful for the industrial users .. 

A study could be carried out to examine the local flow velocities etc. of the podded 

propulsor at different configurations and azimuthing conditions. The study might include 

the LDV or PIV study to validate some of the speculations offered in the current thesis 

about the trends of the performance coefficients at different configurations. A dedicated 
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study on the local flow conditions of various pod shapes would reveal the reason for the 

increased propeller thrust and toque with the increase of pod diameter as observed in the 

current study. 

Another interesting yet important study would be to examine the performance 

coefficients of the puller and pusher pods at different configurations and azimuthing 

conditions under cavitating conditions. Cavitation was one of the main reasons for pod 

failure and it is an important aspect of podded propulsor design. The cavitation behaviour 

is expected to be variable with the change of pod configurations and azimuthing angles 

and it is important to evaluate the cavitation characteristics at those conditions. 
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Data Tables 

Table A.l: Pod series data in straight-ahead puller configuration: propeller thrust 
coefficient, KTProp· 

J Pod 01 Pod 02 Pod 03 Pod04 Pod 05 Pod 06 Pod07 Pod 08 Pod 09 Pod 10 Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 Pod 16 

0.00 0.4688 0.4865 0.4693 0.4850 0.4833 0.4691 0.4689 0.4826 0.4763 0.4900 0.4924 0.4721 0.4903 0.4719 0.4642 0.4950 

0.10 0.4425 0.4542 0.4410 0.4549 0.4556 0.4430 0.4430 0.4544 0.4490 0.4615 0.4638 0.4436 0.4617 0.4448 0.4424 0.4640 

0.20 0.4048 0.4179 0.4038 0.4174 0.4179 0.4044 0.4041 0.4157 0.4092 0.4200 0.4260 0.4052 0.4260 0.4054 0.4055 0.4267 

0.30 0.3663 0.3782 0.3636 0.3731 0.3777 0.3640 0.3666 0.3741 0.3723 0.3857 0.3860 0.3688 0.3885 0.3689 0.3675 0.3867 

0.40 0.3308 0.3327 0.3230 0.3290 0.3363 0.3246 0.3281 0.3330 0.3311 0.3440 0.3481 0.3269 0.3507 0.3274 0.3321 0.3410 

0.50 0.2825 0.2858 0.2807 0.2874 0.2906 0.2788 0.2822 0.2902 0.2881 0.3013 0.3059 0.2839 0.3083 0.2828 0.2829 0.2999 

0.60 0.2403 0.2432 0.2386 0.2439 0.2448 0.2378 0.2400 0.2422 0.2483 0.2565 0.2601 0.2420 0.2601 0.2435 0.2466 0.2604 

0.65 0.2179 0.2200 0.2162 0.2189 0.2266 0.2146 0.2192 0.2194 0.2268 0.2341 0.2374 0.2230 0.2408 0.2265 0.2227 0.2403 

0.70 0.2022 0.2004 0.1945 0.2023 0.2045 0.1941 0.1994 0.2000 0.2067 0.2153 0.2149 0.2007 0.2201 0.2071 0.2041 0.2193 

0.75 0.1773 0.1776 0.1765 0.1792 0.1795 0.1733 0.1796 0.1787 0.1899 0.1907 0.1966 0.1817 0.1954 0.1831 0.1834 0.1966 

0.80 0.1587 0.1579 0.1521 0.1553 0.1616 0.1549 0.1581 0.1551 0.1683 0.1729 0.1760 0.1631 0.1786 0.1657 0.1649 0.1787 

0.85 0.1376 0.1365 0.1334 0.1395 0.1379 0.1339 0.1379 0.1348 0.1472 0.1481 0.1529 0.1411 0.1548 0.1422 0.1429 0.1549 

0.90 0.1130 0.1166 0.1129 0.1136 0.1139 0.1102 0.1139 0.1134 0.1230 0.1271 0.1341 0.1187 0.1368 0.1231 0.1243 0.1344 

0.95 0.0946 0.0922 0.0883 0.0916 0.0933 0.0909 0.0942 0.0916 0.1057 0.1090 0.1097 0.0999 0.1115 0.1025 0.1046 0.1138 

1.00 0.0720 0.0662 0.0652 0.0671 0.0644 0.0684 0.0697 0.0666 0.0833 0.0871 0.0845 0.0762 0.0906 0.0816 0.0801 0.0890 

1.10 0.0262 0.0168 0.0205 0.0170 0.0186 0.0207 0.0242 0.0197 0.0332 0.0379 0.0409 0.0310 0.0468 0.0384 0.0356 0.0447 

1.20 -0.0299 -0.0233 -0.0371 -0.0228 -0.0201 -0.0291 -0.0294 -0.0209 -0.0120 -0.0070 -0.0049 -0.0163 -0.0015 -0.0101 -0.0145 -0.0084 

Table A.2 : Pod series data in straight-ahead puller configuration: propeller torque 
coefficient, lOKQ. 

J Pod 01 Pod 02 Pod 03 Pod04 Pod 05 Pod 06 Pod 07 Pod 08 Pod09 Pod 10 Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 Pod 16 

0.00 0.6698 0.6828 0.6798 0.6806 0.6848 0.6856 0.6829 0.6815 0.6808 0.6891 0.6921 0.6830 0.6916 0.6825 0.6795 0.6854 

0.10 0.6367 0.6444 0.6462 0.6480 0.6443 0.6471 0.6446 0.6440 0.6492 0.6497 0.6511 0.6433 0.6511 0.6454 0.6453 0.6515 

0.20 0.5972 0.5991 0.6037 0.6049 0.6008 0.6054 0.6025 0.6002 0.6082 0.6019 0.6078 0.6038 0.6092 0.6057 0.6067 0.6077 

0.30 0.5564 0.5519 0.5601 0.5571 0.5559 0.5625 0.5621 0.5520 0.5669 0.5638 0.5625 0.5635 0.5667 0.5648 0.5656 0.5653 

0.40 0.5066 0.4986 0.5099 0.4991 0.4982 0.5123 0.5126 0.4986 0.5120 0.5062 0.5122 0.5136 0.5124 0.5102 0.5192 0.5155 

0.50 0.4587 0.4460 0.4633 0.4510 0.4445 0.4568 0.4591 0.4491 0.4662 0.4602 0.4655 0.4656 0.4643 0.4623 0.4659 0.4677 

0.60 0.4018 0.3954 0.4112 0.3949 0.3988 0.4076 0.4088 0.3955 0.4184 0.4103 0.4110 0.4079 0.4152 0.4123 0.4177 0.4109 

0.65 0.3772 0.3645 0.3789 0.3656 0.3679 0.3787 0.3796 0.3629 0.3898 0.3772 0.3835 0.3844 0.3873 0.3909 0.3897 0.3832 

0.70 0.3534 0.3374 0.3506 0.3368 0.3391 0.3533 0.3548 0.3387 0.3630 0.3525 0.3561 0.3538 0.3605 0.3643 0.3645 0.3572 

0.75 0.3221 0.3089 0.3272 0.3107 0.3095 0.3186 0.3249 0.3091 0.3336 0.3261 0.3325 0.3288 0.3288 0.3341 0.3346 0.3268 

0.80 0.2955 0.2767 0.2993 0.2745 0.2802 0.2960 0.3000 0.2760 0.3101 0.2974 0.3024 0.3038 0.3063 0.3093 0.3121 0.3021 

0.85 0.2656 0.2495 0.2689 0.2484 0.2515 0.2661 0.2705 0.2462 0.2816 0.2655 0.2653 0.2766 0.2741 0.2774 0.2798 0.2698 

0.90 0.2330 0.2142 0.2342 0.2146 0.2145 0.2306 0.2344 0.2129 0.2464 0.2299 0.2363 0.2417 0.2442 0.2494 0.2508 0.2396 

0.95 0.2032 0.1802 0.2002 0.1835 0.1852 0.2013 0.2059 0.1804 0.2221 0.1997 0.2074 0.2123 0.2104 0.2190 0.2213 0.2089 

1.00 0.1678 0.1461 0.1660 0.1481 0.1468 0.1672 0.1708 0.1438 0.1895 0.1727 0.1701 0.1783 0.1772 0.1885 0.1845 0.1719 

1.10 0.0947 0.0699 0.0923 0.0708 0.0761 0.0881 0.0916 0.0715 0.1078 0.0994 0.1036 0.1060 0.1118 0.1142 0.1119 0.1046 

1.20 -0.0053 -0.0208 -0.0100 -0.0159 -0.0171 0.0042 0.0057 -0.0155 0.0317 0.0213 0.0244 0.0230 0.0322 0.0310 0.0258 0.0183 
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Data Tables 

Table A.3: Pod series data in straight-ahead puller configuration: propulsor (unit) 
thrust coefficient, Krunit· 

J PodOl Pod02 Pod03 Pod04 Pod05 Pod06 Pod07 Pod08 Pod09 Pod 10 Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 IPod H 

0.00 0.4620 0.4836 0.4632 0.4780 0.4707 0.4622 0.4576 0.4685 0.4659 0.4792 0.4788 0.4607 0.4760 0.4611 0.4577 0.4840 

0.10 0.4307 0.4450 0.4289 0.4439 0.4431 0.4353 0.4322 0.4319 0.4351 0.4450 0.4479 0.4342 0.4453 0.4300 0.4305 0.4499 

0.20 0.3841 0.4085 0.3926 0.4040 0.4060 0.3934 0.3932 0.3945 0.3892 0.4067 0.4102 0.3895 0.4075 0.3880 0.3924 0.4095 

0.30 0.3407 0.3647 0.3497 0.3525 0.3646 0.3495 0.3560 0.3537 0.3487 0.3693 0.3709 0.3516 0.3666 0.3467 0.3528 0.3670 

0.40 0.3032 0.3208 0.3092 0.3135 0.3188 0.3063 0.3151 0.3158 0.3094 0.3273 0.3301 0.3099 0.3236 0.3058 0.3163 0.3281 

0.50 0.2645 0.2674 0.2624 0.2699 0.2742 0.2634 0.2696 0.2715 0.2660 0.2798 0.2833 0.2685 0.2801 0.2637 0.2677 0.2849 

0.60 0.2212 0.2248 0.2233 0.2201 0.2274 0.2183 0.2295 0.2261 0.2234 0.2373 0.2365 0.2229 0.2376 0.2204 0.2262 0.2406 

0.65 0.1866 0.1969 0.2003 0.1972 0.2067 0.1972 0.2035 0.2050 0.2010 0.2125 0.2171 0.2040 0.2122 0.2019 0.2028 0.2182 

0.70 0.1735 0.1761 0.1767 0.1786 0.1822 0.1735 0.1833 0.1825 0.1779 0.1904 0.1956 0.1833 0.1943 0.1832 0.1867 0.1974 

0.75 0.1522 0.1530 0.1585 0.1506 0.1630 0.1548 0.1629 0.1595 0.1581 0.1668 0.1711 0.1596 0.1701 0.1618 0.1658 0.1732 

0.80 0.1351 0.1307 0.1385 0.1295 0.1419 0.1330 0.1386 0.1350 0.1375 0.1475 0.1530 0.1415 0.1507 0.1410 0.1460 0.1511 

0.85 0.1126 0.1115 0.1130 0.1107 0.1176 0.1164 0.1178 0.1120 0.1173 0.1212 0.1311 0.1188 0.1291 0.1216 0.1236 0.1282 

0.90 0.0884 0.0839 0.0931 0.0884 0.0969 0.0934 0.0931 0.0870 0.0941 0.1017 0.1072 0.0980 0.1081 0.0997 0.1001 0.1046 

0.95 0.0762 0.0633 0.0647 0.0639 0.0763 0.0684 0.0685 0.0696 0.0726 0.0780 0.0791 0.0790 0.0847 0.0814 0.0769 0.0857 

1.00 0.0466 0.0401 0.0454 0.0395 0.0514 0.0489 0.0393 0.0433 0.0509 0.0566 0.0544 0.0542 0.0630 0.0547 0.0505 0.0594 

1.10 -0.0013 -0.0104 -0.0077 -0.0018 0.0014 -0.0051 -0.0023 0.0012 0.0038 0.0115 0.0084 0.0086 0.0183 0.0072 0.0076 0.0153 

1.20 -0.0612 -0.0500 -0.0719 -0.0457 -0.0413 -0.0572 -0.0619 -0.0503 -0.0525 -0.0435 -0.0501 -0.0400 -0.0309 -0.0466 -0.0458 -0.0409 

Table A.4: Pod series data in straight-ahead pusher configuration: propeller thrust 
coefficient, KTProp· 

J Pod 01 Pod 02 Pod 03 Pod 04 Pod 05 Pod 06 Pod 07 Pod 08 Pod 09 Pod 10 Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 Pod 16 

0.00 0.4655 0.4681 0.4598 0.4638 0.4643 0.4564 0.4641 0.4715 0.4605 0.4712 0.4667 0.4576 0.4672 0.4601 0.4595 0.4660 

0.10 0.4354 0.4408 0.4302 0.4356 0.4392 0.4267 0.4328 0.4429 0.4327 0.4445 0.4393 0.4322 0.4371 0.4335 0.4317 0.4390 

0.20 0.4038 0.4019 0.3978 0.3975 0.4059 0.3924 0.3936 0.4116 0.3968 0.4119 0.4095 0.3960 0.4054 0.3949 0.3962 0.4029 

0.30 0.3618 0.3667 0.3566 0.3616 0.3654 0.3571 0.3574 0.3733 0.3665 0.3692 0.3685 0.3609 0.3731 0.3586 0.3579 0.3632 

0.40 0.3210 0.3283 0.3213 0.3264 0.3288 0.3213 0.3186 0.3271 0.3203 0.3347 0.3343 0.3200 0.3320 0.3239 0.3208 0.3334 

0.50 0.2745 0.2838 0.2740 0.2855 0.2867 0.2728 0.2778 0.2871 0.2767 0.2914 0.2934 0.2741 0.2855 0.2842 0.2770 0.2877 

0.60 0.2329 0.2415 0.2358 0.2416 0.2435 0.2297 0.2371 0.2438 0.2378 0.2481 0.2500 0.2357 0.2465 0.2393 0.2332 0.2478 

0.65 0.2101 0.2223 0.2108 0.2216 0.2261 0.2073 0.2136 0.2198 0.2162 0.2302 0.2291 0.2135 0.2295 0.2168 0.2159 0.2276 

0.70 0.1921 0.2012 0.1921 0.2006 0.2042 0.1923 0.1971 0.2018 0.1974 0.2103 0.2060 0.1960 0.2112 0.1956 0.1974 0.2102 

0.75 0.1710 0.1801 0.1708 0.1786 0.1830 0.1695 0.1755 0.1833 0.1782 0.1909 0.1860 0.1740 0.1926 0.1741 0.1766 0.1892 

0.80 0.1511 0.1587 0.1469 0.1600 0.1634 0.1497 0.1571 0.1600 0.1561 0.1695 0.1670 0.1549 0.1724 0.1523 0.1571 0.1660 

0.85 0.1317 0.1405 0.1269 0.1413 0.1433 0.1261 0.1334 0.1431 0.1359 0.1487 0.1464 0.1330 0.1508 0.1339 0.1369 0.1481 

0.90 0.1133 0.1211 0.1033 0.1171 0.1191 0.1039 0.1123 0.1191 0.1122 0.1275 0.1274 0.1088 0.1312 0.1108 0.1120 0.1244 

0.95 0.0892 0.0979 0.0881 0.0973 0.1009 0.0845 0.0932 0.1003 0.0943 0.1083 0.1054 0.0887 0.1108 0.0924 0.0958 0.1089 

1.00 0.0644 0.0773 0.0602 0.0754 0.0776 0.0626 0.0700 0.0773 0.0730 0.0887 0.0870 0.0682 0.0911 0.0701 0.0730 0.0883 

1.10 0.0102 0.0284 0.0160 0.0299 0.0352 0.0151 0.0229 0.0304 0.0275 0.0429 0.0428 0.0228 0.0518 0.0226 0.0285 0.0440 

1.20 -0.0412 -0.0225 -0.0351 -0.0192 -0.0163 -0.0296 -0.0246 -0.0205 -0.0186 -0.0019 -0.0086 -0.0106 0.0017 -0.0199 -0.0176 -0.0020 
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Data Tables 

Table A.S: Pod series data in straight-ahead pusher configuration: propeller torque 
coefficient, 10KQ. 

J Pod 01 Pod 02 Pod 03 Pod 04 Pod 05 Pod 06 Pod 07 Pod 08 Pod 09 Pod 10 Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 Pod 16 

0.00 0.6571 0.6552 0.6579 0.6818 0.6852 0.6588 0.6609 0.6832 0.6585 0.6790 0.6834 0.6578 0.6828 0.6656 0.6532 0.6740 

0.10 0.6188 0.6349 0.6268 0.6311 0.6314 0.6220 0.6240 0.6421 0.6324 0.6421 0.6343 0.6243 0.6322 0.6373 0.6269 0.6316 

0.20 0.5789 0.5925 0.5871 0.5853 0.5956 0.5812 0.5808 0.6048 0.5891 0.6054 0.5956 0.5834 0.5964 0.5903 0.5872 0.5981 

0.30 0.5311 0.5380 0.5424 0.5420 0.5445 0.5361 0.5344 0.5619 0.5509 0.5568 0.5470 0.5383 0.5550 0.5494 0.5407 0.5528 

0.40 0.4828 0.4978 0.4920 0.5071 0.4996 0.4981 0.4836 0.5072 0.4927 0.5168 0.5064 0.4941 0.5044 0.4931 0.4890 0.5077 

0.50 0.4304 0.4487 0.4360 0.4570 0.4507 0.4342 0.4441 0.4612 0.4386 0.4581 0.4619 0.4319 0.4543 0.4494 0.4377 0.4611 

0.60 0.3775 0.4014 0.3847 0.4013 0.3965 0.3832 0.3906 0.4139 0.3967 0.4089 0.4098 0.3837 0.4078 0.3903 0.3838 0.4071 

0.65 0.3501 0.3734 0.3559 0.3740 0.3738 0.3490 0.3600 0.3823 0.3658 0.3911 0.3844 0.3573 0.3879 0.3649 0.3603 0.3882 

0.70 0.3267 0.3468 0.3324 0.3512 0.3428 0.3292 0.3397 0.3537 0.3403 0.3656 0.3556 0.3329 0.3636 0.3356 0.3363 0.3650 

0.75 0.2989 0.3188 0.3075 0.3232 0.3227 0.2988 0.3093 0.3319 0.3161 0.3380 0.3274 0.3073 0.3406 0.3067 0.3109 0.3355 

0.80 0.2750 0.2949 0.2806 0.2984 0.3000 0.2765 0.2869 0.3027 0.2860 0.3094 0.2990 0.2856 0.3122 0.2806 0.2808 0.3099 

0.85 0.2509 0.2647 0.2524 0.2731 0.2722 0.2487 0.2572 0.2851 0.2593 0.2850 0.2730 0.2627 0.2887 0.2566 0.2580 0.2908 

0.90 0.2261 0.2408 0.2154 0.2451 0.2384 0.2189 0.2307 0.2504 0.2318 0.2577 0.2463 0.2338 0.2620 0.2285 0.2293 0.2626 

0.95 0.1968 0.2106 0.1926 0.2247 0.2138 0.1896 0.2017 0.2292 0.2108 0.2300 0.2252 0.2106 0.2353 0.2042 0.2073 0.2349 

1.00 0.1621 0.1752 0.1619 0.1933 0.1 872 0.1574 0.1661 0.2002 0.1823 0.2055 0.2008 0.1869 0.2120 0.1736 0.1716 0.2084 

1.10 0.0833 0.1189 0.1034 0.1295 0.1215 0.0935 0.1054 0.1352 0.1142 0.1441 0.1462 0.1224 0.1539 0.1108 0.1 139 0.1566 

1.20 -0.0097 0.0400 0.0149 0.0406 0.0478 0.0145 0.0213 0.0344 0.0379 0.0819 0.0731 0.0505 0.0887 0.0404 0.0391 0.0786 

Table A.6: Pod series data in straight-ahead pusher configuration: propulsor (unit) 
thrust coefficient, Krunit· 

J PodOl Pod02 Pod03 Pod04 Pod05 Pod06 Pod07 Pod08 Pod09 PodlO Pod 11 Pod 12 Pod 13 Pod 14 Pod 15 !Pod 16 

0.00 0.4403 0.4505 0.4583 0.4524 0.4502 0.4607 0.4617 0.4623 0.4582 0.4448 0.4537 0.4610 0.4497 0.4475 0.4560 0.4517 

0.10 0.4031 0.4186 0.4238 0.4211 0.4213 0.4236 0.4260 0.4319 0.4262 0.4184 0.4176 0.4282 0.4114 0.4189 0.4203 0.4190 

0.20 0.3725 0.3823 0.3912 0.3783 0.3859 0.3874 0.3883 0.3951 0.3856 0.3842 0.3801 0.3852 0.3737 0.3855 0.3829 0.3754 

0.30 0.3347 0.3424 0.3494 0.3437 0.3396 0.3484 0.3463 0.3562 0.3444 0.3398 0.3381 0.3486 0.3422 0.3437 0.3424 0.3432 

0.40 0.2953 0.3009 0.3058 0.3020 0.2987 0.3107 0.3050 0.3066 0.3004 0.2922 0.2989 0.3019 0.2964 0.3045 0.2999 0.3011 

0.50 0.2553 0.2570 0.2592 0.2564 0.2521 0.2610 0.2651 0.2660 0.2605 0.2505 0.2541 0.2567 0.2478 0.2555 0.2520 0.2544 

0.60 0.2134 0.2121 0.2181 0.2169 0.2090 0.2163 0.2255 0.2188 0.2140 0.2060 0.2127 0.2108 0.2036 0.2101 0.2101 0.2097 

0.65 0.1924 0.1902 0.1940 0.1901 0.1887 0.1866 0.2041 0.2014 0.1875 0.1859 0.1915 0.1897 0.1864 0.1831 0.1836 0.1893 

0.70 0.1712 0.1696 0.1687 0.1715 0.1702 0.1648 0.1844 0.1783 0.1682 0.1687 0.1714 0.1692 0.1672 0.1660 0.1644 0.1739 

0.75 0.1489 0.1456 0.1505 0.1479 0.1449 0.1420 0.1635 0.1568 0.1469 0.1441 0.1493 0.1452 0.1420 0.1470 0.1407 0.1533 

0.80 0.1328 0.1228 0.1241 0.1262 0.1257 0.1256 0.1429 0.1337 0.1250 0.1255 0.1297 0.1277 0.1261 0.1221 0.1214 0.1290 

0.85 0.1136 0.1034 0.1077 0.1077 0.1039 0.0979 0.1203 0.1182 0.1069 0.1044 0.1102 0.1029 0.1031 0.1009 0.1022 0.1076 

0.90 0.1011 0.0814 0.0830 0.0806 0.0778 0.0772 0.0881 0.0904 0.0808 0.0779 0.0909 0.0783 0.0804 0.0792 0.0690 0.0821 

0.95 0.0714 0.0524 0.0584 0.0617 0.0583 0.0520 0.0652 0.0711 0.0588 0.0623 0.0666 0.0556 0.0582 0.0526 0.0511 0.0614 

1.00 0.0423 0.0297 0.0255 0.0336 0.0377 0.0307 0.0421 0.0434 0.0327 0.0409 0.0446 0.0316 0.0416 0.0253 0.0312 0.0344 

1.10 -0.0085 -0.0240 -0.0264 -0.0186 -0.0206 -0.0333 -0.0082 -0.0045 -0.0098 -0.0073 -0.0091 -0.0051 -0.0014 -0.0177 -0.0228 -0.0088 

1.20 -0.0827 -0.0760 -0.0875 -0.0726 -0.0803 -0.0916 -0.0753 -0.0514 -0.0506 -0.0583 -0.0662 -0.0439 -0.0430 -0.0763 -0.0742 -0.0746 
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Data Tables 

Table A.7: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propeller thrust coefficient, KTProp· 

J ·30° ·20° ·15° ·10° ·5· o· 5. 10° 15° 20° 30° 

0.00 0.4947 0.4933 0.5021 0.4991 0.4982 0.4921 0.4987 0.5015 0.5020 0.5042 0.5024 

0.10 0.4749 0.4713 0.4636 0.4666 0.4653 0.4649 0.4638 0.4667 0.4699 0.4704 0.4674 

0.20 0.4421 0.4323 0.4273 0.4296 0.4255 0.4247 0.4255 0.4291 0.4311 0.4386 0.4395 

0.30 0.4148 0.3991 0.3891 0.3905 0.3860 0.3879 0.3862 0.3925 0.3937 0.4020 0.4053 

0.40 0.3794 0.3582 0.3484 0.3459 0.3443 0.3438 0.3421 0.3488 0.3488 0.3499 0.3722 

0.50 0.3462 0.3176 0.3043 0.3036 0.2966 0.3011 0.2916 0.3052 0.3089 0.3165 0.3449 

0.60 0.3068 0.2760 0.2556 0.2591 0.2543 0.2525 0.2467 0.2603 0.2637 0.2776 0.3065 

0.65 0.2953 0.2576 0.2397 0.2357 0.2265 0.2284 0.2280 0.2337 0.2450 0.2598 0.2886 

0.70 0.2774 0.2403 0.2191 0.2130 0.2098 0.2090 0.2065 0.2136 0.2203 0.2326 0.2754 

0.75 0.2669 0.2168 0.2000 0.1939 0.1859 0.1847 0.1838 0.1984 0.2087 0.2154 0.2608 

0.80 0.2451 0.1973 0.1743 0.1737 0.1632 0.1584 0.1590 0.1739 0.1887 0.1911 0.2445 

0.85 0.2347 0.1778 0.1553 0.1489 0.1400 0.1381 0.1390 0.1511 0.1601 0.1763 0.2325 

0.90 0.2157 0.1594 0.1343 0.1296 0.1191 0.1183 0.1151 0.1220 0.1421 0.1575 0.2181 

0.95 0.1988 0.1421 0.1121 0.1054 0.0983 0.0976 0.0924 0.1046 0.1195 0.1394 0.2013 

1.00 0.1809 0.1162 0.0915 0.0806 0.0766 0.0702 0.0678 0.0817 0.0962 0.1132 0.1861 

1.10 0.1508 0.0762 0.0419 0.0334 0.0291 0.0258 0.0246 0.0354 0.0539 0.0702 0.1569 

1.20 0.1175 0.0330 .0.0058 .0.0138 .0.0153 .0.0364 .0.0276 .0.0190 0.0121 0.0244 0.1221 

Table A.S: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propeller torque coefficient, 10KQ. 

J .3o• ·20° ·15° ·10° ·5· o· 5. 10° 15° 20° 30° 

0.00 0.6800 0.671 1 0.6798 0.6789 0.6817 0.6680 0.6797 0.6737 0.6752 0.6729 0.6784 

0.10 0.6516 0.6444 0.6513 0.6485 0.6537 0.6393 0.6456 0.6377 0.6439 0.6488 0.6517 

0.20 0.6166 0.6086 0.6087 0.6065 0.6129 0.6019 0.6046 0.6036 0.6118 0.6129 0.6228 

0.30 0.5877 0.5682 0.5679 0.5657 0.5679 0.5707 0.5607 0.5636 0.5703 0.5724 0.5901 

0.40 0.5493 0.5271 0.5138 0.5138 0.5178 0.5223 0.5079 0.5094 0.5212 0.5281 0.5544 

0.50 0.5116 0.4890 0.4757 0.4631 0.4657 0.4701 0.4534 0.4637 0.4738 0.4858 0.5207 

0.60 0.4729 0.4389 0.4232 0.4104 0.4186 0.4184 0.4026 0.4092 0.4264 0.4350 0.4795 

0.65 0.4593 0.4131 0.3958 0.3883 0.3844 0.3839 0.3746 0.3869 0.3995 0.4126 0.4601 

0.70 0.4357 0.3865 0.3726 0.3562 0.3502 0.3504 0.3539 0.3594 0.3787 0.3795 0.4375 

0.75 0.4162 0.3664 0.3484 0.3362 0.3228 0.3209 0.3210 0.3469 0.3534 0.3643 0.4231 

0.80 0.3971 0.3382 0.3154 0.3061 0.2926 0.2934 0.3005 0.3091 0.3232 0.3407 0.4033 

0.85 0.3784 0.3102 0.2890 0.2800 0.2746 0.2700 0.2720 0.2811 0.2987 0.3165 0.3820 

0.90 0.3592 0.2838 0.2601 0.2546 0.2363 0.2249 0.2291 0.2462 0.2681 0.2888 0.3733 

0.95 0.3351 0.2563 0.2367 0.2171 0.2093 0.1997 0.2081 0.2251 0.2429 0.2580 0.3499 

1.00 0.3120 0.2265 0.2000 0.1865 0.1807 0.1702 0.1682 0.1838 0.2110 0.2297 0.3242 

1.10 0.2746 0.1691 0.1183 0.1079 0.1011 0.0914 0.0948 0.1167 0.1462 0.1670 0.2860 

1.20 0.2211 0.1009 0.0422 0.0303 0.0323 .0.0051 0.0032 0.0249 0.0608 0.0903 0.2338 
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Data Tables 

Table A.9: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) thrust coefficient, Krunit· 

J -3oo ·20° -15° -10° ·5" oo 50 10° 15" 20" 30" 

0.00 0.4241 0.4554 0.4581 0.4733 0.4713 0.4843 0.4910 0.4690 0.4642 0.4609 0.4178 

0.10 0.3773 0.4176 0.4198 0.4449 0.4307 0.4511 0.4537 0.4344 0.4274 0.4205 0.3871 

0.20 0.3224 0.3725 0.3809 0.4093 0.3902 0.4095 0.4176 0.3998 0.3888 0.3895 0.3451 

0.30 0.2610 0.3181 0.3387 0.3594 0.3512 0.3714 0.3758 0.3624 0.3483 0.3499 0.2995 

0.40 0.1913 0.2628 0.2910 0.3223 0.2987 0.3291 0.3309 0.3054 0.3080 0.3017 0.2441 

0.50 0.1204 0.2061 0.2354 0.2700 0.2453 0.2816 0.2804 0.2666 0.2661 0.2525 0.1817 

0.60 0.0489 0.1460 0.1756 0.2176 0.2050 0.2333 0.2298 0.2164 0.2140 0.1987 0.1194 

0.65 0.0205 0.1184 0.1455 0.1870 0.1736 0.2087 0.2048 0.1947 0.1883 0.1723 0.0891 

0.70 -0.0126 0.0855 0.1228 0.1532 0.1504 0.1891 0.1776 0.1719 0.1687 0.1440 0.0602 

0.75 -0.0510 0.0523 0.0883 0.1242 0.1164 0.1631 0.1491 0.1437 0.1430 0.1154 0.0251 

0.80 -0.0835 0.0198 0.0535 0.0974 0.0919 0.1347 0.1252 0.1233 0.1131 0.0914 -0.0114 

0.85 -0.1229 -0.0115 0.0175 0.0664 0.0576 0.1090 0.0948 0.0830 0.0819 0.0588 -0.0428 

0.90 -0.1532 -0.0385 -0.0178 0.0372 0.0273 0.0857 0.0611 0.0693 0.0547 0.0361 .0.0928 

0.95 -0.1855 -0.0837 .0.0442 0.0043 0.0045 0.0619 0.0467 0.0357 0.0258 0.0091 -0.1 271 

1.00 -0.2215 .0.1193 -0.0818 .0.0368 .0.0324 0.0275 0.0053 0.0169 .0.0090 -0.0183 .0.1708 

1.10 -0.2921 .0.1918 -0.1719 -0.1099 -0.1115 -0.0416 -0.0568 .0.0492 .0.0775 -0.0904 .0.2427 

1.20 -0.3849 .0.2729 -0.2551 .0.2015 .0.1862 -0.1191 -0.1377 -0.1252 -0.1433 .0.1618 -0.3157 

Table A.10: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) transverse force coefficient, Kpy. 

J -30" -20" -15" -10" -5" o· 5" 10" 15" 20" 30" 

0.00 0.2295 0.1643 0.1154 0.0854 0.0301 .0.0160 -0.0495 .0.0806 -0.1130 -0.1495 .0.1894 

0.10 0.2553 0.1822 0.1249 0.0855 0.0344 .0.0177 -0.0506 -0.1029 -0.1274 -0.1713 .0.2311 

0.20 0.2768 0.1923 0.1333 0.0930 0.0377 -0.0214 -0.0629 -0.1151 -0.1480 .0.1949 .0.2609 

0.30 0.2973 0.2038 0.1461 0.1005 0.0379 -0.0244 -0.0725 -0.1232 -0.1713 -0.2285 -0.3065 

0.40 0.3265 0.2113 0.1551 0.1133 0.0404 -0.0259 -0.0861 -0.1342 -0.1956 -0.2638 -0.3366 

0.50 0.3644 0.2405 0.1652 0.1185 0.0458 -0.0297 -0.0998 .0.1434 -0.2170 -0.2795 -0.3672 

0.60 0.3998 0.2478 0.1739 0.1271 0.0525 .0.0283 -0.1006 .0.1529 -0.2369 -0.3166 -0.3993 

0.65 0.4252 0.2733 0.1808 0.1349 0.0535 .0.0266 .0.1041 .0.1559 -0.2568 -0.3443 -0.4183 

0.70 0.4499 0.2783 0.1867 0.1384 0.0546 .0.0226 -0.1124 .0.1669 -0.2630 -0.3579 -0.4375 

0.75 0.4681 0.3120 0.1981 0.1389 0.0564 -0.0162 -0.1124 .0.1779 -0.2740 -0.3750 .0.4519 

0.80 0.4841 0.3204 0.2036 0.1413 0.0605 .0.0214 -0.1167 -0.1884 -0.2850 .0.3910 .0.4714 

0.85 0.5003 0.3261 0.2096 0.1471 0.0624 .0.0175 -0.1039 -0.1977 -0.3018 -0.4085 -0.4869 

0.90 0.5255 0.3541 0.2205 0.1576 0.0683 -0.0279 -0.1048 -0.2058 .0.3172 .().4307 -0.5015 

0.95 0.5346 0.3633 0.2313 0.1689 0.0721 -0.0216 -0.1100 .0.2162 -0.3311 -0.4333 -0.51 15 

1.00 0.5437 0.3861 0.2462 0.1765 0.0783 -0.0232 -0.1053 .0.2252 -0.3535 .0.4480 -0.5245 

1.10 0.5537 0.4121 0.2815 0.1943 0.0852 -0.0211 .0.1148 .0.2450 -0.3698 -0.4700 -0.5230 

1.20 0.5616 0.4293 0.3188 0.2188 0.0979 -0.0135 -0.1244 .0.2672 .0.3828 -0.4974 -0.5321 
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Data Tables 

Table A.ll: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) vertical force coefficient, KFZ. 

J ·30" ·20" ·15" ·10" ·5" oo 5" 10" 15" 20° Joo 

0.00 -0.0065 -0.0042 -0.0043 0.0067 -0.0031 -0.0023 -0.0023 0.0036 0.0023 0.0078 -0.0001 

0.10 -0.0223 -0.0303 -0.0090 0.0100 0.0028 0.0034 0.0281 0.0204 0.0252 0.0347 0.0356 

0.20 -0.0389 ·0.0460 -0.0124 0.0175 0.0085 0.0136 0.0431 0.0419 0.0554 0.0556 0.0630 

0.30 -0.0577 -0.0644 -0.0173 0.0212 0.0087 0.0318 0.0612 0.0598 0.0837 0.0851 0.0928 

0.40 -0.0754 -0.0729 -0.0203 0.0247 0.0142 0.0380 0.0694 0.0772 0.1114 0.1185 0.1246 

0.50 -0.0758 -0.0774 -0.0186 0.0326 0.0235 0.0493 0.0833 0.1079 0.1421 0.1495 0.1566 

0.60 -0.0830 -0.0821 -0.0214 0.0300 0.0262 0.0594 0.0943 0.1292 0.1727 0.1814 0.1874 

0.65 -0.0842 -0.0855 -0.0255 0.0312 0.0272 0.0623 0.0995 0.1348 0.1800 0.2001 0.2107 

0.70 -0.0877 -0.0888 -0.0279 0.0272 0.0282 0.0658 0.1078 0.1515 0.1903 0.2185 0.2335 

0.75 -0.0852 -0.0916 -0.0255 0.0303 0.0306 0.0730 0.1144 0.1550 0.1986 0.2296 0.2455 

0.80 -0.0884 -0.0897 -0.0194 0.0316 0.0341 0.0819 0.1219 0.1770 0.2126 0.2433 0.2512 

0.85 -0.0896 -0.0915 -0.0173 0.0349 0.0361 0.0837 0.1295 0.1778 0.2118 0.2483 0.2546 

0.90 -0.0824 -0.0849 -0.0178 0.0359 0.0376 0.0787 0.1210 0.1705 0.2163 0.2388 0.2576 

0.95 -0.0793 -0.0737 -0.0139 0.0355 0.0412 0.0709 0.1231 0.1699 0.2135 0.2451 0.2651 

1.00 -0.0605 -0.0700 -0.0078 0.0370 0.0395 0.0666 0.1161 0.1626 0.2064 0.2343 0.2655 

1.10 -0.0156 -0.0474 -0.0011 0.0441 0.0381 0.0506 0.1042 0.1476 0.1984 0.2353 0.2691 

1.20 0.0385 -0.0059 0.0165 0.0473 0.0402 0.0270 0.0907 0.1278 0.1906 0.2275 0.2791 

Table A.12: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) axial moment coefficient, KMX. 

J -3oo -20° ·15° -10" ·50 oo 5" 10° 15° 20" 300 

0.00 -1.7018 -1.0442 -0.7354 -0.4948 -0.4062 0.1313 0.3598 0.7546 0.8227 1.4903 1.9050 

0.10 -2.0053 -1.2931 -0.8558 -0.6151 -0.4660 0.1349 0.4022 0.8514 0.9730 1.5736 2.1932 

0.20 -2.1425 -1.3500 -0.9073 -0.6052 -0.4830 0.1388 0.4747 0.9465 1.0750 1.6933 2.3508 

0.30 -2.3608 -1.4788 -0.9856 -0.6394 -0.4971 0.1408 0.5373 1.0549 1.2556 1.9091 2.6027 

0.40 -2.5198 -1.5891 -1.0244 -0.6789 -0.4976 0.1480 0.5853 1.1867 1.4274 2.1305 2.8265 

0.50 -2.7208 -1.7008 -1.0861 -0.6842 -0.4862 0.1424 0.6378 1.2315 1.6057 2.3780 3.1344 

0.60 -2.8220 -1.7594 -1.1211 -0.7088 -0.5250 0.1368 0.6793 1.3457 1.7454 2.5665 3.2911 

0.65 -2.9153 -1.8852 -1.2314 -0.7604 -0.5467 0.1327 0.6802 1.4019 1.8256 2.6615 3.3625 

0.70 -2.9756 -1.9491 -1.2584 -0.8018 -0.5702 0.1305 0.6721 1.4360 1.9017 2.7354 3.4221 

0.75 -2.9801 -2.0704 -1 .3445 -0.8504 -0.6392 0.1288 0.6864 1.4978 2.0122 2.8555 3.4898 

0.80 ·3.1106 -2.1950 -1.4747 -0.8969 -0.6825 0.1251 0.6627 1.5654 2.1127 2.9402 3.5146 

0.85 -3.1451 -2.2522 -1.6415 -1.0023 -0.7378 0.1199 0.6569 1.6186 2.1797 3.0358 3.5493 

0.90 -3.1473 -2.3493 -1.7620 -1.1755 -0.8561 0.1121 0.6747 1.6849 2.2401 3.1196 3.6361 

0.95 -3.2262 -2.4513 -1.9326 -1.3215 -0.9536 0.1079 0.6516 1.7597 2.2941 3.1738 3.6923 

1.00 -3.3429 -2.5506 -2.0685 -1.3719 -1.1474 0.1019 0.6587 1.8412 2.3808 3.2686 3.7626 

1.10 -3.4938 -2.9082 -2.5324 -1 .6654 -1.4184 0.0967 0.6976 1.9668 2.5027 3.4038 3.8703 

1.20 -3.6369 -3.2669 -2.8702 -1.8810 -1.6709 -0.0025 0.6743 2.0345 2.6098 3.5402 4.0185 
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Data Tables 

Table A.13: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) transverse moment coefficient, KMY. 

J ·30" ·20" -15" ·10" ·5" o· 5" 10" 15" 20" 30° 

0.00 2.9641 3.3365 3.4910 3.5034 3.5132 3.5602 3.5027 3.4974 3.4387 3.4093 3.2458 

0.10 2.6291 2.9089 3.0885 3.1271 3.1852 3.2327 3.2807 3.2491 3.1577 3.1380 2.8821 

0.20 2.2557 2.5980 2.8261 2.8921 2.9177 2.9884 3.0606 3.0415 2.9335 2.9170 2.6516 

0.30 1.8340 2.2295 2.4954 2.5788 2.5820 2.7076 2.7820 2.8093 2.6775 2.6620 2.3461 

0.40 1.3497 1.8699 2.0979 2.2253 2.2595 2.3892 2.4461 2.4397 2.3685 2.3083 2.0223 

0.50 0.9512 1.4671 1.7402 1.8737 1.9420 2.0603 2.1152 2.1587 2.0482 2.0171 1.6411 

0.60 0.4746 1.0664 1.3314 1.5008 1.5366 1.6976 1.7790 1.8319 1.7281 1.6928 1.2200 

0.65 0.2825 0.9320 1.1555 1.2904 1.3649 1.5383 1.6083 1.6723 1.5742 1.5117 1.0268 

0.70 0.0577 0.6987 0.9552 1.1023 1.1796 1.3695 1.4233 1.4519 1.3818 1.3153 0.8413 

0.75 -0.1538 0.4870 0.7764 0.9148 0.9682 1.2046 1.2484 1.3075 1.2589 1.1334 0.6181 

0.80 -0.3797 0.2712 0.5366 0.7289 0.7879 0.9780 1.0365 1.1135 1.0641 0.9386 0.3910 

0.85 -0.6400 0.0640 0.3217 0.5236 0.5758 0.7941 0.9031 0.9295 0.8571 0.7970 0.1506 

0.90 -0.7684 -0.1243 0.1314 0.3361 0.3943 0.6089 0.6805 0.7345 0.6822 0.6440 -0.1213 

0.95 ·1.0661 -0.3848 -0.0997 0.1162 0.2015 0.4354 0.5184 0.5485 0.4738 0.4251 -0.3863 

1.00 ·1.2346 -0.5993 -0.3359 -0.1293 -0.0195 0.2270 0.2908 0.3595 0.2309 0.2299 -0.5682 

1.10 ·1 .6401 -1 .0805 -0.8721 -0.6078 -0.4991 -0.2163 -0.1212 -0.1123 -0.1858 -0.1784 -1 .0311 

1.20 -2.2680 -1.5888 -1.3660 -1 .1244 -1 .0861 -0.7261 -0.6734 -0.6557 -0.6324 -0.6498 -1.5468 

Table A.14: Performance coefficient of average pod 01 at azimuthing conditions and 
in puller configuration: propulsor (unit) steering moment coefficient, KMz· 

J -30° -20" -15" ·10" ·5" o· 5" 10" 15" 20" 30° 

0.00 -0.0192 -0.0280 -0.0229 -0.0164 -0.0154 -0.0164 -0.0015 -0.0095 -0.0106 -0.0029 -0.0184 

0.10 -0.0085 -0.0023 -0.0083 -0.0031 -0.0100 -0.0170 -0.0037 -0.0131 -0.0241 -0.0266 -0.0333 

0.20 0.0193 0.0151 0.0052 0.0071 -0.0043 -0.0121 -0.0089 -0.0223 -0.0294 -0.0375 -0.0498 

0.30 0.0465 0.0365 0.0215 0.0181 0.0053 -0.0091 -0.0137 -0.0308 -0.0388 -0.0588 -0.0719 

0.40 0.0726 0.0595 0.0447 0.0333 0.0028 -0.0117 -0.0223 -0.0364 -0.0494 -O.Q706 -0.0901 

0.50 0.0966 0.0811 0.0605 0.0383 0.0091 -0.0081 -0.0252 -0.0471 -0.0617 -0.0859 -0.1144 

0.60 0.1177 0.0961 0.0728 0.0494 0.0129 -0.0056 -0.0315 -0.0543 -0.0752 -0.0974 -0.1314 

0.65 0.1338 0.1073 0.0749 0.0559 0.0159 -0.0085 -0.0364 -0.0610 -0.0820 -0.0927 -0.1 434 

0.70 0.1374 0.1129 0.0850 0.0621 0.0214 -0.0090 -0.0374 -0.0636 -0.0895 -0.1070 -0.1493 

0.75 0.1593 0.1192 0.0885 0.0670 0.0269 -0.0119 -0.0431 -0.0628 -0.0963 -0.0995 -0.1593 

0.80 0.1715 0.1273 0.0986 0.0707 0.0315 -0.0158 -0.0456 -0.0633 -0.1020 -0.1106 -0.1773 

0.85 0.1804 0.1337 0.1034 0.0731 0.0341 -0.0165 -0.0488 -0.0702 -0.1064 -0.1130 -0.1948 

0.90 0.1986 0.1468 0.1073 0.0786 0.0338 -0.0184 -0.0509 -0.0795 -0.1141 -0.1296 -0.2057 

0.95 0.2105 0.1606 0.1177 0.0831 0.0379 -0.0183 -0.0542 -0.0848 -0.1260 -0.1456 -0.2248 

1.00 0.2324 0.1700 0.1223 0.0864 0.0401 -0.0175 -0.0548 -0.0876 -0.1307 -0.1496 -0.2366 

1.10 0.2617 0.1818 0.1314 0.0884 0.0420 -0.0181 -0.0631 -0.0928 -0.1363 -0.1732 -0.2581 

1.20 0.3161 0.2041 0.1486 0.0943 0.0424 -0.0235 -0.0672 -0.1059 -0.1462 -0.1916 -0.2921 
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Data Tables 

Table A.15: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propeller thrust coefficient, KTProp• 

J ·300 ·20° ·15° ·10° ·50 oo 50 10° 15° 20° 3oo 

0.00 0.4640 0.4621 0.4550 0.4692 0.4583 0.4609 0.4583 0.4867 0.4706 0.4762 0.4892 

0.10 0.4047 0.4132 0.4103 0.4209 0.4172 0.4310 0.4371 0.4557 0.4468 0.4514 0.4756 

0.20 0.3611 0.3731 0.3679 0.3805 0.3772 0.3938 0.4078 0.4163 0.4211 0.4287 0.4544 

0.30 0.3074 0.3201 0.3226 0.3339 0.3364 0.3512 0.3708 0.3792 0.3888 0.4053 0.4376 

0.40 0.2547 0.2669 0.2765 0.2839 0.2889 0.3089 0.3330 0.3461 0.3528 0.3843 0.4272 

0.50 0.2093 0.2221 0.2281 0.2383 0.2520 0.2660 0.2906 0.3090 0.3175 0.3557 0.3970 

0.60 0.1681 0.1794 0.1858 0.1978 0.2121 0.2342 0.2560 0.2746 0.2857 0.3115 0.3716 

0.65 0.1458 0.1619 0.1655 0.1776 0.1916 0.2159 0.2405 0.2559 0.2680 0.2917 0.3563 

0.70 0.1276 0.1379 0.1483 0.1593 0.1674 0.1940 0.2185 0.2356 0.2456 0.2723 0.3388 

0.75 0.1085 0.1177 0.1294 0.1413 0.1462 0.1720 0.1997 0.2162 0.2270 0.2535 0.3323 

0.80 0.0966 0.1029 0.1087 0.1165 0.1279 0.1513 0.1773 0.1979 0.2088 0.2306 0.3151 

0.85 0.0762 0.0819 0.0929 0.0956 0.1057 0.1310 0.1557 0.1794 0.1878 0.2130 0.2902 

0.90 0.0589 0.0659 0.0715 0.0746 0.0863 0.1086 0.1374 0.1597 0.1704 0.1913 0.2768 

0.95 0.0369 0.0500 0.0532 0.0514 0.0621 0.0876 0.1132 0.1400 0.1516 0.1791 0.2600 

1.00 0.0235 0.0263 0.0335 0.0293 0.0427 0.0662 0.0925 0.1132 0.1296 0.1543 0.2393 

1.10 ..().0190 ..().0208 ..().0124 ..().0133 ..().0065 0.0201 0.0494 0.0700 0.0818 0.1191 0.1817 

1.20 ..().0746 ..().0659 ..().0640 ..(),0684 ..(),0587 ..().0373 0.0013 0.0193 0.0409 0.0690 0.1192 

Table A.16: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propeller torque coefficient, 10KQ. 

J ·300 ·20° ·15° ·10° ·50 oo 50 10° 15° 20° 30° 

0.00 0.6607 0.6519 0.6494 0.6644 0.6452 0.6512 0.6431 0.6724 0.6771 0.6729 0.6785 

0.10 0.5940 0.5919 0.5985 0.6027 0.6041 0.6153 0.6371 0.6271 0.6401 0.6370 0.6545 

0.20 0.5430 0.5501 0.5474 0.5541 0.5546 0.5678 0.5969 0.5913 0.6067 0.6037 0.6271 

0.30 0.4790 0.4892 0.4910 0.4986 0.5018 0.5139 0.5523 0.5424 0.5594 0.5697 0.5973 

0.40 0.4188 0.4257 0.4364 0.4388 0.4449 0.4637 0.4926 0.4989 0.5196 0.5398 0.5679 

0.50 0.3640 0.3685 0.3812 0.3857 0.3974 0.4096 0.4379 0.4563 0.4741 0.5011 0.5327 

0.60 0.3079 0.3146 0.3263 0.3297 0.3492 0.3738 0.4004 0.4146 0.4322 0.4534 0.4886 

0.65 0.2801 0.2879 0.3010 0.3048 0.3229 0.3433 0.3742 0.3876 0.4082 0.4289 0.4642 

0.70 0.2493 0.2607 0.2745 0.2829 0.2945 0.3196 0.3505 0.3651 0.3848 0.4043 0.4376 

0.75 0.2191 0.2331 0.2479 0.2570 0.2659 0.2932 0.3270 0.3403 0.3649 0.3839 0.4180 

0.80 0.1993 0.2069 0.2189 0.2291 0.2393 0.2671 0.2978 0.3200 0.3360 0.3563 0.4044 

0.85 0.1712 0.1819 0.1969 0.1977 0.2067 0.2424 0.2778 0.2984 0.3146 0.3392 0.3758 

0.90 0.1410 0.1551 0.1715 0.1704 0.1816 0.2142 0.2572 0.2717 0.2959 0.3125 0.3518 

0.95 0.1057 0.1305 0.1403 0.1364 0.1497 0.1847 0.2256 0.2511 0.2718 0.2943 0.3339 

1.00 0.0817 0.1007 0.1109 0.1054 0.1191 0.1543 0.1994 0.2165 0.2441 0.2667 0.3136 

1.10 0.0084 0.0183 0.0421 0.0384 0.0530 0.0849 0.1394 0.1571 0.1924 0.2119 0.2725 

1.20 ..().0828 ..().0437 ..().0375 ..().0459 ..().0279 0.0102 0.0741 0.0885 0.1304 0.1606 0.2204 
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Data Tables 

Table A.17: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) thrust coefficient, Kronit• 

J ·300 ·20° ·15° -10° ·50 oo 50 10° 15° 20° 3oo 

0.00 0.3897 0.4117 0.4245 0.4398 0.4461 0.4516 0.4454 0.4542 0.4423 0.4154 0.3873 

0.10 0.3326 0.3669 0.3800 0.3956 0.4042 0.4157 0.4141 0.4155 0.4106 0.3846 0.3394 

0.20 0.2812 0.3154 0.3331 0.3490 0.3592 0.3780 0.3778 0.3765 0.3734 0.3498 0.2922 

0.30 0.2267 0.2657 0.2866 0.2976 0.3141 0.3309 0.3350 0.3332 0.3336 0.3153 0.2451 

0.40 0.1660 0.2129 0.2416 0.2522 0.2694 0.2853 0.2930 0.2893 0.2875 0.2737 0.1957 

0.50 0.0971 0.1700 0.1903 0.2021 0.2281 0.2432 0.2448 0.2431 0.2415 0.2290 0.1494 

0.60 0.0201 0.1163 0.1418 0.1570 0.1830 0.1948 0.2048 0.2032 0.2005 0.1836 0.0894 

0.65 -0.0179 0.0840 0.1126 0.1343 0.1576 0.1708 0.1791 0.1781 0.1758 0.1506 0.0555 

0.70 -0.0516 0.0572 0.0905 0.1145 0.1320 0.1494 0.1581 0.1570 0.1554 0.1310 0.0218 

0.75 -0.0843 0.0305 0.0682 0.0902 0.1081 0.1333 0.1339 0.1357 0.1362 0.1048 -0.0078 

0.80 -0.1221 0.0009 0.0405 0.0594 0.0818 0.1084 . 0.1160 0.1167 0.1129 0.0800 -0.0481 

0.85 -0.1545 -0.0220 0.0181 0.0372 0.0537 0.0858 0.0937 0.0894 0.0876 0.0570 -0.0862 

0.90 -0.2017 -0.0511 -0.0151 0.0067 0.0294 0.0661 0.0694 0.0651 0.0641 0.0312 -0.1282 

0.95 -0.2432 -0.0848 -0.0418 -0.0237 -0.0022 0.0392 0.0441 0.0414 0.0425 0.0081 -0.1612 

1.00 -0.2780 -0.1193 -0.0775 -0.0571 -0.0320 0.0192 0.0243 0.0109 0.0137 -0.0243 -0.1995 

1.10 -0.3667 -0.2045 -0.1551 -0.1201 -0.0912 -0.0396 -0.0312 -0.0408 -0.0395 .{).0916 .{).2929 

1.20 -0.4504 .{).2836 -0.2290 -0.1979 -0.1634 -0.1001 -0.0856 -0.0966 -0.0910 .{).1489 .{).4161 

Table A.18: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) transverse force coefficient, Kpy. 

J -3oo ·20° ·15° ·10° -50 oo 50 10° 15° 20° 3oo 

0.00 -0.2704 -0.1975 -0.1364 -0.0954 .{).0643 0.0055 0.0656 0.1098 0.1506 0.2092 0.2881 

0.10 -0.2752 -0.1898 -0.1286 .{),0970 .{).0667 0.0069 0.0762 0.1160 0.1688 0.2210 0.3087 

0.20 -0.2739 -0.1890 -0.1350 .{).0978 .{).0671 0.0051 0.0784 0.1214 0.1697 0.2286 0.3250 

0.30 -0.2750 -0.1976 -0.1315 -0.1010 -0.0670 0.0031 0.0802 0.1212 0.1763 0.2423 0.3485 

0.40 .{).2925 -0.2141 -0.1465 .{).1162 .{).0808 0.0033 0.0894 0.1334 0.1941 0.2658 0.3766 

0.50 -0.3099 -0.2364 -0.1644 -0.1328 .{).0789 0.0029 0.0954 0.1526 0.2071 0.2967 0.4021 

0.60 -0.3338 -0.2567 -0.1850 -0.1403 .{).0920 0.0030 0.1100 0.1741 0.2365 0.3221 0.4382 

0.65 -0.3479 -0.2716 -0.2009 -0.1454 .{).0945 0.0073 0.1101 0.1783 0.2492 0.3409 0.4571 

0.70 -0.3634 -0.2876 -0.2047 -0.1544 .{).1060 0.0049 0.1206 0.1845 0.2627 0.3510 0.4723 

0.75 -0.3756 -0.3063 -0.2296 -0.1606 .{).1032 -0.0025 0.1327 0.2018 0.2790 0.3696 0.4830 

0.80 -0.3958 .{).3282 -0.2436 -0.1711 .{).1092 0.0013 0.1397 0.2178 0.2980 0.3766 0.4969 

0.85 -0.4180 -0.3535 -0.2618 -0.1833 -0.1128 0.0044 0.1428 0.2307 0.3161 0.4043 0.5109 

0.90 -0.4492 -0.3751 -0.2870 -0.1962 -0.1226 0.0020 0.1586 0.2492 0.3395 0.4290 0.5277 

0.95 -0.4747 .{).4005 -0.3094 .{).2168 .{).1340 0.0064 0.1645 0.2564 0.3638 0.4776 0.5527 

1.00 -0.5086 .{).4336 .{).3260 .{).2314 .{).1440 0.0001 0.1766 0.2720 0.3934 0.4983 0.5935 

1.10 -0.5687 -0.4957 .{).3760 .{).2666 .{).1721 0.0007 0.1929 0.3158 0.4355 0.5675 0.6488 

1.20 .{).6293 -0.5587 -0.4144 -0.3023 -0.1998 0.0151 0.2069 0.3496 0.5081 0.7062 0.7451 
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Data Tables 

Table A.19: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) vertical force coefficient, KFZ. 

J ·3o· ·20° ·15° ·10° ·5· o• 5• 10° 15° 20° 30° 

0.00 .0.0708 .0.0326 .0.0005 0.0053 0.0148 0.0268 0.0143 0.0006 0.0256 0.0420 0.0580 

0.10 .0.0756 .0.0443 .0.0246 .0.0206 .0.0008 0.0048 0.0001 -0.0043 0.0135 0.0488 0.0778 

0.20 .0.0864 .0.0567 .0.0474 .0.0355 .0.0347 .0.0176 .0.0127 .0.0075 0.0200 0.0587 0.0969 

0.30 .0.1012 .0.0777 .0.0656 .0.0577 .0.0525 .0.0373 .0.0277 .0.0172 0.0095 0.0630 0.1232 

0.40 .0.1339 .0.1124 .0.0937 .0.0886 .0.0612 .0.0478 .0.0372 .0.0272 0.0085 0.0739 0.1339 

0.50 .0.1690 .0.1441 .0.1241 .0.1215 .0.0859 .0.0651 .0.0506 .0.0249 0.0145 0.0775 0.1534 

0.60 .0.2124 .0.1761 .0.1508 .0.1444 .0.0933 .0.0781 .0.0628 .0.0266 0.0170 0.0814 0.1615 

0.65 -0.2196 .0.1959 .0.1652 .0.1626 .0.1101 .0.0894 -0.0757 .0.0227 0.0188 0.0805 0.1749 

0.70 .0.2259 .0.2147 .0.1849 -0.1662 .0.1091 .0.1012 -0.0865 -0.0331 0.0159 0.0871 0.1864 

0.75 -0.2407 .0.2333 .0.1913 -0.1718 .0.1271 -0.1049 .0.0940 .0.0308 0.0224 0.0930 0.1950 

0.80 .0.2665 .0.2611 .0.2137 .0.1784 .0.1389 .0.1200 .0.0985 .0.0223 0.0254 0.0943 0.2036 

0.85 .0.2769 .0.2796 .0.2368 .0.1850 .0.1496 .0.1316 .0.1033 -0.0198 0.0274 0.1023 0.2142 

0.90 .0.2988 .0.3048 .0.2519 .0.1902 .0.1591 .0.1373 .0.1146 .0.0341 0.0290 0.1071 0.2148 

0.95 .0.3164 .0.3405 .0.2769 .0.2019 .0.1770 .0.1470 .0.1038 .0.0398 0.0295 0.1019 0.2068 

1.00 .0.3597 .0.3580 .0.2904 .0.2134 .0.1782 .0.1492 .0.1189 .0.0426 0.0298 0.0985 0.1936 

1.10 .0.4403 .0.4149 .0.3164 -0.2301 .0.2018 .0.1781 .0.1178 .0.0461 0.0295 0.0933 0.1827 

1.20 .0.5167 .0.4727 .0.3498 .0.2406 .0.2194 .0.2025 .0.1294 .0.0592 0.0233 0.0785 0.1371 

Table A.20: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) axial moment coefficient, KMX • 

J -3o• • zo· ·15° ·10° ·5· o· 5. 10° 15° 20° Jo• 

0.00 1.7113 1.1370 0.6530 0.5016 0.3304 .0.1162 .0.5408 .0.7471 .0.9503 -1 .3560 -1.6356 

0.10 1.6187 1.0944 0.7433 0.5227 0.3381 .0.1054 .0.5433 .0.7765 .0.9886 -1.4211 -1.8664 

0.20 1.6048 1.0878 0.7707 0.5270 0.3643 .0.0857 .0.5458 .0.8005 -1.0114 -1.4607 -2.0811 

0.30 1.6043 1.1316 0.7831 0.5502 0.3813 .0.0704 .0.5392 .0.7929 -1.0441 -1.5392 -2.2555 

0.40 1.7032 1.2315 0.8428 0.6397 0.4135 .0.0747 .0.6178 .0.8521 -1.1408 -1.7095 -2.5070 

0.50 1.8500 1.3545 0.9299 0.7364 0.4375 .0.0568 .0.6361 .0.9625 -1.2128 -1.9192 -2.6832 

0.60 1.8957 1.4709 1.0370 0.7854 0.4869 .0.0660 .0.6929 -1.0716 -1.3404 -1 .9876 -2.9077 

0.65 1.9119 1.5586 1.0862 0.8479 0.5323 .0.0774 .0.7404 ·1.1040 ·1.4545 ·2.0791 -2.9438 

0.70 1.9678 1.6513 1.1821 0.8475 0.5745 .0.0576 .0.7575 -1.1243 -1.4992 -2.1173 -2.9877 

0.75 2.0301 1.7530 1.2969 0.8803 0.6044 .0.0452 .0.8181 -1.2190 -1.5839 -2.2249 -3.0858 

0.80 2.2003 1.8827 1.3811 0.9529 0.6194 .0.0359 .0.8390 -1.3092 -1.6870 -2.2517 -3.1897 

0.85 2.3162 2.0172 1.4720 1.0005 0.6778 .0.0446 .0.8686 -1.3827 -1.7749 -2.4051 -3.1577 

0.90 2.4241 2.1396 1.6107 1.1140 0.7333 .0.0271 .0.9390 ·1.4789 ·1.9465 -2.5490 ·3.2635 

0.95 2.5893 2.2942 1.7471 1.1762 0.8101 .0.0421 .0.9507 -1.5172 ·2.0392 ·2.8212 -3.3432 

1.00 2.8016 2.4899 1.8443 1.2410 0.8549 .0.0507 -1.0330 ·1.5977 ·2.2078 ·2.9312 -3.4406 

1.10 3.1536 3.1143 2.1319 1.3138 1.0162 .0.0545 -1 .1294 -1 .8440 -2.4885 -3.2236 -3.6158 

1.20 3.6708 3.5101 2.4135 1.5337 1.0956 .O.Q708 -1 .2003 -2.0253 -2.6913 -3.5262 -3.7539 
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Data Tables 

Table A.21: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) transverse moment coefficient, KMY. 

J -3o• -2o• -15• -1o• ·5· o• 5. 10° 15° 20° 30° 

0.00 3.0604 3.1990 3.2529 3.3000 3.3309 3.2475 3.1475 3.1142 3.0711 3.0173 3.1121 

0.10 2.6067 2.8125 2.9161 2.9627 2.9771 3.0408 3.0118 3.0017 2.9904 2.8430 2.9225 

0.20 2.2020 2.4633 2.5524 2.6271 2.6563 2.7278 2.7722 2.7787 2.7532 2.6215 2.5793 

0.30 1.7200 2.0300 2.1870 2.2564 2.3235 2.3801 2.4751 2.4684 2.4719 2.3976 2.1771 

0.40 1.2323 1.5997 1.7946 1.8580 1.9188 2.0576 2.1536 2.1819 2.1697 2.1511 1.9085 

0.50 0.7324 1.2138 1.3877 1.4533 1.6402 1.7727 1.8240 1.8645 1.8590 1.8581 1.5489 

0.60 0.2341 0.8513 1.0728 1.1664 1.3266 1.4690 1.5763 1.6139 1.5950 1.5242 0.9642 

0.65 -0.0709 0.6743 0.8134 1.0014 1.1727 1.3262 1.4101 1.4606 1.4453 1.3356 0.7649 

0.70 -0.3128 0.5062 0.7452 0.8774 0.9981 1.1964 1.2839 1.3186 1.3005 1.1865 0.5456 

0.75 -0.5290 0.3297 0.6007 0.7167 0.8580 1.0153 1.1637 1.1527 1.1382 1.0124 0.3392 

0.80 -0.7608 0.1594 0.4233 0.5455 0.6806 0.8644 0.9923 1.0069 1.0043 0.8296 0.0629 

0.85 -0.9977 -0.0090 0.3093 0.3868 0.5343 0.7151 0.8102 0.8548 0.8310 0.6951 -0.2663 

0.90 -1 .2856 -0.1841 0.0851 0.2025 0.4030 0.5549 0.6930 0.6834 0.6542 0.4925 -0.4734 

0.95 -1.5734 -0.3655 -0.0244 0.0108 0.2013 0.4152 0.4755 0.5584 0.5213 0.3613 -0.6769 

1.00 -1.8022 -0.5918 -0.2013 -0.1556 0.0482 0.2726 0.3410 0.3405 0.3131 0.1537 -0.9328 

1.10 -2.3960 -1 .0590 -0.6454 -0.5499 -0.3796 -0.1393 -0.0196 -0.0252 0.0029 -0.3233 -1 .5522 

1.20 -2.9404 -1 .4399 -1 .0154 -0.9979 -0.7798 -0.5715 -0.3929 -0.4240 -0.2870 -0.6659 -2.3813 

Table A.22: Performance coefficient of average pod 01 at azimuthing conditions and 
in pusher configuration: propulsor (unit) steering moment coefficient, KMz· 

J -3o· -2o· -15° -10° -5· o• 5• 10° 15° 20° 30° 

0.00 -0.0944 -0.0668 -0.0421 -0.0232 -0.0076 0.0109 0.0264 0.0551 0.0674 0.0854 0.1112 

0.10 -0.0995 -0.0631 -0.0388 -0.0254 -0.0084 0.0124 0.0313 0.0567 0.0745 0.0937 0.1184 

0.20 -0.0996 -0.0651 -0.0438 -0.0281 -0.0117 0.0134 0.0323 0.0646 0.0792 0.0981 0.1289 

0.30 -0.1037 -0.0729 -0.0544 -0.0326 -0.0203 0.0100 0.0340 0.0650 0.0861 0.1089 0.1404 

0.40 -0.1169 -0.0841 -0.0659 -0.0416 -0.0278 0.0092 0.0419 0.0668 0.0954 0.1243 0.1562 

0.50 -0.1285 -0.1043 -0.0751 -0.0518 -0.0306 0.0075 0.0456 0.0790 0.1070 0.1443 0.1688 

0.60 -0.1521 -0.1259 -0.0912 -0.0629 -0.0349 0.0087 0.0554 0.0931 0.1236 0.1596 0.1899 

0.65 -0.1685 -0.1403 -0.0976 -0.0725 -0.0444 0.0135 0.0603 0.1006 0.1370 0.1768 0.2011 

0.70 -0.1823 -0.1547 -0.1090 -0.0783 -0.0428 0.0105 0.0706 0.1059 0.1460 0.1802 0.2106 

0.75 -0.2059 -0.1672 -0.1218 -0.0831 -0.0539 0.0113 0.0752 0.1154 0.1553 0.1958 0.2221 

0.80 -0.2215 -0.1810 -0.1362 -0.0929 -0.0632 0.0075 0.0808 0.1268 0.1686 0.2025 0.2340 

0.85 -0.2441 -0.1951 -0.1446 -0.1005 -0.0684 0.0089 0.0822 0.1372 0.1800 0.2179 0.2469 

0.90 -0.2670 -0.2043 -0.1537 -0.1134 -0.0690 0.0072 0.0873 0.1485 0.1944 0.2305 0.2700 

0.95 -0.2837 -0.2183 -0.1654 -0.1241 -0.0865 0.0102 0.0933 0.1562 0.2069 0.2520 0.2922 

1.00 -0.3110 -0.2320 -0.1763 -0.1341 -0.0898 0.0112 0.0994 0.1705 0.2211 0.2725 0.3100 

1.10 -0.3492 -0.2607 -0.2000 -0.1580 -0.1056 0.0133 0.1149 0.1991 0.2524 0.3036 0.3504 

1.20 -0.4041 -0.2850 -0.2279 -0.1892 -0.1221 0.0189 0.1327 0.2306 0.2961 0.3420 0.3934 
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Data Tables 

Table A.23: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propeller thrust coefficient, 

KTProp• 

AziAng J=O J= 0.2 J= 0.4 J= 0.6 J= 0.7 J= 0.8 J=o.g J= 1 J= 1.1 J= 1.2 

·180° 0.4902 0.4906 0.4917 0.3467 0.4387 0.5433 

·115° 0.4903 0.5071 0.4906 0.3643 0.4452 0.5463 0.6764 

·110° 0.4902 0.4671 0.4811 0.3824 0.4353 0.5523 0.6496 

·160° 0.4907 0.4646 0.4652 0.4143 0.4782 0.5834 0.6702 

-1so• 0.4908 0.4031 0.4803 0.4450 0.5033 0.5630 

·120° 0.4922 0.4168 0.5743 0.6275 0.6807 0.7697 
.go• 0.4933 0.4506 0.5112 0.5410 0.5735 0.6283 

-so• 0.4928 0.4537 0.4648 0.4609 0.4608 0.4592 0.4602 0.4640 0.4670 0.4709 

·45° 0.4904 0.4546 0.4211 0.3848 0.3666 0.3471 0.3291 0.3103 0.2893 0.2690 

-3o• 0.4893 0.4360 0.3766 0.3134 0.2798 0.2450 0.2109 0.1730 0.1364 0.0928 

·20° 0.4888 0.4300 0.3598 0.2848 0.2465 0.2057 0.1659 0.1225 0.0760 0.0230 

·15° 0.4881 0.4263 0.3517 0.2725 0.2320 0.1878 0.1449 0.1013 0.0502 -0.0066 

·10° 0.4884 0.4256 0.3503 0.2681 0.2242 0.1778 0.1332 0.0836 0.031 2 -0.0265 

·5· 0.4882 0.4243 0.3463 0.2616 0.2168 0.1677 0.1229 0.0717 0.0162 -0.0445 

o• 0.4895 0.4211 0.3423 0.2570 0.2130 0.1668 0.1195 0.0702 0.0163 -0.0422 

o· 0.4895 0.4211 0.3423 0.2570 0.2130 0.1668 0.1195 0.0702 0.0163 -0.0422 
5. 0.4899 0.4204 0.3448 0.2592 0.2145 0.1659 0.1200 0.0709 0.0167 -0.0421 

10° 0.4898 0.4223 0.3456 0.2620 0.2179 0.1709 0.1258 0.0763 0.0226 -0.0371 

15° 0.4910 0.4263 0.3496 0.2693 0.2273 0.1825 0.1375 0.0904 0.0381 -0.0194 

2o• 0.4892 0.4282 0.3545 0.2778 0.2386 0.1960 0.1547 0.1095 0.0627 0.0092 

3o• 0.4878 0.4343 0.3755 0.3142 0.2809 0.2486 0.2132 0.1771 0.1392 0.1012 

45° 0.4838 0.4524 0.4177 0.3835 0.3647 0.3531 0.3345 0.3173 0.2979 0.2780 

so• 0.4866 0.4710 0.4685 0.4688 0.4710 0.4798 0.4824 0.4868 0.4958 0.501 1 

go• 0.4894 0.5113 0.5484 0.6076 0.6657 0.7321 

120° 0.4897 0.5868 0.5514 0.6339 0.7005 0.7561 

15o• 0.4921 0.5513 0.4821 0.4469 0.4555 0.5218 

160° 0.4918 0.5130 0.4733 0.3978 0.4391 0.5340 0.6624 

170° 0.4905 0.5133 0.4779 0.3639 0.4375 0.5514 

175° 0.4906 0.5120 0.4488 0.3595 0.4517 0.5629 

180° 0.4902 0.4906 0.4917 0.3467 0.4387 0.5433 
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Data Tables 

Table A.24: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propeller torque coefficient, 

lOKQ. 

AziAng J=O J= 0.2 J=0.4 J=0.6 J=0.7 J=0.8 J=0.9 J=1 J= 1.1 J= 1.2 

-180" 0.6836 0.6835 0.6861 0.5035 0.6142 0.7432 

·115" 0.6833 0.7040 0.6806 0.5231 0.6246 0.7469 0.8993 

·170" 0.6836 0.6534 0.6693 0.5468 0.6137 0.7521 0.8649 

·160" 0.6837 0.6506 0.6492 0.5830 0.6619 0.7847 0.8821 

·150° 0.6829 0.5706 0.6754 0.6101 0.6890 0.7593 

·120" 0.6839 0.5878 0.7981 0.8694 0.9406 1.0666 

-so· 0.6864 0.6300 0.7083 0.7322 0.7675 0.8347 

·60° 0.6878 0.6393 0.6539 0.6474 0.6454 0.6429 0.6418 0.6434 0.6453 0.6472 

-45" 0.6822 0.6393 0.6033 0.5626 0.5387 0.5098 0.4853 0.4594 0.4298 0.3992 

·30" 0.6837 0.6200 0.5529 0.4786 0.4368 0.3912 0.3455 0.2941 0.2411 0.1774 

·20" 0.6829 0.6125 0.5333 0.4446 0.3960 0.3423 0.2884 0.2279 0.1614 0.0834 

·15° 0.6804 0.6076 0.5237 0.4321 0.3803 0.3195 0.2612 0.1999 0.1273 0.0430 

-10" 0.6814 0.6076 0.5216 0.4233 0.3671 0.3055 0.2453 0.1760 0.1001 0.0140 

·5" 0.6814 0.6066 0.5174 0.4160 0.3579 0.2915 0.2306 0.1591 0.0777 .{).0127 

o• 0.6831 0.6035 0.5136 0.4111 0.3550 0.2907 0.2267 0.1571 0.0771 .{).0120 

o• 0.6831 0.6035 0.5136 0.4111 0.3550 0.2907 0.2267 0.1571 0.0771 .{).0120 

5" 0.6833 0.6034 0.5169 0.4148 0.3571 0.2889 0.2266 0.1573 0.0775 .{).0104 

10" 0.6834 0.6039 0.5163 0.4157 0.3586 0.2959 0.2347 0.1658 0.0872 .{).0015 

15° 0.6854 0.6089 0.5217 0.4254 0.3713 0.3124 0.2515 0.1854 0.1099 0.0239 

20° 0.6830 0.6111 0.5277 0.4359 0.3859 0.3296 0.2731 0.2102 0.1426 0.0643 

30° 0.6818 0.6226 0.5555 0.4826 0.4411 0.3966 0.3493 0.3001 0.2457 0.1904 

45° 0.6736 0.6388 0.5994 0.5595 0.5394 0.5218 0.4979 0.4746 0.4496 0.4221 

so· 0.6811 0.6623 0.6608 0.6606 0.6618 0.6715 0.6734 0.6776 0.6880 0.6941 

so· 0.6812 0.7144 0.7640 0.8288 0.8999 0.9819 

120" 0.6805 0.8062 0.7617 0.8753 0.9691 1.0385 

150" 0.6835 0.7641 0.6652 0.6204 0.6268 0.7019 

160" 0.6854 0.7110 0.6583 0.5622 0.6110 0.7247 0.8709 

170" 0.6838 0.7119 0.6667 0.5234 0.6130 0.7505 

175° 0.6844 0.7135 0.6298 0.5169 0.6328 0.7656 

180° 0.6836 0.6835 0.6861 0.5035 0.6142 0.7432 

223 



Data Tables 

Table A.25: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) thrust 

coefficient, Krunit· 

AziAng J= 0 J= 0.2 J=0.4 J= o.s J= 0.7 J=0.8 J= o.g J= 1 J=1.1 J= 1.2 

-1so• -0.4580 -0.4652 -0.4649 -0.3760 -0.4458 -0.5399 

·115° -0.4575 -0.4754 -0.4605 -0.397S -0.4558 -0.5457 .{).6676 

·170° -0.4529 -0.4456 -0.4495 -0.4113 -0.4476 .{).5516 .{),6409 

-1so• -0.4328 -0.4303 -0.4284 .{).4343 -0.4908 .{).5895 .{).6642 

-1so• -0.3988 -0.3740 .{).4386 .{).4743 -0.5375 -0.6171 

·120° -0.2327 -0.2945 .{).4050 .{).4731 .{).5412 .{).6436 

.go• 0.0030 -0.1234 .{).2349 .{).4047 -0.4917 -0.6110 

.so· 0.2315 0.1083 .{).0038 .{).1624 .{).2475 -0.3376 .{).4245 -0.5129 -0.6108 -0.6765 

·45° 0.3200 0.2175 0.1041 -0.0193 -0.0914 -0.1657 .{),2408 -0.3122 -0.3786 -0.4509 

-3o· 0.3971 0.3079 0.2111 0.1139 0.0605 0.0037 -0.0561 -0.1152 -0.1739 -0.2391 

·20° 0.4257 0.3431 0.2532 0.1603 0.1127 0.0615 0.0118 -0.0422 -0.0999 -0.1648 

·15° 0.4351 0.3582 0.2680 0.1791 0.1342 0.0862 0.0384 -0.0117 -0.0693 -0.1337 

·10° 0.4493 0.3726 0.2879 0.2025 0.1558 0.1079 0.0610 0.0086 -0.0473 .{).1076 

·5· 0.4557 0.3840 0.3006 0.2156 0.1704 0.1204 0.0742 0.0211 -0.0357 .{).0971 

o· 0.4572 0.3861 0.3035 0.2178 0.1737 0.1263 0.0784 0.0275 -0.0273 -0.0872 

o• 0.4572 0.3861 0.3035 0.2178 0.1737 0.1263 0.0784 0.0275 .{).0273 -0.0872 

5• 0.4572 0.3846 0.3060 0.2194 0.1741 0.1241 0.0770 0.0282 -0.0284 -0.0878 

10° 0.4532 0.3826 0.3036 0.2185 0.1725 0.1231 0.0750 0.0224 -0.0355 -0.0982 

15° 0.4464 0.3770 0.2956 0.2107 0.1648 0.1 154 0.0660 0.0139 -0.0449 -0.1083 

20° 0.4337 0.3627 0.2809 0.1957 0.1495 0.0990 0.0506 -0.0024 -0.0579 -0.1214 

3o• 0.3948 0.3144 0.2314 0.13go 0.0876 0.0317 .{).0232 -0.0806 -0.1408 .{).2140 

45° 0.3226 0.2283 0.1330 0.0257 -0.0374 -0.1044 -0.1733 -0.2391 -0.3100 -0.3864 

so· 0.2256 0.1076 0.0028 -0.123g -0.2022 -0.2802 -0.3635 -0.4418 -0.5354 -0.6343 

go• -0.0015 -0.1772 -0.2879 -0.4550 -0.5559 -0.6587 

120° -0.2232 -0.3941 -0.4338 -0.5105 -0.5767 -0.6461 

150° -0.3968 -0.4782 -0.4546 .{),47g3 .{).5262 -0.5871 

160° -0.4317 -0.4583 -0.4604 -0.4445 .{).4803 -0.5493 .{).6544 

170° .{).4508 -0.4742 .{).4474 .{).4040 .{).4515 -0.5473 

175° -0.4559 -0.4820 -0.4553 -0.3964 -0.4605 -0.5581 

180° .{).4580 -0.4652 -0.4649 -0.3760 -0.4458 -0.5399 
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Data Tables 

Table A.26: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) transverse 

force coefficient, Kpy. 

AziAng J=O J=0.2 J=0.4 J= 0.6 J=0.7 J=O.B J=o.g J= 1 J= 1.1 J= 1.2 

-1so• .0.0070 .0.0046 0.0069 0.0178 .0.0035 .0.0192 
·175· 0.0226 0.0414 0.0452 0.0084 .0.0079 .0.0145 -0.0158 
·170° 0.0741 0.0673 0.0792 0.0386 .0.0001 .0.0020 .0.0027 
·160° 0.1544 0.1378 0.1555 0.0835 0.0407 0.0138 0.0176 
·150° 0.2244 0.1711 0.2420 0.1089 0.1096 0.0608 
-120° 0.3919 0.3143 0.4494 0.4677 0.4860 0.5148 
.go• 0.4542 0.4315 0.5228 0.5695 0.6112 0.6916 
-so• 0.3930 0.4117 0.4928 0.5991 0.6649 0.7405 0.8060 0.8758 0.9490 1.0051 
-45. 0.3210 0.3562 0.4217 0.5108 0.5744 0.6374 0.7029 0.7567 0.7986 0.8450 
.Jo• 0.2217 0.2508 0.2932 0.3525 0.3893 0.4305 0.4807 0.5099 0.5401 0.5769 
·20° 0.1622 0.1813 0.2010 0.2372 0.2594 0.2868 0.3127 0.3376 0.3688 0,4006 
·15° 0.1253 0.1374 0.1479 0.1685 0.1848 0.2020 0.2210 0.2460 0.2750 0.3130 
-10° 0.0843 0.0943 0.0944 0.0982 0.1102 0.1212 0.1360 0.1553 0.1817 0.2075 
-s· 0.0342 0.0352 0.0278 0.0218 0.0242 0.0275 0.0338 0.0486 0.0631 0.0821 
o• .0.0039 .0.0118 .0.0206 .0.0275 .0.0286 .0.0280 .0.0240 .0.0179 .0.0047 0.0075 
o• .0.0039 .0.0118 .0.0206 -0.0275 .0.0286 .0.0280 .0.0240 .0.0179 -0.0047 0.0075 
s• .0.0321 .0.0467 .0.0577 .0.0627 .0.0655 .0.0680 .0.0672 .0.0618 .0.0563 .0.0467 
10° .0.0689 .0.0930 .0.1140 .0.1262 .0.1324 .0.1399 .0.1439 .0.1474 .0.1484 .0.1441 
15° .0.1086 .0.1407 .0.1691 .0.1862 .0.1948 .0.2116 .0.2260 .0.2378 .0.2500 .0.2546 
20° .0.1479 .0.1877 .0.2239 .0.2519 .0.2660 .0.2836 .0.3025 .0.3194 .0.3373 .0.3522 
Jo• .0.2297 .0.284g .0.3427 .0.3817 .0.4084 .0.4434 .0.475g .0.5058 -0.5401 .0.5491 
45° .0.3157 .0.3986 .0.4561 .0.5116 .0.5419 .0.5288 .0.5525 .0.5736 .0.5964 .0.6250 
so• .0.3904 .0.4779 .0.5464 .0.6258 .0.6700 .0.6806 .0.7177 .0.7476 .0.7896 .0.8329 
go• .0.4528 .0.5198 .0.5612 -0.6249 .0.6782 .0.7369 
120° .0.3937 .0.4301 .0.4054 -0.4421 .0.4647 .0.4869 
15o• .0.2269 .0.2288 .0.2256 -0.1355 .0.0617 .0.0425 
160° .0.1560 .0.1577 .0.1496 .0.0582 .0.0141 .0.0168 -0.0392 
170° .0.0822 .0.0864 .0.0779 .0.0162 .0.0069 .0.0228 
175° .0.0424 .0.0471 .0.0394 .0.0077 .0.0073 .0.0235 
1so• .0.0070 .0.0046 0.0069 0.0178 .0.0035 .0.0192 
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Data Tables 

Table A.27: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) vertical force 

coefficient, KFZ. 

AziAng J=O J=0.2 J=0.4 J= o.s J= 0.7 J=O.S J=0.9 J= 1 J= 1.1 J= 1.2 

-1so• 0.0052 0.0192 0.0310 .0.0224 .0.0313 .0.0302 

·175° 0.0056 0.0144 0.0312 .0.0172 .0.0359 .0.0432 .0.0407 

·170° 0.0052 0.0323 0.0325 .0.0211 .0.0438 .0.0510 .0.0500 

·1S0° 0.0055 0.0400 .0.0114 .0.0326 .0.0570 .0.0503 .0.0475 

·150° 0.0069 0.0551 .0.0189 .0.0222 .0.0449 .0.0515 

·120° 0.0077 0.0846 .0.0020 0.0171 0.0361 0.0779 
.go• 0.0067 0.1148 0.1812 0.1936 0.2203 0.2621 

-so• 0.0030 0.1119 0.1972 0.2852 0.3252 0.3612 0.4062 0.4408 0.4729 0.4888 

-45. 0.0005 0.0823 0.1576 0.2216 0.2515 0.2812 0.3065 0.3267 0.3314 0.3330 

-3o• 0.0028 0.0615 0.1127 0.1460 0.1599 0.1713 0.1811 0.1831 0.1846 0.1815 

-2o• 0.0030 0.0478 0.0876 0.1100 0.1168 0.1216 0.1224 0.1206 0.1151 0.1027 

·15° 0.0042 0.0402 0.0720 0.0878 0.0919 0.0934 0.0916 0.0888 0.0790 0.0645 

·10" 0.0021 0.0328 0.0551 0.0632 0.0661 0.0660 0.0641 0.0595 0.0529 0.0422 

.s• 0.0013 0.0205 0.0317 0.0340 0.0350 0.0356 0.0362 0.0375 0.0362 0.0322 

o· 0.0031 0.0115 0.0168 0.0183 0.0212 0.0259 0.0308 0.0360 0.0431 0.0499 

o• 0.0031 0.0115 0.0168 0.0183 0.0212 0.0259 0.0308 0.0360 0.0431 0.0499 

5" 0.0015 0.0064 0.0077 0.0102 0.0150 0.0224 0.0313 0.0448 0.0561 O.Q705 

10° 0.0023 -0.0012 .0.003q 0.0008 0.0087 0.0217 0.0357 0.0522 0.0731 0.0960 

15" 0.0019 .0.0082 .0.0129 .0.0071 0.0024 0.0171 0.0351 0.0587 0.0869 0.1187 

20° 0.0035 -0.0147 .0.0220 .0.0140 .0.0035 0.0138 0.0361 0.0642 0.0960 0.1361 

30° 0.0029 -0.0207 .0.0351 .0.0233 .0.0091 0.0151 0.0469 0.0878 0.1345 0.1884 

45" 0.0032 -0.0358 .0.0390 .0.0196 0.0008 0.0543 0.0978 0.1492 0.2065 0.2696 

so• 0.0060 -0.0338 .0.0328 .0.0153 0.0112 0.0780 0.1239 0.1735 0.2338 0.3086 
go• 0.0019 -0.0251 .0.0125 0.0321 0.0623 0.0812 

120° 0.0022 .0.0074 0.0052 0.0333 0.0863 0.1418 

150° 0.0054 .0.0088 0.0203 0.0203 0.0276 0.0631 

160° 0.0048 0.0095 0.0301 .0.0055 0.0066 0.0273 0.0350 

170° 0.0051 0.0132 0.0282 .0.0085 .0.0082 .0.0074 

175" 0.0076 0.0144 0.0188 .0.0131 .0.0202 .0.0218 

180° 0.0052 0.0192 0.0310 .0.0224 .0.0313 .0.0302 
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Data Tables 

Table A.28: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) axial moment 

coefficient, KMX. 

AziAng J=O J= 0.2 J=0.4 J= 0.6 J=0.7 J= 0.8 J=0.9 J= 1 J=1.1 J= 1.2 

-18o• .0.0589 .Q.0567 .Q.0697 .Q.0674 -0.0562 .Q.0471 

·175° .0.0964 .Q.1186 .Q.1183 .Q.0594 .Q.0606 .Q.0672 .Q.0818 

-11o• .Q.1611 .Q.1425 .Q.1611 .Q.1107 .Q.0779 .Q.0937 .Q.1076 

-1so• .Q.2603 .Q.2284 .Q.2518 .Q.1826 -0.1532 .Q.1427 .Q.1659 

-15o• .0.3445 .Q.2512 .Q.3731 -0.2310 .Q.2490 .Q.2171 

-120° .Q.5306 .Q.4010 .Q.6517 .Q.6865 .Q.7213 .Q.7810 
.go• -0.5748 .Q.5212 .Q.5788 .Q.6246 .Q.6693 -0.7562 

-so· -0.4634 .Q.4647 .Q.5235 .Q.6230 -0.6874 -0.7605 -0.8256 .Q.8896 -0.9559 -1 .0083 

-45" -0.3593 .Q.3798 -0.4346 -0.5168 -0.5774 -0.6404 -0.7067 .Q.7624 -0.8015 -0.8458 

.Jo• .Q.2223 -0.2461 -0.2835 -0.3364 -0.3719 -0.4126 -0.4638 -0.4988 -0.5353 -0.5782 

·20" -0.1431 .Q.1601 -0.1792 -0.2148 -0.2375 -0.2661 -0.2944 -0.3229 -0.3588 -0.3970 

-15" .0.0950 -0.1066 -0.1187 -0.1414 -0.1596 -0.1796 -0.2020 .Q.2309 -0.2648 -0.3077 

-10" .Q.0412 -0.0535 -0.0571 -0.0662 -0.0820 -0.0972 -0.1164 -0.1412 .Q.1733 -0.2061 

·5" 0.0237 0.0191 0.0197 0.0168 0.0088 -0.0009 .Q.0138 -0.0361 -0.0590 -0.0874 

o• 0.0725 0.0759 0.0769 0.0724 0.0673 0.0599 0.0483 0.0337 0.0114 ·0.0118 

o· 0.0725 0.0759 0.0769 0.0724 0.0673 0.0599 0.0483 0.0337 0.0114 -0.0118 

5" 0.1083 0.1175 0.1193 0.1128 0.1085 0.1024 0.0939 0.0805 0.0654 0.0450 

10" 0.1548 0.1737 0.1841 0.1825 0.1807 0.1796 0.1754 0.1696 0.1605 0.1449 

15" 0.2042 0.2310 0.2491 0.2526 0.2535 0.2615 0.2661 0.2675 0.2671 0.2579 

20" 0.2516 0.2883 0.3158 0.3318 0.3385 0.3476 0.3564 0.3620 0.3675 0.3680 

30" 0.3486 0.4086 0.4656 0.5014 0.5233 0.5526 0.5767 0.5963 0.6196 0.6136 

45° 0.4499 0.5521 0.6229 0.6864 0.7178 0.6918 0.7142 0.7344 0.7552 0.7800 

so• 0.5326 0.6546 0.7484 0.8487 0.9028 0.9092 0.9599 1.0041 1.0621 1.1170 
go• 0.5739 0.6948 0.7498 0.8312 0.9013 0.9818 

120° 0.4651 0.5402 0.5231 0.5184 0.5298 0.5437 

150° 0.2287 0.2499 0.2417 0.1288 0.0540 0.0271 

1so• 0.1340 0.1445 0.1374 0.0381 -0.0120 -0.0156 0.0026 

170° 0.0378 0.0447 0.0434 -0.0167 -0.0344 .Q.0272 

175" .Q.0133 -0.0050 -0.0062 .Q.0338 -0.0441 .Q.0396 

180" .0.0589 -0.0567 -0.0697 -0.0674 -0.0562 -0.0471 
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Data Tables 

Table A.29: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) transverse 

moment coefficient, KMY. 

AziAng J= 0 J= 0.2 J=0.4 J= 0.6 J=0.7 J=0.8 J=0.9 J= 1 J= 1.1 J= 1.2 

·180° -0.5794 -0.6035 -0.6072 -0.4668 -0.5541 -0.6701 

-175° -0.5738 -0.6108 -0.5947 -0.4891 -0.5652 -0.6785 -0.8277 

·170° -0.5593 -0.5612 -0.5707 -0.5098 -0.5560 -0.6895 -0.8000 

·160° -0.5213 -0.5289 -0.5175 -0.5321 -0.6049 -0.7200 -0.8152 

·150° -0.4672 -0.4337 -0.5418 -0.5642 -0.6446 -0.7470 

·120° -0.2286 -0.3010 -0.4394 -0.4986 -0.5578 -0.6673 
.go• 0.0796 -0.0740 -0.1955 -0.3657 -0.4521 -0.5738 

-so· 0.3591 0.2005 0.0589 -0.1165 -0.2087 -0.3072 -0.3998 -0.4988 -0.6040 -0.6809 

-450 0.4612 0.3189 0.1756 0.0314 -0.0484 -0.1285 -0.2084 -0.2848 -0.3620 -0.4442 

·30° 0.5416 0.4176 0.2900 0.1680 0.1052 0.0403 -0.0248 -0.0913 -0.1551 -0.2252 

·20° 0.5669 0.4539 0.3351 0.2159 0.1580 0.0972 0.0391 -0.0224 -0.0863 -0.1576 

·15° 0.5728 0.4686 0.3503 0.2352 0.1788 0.1195 0.0617 0.0028 -0.0632 -0.1363 

·10° 0.5847 0.4819 0.3709 0.2586 0.1993 0.1390 0.0809 0.0172 -0.0495 -0.1209 

·5· 0.5838 0.4908 0.3831 0.2728 0.2146 0.1504 0.0923 0.0261 -0.0438 -0.1198 

o· 0.5803 0.4888 0.3851 0.2764 0.2205 0.1607 0.0996 0.0346 -0.0350 -0.1108 

o• 0.5803 0.4888 0.3851 0.2764 0.2205 0.1607 0.0996 0.0346 -0.0350 -0.1108 
5. 0.5750 0.4852 0.3873 0.2803 0.2236 0.1615 0.1014 0.0385 -0.0332 -0.1097 

10° 0.5642 0.4784 0.3851 0.2825 0.2258 0.1646 0.1035 0.0365 -0.0378 -0.1200 

15° 0.5488 0.4681 0.3764 0.2772 0.2219 0.1613 0.0992 0.0322 -0.0433 -0.1268 

20° 0.5252 0.4476 0.3595 0.2628 0.2081 0.1473 0.0872 0.0201 -0.0509 -0.1335 

Jo• 0.4623 0.3837 0.2995 0.1989 0.1413 0.0805 0.0190 -0.0467 -0.1178 -0.2091 

45° 0.3569 0.2664 0.1700 0.0579 -0.0101 -0.0895 -0.1633 -0.2331 -0.3091 -0.3925 

so• 0.2217 0.1031 -0.0103 -0.1423 -0.2250 -0.3091 -0.3929 -0.471 1 -0.5644 -0.6645 

go• -0.0787 -0.2789 -0.4069 -0.6016 -0.7179 -0.8350 

120° -0.3490 -0.5705 -0.6232 -0.6805 -0.7522 -0.8217 

150° -0.5388 -0.6699 -0.6190 -0.5795 -0.6237 -0.6979 

160° -0.5706 -0.6233 -0.6195 -0.5342 -0.5827 -0.6727 -0.8025 

170° -0.5831 -0.6319 -0.6058 -0.4894 -0.5566 -0.6794 

175" -0.5833 -0.6363 -0.5865 -0.4839 -0.5715 -0.6916 

180° -0.5794 -0.6035 -0.6072 -0.4668 -0.5541 -0.6701 
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Data Tables 

Table A.30: Performance coefficient of the pod with 200 mm diameter propeller at 
static azimuthing angles and in puller configuration: propulsor (unit) vertical force 

coefficient, KMz· 

AziAng J=O J= 0.2 J=0.4 J=0.6 J= 0.7 J=0.8 J= o.g J=1 J= 1.1 J= 1.2 

·180° -0.0161 -0.0144 -0.0039 0.0041 0.0122 0.0170 

-175° -0.0158 -0.0117 0.0014 -0.0009 0.0075 0.0093 0.0062 

-170" -0.0159 -0.0046 0.0132 -0.0104 0.0026 0.0021 -0.0003 

-1so· -0.0156 0.0073 0.0252 -0.0193 -0.0096 -0.0125 -0.0203 

-150° -0.0149 0.0247 0.0334 -0.0309 -0.0199 -0.0164 

-120° -0.0120 0.0499 0.0831 0.0667 0.0504 0.0466 
.go• -0.0114 0.0599 0.1380 0.1924 0.2121 0.2521 

-so• -0.0128 0.0569 0.1108 0.1778 0.2187 0.2609 0.2986 0.3447 0.3906 0.4257 

-450 -0.0151 0.0373 0.0941 0.1556 0.1902 0.2254 0.2611 0.2998 0.3410 0.3837 

-3o· -0.0155 0.0216 0.0638 0.1137 0.1406 0.1690 0.1980 0.2268 0.2591 0.2950 

-20° -0.0144 0.0116 0.0442 0.0820 0.1012 0.1234 0.1479 0.1732 0.2010 0.2320 

-15° -0.0149 0.0050 0.0314 0.0624 0.0783 0.0963 0.1161 0.1365 0.1598 0.1865 

-10° -0.0156 -0.0014 0.0192 0.0400 0.0537 0.0672 0.0811 0.0966 0.1155 0.1342 

-5· -0.0168 -0.0104 -0.0007 0.0102 0.0159 0.0226 0.0299 0.0408 0.0508 0.0619 

o· -0.0166 -0.0176 -0.0156 -0.0145 -0.0137 -0.0128 -0.0102 -0.0081 -0.0042 -0.0001 

o• -0.0166 -0.0176 -0.0156 -0.0145 -0.0137 -0.0128 -0.0102 -0.0081 -0.0042 -0.0001 
5. -0.0176 -0.0222 -0.0264 -0.0324 -0.0348 -0.0371 -0.0388 -0.0401 -0.0399 -0.0384 

w -0.0172 -0.0296 -0.0427 -0.0581 -0.0655 -0.0726 -0.0786 -0.0849 -0.0913 -0.0964 

15° -0.0170 -0.0368 -0.0578 -0.0819 -0.0926 -0.1046 -0.1162 -0.1290 -0.1422 -0.1539 

20° -0.0171 -0.0436 -0.0731 -0.1042 -0.1189 -0.1360 -0.1521 -0.1698 -0.1876 -0.2076 

Jo• -0.0173 -0.0596 -0.1004 -0.1412 -0.1624 -0.1874 -0.2129 -0.2381 -0.2687 -0.2897 

45° -0.0217 -0.0759 -0.1243 -0.1725 -0.1960 -0.2064 -0.2344 -0.2623 -0.2909 -0.3216 

so• -0.0208 -0.0898 -0.1446 -0.2035 -0.2356 -0.2581 -0.2929 -0.3238 -0.3574 -0.3906 

go• -0.0228 -0.1040 -0.1399 -0.2131 -0.2430 -0.2703 

120° -0.0201 -0.0875 -0.0987 -0.0812 -0.0873 -0.0970 

150• -0.0177 -0.0555 -0.0045 0.0108 0.0150 0.0199 

160° -0.0169 -0.0325 -0.0177 0.0053 0.0149 0.0216 0.0357 

170° -0.0171 -0.0195 -0.0115 0.0010 0.0176 0.0248 

175° -0.0160 -0.0146 -0.0039 0.0031 0.0163 0.0179 

180° -0.0161 -0.0144 -0.0039 0.0041 0.0122 0.0170 
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Uncertainty Data 

B.l Bias and Precision Estimates for NSERC Pod Measurements 

Table B.l: Bias and precision limits for a list of performance coefficients for the 
NSERC podded propulsor unit . 

., 
::0 
.~ .. 
"' > Bias Bias Precision Precision 

Error Limit error Limit 
Fossiliz 

c. Calibration +I- 0.2000 ·c ed +1- 0.2828 ·c Scale +I- 0.0005 ·c 
E 
~ into for Range +I- 0.2 •c 

Temp 

Temp related +I- 0.044 1 Kg/m"3 

·~ Errors Overall +1- 0.0940 Kg/m"3 
c 

" 0 Density Equation +1- 0.0830 Kg/m"3 Limit 

related errors 

... ... CNC Machining 

" " =v Errors +I- 0.0001 m Overall 
&.E 
0 "' Hand Polishing Limit +1- 0.0001 3:i5 m 

Errors +I- 0.0001 m 

" CNC Machining 
bb Errors +I- 0.0002 rad ~ Overall 
00 Hand Polishing Limit +I- 0.6920 Deg .5 
£ Errors 
::> 

+I- 0.0020 rad 
e Hole Allowance +1- 0.0081 rad ... 
< Equipment Align +1- 0.0087 rad 

J=O.O +1- 0.0117 rps 

J=O. l +1- 0.0162 rps 

J=0.2 +I- 0.0159 rps 

J=0.3 +I- 0.0164 rps 

Tachometer J=0.4 +1- 0.0179 rps 

1 Reading Error +1- 0.0080 rps J=0.5 +1- 0.0153 rps 
Cl) 

AID Error +I- 0.0079 Overall J=0.6 +I- 0.0161 
~ 

rps rps 
..c Curve Fit Error +I- 0.0320 rps Limit +1- 0.0500 rps J=0.7 +1- 0.0148 rps Cl) 

Static Zero Error +I- 0.0241 rps J=0.8 +1- 0.017 1 rps 

AID Error +I- 0.0079 rps J=0.9 +1- 0.01 79 rps 

J= l.O +1- 0.0180 rps 

J= l.l +I- 0.0170 rps 

J= l.2 +I- 0.0162 
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Uncertainty Data 

Table B.l: Bias and precision limits for a list of performance coefficients for the 
NSERC podded propulsor unit continued. 

Calibration Error 

AID Error ] 
~ Wheel Dia Error 

~ Tide Error 
> 

~ 
Curve Fit Error 

AID Error 

Bias 
Error 

+1- 0.0050 

+1- 0.0010 

+1- 0.0001 

+1- 0.0010 

+1- 0.0143 

+1- 0.00 10 

m/s 

m/s 

m/s Overall 

Bias 
Limit 

m/s Limit +/- 0.0154 

m/s 

m/s 

Static Zero Error +1- 0.0024 m/s 

Weights Error 

~ Load Angle Error 

Load Cell Align ... 
" =g_ Static Zero Error 

J: AID Card Error 

Curve Fit Error 

Equipment Align 

Load Cell Align 

+1- 0.0003 

+1- 0.01 14 

+1- 0.0005 

+1- 0.0356 

+1- 0.6041 

+1- 2.0439 

+1- 0.0114 

+1- 0.0005 

Static Zero Error +1- 0.0356 

AID Card Error +1- 0.6041 

N 

N 

N 

N 

N Overall 

N Limit +/- 2.2 159 

N 

N 

N 

N 

Calibration Error +1- 0.0008 Nm 

Static Zero Error 

AID Card Error 

..!l Curve Fit Error 

'&. Equipment Align 
J: Static Zero Error 

AID Card Error 

+1-

+1-

0.02 17 

0.017 1 

+1- 0.0557 

+1- 0.0005 

+1- 0.0152 

+1- 0.0 171 

Nm 

Nm Overall 

Nm Limit +/- 0.0662 

Nm 

Nm 

Nm 
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m/s 

N 

Nm 

Precision 
error 

Precision 
Limit 

1=0.0 +I- 0.000 I m/s 

1=0.1 

1=0.2 

1=0.3 

1=0.4 

1=0.5 

1=0.6 

1=0.7 

1=0.8 

+1- 0.0007 m/s 

+I- 0.000 I m/s 

+1- 0.0004 m/s 

+1- 0.0002 m/s 

+1- 0.0003 m/s 

+1- 0.000 I m/s 

+1- 0.0002 mls 

+1- 0.0000 m/s 

1=0.9 +1- 0.0001 m/s 

1= 1.0 +I- 0.000 I m/s 

1= 1.1 +1- 0.0005 mls 

1= 1.2 +1- 0.0008 m/s 

1=0.0 +1- 0.6637 N 

1=0.1 +1- 0.6103 N 

1=0.2 +1- 0.5816 N 

1=0.3 

1=0.4 

1=0.5 

1=0.6 

1=0.7 

1=0.8 

1=0.9 

1=1.0 

+1- 0.6257 

+1- 0.4550 

+1- 0.5926 

+1- 0.4777 

+1- 0.5115 

+1- 0.4524 

+1- 0.5037 

+1- 0.4450 

N 

N 

N 

N 

N 

N 

N 

N 

1= 1.1 +1- 0.4253 N 

1=1.2 +1- 0.3504 N 

1=0.0 +1- 0.0302 Nm 

1=0.1 +1- 0.0388 Nm 

1=0.2 +1- 0.0309 Nm 

1=0.3 +1- 0.0266 Nm 

1=0.4 

1=0.5 

1=0.6 

1=0.7 

1=0.8 

+1- 0.0563 

+1- 0.0335 

Nm 

Nm 

+1- 0.0449 Nm 

+1- 0.0491 Nm 

+1- 0 .0514 Nm 

1=0.9 +1- 0.041 1 Nm 

1=1.0 +1- 0.0452 Nm 

1=1.1 +1- 0.0436 Nm 

1= 1.2 +1- 0.0518 Nm 



Uncertainty Data 

Table B.l: Bias and precision limits for a list of performance coefficients for the 
NSERC podded propulsor unit continued. 

Weights Error 

~ Load Angle Error 

Load Cell Align 

Static Zero Error 

Bias 
Error 

+1- 0.0014 

+1- O.ot 14 

+1- 0.0114 

+1- 0.0356 

AID Card Error +1- 0.2014 

Curve Fit Error +1- 1.7122 

Equipment Align 

Load Cell Align 

Static Zero Error 

AID Card Error 

Weights Error 

~ Load Angle Error 

~ Load Cell Align 
0 

~ Static Zero Error 

+1- 0.0114 

+1- 0.0005 

+1- 0.0356 

+1- 0.604 1 

+1- 0.0014 

+1- O.ot 14 

+1- O.ot 14 

+1- 0.0356 

AID Card Error +I- 0.2014 

Curve Fit Error 

Equipment Align 

Load Cell Align 

Static Zero Error 

AID Card Error 

+1- 0.3113 

+1- 0.0114 

+1- 0.0005 

+1- 0.0356 

+1- 0.604 1 

N 

N 

N 

N 

Bias 
Limit 

Overall Limit 

1=0.0 +1-

1=0.1 +1-

1=0.2 +1-

1=0.3 +1-

1=0.4 +1-

1=0.5 +1-

1=0.6 +1-

1.8539 

1.8522 

1.8504 

1.8489 

1.8457 

1.8429 

1.8402 

N 1=0. 7 +1- 1.8397 

N 1=0.8 +1- 1.8358 

N 

N 

N 

N 

N 

N 

N 

N 

1=0.9 +1- 1.8347 

1= 1.0 +1- 1.8315 

1= 1.1 +I- 1.8287 

1=1.2 +1- 1.8275 

Overall Limit 

1=0.0 +1- 0.7109 

1=0.1 +1- 0.7100 

1=0.2 +1- 0.7090 

1=0.3 +1- 0.7082 

1=0.4 +1- 0.7065 

1=0.5 +1- 0.7051 

1=0.6 +1- 0.7037 

N 1=0.7 +1- 0.7034 

N 

N 

N 

N 

N 

1=0.8 +1- 0.7014 

1=0.9 +1- 0.7008 

1= 1.0 +1- 0.6993 

1= 1.1 +1- 0.6979 

1=1.2 +1- 0.6973 
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N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Precision 
error 

1=0.0 

1=0.1 

1=0.2 

1=0.3 

1=0.4 

1=0.5 

1=0.6 

Precision 
Limit 

+1- 1.9993 

+1- 2.1195 

+1- 2.3606 

+1- 2.6865 

+1- 2.4823 

+1- 2.4893 

+1- 1.5086 

N 

N 

N 

N 

N 

N 

N 

1=0.7 +1- 1.1774 N 

1=0.8 +1- 1.6636 N 

1=0.9 

1=1.0 

1=1. 1 

1= 1.2 

+1- 1.6593 N 

+1- 1.4108 N 

+1- 1.7319 N 

+1- 1.4044 N 

1=0.0 +1- 1.6356 N 

1=0.1 +1- 1.3660 N 

1=0.2 +1- 1.8935 N 

1=0.3 

1=0.4 

1=0.5 

1=0.6 

+1- 1.6951 N 

+1- 2.3155 N 

+1- 1.7913 N 

+1- 1.5143 N 

1=0.7 +1- 1.6067 N 

1=0.8 

1=0.9 

1=1.0 

1=1.1 

1=1.2 

+1- 1.6380 N 

+1- 1.6606 N 

+1- 1.4291 N 

+1- 2.1846 N 

+1- 1.8557 N 
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Uncertainty Data 

Table B.l: Bias and precision limits for a list of performance coefficients for the 
NSERC podded propulsor unit continued . 

., 
::E .. ·;:: .. Bias Bias Precision Precision ;> 

Error Limit error Limit 

Overall Limit 

1=0.0 +I- 2.7745 N 1=0.0 +1- 3.0326 N 

1=0.1 +1- 2.7620 N 1=0.1 +1- 3.1700 N 

1=0.2 +I- 2.7489 N 1=0.2 +1- 3.0945 N 

Weights Error +I- 0.0014 N 1=0.3 +1- 2.7376 N 1=0.3 +1- 2.9514 N 

~ Load Angle Error +I- 0.0114 N 1=0.4 +I- 2.7 140 N 1=0.4 +1- 3.1975 N 
& 
"§ Load Cell Align +I- 0.0114 N 1=0.5 +I- 2.6934 N 1=0.5 +1- 3.0613 N 

·e Static Zero Error +1- 0.0356 N 1=0.6 +I- 2.6738 N 1=0.6 +1- 3.0220 N 
0 

> ND Card Error +1- 0.2014 N 1=0.7 +1- 2.6695 N 1=0.7 +1- 3.0098 N 

Curve Fit Error +I- 2.6999 N 1=0.8 +I- 2.6414 N 1=0.8 +1- 3.1242 N 

Equipment Align +I- 0.0 114 N 1=0.9 +I- 2.6327 N 1=0.9 +1- 3.0497 N 

Load Cell Align +I- 0.0005 N 1=1.0 +I- 2.6095 N 1=1.0 +1- 3.0931 N 

Static Zero Error +I- 0.0356 N 1=1.1 +I- 2.5889 N 1=1.1 +1- 3.1568 N 

ND Card Error +I- 0.6041 N 1=1.2 +1- 2.5802 N 1=1.2 +1- 2.9550 N 

Overall Limit 

1=0.0 +1- 0.4751 1=0.0 +I- 1.9516 Nm 

1=0. 1 +I- 0.4716 1=0.1 +1- 1.6544 Nm 

1=0.2 +I- 0.4680 1=0.2 +1- 1.6660 Nm 

Calibration Error +1- 0.008 1 Nm 1=0.3 +1- 0.4648 1=0.3 +1- 1.8176 Nm 
c 

1.8676 Nm 0 Static Zero Error +I- 0.0217 Nm 1=0.4 +I- 0.4582 1=0.4 +1-E 

~ ND Card Error +I- 0.0098 Nm 1=0.5 +I- 0.4525 1=0.5 +1- 2.1911 Nm 
... Curve Fit Error +I- -0.4743 Nm 1=0.6 +I- 0.4470 Nm 1=0.6 +1- 1.6241 Nm 
~ Equipment Align +I- 0.0005 Nm 1=0.7 +I- 0.4458 1=0.7 +1- 1.5967 Nm 

Static Zero Error +I- 0.0087 Nm 1=0.8 +I- 0.4379 1=0.8 +1- 1. 7481 Nm 

ND Card Error +I- 0.0098 Nm 1=0.9 +1- 0.4355 1=0.9 +1- 1.5054 Nm 

1=1.0 +I- 0.4290 1=1.0 +1- 1.8073 Nm 

1=1.1 +I- 0.4232 1=1.1 +1- 1.9409 Nm 

1=1.2 +1- 0.4208 1=1.2 +1- 1.8763 Nm 
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Uncertainty Data 

Table B.l: Bias and precision limits for a list of performance coefficients for the 
NSERC podded propulsor unit continued . 

... 
::c 
" ·~:; 

" Bias Bias Precision Precision > 
Error Limit error Limit 

Overall Limit 

1=0.0 +I- 2.7313 1=0.0 +1- 5.6957 Nm 

1=0.1 +1- 2.7293 1=0.1 +1- 6.2242 Nm 

1=0.2 +1- 2.7273 1=0.2 +1- 7.0426 Nm 

E Calibration Error +I- 0.0202 Nm 1=0.3 +I- 2.7255 1=0.3 +1- 6.2363 Nm 

~ Static Zero Error +1- 0.9536 Nm 1=0.4 +I- 2.72 18 1=0.4 +1- 5.8257 Nm 
0 

::!: AID Card Error +I- 1.0742 Nm 1=0.5 +I- 2.7185 1=0.5 +1- 5.2986 Nm 
.... 
u Curve Fit Error +I- -1.8257 Nm 1=0.6 +I- 2.7 154 Nm 1=0.6 +1- 6.0425 Nm ·e 
" Equipment Align +1- 0.0005 Nm 1=0.7 +I- 2.7148 1=0.7 +1- 7.0244 Nm > 

Static Zero Error +1- 0.9536 Nm 1=0.8 +1- 2.7103 1=0.8 +1- 5.9199 Nm 

AID Card Error +1- 1.0742 Nm 1=0.9 +1- 2.7090 1=0.9 +1- 5.6377 Nm 

1=1.0 +I- 2.7053 1=1.0 +1- 6.4502 Nm 

1=1.1 +1- 2.7021 1=1.1 +1- 3 .7839 Nm 

1-1.2 +1- 2.7007 1-1.2 +1- 4 .0284 Nm 

Overall Limit 

1=0.0 +I- 1.0195 1=0.0 +1- 0 .5684 Nm 

1=0.1 +I- 1.0195 1=0.1 +1- 0.5989 Nm 

1=0.2 +I- 1.0195 1=0.2 +1- 0.4748 Nm 

E Calibration Error +1- 0.0081 Nm 1=0.3 +1- 1.0195 1=0.3 +1- 0 .4422 Nm 

" E Static Zero Error +1- 0.0037 Nm 1=0.4 +I- 1.0195 1=0.4 +1- 0.5594 Nm 
0 

::!: ND Card Error +1- 0.0042 Nm 1=0.5 +1- 1.0195 1=0.5 +1- 0.5172 Nm 
] 

Curve Fit Error +1- -1.0195 Nm 1=0.6 +I- 1.0195 Nm 1=0.6 +1- 0.5931 Nm ·e 
" > Equipment Align +1- 0.0005 Nm 1=0.7 +1- 1.0195 1=0.7 +1- 0.6466 Nm 

Static Zero Error +I- 0.0037 Nm 1=0.8 +1- 1.0195 1=0.8 +1- 0 .6527 Nm 

AID Card Error +I- 0.0042 Nm 1=0.9 +1- 1.0195 1=0.9 +1- 0.5779 Nm 

1=1.0 +1- 1.0195 1=1.0 +1- 0 .5629 Nm 

1=1.1 +1- 1.0195 1=1.1 +1- 0 .6511 Nm 

1=1.2 +1- 1.0195 1=1.2 +1- 0 .7027 Nm 
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B.2 Bias and Precision Estimates for lOT Pod Measurements 

Table B.2: Bias and precision limits of a list of performance coefficients for the lOT 
podded propulsor unit . 

.. 
:0 .. ·c .. Bias Bias Precision Precision > 

Error Limit error Limit 
Fossiliz 

Cl. 
E 

Calibration +I- 0.2000 oc ed +I- 0.0707 oc Scale +I- 0.0005 oc 
~ into for Range +I- 0.05 oc 

Temo 

Temp related +1- O.DllO Kg/m"3 
~ 

Errors Overall +I- 0.0721 Kg/m"3 ·;;; 
c 

" Density Equation +1- 0.0712 Kglm"3 Limit 0 

related errors 

... ... CNC Machining 

" " =o Errors +I- 0.0001 m Overall &a 
0 .. Hnad Polishing Limit +1- 0.0001 P::i5 m 

Errors +I- 0.0001 m 

" CNC Machining -.;, 
~ Errors +I- 0.0002 rad Overall 
bl) 

Hnad Polishing Limit +I- 0.6920 Deg c: 
~ Errors +I- 0.0020 rad 
" E Hole Allowance +I- 0.008 1 rad 
~ Equipment Allign +I- 0.0087 rad 

1=0.0 +I- 1.90E-05 rps 

1=0.2 +1- 1.97E-05 rps 

1=0.4 +I- 2.54E-05 rps 

1=0.6 +1- 2.24E-05 rps 

13 Techometer 1=0.7 +1- 1.81E-05 rps 
g, Reading Error +1- 0.0083 rps 1=0.8 +I- 2.55E-05 rps 

Cl) 

~ AID Error +1- 0.0079 rps 
.c: 

Overall 1=0.9 +I- I.IIE-05 rps 
Cl) 

Curve Fit Error +I- 0.0320 rps Limit +I- 0.0506 rps 1=1.0 +1- 7.92E-06 rps 

Static Zero Error +1- 0.024 1 rps 1= 1.1 +1- 2.60E-05 rps 

AID Error +1- 0.0079 rps 1=1.2 +1- 1.90E-05 rps 
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Uncertainty Data 

Table B.2: Bias and precision limits of a list of performance coefficients for the lOT 
podded propulsor unit continued. 

Calibration Error 

AID Error 

Wheel Dia Error 

Tide Error 

Curve Fit Error 

AID Error 

Static Zero Error 

Weights Error 

Load Angle Error 

Load Cell Align 

Static Zero Error 

AID Card Error 

Curve Fit Error 

Equipment Align 

Load Cell Align 

Static Zero Error 

AID Card Error 

Calibration Error 

Static Zero Error 

AID Card Error 

Curve Fit Error 

Equipment Align 

Static Zero Error 

AID Card Error 

+1-

+I-

+I-

+I-

+I-

+1-

+1-

+1-

+1-

+1-

+1-

+I-

+I-

+I-

+I-

+I-

+1-

+1-

+I-

+I-

+I-

+1-

+I-

+I-

Bias 
E rror 

0.0050 

0.0010 

0.0001 

0.0010 

0.0002 

0.0010 

0.0024 

0.0010 

0.0069 

0.0003 

0.0354 

0.6004 

4. 1720 

0.0069 

0.0003 

0.0354 

0.6004 

0.0 104 

0.0217 

0.017 1 

0.0596 

0.0005 

0.0 152 

0.0171 

m/s 

mls 

m/s 

m/s 

m/s 

m/s 

m/s 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Overal l 

Limit +I-

Overall 

Limit +1-

Overall 

Limit +1-

Bias 
Limit 

0.0058 

4.2578 

0.0703 
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P recision 
error 

mls 

N 

Nm 

Precision 
Limit 

1=0.0 +1- 0.0001 

1=0.2 +I- 0.0002 

1=0.4 +1- 0.0001 

1=0.6 +I- 0.0001 

1=0.7 +1- 0 .0002 

1=0.8 +1- 0.0001 

1=0.9 +1- 0.0001 

1=1.0 +I- 0.0001 

1=1.1 +I- 0.0001 

1=1.2 +I- 0.0002 

1=0.0 +1- 0.4019 

1=0.2 +1- 0.4019 

1=0.4 +I- 0.4019 

1=0.6 +I- 0.4019 

1=0.7 +I- 0.4019 

1=0.8 +1- 0.4019 

1=0.9 +1- 0.4019 

1=1.0 +1- 0.4019 

1=1.1 +I- 0.4019 

1= 1.2 +I- 0.4019 

1=0.0 +I- 0.0 108 

1=0.2 +I- 0.0 108 

1=0.4 +I- 0.0 108 

1=0.6 +1- 0.0108 

1=0.7 +I- 0.0108 

1=0.8 +1- 0.0 108 

1=0.9 +1- 0.0108 

1=1.0 +1- 0.0108 

1=1.1 +1- 0.0 108 

1=1.2 +I- 0.0108 

m/s 

m/s 

m/s 

mls 

mls 

m/s 

m/s 

m/s 

m/s 

m/s 

N 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 

Nm 
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Table B.2: Bias and precision limits of a list of performance coefficients for the lOT 
po dd d I •t f d e propu sor um con mue . 

..!! 

.t:> .. 
'5 
> Bias Bias Precision Precision 

Error Limit error Limit 

Overall Limit 

Weights Error +1- 0.0030 N 1=0.0 +1- 0.8623 1=0.0 +1- 0.3369 N 

Load Angle Error +1- 0.0069 N 1=0.1 +1- 0.7330 1=0.2 +I- 0.3369 N 

Load Cell Align +1- 0.0069 N 1=0.2 +I- 0.5835 1=0.4 +1- 0.3369 N 

Static Zero Error +I- 0.0026 N 1=0.3 +1- 0.4415 1=0.6 +1- 0.3369 N 

~ AID Card Error +I- 0.0 146 N 1=0.4 +I- 0.3503 N 1=0.7 +1- 0.3369 N 

·a Curve Fit Error +I- 0.0000 N 1=0.5 +I- 0.2516 1=0.8 +1- 0.3369 N 

::> Equipment Align +1- 0.0069 N 1=0.6 +I- 0.1405 1=0.9 +1- 0.3369 N 

Load Cell Align +1- 0.0003 N 1=0.7 +I- 0.0482 1=1.0 +I- 0.3369 N 

Static Zero Error +1- 0.0026 N 1=0.8 +1- 0. 1617 1=1.1 +1- 0.3369 N 

A/D Card Error +I- 0.0438 N 1=0.9 +1- 0.324 1 1=1.2 +1- 0.3369 N 

Overall Limit 

Weights Error +I- 0.0030 N 1=0.0 +1- 1.5236 1=0.0 +I- 0.2364 N 

Load Angle Error +I- 0.0069 N 1=0.1 +1- 1.3084 1=0.2 +1- 0.2364 N 

Load Cell Align +I- 0.0069 N 1=0.2 +I- 1.0635 1=0.4 +1- 0.2364 N 

Static Zero Error +I- 0.0026 N 1=0.3 +I- 0.8376 1=0.6 +1- 0.2364 N 

~ AID Card Error +1- 0.0146 N 1=0.4 +I- 0.6990 N 1=0.7 +1- 0.2364 N 

& Curve Fit Error +1- 0.3113 N 1=0.5 +1- 0.5602 1=0.8 +1- 0.2364 N 

" -o Equipment Align +1- 0.0069 N 1=0.6 +1- 0.431 I 1=0.9 +1- 0.2364 N Cii 
Load Cell Align +1- 0.0003 N 1=0.7 +1- 0.3681 1=1.0 +1- 0.2364 N 

Static Zero Error +I- 0.0026 N 1=0.8 +1- 0.4555 1=1.1 +1- 0.2364 N 

A/D Card Error +I- 0.0438 N 1=0.9 +1- 0.6651 1=1.2 +1- 0.2364 N 
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Table B.2: Bias and precision limits of a list of performance coefficients for the lOT 
podded propulsor unit continued . 

.. 
::0 .. •t: .. Bias Bias Precision Precision > 

Error Limit error Limit 

Overall Limit 

Weights Error +1- 0.0030 N 1=0.0 +I- 4.7301 1=0.0 +1- 0.2340 N 

Load Angle Error +1- 0.0069 N 1=0.1 +I- 4.0175 1=0.2 +1- 0.2340 N 

Load Cell Align +I- 0.0069 N 1=0.2 +I- 3.1933 1=0.4 +1- 0.2340 N 

~ 
Static Zero Error +I- 0.0026 N 1=0.3 +I- 2.4086 1=0.6 +1- 0.2340 N 

& AID Card Error +I- 0.0 146 N 1=0.4 +I- 1.9033 N 1=0.7 +1- 0.2340 N 

i§ Curve Fit Error +I- 2.6999 N 1=0.5 +I- 1.3536 1=0.8 +1- 0.2340 N 

'5 Equipment Align +I- 0.0069 N 1=0.6 +1- 0.7220 1=0.9 +1- 0.2340 N 
> 

Load Cell Align +I- 0.0003 N 1=0.7 +1- 0.0521 1=1.0 +1- 0.2340 N 

Static Zero Error +I- 0.0026 N 1=0.8 +1- 0.8571 1=1.1 +1- 0.2340 N 

AID Card Error +I- 0.0438 N 1=0.9 +1- 1.7699 1=1.2 +1- 0.2340 N 

Overall Limit 

1=0.0 +I- 0.0230 1=0.0 +1- 0.0542 Nm 

1=0.1 +I- 0.0225 1=0.2 +1- 0.0542 Nm 

1=0.2 +I- 0.0220 1=0.4 +1- 0.0542 Nm 

Calibration Error +I- 0.0036 Nm 1=0.3 +I- 0.0216 1=0.6 +1- 0.0542 Nm 
c 
0 Static Zero Error +I- 0.0097 Nm 1=0.4 +I- 0.0214 1=0.7 +1- 0.0542 Nm 
E 
0 

AID Card Error +I- 0.0110 Nm 1=0.5 +I- 0.0212 1=0.8 +1- 0.0542 Nm ::E 

'" Curve Fit Error +I- -0.0064 Nm 1=0.6 +1- 0.0211 Nm 1=0.9 +1- 0.0542 Nm 
~ Equipment Align +1- 0.0014 Nm 1=0.7 +1- 0.0211 1=1.0 +1- 0.0542 Nm 

Static Zero Error +1- 0.0097 Nm 1=0.8 +I- 0.0211 1=1.1 +I- 0.0542 Nm 

AID Card Error +I- 0.0 110 Nm 1=0.9 +I- 0.0213 1=1.2 +1- 0.0542 Nm 
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Table B.2: Bias and precision limits of a list of performance coefficients for the lOT 
podded propulsor unit continued . 

., 
::E 
~ ·c 
~ Bias Bias Precision Precision ;;.. 

Error Limit error Limit 

Overall Limit 

1=0.0 +I- 0.1821 1=0.0 +1- 0.0543 Nm 

1=0.1 +1- 0.1552 1=0.2 +1- 0.0543 Nm 

1=0.2 +I- 0.1241 1=0.4 +1- 0.0543 Nm 

c Calibration Error +I- 0.0088 Nm 1=0.3 +1- 0.0947 1=0.6 +1- 0.0543 Nm 
0 

E 
0 

Static Zero Error +I- 0.0097 Nm 1=0.4 +I- 0.0761 1=0.1 +1- 0.0543 Nm 

::E AID Card Error +I- 0.0110 Nm 1=0.5 +I- 0.0564 1=0.8 +1- 0.0543 Nm 
] 

Curve Fit Error +1- 0.1278 Nm 1=0.6 +I- 0.0356 Nm 1=0.9 +1- 0.0543 Nm ·e 
0 

Equipment Align +I- 0.00 14 Nm 1=0.7 +1- 0.0226 1= 1.0 +1- 0.0543 Nm > 
Static Zero Error +I- 0.0097 Nm 1=0.8 +I- 0.0397 1=1.1 +1- 0.0543 Nm 

AID Card Error +I- 0.01 10 Nm 1=0.9 +1- 0.071 3 1= 1.2 +1- 0.0543 Nm 

Overall Limit 

1=0.0 +I- 0.0215 1=0.0 +1- 0.0572 Nm 

1=0.1 +I- 0.0214 1=0.2 +1- 0.0572 Nm 

1=0.2 +I- 0.021 3 1=0.4 +1- 0.0572 Nm 

c Calibration Error +1- 0.0036 Nm 1=0.3 +I- 0.0212 1=0.6 +1- 0.0572 Nm 

~ Static Zero Error +I- 0.0097 Nm 1=0.4 +I- 0.0211 1=0.7 +1- 0.0572 Nm 
0 

::E AID Card Error +I- 0.0110 Nm 1=0.5 +1- 0.0211 1=0.8 +1- 0.0572 Nm 
] 

Curve Fit Error +I- -1.0195 Nm 1=0.6 +1- 0.0211 Nm 1=0.9 +1- 0.0572 Nm ·e 
0 
> Equipment Align +I- 0.0014 Nm 1=0.7 +1- 0.0211 1=1.0 +1- 0.0572 Nm 

Static Zero Error +I- 0.0097 Nm 1=0.8 +1- 0.0211 1= 1.1 +1- 0.0572 Nm 

AID Card Error +I- 0.0110 Nm 1=0.9 +I- 0.0211 1= 1.2 +1- 0.0572 Nm 
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C-1 Design of Experiment Technique 

This section presents a brief introduction to the statistical design of experiments or DOE 

method, which was used to study the hydrodynamic performance of podded propulsors at 

varied geometry. 

Engineers in general carry out a fair amount of physical experimentation in the laboratory 

and on the computer using a variety of numerical models. Experiments are carried out to 1) 

evaluate and compare basic design configurations, 2) evaluate material alternatives, 3) 

select design parameters so that the design will work well under a wide variety of field 

conditions (robust design), and 4) determine the key design parameters that impact 

performance. As with most engineering problems, time and budget are often limited. 

Hence, it is necessary to gain as much information as possible from an experimental 

program and do so as efficiently as possible. 

In engineering, one often-used approach is the best-guess (with engineering judgment) 

approach. Another strategy of experimentation that is prevalent in practice is the one

factor-at-a-time or OFAT approach. The OFAT method was once considered the standard, 

systematic, and accepted method of scientific experimentation. Both of these methods 

have been shown to be inefficient and in fact can be disastrous (Montgomery, 2005). 

These methods of experimentation became outdated in the early 1920s when Ronald A. 

Fisher discovered much more efficient methods of experimentation based on factorial 

designs. This class of experimental designs includes the general factorial, two-level 

factorial, fractional factorial, and response surface designs among others. These 
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statistically based experimental design methods are now simply called design of 

experiment methods or DOE methods. A recent application of DOE methods in ocean 

engineering can be found in Hawkins and Lye (2006), among others. 

Basically, DOE is a methodology for systematically applying statistics to experimentation. 

DOE lets experimenters develop a mathematical model that predicts how input variables 

interact to create output variables or responses in a process or system. DOE can be used for 

a wide range of experiments for various purposes including nearly all fields of engineering 

and science and even in marketing studies. The use of statistics is important in DOE but 

not necessary. In general, by using DOE, one can: 

v' learn about the process being investigated; 

./ screen important factors; 

v' determine whether factors interact; 

v' build a mathematical model for prediction; and 

./ optimize the response(s), if required. 

DOE methods are also very useful as a strategy for building mechanistic models, and they 

have the additional advantage that no complicated calculations are needed to analyze the 

data produced from the designed experiment. It has now been recognized that the 

factorial-based DOE is the correct and the most efficient method of conducting multi

factored experiments; they allow a large number of factors to be investigated in few 

experimental runs. The efficiency stems from using settings of the independent factors that 

are completely uncorrelated with each other. That is, the experimental designs are 

orthogonal. The consequence of the orthogonal design is that the main effect of each 
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experiment factor, and also the interactions between factors, can be estimated independent 

of the other effects. As stated earlier, many industries have recognized this fact and design 

of experiment methodologies is a key component of the Six-Sigma quality program used 

by many major corporations. Yet it is surprising that after about 90 years since the 

invention of modem experimental design it is still not widely taught in schools of 

engineering or science in our universities (Box 2006). The wide variety of experimental 

designs and their statistical details can be found in many excellent texts including 

Montgomery (2005), Myers and Montgomery (2002), Ryan (2007), Antony (2006), Box et 

al. (2006), among others. 

A two-level full factorial design is usually denoted as a 2k factorial design, which is 

basically an experimental technique involving k factors, each of which has two-levels (low 

and high). Such a multi-factor two-level experiment means that the number of treatment 

combinations to get complete results is equal to 2k. For complex systems, the factorial 

design often ends up with a more complex analysis, which shows more influence of two or 

more geometric parameters together on the result than just one of the parameters 

individually. In most of the cases it is the interactions of two factors (called two-factor 

interaction), which are more important than three-, or more factor interaction. For example, 

consider a process that is dependent on three factors A, B and C. In the analysis of a two

factorial design, it is more likely that the interaction effects AB or BC or AC will be more 

significant than the interaction effects ABC in the output of the process. 
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In the current study of pod geometry, a two-level full factorial design of experiment 

technique is adopted to study five parameters. There were 32 different combinations of 

factors (2k, here k is the number of independent parameters which equals 5). That means 

32 pods had to be manufactured. If the tests were to run at a variety of advance speeds for 

each of the pods, the number of runs would have been huge with additional time 

requirement for subsequent analyses. One way of limiting the growth of this test series is 

to use experience to eliminate certain combinations of factors from the analysis. The 

Fractional Factorial Design (FFD) of the 2k analysis is denoted 2k-p where the k is the 

number of factors and p is the reduction. Therefore, if a 25 factorial design requires 32 

runs then a 25
-
1 factorial design requires 24 or 16 runs (Montgomery 2005, Chapter 11 and 

Lye 2002). This is called the "half fractional factorial design". Using this technique, it can 

be logically assumed that the effects of certain combinations of factors are negligible. 

Usually a relationship is set up between factors e.g. E=ABCD for a five factor FFD design. 

This relationship is called an "alias" and the components cannot be differentiated. Thi 

helps to reduce the number of combinations. This relationship means a change in the 

output of the process due to E could actually be a caused by ABCD, but since ABCD is a 

four-factor interaction and is being ignored, the response is considered to be that of E. 

This still maintains the integrity of the factorial design since it is very unlikely that the 

interaction effect ABCD is significant. All factors and combinations tested have an alias in 

a fractional design, however the design process ensures that the factors are not correlated 

(Montgomery 2005, Chapter 11). Table C-1 shows the factorial effects aliases for the 

fractional factorial design matrix for the pod series. As shown in the table, the single 

factors are aliased with three factor interactions, which are usually insignificant. The two 
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factor interactions AD and AE are aliased with the two factor interactions BE and BD, 

respectively. If these two interaction factors significantly change the output, it is 

impossible to differentiate (AD or BE, AE or BD) which two factor interactions are 

significant. In fractional factorial design, it is impossible to differentiate the alias terms. 

Table C-1. Factorial effect aliases in the 16 pods series design (used in fractional 
factorial desi n. 

[Estimated Terms] 
[A] 
[B] 
[C] 
[D] 
[E] 

[AB] 
[AC] 
[AD] 
[AE] 
[BC] 
[CD] 
[CE] 

[ABC] 
[ACD] 
[ACE] 

Aliased Terms 
A+BDE 
B+ADE 

c 
D+ABE 
E+ABD 
AB+DE 

AC 
AD+BE 
AE+BD 

BC 
CD 
CE 

ABC+CDE 
ACD+BCE 
ACE+BCD 

The DOE technique such as FFD is particularly useful in experiments where a number of 

factors may affect the outcome. The joint (interaction) effects on the result can be studied. 

In order to design experiments economically, the factors that have the most significant 

effect on the outcome can be determined using a FFD design and then, once those factors 

are identified, a more limited but relevant one-factor series can be designed to test the 

effects of the significant factors. 
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