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Abstract 

The modem power system has been facing a tremendous challenge for utilities to 

maintain an economical, reliable and secure operation due to the increasing fuel cost, 

long distance transmission and intense market competition. This work investigates the 

application of optimization methods in power systems. Specifically, optimization 

methods to minimize total fuel cost and transmission loss for a specified load are 

considered. Multiobjective optimization focusing on the constraints related to the 

steady state operation including security constraints in power system is studied. 

Optimal Power Flow (OPF) including economic dispatch, security constrained optimal 

power flow and multiobjective optimization are the three key concepts of this thesis. 

Sequential quadratic programming is proposed and implemented as an optimization 

method for carrying out this research. Weighted sum method, a conventional 

multiobjective optimization method, is applied and implemented by Matlab 

Optimization Toolbox. A series of mutiobjective OPF case studies are presented in this 

research to show the performance and applications of the proposed optimization 

methods. The results from the case studies presented show that the tools are able to 

determine feasible, non-dominated optimal operation points that allow a system to 

operate economically and safely under a specified load demand. 
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Chapter 1 

Introduction 

Electric power plays an exceedingly important role in the life of the community 

and in the development of various sectors of economy [1,2]. The modem power system 

has been facing a tremendous challenge for the uti lities to maintain an economical and 

reliable operation due to the increasing fue l cost and intense market competition. 

Fmthermore, the growing demand for electrical energy coupled with the reduced cost of 

generation has led generating stations to be located hundreds of kilometers away from 

load centers. This in tum has caused the electric power system to face many challenges, 

such as transmission loss and the security. Thus, power utilities need efficient tools and 

aid to ensure that the electrical energy at desired demand can be produced in the best 

possible way in the most reliable, secure, and economic manner [3] . This is also the 

purpose of this research which is focused on optimizing the power system in economic 

and secure aspects. 

One possible approach to Improve the system operation is economic dispatch. 

By using the economic dispatch, the generators' power output can be varied within certain 

limits to support a particular load demand at the lowest possible fuel cost. Optimal Power 

Flow (OPF) is used to determine an optimal operating condition for power systems while 



considering the limitations of the equipments and other operating constraints [4,5] . 

Security Constrained Optimal Power Flow (SCOPF) determines a feasible, minimum cost 

operating point such that in the event of any possible contingency, the post contingency 

states will remain secure (within operating limits) [6]. Different objectives can be 

achieved using optimal power flow while ensures the security of the power system. 

Many optimization methods have been developed to achieve the goals of the 

above studies. In recent years there has been interest in applying Multiobjective 

optimization for power system problems [2]. It can be considered as optimizing many 

objective functions subject to different constraints. For power system applications, these 

objective functions can be cost, transmission loss, voltage deviation etc .. Many of 

proposed methods for multiobjective optimization focus on the constraints related to the 

steady state operation. Security constraints (operation of the power system under credible 

contingencies) are not considered in detail [7]. 

1.1 Objectives of the Research 

The focus of this research is to apply optimization methods for different power 

system problems. Specifically, optimization methods to minimize total fuel cost and 

transmission loss are considered. In addition, multiobjective optimization is also applied 

for power system planning and operation problems. Another important goal of the 

research is to include security constraints in the power system problems studies. The 

principal goals of this research are summarized as follows: 
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• To research the applications of the optimization techniques in the power system 

engineering field. 

• To study the possible use of constrained optimization methods for power system 

economic dispatch and optimal power flow. 

• To research and explore multiobjective optimization methodologies in power 

system operation. 

• To include security constraints in power system optimization problems. 

1.2 Organization of the Thesis 

This thesis is organized as follows: 

A discussion of optimization techniques is presented in chapter 2. The definition and 

classification of optimization problems are given. The optimal conditions and 

optimization algorithm are introduced. The classification, theories and features of general 

optimization techniques are discussed. The applications of optimization methods in power 

system are discussed. 

Chapter 3 focuses on the economic dispatch for real power generation. It starts with 

discussing the relationship between fuel cost and the power generation. The typical 

economic dispatch problem is introduced. Following this, the economic dispatch of 

generation for minimization of the total operating cost neglecting and including 

transmission loss and generation limits are discussed. Next, the transmission loss formula 

is derived and the economic dispatch of generation based on the loss formula is obtained. 
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.----------------------------------

Case studies are discussed and illustrated. 

Chapter 4 starts with the main piincipal of the Optimal Power Flow (OPF) and 

Security Constrained Optimal Power Flow (SCOPF). The algorithm for OPF and SCOPF 

are presented. The minimum cost and minimum transmission loss problems of OPF and 

SCOPF are considered as examples to discuss the application of the optimization 

techniques to solve OPF and SCOPF problems. Case studies are illustrated and discussed. 

Chapter 5 starts with the compaiison of single-objective optimization and 

multiobjective optimization, and then provides an overview of typical multiobjective 

optimization problems. The proposed optimization methods are introduced with an 

example. Case studies using weighted sum method are presented. 

Chapter 6 presents the multiobjective optimization for power system including 

security constraints. Weighted sum method is proposed and applied to two power systems 

to solve an optimal power flow problem which is to minimize the total fuel cost and 

minimize the total transmission loss while ensuiing that the power system is secure. 

Chapter 7 highlights the key contiibutions of the research presented in this thesis 

along with suggestions for future work. 
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Chapter 2 

Optimization Techniques 

2.0 Introduction 

Optimization is the process of determining the best result from a set of alternatives 

under certain given circumstances. It has been wildly applied to the engineering field to 

define economical reliable, secure, efficient systems as well as to devise plans and 

procedures to improve the operation of the existing systems. A number of optimization 

methods have been developed to solve various types of problems depending on their 

constraints and functions. 

This chapter defines the concepts of engineering optimization problems and some 

associated concepts in section 2.1. Section 2.2 presents some algorithms to solve these 

problems. Nonlinear programming methods are presented in the later part of the research 

using an optimization package. Sequential quadratic programming method, a popular 

nonlinear direct method, is discussed in detail , and is applied to a simple numerical 

example. A brief application of the optimization techniques in power system is listed. 
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2.1 Statement of an Optimization Problem 

The ultimate goal of engmeenng optimization 1s to mm1mtze the effort or to 

maximize the benefit desired [8-10] . The effort required or the benefit desired in any 

practical situation can be expressed as an objective function. An optimization problem 

can be stated as follows: 

The general single objective optimization problem can be formally defined as finding 

the vector 

XI 

X2 
x= 

Xn 

to minimize I maximize: f(X) (2.1) 

subject to: gj(x) ~ 0, j = 1, 2, · · ·, m (2.2) 

hk(X) = O,k = 1,2, .. ·,p (2.3) 

x(L) < x. < x(V> i = 1 2 .. · n 
1 - I- I ' ' ' ' 

(2.4) 

x is ann-dimensional vector called the design vector. In Equation 2.1, /(X) is the 

objective function set. In Equationns. 2.2 and 2.3, gj(x) and hk(x), are inequality and 

equality constraints. x/L> and x ..<u> are the lower and upper bounds of variables, 
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restricting each decision variable X; to take a value within a lower x;<t..> and an upper 

x/v> bound [3,8]. The problem stated above is called a constrained optimization problem. 

Some optimization problems do not involve any constraints and can be stated as: 

Find x = 

to minimize/maximize: f(x) 

Xl 

X2 

Xn 

Such problems are named unconstrained optimization problems. 

2.1.1 Objective Function 

(2.5) 

In a system design, there will be more than one feasible solution. The purpose of the 

optimization is to choose the best one of the alternatives. Thus a criterion is necessary to 

evaluate all the alternatives and decide the most suitable one. The criterion, with respect 

to which the design is optimized, when expressed as a function of design variables, is 

known as the criterion or merit or objective function [8,10]. The choice of the objective 

function depends on the nature of the problem. 
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2.1.2 Design Vector 

Design vector is defined as a set of unknowns or variables which affect the value of 

the objective function. In general, certain quantities are usually fixed at the outset and 

these are called pre-assigned parameters. All the other quantities are treated as variables 

in the design process and are called design or decision variables [8]. For example, in the 

manufacturing problem, the variables could be the time spent on each activity or the 

efficiency of each machine. 

2.1.3 Constraints 

Constraints that represent limitations on the behavior or performance of the system 

are termed behavior or functional constraints [8] . They must be satisfied to produce an 

acceptable design. Equation 2.2 represents the inequality constraints and Equation 2.3 

states the equality constraints. For example, in the power system, the maximum power 

generation of each generator is an inequality constraint. In a general optimization problem, 

the number of equality constraints j must be less than the number of the design variables 

n. If j equals n , then the problem can be solved by the equality constraints, which does 

not account as an optimization problem. If j is greater than n , then some of the constraints 

must be dependent on others and they are redundant. The variable bounds are considered 

as inequality constraints. 
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2.2 Classification of Optimization Problems 

The optimization problems can be classified in several ways, such as based on the 

existence of constraints, the nature of the design variables, the physical structure of the 

problem, the nature of the equations involved and so on. Based on the nature of the 

expressions for the objective function and the constraints, optimization problems can be 

classified as Linear, Nonlinear and Quadratic Programming problems (LP, NLP and QP). 

2.2.1 Linear Programming 

If the objective functions and the constraints involved in the optimization problems 

are linear functions of the design variables, the mathematical programming problem is 

called aLP problem [8-10]. The standard form for aLP problem can be stated as: 

XI 

xz 
Finding: x= 

Xn 

n 

to minimize/maximize: f(X) = L>;X; (2.6) 
i=l 

n 

subject to: L:>ijxx;=bj, j = l ,2, .. . m (2.7) 
i= l 

x; ~O, i=1,2, ... ,n (2.8) 

Where a ij , bj and c; are coefficient of the corresponding functions . 
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2.2.2 Quadratic Programming 

A quadratic programming problem is a nonlinear programming problem with a 

quadratic objective function and linear constraints. A QP problem can be formulated as 

[4,11]: 

Xl 

X2 
Find x = 

Xn 

to minimize/maximize: (2.9) 

Subject to: Ax :5b (2.10) 

X; ~ 0, i = 1,2, ... ,n (2.11) 

Where: c is a vector of objective coefficients 

A is a matrix of constraint coefficients 

b is a vector of right-hand sides of constraints 

Q is a symmetric matrix 

Comparing QP problem and LP problem, it is clear that the QP problem has a _!_ xr Qx 
2 

te1m involved in the objective function, but the constraints functions are both linear. 
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2.2.3 Nonlinear Programming 

If any of the functions among the objective functions and the constraints in equation 

2.1, 2.2 and 2.3 is nonlinear, the problem is called a NLP problem. This is the most 

general programming problem and all other problems can be considered as the special 

cases of the NLP problems. Many optimization problems regarding electric power system 

are NLP problems, such as minimizing the generation cost. The associated algorithm is 

discussed in later section of the chapter. 

2.3 Algorithms and Solutions 

2.3.1 Local and Global Minimum 

Global mi nimum is defined as for all xE S when x*E S if f(x*) ~ f( x), and 

then x* is the global minimum of the function f(x) . A point is a local minimum if all 

other points tn its neighborhood have a higher function value. The 

point x* = [x 1 *, x2 *, ... , x, *f is a weak local minimum if there exist a 0 > 0 such 

thatf(x*) ~ f(x)for all x such thatllx - x*ll < o. The point x* is a strong local minimum 

if f( x* ) ~ f( x ) for all x in a neighborhood of x* [8-10]. The global minimum is also a 

local minimum if f( x*) ~ f (x) for all xE R" . A local minimum may or may not be a 

global minimum but if a problem possesses a minimum then there is exactly one global 
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minimum. The following figure illustrates the local and global minimum. 

f(x) 

\~feak 
Local 
1\fuwmun 

Global 
l\lfuwnmn 

Strong Lor all\llini.J.mun 

X 

Fig. 2.1 Local Minimum and Global Minimum [8]. 

2.3.2 Multivariable Optimization with Constraints 

This section is concerned with the solution of the problem stated in Equations 2.1, 2.2 

and 2.3. The most common way to deal with inequality constraints is to transform it to 

equality constraints by adding nonnegative slack variables. The values of slack variables 

are unknown. Then the optimization problem becomes to 

Minimizie f(X) 

subject to Gj (X ,Y) = gj (x)+ y~ = 0, j = 1,2, ... ,m 

y, 

y2 
where Y = is the vector of slack variables. 

Ym 

12 

(2.12) 

(2.13) 



Now, this problem can be conveniently solved by linearly combining the objective, 

equality and inequality constraint functions into one function which is known as the 

Lagrange function L. The Lagrange function is formulated as: 

m p 

L(X ,Y,A) =/(X)+ LAjGj(X ,Y)+ Iflkhk (X) (2.14) 
j = l k= l 

A, ~ 

~ /32 
where A= and fJ = are the vectors of Lagrange multipliers. 

Based on the Lagrange function, the complete set of necessary conditions for optimizing a 

constrained minimization problem, known as Kuhn-Tucker (KT) conditions becomes 

[4,8,12]: 

m p 

"Vf + LA}7gj-Iflk Vhk (X) (2.15) 
j = l k =l 

g/X)+y~ = O, j=1,2, ... ,m (2.16) 

hk(X) = O, k = 1,2, ... ,p (2.17) 

(2.18) 

Aj;:::: 0, j = 1,2, .. . , m (2.19) 

g j ;;:: o, j = 1,2, ... ,m (2.20) 

Equations 2.13 to 2.18 represent (n+2m+p) equations with (n+2m+p) unknowns, X, Y, A, 

and ,B. The solutions of Equations 2.13 to 2.18 gives the optimum solution vector X*, the 

Lagrange multiplier vector, A*, and the slack variable vector, Y*. The Equations 2.14 and 

2.15 ensure that the constraints Equations 2.2 and 2.3 are satisfied. The results under 
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different assumptions (either A.* or /3* is zero) are called KT points. The function value .ft'z) 

should also be calculated to determine the value of the objective function. 

2.4 Nonlinear Programming 

Many methods are available to solve nonlinear constrained optimization problems. 

All the methods can be classified into two types: direct methods and indirect methods. In 

indirect methods, the constrained problem is solved as a sequence of unconstrained 

minimization problems by forming Lagrangian function. A penalty function maybe added 

to the Lagrangian function to force the constraints to be satisfied if one or more 

constraints are violated. Augmented Lagrangian multiplier method is an example of such 

methods [ 4,8]. 

In the direct methods, the constraints are handled in an explicit manner. Most direct 

methods build a sub-problem using linear approach or quadratic approach in order to 

approximate the objective function and constraint functions around the current points. 

The convergence direction is obtained by solving this sub optimization problem. The next 

point is reached by combining the direct and the step length generated by search methods 

[4]. There are many direct methods to solve the nonlinear problems, such as Heuristic 

search methods, generalized reduced gradient method and sequential linear programming 

method. However, Sequential Quadratic Programming (SQP) is one of the most popular 

direct methods of optimization. 
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.------------------ - ~- ----- - --

2.4.1 Sequential Quadratic Programming 

The Sequential Quadratic Programming (SQP) can be interpreted as Newton's 

method applied to the solution of the Kuhn-Tucker conditions. The SQR method has 

several attractions: the starting point can be infeasible, gradients of only active constraints 

are needed, equality constraints can be handled in addition to the inequalities, and the 

method can be proved to converge under certain assumptions [29]. In order to understand 

SQP method, two terms should be introduced first which are search direction d* and step 

length ak. The idea of solving an optimization problem is to start from an initial point to 

approach the solution iteratively, thus the design vector determined at each iteration can 

be expressed as the combination of d* and a* . 

(2.21) 

Linearly combining the objective function and constraints by Taylor series and 

adding a general quadratic term .!_dr [H]d in the linearized objective function, the 
2 

quadratic programming subproblem is reformed as: 

(2.22) 

(2.23) 

(2.24) 

Ill p 

where H = Y'2 f +I u j \7
2 
g j + I uk Y'

2 
hk (2.25) 

j = l k= l 
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Equation 2.22 is the new objective function. Equations 2.23 and 2.24 are constraint 

functions. H is a positive definite matrix that is taken initially as the identity matrix and 

is updated in subsequent iterations so as to converge to the Hessian matrix of the 

Lagrange function. fJJ and ,8 are constants used to ensure that the linearized constraints 

do not cut off the feasible space completely. Typical values of these constants are: 

,8 = 0.9; {JJ = 0.9 if gJ(X) ~ 0, otherwise, {JJ = 1. (2.26) 

The subproblem of Equations 2.22-2.24 is a quadratic programming problem and can 

be solved using quadratic programming method. Once the search direction, d, is 

computed by solving Equations 2.22-2.24, the design vector can be updated using 

Equations 2.21. And then the Hessian matrix [H] can be updated to improve the 

quadratic approximation m Equations 2.22-2.24. Broyden, Fletcher, Goldfarb, and 

Shannon (BFGS) formula is one of the methods applied to approximate the Hessian 

matrix [14]. The iterative process is terminated if there is no change in the objective 

function f for three consecutive iterations 

The research focused in this thesis uses Matlab Optimjzation Toolbox [13], which 

uses sequential quadratic programrrung and linear search for constrained nonlinear 

problems. 

2.4.2 Case Study of Sequential Quadratic Programming 

A single objective constrained optimjzation problem [8] with two variables and three 

constraint functions is presented to illustrate the algorithm of the sequential quadratic 

16 



programming method. 

Minimize f (X)= 0.1x1 + 0.05773x2 

b
. 0.6 0.3464 

su ~ectto g1(X)=-+ - 0.1$0 
x1 x2 

Setup the initial Points: X1 = (11.8765, 7) 

/(X,)= 1.5917; 

g1(X1) = 0; 

g2(X1) = -5.8765; 

g3(X1) = 0; 

The gradients of the objective and constraint function at X1 are: 

( 
0.1 J 

\lf = 0.05773 ' 

-0.6 

Vg,(X,)=(~l} 

Vg3(X,)=( ~~} 

Hence the quadratic subproblem is: 

17 

= (-0.004254] 
-0.007069 ' 

(2.27) 

(2.28) 

(2.29) 

(2.30) 



Minimize: 0.1d1 + 0.05773d2 + 0.5d1
2 + 0.5d; (2.31) 

subject to: g 1 = -0.004254d1 -0.007069d2 :::; 0 (2.32) 

g2 =-5.8765 - d1 :::;o (2.33) 

(2.34) 

solve this quadratic problem Equations 2.31-2.34 directly with the use of the 

Kuhn-Tucker conditions. 

Search Direction d = ( - 0.0476, 0.0294) 

Using linear search to calculate the step length: 

a= l 

Then the new design vector, X , can be determined as: 

X =X +ad= = (
11.8765-0.0476aJ (10.9456] 

2 1 7 +0.0294a 7.5699 

The Hessian Matrix is the matrix of second partial derivatives and can be updated as: 

H = [ 0.2787 0.4395] 
2 - 0.4395 0.7399 

The optimal solution can be achieved by keeping the iteration process by defining a new 

quadratic programming problem using Equations 2.22-2.26 and continuing the procedure 

until the stopping criteria is met. The following table lists the results at each iteration. 
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Table 2.1 Results at Each Iteration 

Iteration 
f(x) Hessian 

Search 
Number 

X 
Direction 

0 (initial guess) 11.8765, 7 1.59176 

1 11.8289, 7.0294 1.5887 
0.2851 , 0.442 

-0.0476, 0.0294 
0.442, 0.7320 

2 10.9456, 7.5699 1.5316 
0.2787, 0.4395 

-3.5591 , 2.1772 
0.4395, 0.7399 

3 10.3351,8.171 1.5052 
0.1132, 0.0757 

-0.5831, 0.5811 
0.0757, 0.1321 

4 10.0309, 8.5868 1.4988 
0.1193, 0.0729 

-0.3221, 0.4258 
0.0729, 0.0738 

5 9.5392, 9.2441 1.4876 
0.1190, 0.0746 

-0.5017, 0.6711 
0.0746, 0.0705 

6 9.5004, 9.3987 1.4926 
0.0717, 0.0123 

0.0293, 0.1433 
0.0123, 0.0170 

7 9.4738, 9.4466 1.4927 
0.0492, 0.0157 

0.0276, 0.0491 
0.0157, 0.0210 

8 9.4639, 9.4642 1.4928 
0.0489, 0.0158 

0.0115, 0.0203 
0.0158, 0.0212 

The solution (9.4639, 9.4642) is found successfully after 8 iterations; the minimum of 

objective function value is 1.4928. Fig. 2.1 plots the calculated result at each iteration. 

Sequence of Potnls Computed by fm1ncon 
95 

• 5 

• 4 
85 

• 3 

8 

• 2 
75 

Fig. 2.2 Plot of x Values at Each Iteration. 
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2.5 Application of Optimization in Power System 

Optimization problems in power systems are very challenging to solve because 

power systems are very large, geographically widely distributed and are influenced by 

many unexpected events. Therefore, it is necessary to employ the most efficient 

optimization methods to take full advantages in simplifying the formulation and 

implementation of the problem. This section briefly summaries the application of 

optimization techniques in the power system [14]. 

• Linear and quadratic programming methods are used to solve power systems 

problems with regards to optimal power flow, reactive power planning and active and 

reactive power dispatch [15,16]. 

• Nonlinear programming method has been applied to various ·areas of power system 

for optimal power flow, security constrained optimal power flow and hydrothermal 

scheduling [2,9 ,14]. 

• Integer and Mixed-Integer Programming method is employed to solve power system 

problems with regards to optimal reactive power planning, power system planning, 

unit commitment, and generation scheduling [14]. 

• Dynamic Programming method has been applied to various areas of power systems 

such as reactive power control, transmission planning and unit commitment [14]. 

The power system problems studied in this thesis can be formulated as a set of 

nonlinear equations. Hence, nonlinear programming method is more efficient to solve the 

problems. 
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2.6 Conclusion 

Nonlinear programming method is the approach to start from an initial guess and to 

determine a 'descent direction' and step length in which objective function decreases in 

case of minimization problem. A large number of nonlinear programming methods are 

available, and are classified into direct and indirect methods. The sequential quadratic 

programming method is a typical direct method and perhaps one of the best optimization 

methods of optimization owing to its high speed of convergence. It is based on defining a 

quadratic subproblem at each iteration by linearizing the objective and constraint 

functions and specifying adjustable move limits. 

This chapter has presented an overview of different optimization techniques along 

with the benefits of using it for solving difficult power system optimization problems. A 

simple numerical example is discussed to show the performance of sequential quadratic 

programming method. In the later part of this thesis, Matlab Optimization toolbox is used 

to solve the different power system operation problems. 
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Chapter 3 

Economic Dispatch of Generation 

3.0 Introduction 

Electrical power generating stations are usually located hundreds of kilometers away 

from load centers and their fuel costs are different. Also, under normal operating 

conditions, the generation capacity is more than the total load demand and losses. Thus, 

there are many options for scheduling and planning generation [20]. This means that the 

real and reactive power provided by the generators can be adjusted within certain limits to 

meet the desired load demand with minimum fuel cost. This is also known as Optimal 

Power Flow (OPF). It can be achieved by minimjzing the objective function , which the 

total fuel cost of the generating units, subject to the constraints that the sum of the powers 

generated must equal to the sum of the transmission loss and the power consumed by the 

loads. Economic dispatch is a special case of the OPF, which neglects the transmission 

line limits. 
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This chapter focuses on the economic dispatch of real power generation. It starts with 

introducing the concept of economic dispatch and typical economic dispatch problems. 

The economic dispatch of generation for minimization of the total operating cost 

neglecting and including transmission losses is obtained. Next, the transmission loss 

formula is derived and the economic dispatch of generation based on the loss formula is 

obtained. Case studies are presented to show the application of economic dispatch. 

3.1 Operation Cost of a Conventional Power Plant 

Fig. 3.1 shows the operating cost C of a fossil fuel generating unit versus real power 

output Pg. The fuel cost is a major portion of the avai lable cost of operation [17,18]. The 

total cost of operation includes fuel, labor and maintenance costs. Only those costs that 

are a function of unit power output enter into the economic dispatch formulation, so only 

fuel cost is considered. From the shape of the fuel cost cure, it is clear that the fuel cost of 

all the generation units can be expressed as a quadratic function with positive coefficients 

and in terms of generation. It is expressed as: 

C(P) = a+fJ* P + y* P2 
g g g (3.1) 

where, a, fJ and yare cost coefficients. 

Thus, for an interconnected power system consisting of N units, the total fuel cost is: 

nil n il 

c{ =I C; =I (a;+ P * P; + Y; * P; z) (3.2) 
i= l i= l 

where n
8 

is the number of generators. 
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Pg, tlu·l'e }lbase output (1\!I\i\1) 

Fig. 3.1 Fuel Cost Versus Generation [ 17 ,20]. 

3.2 Economic Dispatch Problem 

Figure 3.2 illustrates the configuration that will be studied in this section. This system 

consists of n generating units connected to only one bus serving a received electrical 

load P0 . The input to each unit, C; , presents the generating cost of the unit. The output of 

each unit, P,,g , represents as the electrical power generated by the particular unit. 

Fig. 3.2 Plants Connected to a Common Bus [19]. 
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The objective of the economic dispatch is to determine the most efficient and low 

cost operation of a power system by dispatching the avai I able electricity generation 

resources to supply the load on the system. The economic dispatch problem is to 

minimize the total fuel cost of generators in a power system, while satisfying the power 

balance and limits of generation units. It is formulated as: 

" g IJg 

mmumze C, = L:c; = L:Ca; + /3; * P; + Y; * P/) (3.3) 
i= l i= l 

n g 

subject to: L~ = P0 + PL (3.4) 
i= l 

(3 .5) 

Where ng is the total number of dispatchable generation units. 

Ct is the total production cost, $/hr. 

C; is the production cost of the ith unit, $/ht. 

a;, /3;, and Y; are cost coefficients of the ith unit 

P; is the real power generated by the ith unit, MW. 

P0 is the total load demand, MW. 

PL is the transmission loss, MW. 

Pi max is the upper permissible limit of real power generation, MW. 

Pi min is the lower permissible limit of real power generation, MW. 

Equation 3.3 expresses the objective function C,, the total generation cost equals to the 

sum of the fuel cost of each generation unit. Equation 3.4 is the equality constraints. The 
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total power generated by all the units equals to the sum of all the loads plus the total 

transmission loss. Equation 3.5 is inequality constraint and states the variable bounds. 

Each generating unit must not operate above its rating or below some minimum value. 

The design variables are the real power provided by each dispatchable generation unit. 

Transmission line limits are neglected for economic dispatch problems. 

3.3 Algorithms of Economic Dispatch 

Mathematically, the economic dispatch problem can be classified as a multivariable, 

or an nonlinear, or a constrained problem. Different software tools or algorithms have 

been proposed to solve economic dispatch problems, such as Lagrange multiplier, 

Lambda-Iteration method, Gradient methods, Newton method and Dynamic programming 

[1,2,15,17,18]. This section introduces the application of Lagrange multiplier method 

used to solve the economic dispatch problems. The concept of the Lagrange multiplier 

and the Kuhn-Tucker conditions are discussed in chapter 2. 

In a power system, if the losses are ignored, at the minimum cost the following 

equations are satisfied [ 1]: 

~ _ dC1 _ dC2 _ _ dC; 
A------···---

d~ d~ dP; 
i = 1, ... , n

11 
(3.6) 

Equation 3.6 is the criterion for the solution to this problem: all units on the economic 

dispatch should operate at equal incremental operation cost, denoted by A. . 

On the other hand, if the losses are considered, in order to minimize the total fuel cost, 

the following equations need to be satisfied: 
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). = L dC; 
I dP 

I 

i = 1, ... ,ng (3.7) 

1 
whereL; = dP 

1--L 
dP; 

The term ()pL is known as the incremental transmission loss, and L; is called the penalty 
()P; 

factor of plant i. Equation 3.7 shows that each unit that is not at a limit value operates 

such that its incremental operating cost dC; multiplied by the penalty factor is the same. 
dP; 

An iterative solution can be obtained by the following steps: 

1. Set iteration index m=l. 

2. estimate mth value of A. 

3. Skip this step for all m>l. Determine initial unit outputs P; (i = 1,2, ... ,n). use 

4. 

5. 

dCI = ). and read P; from each incremental operating cost table. Transmission 
dP; 

losses are neglected here. 

Compute ()pL and ac; ' (i = 1,2, ... , n) 
()P; ()P; 

Determine updated values of unit output P; , (i = 1,2, ... , n). Read P; from each 

incremental operating cost table. If P; exceeds a limit value, set P; to the limit value. 

6. Compare P; determined in step 5 with the previous value (i = 1, 2, ... , n) . If the 

change in each unit output IS less than a specified tolerance £ 1 , go to step 6. 
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Otherwise return to step 4. 

7. Compute PL using B coefficients. 

II 

8. If ci F;)- PL- P,- is less than a specified tolerance £1' stop the iteration. Otherwise, 
i= l 

set increment m by 1 and return to step 2. 

3.4 Economic Dispatch Neglecting Losses and no Generator Limits 

The transmission losses can be neglected, if the transmission distance is very short 

and the load density is very high. Hence the power generated by all the units is equal to 

the sum of the loads. This is also the simplest economic dispatch problem. In this case, 

the system configuration and line impedances are not considered. Also, the power output 

of any generator is not restricted. Thus the problem is to find the real power generation 

for each unit such that the objective function (total production cost) as defined as 

Equation 3.1 is minimum, subject to the constraint give as: 

"• 
L)~ = P0 

(3.8) 
i= l 

A criterion for the solution to this problem is Equation 3.14 that is: All units on economic 

dispatch should operate at equal incremental operation cost. The number of the equations 

is n
8 

+ 1 and the number of the unknown variables is n
8 

+ 1 as well, so identical solutions 

exist. A simple example of economic dispatch problem neglecting generation limits and 

line losses is shown below. It is the example cited from Glover's text book [1]. The fuel 
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cost functions for three thermal plants in $/hr are given by: 

The total load is 392 MW. 

cl = 10~+0.016~2 $ /hr 

c 2 = 8~ +0.018~2 $/ hr 

C3 = 12f;+0.018f;2 $/hr 

Using Equation 3.6, the minimum total production cost occurs when 

dC 
-

1 = 10+0.032?. =A 
dP. I 

I 

dC 
-

2 =8+ 0.036P =A 
dP 

2 
2 

dC 
-

3 = 12 + 0.036P =A 
dP, 3 

3 

~ + P2 + F; = 392 

Convert the above equations to matrix form: 

0.032 0 0 - 1 ~ - 10 

0 0.036 0 -1 ~ -8 
= 

0 0 0.036 - 1 F; - 12 

1 1 1 0 A 392 

Then, the dispatched generation of each unit, the incremental operating cost and the total 

cost are: 

~ =141MW 

~=181MW 

F; =70MW 

A= 14.52$ I Whr 

CT = 4694$1 hr 
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3.5 Economic Dispatch Including Losses and Generation Limits 

As mentioned in previous sections, the transmission loss is one major factor that 

affects the optimal dispatch of generation. Furthermore, the power output of any unit 

should not exceed its rating nor should it be below that necessary for stable operation. 

The above two conditions are the constraints need to be considered in economic dispatch 

problems. This section discusses two case studies of economic dispatch problem with 

losses and generation limits. The following test cases were coded in Matlab R2007a [13]. 

The Matlab Optimization Tool box was used to determine the real power output of each 

dispatchable generating unit and the total production cost in order to solve the economic 

dispatch problems. 

3.5.1 Economic Dispatch for a 5-bus Power System 

The goal of the economic dispatch for the 5-bus, 3 generator power system [ 17] 

shown in Fig. 3.3 is to minimize total generator fuel costs while adhering to generator real 

power limits and the power flow equation. The limits, fuel cost coefficients and the 

system parameters are stated in Appendix A. The total load demanded by this system is 

147MW and 93.1 MVAR. This system has 3 unknown variables which are 3 generator 

real power output variables. The reference bus is located at bus 1. 

30 



2 

3 

t 49 MW i 29 Mvar 

--+---.--..!...-

~9 MW 

39 Mvar 

Fig. 3.3 One Line Diagram for the 5-Bus Power System [17]. 

Using the cost coefficients of the 3 generators in this 5-bus system, the generation cost 

function of each generator is: 

CT = 10~ + 0.016~ 2 + 373.5 + 8P2 + 0.018P/ + 403.6 + 12E; + 0.018P/ + 253.2 

where 

~ , real power generated by generator on bus 1; 

P2 , real power generated by generator on bus 2; 

P3 , real power generated by generator on bus 3. 

$/hr 

B-coefficients are used to define the transmission loss in order to define the equality 

constraint and will be discussed later. Also the generation limits of each generator are 

considered as the inequality constraints. Table 3.1 shows the economic dispatch results. 

The total fuel cost is 2554.5$ with loss 3.2 MW. Using the economic dispatch, the system 

researches the minimum fuel cost. Also, the generation outputs are changed. 
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Table 3.1 Economic Dispatch Case study for 5-Bus System 

Number Name 
Base Case Economic 

Dis atch 
Generation(MW) 1 Bus-1 83 50.56 

2 Bus-2 40 96.97 
3 Bus-3 28 2.67 

Total Generation (MW) 151 150.2 
Total Load (MW) 147 147 
Total Loss (MW) 4 3.2 

Total Houri Cost ($/hr) 2660 2554.5 

3.5.2 Economic Dispatch for a 39-Bus Power System 

The goal of the economic dispatch for the 39-bus, 10 generator power system [24] 

shown in Fig. 3.4 is to minimize total generator fuel costs while adhering to generator real 

power limits and the power flow equation. The limits, fuel cost coefficients and the 

system parameters are stated in Appendix B. The total load demanded by this system is 

6150.1MW and 1408.9 MVAR. This system has 10 unknown variables which are 10 

generator real power output variables. The reference bus is located at bus 31. 
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Fig. 3.4 One Line Diagram for 39-Bus Power System [24] 

The objective function (total fuel cost) is formed by fuel cost coefficient. The 

transmission loss is defined using B-coefficient. The algorithm of B-coefficient is 

discussed in the later section of this chapter. Table 3.2 shows the economic dispatch 

results. The total fuel cost is 61838$/hr with loss 48.4 MW. In order to achieve the 

minimum fuel cost, the active power output of each generator is changed. The total fuel 

cost researches the minimum value. 
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Table 3.2 Economic Dispatch Case study for 39-Bus System 

Number Name Base Case Economic 
Dispatch 

1 Bus-30 250 236.19 

2 Bus-31 650 560.98 

3 Bus-32 580 638.32 

4 Bus-33 750 645.68 
Generation(MW) 5 Bus-34 550 517.67 

6 Bus-35 600 656.73 

7 Bus-36 658 568.46 

8 Bus-37 652 552.09 

9 Bus-38 900 869.42 

10 Bus-39 1000 952 

Total Generation (MW) 6290 6198.5 

Total Load (MW) 6150.1 6150.1 

Total Loss (MW) 139.9 48.4 

Total Hourly Cost ($/hr) 64182 61838 

3.6 Derivation of Loss Formula 

The system loss can be formed by loss coefficient orB-coefficient method, which is 

developed by Kron and adopted by K.irchmayer [17]. The system losses function can be 

expressed in terms of the generator's active power outputs. This section discusses the 

algorithm of B-coefficients, and two case studies are provided. 
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Assume the total system losses over all buses is: 

n n n 

PL +QL = 2:>:( = LL);Z;J/ 
i=l i=l j = l 

where, 

PL and QL, are the real and reactive power loss of the system 

zij ' is the bus impedance matrix, 

Ii and Ij, are the injected bus currents. 

Rij' is the real part of the bus impedance matrix 

zij is the imaginary part of the bus impedance matrix 

(3.9) 

(3 .10) 

Since the bus impedance matrix is symmetrical, Zij = Zj; , The real power loss equation 

can be rewritten as: 

(3 .11) 

Assume that the individual bus currents of load buses vary as a constant complex fraction 

of the total load current: 

where 

l,, is the complex fraction , 

I1, , is the individual bus currents, 

I o. is the total load current. 

Assume bus 1 to be the reference bus (slack bus), then voltage at bus 1 V1 is: 

n~ ntl 

~ = LZJg; + LZ,Ju 
i=l k= l 
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where, 

n
11

, is the number of generator buses 

nd, is the number of Load buses 

Substituting Equation 3.27 into Equation3.28, then get: 

where 

n, 
~ = LZt/g; +loT 

i=l 

11rt 

T = LlkZtk 
k=l 

(3.14) 

(3.15) 

If l 0 is defined as the current flowing away from bus 1, with all other load current set to 

zero, then V1 is: 

(3.16) 

Substitute Equation 3.31 into Equation 3.29 and Equation 3.27, the load currents become: 

"• 
I u. = Pk LZt/8; +pkZtJo (3.17) 

i=l 

where (3.18) 

Reform the generator currents with the above relation in matrix form, then get: 

1 0 0 0 Igt 
Igt 0 1 0 0 l gt 
I g2 

0 0 1 0 IgnLg 
ILl = PtZtt PtZtz plZln, plZII 

(3 .19) 

1L2 
PzZ11 PzZtt p2Zin~ PzZ11 

I Lll 
pkZII pkZI2 pkZln pkZII Io d 

' 
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In short form: 

(3.20) 

Substituting Eqn. 3.34 into Eqn. 3.26, then get: 

p - I T cr R c· I • 
L - new bus bus (3.21) 

Also the generator current at bus i can be formed as: 

(3.22) 

where (3.23) 
If/; = v.· 

I 

Adding the current/0 to the column vector current I
8

; in Equation 3.37 results in: 

I gl If/! 0 0 0 pgl 

I g2 0 If/! 0 0 pg2 

= (3.24) 

/ gng 0 0 If/! 0 p gng 

Io 0 0 0 Io 1 

Or in short form 

I new = If/ PC I (3.25) 

where (3 .26) 

1 

Substituting Equation 3.40 into Equation 3.36, the loss equation becomes: 

(3.27) 
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The resultant matrix from Eqn. 3.42 is complex, so the real power loss is: 

where 

His also known as Hermitian matrix, and the real part of His found from: 

R[H] = H +H. 
2 

The above matrix is partitioned as follows: 

B" Bt2 B), 
8 

B2t B22 B2n • 
R[H]= 

B, t B" 2 8 • 
B 

nH' n8 

BO! 12 Bo2 /2 B0, /2 
g 

Then the power loss can be calculated by Eqn.3.43: 

Btl Btz 

PL =[Pg! pgn, J B 2t B n 
pg2 ... 

B n
8

1 B 
" • 2 

p . .. p J 
g 2 gn

8 

Bot /2 

Bo2 /2 

B0n /2 
8 

Boo 

BIn • pg! 

B 211, pg2 

B 
" 8 118 

pgn, 

(3 .28) 

(3.29) 

(3.30) 

(3 .31) 

(3.32) 

The actual computational procedure is slightly more complex than that indicated 

above. The calculation of B-coefficients is coded in Matlab using the above algorithm. 

Two case studies (5-Bus System and 39-Bus System) are provided to demonstrate the 

computation. 
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3.6.1 B-coefficients for 5-bus Power System 

The 5-Bus power system adheres to previous case study in section 3.5.1. The purpose 

of this study is to determine the B-coefficient in terms of real power output of generators 

in order to define the power loss. The power data is given in Appendix A. A program is 

developed in Matlab to calculate the B-coefficients for different cases. Three generators 

involved in this power system, thus the dimension of B -matrix is 4x4. The power loss 

can be calculated using Eqn. 3.32 and B-matrix. Table 3.3 presents the B-coefficients. 

Table 3.3 B-coefficients for 5-Bus Power System 

B [3x3] 0.0245 0.0102 0.0030 
0.0103 0.0231 0.0016 
0.0030 0.0016 0.0185 

BO 0.0004 0.0030 0.0015 
BOO 0.000191 

According to the calculated B-coefficient, the total power loss is 

PL = ~2 * (B/100)+Pg * BO+B00* 100 = 3.2MW 

3.6.2 B-coefficients for 39-bus Power System 

The 39-Bus power system adheres to previOus case study in section 3.5.2. The 

purpose of this study is to determine the B-coefficient in terms of real power output of 

generators in order to define the power loss. The power data is given in Appendix B. The 
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same MatLab program used to calculate the B-coefficients for this case. 10 generators 

involved in this power system, thus the dimension of B -matrix is llxll. The power loss 

can be calculated using Equation 3.32 and B-matrix. Table 3.4 presents the B-coefficients. 

Table 3.4 B-coefficient for 39-Bus Power System 

0.1313 0.1292 0.1264 0.1135 0.1184 0.1209 0.1170 0.0994 0.0412 0.1095 

0.1292 0.1290 0.1264 0.1150 0.1183 0.1200 0.1173 0.1035 0.0428 0.1158 

0.1264 0.1264 0.1238 0.1128 0.1159 0 .1175 0.1150 0.1019 0.0420 0.1141 

0.1135 0.1150 0.1128 0.1042 0 .1056 0 .1063 0.1051 0.0965 0.0397 0.1096 

B 0.1184 0.1183 0.1159 0.1056 0.1086 0 .1100 0.1076 0.0953 0.0393 0.1067 

oo-J) 0.1209 0.1200 0.1175 0.1063 0 .1100 0 .1119 0.1089 0.0946 0.0391 0.1051 

0.1170 0.1173 0.1150 0.1051 0 .1076 0.1089 0.1068 0.0954 0.0394 0.1072 

0.0994 0.1035 0.1019 0.0965 0.0953 0.0946 0.0954 0.0936 0.0383 0.1089 

0.0412 0.0428 0.0420 0.0397 0 .0393 0.0391 0.0394 0.0383 0.0157 0.0444 

0.1095 0.1158 0.1141 0.1096 0 .1067 0.1051 0.1072 0.1089 0.0444 0.1281 

BO 0.00 12 0.0004 0.0003 -0.0003 0.0003 0.0007 0.0002 -0.001 5 -0.0005 -0.0024 

BOO 0.0875 

According to the calculated B-coefficient and Eqn. 3.47, the total power loss is 

PL = ~2 * (B/100) + ~ * BO + BOO *lOO = 48.4MW 

3. 7 Conclusions 

This chapter has provided an overview of key economic dispatch concepts along with 

the benefits of using it for solving optimal dispatch problems. The transmission losses, 

the operating efficiencies of generators and fuel cost are major factors influencing 

optimum dispatch of power generation. By using the economic dispatch, the generators' 

power output can be varied within certain limits to support a particular load demand at the 
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lowest possible fuel cost. The economic dispatch is achieved by minimizing the objective 

function, which is the total fuel cost of the generating units, subject to the constraints that 

the sum of the powers generated must equal to the sum of the transmission loss and the 

power consumed by the loads. A Matlab program is developed to determine the 

B-coefficients in order to estimate the transmission loss. Two sample cases are studied to 

present the constrained optimization method for power system economic dispatch. 

Certain optimization tools have been investigated, which have powerful functions to solve 

the economic dispatch problems such as Optimization Toolbox in the Matlab and 

PowerWorld Simulator. Economic dispatch has one significant shortcoming. It ignores the 

limits imposed by the devices in the transmission system. With the worldwide trend 

toward deregulation of the electric utility industry, the transmission system is becoming a 

significant constraint. The solution to the problem of optimizing the generation while 

enforcing the transmission lines is to combine economic dispatch with the power flow. 

The result is known as the Optimal Power Flow (OPF), which is discussed in Chapter 4. 
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Chapter 4 

Optimal Power Flow and Security Constrained Optimal Power 

Flow 

4.0 Introduction 

The idea of Optimal Power Flow (OPF) was defined in the early 1960s as an 

extension of the conventional economic dispatch to determine the optimal settings for 

control variables while respecting various constraints [20,25]. The OPF provides a useful 

support to the operator to overcome many difficulties in the real time control and 

operation planning of power systems [26-28]. Depending on the specific objectives and 

constraints, there are different OPF formulations. A secure power system is one with low 

probability of blackout or equipment damage [4]. Security Constrained Optimization 

Power Flow (SCOPF) is defined as an optimal power flow which takes into account of 

the outages of certain transmission lines or equipment. 

The typical objectives of OPF and SCOPF problems are minimization of the total 

fue l cost, minimization of the transmission loss, maximization of the degree of security of 

a system, or a combination of some of them. OPF and SCOPF are considered as static, 

constrained, nonlinear, optimization problems. They have been widely used in most of 
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today's Energy Management System (EMS) which monitors and controls the operation of 

power system. 

The chapter starts with giving a fundamental understanding of power flow analysis. 

The formulations of OPF and SCOPF problems and alg01ithm and different tools for 

defining solutions are introduced. Optimal power flow problems for minimizing fuel cost 

and minimizing transmission loss are discussed with two case studies (7-Bus Power 

System from Power World Simulator [29] and 26-Bus Power System [17]). In the final 

part of this chapter, a summary of the OPF and SCOPF problems is given. 

4.1 Review of Power Flow Study 

A reliable power system operation under normal balanced three phase steady-state 

conditions requires four conditions, which are [1]: 

• Generation supplies the demand (load) plus loss. 

• Bus voltage magnitudes remain close to the rated value. 

• Generators do not operate over the production limits for active power and reactive 

power. 

• Transmission lines and transformers are not overloaded. 

Power flow analysis is the tool used for investigating these requirements. Power flow 

study is used in planning, control, economic scheduling and operation of existing electric 

power system. It is required for many other analyses such as transient stability and 

contingency studies [25]. 
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The power flow problem is the computation of bus voltage magnitudes and angles at 

each bus in a power system for specified demand. In addition, the real and reactive power 

flows for all equipments interconnecting the buses and equipment losses can be calculated. 

The power flow problem is formulated as a set of nonlinear algebraic equations suitable 

for computer solution. These equations are known as power flow equations, which are 

expressed in terms of bus voltage magnitudes, phase angles at each bus and bus 

admittance matrix. 

Four variables are associated with each bus k : voltage magnitude~ , phase angle 8k , 

net real power ~ and reactive power Qk supplied to the bus. At each bus, two of these 

variables are specified as input data, and the other two are unknowns to be computed by 

the power flow program. The power delivered to bus k as seen in Fig. 4.1 is separated into 

generator and load terms. These are: 
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Pk 
Qk 

Busk 

QGk + l pGk 

QLk{ l PLk 

Generator Loa(l 

Fig. 4.1 General bus with Generation, Load, and Outgoing Lines [1]. 

Each bus k is categorized into one of the following three bus types: 

1. Slack Bus- The bus voltage magnitude and phase angle are specified, typically 1.0 

p.u. with phase angleo· . This bus is selected to provide additional real and reactive 

power to supply transmission loss, the active power (P) and reactive power (Q) are 

unknowns and need to be calculated. 

2. Voltage Controlled Bus- It is also called PV bus. Active power (P) and bus voltage 

magnitude are specified. They are usually the generating stations. 

3. Load Bus- It is also known as PQ bus, and the load active power and reactive power 

are specified. 

The power flow problem consists of a given transmission network where all lines are 

represented by a n- equivalent circuit. The power flow equations can be expressed in 
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term of Y-bus (Bus admittance), bus voltage and phase angles as: 

N 

~ = vk IYk,,Vn cos(ok - 0,,- ekll ), k = 1, 2,· .. , N (4.3) 
n= l 

N 

Qk = vk I ykiiV,I sin(ok- 0,, - BkJ, k = 1, 2, ... , N (4.4) 
n=l 

Where ~ and Qk are the active and reactive power bus injections at bus k, Vk and V,, 

are bus voltage magnitudes, ~~~ is the magnitude of the element (k,n) of the power 

system's admittance matrix, ekn is the angle of the element (k,n) of the power system's 

admittance matrix, ok and o" are the bus voltage angles, and N is the number of system 

buses contained in the system 

In matrix form: 

(4.5) 

Y is the bus admittance matrix. Vis the bus voltage matrix. 

The mathematical formulation of the power flow problem results m a system of 

algebraic nonlinear equations which can be solved by iterative techniques. Many 

techniques are available, such as Gauss-Seidel and Newton-Raphson methods. The 

information obtained from the power flow studies includes the magnitude and phase angle 

of voltages at each bus and the active and reactive power flow in each line. 
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4.2 Optimal Power Flow 

The goal of OPF is to provide the electric utility with suggestions to optimize the 

current power system state with respect to va1ious objectives under various constraints 

[30]. In the most general formulation the OPF is a single objective, large scale, 

non-convex optimization problem. It can be achieved by minimizing or maximizing the 

general objective functions while satisfying the constraints. The specified variables are 

real and reactive power at PQ buses, active powers and voltage magnitude at PV buses, 

and voltages and angles at slack buses. OPF problems are formulated as a set of nonlinear 

equations, which can be stated as [ 4,20,25]: 

XI Ul 

X2 U 2 
Finding the vectors x = , u = 

Xn Un 

which minimizing or maximizing: 

f 1(x,u), f 2(x, u ) ... fn(x,u) 

Subject to: 

g(x,u) = 0, 

h(x,u) ~ 0, 

(x,u)<L) ~ (x,u) ~ (x,u) <V> 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

It can be described as minimizing the general objective function fn(x,u) while 

satisfying the constraints g(x,u) = 0 and h(x, u) ~ 0 , where g(x,u) represents 

nonlinear equality constraints (power flow equations) and h(x, u) is nonlinear inequality 
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constraints (transmission line limits) on the vectors x and u. Eqn. 4.9 defines the bounds 

of design vectors. The vector x contains the dependent variables including bus voltage 

magnitudes, phase angles and the reactive power output of generators designed for bus 

voltage control. The vector x also includes constant parameters, such as reference bus 

angles, noncontrolled generator MW, MVAR and outputs, noncontrolled load on fixed 

voltage, line parameters, and so on. The vector u consists of control variables involving 

[25,31]: 

• Active and reactive power generation 

• Phase shifter angles 

• Net interchange 

• Load MW and MY AR(load shedding) 

• Direct current transmission line flows 

• Control voltage settings 

• Transformer tap setting 

• Line switching 

Typical goals of OPF problems are minimization of the total fuel cost, the 

minimization of the active power loss, minimization of reactive power planning cost and 

minimization of bus voltage deviation. 
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4.2.1 Objective Functions 

The purpose of objective functions is to mathematically express the goals of an 

optimization process. Minimization fuel cost and the active power losses are two of the 

most common OPF goals, and are discussed in this thesis for OPF studies. 

4.2.1.1 Total Fuel Cost 

Fuel cost minimization is primarily a planning problem. The objective function based 

on generation operating cost can be expressed as: 

"• 
f(x,u) = L (a;+ /I;* PK; + Y; * (PgY ) (4.10) 

i~I 

where 

f ( x, u) is the total fuel cost, dollar per hr ($/hr), 

P
8

, is the active power output of the ith unit, megawatts (MW), 

a;, /J; and Y; are the cost coefficients of the ith generator. 

n
8

, is the number of generators. 

4.2.1.2 Active Power Losses 

Active power loss minimization is also known as loss minimization, which is a useful 

tool in conjunction with planning objective, providing optimal solutions for planning 

49 



~-~~~------

purposes [25]. It can be expressed in different ways, such as in terms of voltage and 

impedance, or active power outputs. Expressing the loss formula using voltage in polar 

forms turns out to be more complicated. T he equation listed below defines the Joss 

formulation in terms of active power outputs and loads, which is the difference between 

the total generation and the total load demands. 

ng nl 

f(x,u) = Lpgen,(x,u) - L~oad, ( 4.11) 
i= l i=l 

where, 

P
8
.n,, js the active power output of the ith bus, 

~ond,, is the load demand of the ith bus, 

ng, is the number of generators. 

nl , is the number of loads. 

4.2.2 Control Variables 

Unknown variables can be classified to dependent variables and independent 

variables. The dependent variables (known as state variables) include bus voltage 

magnitude and phase angle. Independent variables are usually the control variables in an 

OPF problem which includes active power outputs of generation units, generator voltages, 

transformer tap ratios and values of switchable shunt capacitors and inductors. 
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4.2.3 Constraints 

Constraints contained within the OPF problem are put in place in order to ensure that 

the solutions obtained by solving the OPF are feasible for practical power system 

operations. This section discusses typical operational constraints used in OPF 

formulation. 

4.2.3.1 Equality Constraints 

OPF equality constraints are represented by the power flow equations. These 

equations define the physical link between scheduled generation and load demand and 

cannot be violated as they define the state variable conditions for a given system 

operating point [15]. The following equations are the equality constraints: 

Where: 

P Gk - Pu -~ =0 

Q Gk - QLk - Qk = 0 

Pck and Qck are the active and reactive power generation at bus k. 

Pu and QLk is the load at bus k. 

~ andQk are the net active and net reactive power injections at bus k. 
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4.2.3.2 Inequality Constraints 

The inequality constraints define the tolerable limits on both state variables and 

equipment usage. Important limitations used in the OPF problem are as follows: 

k = 1,2,- ·· m (4.14) 

k = 12· ··n 
' ' g (4.15) 

k = 1,2,- · ·m (4.16) 

Where: 

Vk is the bus voltage magnitude at bus k. 

?, is generation power at bus k. 

Pkn is the power flow between bus k and n 

m is the number of buses. 

ng is the number of generators. 

Bus voltage magnitudes must be held between a certain ranges in order to ensure that 

equipment is operating under design specifications. Allowable bus voltage levels depend 

on the nominal voltages that are applied to the bus. As an example, a typical tolerable 

voltage range for a 138kv bus is within ± 5% of this value while buses with voltages of 

345kv and over should be within + 10% [16]. Eqn. 4.14 ensures that the bus voltage 

varies in an acceptable range. Generation limits on active power is a result of the 

generators' design characteristics. Eqn. 4.15 defines the range of active power outputs. All 

transmission lines have a limit for maximum MVA transfer to ensure the system is 
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operated safely. Eqn. 4.16 define the transmission limit of each line to ensure that the 

power flow is not overloaded. 

4.3 The Solution of Optimal Power Flow 

Optimal power flow algorithms are designed to find an AC power flow solution 

which optimizes a performance function , such as fuel costs or network losses, while at the 

same time enforcing the loading limits imposed by the system equipment, such as voltage 

and transmission loading limits. For example, when fuel costs are minimized, an optimal 

schedule of generator active power outputs, transformer tap settings and controllable 

voltage settings are determined which produce the minimum operating costs while at the 

same avoiding any violation [33] . 

OPF problems can be mathematically formed as nonlinear constrained optimization 

problems. System size and the number of unknown variables significantly affect the 

difficulty of solving OPF. As the size of the system increasing, solving OPF problem is 

more difficulty. Almost every mathematical programming approach that can be applied to 

this problem has been researched and developed to computer codes. Mainly these are 

Gradient Method, Newton 's method, Linear Programming (LP) method and Interior Point 

(IP) method. 

Gradient method is computationally well suited for large systems, however it is slow 

m convergence and is difficult to solve the OPF problem with inequality constrains. 

Newton 's method is powerful with fast convergence for OPF, but it may generate 
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problems with inequality constraints as well. LP method is one of the fully developed 

methods now in common use. It easily handles the constraints, and effectively solves the 

nonlinear OPF problems by lineaJization. 

Sequential quadratic programming method has been used to solve OPF problems in 

this research. Matlab Optimization Toolbox. is used to implement the OPF algorithm. 

'fmincon' is the command used to call and solve constrained nonlinear functions in the 

main program. Objective function and constraints equations are written in different 'm' 

files to be the function files. 

4.4 Optimal Power Flow Minimizing Generation Cost 

Minimizing generation cost is to reduce the total fuel cost, which is primarily an 

operational planning problem. The objective is to minimize the fuel cost. Based on 

previous research of OPF problems, the minimizing generation cost problem can be 

mathematically formed as: 

p gl 

p gz 
Finding the vectors ~ = 

P, 
8 .. 

which minimizing: 
11. 

v, ~ 

v2 ez 
, V = , B = 

f(~,V,B) = ~)ak +f3k * Pg. +yk *(PK. )2
) 

k = l 

Subject to: 

P 11.-Pu - ?, =0 
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(4.19) 

v k min ::;vk ::;vkmax' k =1,2,···m (4.20) 

P . $P ::;p k=l2···n 
Rt mm 81: KJ: max. ' ' ' 8 (4.21) 

plarmin:::; ~II:::; p kiiJnaX > k = 1,2,···m, n = 1,2,· · ·m (4.22) 

where: 

f (P
8

, V, B) is the total fuel cost, dollar per hr ($/hr). 

a, ~ and y are the cost coefficients of the generator 

P
8

, and Q
11

, is generation power at bus k. 

Vk is the bus voltage magnitude at bus k. 

PL and QL is the load at bus k. • • 

~ andQk are the net active and net reactive power injections at bus k. 

~~~ is the power flow between bus k and n. 

P
8

, min and P
8

, max are the minimum and maximum active power output of generation 

unit k. 

~~~min and ~~~max are the lower and upper bounds on the active power flow between bus 

k and n. 

Vkmin and Vkmax are lower and upper bounds on the voltage magnitude at bus k. 

n
8 

is the number of generator. 

m and n is the number of buses. 

Eqn. 4.17 establishes the objective function. Eqns. 4.18 and 4.19 defines the equality 
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constraints (power flow equations). Eqns. 4.20-4.22 are inequality constraints, which 

clarify the upper and lower bounds on the voltage magnitude, active power outputs and 

power flow between buses. Active power outputs of dispatchable generation units are 

control variables need to be solved to achieve the optimal operation of the minimum fuel 

cost. 

Two case studies are discussed in this section to illustrate the constrained 

optimization method for OPF. One is 7-bus power system, which is a sample case adopted 

from PowerWorld Simulator [29]. The other one is 26-bus power system, which a case 

from H. Saadat's book [17]. All the studies use the Optimization Toolbox available in 

Matlab [ 13]. For some aspects of the studies, PowerWorld Simulator is also used. The 

fuel costs of all the generating units are represented using cubic cost models. 

4.4.1 Case Study of Minimizing Cost for 7-bus Power System 

The goal of the OPF for the 7-bus system is to minimize generator fuel costs while 

adhering to power flow equations, specified branch flow (MVA), bus voltage magnitudes, 

slack generator active power limits. It contains 5 generators, 5 loads, 7 buses and 11 

transmission lines, and bus 7 is the slack bus. The limits, fuel cost coefficients and the 

system parameters are found in Appendix C. Fig 4.2 shows the single line diagram of the 

7-bus power system considered. The total loads are 760 MW and 130 MVAR. For the 

base case, the total fuel cost is 16939$/hr and the transmission Joss is 7.9 MW. 
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Fig. 4.2 One Line Diagram of the 7-Bus Power System [29] 

This system has 12 unknown variables in total: 4 controllable variables and 8 

dependent variables. Controllable variables include 4 generators active power output 

variables. Dependent variables are 2 load bus voltage magnitude variables and 6 phase 

angles. The formulation of OPF can be defined based on the Eqns. 4.17-4.22. Matlab 

Optimization Toolbox is applied to achieve the main goal (minimizing the generation 

cost). 

Table 4.1 summarizes the results of OPF without considering security constraints. 

Power and loss are in MW, and Voltage is in per unit. Cost is in $/hr. The total hourly cost 

is 16375$/hr and the loss is 10.6 MW. The economic dispatch results are also calculated. 

Table 4.1 illustrates that the economic dispatch has the lowest cost and the base case has 
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the highest cost. With the dispatch pattern obtained by economic dispatch, transmission 

line 2-5 and line 4-5 are violated 124% and 189% respectively. The cost of OPF is less 

than that of the base case, but it is more expensive than that of economic dispatch. With 

the operation pattern obtained from OPF, none of transmission lines is overloaded. The 

power flow on Line 2-5 and line 4-5 reaches the maximum limits. The bus voltage 

magnitudes maintain a reliable level (approximate 1 p.u.). 

Table 4.1 OPF of7-Bus Power System, Minimizing Generation Cost 

MINIMIZING COST P1(MW) P2(MW) P4(MW) P6(MW) P7(MW) Cost($/hr) 

Base Case 102 170 95 200 201 16939 

Economic Dispatch 196 288 128 164 0 16226 

OPF 126 230 71 291 52 16371 

4.4.2 Case Study of Minimizing Cost for 26-bus Power System 

The 26-bus power system is a test system from H. Saadat's book [ 17]. The goal of the 

OPF for the 26-bus system seen is to minimize generator fuel costs while satisfying all 

the power flow constraints. It includes 6 generators, 23 loads, 26 buses and 46 

transmission lines, and bus 1 is the slack bus. The limits, fuel cost coefficients and the 

system parameters are found in Appendix D. Fig 4.3 shows the single line diagram of the 

26-bus power system considered. The total loads are 947.3 MW and 484.5 MVAR. For 

the base case, the total fuel cost is 23946$/hr and the transmission loss is 9.4 MW. 
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Case Hourly Cost 
L--______,23946.49 $/hr 

Fig. 4.3 One Line Diagram of 26-Bus Power System [17] 

The formulation of OPF for 26-bus power system can be formed according to Eqns. 

4.17-4.22. Power flow equations are considered as equality constraints. Upper and lower 

bounds of bus voltage magnitudes, active power output and power flow are used to setup 

the inequality constraints. This system has 40 unknown variables in total : 5 controllable 

variables and 35 dependent variables. Controllable variables include 5 generators active 

power output variables. Dependent variables consist of 20 load bus voltage magnitude 

variables and 15 phase angle variables. Matlab Optimization Toolbox is applied to 

achieve the main goal (minimizing the generation cost). 
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Table 4.1 summanzes the results of OPF including transmission line limits and 

neglecting security constraints. Power and Loss are in MW, and Voltage is in per unit. 

Cost is in $/hr. The total hourly cost is 22646$/hr and the loss is 7.3 MW. The economic 

dispatch results are also listed for comparison. Table 4.1 illustrates that the results 

obtained from OPF studies are very similar but not identical to the economic dispatch 

case. The economic dispatch achieves the lowest fuel cost, and the OPF is slightly higher 

than it, which is about $2 more. This is because more constraints (power flow at each bus 

and transmission line limits) are involved in optimal power flow. The bus voltage 

magnitudes maintain a reliable level (approximate 1 p.u.). 

Table 4.2 OPF of26-Bus Power System, Minimizing Generation Cost 

MINIMIZIN P1 P2 P3 P4 P5 P26 Cost Loss 
GCOST (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (MW) 

Base Case 472 50 15 75 225 119 23946 9.4 

Economic 
381 125 213 85 114 34 22644 7.4 

Dispatch 
OPF 378 120 209 80 118 50 22646 7.3 

4.5 Optimal Power Flow Minimizing Loss 

Minimizing power loss is to minimize transmission loss, which is another primary 

application of OPF. The expression for the overall transmission loss accumulated in a 

power system is defined in Eqn. 4.11. Based on previous research of OPF problems, the 

minimizing power loss problem can be mathematically formed as: 
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p 
x, v, e, 

p v2 82 
Finding the vectors ~ = X• V= B = 

' ' 

p 
x .. V,ll B, 

which minimizing: 

n~ n1 

f(P8 ,V,B)= L~, -L,P4 

(4.23) 

i;J i;J 

Subject to: 

P II,- Pu.-?.:= 0 
(4.24) 

(4.25) 

k = 1,2, · ··m (4.26) 

k = 1 2 ·· ·n 
' ' II (4.27) 

P.:nmin ~ P.:n ~ P.:n max' k = 1, 2, . .. m, n = 1, 2, .. . m (4.28) 

Where: 

f(P
8

, V ,B) is the total power loss, MW. 

Pg, and Qg, is generation power at bus k. 

Vk is the bus voltage magnitude at bus k. 

PL, and QL, is the load at bus k. 

~ andQk are the net active and net reactive power injections at bus k. 

~~~ and Qkn are the power flow between bus k and n. 

P
8

, min and P
8

, max are the minimum and maximum active power output of generation 

unit k. 
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~nmin and ~nmax are the lower and upper bounds on the active power flow between bus 

k and n. 

Vkn~n and Vkmax are lower and upper bounds on the voltage magnitude at bus k. 

n
8 

is the number of generators. 

n1 is the number of loads. 

m and n is the number of buses. 

Equation 4.23 establishes the objective function which is the expression of total 

power loss. The constraints for loss minimization are similar to those discussed earlier for 

cost minimization. Equations 4.24 and 4.25 define the equality constraints (power flow 

equations). Equations 4.26, 4.27 and 4.28 are inequality constraints, which clarify the 

upper and lower bounds on the voltage magnitude, active power outputs and power flow 

between buses. In the formulation for loss minimization, active power outputs of 

dispatchable generation units are used as control variables. The 7-bus power system [29] 

and H. Saadat 26-bus power system [17] are applied to illustrate the constrained 

optimization method for OPF. All the studies use the optimization tool box available in 

Matlab [13]. For some aspects of the studies, PowerWorld Simulator is also used. 

4.5.1 OPF Minimizing Loss for 7-bus Power System 

Case study 4.5.1 repeats the case study 4.4.1 power system, except that the objective 

is to minimize power loss. The base case of 7-bus power system is displayed in Fig. 4.2. 

The goal is to minimize generator fuel costs while adhering to power flow equations, 
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specified branch flow (MVA), bus voltage magnitudes, slack generator active power 

limits. The limits, fuel cost coefficients and the system parameters are found in Appendix 

C. The total loads are 760 MW and 130 MVAR. For the base case, the transmission loss is 

7.9 MW and the total fuel cost is 16939$/hr. 

The formulation OPF regarding minimizing loss for 7-bus system is established using 

Eqns. 4.24-4.29. 12 unknown variables in total: 4 controllable variables and 8 dependent 

variables. Controllable variables include 4 generators active power output variables. 

Dependent variables are 2 load bus voltage magnitude variables and 6 phase angles. The 

formulation of OPF can be defined based on the Eqns. 4.23-4.28. Matlab Optimization 

Toolbox is applied to achieve the main goal (minimizing the generation cost). 

Table 4.3 summarizes the results of OPF with consideration of transmission line 

limits. Power and loss are in MW; voltage is in per unit, and cost is in $/hr. The total 

transmission loss is reduced to 3.25 MW with hourly cost 17150$/hr. Table 4.3 illustrates 

that the operation pattern obtained from OPF with minimum loss has the lowest losses 

than that of the base case and the OPF (minimizing cost), but it is the most expensive one. 

The bus voltage magnitudes maintain a reliable level (approximate 1 p.u.). 

Table 4.3 OPF of Minimizing Loss for 7-bus Power System 

Pl P2 P4 P6 P7 Loss Cost 
(MW) (MW) (MW) (MW) (MW) (MW) ($/hr) 

Base Case 102 170 95 200 201 7.9 16939 

OPF (Minimum 
126 230 71 291 52 10.4 16371 

Cost) 
OPF(Minimum 

100 150 109 150 254 3.25 17150 
Loss) 
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4.5.2 OPF Minimizing Loss for 26-bus Power System 

Case study 4.5.2 repeats the base case of 26-bus power system seen in Fig. 4.3. The 

goal is to minimize generator fuel costs while satisfying the power operation constraints, 

such as power flow equations, specified branch flow (MVA), bus voltage magnitudes and 

slack generator active power limits. The limits, fuel cost coefficients and the system 

parameters are found in Appendix D. The total loads are 947.3 MW and 484.5 MVAR. 

For the base case, the transmission loss is 9.4 MW and the total fuel cost is 23946$/hr. 

The formulation of OPF with minimizing loss for 26-bus system is established using 

Eqns. 4.23-4.28. 40 unknown variables in total: 5 controllable variables which are the 

generator active power outputs, and 35 dependent variables which includes are 20 load 

bus voltage magnitude variables and 15 phase angles. Matlab Optimization Toolbox is 

applied to achieve the main goal (minimizing the transmission loss). 

Table 4.4 summarizes the results of OPF of minimizing loss for 26-bus power system. 

The operation patterns of OPF of minimizing cost and the base case are listed in the table 

as well. The result obtained from OPF of minimizing Joss is that the transmission loss is 

reduced to 6.4 MW with hourly cost 23177$/hr. Table 4.4 il lustrates that the operation 

pattern obtained from OPF with minimum loss has the lowest losses than that of the base 

case and the OPF (minimizing cost), but it is the most expensive one. Thus, less 

transmission loss results in more generation cost. 
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Table 4.4 OPF of Minimizing Loss for 26-bus Power System 

P1 P2 P3 P4 P5 P26 Cost Loss 
(MW) (MW) (MW) (MW) (MW) (MW) ($/hr) (MW) 

Base Case 472 50 15 75 225 119 23946 9.4 

OPF(Minimum 
378 120 209 80 118 50 22646 7.3 

Cost) 
OPF(Minimum 

341 97 147 150 150 68 22876 6.26 
Loss) 

4.6 Security Constrained Optimal Power Flow 

Enforcing branch limits while optimization the generation will directly help to ensure 

that the power system is performing economically. However, the optimum operation 

conditions for a power system will often result in violation of system security. A secure 

power system is one where the power system continuous to operate even after some 

contingencies, such as generator and transmission line outages. Programs which can make 

control adjustments to the base or pre-contingency operation to prevent violations in the 

post contingency conditions are called Security Constrained Optimal Power Flow or 

SCOPF [ 15]. SCOPF is an optimal power flow taking into account outages of certain 

transmission lines or equipment. A SCOPF solution would be secure during all credible 

contingencies or can be made secure by corrective means depending on the level of 

security enforced in the optimization. A power system is typically classified into many 

security levels [34] . A security level 1 is a system where all load is supplied no operating 

limits are violated and no limit violations occur in the event of contingencies. Security 

level 2 is a system where all load is supplied no operating limits are violated and any 

65 



violation caused by a contingency can be conected by appropriate control action without 

Joss of load [4]. Only security level 1 is considered. 

The SCOPF can be achieved by adding security constrains into the OPF, which 

ensure the bounds on components during the contingency condition. For example, the 

following constraints might be incorporated: 

Vk .min ~ Vk (with line I outage)~ Vk.ma•, k = 1, 2, · · · , n (4.29) 

P;j ,min ~?;/with line I outage)~ P;j, ma• , j = 1,2,···,n, i = 1,2, .. ·,n. (4.30) 

Eqns. 4.29 and 4.30 implies that the SCOPF would prevent the post-contingency voltage 

on bus k and the post-contingency line flow on line ij from exceeding their limits for an 

outage line l. For a SCOPF analysis, constraints under both normal operation condition 

and outages situation are considered, and they can be a large set depends on the size of 

the network. 

4.6.1 Objective Functions 

The objective functions of SCOPF study are similar to the OPF. Minimizing the total 

fuel cost and minimizing the active power losses are two goals discussed in this thesis for 
I 

SCOPF studies. The objective functions of these goals are expressed in Eqns. 4.10 and 

4.11. 

66 



~~---~--------------------

4.6.2 Control Variables 

The SCOPF uses two kinds of variables: dependent variables and independent 

variables. The dependent variables (known as state variables) include bus voltage 

magnitude and phase angle. Independent variables (or the control variables) are the 

variables that may be set and controlled by the optimization algorithms. They include 

active power outputs of generation units, generator voltages, transformer tap ratios and 

values of switchable shunt capacitors and inductors. In addition to that, these variables 

exist both in pre-contingency case and post-contingency case. Considering an n-bus 

power system, if the number of control variables (dispatchable generator) is i and the 

number of state variables (bus voltage and phase angle) is j , then the total number of 

unknown variables for the system under normal operation condition is i + j . If one 

transmission line outage is considered, then a set of new state variables will be added. 

Hence the total number of state variables is 2 j , the number of control variable is still z , 

and the total number of unknown variable will be increased to i + 2j. Therefore, if 

m transmission line outages are considered, the total number of unknown variable 

isi+(m+l)x j. 

4.6.3 Constraints 

The purpose of constraints contained within the SCOPF problem is to ensure that the 

solutions obtained by solving the SCOPF are feasible for practical power system 
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operations. Similar to the constraints of OPF, SCOPF has equality and inequality 

constraints as well. T he main difference is that the SCOPF can also classified into intact 

system security constraints and single outage security constraints. 

Intact system security constraint is also known as the N Security Constraints (SC). 

Satisfying of these constraints means that line flows, voltage magnitudes and reactive 

generated powers are kept within their allowed limits in the intact system. The other type 

is single outage security constraints, known as the N-1 security constraints. The previous 

variables are met in any state resulting from an outage of a single network element [34] . 

4.6.3.1 Equality Constraints 

Each outage case is characterized by a new set of equation. Constraints for both 

normal condition and contingencies (outage) condition should be focused. Hence, 

constraints can be formed as [14]: 

nb nb 

LP;(x,u) = 0, LQ;(x,u) = 0 (4.31) 
i=l i= l 

nb nb 

l:P.; (x ,u) = 0, LQ.;(x,u) = 0 (4.32) 
i= l i= l 

where: 

x and u are state variables and control variables. 

P; and Q; are the power flows at bus i in normal state. 

p '; and Q.; are the power flows at bus i when transmission line n is blackout. 
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nb is the number of bus. 

Eqn. 4.31 expresses the power flow equation at certain buses when the system is operated 

under normal condition. Eqn. 4.32 presents the power flow equations when the outages of 

certain transmission lines are happened. 

4.6.3.2 Inequality Constraints 

The security assessment should be executed without violation in normal condition 

and after contingencies. Tolerable limits both under normal operating conditions and post 

contingencies should be satisfied. Important limitations used in the OPF problem are as 

follows [4]: 

k = 1,2,. ··m (4.33) 

k=12· · ·n 
' ' g (4.34) 

p knmin ~ ~~~ ~ ~nrn.1x' k = 1,2,· ·· m (4.35) 

The following inequality constraints are required under contingency states: 

v kmin ~v·k ~vk max'' k = 1,2,·· ·m (4.36) 

~nmin ~ p "kn ~ pknrnax ' k = 1, 2, ... m (4.37) 

Where: 

Vk is the bus voltage magnitude at bus k in normal conditions. 

~k is generation power at buskin normal conditions. 

P~u, and Qk" are the power flow between bus k and n in normal conditions. 
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v·k is the bus voltage magnitude at bus kin contingency state. 

p'k, is the power flow between bus k and n in contingency state. 

m is the number of buses. 

n
11 

is the number of generators. 

The number of contingency cases determines the size of the constraints of SCOPF 

problems. If there are n contingencies are considered, the number of SCOPF constraints is 

(n+ 1) times the number of OPF constraints. 

4.7 Solution of Security Constrained Optimal Power Flow 

Security assessment can be classified as static security assessment and dynamic 

security assessment [7]. The study presented in this thesis considers only static security. 

The SCOPF starts by solving the system by OPF with N constraints to find an operating 

point, and then contingency analysis is run which identifies the potential contingency 

cases. If there is no constraint violation, then the solution of SCOPF is obtained by the 

OPF. If a security violation is caused by outages, the complete security constraints is 

added, and then the OPF and each of the contingency power flows is re-executed until the 

OPF has solved with all contingency constraints met. This new optimal operating point 

ensures that after any single line outage there are no voltage or branch limits violations. 

Many techniques are used to identify contingencies and the order of contingencies that 

simplifies the SCOPF problems. PowerWorld Simulator has the contingency analysis 
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function which provides the detail contingency violation information. The potential worst 

contingency case can be easily recognized. Similar to the OPF studies, Matlab 

Optimization Toolbox is used to implement the SCOPF algorithm. Sequential Quadratic 

Programming is used by Matlab Optimization Toolbox to solve nonlinear constrained 

problems. 

4.8 Security Constrained Optimal Power Flow Minimizing Generation 

Cost 

The objective is to minimize the fuel cost. The SCOPF regarding minimizing 

generation cost problem can be mathematically formed as: 

VI V' I 

v 2 V' 2 

~I 

~l V:n V ' 
Finding the vectors u = m 

' 
x= 

el B.' I 

p e 2 (}' 
g, 2 

8111 e, I 

to minimize: 

ng 

f(x,u) = I <ak +f3k * Pg, +yk * (Pg, )2) (4.38) 
k= l 

subject to: 

m m 

LP;(x,u) = 0, LQ;(x,u) = 0 (4.39) 
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m m 

l:P.;(x,u) = 0, LQ.;(x,u) =0 (4.40) 
i= l i= l 

k = 1,2, .. -m (4.41) 

k = 1 2 ... n 
' ' g (4.42) 

P. ' <P. <P. kn mm - kn - knrrutx ' k = 1,2, .. -m (4.43) 

k = 1,2, .. ·m (4.44) 

~nmin ~ p 'kn ~ ~nmax' k = 1, 2, .. 'm, n = 1, 2, ... m (4.45) 

Where: 

f(x ,u) is the total fuel cost, dollar per hr ($/hr). 

a., ~ and y are the cost coefficients of the generator 

P
8

• is generation power at bus k. 

Vk is the bus voltage magnitude at buskin normal conditions. 

PL and QL is the load at bus k in normal conditions. 
k k 

P; andQ; are the active and reactive power flow at buskin normal condition. 

P~a, is the power flow between bus k and n in normal conditions. 

P
8

• min and P
8

, max are the minimum and maximum active power output of generation 

unit k. 

~~~min and ~nmax are the lower and upper bounds on the active power flow between bus 

k and n. 

vk n~n and v k max are lower and upper bounds on the voltage magnitude at bus k. 
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p'; andQ.; are the active and reactive power flow at buskin contingency state. 

v·k is the bus voltage magnitude at buskin contingency state. 

P·
11

, js generation power at bus k in contingency state. 

p 'kn is the power flow between bus k and n in contingency state. 

m is the number of buses. 

n
8 

is the number of generators. 

Active power outputs of generatjon units are control variables need to be solved to 

achieve the optimal operation of the minimum fuel cost. Vector x contains the total state 

variables for normal condition and contingencies case. V, ', V2 ', • • ·, V"' ', and B, ', 82 ', • • ·, B"' ' 

represent the state variables required for an outage of transmission line. Eqn. 4.38 

establishes the objective function. Eqn. 4.39 is the equality constraints (power flow 

equations) under normal condition. Eqn. 4.40 defines the equality constraints (power flow 

equations) under contingency state (one line outage). Eqns. 4.41-4.43 are inequality 

constraints under normal condition, which clarify the upper and lower bounds on the 

voltage magnitude, active power outputs and power flow between buses. Eqns. 4.44 and 

4.45 are inequality constraints when a contingency is considered, which ensure that the 

resulting voltages and flows would sti ll be within limit. Considering the OPF analysis of a 

system under normal condition includes n buses, x unknown state variables, 

j equality constraints and p inequality constraints, if there are q contingency cases 

involved, and then the total number of unknown state will be (q + l)x, also the total 
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number of equality and inequality constraints will be (q + 1)j and (q + 1) p respectively. 

Two case studies are discussed in this section to illustrate the constrained 

optimization method for SCOPE One is the 7-bus power system, and the base case is as 

same as that of OPF in section 4.4.1. The other one is 26-bus power system, and the base 

case is as same as that of OPF in section 4.4.2. All the studies use the optimization tool 

box available in Matlab [13]. For some aspects of the studies, PowerWorld Simulator is 

also used. The fuel costs of all the generating units are represented using cubic cost 

models. The SCOPF study focuses on single transmission line outage only. In the 

optimization problems, the constraints considering transmission line outage are included. 

4.8.1 SCOPF Minimizing Cost for 7-bus Power System 

Repeating the example in section 4.4.1 (7 -bus system OPF), the goal of the SCOPF 

for the 7-bus system is to minimize generator fuel costs while adhering to power flow 

equations, specified branch flow (MVA), bus voltage magnitudes, slack generator active 

power limits. The limits, fuel cost coefficients and the system parameters are found in 

Appendix C. The single line diagram of the 7-bus power system can be seen in Fig 4.2. 

The total loads are 760 MW and 130 MVAR. For the base case, the total fuel cost is 

16939$/hr and the transmission loss is 7.9 MW. 

The formulation of SCOPF can be defined based on the Eqns. 4.38-4.45. Matlab 

Optimization Toolbox is applied to achieve the main goal (minimizing the generation 

cost). In order to ensure secure power operation, the outage of each transmission line need 
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to be studied. For OPF analysis, the outages of transmission line 2-5 and 2-6 cause 

security violations. In other words, the system will be violated, if either line is out. Table 

4.5 gives the final results of SCOPF. Power and Loss are in MW, and Voltage is in per 

unit. Cost is in $/hr. The table illustrates that in order to keep the system to operate 

securely and optimally during individual single line outage, the generation output of each 

generator and cost may change. The summary of cost data presented in Table 4.5 shows 

that the cost for SCOPF ($17020) is higher than the cost for OPF ($16371). However, for 

the generation dispatch of SCOPF, the system can operate without any violation. As seen 

from Table 4.5, the cost is increased in order to maintain a secure power operation system. 

The bus voltage magnitudes maintain a reliable level (approximate 1 p.u.). The results 

presented in Table 4.5 are obtained by Matlab and verified by PowerWorld Simulator. 

Table 4.5 SCOPF of7-Bus Power System, Minimizing Generation Cost 

MINIMIZING Pl P2 P4 P6 P7 Cost Line 
COST (MW) (MW) (MW) (MW) (MW) ($/hr) Violation 

Base Case 102 170 95 200 201 16939 Line 4-5 

Line 2-5 
OPF 126 230 71 291 52 16371 and line 

2-6 

SCOPF 100 150 50 245 219 17020 
No 

violation 
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4.8.2 SCOPF Minimizing Cost for 26-bus Power System 

Repeating the base case in section 4.4.2 (26-bus system OPF [17]), the goal of the 

SCOPF for the 26-bus system is to minimize generator fuel costs while ensuring the 

security constraints. For the 26-bus system, the SCOPF study has focused on single 

transmission line outage only. The limits, fuel cost coefficients and the system parameters 

are found in Appendix D. The single line diagram of the 26-bus power system can be seen 

in Fig 4.3. The total loads are 947.3 MW and 484.5 MVAR. For the base case, the total 

fuel cost is 23946$/hr and the transmission Joss is 9.4 MW. 

The formulation of SCOPF can be defined using the Equations 4.38-4.45. The 

objective functions stay same for the OPF study. The constraints considering transmission 

line outage are included in the optimization problems. Considering the outage of 

transmission line 1-18 as an example, which is the potential worst-contingency case, the 

results are given in Table 4.6. Power is in MW, Voltage is in per unit, and Cost is in $/hr. 

The total hourly cost for SCOPF is 22846$/hr with the loss 6.8 MW. The table illustrates 

that the output generation of each unit and total fuel cost are changed during this outage 

to keep the system to operate securely and optimally. The solutions of OPF are also 

included in the Table 4.6. As seen in Table 4.6 the cost of SCOPF ($22846) in normal 

operation is higher than cost of normal OPF ($22646), but the system can operate without 

any violation during the outage of line 1-18. Hence, higher cost required when the 

security constraints are included. The results presented in Table 4.5 are obtained by 

Matlab and verified by PowerWorld Simulator. 
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Table 4.6 SCOPF of26-Bus Power System, Minimizing Generation Cost 

MINIMIZING PI P2 P3 P4 P5 P26 Cost 
Line Violation 

COST (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) 

Line 1-2, 1-18, 
Base Case 472 50 15 75 225 119 23946 4-12, 5-6 and 

18-17 
OPF 378 120 209 80 118 50 22646 linel-18 and 4-12 

SCOPF 276 134 229 112 151 53 22846 Line 4-12 

4.9 Security Constrained Optimal Power Flow Minimizing Loss 

The objective is to minimize the active power loss during the transmission. Based on 

previous research of SCOPF problems, the SCOPF regarding minimizing active power 

loss can be mathematically formed as: 

Finding the vectors u = 

To minimize: 

".t n, 

f(x,u) = IP8, (x,u)- LPL, 
k = l k = l 

Subject to: 
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V' 2 

B B' m m 

(4.46) 



m m 

L P;(x,u) = 0, L Q;(x,u) = 0 (4.47) 
i= l i=l 

Ill 111 

LP,; (x,u) =O,LQ.;(x,u) =0 (4.48) 
i=l i= l 

v k min :::; v k :::; vk max ' k = 1, 2, ... m (4.49) 

(4.50) 

p k11min :::; p kn :::; P,llW.IX' k = 1, 2, • • • m (4.51) 

v kmin :::; v 'k :::; vkmax '' k = 1, 2, ... m (4.52) 

p *'•min :::; p 'k, :::; P,_nmax' k = 1, 2, ... m, n = 1, 2, ... m (4.53) 

where: 

f(x,u) is the total loss, MW. 

P
8

, is generation power at bus k. 

V* is the bus voltage magnitude at buskin normal conditions. 

PL and QL is the load at bus kin normal conditions. 
' ' 

P; andQ are the active and reactive power flow at buskin normal condition. 

P*', is the power flow between bus k and n in normal conditions. 

P
11

, min and P
8

, max are the minimum and maximum active power output of generation 

unit k. 

?,, min and P,nmax are the lower and upper bounds on the active power flow between bus 

k and n. 

V kmin and Vkmax are lower and upper bounds on the voltage magnitude at bus k. 
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p'; and Q.; are the active and reactive power flow at buskin contingency state. 

v·k is the bus voltage magnitude at bus k in contingency state. 

P.
8

k is generation power at bus kin contingency state. 

p'kn is the power flow between bus k and n in contingency state. 

n
8 

is the number of buses. 

n1 is the number of buses. 

m and n is the number of buses. 

Vector u defines all the control variables (active power outputs of dispatchable 

generators) need to be solved to achieve the objective function. Vector x defines the 

state variables both in normal condition and contingency state. Equation 4.46 defines the 

objective function, which is total transmission loss. Equations 4.47, 4.49-4.50 define the 

equality constraints (power flow equations) and inequality constraints (operation limits of 

bus voltage magnitude, branch limits and generation limits) in normal condition. 

Equations 4.48, 4.52-4.53 express the equality and inequality constraints when a 

transmission line outage is considered. Those constraints prevent the post-contingency 

voltage on buses or the post-contingency flow on transmission lines from exceeding their 

limits for the outage of a transmission line. The constraints considering transmission line 

outages for minimizing transmission Joss are similar to those for the SCOPF regarding 

minimizing total fuel cost. For example, if there are m contingency cases need to be 

considered, and then the number of the total constraints for SCOPF study is (m + 1) times 

the number of constraints for OPF study. The size of the state variables and security 

79 



.-----------------------------------------

constraints depend on the number of contingency cases considered. 

The 7-bus power system [17] and the 26-bus power system [4] are discussed in this 

section to illustrate the SCOPF study for minimizing the active power loss. The base 

cases of above two power systems are as same as those of OPF in the sections 4.4.1 and 

4.4.2. All the studies use the optimization tool box available in Matlab [13] . For some 

aspects of the studies, PowerWorld Simulator is also used. The SCOPF study focuses on 

single transmission line outage only. 

4.9.1 SCOPF Minimizing Loss for 7-bus Power System 

The data of 7-bus power system considered in this study are given in Appendix C. 

The one line diagram can be seen in Fig 4.2. The total loads are 760 MW and 130 MVAR. 

For the base case, the transmission loss is 7.9 MW and the total fuel cost is 16939$/hr. 

The goal is to minimize the total active power loss while satisfying all the power flow 

equations, specified branch flow (MVA), bus voltage magnitudes, slack generator active 

power limits both in normal condition and contingency condition. In the optimization 

problem, the constraints considering transmission line outage are included. For OPF 

analysis, if the outage of transmission line 2-5 happens, the system will be violated. 

Hence in order to ensure the most secure operation manner, the outage of transmission 

line 2-5 is considered for SCOPF. 

The formulation of OPF regarding minimizing loss for 7-bus system can be formed 

using Eqns. 4.46-4.53. Matlab Optimization Toolbox is applied to achieve the main goal 
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(minimizing the transmission loss). The controllable variables include 4 generators active 

power output variables. State variables are load bus voltage magnitude and phase angles. 

The more contingency cases included, the more state variables are required. Table 4.7 

illustrates the final results of SCOPF. Power and loss are in MW; voltage is in per unit, 

and cost is in $/hr. The table shows that the generation output of each generator and the 

total cost are changed in order to keep the system to operate securely and optimally 

during the contingency cases. For the results of SCOPF, the transmission loss (3.31 MW) 

and cost ($17243) obtained from the SCOPF are slightly larger than those for the OPF. 

However, the system can be operated without any violation. This implies that more cost is 

required to maintain a secure operation system, also the minimum loss from OPF may not 

be ensured in SCOPF. The bus voltage magnitudes maintain a reliable level (approximate 

1 p.u.). The results presented in Table 4.7 are obtained by Matlab and verified by 

PowerWorld Simulator. 

Table 4. 7 SCOPF of Minimizing Loss for 7-Bus Power System 

Pl P2 P4 P6 P7 Loss Cost Line 
(MW) (MW) (MW) (MW) (MW) (MW) ($/hr) Violation 

Base Case 102 170 95 200 201 7.9 16939 
Line 4-5, 

160% 

OPF (Loss) 100 150 109 150 254 3.25 17150 Line 2-5 

SCOPF(Loss) 100 150 92 150 271 3.31 17243 
No 

violation 
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4.9.2 SCOPF Minimizing Loss for 26-bus Power System 

The goal of this study is to minimize generator fuel costs for 26-bus power system 

while satisfying the power operation constraints such as intact system SC and single 

outage security constraints. The one line diagram of 26-bus system can be seen in Fig. 4.3. 

The limits, fuel cost coefficients and the system parameters are found in Appendix D. The 

total loads are 947.3 MW and 484.5 MVAR. For the base case, the transmission loss is 9.4 

MW and the total fuel cost is 23946$/hr. For the 26-bus system, the SCOPF study focuses 

on single transmission line outage only. The complete security constraints are included in 

the optimization problem. 

The SCOPF for 26-bus power system can be formulated as a set of nonlinear 

optimization problem using Eqns. 4.46-4.53. The control variables are active power 

outputs of 5 dispatchable generators. The state variables are the bus voltage magnitudes 

and phase shift for both normal and contingency conditions. The constraints are used to 

prevent voltage magnitudes and branch flow under pre-contingency and post contingency 

operation from exceeding their operation limits. 

Consider the outage for line 1-18 as an example; Table 4.8 gives the results of 

SCOPF. Power and loss are in MW; voltage is in per unit, and cost is in $/hr. For the 

results from SCOPF, the transmission loss is reduced to 6.33 MW, and the hourly cost is 

increased to 23076$/hr. The active power outputs of each generator are changed to 

maintain a secure manner during the outage of line 1-18. As seen in Tables 4.4 and 4.8, 

the transmission Joss and cost obtained from the SCOPF are slightly higher than those for 
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the OPF. However, the system is secured even if the outage of transmission line 1-18 is 

happened. This implies that when security constraints are included, the minimum 

transmission loss will be increased compares to those for the OPF study, and the 

corresponding fuel cost is increased as well. The results presented in Table 4.8 are 

obtained using Matlab and verified using PowerWorld Simulator. 

Table 4.8 SCOPF of Minimizing Loss for 26-Bus Power System 

PI P2 P3 P4 P5 P26 Loss Cost Line 

(MW) (MW) (MW) (MW) (MW) (MW) (MW) ($/hr) Violation 

Line 1-2, 
1-18, 

Base Case 472 50 15 75 225 119 9.4 23946 4-12, 5-6 
and 

18-17 

OPF 341 97 147 150 150 68 6.26 22876 
Linel-18, 

4-12 

SCOPF 277 123 169 150 164 70 6.33 23076 Line 4-12 

4.10 Conclusions 

This chapter has discussed the fundamentals of the OPF and SCOPF and the 

solutions to solve it. With OPF, the power system can be scheduled to optimize a certain 

objective while satisfying a set of operational constraints imposed by equipment 

limitations. SCOPF is combined with OPF to redispatch generation, and adjust voltages to 

meet the contingency constraints. The transmission line outages are considered in this 

chapter. The solutions obtained from SCOPF ensure that the system is operated at an 
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acceptable condition even if some contingencies occur. Both OPF and SCOPF can be 

mathematically formed as a set of nonlinear equations. Matlab Optimization Toolbox is 

used to implement programs and solve these optimization problems. Case sturues are 

illustrated and discussed to present the application of OPF and SCOPF. Objective of 

minimizing fuel cost and minimjzing active power loss are considered in these studies. As 

seen from the case studies, the fuel cost of a power system at OPF setting is higher than 

that of a power system at Economk Dispatch setting. This is because that the 

transmission line limits and other limjts may be violated in Economic Dispatch. For 

minimizing active power loss case, the optimal operation pattern obtained from SCOPF is 

more expensive than that of OPF. This is because that of the need to ensure that the power 

system operates economically both in normal condition and during contingencies. 

The studies presented in this chapter show that the nonlinear programming based 

optimization techniques can handle OPF and SCOPF problems efficiently. For larger 

power system, the number of contingency cases will increase. As a result, the number of 

security constraints and the number of variables in the optimization problem will increase 

significantly. 
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Chapter 5 

Engineering Multiobjective Optimization 

5.0 Introduction 

Optimization is an act of finding one or more feasible solutions which correspond to 

extreme values of one or more objectives. The typical aims of these solutions are either to 

maximize possible benefit or minimize possible cost. Some real world problems can be 

defined by a single objective; the task of finding the best result is called single objective 

optimization. However, most problems involve more than one criterion. The problems that 

involve more than one objective functions are known as multi-objective optimization 

problems. The use of multi-objective optimization technologies allows the management of 

different objectives, and gives indications on the consequences of the decision with respect 

to all the objective functions considered [8,35-37]. 
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The aim of this chapter is to cliscuss the fundamental of multiobjective optimization and 

the most commonly used Weighted Sum (WS) algorithm which can effectively solve 

multiobjective optimization problems. This chapter is organized as follows: Section 5.1 

discusses the difference between single objective and multiobjective optimization. 

Section 5.2 presents an overview of the typical multiobjecti ve optimization problems. 

Section 5.3 states the concept of Pareto optimal for minimization problems. A simple 

example is also illustrated. Section 5.4 presents the WS algorithms. Case studies using WS 

method are presented in section 5.5. Section 5.6 provides some concluding remarks. 

5.1 Single and Multiple Objective Optimizations 

Since most problems in the real life have many objectives that need to be satisfied, it is 

possible that these objectives conflict with each other. In general, it is easy to find a single 

optimal solution, when the objective functions have been considered independently. 

However, it is impossible to find a single solution that fits all the objectives. Hence, instead 

of giving a single optimal solution, a set of trade off solutions gives the values of the entire 

objective functions acceptable to the decision maker, which are also known as Pareto set. 

Each solution in the Pareto set has an important characteristic: the improvement in one of 

the objectives results in the worsening of at least one other objective [38]. The final 

solution that can be chosen from the set depends on the decision makt(r. 

Car-buying making decision problem is a common example of multiobjective 

optimization problems with conflicting objective functions. This example is from the book 
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by K. Deb [35,37]. Assuming that there is a need to buy a car, most people would like to 

select the one with the less cost and more comfort. Normally an inexpensive car is likely to 

be less comfortable as shown in Fig. 5.1. For people whose only target is comfort, the 

optimal choice is option 2 which has the highest comfort level. For people whose objective 

is cost, and then the optimal choice is option 1 which has the lowest cost. These solutions 

are illustrated in Fig. 5.1. Between these two extreme solutions, a number of trade-off 

options (option A, B and C) with different costs and comfort levels exist between option 1 

and option 2. Customers are able to make a decision based on weighing two objectives. 
' 

None of these solutions is the best with respect to both objectives, thus all options in this 

set are optimal solutions for this multiobjective optimization problem rather than a single 

optimal solution. This is also the fundamental difference between a single-objective and a 

multi-objective optimization. 

2 

Comf01t 

1 

Cost 
lOOk lOk 

Fig. 5.1 Trade-off Solutions for Buying a Car - Cost vs Comfort [37] . 
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5.2 Multiobjective Optimization 

A typical multiobjective optimization problem is to find a vector of decision variables 

which satisfies the constraints and optimizes a vector function whose elements represent 

the objective functions. These functions form a mathematical description of performance 

criteria which are usually in conflict with each other. Hence, the term "optimize" means 

finding such a solution which would give the values of all the objective functions 

acceptable to the decision maker [32,39]. 

The general MOP can be formally defined as finding the vector 

to minimize/maxintize: 

Subject to: 

Xl 

X 2 
x= 

Xn 

/t(X), j2(X) ... f~~(X) 

gJ(X)~ O.j = 1,2,-··, l 

hk(X) = O,k = 1, 2,-··,K 

X .(L) <X > X .(U) l. = 1 2 · · · n I - 1 - I , , , , 

(5.1) 

(5.2) 

In Equation 5.1, fi.(X) is the objective function set. X is a vector of n decision 

variables:Xl,X2, ... , Xn . In Equation 5.2, gJ(X) and hk(X)are inequality and equality 

constraints. x/L> and x;<V> are lower and upper bounds of variables, restricting each 

decision variable X; to take a value within a lower x/L> and an upper x;W> bound. 
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5.3 Dominated and Non-dominated Solution 

The concept of domination is applied to find the optimal solution set of MOPs. 

Comparing two solutions A and B, a solution A is said to dominate the other solution Y, if 

both conditions 1 and 2 are true [35,37] : 

1. The solution A is no worse than Yin all objectives; 

2. The solution A is strictly better than Yin at least one objective. 

That is, A dominates B when it is as good as B regarding each objective, and there is 

at least one objective with respect to which A is better than B. If any of the above 

condition is violated, solution A does not dominate solution B. If A dominates B, it also 

means: 

• B is dominated by A; 

• A is non-dominated by B. 

A sample optimization problem with two objective functions subject to minimization is 

illustrated in Fig. 5.2. Comparing solutions A and B, A is better than B in both of objective 

functions, l and 2. Hence, both above conditions are satisfied, and solution A dominates 

solution B. Comparing A and C, C is better than A in both of objectives, so C dominates A. 

Since the concept of domination is the method of comparing solutions applied to 
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multi-objective, most multiobjective optimization algorithms use this concept to search for 

non-dominated solutions. 

Object ive 1 

0 

• 
0 solutionA 
• solution B 
* solutionC 

Object ive 2 

Fig. 5.2 Solution A Dominates Solution B 

In the entire objective space, a non-dominated solution is defined as any feasible 

solution such that no other feasible solution is strictly better than it with respect to all 

objectives [32]. These non-dominated solutions are known as Pareto Optimal solutions. 

The plot of the objective functions whose non-dominated vectors are in the Pareto 

optimal set is called the Pareto front. 

Continuing the above example, Fig. 5.3 illustrates the optimal solutions between two 

objective functions. The solid curve is the Pareto front which contains all the 

non-dominated solution for the multiobjective optimization problem. The Pareto front 

line shows that as the value of objective 1 increasing, the objective 2 is decreasing. 

However, none of the solution on the line fits these two objectives better than any other. 
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Objective 1 

Pareto Front 
0 Dominated Solutions * Pareto Solutions 

Objective 2 

Fig. 5.3 Pareto Front of a Bi-objective Functions Optimization Problem 

The following example of multi -objective optimization problem with two objective 

functions and one decision variable illustrates the optimal solutions and Pareto front. This 

example is adopted from Matlab Tutorial [ 40]. 

Minimize: F(x) = [objectivel(x) ; objective2(x)L 

where, objective! (x) = (x + 2)2 - 10, (5.3) 

objective2 (x) = (x - 2)2 + 20. 

The above two objective functions are quadratic equations. Fig. 5.4 plots the 

objective functions when the variable x varies between -10 and 10. The two objectives 

have their minima at x = -2 and x = +2 respectively. However, in a multi-objective 

problem, x = -2, x = 2, and any solution in the range -2 <= x <= 2 is equally optimal. 

There is no single solution to this multi-objective problem. Fig.5.5 presents the 

corresponding Pareto front, which contains the set of solutions. All solutions on the 

Pareto front are optimal. 
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Plot of objectives '(x+2)2 - 1 0' and '(x-2)2 + 20' 
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Fig. 5.4 Plots of Objective Functions 

Pareto front 
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Objective 1 

Fig. 5.5 Plots of Pareto Front 
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5.4 Weighted Sum Method 

Along with the application of multiobjective optimization, significant amount of 

algorithms have been developed to solve optimization problems. Particle Swarm 

Optimization (PSO), Genetic Algorithms (GA) and Evolutionary Algorithms (EA) are 

some of the techniques that have been proposed recently. Weighted Sum (WS) is the most 

common and the simplest classical approach used to determine the Pareto set. WS allows 

finding each point in the Pareto set by using traditional optimization techniques applied to 

a nonlinear constrained problem. It scalarizes a set of objectives into a single function by 

multiplying each objective with a weight factor. The weight of an objective function is 

usually chosen in proportion to the objective's relative impmtance in the problem 

[8,37,41]. The Pareto front can be obtained by changing the weights among the objective 

functions. E-constaint method, weighted metric methods, value function methods, goal 

programming methods are some of the other available methods. For the multiobjective 

optimization studies, presented in this thesis, the weighted sum method is used [7]. The 

WS is stated as: 

Minimizing: 

Subject to: 

J(x) = I:=I Wm* Jm(X), 

gj(X) ~ 0, 

hk(X) = 0, 

m=1,2, . . . M 

j = 1,2,··· , 1 

k =1,2,···,K 

i = 1,2, · ·· ,n 

(5.4) 

In Equation 5.4, W
111 

is the weight of the m-th objective function. Normally the sum 

of chosen weights is one <I:=
1

Wm =l, m = 1,2, ... M ). Different weight values of an 

objective function result in multiple solutions of the decision vmiables. Therefore, 
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decision makers can use their experience and any preference information of the Pareto set 

to choose the final operating point by varying the weights of objective functions. 

5.5 Case Studies 

Two case studies of multiobjective optimization problems are discussed in this 

section. The first case has objective functions 2 variables and no constraints. The second 

case is a MOP with 2 objective functions, 4 variables and 2constraints. 

5.5.1 Case Study 1 

The two-objective functions to be minimized are: 

(5.5) 

(5.6) 

The two functions are combined into a single objective function (unconstrained) 

based on the weighted sum method. The solution corresponding to different weights is 

determined using an unconstrained minimization method. Fig. 5.6 shows the Pareto front 

obtained by WS. The decay curve shown in the figure illustrates the non-dominated 

solutions of the Pareto front. From the figure, it is clear that the objectives conflict with 

each other. Hence, a single optimal solution cannot satisfy both objectives. The trade off 

region provides multiple solutions to meet the requirement of the objectives. 
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Case Study 5.5 .1, Multiobjective Optimization Problem 

20 

C'l 15 
c 
0 
:;::; 
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-~ ....... 
u 
(1) 

:.0 
0 
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0 

-35 -30 -25 -20 -15 - 10 -5 

objecti.....e function 1 

Fig. 5.6 Pareto Front of Case Study 1 

5.5.2 Case Study 2 

Case 2 is about a multiobjective optimization problem with minimizing two 

objectives, which is a simple power system example from the book by Bergen and 

vittal[18]. 2 objective functions, 2 equality constraints and 4 unknown variables are 

included. Function 1 J; presents the generation cost, and function 2 / 2 states the 

transmission loss. The problem is to minimize: 
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(5.7) 

(5 .8) 

(5 .9) 

subject to 

X:J +4cos(x1)-8sin(.x;)+4cos(x1-x2 )+8sin(x1 -x2)-8 = 0 
(5.10) 

(5.11) 

where x1 , x2 , x3 and x4 are unknown variables 

By using WS, these objective functions can be linearly combined as a simple 

objective function. Constrained optimization method is applied to determine the solutions 

corresponding to different weights. Fig. 5.7 illustrates the non-dominated solutions of the 

Pareto front by WS. The trade off region provides multiple solutions to meet the 

requirement of the objectives. The figure shows that the objectives conflict with each 

other. The minimum fuel cost does not ensure the minimum transmission loss. More cost 

is required to reduce the transmission loss. The Pareto front contains all the optimal 

solutions, which allows the operator to select a solution by observing a wide range of 

options. 
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Case Study 5.5.2, Multi-Objecti-.e Optimization 
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Fig. 5.7 Pareto Front of Case Study 5.5.2 

5.6 Conclusions 

This chapter has provided an overview of multiobjective optimization. Pareto 

Optimal is used to define a set of acceptable trade-off optimal solutions which is also 

known as non-inferior solutions. A number of classical multiobjective optimization 

algorithms are available to solve problems. Most algorithms convert the multiple 

objective functions into a single objective function by using some user defined procedures. 

Weighted sum method is one of the most simple and common approach that linearly 
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r------------------------- -----------

combines all the objectives into one function by using weight factors. The weight factors 

are user defined which promotes more appropriate roles for the participants in the 

planning and decision making process. The Pareto front contains all the optimal solutions 

which are computed by varying the weight factors of objective functions. It allows the 

operator to select a solution by observing a wide range of options. Two simple numerical 

examples are presented to illustrate the performance of weighted sum method. In the next 

chapter (chapter 6), instead of implementing a program for weighted sum algorithm, 

Matlab Optimization Toolbox is employed to solve the multiobjective optimization 

problems in power system. 
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Chapter 6 

Application of Multi-objective Optimization in Power Systems 

6.0 Introduction 

Along with the liberalization of modem power system, the multiple objective 

programming and planning represents a very useful generalization of more traditional 

single objective approaches to planning problems [42,43] . The consideration of multiple 

objectives brings three major advantages [38]. First, it allows the management of different 

objectives. Second, it provides more opportunities for operators to plan and make 

decision. Third, it gives indications on the consequences of the decision with respect to all 

the objective functions considered. Multiobjective optimization can be considered as 

optimizing many objective functions subject to different constraints. For power system 

applications, these objectives functions can be total fuel cost and total transmission losses 

[34,38,44]. 

Many tools are available to solve the multiobjective optimization problems. Chapter 

5 introduced the fundamentals of multiobjective optimization and the solutions associated 

with it. However, many of the proposed methods for multiobjective optimization in power 

system focus on the constraints related to the steady state operation only. Security 

constraints (i.e. operation of the power system under credible contingencies) are not 
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considered in detail [7] . The a1m of this chapter is to evaluate the application of 

multiobjective optimization for power system including security constraints. 

Chapter 4 discussed challenging power systems optimization problems known as the 

Optimal Power Flow (OPF) and Security Constrained Optimal Power Flow (SCOPF) 

problems. The outages of transmission lines are considered only. When security 

constraints are involved, the size of the optimization problem depends on the number of 

contingency cases considered. The OPF and SCOPF can be achieved by dispatching 

generation and adjust voltages to minimize the objective functions while satisfies the 

nOimal constraints and contingency constraints. 

Two case studies are performed using two different power systems. Two objective 

functions are involved in the optimization problems. For both case studies, the 

multiobjective optimization is required to compute a feasible and non-dominated set of 

generation patterns that minimizes fuel cost and minimizes transmission loss while 

maintaining security constraints. 

This chapter is organized as follows: section 6.1 gtves an overview of common 

multiobjective optimization, and the formulation of the problem for power system 

application including security constraints is discussed. Case studies (7-bus power system 

[29] and 26-bus power system [17]) using simple power system models are presented in 

section 6.3 and 6.3. The goal of these two case studies is to minimize the total fuel cost 

and the transmission loss. Section 6.4 provides some concluding remarks. 
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6.1 Mutiobjective Optimization Problem Formulations 

Two aspects of the optimal power flow problem considered here are to minimize the 

total fuel cost and minimize the total transmission loss for specified loading conditions. 

All the generating units are assumed to be thermal with the fuel cost expressed as a cubic 

function of the output of the generating units. The objective function to minimize the fuel 

cost of generation is formed as the sum of the fuel cost for all the available generating 

units: 

"·' h (x,u) = L (ak + f3k * P~~. + yk * (Pg, )z) (6.1) 
k= l 

where: 

P
8

, is the active power output at the kth generating unit. 

n
8 

is the number of generators in the system. 

a, f3 andy are cost coefficients. 

x and u are state and control variables. 

The objective function to minimize the system transmission loss is defined as: 

ng nl 

f 2 (x,u)= LP
8
;-IP4 

(6.2) 
i= l i= l 

where: 

P
4 

is the load at bus i. 

ng is the number of generators. 

nl is the number of loads. 
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x presents the state variables which include the bus voltage magnitudes and phase 

angles. The size of x depends on the number of the contingency cases considered. 

u represents the control variables which are the active power outputs of dispachable 

generators. The constraints include equality constraints (power flow equations) and 

inequality constraints (operation limits of bus voltage, transmission line and generator). 

The main contribution of the multiobjective optimization problem presented in this 

thesis is the inclusion of security constraints. The goal of the multiobjective problems is 

to ensure that the present operating condition meets the minimum cost and loss criteria as 

well as remain secure considering the possibility of any credible contingency [7]. For the 

studies presented here, the contingencies considered are the outage of transmission lines 

(one at a time). For each contingency, the equality and inequality constraints 

corresponding to that operating condition must be included in the problem formulation. 

This will increase the number of variables (x) in the optimization problem significantly. 

However, the solution will satisfy the desired operating criteria and ensure that the power 

system is secure [7]. 

The power system multiobjective optimization problem with security constraints 

included is formed as a set of nonlinear equa6ons, which is [7,16,34]: 

VI VI 

v 2 v 2 

~. 
p 

VIII VITI 
Finding the vectors u = !h 

' 
x= 

el f),' 
I 

p ()1 f),' 
li .. 2 

B,n ()' 
Ill 
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to minimize: J;(x,u) and f 2 (x, u) (6.3) 

m m 

subject to L P;(x,u) = 0, L Q;(x,u) = 0 (6.4) 
i= l i = l 

m m 

IP'; (x,u) = o,IQ';(x, u) =0 (6.5) 
i= l i= l 

v k min ~ v k ~ v k max ' k = 1, 2, . .. m (6.6) 

Pg, min ~ Pg, ~ Pg, max' k = 1, 2, . . . ng (6.7) 

~nmin ~ P1u, ~ ~nmax , k = 1, 2, · · · m (6.8) 

v k min ~ v ·k ~ v kmax' k = 1, 2, .. . m (6.9) 

~nmin ~ p 'kn ~ ~nmax' k = 1,2, ···m, n = 1,2, ···m (6.10) 

where: 

J; (x, u) is the total fuel cost, $/hr. 

f 2 (x,u) is the total loss, MW. 

P
8

, is generation power at bus k. 

Vk is the bus voltage magnitude at bus kin normal conditions. 

PL and QL is the load at buskin normal conditions. • • 

P; and Q are the active and reactive power flow at bus kin normal condition. 

~~~ is the power flow between bus k and n in normal conditions. 

P and P are the ml.nimum and maximum active power output of 
Fl• min g, max 

generation unit k. 

103 



~nmin and ~nmax are the lower and upper bounds on the active power flow between 

bus k and n. 

Vkmin and Vkmax are lower and upper bounds on the voltage magnitude at bus k. 

p ·; and Q.; are the active and reactive power flow at buskin contingency state. 

v·k is the bus voltage magnitude at bus k in contingency state. 

p ·kn is the power flow between bus k and n in contingency state. 

m is the number of buses. 

ng is the number of generator buses. 

The formulation of the multiobjective optimization mentioned above, is similar to the 

SCOPF study in chapter 4. The only difference is that two objectives are involved to 

compute the optimal solutions. Equation 6.3 represents a set of objective functions, which 

are minimization of the total fuel cost and minimization of the transmission loss. The 

vector x consists of dependent variables (bus voltage magnitudes and phase angles). The 

vector u consists of control variable (real power generation). 

v1 ', v2 ', · · ·, V 111 
', and ~ ', 82 , · · ·, B,n ' are unknown state variables that are required by the 

optimization problem when the contingency occurs. Equations 6.4 and 6.5 represent 

nonlinear equality constraints (power flow equations) under normal condition and 

contingency state. Equations 6.8-6.10 define the nonlinear inequality constraints of vector 

arguments x and u which are the voltage magnitude restrictions, generation restrictions 

and power flow limits. When the outages of transmission lines are considered, a new set 

of equality and inequality constraints are required based on the contingency cases, and 
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these constraints are also known as security constraints. Hence, the power flow equations 

(Equation 6.5) at each bus for the outage of 'one line are formed and included in the 

problem. The post-contingency bus voltage magnitudes (Equation 6.9) and the 

post-contingency power flow (Equation 6.10) on each transmission line need to be limited 

for the outage of one line. The more contingency cases are considered the larger size of 

the security constraints is resulted for SCOPF. If the optimization problem only focuses 

on the multiobjective optimal power flow, then the security constraints (Equations 6.5, 

6.9-6.10) are not required. 

Many methods are available to solve the multiobjective optimization problem, such 

as Evalutionary Algorithm, Partical Swarm Optimization and Conventional methods. One 

of the most common, popular and simple classical approach is Weighted Sum (WS) 

which is also proposed for the multiobjective optimization case studies in this thesis. It 

determines each point in the Pareto set by using traditional optimization techniques 

applied to a nonlinear constrained problem. It linearly combines all the objective 

functions into an overall' function by using scalar factors. These scalar factors are also 

known as weight factor which are chosen in proportion to the objectives relative 

importance in the problem. The Pareto front which contains optimal solutions can be 

obtained by varying the weight factors of objective functions. Thus, the two objective 

optimization problem can be combined into a single function using the WS approach. The 

final objective function therefore can be expressed as: 

f(x,u) = w1 • ,h(x,u)+ w2 • f 2 (x,u) 
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where w1 and w2 are the two weights which represent the importance of the objective 

functions. ~(x,u) is the objective function for minimizing the cost and f 2 (x ,u) is the 

objective function of minimizing the total transmission loss. The operator can decide 

which objective is more important based on the weight factor corresponding to a specific 

objective. 

In order to perform the studies, weighted sum method, a classical optimization 

method, is coded in MatLab. Moreover, the PowerWorld Simulator is used to identify the 

potential contingency cases and verify the results under contingency state. 

6.2 7-Bus Case Study 

In this section, a multiobjective optimization problem is performed where the goal of 

optimization is to minimize both the total fuel cost and the active power transmission loss 

for specified loads. These objective functions were discussed in detail in chapter 4 and 

previous section (6.1). Security constraints are included to obtain optimal solutions for the 

outages of the transmission lines. The weighted sum approach is used to solve the 

optimization problem. The 7-bus power system used for this study is shown in Fig. 6.1 [4]. 

This system has 5 generators, 7 buses, 11 transmission lines and bus 7 is the reference bus. 

The limits, fuel cost coefficients and the system parameters are listed in Appendix C. The 

fuel costs ~f all the generating units are represented using cubic cost models. The total 

loads are 760 MW and 130 MVAR. For the base case, the total fuel cost is 16939$/hr and 

the transmission loss is 7.9 MW. Also the 7-bus base case does not ensure either a 
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.-------------------------------------------------------------------------------------------------

security or an economy operation manner. However, all generator bus voltages are 

maintained at 1p.u. 

1lttMW c:;) 
AGCON 

One 
1.05 pu 

OMvar 

Left Area Cost 
4189 $'hr 

AGCON Top Area Cost 
8035 $1hr 

20MW 20MW 

20MW 20MW 

Fig. 6.1. Seven Bus Power System 

6.2.1 OPF for7-Bus Power System 

Seven 
1.04 pu 

~MW 
OMvar 

Case Hourly Cost 
16939 $1hr 

1a<tMW 
40 Mvar 

Right Area Cost 

The goal of multiobjective optimal power flow is to minimize the total fuel cost and 

the transmission losses while satisfying all the constraints. Security constraints are not 

included. The multiobjective OPF problem can be expresses as a set of nonlinear 

functions using Equations 6.1, 6.2, 6.4, and 6.6-6.8. Equations 6.1 and 6.2 are two 

objective functions: the total fuel cost and the transmission losses. Equation 6.4 defines 
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the equality constraints which are the power flow equations at each bus. Equations 6.6-6.8 

are inequality constraints which set up the boundaries of bus voltage magnitude and 

branch flow. In total, there are 12 unknown variables, 8 equality constraints and 25 

inequality constraints. Table 6.1 lists the number of each parameter used for this case 

study. 

Table 6.1 Multionjective OPF parameter for 7-bus Power System [7] 

Control Variable 4 
State Variable 8 

Equality Constraints 8 
(Power Flow Equations) 

Transmission line 11 
Inequality Bus Voltage 4 

Constraints Active Power 
10 

Outputs 

This study is performed using weighted sum method. Matlab is applied to implement 

the code to solve the optimization problem. Table 6.1, summarizes the results of 

multiobjective optimization without considering contingency constraints. Multiple 

optimal solutions can be obtained by varying the weight factors corresponding to the 

importance of objectives. The more weight factors are used, the more optimal solutions 

can be computed. 40 pairs of weight factors are used in this study. Table 6.2 lists the 

results of the OPF studies for 7-bus power system without the consideration of security 

constraints. When the fuel cost is the most important objective, the corresponding weight 

factor is 1 and the minimum cost will be computed. Similarly, if the system transmission 

losses is considered as the most important objective, the minimum loss can be achieved, 
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but mm1mum fuel cost can not be ensured. More cost IS required to reduce the 

transmission loss. 

Table 6.2 Mutliobjective OPF of7-bus Power System (Without Security 

Constraints )[7] 

Weight Factor of Transmission Weight Factor of Generation Cost 
Loss Loss (MW) Cost ($/hr) 

0 10.050 1 16371 
0.2 3.933 0.8 16804 
0.4 3.408 0.6 17003 
0.6 3.310 0.4 17095 
0.8 3.292 0.2 17132 
1 3.290 0 17150 

Fig. 6.2 shows the optimal solutions set for the 7-bus power system provided by the 

multiobjective optimjzation without considering the security constraints. Any star point 

on the Pareto front is an optimal solution, but it does not guarantee a secure power 

operation when a single line outage occurs. Each of the solutions contained in the frontier 

is feasible as no operation constraint was found to be violated. The curve shows that the 

multiple solutions are well distributed near the area of mjnimum loss, but a large gap 

around the area of minimum cost. This can be improved by involving more weight factors. 

The Pareto front shows that rrunimization of the total fuel cost and transrrussion line 

losses are in direct conflict with each other. Clearly from Fig. 6.2, with more money spent 

on generation, lower line losses are achieved. The trade off region provides more 

solutions for the operator to choose an option. 
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Fig. 6.2. Pareto Front for the 7-bus Power System (without security) [7] 

6.2.2 7-Bus Power System for SCOPF 

The goal of multiobjective optimal power flow is to minimize the total fuel cost and 

the transmission losses while satisfying all the constraints under normal condition and 

contingency cases. Thus, security constraints are included. The one line diagram of 7-bus 

power system is shown in Fig 6.1, and the system information is introduced in Appendix 

C. In order to ensure the most secure power operation, the outage of each transmission 

line needs to be studied. PowerWorld Simulator is used for contingency analysis which 

determines the violation of the system when single transmission line is out. The analysis 

results show that the outages of transmission lines (line 2-5 and 2-6) result in all the 

violations. Therefore, the contingencies with respect to the outage of only two 
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transmission lines (line 2-5 and 2-6) are considered. 

The multiobjective SCOPF problem can be expressed as a set of nonlinear functions 

using Eqns. 6.1, 6.2, 6.4, 6.5 and 6.6-6.10. Eqns. 6.1 and 6.2 are two objective functions : 

the total fuel cost and the transmission losses which are same as the OPF case. Eqn. 6.4 

defines the equality constraints, which are the power flow equations at each bus when the 

system is operated under normal condition. Eqns. 6.6-6.8 are inequality constraints under 

normal condition which enhance the operation limits of bus voltage magnitude, active 

power output of each dispatchable generator and branch flow. When security constraints 

are considered, the problem is formulated in such a way that state variables, equality and 

inequality constraints corresponding to the outage of some transmission lines are included. 

v1 ', v2 ',·· ·, v"' ', and 81 ',B1 ,·· ·, Bm' are unknown state variables that are required by the 

optimization problem when the contingency is happened. Eqns. 6.5 represents nonlinear 

equality constraints, which are power flow equations at each bus for the outages of 

transmission lines. Eqns. 6.9-6.10 define the nonlinear inequality constraints of vector 

arguments x and u which are the voltage magnitude restrictions, generation restrictions 

and branch power flow limits. The post-contingency bus voltage magnitudes (Eqn. 6.9) 

and the post-contingency power flow (Eqn. 6.1 0) on each transmission line need to be 

limited for the outage of one line. The more contingency cases are considered the larger 

sizes of the security constraints and state variables are resulted for SCOPF. Outages of 2 

transmission lines (line 2-5 and 2-6) are considered, therefore, there are 28 variables, 24 

equality constraints and 75 inequality constraints in total. Comparing this total amount to 

the OPF case, the total number of parameters for SCOPF is three times the total number 

111 



for OPF. Table 6.3 lists the number of each parameter used for this case study. 

Table 6.3 Multionjective SCOPF parameter for 7-bus Power System [7} 

Control Variable 4 
State Variable 24 

Equality Constraints 
24 

(Power Flow Equations) 
Transmission line 33 

Inequality Bus Voltage 12 
Constraints Active Power 

30 
Outputs 

This SCOPF study is computed using weighted sum method, which is implementated 

using Matlab Optimization Toolbox. Multiple optimal solutions can be obtained by 

varying the weight factors corresponding to the importance of objectives. The number of 

the weight factors determines the number of the optimal solutions can be obtained. 40 

pairs of weight factors are applied to this study, so 40 pairs of optimal solutions (the fuel 

cost and the transmission losses) are computed. Table 6.4, summarizes the results of 

multiobjective optimization with the consideration of security constraints. Ultimately, the 

choice of the optimal solution is up to the planner. There may be many reasons for 

choosing one solution over another. For example, when the total fue l cost of generation is 

considered as the most important objective, the minimum cost should be chosen with the 

maximum corresponding weight factor (weight factor = 1). Similarly, if the system 

transmission losses is primary importance and the fuel cost is the secondary one, the 

minimum loss should be chosen, but minimum fuel cost can not be ensured. The more 

cost is required to reduce the transmission loss. However, if the fuel cost and the 
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transmission losses are of the same importance, the best solution would be contained 

somewhere in the middle of the Pareto front as neither objective is minimized but a better 

balance between the two objectives is realized. As seen from Tables 6.2 and 6.4, the cost 

is higher when security constraints are included. 

Table 6.4 Multiobjective OPF of7-bus Power System (Secure) [7} 

Weight Factor of Transmission Weight Factor of Generation Cost 
Loss Loss (MW) Cost ($/hr) 

0 4.41 1 17021 
0.2 3.58 0.8 17150 
0.4 3.38 0.6 17213 
0.6 3.34 0.4 17243 
0.8 3.34 0.2 17243 
1 3.34 0 17243 

Fig. 6.3 shows the Pareto front provided by the multiobjective optimization with 

considering the security constraints. Any point on the Pareto front is an optimal solution, 

and it guarantees a secure power system with respect to the outage of a single 

transmission line. Each of the solutions listed in the frontier is feasible as no operation 

constraint was found to be violated, even under contingency situation. The solution set is 

well distributed over the Pareto front, but there are a few air gaps over the frontier around 

the area of the minimum cost. These gaps can be improved by adding more weight factors. 

The Pareto front shows that the objectives of minimization of the total fuel cost and 

transmission line losses are conflict with each other. Clearly from Fig. 6.3, with more 

money spent on generation, lower line losses are achieved. The power system operator 

can select a particular solution from these multiple solutions. 
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As a result of these allocations, it is found that the maximum fuel cost scheme has a 

cost of 17243 $/hr, and the minimum cost scheme has a cost of 17021 $/hr. The maximum 

and minimum cost solutions have transmission line losses of 3.34 MW and 4.41 MW 

respectively. Thus, by allowing an additional spending of $222, it is possible to reduce the 

transmission losses by 24.2% and the system is secure considering the contingency cases. 
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Fig. 6.3. Pareto Front for the 7-bus Power System (secure) [7] 

For the OPF study, the maximum cost scheme is 17150 $/hr, and the minimum cost 

scheme has a cost of 16371 $/hr. The maximum and minimum cost solutions have 

transmission line losses of 3.29 MW and 10.05 MW respectively. Comparing the results 

of OPF and SCOPF, it shows that the minimum loss schemes of two studies are similar 

(0.05 MW difference), and the COJTesponding fuel costs are similar as well (only $100 

difference). The most important feature of the SCOPF is that any solution of SCOPF 
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ensures a secure operation manner when the outages of transmission lines occur. If the 

fuel cost is of primary concern, the minimum fuel cost obtained from the SCOPF study is 

significantly higher than that of the OPF study ($ 650 higher). However, the solution of 

OPF does not ensure the security of the system operation. If the security is of great 

concern, the solutions of SCOPF may be very attractive and should be preferred. Thus, 

higher cost is required in order to achieve a secure operation. 

6.3 26-Bus Case Study 

In this section, a multiobjective optimization case study is performed where the goal 

of optimization is to minimize the total fuel cost and the total active power transmission 
I 

losses for specified loads. The cost objective is identical to the cost objective used for the 

7-bus case study, but with different cost coefficients and control variables. The objective 

of total transmission loss is expressed in Eqn. 6.2. OPF and SOPF studies are both 

discussed in this section. For the SCOPF study, security constraints are required to obtain 

optimal solutions for the outages of the transmission lines. These two objectives can be 

formed as a nonlinear optimization problem which can be solved by weighted sum 

method. The 26-bus power system used for this study is shown in Fig. 6.4 [17]. The 

system consists of 6 generators, 46 transmission lines/ transformers, 26 loads, and bus 1 is 

the reference bus. The loads total 947.3 MW and 484.5 MVAR. All system parameters 

along with the initial load demand and generation schedule are available in Appendix D 

using an apparent power base of 100 MVA. For the base case, the total fuel cost is 23946 
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$/hr and the transmission loss is 9.4MW. 

Fig. 6.4 26-bus Power System 

6.3.1 OPF for 26-Bus Power System 

Case Hourly Cost 
L-_~23946.49 $/hr 

The goal of multiobjective optimal power flow is to minimize the total fuel cost and 

the transmission losses while satisfying all the constraints. Security constraints are not 

included. The multiobjective OPF problem can be expresses as a set of nonlinear 

functions using Equations 6.1, 6.2, 6.4, and 6.6-6.8. Equations 6.1 and 6.2 are two 
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objective functions: the total fuel cost and the transmission losses. Eqn. 6.4 defines the 

equality constraints which are the power flow equations at each bus. Eqns. 6.6-6.8 are 

inequality constraints which set up the boundaries of bus voltage magnitude, generator 

production and branch flow. The bus voltage magnitude should be restricted within 

0.95p.u. and 1.05p.u., and the limits of generator production and transmission line are 

specified by the manufacture. In total, there are 40 unknown variables, 45 equality 

constraints and 98 inequality constraints. Table 6.5 lists the number of each parameter 

used for this case study. 

Table 6.5 Multionjective OPF parameter for 26-bus Power System [7} 

Control Variable 5 
State Variable 35 

Equality Constraints 
45 

(Power Flow Equations) 
Transmission line 46 

Inequality Bus Voltage 40 
Constraints Active Power 12 

Outputs 

The fuel costs of all the generating units are represented using cubic cost models. 

This study is computed using weighted sum method. The following table, Table 6.6, 

summarizes the results of multiobjective optimization without considering contingency 

constraints. Multiple optimal solutions can be obtained by varying the weight factors 

corresponding to the importance of objectives. The more weight factors are used, the 

more optimal solutions can be computed, and the more accurate Pareto front can be 
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plotted. As seen from Tables 6.5 and 6.3, an increased parameter size is used over the case 

study in section 6.2, since 26-bus power system is large scale and has many more 

operational constraints. The larger parameter size used in this case study causes the longer 

processing time. 20 pairs of weight factors are used in this study. Table 6.6 summaries the 

results of the OPF studies for 26-bus power system without the consideration of security 

constraints. The multiple optimal solutions provide more options for the operator to make 

a selection. For example, if the fuel cost is the most important objective and the 

transmission loss is the secondary importance, the minimum cost solution should be 

chosen. Similarly, if the system transmission losses is more important than the fuel cost, 

the minimum loss solution should be considered, but minimum fuel cost can not be 

ensured. Higher cost is required to reduce the transmission loss. Table 6.6 shows that the 

maximum fuel cost scheme (22974 $/hr) and the minimum fuel cost scheme (22646 $/hr) 

solutions have transmission loss of 6.26 MW and 7.25 MW respectively. By additional 

spending of $328, it is possible to reduce the transmission losses by 13.7%. 

Table 6.6 Multiobjective OPF of26-bus Power System (Without Security 

Constraints )[7} 

Weight Factor of Transmission Weight Factor Generation 
Loss Loss (MW) of Cost Cost ($/hr) 

0 7.25 1 22646 
0.2 7.15 0.8 22648 
0.4 7.01 0.6 22654 
0 .6 6.81 0.4 22676 
0.8 6.47 0.2 22764 
1 6.26 0 22974 
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Fig. 6.5 shows the optimal solutions set for the 26-bus power system provided by the 

multiobjective optimization without considering the security constraints. Any point on the 

Pareto front is an optimal solution, but it does not violate any operating constraints. 

Regardless of the slightly discrepancy between the last two solutions near the area of the 

minimum loss, each of the solutions contained in the frontier is non-dominated and well 

distributed. The Pareto front also shows that minimization of the total fuel cost and 

transmission line losses conflict with each other. Hence, with more money spent on 

generation, lower line losses are achieved. The trade off region provides more solutions 

for the operator to choose an option. 
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Fig. 6.5. Pareto Front for the 26-bus Power System (without secure) [7] 
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6.3.2 SCOPF for 26-Bus Power System 

The goal of this study is to minimize the total fuel cost and the transmission losses 

while satisfying all the constraints under normal condition and contingency cases. Thus, 

security constraints are included. The one line diagram of 26-bus power system is shown 

in Fig 6.4, and the system information is introduced in Appendix D. To simplify the 

problem, contingency with respect to the outage of only one transmission line (line 1-18) 

is considered. Line 1-18 outage is the potential worst-contingency cases, which is verified 

using PowerWorld Simulator. 

Using Eqns. 6.1, 6.2 and 6.4-6.10, The multiobjective SCOPF problem can be 

expresses as a set of nonlinear functions. Eqns. 6.1 and 6.2 are two objective functions: 

the total fuel cost and the transmission losses. Eqn. 6.4 defines the equality constraints for 

normal operation, which is the net power at each bus is zero. Eqns. 6.6-6.8 are inequality 

constraints under normal condition which enhance the operation limits of bus voltage 

magnitude, active power output of each dispatchable generator and branch flow. When 

security constraints are considered, the problem is formulated in such a way that state 

variables, equality and inequality constraints corresponding to the outage of some 

transmission lines are included. v1 ', v2 ', · · · , v, ', and ~ ', 82 , · · ·, 8,, ' are unknown state 

variables that are required by the optimization problem for the outage of the transmission 

line. Eqns. 6.5 represents nonlinear equality constraints, which are power flow equations 

at each bus for a contingency case. Eqns. 6.9-6.10 define the nonlinear inequality 

constraints of vector arguments x and u, which are the voltage magnitude restrictions, 
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generation restrictions and branch power flow limits. The post-contingency bus voltage 

magnitudes and the post-contingency power flow on each transmission line can be 

restricted using Eqns. 6.9-6.10 for the outage of a line. The size of the state variables and 

security constraints depends on the number of the contingency case. Only the outage of 

transmission lines 1-18 is considered, therefore, there are 75 variables, 90 equality 

constraints and 196 inequality constraints in total. Table 6.7 lists the number of each 

parameter used for this case study. As seen from Tables 6.5 and 6.7, the total number of 

parameters for SCOPF is two times the total number for OPF. 

Table 6. 7 Multionjective SCOPF parameter for 26-bus Power System [7] 

Control Variable 5 
State Variable 70 

Equality Constraints 90 
(Power Flow Equations) 

Transmission line 92 
Inequality Bus Voltage 80 

Constraints Active Power 24 
Outputs 

This SCOPF study is computed using weighted sum method, which is implementated 

using Matlab Optimization Toolbox. Multiple optimal solutions can be obtained by 

varying the weight factors corresponding to the importance of objectives. The number of 

the weight factors determines the number of the optimal solutions can be obtained. Since 

the larger amount of SCOPF parameters results in longer processing time, 20 pairs of 

weight factors are used. Hence, 20 pairs of optimal solutions (the fue l cost and the 

transmission losses) are computed. Table 6.8 presents the results of SCOPF studies when 
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the security constraints are considered. There are many reasons for choosing one solution 

over another. For example, when the total fuel cost of generation is considered as the 

most important objective, the minimum cost should be chosen. Similarly, if the system 

transmission losses is primary importance and the fuel cost is the secondary one, the 

minimum loss should be chosen, but minimum fuel cost can not be ensured. As seen from 

Tables 6.6 and 6.8, the cost is higher when security constraints are included. For example, 

the minimum fuel cost induces 23076 $/hr for SCOPF study while the minimum fuel cost 

of OPF induces 22974 $/hr. The SCOPF solution is higher than the OPF solution ($102 

difference). However, the OPF solution does not ensure the system security when the 

contingency on line 1-18 occurs. The most important advantage of SCOPF over OPF is 

that any optimal solution obtained from SCOPF enhances the security of the 26-bus 

power system when the outage of line 1-18 is happened. 

Table 6.8 Multiobjective OPF of 26-bus Power System (Secure) [7} 

Weight Factor of Transmission Weight Factor of Generation Cost 
Loss Loss (MW) Cost ($/hr) 

0 6.83 1 22846 
0.2 6.79 0.8 22846 
0.4 6.75 0.6 22848 
0.6 6.62 0.4 22862 
0.8 6.39 0.2 22915 
1 6.30 0 23076 

Fig. 6.6 shows the Pareto front which contains the optimal solutions set for the 26 

bus power system provided by the multiobjective optimization with security constraints. 

Each of the points listed in the frontier is an optimal solution, and it guarantees a secure 
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power system with respect to the outage of a single transmission line. The power system 

operator can select a particular solution from these multiple solutions. Regardless of the 

minor discrepancy near the area of the minimum loss, each of the solutions contained in 

the frontier is non-dominated and well distributed. The Pareto front shows that the 

objectives of minimization of the total fuel cost and transmission line losses are conflict 

with each other. With more money spent on generation, lower line losses are achieved. 

It is apparent from the Table 6.4 and Fig. 6.3 that the maximum fuel cost scheme 

has a cost of 23076 $/hr, and the minimum cost scheme has a cost of 22846 $/hr. The 

maximum and minimum cost solutions have transmission line losses of 6.3 MW and 6.83 

MW respectively. Thus, by allowing an additional spending of $ 230, it is possible to 

reduce the transmission losses by 7.6% and the system is secure when line 1-18 is out. 
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Fig. 6.6. Pareto Front for the 26-bus Power System (secure) [7] 
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Comparing the results of OPF and SCOPF, it shows that the minimum loss schemes 

of two studies are similar (0.04 MW difference), and the corresponding fuel costs are 

similar as well (only $102 difference). For minimum cost scheme, the SCOPF solution 

has a cost of $22846 which is $200 higher than the result of OPF. However, the SCOPF 

provides lower transmission loss which is 0.42 MW less than the loss from the OPF study. 

In addition, the SCOPF results ensure a secure operation even if the outage of line 1-18 is 

happened. Thus, with extra $200 spending, a more secure and less transmission loss 

operation can be achieved, and the solutions of SCOPF may be very attractive and should 

be preferred. 

6.4 Conclusions 

This chapter has presented multiobjective optimization for power system including 

security constraints. OPF and SCOPF case studies have been performed on a 7-bus power 

system and a 26-bus power system, and the objectives are the minimization the total fuel 

cost and the minimization of the transmission losses. For OPF and SCOPF studies, the 

weighted sum approach has successfully computed the feasible non-dominated solution 

set. The Pareto front contains all the optimal solutions, and they are well distributed over 

the frontier. The results also showed that the weighted sum method correctly identified 

the trade off region between fuel cost and transmission line losses. The power system 

operator can select a particular solution from these multiple solutions. One of the major 
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advantages of the SCOPF is that any solution of SCOPF ensures a secure operation 

manner. Thus, the system will not be violated even if the outages of transmission lines 

occurs. The solutions of OPF may have less cost or less losses, but they cannot guarantee 

a secure operation under contingency cases. Hence, if the security is of great concern, the 

solutions of SCOPF may be very attractive and should be preferred. The Pareto front 

obtained from all case studies show that the objectives of minimization of the total fuel 

cost and transmission line losses are conflict with each other. With more money spent on 

generation, lower line losses and more security of the system can be achieved. 

Furthe1more, for larger power systems, when security constraints are included, the 

number of variables in the optimization problem will increase significantly, and the 

processing time of the weight sum approach also increases. 
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Chapter 7 

Conclusions and Future Work 

In this thesis, optimization has been shown as one of the challenging problems in 

power system operation as its formulation is single objective or multiobjective, nonlinear, 

highly constrained and of large scale. Many optimization methods have been researched, 

and the methods proposed in this thesis have been very successful in achieving the goal of 

obtaining economic, reliable and secure operation scheme. Minimization of the operation 

cost (fuel cost) and minimization of transmission losses while ensuring a secure system is 

a primary problem for power system planning and operation. Combining multiobjective 

optimization methods with optimal power flow, the generators' power output can be 

varied within certain limits to support a specified load demand, and the above objective 

can be achieved. The multiobjective optimization is achieved by minimizing the objective 

functions subject to the constraints under normal condition and contingency state. Only 

the outages of transmission lines are considered as contingencies in the optimal power 

flow study. Weighted sum, a classical multiobjective optimization method, is 

implemented by MatLab Optimization Toolbox and is employed to solve all the 

multiobjective optimization problems. 

Case Studies have been presented throughout the thesis to illustrate the performance 
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of the constrained nonlinear optimization method (single objective and multiple 

objectives) for solving power system optimization problems. This thesis has considered 

three key problems for power systems: economy, transmission loss and security. The 

results of the work presented in the thesis show that the proposed approaches have the 

potential to benefit electric power utilities. 

7.1 Summary of the Research and Contribution of the Thesis 

The main contributions of this thesis can be summarized as follows: 

1. Conventional optimization methods including their application to power system 

optimization problems is investigated. A case study is presented to show the 

algorithm of the proposed Sequential Quadratic Programming method. 

2. Optimal power flow problems including economic dispatch and security 

constraints optimal power flow are studied for different objectives. 

B-coefficients are used to express the total transmission loss to solve the 

economic dispatch problem. 

3. The concept of the Pareto front that highlighted important implications of 

multiobjective optimization are discussed. Two typical multiobjective 

optimization problems are presented to show the performance of the proposed 

Weighted Sum method. 

4. The application of the multiobjective optimization to two power system case 

studies including security constraints is presented. The benefit of optimizing the 
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power system with security constraints is discussed. 

5. A program is developed using Matlab software tool based on the weighted sum 

method for handling multiobjecti ve optimization problems. 

6. Two technical papers [3,7] related to the application of optimization 

methodologies to power system optimal power flow are published. 

7.2 Recommendations for Future Work 

Two areas are proposed for future research: 

1. An investigation of alternate strategies for solving multiobjective optimization 

problems 

2. A further research for reactive power planning and voltage profile improvement. 

When considering security constraints, the problem is formulated in such a way that 

the equality and inequality constraints conesponding to the outage of some transmission 

lines are included. Since the number of variables has increased, the gradient-based 

algorithm takes a lot of time to converge. Furthermore, the proposed multiobjective 

optimization method, weighted sum method, cannot find certain Pareto-optimal solutions 

in the case of a nonconvex objective space. This leads one to investigate alternate 

strategies for multiobjective optimization. A recently proposed method called 

"multiobjective particle swarm optimization" (MOPSP) is a strong candidate to meet 

these challenges. Further research is required to explore this and investigate its suitability 

for multiobjective power system optimization problems including security constraints [7]. 
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Under normal operating conditions, the system transmission loss is considered for 

reactive power dispatch and for improving the voltage profile. Moreover, this will result 

in a reduction in the cost of installing extra equipment for reactive power generation and 

voltage adjustment. A possible area of research is to investigate of multiobjective 

optimization problem for the reactive power planning and voltage profile improvement. 
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Appendix A: 5-Bus Power System Data 

Appendix A contains the information about the 5-Bus Power system [20] discussed in 

the thesis. The one line diagram is shown in Fig. A.l. The line characteristics, generations, 

loads and generation fuel cost coefficients are presented in tables A.1, A.2, A.3 and A.4 

respectively. 

1. 05 pu 
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59 MlT 

39 Mvar 

Fig. A.1 One Line Diagram of the 5-Bus Power System 

Table A. I: Line Characteristics for 5 -Bus Power System ( IOOMVA base) 

Resistance Reactance 
Line Line 

Line No. From Bus To Bus 
(p.u) (p.u) 

Charging Limit 
(p.u) (MVA) 

1 1 2 0.02 0.06 0.06 150 
2 1 3 0.08 0.24 0.05 150 
3 2 3 0.06 0.18 0.04 120 
4 2 4 0.06 0.18 0.04 100 
5 2 5 0.04 0.12 0.03 200 
6 3 4 0.01 0.03 0.02 222 
7 4 5 0.08 0.24 0.05 60 
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Table A. 2 Generation Schedule and Generator Limits for 5-Bus Power System 

Real Power 
Maximum Minimum 

Bus Generation 
Real Power Real Power 

(MW) 
Generation Generator 

(MW) (MW) 
1 58.79 400 -9900 
2 120 500 -9900 
3 60 1000 -9900 

Table A. 3 Load Demand for 5-Bus Power System 

Bus Real Power Load (MW) 
Reactive Power Load 

(MVAR) 
2 19.6 9.8 
3 19.6 4.7 
4 49 29.4 
5 58.8 39.2 

Table A.4 Generator Fuel Cost Coefficients for 5-Bus Power System 
Bus (l p y 

1 373.5 10 0.016 
2 403.6 8 0.018 
3 253.2 12 0.018 
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Appendix B: IEEE 39-Bus Power System Data 

Appendix B gives the information about the IEEE 39-Bus Power system [25] 

discussed in the thesis. The one line diagram is shown in Fig. B.l. The line characteristics, 

generations, loads and generation fuel cost coefficients are presented in tables B.l, B.2, 

B.3 and B.4 respectively. 

Fig. B.l One Line Diagram of the IEEE 39-Bus Power System 
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Table B. I: Line Characteristics for the IEEE 39-Bus Power System (JOOMVA base) 

Resistance Reactance 
Line Line 

Line No. From Bus To Bus 
(p.u) (p.u) 

Charging Limit 
(p.u) (MVA) 

1 2 1 0.0035 0.0411 0.6987 600 
2 39 1 0.001 0.025 0.75 1000 
3 3 2 0.0013 0.0151 0.2572 500 
4 25 2 0.007 0.0086 0.146 500 
5 2 30 0 0.0181 0 500 
6 4 3 0.0013 0.0213 0.2214 500 
7 18 3 0.0011 0.0133 0.2138 500 
8 5 4 0.0008 0.0128 0.1342 600 
9 14 4 0.0008 0.0129 0.1382 500 
10 6 5 0.0002 0.0026 0.0434 1200 
11 8 5 0.0008 0.0112 0.1476 900 
12 7 6 0.0006 0.0092 0.113 900 
13 11 6 0.0007 0.0082 0.1389 480 
14 6 31 0 0.025 0 2500 
15 8 7 0.0004 0.0046 0.078 900 
16 9 8 0.0023 0.0363 0.3804 900 
17 39 9 0.001 0.025 1.2 900 
18 11 10 0.0004 0.0043 0.0729 600 
19 13 10 0.0004 0.0043 0.0729 600 
20 10 32 0 0.02 0 2500 
21 12 11 0.0016 0.0435 0 500 
22 12 13 0.0016 0.0435 0 500 
23 14 13 0.0009 0.0101 0.1723 600 
24 15 14 0.0018 0.0217 0.366 600 
25 16 15 0.0009 0.0094 0.171 600 
26 17 16 0.0007 0.0089 0.1342 600 
27 19 16 0.0016 0.0195 0.304 2500 
28 21 16 0.0008 0.0135 0.2548 600 
29 24 16 0.0003 0.0059 0.068 600 
30 18 17 0.0007 0.0082 0.1319 600 
31 27 17 0.0013 0.0173 0.3216 600 
32 19 20 0.0007 0.0138 0 2500 
33 19 33 0.0007 0.0142 0 2500 
34 20 34 0.0009 0.018 0 2500 
35 22 21 0.0008 0.014 0.2565 900 
36 23 22 0.0006 0.0096 0.1846 600 
37 22 35 0 0.0143 0 2500 
38 24 23 0.0022 0.035 0.361 600 
39 23 36 0.0005 0.0272 0 2500 
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40 26 25 0.0032 0.0323 0.513 600 
41 25 37 0.0006 0.0232 0 0 
42 27 26 0.0014 0.0147 0.2396 600 
43 28 26 0.0043 0.0474 0.7802 600 
44 29 26 0.0057 0.0625 1.029 600 
45 29 28 0.0014 0.0151 0.249 600 
46 29 38 0.0008 0.0156 0 2500 

Table B. 2 Generation Schedule and Generator Limits for the IEEE 39-Bus Power System 

Real Power 
Maximum Minimum 

Bus Generation 
Real Power Real Power 

(MW) 
Generation Generator 

(MW) (MW) 
30 340 350 50 
31 658.8 650 50 
32 735.4 800 50 
33 540 750 50 
34 600 650 50 
35 670 750 50 
36 550 750 50 
37 600 750 50 
38 8903 900 50 
39 1052.2 1200 50 

Table B. 3 Load Demand for the IEEE 39-Bus Power System 

Bus Real Power Load (MW) 
Reactive Power Load 

(MVAR) 
3 322 2.4 
4 500 184 
7 233.8 84 
8 522 176 
12 8.5 88 
15 320 153 
16 329 32.3 
18 158 30 
20 680 103 
21 274 115 
23 247.5 84.6 
24 308.6 -92.2 
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25 224 47.2 
26 139 17 
27 281 75.5 
28 206 27.6 
29 283.5 26.9 
31 9.2 4.6 
39 1104 250 

Table B.4 Generator Fuel Cost Coefficients for the IEEE 39-Bus Power System 

Bus a ~ 'Y 
30 0 6.9 0.0193 
31 0 3.7 0.0111 
32 0 2.8 0.0104 
33 0 4.7 0.0088 
34 0 2.8 0.01 28 
35 0 3.7 0.0094 
36 0 4.8 0.0099 
37 0 3.6 0.0113 
38 0 3.7 0.0071 
39 0 3.9 0.0064 
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Appendix C: 7-Bus Power System Data 

Appendix C contains the information about the 7-Bus Power system [29] discussed in 

the thesis. The one line diagram is shown in Fig. C.l. The line characteristics, generations, 

loads and generation fuel cost coefficients are presented in tables C.l , C.2, C.3 and C.4 

respectively. 

1.05pu 

OMvar 20W!W 

20W!W 

Top Area Cost 
8035 Slhr 

Case Hourly Cost 
16939 $/hr 

13CIMW 

40 Mvar 

Left Area Cost o Mvar 
4189 Slhr AGC ON AGC ON Right Area Cost 

Fig. C.l One Line Diagram of the 7-Bus Power System 
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Table C. I: Line Characteristics for 7-Bus Power System (JOOMVA base) 

Resistance Reactance 
Line Line 

Line No. From Bus To Bus 
(p.u) (p.u) 

Charging Limit 
(p.u) (MVA) 

1 1 2 0.01 0.06 0.06 150 
2 1 3 0.04 0.24 0.05 165 
3 2 3 0.03 0.18 0.04 80 
4 2 4 0.03 0.18 0.04 100 
5 2 5 0.02 0.12 0.03 130 
6 2 6 0.01 0.06 0.05 200 
7 3 4 0.005 0.03 0.02 100 
8 4 5 0.04 0.24 0.05 30 
9 7 5 0.01 0.06 0.04 200 
10 6 7 0.04 0.24 0.05 200 
11 6 7 0.04 0.24 0.05 200 

Table C. 2 Generation Schedule and Generator Limits for 7-Bus Power System 

Real Power 
Maximum Minimum 

Bus Generation 
Real Power Real Power 

(MW) 
Generation Generator 

(MW) (MW) 
1 102 400 100 
2 170 500 150 
4 95 200 50 
6 200 500 150 
7 201 600 0 

Table C. 3 Load Demand for 7-Bus Power System 

Bus Real Power Load (MW) 
Reactive Power Load 

(MVAR) 
2 40 20 
3 110 40 
4 80 30 
5 130 40 
6 200 0 
7 200 0 
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Table C.4 Generator Fuel Cost Coefficients for 7-Bus Power System 

Bus a ~ y 

1 373.5 7.62 0.002 
2 403.61 7.52 0.0014 
4 253.24 7.84 0.0013 
6 388.93 7.57 0.0013 
7 194.28 7.77 0.0019 
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Appendix D: 26-Bus Power System Data 

Appendix D gives the information about the 26-bus Power system [17] discussed in 

the thesis. The one line diagram is shown in Fig. D.l. The line characteristics, generations, 

loads and generation fuel cost coefficients are presented in tables D.l , D.2, D.3 and D.4 

respectively. 

Case Hourly Cost 
L-~23946.49 $/hr 

Fig. D.l One Line Diagram of the 26-Bus Power System 
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Table D. I: Line Characteristics for the 26-Bus Power System (JOOMVA base) 

Resistance Reactance 
Line Line 

Line No. From Bus To Bus 
(p.u) (p.u) 

Charging Limit 
(p.u) (MVA) 

1 1 2 0.00055 0.0048 0.06 250 
2 1 18 0.0013 0.0115 0.12 410 
3 2 3 0.00146 0.0513 0.1 170 
4 2 7 0.0103 0.0586 0.036 110 
5 2 8 0.0074 0 .0321 0.078 175 
6 2 13 0.00357 0.0967 0.05 100 
7 2 26 0.0323 0 .1967 0 100 
8 3 13 0.0007 0.00548 0.001 265 
9 4 8 0.0008 0.024 0.0002 110 
10 4 12 0.0016 0.0207 0.03 140 
11 5 6 0.0069 0.03 0.198 300 
12 6 7 0.00535 0.0306 0.0021 150 
13 6 11 0.0097 0.057 0.0002 50 
14 6 18 0.00374 0.0222 0.0024 175 
15 6 19 0.0035 0.066 0.09 116 
16 6 21 0.005 0.09 0.0452 100 
17 8 7 0.0012 0.00693 0.0002 100 
18 7 9 0.00095 0.0429 0.05 116 
19 8 12 0.002 0.018 0.04 160 
20 9 10 0.00104 0.0493 0.002 80 
21 12 10 0.00247 0.0132 0.02 175 
22 10 19 0.0547 0.236 0 50 
23 10 20 0.0066 0.016 0.002 80 
24 10 22 0.0069 0.0298 0.01 85 
25 11 25 0.096 0.27 0.02 50 
26 11 26 0.0165 0.097 0.008 200 
27 12 14 0.0327 0.0802 0 100 
28 12 15 0.018 0.0598 0 50 
29 13 14 0.0046 0.0271 0.002 105 
30 13 15 0.0116 0.061 0 100 
31 13 16 0.01793 0.0888 0.002 75 
32 14 15 0.0069 0.0382 0 100 
33 15 16 0.0209 0.0512 0 100 
34 16 17 0.099 0.06 0 100 
35 16 20 0.0239 0.0585 0 100 
36 18 17 0.0032 0.06 0.076 111.4 
37 21 17 0.229 0.445 0 50 
38 19 23 0.03 0.131 0 50 

144 



---- -~---------------------

39 19 24 0.03 0.125 0.004 50 
40 25 19 0.119 0.2249 0.008 50 
41 20 21 0.0657 0.157 0 50 
42 22 20 0.015 0.0366 0 100 
43 21 24 0.0476 0.151 0 100 
44 23 22 0.029 0.099 0 100 
45 24 22 0.031 0.088 0 100 
46 25 23 0.0987 0.1168 0 50 

Table D. 2 Generation Schedule and Generator Limits for the 26-Bus Power System 

Real Power 
Maximum Minimum 

Bus Generation 
Real Power Real Power 

(MW) 
Generation Generator 

(MW) (MW) 
1 472.44 500 100 
2 50 200 50 
3 15 300 80 
4 75 150 50 
5 225 200 50 

26 119.23 120 50 

Table D. 3 Load Demand for the 26-Bus Power System 

Bus Real Power Load (MW) 
Reactive Power Load 

(MVAR) 
1 38.25 30.75 
2 16.5 11.25 
3 48 37.5 
4 18.75 14.25 
5 37.5 22.5 
6 57 21.75 
7 0 0 
8 0 0 
9 66.75 37.5 
10 0 0 
11 18,75 11.25 
12 66.75 36 
13 23.25 11.25 
14 18 9 
15 52.5 23.25 
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16 41.25 20.25 
17 58.5 28.5 
18 114.75 50.25 
19 56.25 11.25 
20 36 20.25 
21 34.5 17.25 
22 33.75 16.5 
23 18.75 9 
24 40.5 20.25 
25 21 9.75 
26 30 15 

Table D .4 Generator Fuel Cost Coefficients for the 26-Bus Power System 

Bus a ~ y 

1 240 7 0.007 
2 200 10 0.0095 
3 220 8.5 0.009 
4 200 11 0.009 
5 220 10.5 0.008 

26 190 12 0.0075 
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