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- ABSTRACT-

The objective of this doctoral the is was to investigate prote in synthesi in two species of 

hypometabolic teleosts: the north temperate labrid, Tautogolahms a(hpersus (cunner) 

and the Amazonian cichlid, Astrunotus ace/latus (oscar). The flood ing dose 

methodology, which mea ures in vivo rates of ti ssue protein synthesis following the 

injection of a large do e of radiolabelled phenylalanine, wa u ed to measure rates of 

amino acid incorporation at three key time points with respect to metabolic depression: 

I) the entrance into metabolic depression; 2) while in a metabolically depressed tate; and 

3) during the return to regular activity levels. Additionally, rate of phenylalanine 

incorporation in the ubcellular protein pool were determined in cunner in re ponse to 

acute hypothennia and hypox ia. In general, an active decrea e in protein ynthe i (55-

65%), in both the whole tissue and ubcellular protein pools, accompanied the metabolic 

depres ion ob erved at the whole animal level. However, tissue specific re pon e in 

protein ynthesis were evident in both species and appeared to play an adaptive role in 

extending survival time while in an energetically compromised state. Only a mode t 

decrease in brain protein synthesis was observed in hypoxic oscar (30%), which may be 

linked to the maintenance low levels of activity for predator avoidance. Protein synthesi 

wa de f~.: nt.led in rhe mitochondrial protein pool of the cunner gills during both acute 

hypoxia and hypothermia challenges, suggesting its importance to the maintenance of ion 

and gas exchange in thi tis uc. In addition, a significant hyperactiva tion of liver protein 

synthesis occurs in metabolically depressed cunner, which may be associated wi th the 

production of anti freeze proteins at extreme low temperatures. During the post-dormancy 

recovery period a significant hyperactivation of protein ynthesis occurred in white 
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muscle, heart and li ver in cunner. In contrast, post-hypox ic oscars do not experience a 

hyperactivation in protein synthesis desp ite a signi ficant increase in oxygen consumption 

during recovery. This latter result suggesting that the accumulation of a ' protein debt' IS 

either stress specific or an artifac t of the length of time spent in a hypometabolic state. 
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-CHAPTER ONE-

INTRODUCTION 

l.l Cellular Physiology of Metabolic Depression 

The first observation of metabolic depression in animals dates back to 1702 when Antony 

van Leeuwenhoek documented that desiccated creatures named "animalcules'' that 

appeared lifeless resumed regular activity when rehydrated (van Leeuwenhoek in Guppy 

2004). Our understanding of metabolic depression has advanced greatly since this 

discovery of anhydrobiosis in invertebrates, and there is now a copious amount of 

literature available on the behavioural adaptations associated with mammalian 

hibernation, as well as on the physiological mechanisms and adaptive changes that allow 

for hypoxia/anoxia tolerance. Metabolic depression is now known to be a strategy that is 

widely used and conserved across animal phyla, and occurs in various organisms when 

exposed to sh011-tem1 stress (diving response in mammals and reptiles and daily torpor 

exhibited by small mammals and birds) or long-term stressors ranging in duration from 

months (mammalian hibernation) to years (dormant eggs/cysts of invertebrate ). As well, 

it can occur on a seasonal, opportunistic or preventative basis (Guppy et at. 1994; Guppy 

and Withers 1999; Guppy 2004; Storey 2007). Current research indicates the 

mechanisms utilized to cope with environmental challenges become more complex as the 

amount of time an organism is required to remain hypometabolic increases. The extent 

of whole animal metabolic depression ranges from 60-95% and is accompanied by 

reduced activity levels and feeding (Storey 2007). Often, animals will sequester 

themselves into sheltered areas whilst in a dormant state to protect themselves from the 



threat of predation. Although mechanisms that allow organi ms to cope with 

environmental trcs or can be found at all levels of biological organization, it is now 

accepted that the mechanisms responsible for metabolic depression arc found at the 

cellular level (Hochachka and Guppy 1987). 

Metabolic depression is achieved through a coordinated net supprcs ion of all 

cellular processes, and allows the organism to achieve a new, lower and balanced rate of 

ATP turnover when exposed to adverse conditions. If cells arc unable to adj u t 

physiologically to maintain the balance between ATP supply and demand, the cell will 

suffer irreversible damage that ultimately will lead to the organism's death (Boutilier 

200 I; Storey 200 I; Storey and Storey 2004) (Figure 1.1 ). 
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Figure 1.1 chematic diagram of A TP turnover as a function of the duration of environmental stress. Main 

fi gure detai ls the cascade of events that lead to cell necrosis. The inset demonstrates that the regulated 

·uppression of ATP turnover (metaboli c depression) extends survival time (recreated from Boutilier :200 I). 
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In addition to the global suppression in metabolic rate there arc several criteria that arc 

necessary for long-term survival in a hypomctabolic state: I) storage of endogenous 

fuels such as glycogen and lipids, 2) the employment of alternative pathways for fuel 

usage in order to limit the accumulation of deleterious and toxic end products; 3) the 

coordination of metabolic responses in cells and organs through signal transduction 

mechanisms; 4) the initiation of defense mechanisms that stabili ze macromolecules and 

promote long term urvival, such as stress and antifreeze proteins; 5) changes in gene 

expression; and 6) differential regulation and prioritization of A TP consuming processes, 

such as ion pumping, growth and development and protein synthesis (Hochachka 1986, 

1997; Boutilier and St-Pierre 2000; St-Pierre ct a!. 2000a; Boutilier 200 I; Carey ct a!. 

2003; Storey and Storey 2004; Storey 2007). Although the processes behind metabolic 

depression appear to be conserved across animal phyla, the main energy conserving 

mechanism used by a particular organism, or tissues within that organism, may vary in 

rcspon c to the environmental stress it encounters (Storey and Storey 2004). 

Terms such as torpor, hibernation, dormancy and quiescence arc used to refer to 

metabolic depression and the choice of term depends on the study animal or the 

environmental stress to which it is exposed. In some scientific fields, the terms torpor 

and hibernation are usL:d specifl~ally to refer to the metabolic depre:>sion observed in 

mammals during the winter and great concern is raised when hibernation or torpor arc 

used when referring to periods of hypometabolism in cctothcrms. The textbook 

definition of torpor is "a state of inactivity often with lowered body temperature and 

reduced metabolism that some homcothcrms enter so as to conserve energy stores" 

(Randall ct al. 1997). Hibernation is defined as ''a period of deep torpor or winter 
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dormancy in animals in cold climates, lasting weeks or months" and dormancy as "the 

general term for reduced body activities including sleep, torpor, hibernation (winter 

sleep) and estivation'' (Randall ct at. 1997). Through comparison of the textbook 

definitions it becomes evident that the terms arc quite similar. In fact, the term 

hibernation, when traced back to its Latin root, simply means to spend the winter in 

sequestra tion. Limiting the usc of this term to only describe the overwintering behaviour 

of mammals is an artifact of the early studies in the fie ld being limited to mammalian 

examples (Ultsch 1989). The focus of thi s thesis is hypothermia or hypoxia induced 

metabolic depression in telcosts; therefore, to avoid confusion or contlict the only terms 

that will be interchanged with "metabolic depression" wi ll be hypometabolism or 

dormancy. 

1.2 Role of Protein Turnover in Metabolic Depression 

In mammals, 90% of cellular respiration is mitochondrial, 20% of which is due to proton 

leak and 80% of which is used for A TP coupled processes. Of the 80% of respi ration that 

is coupled with A TP, the two major energy consuming processes arc protein synthesis 

and ion motive ATPases (specifically Na +;K+ A TPasc) (Rolfe and Brown 1997). The 

downregulation of these dominant ctlergy consun·.;ng pru..,esses is now accepted to be 

largely responsible for allowing the cell to depress its metabolism (Bouti lier 200 I). 

Protein synthesis comprises 18-30% of the whole animal metabolic rate for A TP 

coupled processes (Hand and Hardcwig 1996; Rolfe and Brown 1997; Boutilier 200 I). 

This contribution is increased even further when the cost of protein degradation is 

considered (35-4 1 %) and RNA synthesis can account fo r an additional I I% (Land ct at. 
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1993). Suppression ofprotcin synthc i is an intrinsic response that plays an integral role 

in the metabolic depression of the cell , and docs not ju t occur as a reaction to ATP 

limitation (Storey and Storey 2004). Recent studies demonstrate that the inhibition of 

protein synthesis, to approximately I 0-50% of pre-dormancy levels, occurs in most 

tissues during metabolic depression m response to hypothermia, hypoxia/anoxia and 

desiccation in animals from all phyla (Table 1.1 ). These re ult indicate that the 

suppression of protein synthesis is a highly conserved and an integral mechanism to the 

global metabolic depression of the animal. A shown in the prcviou examples, protein 

synthesis is substantially reduced during hypometabolism, but there is little information 

avai lable on the role of protein degradation in whole animal metabolic depression. As 

protein degradation can account for up to 22% of ATP turnover (Land ct at. 1993; Land 

and Hochachka 1994) it must be reduced in addition to protein synthesis during 

meta bot ic dcpre Jon. This reduction in protein degradation contributes towards the 

conservation of energy turnover at the whole animal leve l and limits the accumulation of 

nitrogcnou wa te (toxic by products of proteoly is). Tn addition, the prevention of a 

deficit in cellular protein facilitates a rapid recovery from extended period of dormancy 

(Storey and Storey 2004 ). 

Many researcher::. are focusing on identifying the mechanist•b that control the 

reduction in protein turnover during metabolic deprcs ion; however, considerably more 

effort is needed before definite answers can be elucidated. Early evidence that 

intracellular Ca2
+ levels, pH effects and changes in redox state play roles as signal ing 

events for translational control is beginning to emerge (Hofmann and Hand 1994; 

Dorovkov ct at. 2002). Also, studies on mammalian cell lines arc pointing towards the 
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Table 1.1 Comparison of the degree of protein synthesis inhibition during metabolic depression in various 

tissues and organisms. The rate of protein synthesis is expres ed as a percentage of the contro l rate (norma l 

level of acti vi ty) (Replicated rrom Storey and Storey 2004 ). 

Species 

Sper/1/!iphillls lridecem/inea/1/s 
( 13-lined ground sq uitTe l) 

Trochemys scripta 
(red-eared slider turtle) 

Neohatrach11s centra/is 
(Australian desert frog) 

Carassius carassius 
( crucian carp) 

/felix aspersa 
(land sna il ) 

Lillorina li1101·ea 
(common periwinkle) 

A ustrofimdulus I imnaeus 
(killifish) 
Artemia./iw1ciscana 
(brine-shrimp) 

Condition 

llibernation 

Anoxia 

Aestivation 

Anoxia 

Aestivation 

Anoxia 

Diapause 

Anoxia 

Pr·otein 
Synthesis 

Tissue (% of Control) 

Brain 34 
Kidney 15 
Brown ad ipose ti ssue I 04 

ll epatocytes 8 
ll eart, li ver, brain, - 0 
muscle & others 

Liver · 33 

Liver 5 
lleart 52 
Red muscle 52 
White muscle 56 

Hepatopancreas 23/30 
Foot Muscle 53 

Heart, li ver, brain, - 0 
muscle 

Whole embryo 7 

Pre-emergent II 
embryos 

6 

Reference 

Frerichs et al. ( 1998) 
llitte l & Storey (2002) 
llittel & Storey (2002) 

Land et al. ( 1993) 
Fraser et al. (200 I) 

Fuery et al. ( 1998) 

Smith et al. ( 1996) 

Pakay et al. (2002)/Guppy 
et al. (2000) 

Larade & Storey (2002) 

Podrabsky & Hand ( 1999, 
2000) 
ll ofmann & II and ( 1994) 



reversible phosphorylation of translational components (curkayotic initiation factors, 

ciFs) and the state of the ribosome as cmbly as the regulating sites of protein synthesis in 

reversible bouts of metabolic depression (van Brcukclcn and Martin 200 I; van Brcukclcn 

and Martin 2002; torcy and Storey 2004; van Brcukclcn ct al. 2004). Recently, the idea 

that the regulation of tran ition into and out of the hypomctabolic state i accompanied by 

specific change in gene expression and protein turnover ha become or great interest 

(Storey 1996). 

In contrast to the global suppression in protein turnover in cells during metabolic 

depression, examples of the up-regulation of genes and the synthesis of de novo protein 

have appeared through gene expression tudics (Storey and Storey 2004). The 

uprcgulation of these gene , despite the global metabolic depression of cellular processes, 

has been linked to the protcctioi1 of cellular metabolism and macromolecules, as well as 

the synthesis of de novo products that have stress-specific functions (such as heat shock 

or antifreeze proteins) (Storey 2007). An anticipatory up-regulation of genes ha also 

been hown, where transcript levels of speci fie genes arc elevated without a 

corresponding elevation in their protein product (Storey and Storey 2004; torcy 2007). 

The advantage of toring translationally ready transcripts for essential cellular processes 

ntay be linked to the facilitation of rapid post-dom1ancy recovery, which is equally as 

important to the survival of the animal as metabolic depression itself. Animals arc 

required to emerge from dormancy in a fully functional state in order to avoid predation, 

forage for food to replenish fue l supplies and prepare for reproduction . With respect to 

protein synthc i thi s entails the breakdown of accumulated denatured protein , the 

replacement of atrophied muscle protein from extended periods of inactivity, the 
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synthcsi of new proteins to support growth and the resumption of regular activity level . 

Research into the response of protein synthe is in the post-dormancy recovery period has 

been limited to only a few studies, but these studies indicate that a hyperactivation of 

protein ynthesi rates occurs during arousal periods in some hypomctabolic animal . 

For example, increases of 160% and 120% were measured during recovery in anoxic 

turtles, Ch1ysemys picta and hibernating ground quirrels, Spennophilus latera/is, 

respectively (Land and Hochachka 1994; van Breukelen and Martin 200 I). Simi lar 

results were obta ined from long tailed gophers (Cite/Ius undulatus), in which a 1.5-2 fold 

increase in ami no acid incorporation was measured during arousal from hibernation 

(Zhegunov et al. 198 ). Where possible, the response of protein synthesis during the 

po t-dormancy recovery period has been included in this thesis work to investigate if this 

mechanism like the ·depression of protein ynthes i during the onset of metabolic 

depression, is conserved across vertebrate classe . 

1.3 Metabolic Depression in Fish 

In fish, example of metabolic depression have been described in re ponse to 

hypothermia, anaerobiosis and anhydrobiosi , but research is often limited to whole 

anima l physiological response~. In periods of anhydrobio~is, African and outh 

American lungfi h (Prolopterus aethiopicus and Lepidosiren paradoxa) burrow into the 

mud and wait out the dry season in a self-made cocoon. In both specie of lungfish a 

reduction in metabolic rate, of approximately 50%, is accompan ied by a suite of 

biochemical adaptations that include the accumulation of muscle glycogen for rue! 

storage and cessation of ammonia production due to a shift in metabolic processes 
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(Delancy ct al. 1974; Mcsquita-Saad ct a.l. 2002). The crucian carp (Carassius carassius) 

and its close relati ve the goldfish (Carassius aura/us) arc frequently used as model 

organisms in the investi ga tion of hypoxia/anox ia induced metabolic dcprc sion. The 

crucian carp is one of the most anoxia-tolerant vertebrates and is capable o f urviving for 

cvcral months in almost anoxic environments whil e overwintering in icc covered lakes 

(water temperatures approaching 0°C) ( il on and Renshaw 2004). In addition to the 

70% reduction in whole animal metabolic rate (Smith ct al. 1996), goldfish and crucian 

carp gills undergo morphological changes, which involve controlled apopto is of 

intralamcllar cell , that increase the surface area for gas exchange by approximately 7.5 

fold ( ollid ct al. 2003, 2005). As well , imilar to other anoxia tolerant species, these fi sh 

accumulate substantial glycogen stores for energy supply via anaerobic metabolism. 

However, ur\likc other anoxia tolerant species some cyprinids posse s the unique ability 

to prevent acidosi by converting pyruvate to ethanol as opposed to lactic acid 

(Shoubridge and Hochachka 1980). 

Examples of hypothermia- induced metabolic depression in fi sh have not been as 

thoroughly investigated at the biochemical level. The existence of low temperature 

induced metabolic depression has been suggested to occur in the brown bullhead 

u ctalurus nebulosus), the large mouth bass (Micropterus salmoides) (Craw haw 1984), 

toadfish (Opsanus tau) (Matthew and Haschcmcycr 1978), the American eel (Anguilla 

anguilla) (Walsh ct al. 1983), goldsinny wra se (Ctenolabrus rupestris) (Sayer and 

Davenport 1996) and the cunner (Tautogolabrus adspersus) (Green and Farwell 197 1. 

Curan 1992). These tudics have based their conclusions on visual observations of fi sh 

reducing their activity level, sequestering themselves into hcltcrs/burrowing into 
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substrate and decreasing oxygen consumption to a greater extent than can be expla ined 

by temperature effects alone (i.e. Q 10 >2). Unlike hypometabolic amphibians, reptiles 

and cyprinids, these fi sh all enter what appears to be a low temperature induced 

hypometabolic state without the confounding factor of low oxygen. To da te there has 

been little to no investi gation into the biochemical and regulatory mechanisms underlyi ng 

the whole animal metabolic depress ion in these species, despi te their aptness as model 

organisms for research in the field of metabolic depression. 

1.4 Objective of Thesis 

The objective of this thesis was to further advance the study of metaboli c depression in 

teleost fi sh beyond the behavioural and whole animal physiologica l level. To achieve 

this goal, a description of the contribution of protein synthesis at the whole tissue and 

subcellular level to the depression of whole animal metabolism was carried out. The role 

o f protein synthesis was examined in two te leost species from the sub-order Labroidei 

which experience metabolic depression in response to varying types of envi ronmental 

stress. The cunner (Tautogolabrus adspersus) a north temperate member of the Labridae 

family (Figure 1.2) was the main study species. The cunner utilizes metabolic depress ion 

as an adaptation to allow this north~:: . n member of a typically tropical family of te leosts to 

survive seasonal exposure to subzero water temperatures in its habi tat during the winter. 

Changes in rates of protein synthesis and translational capacity (total RNA content) in 

response to the entrance into and recovery from winter dormancy (Chapter Three) were 

measured in the cunner. As well , the cunner was used to investigate if tissue speci fie 

protein synthesis at the sub-cellular level is reduced in response to varyi ng environmental 
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stressors, one it is naturally exposed to (hypothermia) and one it is not (hypox ia) (Chapter 

Five) . Ultimately, the aim of thi s chapter was to determine if metabolic dcprc sion is an 

intrinsic response that can be used to extend survival in the face of any unfavourable 

environmental condition, as well as to determine if adaptations to stress arc conserved 

across the va ri ous levels of cellular organization. 

A comparative approach was also undertaken in th is thesis through the inclusion 

of a second study species, the oscar (Astronotus ace/latus). The oscar, or acara-ac;:u as it 

is known locally in Brazil , is a hypoxia tolerant Amazonian cichlid that is quickly 

emerging as suitable alternative study species to the cyprinids for studyi ng hypoxia 

induced metabolic depression in tcleosts. The oscar res ides in the floodplains of the 

Amazon basin, and is capable of surviving hypoxia at elevated water temperatures (28°C) 

on a diurnal and seasonal basis (in contrast to the low temperatures which accompany 

hypoxia stress in the cyprinids). Chapter Four describes the response of protein synthesis 

in the oscar in relation to whole animal metabolic depression (oxygen consumption rate), 

during the entrance into and recovery from acute hypoxia exposure. 

Through the comparison of results between these two teleost species, and with 

hypometabolic animals in general, this thesis investigates if there is a tissue spec ific 

response in protem synthesis during the metabolic depression and recovery. As well , it 

will prov ide initial insight into the contribution of protein synthesis to the metabolic 

depression observed at the whole animal level and if this response is conserved across 

environmental stresses and levels of subcellular organization. 
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Figure 1.2 Illustration o f the north, temperate Labrid, Tautogolohrus ad1persus. Common name: cunner. 

Figure 1.3 Illustration of the Amazonian cich lid, Astronolus ocellalus . Common names: oscar, acani-ayu. 

( \1 \\\\ . Ill\ 1\-1 1: .1:0111). 
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-CHAPTER TWO-

Preliminary assessment of protein synthesis in the cum1ea·, 

Tautogo/abms adspersus using flooding dose methodology. 

2.1 Introduction 

The majority of studies that investigate in vivo rates of protein synthesis mea ure the nux 

of an amino acid or nitrogen that has been labeled with a tracer sub tancc, such as a 3H, 

14C or 15 (Houlihan ct a t. 1995a). Several methods have been developed that usc amino 

acid administration to measure protein synthesis, but the most reliable and frequently 

used is the "fl ooding method" which wa fi rst de cribcd in 1950' by Loft fic ld and 

colleagues (Keller et a t. 1954; Loft fi eld and Eigner 1958). The principle behind this 

approach is that the injection of labeled amino acid contained in a solution of unlabelled 

amino acid, in amount greater than the endogenous free pool (i .e. a flooding dose), will 

allow the spec ific activities in all the free amino acid pools (plasma and intracellular) to 

be equal. This enables the specific activities of all the free pools to be elevated to the 

same extent as well as remaining constant for an extended period after injection (Garlick 

ct at. 1994). The incorporation of the labeled amino acid into protein can be measured 

over a period of time; giving an average rate of protein synthesis (f foulihan ct at. 1995a). 

The fl ooding dose methodology utilized in recent studies is commonly based 

upon the approach developed by P.J . Garl ick ct al. ( 1980) using e l-l] phenylalanine as the 

tracer substance. Phenylalanine has become the preferred amino acid as it has a small 

ti sue free pool and is highl y soluble; therefore, making it easier to deliver a flood ing 

dose in a smaller injection volume (Houlihan ct a t. 1995a). As well , simple and reliable 
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assays exist for the analysis of phenylalanine content in tissue (McCaman and Robin , 

1962; Gcra imova ct al. 1989), and it has been shown in mammal that the injection of a 

flooding dose of phenylalanine neither timulatc. nor inhibit protein ynthc i (Garlick 

ct al. 1994). ccuratc interpretation of rate of protein ynthc is through usc of the 

flooding do c methodology is contingent upon the fulfillment of severa l validation 

criteria: i) the injection dosage enables the tracer amino acid to fully flood and rapidly 

equilibrate with the intracellular free pool; ii) the specific radioactivity of the free pool 

remain etc atcd and stable over the period of time which protein ynthc i i measured; 

iii) the labeling of tissue protein begin immediately post-injection and is linear over the 

incorporation time (Garlick ct al. 1980; Houlihan ct al. 1995a). 

The time scale chosen to measure protein synthesis has ranged from minutes up to 

24 hours depending on the study species and environmental condition (Houlihan ct al. 

1995a and reference within). Protein ynthc i , like many other physiological proccs cs, 

is highly temperature dependent (Houlihan ct al. 1995a), and rates of protein ynthc i 

arc typically higher in endotherm than cctothcrms (Sayegh and Lajtha 1989). In fish, a 

wide range of incorporation times have been reported, which i not surprising given the 

ability of teleost to adapt to varying environmental condition and the cnsitivity of 

protein synthc i to nutritionai :::.Latl;, dcvclopmentai ·tage/body ize, en ironmcntal 

oxygen levels and temperature (nutritional state: Smith 1981 ; Houlihan ct al. 19 9; Lied 

ct al. 1983; Lyndon ct at. 1992; McMillan and Houlihan 1992; Lyndon ct at. 1993 ; 

developmental state/body size: Millward ct at. 1981 ; Houlihan ct al. 1986; Houlihan ct at. 

1995b; Carter ct al. 1998; Perag6n ct a l. 1998; environmental oxygen level s: Buc-

aldcron ct at. 1993; mith ct al. 1996; Smith ct at. 1999; temperature: Da and Pros cr 
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1967; Haschemeyer 196S; Laj tha and ershen 1975; Matthews and I Ia chemeyer 197S; 

ll aschemeyer et al. 1979; Smith and ll aschcmeyer 19SO; llaschemeyer 19S3; 

Fauconneau and Arnal 19S5; Loughna and Gold pink 19S5; Watt et al. 19SS; Fo ter et al 

1992; Sephton and Driedzic 1995; McCarthy et a l. 1999; West and Driedzic 1999; 

Storch ct a l. 2005; Trebcrg ct al. 2005). Due to the high variability in ra tes of protein 

synthesis it is prudent that the va lidation criteria arc demonstrated to be ucccssfu lly 

fulfilled for each new pccics and environmental condition. 

2.2 Use of flooding do e methodology for Tautogolabrus ad.\persus 

As this was the first attempt to mea urc protein synthe is in the cunner ( Tautogolabrus 

ad~persus), preliminary analysis of protein synthe is via the fl ooding do e method was 

conducted at I4°C (August) in order to determine an appropriate incorporation time 

before beginning the casonal experiment. This wa especially important given the 

seasonal experiment would measure protein ynthe is in fi sh from soc in the fa ll of the 

year ( ovember) until water temperatures returned to soc in the summer (July), which 

would include mea urcment at subzero temperatures at the lower end of the fi sh's 

temperature range. Measurements of protein synthesis in Atlantic cod (Gadus morhua) 

were shown to be successful over a similar range of water temperature using incubation 

times of up to nine hour (Treberg et al. 2005). omparcd to the Atlantic cod, the cunner 

i a relati vely luggish pecies that ha a sub tantially lower rc ting metabolic rate (40% 

lower based on mass independent oxygen consumption measurement ) ( o: ta 2003). In 

addi tion, cunner arc ob crved to enter a torpid-like state at low water temperatures (Green 

and Farwell 197 1 ), which would potentially lower rates of protein synthesi even rurther. 
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Therefore, the incubation time was extended and protein ynthcs is wa measured from 

two to twenty hours post-injection to accommodate the lower metabolic rate or thi s 

spcctcs. 

2. 2.1 Animal Collection and Sampling 

Cunner were collected in Portugal Cove ( cwfoundland, Canada) in August 2003 u ing a 

hoop net and tran ported to the Ocean Sciences Centre where they were held in I m~ tanks 

supplied with flow through cawatcr from an ambient water source and a natural 

photoperiod. Fi h were fed chopped herring ad libitum one to two time a week, with 

uneaten food removed the following day. After a two week acclimation period , s ixteen 

cunner were randomly selected from the tanks and tagged for individual recognition, by 

attaching coloured beads to the bottom of the dorsal fin where it meets the dar al 

musculature. Fish were then placed in a cparate I m~ experimental tank for one week 

prior to ampling, during this time food wa withheld to en urc complete clearance of the 

gut. On the day of sampling, fish were injected intrapcritoncally with 1.0 ml I 00 g· ' of 

[2 ,3-3H] phenylalanine (Amersham Tntcrnational) solution and returned to their tanks. 

The injection solution consisted of 135 mM phenylalanine in addition to sufficient [2 ,3-

~ HJ phenylalanine to ~;nsure a dosage or lUO )..l 1 ml ' tn a ·aline olution containing: 150 

mM NaCI , 5 mM KCI 2 mM CaCI:!, I mM MgSO~, I 0 mM NaH 0 3, 5 mM D-glucosc, 

5 mM HEPES and 2 mM Na2HPO~, pH 7.8 at 20°C (as described in Trcbcrg ct al. 2005) . 

ftcr an incubation time of 2, 4, 6 or 20 hour , four fi h at each time were killed by a 

blow to the head followed by a c ering of the pine. Brain, li cr and white muscle \· ere 

excised, in that order, blotted dry and frozen in liquid nitrogen. Ti uc were also exci cd 
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from un-injcctcd cunner (n = 4) to obtain endogenous levels of free phenylalanine to 

determine if the concentration of phenylalanine in the injection bolus was uffici cnt to 

full y nood the free amino acid pool. All samples were stored at - 70°C until analysis. 

2. 2. 2 Sample Preparation and Scintillation counting 

Approximately I 00 mg of each tissue was homogenized with a Polytron in 9 volumes of 

6% pcrchloric acid (PCA) except for liver, which was homogenized in 4 volumes of 

PCA. Homogenized samples were left on icc for I 0-15 minutes, after thoroughly mixing 

a I ml aliquot was transferred to a microccntrifuge tube and centrifuged for 5 minutes at 

15,600 x g to separate the free pool (supernatant) from the protein bound phenylalanine 

(pellet). The supernatant was removed and frozen at -20°C until analysis for the free pool 

phenylalanine content and specific radioactivity. The protein pellet was re-suspended, 

and washed in 1.0 ml of 6% PCA, by vortcxing and then centrifuging as described above. 

The supernatant was then discarded, and the wash step was repeated until the 

radioactivity in the discarded supernatant was at background levels. This ensured that 

only protein bound 3H phenylalanine was being measured in the protein pellet. After 

sufficient washing, 1.0 ml of 0.3 M NaOH was added to the tube containing the protein 

pellet, the protein pellet was incubated in a water bath held at 37°C until fully dissolved, 

and the dissolved protein was stored at -20°C until analysis for protein content and 

protein bound radioactivity. Aliquots of the original supernatant from the homogenized 

tissue and the dissolved protein were added to I 0 ml of Ecolume scintillation cocktail and 

counted on a Packard Tri-carb 21 OOTR liquid scintillation counter to obtain the [2,3-31-1] 

phenylalanine content of the free and protein bound phenylalanine pools, respectively. 
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2.2.3 Biochemical Assays 

Free pool phenylalanine content was mea urcd from the PCA extraction supernatant and 

phenylalanine tandard in 6% PCA by a fluorometric assay following the protocol 

described in McCaman and Robins ( 1962). Protein content of the li sue wa determined 

from the aOH olubilized protein pellet u ing the BioRad De ki t (Bio-Rad Laboratorie , 

Ca lifornia), based on the Lowry a say, u ing standard made from bovine erum albumin. 

2. 2. 4 Statistical A no lysis 

Mean tissue phenylalanine content and speci fi c activity were compared between ample 

times using a one-way A OVA with Tukey' po t-hoc tests for multiple compari ons. 

The incorporation of radioactivity into protein was detennincd by linear regres ion. Data 

were log-transformed when necessary. In all cases p<0.05 was con idered ignificant'and 

data is expres ed as mean ± SEM. 

2.3 Results 

2.3. 1 Flooding a./Free Amino Acid Pool 

The injection dosage, which contained 135 mM per I 00 g-1 body mass o f unlabeled 

phenylalanine, hould theoretically mcrease the tree-pool phenylalanine content to the 

same extent. Baseline level of phenylalanine obta ined from non-injected cunner were 

0. 12 ± 0.02, 0.1 4 0.04, 0.09 ± 0.0 I nmol · mg-1 fre h tissue fo r liver, white mu cle and 

brain, respectively. Results for the post injection phenylalanine content were pooled for 

all time points (n= 16) as values were not signi fica ntly different over time, with in a lis ue. 

The free phenylalanine content was approx imately 8- fold higher in all ti ues post 

18 



injection, 1.00 ± 0.09 , 1.24 ± 0.25, 0.71 ± 0.08 nmol · mg" 1 in li ver, white muscle and 

brain tissue, respectively. The significant elevation of free pool phenylalanine post­

injection indicates the injection bolus wa successful in flooding the free pool over the 

full twenty hours. 

2.3.2 Specfflc Activity ofFree Phenylalanine Pool 

The second validation criterion dictates that intracellular free pool radioactivity (dpm 

nmol phc-1
) should increase rapidly post-injection and remain elevated and stable for the 

time period over which it is being measured. The speci fic activity of free phenylalanine 

was calculated from the radioactivi ty in the protein-free supernatant and the 

concentration of free phenylalanine. In the cu1mcr, there were no significant differences 

in the specific activities of the intracellular free-pool over the twenty hour · (F igure 2.1 ). 

However, the data suggests that in future experiments (described in Chapters Three and 

Five), which arc to be conducted at lower temperatures (between 8°C and 0°C) the 

specific acti vity at the two hour time point may not be fully elevated. 
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figure 2.1 Post-injection time course for speci fi e radioactivity of the free pool phenylalanine in cunner at 

I4°C for liver (A), musc le (8) and brain (C). Values are means ± SEM. p<O.OS is significant. 
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2.3.3 Linear Incorporation (4Phenylalanine into Protein 

To determine the incorporation of phenylalanine into the whole ti ue protein pool 

incubation times between 2 and 20 hours were used . Regression analysi howed that the 

incorporation of phenylalanine was linear with time (2-20 hour ) for liver (p- 0.0 17) and 

brain tissue (p=O.OO I). Due to high indi idual variation a significant linear incorporation 

was not achieved in white muscle from 2 to 20 hour , but thi relation hip approached 

sign ificance when incorporation from 4 to 20 hours was analysed (p- 0.09)(Figure 2.2). 

Further, in all three ti sues, the y-intercepts of the fitted lines were not ignificantly 

different from zero indicating that incorporation began immediately post-injection. 

Whole tissue incorporation rates were 0.56 ± 0.09, 0.07 ± 0.02 and 0.5 ± 0.0 nmol phe 

· mg p( 1 
• h(1 for liver, white muscle and brain tissue, respectively. 
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2.4 Discussion 

Successful analysis of in vivo protein synthesis rates in an organi m via the llooding dose 

methodology is contingent upon fulfillment of the validation criteria. Demonstrating the 

fulfillment of these criteria becomes particularly important when mea uring protein 

synthesis in a new pec1e or under varying experimental conditions. The purpose of this 

preliminary work wa to determine a time period over which protein synthesis could be 

measured for a hypomctabolic teleost species with the expectation that future 

experiments would be carried out at the extreme low tcmperatmc at which this fish is 

exposed to in its environment. As predicted, a much longer incubation time than i the 

norm for this procedure in mammals and other cctothcrmic animals (between 40 minutes 

and 6 hours) (Houlihan et al. 1995a) was necessary to accurately measure protein 

synthesis in the cunner. The dosage injected was successful in flooding the 

phenylalanine pool and allowing the specific activities of the free phenylalanine pool to 

be fully elevated and stable over the twenty-hour incubation time in the cunner in all 

three ti ssues (Figure 2. 1). The determination of the specific activi ty of the free 

phenylalanine (dpm · nmol phe-1) is contingent upon the assumption that phenylalanine 

was not being cataboliscd and that the radioactivity being measured is incorporated into 

phcnylalan;nc. 1L has bce11 shown that the fl ooding dose of phenylalanine docs not 

impact rate of protein ynthcsis (Garlick ct al. 1980) and a recent study ha hown 

through HPLC analys is that there wa no ign ificant conversion of phenylalanine to other 

compounds, specifica lly tyrosine up to eight hours post-injection (Pakay ct al. 2002). If 

phenylalanine was being cataboliscd, the label would be ending up in lipid intermediates, 

gluconcogcnic precursors or oxidized by the mitochondria and would be exhibited as a 
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marked decrease in phenylalanine content and spec ific activity. Our result , which show 

stability of the free phenylalanine content (nmol · mg tissuc. 1
) and specific radioacti vi ty 

in cunner over the full incubation time, suggest that the radiolabcl is retained in the form 

of phenylalanine. The incorporation of phenylalanine into the variou ti sues wa 

significant and linear between 2 and 20 hours post-injection for liver and brain, but not 

for white muscle (Figure 2.2). However, the incorporation of phenylalanine in the white 

muscle protein pool did approach linearity between 4 and 20 hours post- injection. The 

slower rate of phenylalanine uptake in the white muscle of the cunner is consistent with 

previous studies that how low protein turnover in white musc le a compared to other 

tissues (Pocrnjic et al. 1983, Sayegh and Lajtha 1989, Houlihan 1991, Storch ct al. 2005). 

Rates of protein synthesis in the liver of the cunner were approximately 1.5 times lower 

than rates reported for Atlantic cod liver, despite being measured at a higher temperature 

( I4°C for the cunner as compared to I I oc for the cod) (Trcbcrg ct al. 2005). 

Nevertheless, as all the validation criteria were fulfilled, the reduced rate of protein 

synthesis in the tis ues of the cunner arc not a result of ineffective application of the 

" flooding method" approach to measuring protein synthesis. Rather these lower rates of 

phenylalanine incorporation arc most likely due to the lower metabolic rate and s luggi h 

lifestyle of the cunner compared to other orth Atlantic teleosts (Co ra 2003). The need 

for an extended incorporation time in thi fi h may result in a slight underestimation the 

rate of protein synthesis due to amino acid recycling, particularly in ti s ucs of higher 

rates of protein turnover such as the liver. However, as rates of protein synthesis 

obtained in the liver and brain remain linear and do not plateau or decline, amino acid 

recyc ling docs not seem to be a ourcc of error up to twenty hours po t injection. 
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.--------------------------------------------------------------------------------------------

In conclusion, this preliminary study demonstrated that the measurement of 

protein synthesis in the cunner required a longer incubation time than has been prev iously 

used for telcosts. Based on results from thi s study showing that the specific activity or 

the free phenylalanine may not have been ful ly elevated at two hours post-injection, it 

was decided to extend the incubation time to al low the measurement of protein synthesis 

from four to twenty-four hours in further studies. The extended incorporation time 

became particularly important for the seasonal study, which tracked rates of protein 

synthesis in cunner over water temperatures ranging from 8°C to 0°C, which included its 

winter dormancy and recovery periods. 
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-CHAPTER THREE-

Tissue specific changes in protein synthesis associated with seasonal metabolic 

depression and recovery in the north tcmpe..ate labrid, Tautogolabrus ad.,persus. 

3.1 Introduction 

Animals utilize metabolic depression as a way to urvtvc periods of un favou rable 

environmental condi tions such as low temperature, hypoxia and desiccation. Behaviora l 

studies suggest the cunner (Tautogolahrus adspersus), a north temperate member of the 

mainly tropical labridae fa mily of telcosts that is indigenous to the orth-We t Atlantic 

Ocean, enters a period of inactivity once water temperature decrease to 4"C in the fa ll of 

the year. During this time cunner aggregate in rock crevices, remain motionless and 

refrain from feeding until water temperature returns to 4°C in the spring (Green and 

Farwell 197 1 ). Measurements of physiologica l parameters during the period of 

behavioral depre sion arc sparse; however, the metabolic rate of cunner in the winter was 

found to be approximately 7S% lower than in summer (Haugaard and Irv ing 1948). 

More recently a study which tracked oxygen consumption rates in cunner over a full year 

has shown an 83% depression in resting metabolism during winter, with a Qto va lue of 

9.9 between soc and ooc (Costa 2007). Thi elevated Q1o va lue suggest the winter 

dormancy in cunner observed by Green and Farwell ( 197 1) to be a re ul t of an active 

depression in metabolism. In the spring of the year, a significant increase in metabolic 

rate was observed at soc (Costa 2007), which supports the observed increase in activity 

and feeding of these fish at 4°C in the spring (G reen and Farwell 197 1 ). A imilar active 

depression in metabolic rate was not found in the brown bullhead (lctalum s nehulosus) 

or the largemouth bass (Micropterus salmoides) between l7°C and 3°C, de pite the 
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behavioral observa tions of dormancy at low temperatures (Crawshaw 1984). The 

occurrence of metabolic depression in the cunner provides a novel model to study the 

biochemical mechanisms behind hypothermic metabolic depression in an cctothcrmic 

vertebrate, wi thout the confounding factor of low oxygen as in turtles or temperate 

amphibian . 

The synthc is of macromolecule , such as protein and R A is a major contributor 

to overa ll metabolic rate, with protein synthesis accounting for 18-30% and RNA 

synthesis accounting for approximately I 0% of cellular energy expenditure (Hawkins 

199 1; Guppy ct al. 1994; Rol fc and Brown 1997). As such, it i not urprising these two 

processe have been demonstrated to be sen itivc to A TP upply (Buttgercit and Brand 

1995; Wieser and Krumschnabcl 200 I). Several studic have investigated tissue specific 

changes in rates of protein synthesis during metabolic depression in various vertebrate 

classes in response to a plethora of environmental trcssors, and have demon trated levels 

of depression ranging from approximately 50% to a complete upprcssion of the 

synthcsi of protein (Yacoe 1983 ; Zhcgunov ct al. 1998; Land et al. 1993; Bailey and 

Dricdzic 1996; Smith ct al. 1996; Frcrich ct al. 1998; Fucry ct al. 1998; Fra cr ct al. 

200 1 ). Of tho c vertebrate classes that have been tudicd, information on in vivo protein 

ynthcsis rates and metabolic deprcs ion in tclco ts i limiteu wiLh only one study (Smith 

ct al. 1996) investigating the changes in protein synthesis during anoxia induced 

metabolic dcprcs ion in crucian carp. Thi investigation of the seasonal changes in tis uc 

specific protein synthesis rates in the cunner is the first study to investigate in vivo 

protein synthesis in a teleost in relation to hypothermia induced metabolic depression. 
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llyperactivi ty during arousal from metabolic depression i commonly observed at 

the behavioral level a increased feeding and activity; however, research into the 

biochemical change during the recovery period is limited. Those few c tudies that have 

investigated change in protein synthe is during the recovery period have provided 

contradictory result . In l'ilro studies on vanous tissues from hibernating ground 

squirrel and on hepatocytes from anoxia tolerant turtles have shown a definite 

hypcractivation of protein synthesis during recovery (Zhegunov et al. 1988; Land ct al. 

1993). In contrast, the only in 1•ivo analysi of protein synthesis, which was also on the 

anoxia tolerant red-cared slider turtle, did not how any hyperactivation of protein 

ynthesis rate after acute anoxia expo ure (Fra er et al. 200 I). The e di parate rc ult 

may indicate a problem with comparing in vitro versus in vivo application , or may be 

due to the varying expo ure time to the environmental stress. 

The objective of the present study wa to utilize the cunner a a novel model to 

investigate change in protein synthesis in relation to the observed metabolic depression 

that occurs in respon c to sea onal low temperatures. Distinct time period over the 

annual temperature cycle were selected for measurement: period of normal activity 

before metabolic dcpre ion, entrance into and during winter dormancy and during the 

recovery period. It wa:. hypoti1csized that rates of prvtcin ynthl.:si in the cunner would 

be actively deprc cd to levels greater than would be predicted from temperature effects 

alone and this change would be supported by changes in the capacity of the ti sue to 

ynthcsize protein . During the recovery period, a hypcracti vation of in vivo rates of 

protein synthesis wa expected to occur in order to repay the protein debt accumulated 

during the lengthy winter dormancy experienced by cunner. 
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3.2 Materials and Methods 

3.2. 1 Animal Collection 

Cunner were coll ected via hoop net in Portuga l Cove ( ewfoundland, Canada) in August 

2003 and transported to the Ocean Sciences Centre where they were held in tank with 

llow through seawater from an ambient water ource and exposed to a natural 

photoperiod through room lighting that was controll ed by a natural photosensor. Cunner 

were fed chopped herring ad libitum one or two times a week while animals were acti ve. 

During winter dormancy cunner do not normally feed; however, food was offered once a 

week with uneaten food removed the fo llowing day. Al l animals in th is study were held 

and treated in accordance with Canadian Council of Animal Care guidelines . 

3.2.2 Validation of the Flooding Dose Methodology 

The measurement of protein synthes is was achieved by administering a flooding dose of 

radiolabelcd phenylalanine based upon the methods first described in Garl ick ct al. 

( 1980) and since used extensively for the measurement of protein ynthesis in teleosts 

(Houlihan 1991 and references within). Preliminary work was conducted to determine an 

appropriate incubation time over which protein synthesis could be measured in cunner 

due to its low metabolism and sluggish lifestyle compared to other orth Atlantic teleost 

pec ies (Chapter Two). It was determined that an incubation time of four to twenty-four 

hours would be necessary for succe sful application of the ''flooding method" approach 

in the cunner. 
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3.1.3 Seaso11al Changes in Tissue Spec!fic Rates of Protein Synthesis 

Rate of protein synthesis rates in cunner were measured at five key point relating to 

various states of activity, from October 2003 through August 2004: 8"C ( ovcmbcr) 

when fi sh were fully active and feeding; 4°C (December) during the entrance into winter 

dormancy; ooc (March) while fi sh arc l'ully dormant; 4°C (June) when fi sh begin 

recovery from winter dormancy and soc (July) once fi sh had returned to an active state 

and resumed feeding. Fish were allowed to reach the above experimental temperature 

by following the ambient water temperature cycle. Figure 3.1 shows a easonal ambient 

water temperature profile for Logy Bay, Newfoundland which is the ource of water for 

the Ocean Sciences Centre and is representative of the seasonal cycling of water 

temperatures of inshore waters along the Newfoundland coast. Once the de ired 

experimental temperature was reached, fish (92 - 270 g, average 174 ± 5. 1 g) were 

randomly selected, tagged for individual recognition and placed in a separate 

experimental tank one week prior to sampling. Water temperature in thi tank was 

maintained at the experimental temperature by mixing ambient with either heated or 

chilled seawater. During this time, food was withheld to ensure complete clearance of 

the gut. After one week of confinement, fi sh were injected intrapcritoncally with 1.0 ml 

I 00 g-1 of [2, 3_3H] phenylalanine (Amersham International) solution. Thi injection 

olution consi ted of 135 mM phenylalanine in addition to sufficient [2,3-·' H] 

phenylalanine to ensure a dosage of I 00 ~-tCi mr' in a sa line solution containing 150 mM 

NaCI , 5 mM KCI, 2 mM CaCI2, I mM MgS04, I 0 mM NaHC03, 5 mM D-glucose, 5 

mM HEPES and 2 mM a2HP04, pH 7.8 at 20°C. Fish were immediately placed back 

into the experimental tank post-injection and based on behavioural observations returned 
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to a quiescent tate within minutes. After an incubation time of 4, 8, 16 or 24 hour , four 

fi sh were killed by a blow to the head followed by a severing of the spine. Whole brain, 

whole liver and heart ventricular tissue were cxci cd, blotted dry and immediately frozen 

in liquid nitrogen. A section of white muscle was taken from the dorsal musculature 

above the lateral line, care was taken to remove skin and scale and the tissue was then 

frozen in liquid nitrogen. Gills were excised and lamellae were scraped from the gill 

arches, the lamellar tissue wa then tlash frozen in liquid nitrogen. Samples were stored 

at - 70°C until analysi . 

3.2.4 Sample Preparation and Biochemical Analyses 

Samples were prepared and analysed for spcci fie and protein bound radioactivity as 

previously described in Chapter Two. 

3.2.5 Determination of'Total RNA Content 

A second cohort of cunner of comparable size to the fi sh used for the analysis of protein 

synthesis (92-482 g, average 194 ± 17.0 g, p = 0.252) were tracked over a full 

temperature cycle (March 2005 to January 2006) in order to obtain samples for analysis 

of the total R A content in all tissues analyzed for protein synthesis. Six cunner were 

sampled at the a me temperatures and corresponding time of the year as described for the 

protein synthc is experiment. Fish were killed and tissues were exci cd and frozen as 

described above. Total RNA was extracted from the samples using TRizol reagent 

(Invitrogen), which is a commercially available modification of the single-step R A 

isolation method (Chomczynski and Sacchi 1987) following the procedure outlined 111 
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Treberg et al. (2005). Total RNA, expressed as microgram of R A per gram tissue (wet 

we ight) was determined spectrophotometrically by subtract ing the absorbance at 320 nm 

from the absorbance at 260 nm. 
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3.2.6 Statistical Analyses 

Mean ti ssue phenylalanine content, specific activity over the incubation time and R A 

data were compared using a one-way A OVA with Tukey's post-hoc test for multiple 

comparisons. The incorporation of radioactivity into protein was determined by linear 

regression. Once data were confirmed to fit the validation criteria, phenylalanine 

incorporation rates between temperatures for each ti sue were compared u ing a one-way 

ANOY A with Tukcy's post-hoc tests. Data were log-transformed when necessary and in 

a ll cases p<0.05 was considered significant. 

3.3 Results 

3.3. I Validation ofFiooding Dose Methodology 

Accurate interpretation of in vivo protein synthc is rates via the fl ood ing dose 

methodology is contingent upon ful fi llmcnt of several validation criteria. The injection 

do e must fully flood the phenylalanine pool and the free-pool pccific radioactivity must 

rapidly elevate and remain stable over the incubation period. As well , the incorporation 

of phenylalanine into ti sues must be significant and linear over the time that protein 

synthesis is being measured. The fulfillment of these criteria was particularly imp01tant 

for this study as it mea ·urcd in vi~-tJ protein synthc ·is in a pr~viously unstudied teleost 

species, and required that accurate measurements be made while the fish were 

metabolically depressed for long periods, and at extremely low temperatures. 

As predicted in Chapter Two, a much longer incubation time than is the norm for 

this procedure was necessary to fulfill the va lidation criteria in the cu nner. The injection 

dosage, which contained 1.35 nmol·mg·1 body mass of unlabeled phenylalanine, hould 
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theoretica lly increase the free-pool phenylalanine content to the same extent. Baseline 

levels of phenyla lanine obtained from non-injected cunner were 0.12 ± 0.02, 0.14 ± 0.04, 

0.09 ± 0.0 I, 0.07 ± 0.0 I and 0. 11 ± 0.02 nmol·mg-1 fresh tissue for liver, white muscle, 

brain, heart and gill , respecti vely. The mean post-injection phenylalani ne concentration 

over all time points and all temperatures wa 1.38 ± 0.0 I, 1. 14 ± 0.0 I, 1.00 0.0 I, 1.04 ± 

0.0 I and 0.9 ±0.0 I nmol·mg-1 for liver, white muscle, brai n, heart and gi ll respectively; 

indicating the free phenylalanine pool was increased by 8. 1 to 14.8 fo ld by the injection 

dosage, depending on the tissue. 

The specific activities of the free-pool were found to be e levated and stable over 

the time protein synthesis was measured as there were no signi ficant differences in the 

spec ific activity of the free phenylalanine pool between sample times with in each tissue. 

As well , levels o f specific acti vity were not significantly different between experimenta l 

temperatures and as such, only data from 8°C (November) and ooc (March) arc presented 

in Figure 3.2 to demonstrate the successful fulfi llment of the second validation criterion. 

For reference, figures showing the specific activity of the free phenylalani ne pool fo r all 

experimental temperatures can be found in Appendix I. 
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The incorporation of phenylalanine into ti ssue was expressed as nmol of 

phenylalanine incorporated per mg protein. Figure 3.3 shows regression plots for data 

obtained at soc ( ovember) and 0°C (March) lor all ti ssues as a representation of the 

range of rates o f phenylalanine incorporation in cunner. Data for linear incorporation of 

phenylalanine into protein for all fi ve experimental temperature is included in Appendix 

1. Based on the rcgres ion equations calculated over the entire twenty hour post-injection 

time period, liver, brain, heart and gill tissues exhibited significant and linear 

incorporation rates of labeled phenylalanine at all five temperatures, and had intercepts 

that were not significantly different from the origin. Significant and linear incorporation 

of phenylalanine was only evident in white muscle at 8°C ovcmbcr, 4° June and goc 

July. Protein bound radioactivity in white muscle during the winter (4"C December and 

O"C March) were barely above background radioactivity levels. Therefore, rates of 

protein synthc is could not be calculated for white muscle at 4°C December and O"C 

March. The linearity of phenylalanine incorporation into the various ti sues of dormant 

cunner from injection time onward indicates that the disturbance of fish during injection 

was not substantial enough to arouse the fish and cause a return to incrca cd or ' normal ' 

metabolism. 
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3.3.2 Seasonal Changes in Tissue Spec(/ic Rates of"Protein Synthesis 

Protein ynthcsis rates obtained in cunner di play the same tissue- pcc ilic hierarchy as 

other species with ra te in gill > li ver > heart > brai n > white muscle across all 

experi mental temperatures. At 8"C (in ovcmbcr) protein synthesis rates lor liver, whi te 

muscle, bra in, heart and gill were 0.20 ± 0.02, 0.0 I ± 0.00 I, 0.09 ± 0.006, 0. 12 ± 0.0 I and 

0.36 ± 0.05 nmol phe · g protcin-1 
• h( 1

, respec ti vely. Signi fica nt decrease in protein 

synthc is occurred in a ll fi ve tissues as the water temperature decreased to 4"C (Figure 

3.4). Rates in white muscle fell below detectable level at this temperature and did not 

increase un ti l water temperatures returned to 4°C in June. A decrea e of approximately 

55% between 8°C and 4°C was seen in li ver, brain and heart, wi th the greatc t depression 

occurring in gill ti ssue(- 66% decrease). The only tissue that exhibited a further decrease 

in rates of protein synthesis when water temperature dropped to O"C wa the brain. 

Phenylalanine incorporation dropped to 0.02 0.003 nmol phc · g protcin-1 
• h( 1

, a 

signi fi cant decrease from rates at 8°C (78% depression), but not from 4°C. Incorporation 

rates in the liver underwent an unexpected signi ficant increase to 0.22 ± 0.050 nmol phc · 

g protcin-1 
• h( 1

, bringing protein synthesis to levels comparable to tho e obtained at 8°C 

in November. As water temperature warmed to 4°C in June, li ver, heart and gill tissue 

maintained protein ynthesis at similar rate as measured at ooc_ In contra t, brain and 

white muscle both increased protein synthesis signi fica ntly at this temperature, with rates 

in brain returning to rates similar to tho e recorded at 4°C in December and whi te muscle 

increasing to levels comparable to fully active fi h at 8"C in November. Accompanying 

the return of water temperature to 8°C in July, there were signi fica nt increases in rates of 

protein synthesis in all tissues, except for whi te mu cle in which the increase was non-
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signifi cant. Bra in and gill protein ynthesis returned to similar rates as recorded when 

water temperature was soc in the fa ll of the year. Interestingly, protein synthesis rates in 

liver and heart tissue increased to 0.33 ± 0.046 and 0.2 1 ± 0.028 nmol phe·g protc in·1·h( 1
, 

respecti vely, indicating a hyperacti vation of protein synthesis to 165% (I iver) and 175% 

(heart) of that measured at the equivalent temperature in the fa ll (S°C in November). 

3.3.3 Seasonal Changes in Total RNA Content 

Total RNA content in fi sh sampled at soc (November), was the highest in liver tissue, 

followed by gill , brain and heart, with whi te muscle exhibi ting the lowest levels (6406 ± 

627, 32 14 ± 347, 1458 ± 488, 1459 ± 148, 153.9 ± 8.2 f.lg · g tissue-1
, respectively) 

(Figure 3.5). R A content in li ver, brain, heart and gill was found to decrease with water 

temperature, whereas levels of R A in white muscle remained relatively low and similar 

despite changes in temperature. The decrease in water temperature to ooc was 

accompani ed by a significant reduction in total RNA content in liver, brain, heart and gi ll 

tissue relative to the soc sample (decreases of 74, S8, 66 and 60%, respectively). 

However, as water temperatures increased in the spring, several patterns were observed in 

total RNA content as temperature increased to 4°C, and then soc (July). Liver RNA 

content significantly increased as water temperatures reached 4°C, bringing total R A 

content up to levels comparable to those obtained at 8°C in November. However, R A 

levels subsequently underwent a signi fieant decrease to I I 02 ± 255 ug · g tis ue-1 a · 

water temperatures further increased to 8°C in July. White muscle, again mainta ined 

constant levels of RNA until water temperatures reached S°C, when total RNA was 

significantly increased to 286.5 ± 50.8 ug · g tissue- 1
• Brain and heart RNA levels 
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increased significantly along with the spring water temperature increase to 4"C, thereaner 

brain RNA was maintained at these leve ls whereas level in heart returned to ooc levels. 

There were no significant changes in total RNA content in gi ll tissue after the initial 

decrease that coincided with the entrance into winter dormancy. 

3.3.4 Comparison a/Protein Synthesis and RNA content 

Although the rates of protein synthesis and content of RNA were obtained from different 

cohorts of fi sh, comparison of these values revealed qualitative patterns. Significant 

correlations were not obtained when comparing mean phenylalanine incorporation rates 

and mean total RNA content for any of the tissues when all experimental temperatures 

were included. However, a qualitative analysis of the regression plots demonstrated the 

8°( (July) values were a consistent outlier in brain, heart and gill tissue (open circles; 

Figure 3.6). The removal of the 8°C July data points from the regressions produced a 

significant correlation between protein synthesis and total R A content with temperature 

changes in gill tissue, but not for heart and brain; although a definite trend was observed 

(data grouped by ell ipscs; Figure 3 .6). 
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3.4 Discussion 

3.4. 1 Entrance into Metoholic Depression 

Earlier evidence of metabolic depres ion in respon e to low temperature in cunner has 

been based on behav ioral observa tions (Green and Farwell 197 1) and oxygen 

consumption rates (Haugaard and Irving 1948; Costa 2007). The pre ent tudy shows a 

significant depression in the protein ynthesis, providing evidence at the cellular level to 

complement the observa tions at the whole animal level. Upon the transition from 8°C to 

4"C the incorporation of phenylalanine was decreased by 55% in liver, brain and heart, 

66% in gill , and rates of protein synthesis in white muscle fell below detectable levels, 

suggesting complete suppre sion of protein synthesis in white musc le during the entrance 

into winter dormancy. 

As in any study that inve tigatcs metabolic proces cs in cctothermic an imals in 

relation to temperature induced metabolic depress ion, the question arise as to the 

validity of deeming cellular mechanisms an acti ve contributor to metabolic suppress ion 

or simply a passive consequence of decreas ing temperature. Q 10 value arc often 

calculated to determine if the changes observed in a metabolic process arc due to direct 

temperature effects (Q 10 va lue of 2-3) or active alterations in metaboli m (Q 1o > 3). Earl y 

studies on the effects of temperature acclimation on protein synthesis established the 

incorporation of protein into body tissues to normally be dependent upon temperature, 

showing depres ion in rates as environmenta l temperatures decrease, with Q 10 value of 

approximately 2-3 (Haschemcyer 1968; Haschemcyer ct al. 1979; Loughna and 

Goldspink 19 5; Watt et al. 1988). However, high Q 10 va lues fo r protein synthe is have 

been reported for the toad fish, Opsanus tau (Q 10 = 6-7) (Matthews and Haschcmcycr 
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1978; Pocrnjic et al. 1983) and the orth Sea eel pout, Zoarces 1•iviparous (Q 10 = 7- 1 0) 

(Storch ct al. 2005). These high Q 10 va lues were calculated at the lower end or the 

organism's temperature profile and often accompanied visual observations of s luggish 

behaviour in the eel pout or periods of complete inactivity in the toad fish. The high 01o 

va lues in these two temperate species suggest an active depression in whole animal 

metabolic rate at low temperatures; however this has yet to be experimentally determined 

for these species. Q 10 values calculated from the protein synthesis rate in cunner 

between 8"C and 4"C in the fall of the year arc also higher than expected from 

temperature effect alone; with values of 6.7, 8.0, 9.2 and 21.0 for brain, liver, heart and 

gill, respectively. Interestingly, this active suppression of protein synthesis appears to 

make a substantial contribution towards the 691Yo depression in resting metabolism 

(RoMR) that occurs between S"C and 0°C (Q1 0 = I 0.5), the same temperatures over 

which the behavioral changes arc noticeable (Green and Farwell 1971 ; osta 2007). The 

hypothesis that cunner arc capable of active metabolic depression is further strengthened 

by results obtained in an acute temperature challenge (one degree an hour, between 5°C 

and O"C). During the initial stages of the acute chal lenge, cunner arc capable of thermal 

compensation, but after an hour at O"C a rapid depression of metabolic rate occurs with a 

peak dcpre sion of 64% ~Q 10 =- S) aL 2-3 hour at O"C ( ·osta 2007). These rc ults suggest 

the depression of protein synthesis that occurs between 8"C and 4"C to be an intrinsic 

response, occurring in anticipation of the extended period of extreme low water 

temperatures experienced by the cunner during the winter months and before the decrease 

in whole animal metabolic rate is evident at the physiological level. 
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3.4.] /\1/etoho/ic Depression 

The only tissue to exhibit further depress ion in ynthcsis as water temperatures 

decreased from 4°C to ooc wa brain, bringi ng levels of protein ynthc is to 

approx imately 25% of rates obtained in fully ac tive fi sh (Q 10 -'- 4). The negligible 

decrease of protein synthesis in heart and gill despite the additional dccrca c in 

environmental temperature further supports acti ve control of protein ynthcsis in relation 

to seasonal metabolic depression. The level or dcprcs ion in brain tissue falls in between 

the complete upprcssion of brain protein synthesis in anox ic turtles and hi bernating 

ground squirrels (Frerichs ct al. 1998; Fraser ct al. 200 I) which cx i t in a comatose like 

tate during metabolic depression, and the mai ntenance of protein synthesis in the brain 

of crucian carp which remain relatively active during anoxia (Smith ct al. 1996). Cunner 

appear to be in a quiet tate during winter dormancy, but fish will become active for a 

short period of time if disturbed (Green and Farwell 197 1 ). This may ex plain the 

maintenance of phenylalanine incorporation at low levels in the brain, as a representative 

of neuronal tissue activity, during dmmancy. 

The anomaly of the increase in rates of protein synthesis 111 liver ti ssue to pre­

dormancy levels at 0°C (March) is perplex ing as the activation of protein synthesis in thi 

ti ssue, which is the major site of protein synthesis, is an energetically expensive action 

during a time when energy conservation is the goal. Cunner remain in shallow inshore 

waters where temperatures frequently decline close to the freez ing point of seawater and 

contact with icc crystals without the protection of an antifreeze mechanism would be rata I 

to the cunner when they arc in this upcrcoolcd state. Antifreeze proteins have been 

round in the skin of cunner and also circulating in the blood during the winter, but the 
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production site of these proteins has not been established (Valerio et al. 1990; Evan and 

Fletcher 2004). As circu lating AFP in the blood arc commonly expressed in the liver 

(Fletcher et al. 200 I) the substantial increase in liver protein synthcsi during a time of 

energy con ervation may be I inked to the production of anti freeze proteins during 

exposure to extreme low temperatures to enable survival. 

The process of protein synthesis docs not tand alone in cellular mctaboli m; it is 

closely linked with the degradation of proteins in a continuous cycle known as protein 

turnover. Protein degradation can account for up to 22% of ATP turnover (Land and 

llochachka 1994), and thus, it is an energetically expensive proccs (falling just behind 

protein synthcsi and active ion exchange) (Wic cr and Krumschnabcl 200 I). This 

creates a paradoxical situation in animals that undergo extended periods of metabolic 

depression. These animals must deal with the need to reduce protein degradation, in order 

to conserve ATP con umption, while avoiding the accumulation of damaged proteins in 

order to sustain tissue functionality. A olution to this problem has been de cribcd in 

anoxic turtle hcpatocytcs. Despite the extensive depression in A TP-dcpcndcnt 

proteolysis (93%) during anoxic expo urc, total protein degradation was only reduced by 

36-41%. Thus, the remaining protein degradation is due to A TP-indcpcndcnt processes 

(Land and Hochachka 1994). Further investigation is needed in order to determine 

whether or not T. ad,\perus employs a similar approach with respect to protein 

degradation when faced with low temperature induced metabolic depression. 
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3.-1.3 Rec(JI'er )'Ji-om Metaholic Depressio11 

During periods of hypometabolism, levels of protein synthes is and degradation often 

become mismatched (synthesis < degradation), creating a negati ve protein balance (Land 

and llochachka 1994). In this s ituation there will inevitably be some accumula tion or 

denatured or damaged proteins and unless animals can reduce energy demands and enter 

a maintenance mode (synthesis = degradation) there wi II al o be some los in protein 

content. Upon recovery, thi relationship is reversed in anoxic turtle as level or protein 

synthesis arc hyperacti vatcd ( 160%) while protein degradation remains below control 

rates (Land and Hochachka 1994). This positive protein balance i most li kely necessary 

to allow for the rep lacement of damaged protein that accumulate during dormancy. In 

ti ssues uch as white muscle, this increase in synthesis and retention of protein 

(accompanied by decreased degradation) IS mani fested at the whole ani ma l level as 

increased growth (Houlihan 199 1 ). 

During the initial stages of post-dormancy recovery in cunner ( 4°C, June sample ) 

the synthesis of protein began to increa e in a temperature dependent fashion for brain, 

while rates in hear, gill and liver were maintained at similar levels as measured at ooc 

(March) . Further, a significant increase in protein synthesi in white muscle occurs 

during early recovery, bringing rates of phenyla lanine incorporation from undetectable 

levels to rates comparable to those obtained in fully acti ve fi sh at 8°C in November. As 

the accreti on of proteins in white muscle is representative of increased tis uc mass, this 

hypcrac ti va tion of protein synthes is is most li kely accompanied by a decrease 111 

degrada tion and responsible for the stimulation of growth after an extended period of 

winter dormancy. A comparati ve study on two geographica lly diffe rent populations of 

49 



cunner shows that the Newfoundland population cxpcncnccs a longer period of 

dormancy than more southerly populations, but the annual growth rates of the two 

populations is the same (Chiasson 1995). Therefore, it is possible that the 

hypcractivation of protein synthesis in white muscle during the recovery period al lows 

for compensatory growth to occur in order to make up for a shorter growth season in 

cunner inhabiting colder waters. Although metabolism is not decreased to the same 

extent in Atlantic cod as in cunner, cod also exhibit compensatory protein synthesis after 

exposure to cold water temperatures (Trcbcrg ct al. 2005). Hypcractivation of protein 

synthesis was also evident in liver ( 165%) and heart (175%) once cunner returned to a 

fully active state (8°C, July). A similar level of hypcractivation of protein synthesis was 

documented in in vitro studies on ground squirrels during arousal from hibernation 

(Zhcgunov ct al. 1988) and turtles during recovery from extended exposure to ·anoxia 

(Land ct al. 1993). As in these previous studies, the mechanism behind the substantial 

increase in rates of protein synthesis in the cunner remains elusive, but is most likely 

linked to the increase in overall metabolic rate, higher food consumption and activity 

level. 

3.4.4 Protein Synthesis and RNA Content 

The close relationship between rates of protein synthesis and the tran lational capacity of 

a ti ssue (R A content) is well established (Houlihan 1991 ). Specifically, transla tiona l 

capacity undergoes significant reductions that parallel the depression of protein synthesis 

caused by decreasing temperature (Sacz ct al. 1982; Fraser ct al. 2002), and during 

metabolic depression (Bailey and Dricdzic 1996; Smith ct al. 1996; Fraser ct al. 200 I). 
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The qualitative companson of protein synthcsi rates with total RNA content in this 

experiment uggests this to also be true 111 cunner, for brain, heart and gill ti sue until 

cunner begin recovery from winter dormancy. In telcosts, stimulation of protein 

synthesi and compensatory growth has been linked to increa es in tran lat ional 

etTicicncy in tead of an increase in translational capacity (Houlihan 1991 ; Trcberg ct al. 

2005). The absence of a significant correlation between protein ynthcsi rate and total 

RNA content in liver and white muscle throughout the experiment as well as the increase 

and hypcractivation observed in brain, heart and gill during recovery suggest these 

changes in protein synthesis arc due to an increase in efficiency of translation of proteins 

on the ribo omcs, and not a result of an increase translational capacity (number of 

ribosomes). 

3.5 Conclusions 

The current study is the first to investigate the relationship between temperature and 

protein synthesis during both metabolic depression and recovery in a fish pccics that 

experiences winter dormancy. The depression of protein synthesis in cunner appears to 

be an intrinsic response, as it is an active process that contributes substantially to the 

initiation of the metabolic depression at the whole animal. An unexpected 

hypcractivation of protein ynthcsis occurs in the liver while the animals arc in a fully 

dormant state that may be linked to the production of antifreeze proteins to ensure the 

survival in the icc laden environment. During recovery, hypcractivation of protein 

synthesis occurs in white muscle, heart and liver presumably to allow for compensatory 

growth and to repay the protein debt that is accumulated during the extended period of 
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wi nter dormancy. The biochemical mcchanism(s) re ponsible for the stimulation or 

protein synthesis remains unclear, although qualitative comparison or protein synthes is 

rates and total RNA content suggest an increase in translational cllicicncy to be a 

potentialmechani 111. 

52 



-CHAPTER FOUR-

Responses to hypoxia and recovery: Repayment of oxygen debt i not associated 

with compensatory protein synthesis in the Amazonian cichlid, Astronotus ocel/atus. 

4.1 Introduction 

Dissolved oxygen JS one of the most important environmental fac tors affecti ng the 

surviva l of animals that rely on aquatic respirati on, and animals that arc exposed to 

periods of hypoxia show adaptations at the behavioural, morphologica l and/or 

physiological level. At the physiological level, animals commonly resort to one of two 

trategies: I) maintenance of low levels of ac tivity, which is fue lled by anaerobic 

metaboli sm or 2) depression of metabolism, accomplished by dccrca ing ATP produc ing 

and consuming procc ses (Lutz and Nilsson 1997; Boutilier 200 I). The latter approach 

allows survival for longer periods of hypoxia/anoxia due to the conservation of energy 

and the limited accumulation of tox ic end products, such as lactate. However, there is a 

trade off to this approach as deep metabolic depression impairs the animal' abili ty to 

respond to cxtcmal stimuli and leaves the animal vulnerable to predators. 

The majority of successful oxyconformcrs arc cctothcrms that urvivc short bouts 

of ;,ypoxia at warm temperatures, but rcquir..: ::;casonai or b~.:hav i oura lly regu lated 

decreases in environmental/body temperature to urvivc extended anoxia. Such animals 

arc the crucian carp (Carassius carassius), goldfish (Carassius auratus), common frog 

(Rana remporaria ) and two species of freshwater turtle (Chrysemys pictc1 he/Iii and 

Trachemys scrip ta elegans) (Boutilier 200 I). In these animals a depression of metabolic 

ra te by 70-95% occurs during hypoxia/anox ia, ba ed on oxygen consumption rate or 
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cal orimetry (Jackson 1968; Van Waversveld et al. 1989). This depression at the whole 

animal level is accompanied by ti ssue speci fi e decreases in protein synthesis of 50% in 

cruc ian carp (Smith et al. 1996) and 70 to >90% in fresh water tu rtles (Land ct a l. 1993; 

Bai Icy and Dricdzic 1996; Fraser ct a l. 200 I). Protein synthe is i one of the major 

energy consuming processes, accounting for 18-30% of cellular energy expenditure 

(Hawkins 199 1 ). As uch, the downregulation of protein turnover is one of the major 

contributing factors to the depression in A TP turnover and metaboli c depression at the 

whole animal level (Guppy ct al. 1994). 

Animals that arc exposed to a prolonged period of oxygen depri vation accumulate 

an oxygen debt that is repaid during recovery by a substantial increase in oxygen 

consumption. This oxygen debt has been shown to occur at both the whole animal and 

tissue levels in goldfish after extended hyl)ox ia exposure (Van den Thillart and Verbeck 

1991 ; Johansson ct a l. 1995). Johansson et al. ( 1995) predicted that a sub tantial increase 

in protein turnover would accompany the repayment of the oxygen debt, but a consistent 

pattern in protein synthesis during recovery from hypoxia has not been found. For 

example, an in vitro tudy on turtle hepatocytcs exposed to 12 hours of anoxia showed a 

significant overshoot in protein synthesis rates to 160% of n01·moxic levels during 

recovery (Land c l al. 199 ). Huw~.: ver, in vivv studi~s ou crucian ca rp and a freshwater 

turtle specie did not show hypcractivation of protein synthesis during post-anoxic 

recovery (Smith ct al. 1996; Fraser et al. 200 I). 

The Amazonian cichlid, the oscar or acara-ac;;u (Astronotus ocellatus), is an idea l 

pccies to study hypoxia induced metabolic deprc sion without the confounding variable 

of decreased temperature. During periods of high water, Amazon varzeas become 
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fl ooded and the surfaces of the lake become densely covered with fl oating macrophytes 

(Val and Almeida-Val 1995). The dense url:Ucc vegetation cau cs ex treme diurnal 

variation in di ssolved oxygen levels, with supersaturation occurring at midday when 

photosynthcsi is at it max imum and levels dropping close to zero during the ni ght 

(MacCormack ct al. 2003). A. oce/latus undergoes a significant decrease in RoM R 

(- 30%) when water leve ls reach 20% saturation and only reverts to anaerobic metabo lism 

once oxygen levels drop below 6% saturation, which i accompanied by a decrease in 

RoMR of approximately 60% (Muuszc ct al. 1998). These results suggest that A. 

ocel/atus, like the crucian carp and freshwater turtles, is able to maintain aerob ic 

metabolism in situations of oxygen depriva tion by decreasing the rate of ATP turnover 

until ncar anoxic conditions arc reached. De pitc the recent studies describing the 

behavioural and physiological responses of A. ocel/atus to hypoxia (Muuszc et at. 1998; 

Sloman ct al. 2006), little i known about the cellular mechanism behind the hypoxia­

induced metabolic depression in A. ocellatus and of its response during recovery from 

severe hypoxia. 

The objectives of this study were to expand our knowledge of hypoxia induced 

metabolic depression in A. oce/latus to include the post-hypoxia recovery period and to 

iuv~;::. t i ga tc the ti uc pcciftc protein ynthesis ,·a ll:s in relation to the whole animal 

metabolic depression. In addition, the present study is the first to obtain measurements of 

whole animal metabolic rate and protein synthes is under similar experimental conditions 

on the same populati on o f fi sh. 
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4.2 Materials and Methods 

Experiments were conducted at the Laboratory o f Ecophysiology and Molecular 

Evolution, I PA, Brazil. A population of A. ocellatus was held in an outdoor holding 

tank with aera ted well water (0 1 Saturation of 80- 1 00%) at 2 oc and fed com mercial 

food once daily. until transferred to experimenta l tanks ( for protein synthcsi tudics) or 

rcspirometcrs (to r measurements of RoMR). In total, eight fi sh were u ·ed fo r the 

measurement of RoMR ( 156-225 g, average 186 1.0 g) and 44 fi sh were used for the 

measurement of protein synthesis (70-1 60 g, average 95 .8 ± 3.8 g). All fi h were held 

without feeding for 48 hrs prior to beginning measurements for RoMR and protein 

synthesis. In fi h u ed for analy is of RoMR and protein synthesis, measurements were 

taken under normoxic and hypoxic conditions as well a during the recovery from acute 

hypoxia. Normoxic conditions were identical to those of the holding tank (0 1 saturation 

of 80-1 00%), and the hypoxic challenge consisted of a step down decrease of the 

di ssolved oxygen (DO) level. This was accomplished by bubbling nitrogen directl y into 

the water of the experimental tank, or into the reservoir that upplicd water to the 

respirometer. Water oxygen levels were stepped clown from I 00 to 70, 50, 30, 20 and 

I 0%, with 0 2 levels maintained at each step for one hour, and the fi h held at I 0% 0 2 

sawration for 3 hours prior to rc-oxygcnation. Rc-oxygcnation was achieved by bubbling 

air vigorou ly into the water, and water 0 2 levels returned to normoxic levels within 30 to 

45 minutes. 

56 



4.2.1 Measurement o{Routine M<!taho/ic Rate 

Individual fish were tran ferred to a specially designed Plexiglas " respirometer ( 15 x 20 

x .fOcm; 11 .875 L) supplied with oxygen saturated water (80-1 00%) from a I 00 L 

reservoir and allowed a 48 hour acclimation period before beginning the experiment. 

Water from the reservoir was continuously pumped through the resp irometer u ing a 

submersib le pump (model NK-1, Little Giant Co., USA). Water temperature and oxygen 

concentration were monitored through a circuit composed of tubing with extremely low 

gas permeability (Tygon " Food & LFL, Cole Palmer, Inc. , USA) using a peristaltic pump 

(Masterllcx LIS model 77200-12, Cole-Palmer) and flow through chambers (020 I, 

WTW, Weilhcim, Germany) containing oxygen probes (model CeiiOx 325, WTW) 

positioned in the respirometer's inflow and outflow tubing. Measurements of water 

oxygen level · and water flow rate (range 0.8 to I L · min"1
) were taken at hourly interva ls 

during the experiment (i.e. during normoxia, hypoxia and recovery from hypoxia), as 

well a before the placement of the fish and immediately after the removal of the fish 

from the respirometer in order to correct for bacterial 0 2 consumption. Bacterial 0 2 

consumption was consistently less than 2% of the fish's RoMR and was therefore 

considered to be negligible. The RoMR of each fi sh was calculated at each measurement 

inkrval as: 

RoMR = I(C02 (i) - C 02 (o)l x Vw x 60 

w 

Where: 

RoM R Routine Metabolic Rate. in mg 0~ kg hr" 1
; 

Co~ (i) = 0~ concentration in intlowing water (mg 0~ L"1 
): 

C0~ (o) = 0 2 concentration in outtlowing water (mg 0 2 L"1
) ; 

Vw = water tlow rate through the respirometer (L min"1
). 

W = mass of fi sh (kg) 
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4.2.2 Protein S\'nlhesis 

4. 2.2. I Nonnoxia: Twelve fish were removed from the holdi ng tank, weighed, tagged l'or 

individual recognition with coloured bead a!!achcd to the dorsal muscu lature at the base 

or the dorsa l fin and transferred to a separate experimental tank under ident ical 

environmenta l conditions. After 48 hours, fish were injected without anaesthesia via 

intraperi tonea l injection, with 1.0 ml I 00 g-1 of [2,3-3H] phenylalanine (Amcrsham 

International) olution. This injection solution consisted of 135 mM phenylalani ne in a 

olution containing 125 mM NaCI, 3 mM KCI, I mM MgS04.7H20, 1.5 mM CaCb, 5 

mM I IEPES (sodium sa lt), 5 mM glucose, 2 mM Na2HP04, pH 7.8 at 28°C, in add ition 

to sufticicnt [2,3_]1-l] phenylalanine to ensure a dosage of I 00 ~-tCi mr '. Fol lowing 

injection, fi sh were returned immediately to the experimental tank and after an incubation 

time of one, two or three hours, groups of four fish were killed by a blow to the head and 

immediate severing of the spine. Whole brain, whole liver and heart ventricular tissue 

were exc ised, blotted dry and immediately frozen in liqu id ni trogen. A section of white 

muscle was taken from the dorsal musculature above the lateral line, care was taken to 

remove skin and scales and the tissue was then fi-ozcn in liquid ni trogen. Gills were 

excised and lamellae were scraped from the gill arches, the lamellar tis ue was then flash 

li-ozcn in liquid nitrogen. All samples were kept at -70uc un ti l analysis. 

4.2.2.2 Hypoxia : In this treatment, twelve fi sh were weighed, tagged and transferred to 

the experimenta l tank. After a 48 hour acclimation period, fi sh were expo cd to the 

stepwise decrease in dissolved oxygen levels as described previously. Fish were injected 

immediately once water oxygen saturation reached I 0%, and four fish were sampled (as 
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above) at one, two, and three hours alter injection with DO levels maintained at I 0%) lor 

the three hour hypoxia exposure. 

4.:1.2.3 Reco l'eJy To asses changes in protein synthesis rates during recovery from 

hypox ia , twenty fi sh were exposed to an acute hypox ia challenge a described previously. 

After holding fi sh at I 0% DO for three hours, air was bubbled into the experimental tank 

allowing the di olved oxygen level to return to normoxic levels (80-1 00%). Groups of 

five fish were injected at hourly intervals, starting when 0 2 saturation levels returned to 

nonnoxic levels (group I) and ending four hours after 0 2 returned to normoxic levels 

(group 4). Each group of lish was sampled one hour post-injection allowing protein 

synthesis to be tracked over a four hour time period during the post-hypoxic recovety. 

Tissues were excised and stored a previously described. 

4.2.3 Blood Samplingfor Lactate 

Blood samples were obtained from as many fish as possible during the protein ynthesis 

experiment, resulting inn = 4, normoxic; n = 8, hypoxic; and n = 7, recovery. Blood 

was drawn from the caudal vein with a heparinized sy:·:n;:: pri r to san,pling the fi sh for 

protein synthesis analysis. Blood samples were centrifuged and plasma was stored at-

70°C for lactate analysis. 
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./.].4 Sample Preparation and Scintillotion Counting 

The protocol used for the analysis of protein synthesi was modified from that described 

in Garlick ct al. ( 1980). Samples were homogenized with a Polytron in nine volumes of 

6% pcrchloric acid (PCA) except for liver, which was homogenized in four volumes of 

PCA. llomogcnizcd samples were left on icc for 10-15 minute and a I ml aliquot was 

transferred to a microccntrifugc tube. In tissue that had execs 6% PCA homogenate 

(liver, muscle and in omc cases brain), the remaining homogenate wa stored at -70°C 

for the analy is of lactate. The I ml aliquot of homogenate for protein synthesis was 

centrifuged for five minutes at 15,600 x g, after which the upernatant was rcmo cd and 

frozen at -20°C for analysis of the free pool phenylalanine content and specific 

radioactivity. 

The protein pellet was washed by manually re-suspending the pellet in 1.0 ml of 

6% PCA, vortcxing, centrifuging as described above, and then discarding the supernatant. 

This wash tep was repeated until the radioactivity in the discarded supernatant wa at 

background levels to ensure only protein bound 3H phenylalanine was being measured in 

the protein pellet. After sufficient washing, 1.0 ml of0.3 M NaOH was added to the tube 

containing the protein pellet. The protein pellet was incubated in a water bath held at 

37°C until fully dis olvcd. The dissolved protein was stored at -20°C until analysis tor 

protein content and protein bound radioactivity. 

Aliquots of the original supernatant from the homogen ized tissue and the 

di solved protein were added to I 0 ml of Ultima GoldTM liquid cintillation cocktail and 

counted on a Beckman Coulter LS6500 liquid sc intillation counter to obtain the [2,3} 11] 
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phenylalanine content of the free and protein bound phenylalanine pools of the tissues, 

respectively. 

4.2.5 Biochemical Assm's 

Free pool phenylalanine content was measured from the PCA extraction upernatant and 

phenylalanine standards in 6% PCA using a nuoromctric assay following the protocol 

described in Me aman and Robins ( 1962). Protein content of the tissue was determined 

!'rom the NaOH solubilized protein pellet by using the BioRad D~ kit (Bio-Rad 

Laboratories, California) using standards made from bovine serum albumin. Lactate was 

measured in standards in 6% PCA, pia ma, liver, white muscle and brain ti ue via the 

reduction ofNAD+ to NADI-1 at 340 nm using a Sigma diagnostics kit. 

4.2.6 Statistical Analyses 

Comparison of oxygen consumption data was carried out by using a repeated measures 

ANOVA followed by a Dunnett's post-hoc te t, to compare all values with the normoxic 

(control) value. Lactate concentrations for normoxia, hypoxia and recove1y treatment 

were compared using a one way-ANOV A, with Tukey's post-hoc test for multiple 

compari~on . In the protein synthesis experimenr, mean Lissuc phcnyialanine content and 

specific radioactivity over the incubation time were compared using a one-way A OVA 

with Tukey's post-hoc test for multiple comparisons, and the incorporation of 

radioactivity into protein was examined by linear regression. Once data were confirmed 

to fit the validation criteria, phenylalanine incorporation rates for each tissue were 
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compared using a one-way A OVA fo llowed by a Tukey 's po t hoc-test. In all cases p < 

0.05 was considered significant. 

4.3 Results 

4.3.1 Routine Metabolic Rate 

The RoMR of A. ace/latus under normox ic condition was 138.7 ± 16.5 mg · kg-1 
• h( 1 

(Figure 4.1 ). Despite decreasing oxygen saturation of the water, there was no sign ificant 

decrease in RoMR until water 0 2 levels reached I 0% saturation (0.67 ± 0.005 mg · L-1 at 

28 ± I °C). At this 0 2 leveL oxygen consumption was decreased to 65 .1 ± 2.0 mg · kg-1 
• 

h( 1
, a va lue approximately 50% of the normoxic rate. Although RoMR at one hour po !­

hypoxia ignificantly increased to 305.5 ± 29.7 mg · kg-1 
• h( 1 (a value 270% of the 

normox ic rate), RoMR returned to pre-hypoxic levels ( 174.0 ± 3.1 mg · kg-1 
• h( 1

) by two 

hours post-hypoxia and remained at imilar levels fo r the remainder of the cxp rimcnt. 

4.3.2 Lactate Concentration 

Lactate concentrations under nom1oxic conditions in the various tissues were 0.04 ± 0.03 

umol · mr 1 for plasma (n = 4) and 0.25 ± 0.06, 0.84 ± 0.1 I and 2.63 ± 0.30 umol · g 

tissue-1 fo r li v~.:r (n = i I), brain 1.,11 - 12) and white muscle (n -'- 6), respecti vely Figure 

4.2). As there were no significant differences in lactate concentration in any of the 

tis ucs during the three hour hypoxia or four hour rccovc1y treatments, result were 

pooled within each treatment to give a mean value for hypoxic and rccove1y samples. 

During the three hour hypoxic exposure, only plasma exhibited a significant increase in 

lac tate concentration ( 1.1 3 0.27 umol · mr 1
• n - 8). During the post-hypoxic rccovc1y 
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period, plasma lactate returned to levels (0.42 ± 0.30 umol · mr 1
, n- 7) that were not 

signifi cantly diffe rent from pre-hypox ic values. Finally, signi fica nt decreases in lactate 

concentrations in liver (0.02 ± 0.0 I umol · g tissuc-1
, n = 20) and brain 0.55 ± 0.06 umol · 

g tissue-1
, n = 20) occurred during the recovery period, whereas lactate concentration in 

white muscle was maintained at similar concentrations over all three treatments. 
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4.3.3 Validation a/P rotein Synthesis Methodology 

In order to accurately interpret protein synthes is rates obtained vta fl ooding dose 

methodology several validation criteria must be met: I) the injection dose must be shown 

to be surticicnt to elevate the free phenylalanine pool of the various tis uc ; 2) the 

pecific radioactivi ty of the free phenylalanine must increase rapidly post-injection and 

remain table throughout the time protein synthesis is mea ured; and 3) the rate of 

phenylalanine incorporation must be linear and begin immediately a fter injection. As 

shown in the following sections, all three criteria were fulfilled during thi experiment. 

4.3.3. 1 Elevation ol Free Pool Phenylalanine Content: The concentration of free pool 

phenylalanine in the various tis ue was not ignificantly different between the three 

treatments or between sample times within treatments. Therefore, results for normoxic, 

hypoxic and post-hypox ic fi h were pooled and referred to as injected fish (n = 44). 

Injected fish had free phenylalanine levels of0.55 ± 0.04, 0.16 ± 0.0 I, 0.08 ± 0.0 I, 0.20 ± 

0.0 I and 0.19 ± 0.0 I nmol phe · mg-1 frc h tissue for liver, white muscle, brain, heart and 

gill , respectively. When compared to levels of free phenylalanine in uninjected fi h (data 

not shown), levels were 2-fold higher in brain, white muscle and gill and fi ve-fold higher 

in liver and heart tissue. 

4.3.3.2 Intracellular Free Pool Phen_rlalanine Specific Radioactivity: Intracellular 

specific radioacti vity of the free phenylalanine pool for both normoxic and hypoxic fish 

wa elevated one hour post-injection, and remained constant over the three hours that 

protein ynthe i was mea urcd (F igure 4.3). On average, the specific radioactivity for 
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normoxic fi sh was 1039 ± 79, 641 ± 27, 711 ± 37, 788 ± 61 and 656 ± 22 cpm · nmol 

phc-1 for li ver, white muscle, brain, heart and gill, respectively (n = 12). For hypoxia 

exposed II h, the specific radioactivity for the same tissues was 708 ± 44, 642 ± 17, 696 ± 

26, 622 34 and 620 14 cpm · nmol phc-1 (n= l2). As there wa no significant 

difference in the spec ific radioacti vity measured in fish recovering from hypox ia, results 

were pooled to give mean values of 830 ± 23, 641 ± 12, 702 ± 7.0, 665 ± I 0 and 672 ± 

17 cpm · nmol phc-1 for liver, white mu clc, brain, heart and gill, respectively (n =- 20). 

4.3.3.3 Phenylalanine Incorporation into Tissue Protein: Protein ynthcsis rates were 

expressed as nmol phenylalanine incorporated per mg protein. Rcgrcs ion equations 

calculated over the three hour sampling time demonstrated significant and linear 

incorporation of phenylalanine into liver, brain, heart and gill tissue of both riormoxic and 

hypoxic fi h (Figure 4.4). Rates of protein synthesis for white musc le in both normoxic 

and hypoxic treatments were below detectable levels; therefore, rates of protein synthcsi 

were not able to be obtained for this tissue. As linear incorporation rate were achieved 

for both nonnoxic and hypoxic fish over the three time points, rates of protein ynthesi 

during recovery were determined using one time point only, that being one hour post­

injcctiun. 
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Figure 4.4 Post-injection time course for the incorporation of' radio! abe led phenyla lanine into protein in A. 
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y~0. 55x - 0. 157, r2=0.70), and (D) gill (y=2.34x - 0 .25, r2=0.86; y= I.05x + 0.2 1. r~-0.46). Regression 
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-1.3.4 Tissue Specific Rates (~lPhenylo/onine Incorporation 

Rates of phenylalanine incorporation under normoxic conditions were 0.92 ::!- 0.13, 0.80 ± 

0.05, 0.90 ± 0. 16, and 2.2 ± 0.11 nmol phe · mg pr-1 
• hr" 1 for liver, brain , h~art and gill, 

respectively. During exposure to hypoxia, rates of protein synthesis dccrea eel to 0.4 I ± 

0.12, 0.62 ± 0.03, 0.36 0.06, and 1.14 ± 0.15 nmol phe · mg pr" 1 
• hr" 1

, a clepres ion of 

561Yo lor liver, 27% for brain, 60% for heart and 50% for gill (Figure 4.5). During 

recovery from acute hypoxia, no hyperactivation in protein synthesi occurred, and two 

different patterns in po t-hypoxic phenylalanine incorporation were observed. In liver 

and gill, rates of phenylalanine incorporation (respectively, 0.74 0.08 and 1.46 ± 0.27 

nmol phe · mg pr" 1 
• hr-1

) were not significantly different from normoxic levels by one 

hour post-hypoxia, and remained at similar level for the duration of the recovery period. 

In contrast, phenylalanine incorporation took longer to return to normoxic levels in brain 

(three hours) and heart (two hours), and in both these tissues phenylalanine incorporation 

was significantly less than n01·moxic values for the remainder of the recovery period. This 

latter result suggesting that full recovery of protein synthesis in brain and heart tissue 

takes longer than four hours to occur. 
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4A Discussion 

4. 4.1 Hypoxia Induced Metaho1 ic Depression 

4.4.1.1 Routine Metabolic Rate: In the present study, RoMR was maintained at normoxic 

rates until dissolved oxygen levels in the water decreased to I oo;;). At this time, RoMR 

underwent a 50% depression, which was maintained for the full three hours of hypoxia­

exposure. This response to hypoxia was similar to that obtained previously for oscars, in 

which a depression in RoMR of approximately 50% was observed once water 0 ::! level 

reached I 0% oxygen saturation, and a reduction of 60% was measured when water 02 

levels approached anoxic conditions (Muuszc ct al. 1998). At the lowest level of hypoxia 

tested in the present study ( 10% DO), lactate levels were only significantly increased in 

plasma. However, this increase only brought lactate levels to one-fifth of levels obtained 

in A. ace/latus at 6% DO (Muusze ct al. 1998). These results, in combination with the 

absence of lactate accumulation in white muscle, indicate anaerobic metabolism is only 

beginning to be employed to supplement energy demands at this level of oxygen 

deprivation, and metabolic depression is an effective way of conserving ATP until A. 

ace/latus is faced with almost anoxic conditions. 

The level of metabolic depression achieved by A. oce1/atus is similar to that of 

goldft::.h and crucian carp, whivh decrease metabolic rate by approximately 70% under 

anoxia (Van Wavcrsvcld ct al. 1989), but not as great as demonstrated by freshwater 

turtles (90-95% reduction; Jackson 1968). Lower levels of metabolic depression arc 

observed in tclcosts due to the maintenance of ion exchange with the environment and 

low levels of activity for predator avoidance. For example, in their natural environment 

A. ace/latus arc susceptible to predation from air-breathing fish and aerial predators, and 
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laboratory experiments show that they split their time equa lly between unprotected 

nonnox ic environments and sheltered hypox ic envi ronments (Sloman et al. 2006). 

Whereas, turtles arc e sentially a closed ystcm and they retreat into their proh.:ctivc shell 

and enter a comatose-like state during periods of oxygen deprivation. 

4.4. 1.2 Protein .\yntliesis: The usc of the fl ooding dose methodology to measure in vivo 

protein synthesis requires that several va lidation criteria be ful fi lled. The results from 

this study show that the injection dosage used ucccssfully fl ooded the free phenylalanine 

pool during both normoxia and three hours of hypoxic exposure, causing a 2-5 fo ld 

increase in phenylalanine concentrati on in the various tissues. A well , the pccific 

radioactivity of the free phenylalanine pool was elevated one hour post-injection and 

remained stable ·at thi s level for the three hours over which protein synthcsi was 

measured. The final validation criterion requires the incorporation of radiolabcllcd 

phenylalanine into the ti ssues to be linear po t-injcction. This was hown for all tissues 

in both normoxia and hypoxia exposed fish, except fo r white muscle (F igure 4.4). The 

radioactivity of protein bound phenylalanine in white muscle was below detectable 

levels, indicating rates o f protein synthesis in this tissue to be extremely low. Given that 

ra tes of protein ynthc is in ft sh white muscle arc .:xrrcmdy low as compared to 

mammals (Fauconncau ct al. 1995), and A. ocellatus has a much lower mas pccitic 

oxygen uptake than other tclcosts, including tropical pcc ics (Almeida-Va l ct al. 2006), it 

is not surprising that protein synthes is was unable to be detected in the white mu cle of A. 

ocellatus. 
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The role of protein synthesis in hypoxia-induced metabolic depression in 

ectothermic animals has been previously described in freshwater turtles (specitically 

Trachemys scripta elegans and Ch1:rsemys picta he/Iii) and in the crucian carp (Carassi11s 

camssius), and these studies show the extent to which protein synthes is is depressed to be 

positively linked with the degree to which activity is curtailed. For example, rates of 

protein synthesis were suppressed by approximately 70% in the heart of T. scripta 

elegans (Bailey and Driedzic 1996) and by >95% in various tissues in C. picta he/Iii, both 

species which enter a comatose like state during anoxia (Land et at. 1993; Fraser et at. 

200 I). Wherea , the crucian carp, which maintains low levels of activity during 

hypoxia/anoxia exposure, exhibits a depression in protein synthesis of approximately 

50% in heat1 and white muscle, 95% in li ver tissue, but no significant depression in the 

brain (Smith et at. 1996). Similar to the crucian carp, A. vee/latus exhibited tissue 

specific depression in protein synthesis when exposed to acute hypoxia exposure. Rates 

of protein synthesis in liver, heart and gill were depressed by 50-60%, whereas rates of 

protein synthesis in the brain were only depressed by 27%. Thus, our results reinforce 

the idea that fish need to maintain protein synthesis in the brain to prevent damage to 

neural tissue, and to sustain appropriate brain functions so that predators can be 

effectively avoided. 

4.4.2 Recovery.fi·om Acute Hypoxia Exposure 

A significant overshoot in oxygen consumption, to 270% of normoxtc rates, was 

observed during the first hour of recovery, indicating that the three hour hypoxic 

exposure was substantial enough to cause the fi sh to accumulate an oxygen debt. Crucian 
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carp have al o been shown to accumulate a ·ubstantial oxygen debt during period of 

hypoxia (Van den Thillart and Verbeck 1991 ), and it has been sugge · tcd the 

hypcractivation or metabolic rate during anoxic/severe hypoxic recovery is associated 

with the restoration of pho phocrcatinc, the conversion of lactate into glycogen, and 

po ibly an inerea c in protein ynthcsis (Johans on ct al. 1995). n in l'ilro study on 

turtle hepatocyte expo cd to 12 hour of anoxia ha shown a signilicant incrca c in 

protein synthesis (to 160% of n01·moxic rates) during the first hour of recovery (Land ct 

al. 1993). However, the present study, which measured in vii'O protein synthc is rates, 

did not show any hyp racti ation of protein ynthc is in the ariou ti uc during the 

recovery period. The e rc ult agree with other in 11ivo studic hawing a hypcractivat ion 

of protein synthc i docs not occur in either anoxic exposed turtles (Fra cr ct al. 200 1) or 

crucian carp ( mith ct al. 1996). There were two di tinct pattern observed in post­

hypoxic phenylalanine incorporation in A. ocellatus, tis uc which arc a main source for 

protein ynthcsis, liver and gill, phcnylalanin incorporation returned to pre-hypoxic rate 

by one hour po t-hypoxia. In contrast, protein ynthcsi in brain and heart took longer 

than four hours po t-hypoxia to fully recover. The low recovery in brain ti ssue is 

particularly intcrc ling a its hypoxia-induced reduction in protein ynthcsi i half fthat 

::.IH)wt' by the oth~r ti ~uc . The rca on~ for this rcr11a;n ciu::.ivc; however, it may be 

linked to the removal of a dietary source of amino acids (due to the cc at ion of r cding) 

requiring A. ocellatus to rely on the recycling or cx i ting protein (ic. protein turnover) to 

replenish diminished upplics due to the decrease or protein ynthcsi · during metabolic 

dcpres ion. 
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.t.S Conclusions 

In conclusion, the present study was successful in prov iding insights into the cellular 

mechanisms behind whole animal metabol ic depre sion in response to hypox ia in A. 

ocellotus. The response of A. ocellotus to acute hypox ia and subsequent recovc1y, at both 

the physiological and biochemical level, was similar to that of the well tudied anoxia­

tolerant teleost, the crucian carp. However, there were tissue-speci fie differences in the 

magnitude of the hypoxia-induced depression of protein synthesis (brain 20%, other 

tissues 50-60%), which suggest that brain function is maintained during hypoxia to 

facilitate active predator avoidance. Finally, this study demonstrated that an acute (3h) 

exposure to severe hypoxia i substantial enough to cause A. ace/latus to accumulate an 

oxygen debt, but the repayment of this oxygen debt is not accompanied by a 

compensat01y hyperactivation in protein synthesis. This latter finding indicates the high 

metabolic rate A. ace/latus during the first hour of recovery is attributed to an increase in 

cellular processes other than protein synthesis. 
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-CHAPTER FIVE-

Tissue specitic responses of mitochondrial protein synthesis during hypoxic and 

temperature induced metabolic depression in the north temperate labrid, 

Tautogolahms adspersus. 

5.1 Introduction 

Metabolic depression, characterized by a 60-95% reduction in basa l metabolic rate, 

enables animals to extend surviva l time in the face of unfavourable envi ronmental 

conditions. It has been described in all animal phyla, in every class of vertebrates and in 

response to various environmenta l strcssors (anoxia, hypothermia, desiccation and 

restricted access to food) (reviewed in Guppy et at. 1994, Hand and Hardewig 1996, 

Guppy and Wither 1999). Through extensive research it has become evident that 

metabolic depression is reflected at all levels of biological organization and is 

accomp li shed by the establishment of a reduced rate of A TP turnover, by decreasing both 

energy consuming and producing processe at the cellular level (reviewed in Storey 1988, 

Guppy et a t. 1994, Hand and Hardcwig 1996, Guppy and Withers 1999, Hochachka and 

Lutz 200 I, Storey 2002, Storey and Storey 2007). Recently, research has begun to look 

towards adaptations at the sub-cellular level for potential regulating mechanisms of 

metabolic depression (G uppy 2004). Mitochondria have been identified as a potential 

site for the contro l of metabolic depression as 90% of cellular respiration is 

mitochondrial , 80% of which is coupled to A TP synthes is (the remaining 20% is due to 

proton leak) (Rolfe and Brown 1997). The development of model systems from the 

following three hypometabolic anima l has begun to elucidate the response of 

mitochondria during metabolic depression: I) hepatocytes from hibernating mammal 
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(Martin t at. 1999, Barger ct at. 2003, Mulcmc ct at. 2006, Brown et at. 2007), 2) 

isolated skeletal muscle cells from hypoxic frogs ( t. Pierre et at. 2000abc) and 3) 

isolated hcpatopancrcas cel ls rrom e ti vat ing nails (Bishop and Brand 2000, uppy et at. 

2000, Bishop ct at. 2002). The reduction of active ( tate 3) mitochondrial respiration has 

emerged as a cel lular adaptation for metabolic depres ion that is con erved both between 

tissue in an organism and across taxa (Martin et at. 1999, Bishop and Brand :2000, 

Guppy ct at. 2000, t. Pi erre et at. 2000c, Barger ct at. 2003, Brown et at. 2007). The 

mechanism for the reduction in mitochondrial rc piration appear to lie in the inhibi tion 

of substrate oxidation, a ccn in experiment on i alated cells from both frog and nails. 

In turn, thi cau c a drop in membrane pot ntial and a sub equcnt deer a c in proton 

leak and ATP turnover (involving proce ·cs uch as ion transpoti and protein synthcsi ) 

(B ishop ct at. 2002). 

In cukaryotic cell , the ynthcsi of proteins for the as cmbly and functioning of 

mitochondria i a rc ult of the cooperation between the mitochondrial and nuclear 

gcnomcs. The majority (90%) of protein that arc found in mitochondria arc ynthc izcd 

in the cytopla m by the nuclear genome and transported into the mitochondria. These 

proteins arc found in all four of the mitochondrial compartment (inner and outer 

mcmbtancs, matrix and intcnnembrane ·pace), and are key player 111 all a ·pects of 

mitochondrial function. For example, they arc linked with mitochondrial tran cription 

and tran lation, lipid synthc i , substrate oxidation by the T cycle, ox idative 

phosphorylation and electron transport (Poyton and McEwen 1996). The reduction of 

protein synthesis has been exhibited at the cellular level in rc ponse to hypoxia in 

go ldfish ( mith et at. 1996), o cars (Chapter Four) and turtles (Bai ley and Dricdzic 1996, 
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Fraser ct al. 200 I) and in response to low temperature in the cunner (Chapter Three). 

Add itionall y, a reduction in mitochondria l protein synthes is was observed in the hearts or 

hypoxia exposed turtl es (Bailey and Driedzic 1996) but the response in hypometabo lic 

lish has yet to be eluc idated. In fac t, despite the growing number of example or 

hypometabolic te leosts, there has been very little investigation into the physiological role 

of mitochondria in hypometabol ic telcosts. 

The cunner (Toutogolabrus ad,p ersus) experiences acti ve metabolic depression in 

response to seasonal hypothermia in its North Atl antic habitat, which has previou ly been 

de cribcd at the behavioural (Green and Farwell 197 l), whole animal phy iological 

(Haugaard and Irving 1948, Curan 1992, Costa 2007) and cellular levels (Chapter Three). 

In addition, cunner also di play a decrease in basa l metabolic rate in response to graded 

hypoxia (Corkum 2007). To our knowledge, cunner do not normally experience hypox ia 

in their natural environmental and as such, it poses the question: Arc animals that have 

evolved the capacity for metabolic depress ion able to institute the same cellular responses 

when challenged with an environmental challenge that docs not occur in it natura l 

environment? Through measurement of protein synthesis in the whole tissue and 

mitochondrial protein pools, m cunner challenged with both acute hypothermia and 

hypvxia, 1t wi ll be poss ible to determine: i) if tile ..tdaptation of Jecrcascd protein 

synthesis is conserved across environmental stressors, and ii ) if the adaptive response of 

metabolic depression is conserved across levels of cellular organization. Two tissues 

have been cho en for the analysis of protein synthesis, the heart (an anaerobic tissue 

under hypox ia due to its position in the circulatory sy tem) and the gill (an aerobic tissue 

due to its direct interface wi th environmental oxygen). Based on previous ob crvations 
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that protein synthesi at the whole ti sue level is depres cd during winter dormancy in the 

cunner (Chapter Three), it is hypothesized that protein synthesis in the mitochondrial 

pool will be suppressed in both heart and gill in response to acute low temperature stres . 

In contrast, when challenged with acute hypox ia it is predicted that rates of mitochondrial 

protein synthes is will be reduced in the mitochondria of heart of the cunner, similar to the 

depression ob erved in mammalian (McKee et al. 1990) and turtle heat1s under hypoxia 

(Bai ley and Driedzic 1996) but defended in gill as this ti ssue plays a central role in 

survival as it i the primary organ for gas and ion exchange (Lyndon and Houlihan 1998). 

5.2 Materials and Methods 

5. 2. I Animals 

Cunner were caught by baited hoop net in Portugual Cove (Newfoundland, Canada) in 

cptcmber 2006 and were held at the Ocean Sciences Centre, Memorial University of 

Newfoundland in I m2 tanks. Fish utilized for this experiment were maintained on a now 

through seawater system, with heated seawater ranging in temperature between 8 and 

I 0°C and were exposed to a natural photoperiod. All animals were fed to atiation on a 

diet of chopped frozen herring, offered three times a week, with feeding being with-held 

one week pnor to sampling. All tisn were treated in accordance to Canadtan Council of 

Animal Care guidelines. 
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5. ]. ] Experimental Procedure 

During April and May 2007 fish were randomly divided into three group of nine fish: i) 

normoxic goc control, ii) acute temperature challenge, iii) acute hypoxia challenge. On a 

given sample day three fish were removed from the holding tank, weighed and tagged for 

individual recognition and placed in the experimental tank (40 L) 24 hours prior to the 

experiment. Immediately before beginning the experimental procedure a 30% water 

change was performed. Each treatment was repeated three times to give a total sample 

size of nine fish per trea tment. Fish in the normoxic control group were held at soc ± 

0.5°C, 90- 100% water 0 2 saturation. To challenge the fish with an acute hypothermia, 

temperature was decreased in a step wise manner of I oc per hour from soc to 4°C under 

normoxic conditions. These temperatures were chosen as they rcprc ent the extremes of 

protein synthesis rates with respect to metabolic depression as results from the seasonal 

study (Chapter Three) indicated at 8°C protein arc being synthesized at the notmal rate, 

where as at 4°C, protein synthesis was depressed to its lowest level in heart and gill 

tissue. 

In the hypox ia treatment, fish were exposed to a gradual decrease in water oxygen 

saturation. Water oxygen levels were stepped down from I 00 to 70, 50, 30, 20 and I 0%, 

through the bubbling of nitrogen directly into the water. Oxygen levels were maintained 

for one hour at each level and temperature wa held at soc± 0.5°C. Once at the de ired 

experimenta l point, fi sh were injected intraperitoncally, with 1.0 ml · I 00 g·' of [2, 3-3H] 

phenylalanine (Amersham International) solution following the !loading dose 

methodology of Garlick ct al. ( 1980) described in detail in prcviou chapter . Fi h were 

sampled at 6, 8 and I 0 hours-post injection; these particular time point have been 
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previously determined to fall withi n the linear range of phenylalanine incorporation in 

thi , species (Chapter Two and Three). One fish was sampled at each time point. at 

which time blood was drawn via caudal puncture with heparinized syringe for analysis 

of plasma lactate. Fi h were killed by a severe blow to the head followed by a severing 

of the spine. I !cart and gill tissue vverc immediately excised for subcellular li·actionation 

as described below. 

5.].3 Isolation of' Mitochondria 

Preliminary work was conducted to determine the appropriate protocol for the separation 

of subcellular fractions by differential centrifugation. Fractionation procedure were 

based upon the theory described by Ballantyne ( 1994) and the methodology of Trcbcrg ct 

al. (2006). After removing lamellae from the gi ll rakers and separating the ventricle from 

whole hearts, the resulting tissue wa weighed and subsequently diced using scis ors and 

a razor blade in a small vo lume of isolation media. The isolation media consisted of 250 

mM Sucro c, I 0 mM HEPES (pH 7.4), I mM EDTA, pH 7.4 at 20°C. Diced ti uc was 

added to individual glass homogenization tubes with nine volumes of ice-cold isolation 

media containing 0.5% (w/v) fatty acid free bovine albumin. Tissue was homogenized 

on icc by three passes ot' a loose fim ng and three passes of a tighter fitting motor-driven 

Tenon pestle. An aliquot of crude homogenate was taken for the analysis of who le tissue 

protein synthesis rates. The remaining homogenate used to obtain the ubccllular 

fractions by differential centrifugation. All centrifugation was performed using a 

bcnchtop centrifuge at 4°C, for 10 minute . Crude homogenate wa centrifuged at 600 g 

to remove the myofibrils and other cellular debris and the upcrnatant was further 
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centrifuged at 9000 g to separate the mitochondria (pellet) fi·om the cytosol (supernatant). 

The mitochondrial pellet was washed two times by resuspending the pellet in I ml of 

isolation media and gently pipctting up and down, followed by centrifugation at 9000 g. 

5.2.4 Marker En2ymes 

The purity of the mitochondrial fraction was determined by preliminary marker enzyme 

analysis. All enzyme analyses were performed on fresh homogenate at I 5°C and run in 

duplicate with increasing sample volumes to ensure activity was linear with protein. 

Lactate dehydrogenase (LDH) and NAD+-Iinked glycerol-3 phosphate dehydrogenase 

(GPDH) were run as cytosolic markers, succinate-cytochrome C reductase (SCCR), an 

electron transport chain enzyme, was used as a mitochondrial membrane marker and 

citrate synthase (CS), an enzyme of the mitochondrial matrix, was used as an indicator of 

mitochondrial intactness. LDH (EC 1.1.1.27) and GPDH (EC 1.1 .1.94) activity wa 

determined at 340 nm (extinction coefficient of 6.22) in an assay buffer containing 50 

mM imidazole (pH 7.4 at 20°C), 1.0 mM KCN, 0.2 mM NADH. The LDH reaction was 

initiated with 1.0 mM pyruvate and the GPDH reaction was initiated with 2 mM DHAP. 

The SCCR ( 1.1 0.2.2) activity was determined at 540 nm (extinction coefficient of 19.2) 

in an assay buffer containing 60 mM K2HP04, 40 mM Kl-hP04, I mM KCN, 3 mM 

EDT A, 0.1 mM cytochrome C (pH 7.4), the reaction was initiated with 20 mM succinate. 

CS (EC 2.3.3.1) activity was determined at 412 nm (extinction coefficient of 14.1) in an 

assay media containing 75 mM Tris (pH 8.2 at 20°C), 0.2% Triton X-1 00, 0.1 mM 

DTNB, 0.3 mM acctyi-CoA and the reaction was initiated with 0.5 mM oxaloacetatc. 
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5. :!. 5 A nalrsis ofProlein Srnthesis . . . 

Precipitation of proteins was achieved through the addition of four volume o r icc-cold 

6°/c1 pcrchloric acid (PCA), except for the mitochondrial fi·action in which nine volumes 

or P A were added. Samples were mixed by vortcxing and allowed to cttlc on icc for 

ten minutes. Sample were then centrifuged at 15,600 g for 5 minute to separate out the .. 
protein pellet. The rc ulting supernatant was decanted and frozen at -20° for further 

analysis of free pool phenylalanine conten t by fluoromctric microplate assay 

(Gcrasimova ct al. 1989) and specific activity through scintillation counting. The protein 

pellets were wa hcd with I ml 6% PCA until the radioactivity in the discarded 

upcrnatant wa at background levels to en ure only protein bound 3H phenylalanine was 

being measured in the protein pellet. The protein pellet was solubilized in 0.3 M aOH 

in a water bath at 37° . The dissolved protein wa tored at -20°C until analy is for total 

protein content u ing the BioRad De as ay and protein bound radioactivity through 

cinti llation counting. The incorporation of phenylalanine into protein wa ex pres cd as a 

ratio of the protein bound radioactivity of the subcellular component to the specific 

radioactivity of the free phenylalanine pool in the whole tissue (dpm · mg pr" 1 per dpm · 

5.2.6 Lactate Analysis 

Plasma sample were diluted 111 three volumes of cold 6% PCA for lactate analysis in 

microplate spectrophotometer. Lactate content was determined in sample and standards 

at 340 nm ia the reduction of AD+ to ADI I at 340 nm using a Sigma diagnostics kit. 
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5.2. 7 Stotislica/ Analysis 

Compari on o r the marker enzyme acti vi ty 111 the subcellular fractions and rates of 

protein synthesis were performed by one way ANOVA, followed by Tukcy's post hoc 

(p<0.05 ignificant). 

5.3 Results 

5.3.1 Marker En::ymes 

Table 5.1 shows the specific activities of the marker enzymes measured in the crude 

homogenate a well as in the cytoplasmic and mitochondrial fractions. These results give 

an indication of the relative purity of each of the subcellular fraction by demonstrating 

enhancement of the activity of the marker enzyme for that frac tion compared to the 

activity in crude homogenate. The mitochondrial marker ci1zymcs R and CS were 

enriched from 64% to I 07% in the mitochondrial fraction as compared to the crude 

homogenate in both heart and gill (Table 5. I). In addition, the low levels of CS activity 

(enzyme of mitochondrial matrix) in the cytoplasmic faction in both heart ( I O-f old lower) 

and gill ( 15-fold lower), as compared to crude homogenate, indicate the subcellular 

fractionation procedure was succc sful in separating intact mitochondria from the 

...::ytoplasm. GPDH was added as a sccvndary cyto~u ii c m<Hkcr cnLymc a LDH levels 

were elevated in gill mitochondrial fracti ons despite variou modification of the 

fracti onation protocol. A activity levels of GPDH were four-fo ld higher in heart and 

two-fold higher in gill crude homogenate than in the mitochondrial fracti on it 

demonstrates that there was little cytopla mic contaminati on of the mitochondrial 

fracti on. Based on these results, adequate, albeit only partial enrichment of the various 
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subcellular fractions was achieved though the differentia l centri fugation methods 

allowing investigation into rates of protein synthes is in enriched subcellu lar components. 

5.3 . .2 Protein Synthesis in the Whole Homogenate 

Under control (normoxic S°C) conditions the rates of phenylalanine incorporation 

(expressed as nmol phe · mg p( 1 
• h( 1

) in heart ventricular and gil l lamellar tissue were 

0.54 ± 0.08 and 0.57 ± 0.1 I nmol phe · mg p(1 
• hr-1

, respectively. The exposure to an 

acute temperature decrease, from soc to 4°C, resulted in a signifi cant reduction in protein 

synthesis in both heart (0. 11 ± 0.02 nmol phe · mg pr-1 
• hr-1

, p<O.OO I) and gi ll (0. 13 ± 

0.03 nmol phe · mg p(1 
· h( 1

, p=O.OO 13). The extremely high Q 10 values of 53 and 40 

calculated for heart and gill , respectively, suggest that this decrease was part of an active 

depression in metabolism and not due to temperature effects alone. Exposure to acute 

hypox ia resulted in a significant decrease in ventricular protein synthesis (0.27 ± 0.07 

nmol phe · mg p(1 
• h( 1

, p=0.024). There was no significant diffe rence in gill (0.32 ± 

0.10 nmol phe · mg p( 1 
• h(1

, p=O.IS) however, the average rate was 40% lower under 

hypoxic than control conditions. In addition, exposure to acute hypothermia caused a 

greater reduction in protein synthesis (- 80% in both tissue ) than did exposure to acute 

hypoxia (- 40% in heart) (Figure 5.1). 
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Table 5.1 Sp~cilic acti,·ity of subcellular marker en1ymcs (nmol · min·1 
• mg pr 1

) tor heart and g ill tissue 

from cunner (7clllf0golohms ucl.1p ersus ). Signi ficant differences between the speci fic activities of marker 

~nzymes are indicated by different letter . p < 0.05. a lues are presented as mean ± EM. 

Enzyme Activity (nmol ·min- · mg pr· ) 

Enzyme Homogenate Cytoplasmic Mitochondrial 

Heart 

LDH 127 1.5 ±20.1 a 1246.9 ± 28.8 a 354.2 ± 4.9 b 

GPDH 289.7 ± 10.6 a 223 .1 ±4.1 a 73.5 ± 7.5 b 

SCCR 1.1 ± 0.04 a 0.4 ± 0.02 b 1.8 ± 0.06a 

c 90.1 ±3.2" 9. 1 ± 0.2 b 150.7 ± 7. ~ 

Gill 

LDH 282.5 ± 3.4 a 254.9 ± 5.1 " 268.2 ± 7.5" 

GPDH 52.9 ±2.1 a 159.2 ± 5.3 b 23 .3 ± 0.7 c 

SCCR 1.3 ± 0.06 a 0 .5 ± 0.01 b 2.3 ± 0.06 c 

c 32.1 ± 0.9 a 2.2 ± 0.09 b 66.7 ± 1.6 ~ 
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5.3.3 Protein Synthesis in the Cytosolic Fmction 

Protein synthesis rates of the cytosolic fractions of both heart and gi ll exhibited a similar 

response pattern as observed in the whole homogenate. The control rates o f 

phenylalanine incorporation in the heart (0.40 ± 0.05 nmol phc · mg p{ 1 
• h{ 1

) and g ill 

(0.40 ± 0.012 nmol phe · mg p{ 1 
• h( 1

) were reduced by approximately 80%) under low 

temperature stress to 0.07 ± 0.01 nmol phe · mg p{ 1 
• k 1 (p < 0.001) in heart and to 0.08 

± 0.02 nmol phe · mg p( 1 
• h{ 1(p=O.O 18) in gill. As in the whole homogenate, only heart 

cytosolic proteins showed a significant decrease in synthesis under hypoxia (0.20 ± 0.07 

nmol phe · mg p{1 
• h( 1

, p=0.034). The average rate for gill cytosolic protein synthesis 

under hypoxia was - 55% lower (0.18 ± 0.06 nmol phe · mg p(1 
• h{ 1

) ; however this 

decrease was not significantly different from control rates (p=0. 12) (Figure 5.2). 

5.3.4 Protein Sy nthesis in the Mitochondrial Fraction 

Rates of protein synthesis in the mitochondrial fraction were 0.90 ± 0.13 nmol phe · mg 

p(1 
• h( 1for heart ventricular tissue and 0 .74 ± 0.18 nmol phe · mg pr-1 

• h{ 1 for g ill 

lamellar tissue in control fish. Rates of protein synthesis in the mitochondria l protein 

pool of the heart were depressed by approximately 60% when exposed to both low 

temperature (0.37 ± 0.083 nmol phe · mg pr-1 
• lu- 1

, p=0.003) and hypoxic stress (0.32 ± 

0.087 nmol phe · mg p( 1 
• h( 1

, p=0.002). In contrast, mitochondrial protein synthes is in 

g ill lamellar tissue was defended under both low temperature (0.61 ± 0.20 nmol phe · mg 

p( 1 
• h( 1

, p=0.64) and hypoxic stress (0.68 ± 0.24 nmol phe · mg p( 1 
• h( 1

, p=0.85) 

(Figure 5.3 ). 
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5.3.5 Plasma Lactate 

Levels o f plasma lactate were below detectable leve ls in both the control (8° ) group (n 

= 9) and the acute temperature challenge group (4°C) (n = 9). However, exposure to 

hypox ia stimulated the production of lactate as levels increased to 0.57 ± 0.04 mM (n = 

9). Sample rrom all three time points were pooled as there was no significant change in 

lactate levels with increasing exposure time to hypoxia. 
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Figure 5.1 Pheny la lanine incorporatio n rates (nmol phe · mg pr'1 
• hr' 1

) in whole homogenate of heart 
ventricula r and g ill lamellar tissue under contro l condition (normox ia, 8°C), acute hypox ia stre. s ( I 0% 0~ 

SAT, 8°C) and acute low temperature stress (normox ia, 4°C). Rates expressed as mean ± SEM, n = 9 fo r 
each treatment; s igni licance between treatments indicated by eli fferent letters, p<0.05. 
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Figure 5.2 Phenylalanine incorporation rates (nmol phe · mg pr" 1 
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) in the cytosolic proteins in heart 
ventricular and gill lamellar tissue under control conditions (nonnoxia, S°C), acute hypoxia stress ( I 0% 0 ! 

AT, S°C) and acute low temperature stress (normoxia. 4° ). Rates are expressed as means ± EM, n = 9 
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5.4 Discussion 

5 . ..f.l Suhcel/ular Fractionation 

The elevated protein specific levels of the mitochondrial marker enzyme (S CR and 

' ) and lower lev I. of GPDH (cytopla mic-markcr) in the re -ulting pellet from the high 

speed centrifugation tcps (9000 x g) indicate the differential centrifugation procedure 

wa succe sful eparating out rclati ely pure mitochondrial and cytosolic fractions. 

Thus, we can discus rates of protein synthe is in this fraction as those or mitochondrial 

protein ynthesi (tran lated in both the nuclear genome and transported into the 

mitochondria and the ynthesis of protein by mitochondrial ribo ome ). LO\ levels of 

SCCR and C in the fir t high speed supernatant referred to as the ·'cyto olic" fraction 

imply a trivial mitochondrial contaminat ion. The relative enrichment of the cytosolic and 

mitochondrial ti·actions in this study arc comparable to those obtained by Brooks and 

Storey ( 1993), de pitc the differences in the fractionation protocol, in \ hich the 

mitochondrial marker enzyme wa enriched by two-fold and the cyto olic marker 

enzyme wa enriched by three-fold, in their rc pective sub-cel lular fraction . The high 

levels of LDI I in the mitochondrial fraction , particularly in gill tissue, may suggest the 

pre encc of a mitochondrial linked LDH but further in estigation into thi area is needed 

before thi can be aid with certainty. To our know;~dge, Lite pres~ncc of a mitochondrial 

linked LDH i a novel finding in teleo t , but the existence of an intrac llular lactate 

shuttle and a mitochondrial linked LDH ha been described in mammal and yea t 

(Brooks et al. 1999). The role of a mitochondrial LDH in mammals appear to be linked 

to cellular lactate xidation in liver, skeletal and cardiac muscle of rat to facilitate high 

clearance rate or lactate during excrci e via an intracellular lactate huttle. 
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5.-l.l Physiological Response to I (rpothenniaH frpoxia 

The exposure or both acute hypothermia and hypoxia caused a clccrca c in activity levels 

or the cunner, which were found cqucstercd amongst the cooling coils and in the corners 

of the experimental tank. Even at the lowest level of hypoxia (I 0% 0 2 aturation) fish 

did not become agitated and there were no mortalities over the I 0 hour xperimental 

hypoxia expo urc (per onal obser ations) . The ability of cunner to ur i e extended 

hypoxia expo ure (up to I 0 hours at I 0% 0 2 saturation) sugg~..:sts they may employ 

similar phy iologieal re ponses to low oxygen a other hypoxia-tolerant eetotherms, such 

a the carp ( Cyprinus ccupio ), the o car (Astronotus ocellatus), the common frog (Rana 

temporaria) and the turtle (Chi)'Semys picta) (Boutilier et al. 1997, Lutz and Nilsson 

1997, Muu ze et al. 200 I). Plasma lactate levels in the cunner, which were below 

detectable levels under normoxic conditions, increased to 0.57 mM in hypoxia expo cd 

cunner indicating that anaerobic mctaboli m had been timulatcd. Thi 
. . 
mcrcasc 111 

pta rna lactate i on par with the rc pon c in other hypoxia-tolerant tclco t . For example, 

the exposure to three hours of hypoxia at 28°C cau cd plasma lactate to incrca c from 

0.04 to 1.13 mM in the oscar (As/rona/us ace/latus) (Chapter Four), exposure to six hours 

of anoxia at I5°C rc ulted in a 2.5-fold incrca c in whole body lactate concentration in 

crucian carp (Carassius carassius) (Johnston and Bernard llJ83) and expo ure to eight 

hours of anoxia re ulted in an 8-fold increa e in whole body lacate in goldfi h (Carassius 

auratus) (van Waver veld et al. 1989). In facultative anaerobes, such as the 

arorementioned tcleosts, the switch to anaerobic mctaboli m is not immediately 

detrimental a they arc able to usc the ATP generated from the glycolytic pathway to 

ustain reduced rate of energy turno cr and low down the usc of limited cndogenou 
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fuels (Boutilier and St. Pierre 2000) and in the case of cyprinids they arc able to prevent 

large levels of lactate accumulation by converting pyruva te to ethanol in order to prevent 

acidosis from accumulation of lactic acid (Shoubridgc and Hochachka 1980; .Johnston 

and Bernard 1983). 

5.4.3 Protein Synthesis in the Whole Tissue and Cytosolic Protein Pools 

As protein synthesis is an energetically costly process, consuming 20-30% of ATP 

coupled cellular respiration (Rolfe and Brown 1997) it is often down-regulated during 

metabolic depression in order to conserve energy. In the current study, exposure to acute 

low temperature results in a significant depress ion in phenylalanine incorporation into 

both heart ventricular and gill lamellar whole tissue and cytosolic pools (- 80%) in the 

cunner. The reduction in protein synthesis in respon c to acute hypothermia is greater 

than the response in cunner which entered a hypomctabolic state under natural decline in 

temperature, in which a depression of 55% in heart and 66% in gill is observed over the 

same temperatures (Chapter Three). This substantial decrease in protein synthesis in the 

heart and gill in response to an acute temperature challenge (Q 10 values of 53 for heart 

and 40 for gill) provides further evidence that the reduction in protein synthesis in 

response to casonal hypothermia ;::. parr of an active llll:tdbolic d~prcssion and not just 

due to temperature effects alone. 

As predicted, rates of protein synthesis in the heart were signifi cantly reduced in 

rcspon e to acute hypoxia exposure (Figure 5.1 ). The 55% reduction in ventricular 

protein synthesis in the cunner is comparable to the 48% reduction observed in crucian 

carp hearts after 48 hours expo urc to anoxia (Smith ct a!. 1996) and the 60% reduction 
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in ventricular protein synthesis in oscar exposed to three hours of acute hypoxia (Chapter 

4). A substantial metabolic depression is also observed in cardiomyocytes from 

hypomctabolic anurans exposed to acute hypoxia, however, a decrease in metabolism is 

not apparent in cardiomyocytcs isolated from frogs exposed to long term hypox ic 

submergence (Currie and Boutilier 200 I). The results from thi s study demonstrated that 

acute hypoxia stimulates an active depression in protein synthesis and suggests that the 

cellular responses involved in the whole animal metabolic depression arc conserved 

across environmental strcssors. Despite the 40-50% decrease in rates of protein synthesis 

in response to hypoxia in the whole homogenate or cytosolic pool of gill lamellae, this 

reduction was not stati stically significant. These results were unexpected as previous 

studies have demonstrated that hypoxic exposure resu lted in a 50% decrease in gil l 

protein synthesis in the oscar (Chapter Four) and caused a repression of genes encoding 

for protein translational machinery, such as ribosomal proteins and subunits in zcbrafish 

(van dcr Mccr ct al. 2005). One interpretation of the current data is simply that the 

volume of homogenate obtained from the tissue per individual and sample size was too 

small relative to individual variation to lead to statistically significant difference and that 

the trends shown by the decreases in average rates of protein synthesis under hypoxia arc 

biologically significant. Hovvcver, aiLcrnative interpretation that 110 change occurred 

deserves consideration. Tissue specific responses of protein synthesi s have been shown 

to occur in hypomctabolic teleosts and arc often linked to adaptations that have evolved 

to extend survival time while in an energetically compromised state. For example, 

despite the substantial decrease in protein synthesis in the majori ty of ti ssues, levels of 

protein synthesis in the brain arc maintained at normoxic levels in carp (Smith et al. 
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1996) and only minimally dcprc sed in oscar ( haptcr Four). These ti s uc specific 

responses in the brain have been linked to the maintenance of low levels of activity lo r 

predator avoidance. In the present study, the po siblc defense of lamellar protein 

synthesis in the whole tissue protein pool during hypoxia could be related to the central 

role this tis ue plays in the sur ivai of the li h a it is the primary organ lor respiratory 

and ionic exchange (Lyndon and Houlihan 199 ). In addition, a branchial protein 

synthesis only accounts for approximately 5% of whole body protein synthesis 

maintenance of thi process during metabolic dcprc sion would not be energetically 

cxpcn ivc when considered in the context to the whole animal (Lyndon and Houlihan 

1998). 

5.4.4 Protein Synthesis in the Mitochondrial Protein Pool 

In the current tudy, rates of sub-cellular protein synthesis were determined in vivo and 

arc representative of the translation of protein that occur in both the nuclear-cytoplasmic 

compartment, and ub cqucntly transported into the mitochondrion, a well as the 

translation of protein on ribosomes in the mitochondrial component itself. These protein 

arc found in all four of the mitochondrial compartments (inner and outer membranes, 

matnx and intcrmcmbranc pace" altO arc key piaycrs iu dll aspect of mitochondrial 

function (Payton and McEwen 1996). 

When exposed to acute low temperature strc s, protein ynthcsi 1n the 

mitochondrial pool of the ventricle wa reduced by 60%. Although the reduction in the 

mitochondrial pool i lcs than the respon c in the whole tissue or cytoplasmic pools 

(80% reduction), a Q 10 value of 9.2, calculated between 8°C and 4° , indicates that it i 
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still a result of an active reduction in protein synthcsi . These rc ult suggest the 

rcspon c of metabolic depression, indicated by active depression or protein synthcsi ·, is 

conserved aero ·s levels of biological organization in the ventricular tis uc of cunner. 

Li tt le work has been conducted on the adaptive rcspon cs of mitochondrial phy iology in 

hypomctabolic tcleo Is, and work on other hypometabolic ectothcrm ha focused main ly 

on changes to the ox idative capacity of the mitochondria (mi tochondrial respiration and 

proton leak) during aerobic metabolic dcpre sion. A such, it is di ffi cul t to compare the 

effect of low temperature on the mitochondrial protein synthesis in the cunner to other 

hypometabolic ectothcrm . Mitochondrial protein ynthc i rates in ra inbow trout 

(Oncorhynchus mykiss) were not influenced by a dccrca c in temperature from 25° to 

15° , but when temperature were further reduced to 5°C rates of mitochondrial pr tcin 

synthesis were sub tantially reduced (70%) (We t and Dricdzic 1999), which is 

comparable to the clcprc ion observed in hypothermia challenged cunner. McKee ct al. 

( 1990) demon tratcd that in rat hearts, mitochondrial protein synthc i i coupled with 

aerobic rc piration, however, in rainbow trout the substantial decrease in mitochondrial 

protein synthesis wa not coupled to oxygen con umption in mitochondria (We t and 

Driedzic 1999). In mitochondria from hypomctabolic frog skeletal mu cle, the decrease 

1n respiration at the cellular level is also reflected at the mitochondrial level ( t. P1erre 

2000a). Although mitochondrial respiration wa not measured in thi study, it i 

peculated that protein synthe is would be tightly coupled with mitochondrial re pira tion 

in the heart of the cunner during metabolic cleprc ion. Cardiac mu cles have a rich 

supply of mitochondria and arc almo t totally dependent upon aerobic metaboli m to 

obtain energy needed to r contraction. s uch, it is not surprising that when cunner arc 
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chall enged with acute hypoxia the 50% reduction in prote in synthc is in the whole tissue 

protein pool is accompanied by an even greater reduction in the pool of protein de tined 

fo r the mitochondria (65%). These resul ts from the cunner arc comparable to those from 

turtle (Tm cyemys scripta e!egans) hearts, in which exposure to three hour of acute 

anox ia rc ultcd in a three- fold decrease in prote in ynthc is in the whole tissue protein 

pool and a reduction of three to five- fold in the mi tochondrial protein pool (Ba iley and 

Dricdzic 1996). Ba cd upon these resul ts from cunner and turtles, it appears that during 

hypox ia-induced hypometabolism mitochondria decrease both total A TP syn thesis 

(cessation of oxidative phosphorylation) and the import of newly ynthcsized proteins. 

The decrease in mitochondrial protein synthesis observed in these animals may be a 

biochemical adaptation to decrease energy demand and sub cqucntly extend anox tc 

surviva l (Bailey and Dricdzic 1996). 

The most important and novel finding of this experiment arises when examining 

subcellular protein synthesis rates in gill lamellar tissue. The synthesis of proteins 

de tined for the mitochondria in gill arc de fended under acute hypoxia exposure, 

providing evidence that the defense of protein tran lation in the gill ti sue is c scntial to 

the cunner's survival under anaerobic conditions. Gill mitochondrial protein ynthcsis 

was also defended in rc ponse to al-LlLC i1ypothcrmia, wl .i ~h was uncxpccto.;d, particularly 

as there was a substantial inhibition of synthesis in the whole protein pool in thi s tissue 

(- 80%). One likely explanation for the maintaining this ATP-consuming proccs in the 

mitochondrial despite the decrease in the whole tissue pool would be to ensure the 

continual synthesis of proteins slated for cellular turnover of epithelial and/or chloride 

cells of the gill (Lyndon and Houlihan 1998). The chloride cell of the gi ll lamellae arc 
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mitochondrial ri ch and play a vital role in ionic regulation, i.e. ite of Ca~ anJ cr ion 

exchange with the aq uatic envi ronment (Perry 1998). The reduction of mitochondrial 

respirati on during hypometaboli sm is an excellent mechanism of energy conserva tion; 

however, the animal will inev itably be faced with severe challenges upon arousa l it' it 

doesn' t mainta in some capacity for ox idative pho phory lation (St. PieiTe ct al. 2000b). 

As prote ins ynthcsizcd fo r the mitochondrial pool play key role in electron transport 

and oxidative phosphorylation which supply the majori ty of energy (A TP) fo r cukaryotic 

cells in aerobic environments (Poyton and McEwan 1996), it is also possible that cunners 

arc maintaining protein ynthcsis in the mitochondrial pools, during both hypox ia and 

hypothermia induced metabolic depression, in order to maintain oxidati ve capacity in gi ll 

lamellae. This would enable functional enzymes of the electron tran port chain and TCA 

cycle to be ava ilable for the rapid rein titution of ox idative phosphory lation upon the 

emergence from a metabolically depressed state. 

5.5 Conclusion 

The present results demonstrated an active depression in protein synthesis in the whole 

tissue pool of heart and gill in response to acute hypothermia. These rc ults further 

l!mphasizc that the inhiuition in protei n synthesis in response to casonal decn.:a ·es in 

temperature is an intrinsic response that is part of an active metabolic dcprcs ion. In 

addi tion, the ubstantial decrease in whole tissue and mitochondrial protein ynthc i In 

the heart, in response to acute hypox ia, suggests that cunner arc able to institute the same 

adaptive cellular rcspon cs that have evolved for hypothermia induced metabolic 

depression to lower the metabolic rate, and subsequently increase surv iva l time when 
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exposed to an environmenta l stress that docs not normally occur in the natural habitat. 

The ability of the cunner to decrease its metaboli ' 111 in response to both low temperature 

and hypoxia make it an ideal model organism to initiate the investiga tion of the role of 

mitochondrial physiology in hypomctabolie telcosts. The respon e or protein synthesis in 

the heart is conserved across levels of cellular organization and exposure to v:11ying 

envi ronmental strcssors. The novel finding of this experiment wa that the synthesis of 

proteins slated for usc in the mitochondria i defended under both hypoxia and 

hypothermia, despite being decreased at the whole animal level. As seen with ca onal 

metabolic depression, anomal ies in the response of protein synthesis can be linked to 

adaptations that enable extended survival while in an energetically compromised state. 

The defense of protein synthesis in the mitochondrial cell s of the gill is thought to be 

coupled with the vital role of this tis ue in ion exchange with the aquatic environment. 

Also, the defense of synthesis of proteins for import into the mitochondria may play a 

role in maintaining oxidative capacity for a rapid rcinstitution of mitochondrial 

respiration upon emergence from a metabolic depression. 
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-CHAPTER SIX-

6.1 Summary 

The objecti ve of the the is was to extend the tudy of mctabol ic depression in teleost fish 

beyond the behavioural and whole animal physiologica l level to include a description of 

the biochemical processes underlying regulated hypometabolism. Protein synthesis was 

cho en as the cellular mechanism to study as it contributes greatly to the overall A TP 

turnover of the cell ( ccond only to acti ve ion transport) and it is involved at various 

levels of phy iological functioning of the animal from gene expression to growth at the 

whole animal level. Despite being equally as important as metaboli c depression to the 

survival of the animal during environmenta l trcs , the activities and ro les of cellular 

processes during the po t-dormancy recovery period arc greatly understud ied. Therefore, 

whenever possible investigation into protein synthesis during the recovery period was 

included in this thesis work. 

In both the cunner and oscar, exposure to environmental trc s trigger an active 

suppression in metabolic rate. The rc ponsc of protein synthesis is tissue spcci fie in both 

fish, but in general the whole animal metabolic dcprc sion is accompanied by a global 

inhibition of protein ynthcsis ranging from 50-80% of prc-dormancy/prchypoxic levels. 

1is reduction in in 1'1\' u protc:in synthesi is similar to the reductioll in protein ynthcsis 

that has been presented for other animals (Table 1.1 ). In the cunner, protein ynthcsi is 

acti vely depressed in both the naturally occurring winter dormancy and the metabolic 

depression that happens in response to an acute decrease in temperature. In the natural 

environment the trigger for metabolic depression is most likely a combinat ion of both 

decreasing temperature and photoperiod (Figure 3 . I). However, the active depression of 
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protein synthe is that also occurs when cunner arc challenged with acute hypothermia, 

without decreasing photoperiod, indicates that there i a temperature trigger involved in 

initiating the regulated turning down of ATP turnover. The intrinsic propert ies of the 

hypometabolic response of the cunner arc further emphasized through its ability to 

institute metabolic depression, exhibited by the depression in protein synthesi , 111 

response to acute hypoxia . To our knowledge the cunner do not experience such low 

levels of water oxygen saturation in their habitat and would not have had the opportunity 

to become poised to respond to this environmental stres . The pia ticity of the 

hypomctabolic response in cunner provides an ideal model to invc tigate potential 

regulating mechanisms of metabolic dcprc sion and to determine if the regulatory loci arc 

conserved across environmental challenges. 

The importance of developing ti suc-spcci fie responses in protein synthesis to the 

survival of the animal in the face of environmental challenges becomes evident when 

drawing connection between the functions of those ti sues to the physiological rc ponsc 

at the whole animal level. During acute hypoxia exposure, levels of protein ynthcsis in 

the oscar brain undergoes a modest depression (20%) compared to that of the other 

ti ssues (50-60%) and to the whole animal metaboli m. This maintenance of brain protein 

turnover is mo:-t likely linked tv tl1~.: prcscrvatiun OLII~.:LitOnal auivi ty. 0 cars, like the 

cyprinids, do not enter the typical comato e-likc state that is associated with metabolic 

depression in many other animals. Instead they sacrifice the loss in energy savings to 

allow the maintenance of low level of activity. This is cs ential in the Amazonian 

floodplain environment as the avoidance of prevalent aquatic and aerial predators is key 

to the survi val of the oscar. The cunner also exhibits a tis uc spcci tic protein synthesis 
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response during metabolic depression. During the seasonal metabol ic dcprc ion, ra te of 

protein synthesis in the li ver along with the other ti ssues arc initially inh ib ited. l lowcvcr, 

when sea onal water temperatures arc at their lowest ( - 1.9 to 0° ) there is a sub tantial 

uprcgulation in li ver protein synthcsi . As cunner arc known to produce antifreeze 

proteins at thi time of year, this uprcgulation in the liver is suggc tive of the ,ynthesi or 

de novo protein , slated specifically for freeze avoidance and stre protection. t the 

ubccllular level, mitochondrial protein synthesis in the cunner is defended in the gi ll , but 

not the heart , in response to both acute hypothermia and hypoxia. This dcfcn e of protein 

ynthcsis in mitochondria de pitc the decrease observed in the whole homogenate and 

cytosol, particularly in response to hypothermia, is thought to be linked to vital role of 

gills in ionic exchange with the aquatic environment. A well , as proteins synthesized in 

and for the mitochondria play key roles in the electron transport chain and oxidative 

phosphorylation it i thought that defending synthc is of the c protein would allow the 

rapid rcinstitution of ox idative phosphorylation upon emergence from a metabolically 

supprcs cd tate. The tissue specific nature of the response of mi tochondrial protein 

synthesis in the cunner warrants further investigation in order to determine i r other 

biochemica l proccs cs such as mitochondrial rc piration arc defended in gi ll 

mttochondria dunng mctaboltc depression, and if o, how the regulatory mcchant ms tn 

gill mitochondria differ from other tissue . Mitochondrial protein synthc i in cncy ted 

Artemia embryo has been cxtcn ively studied in response to va ty ing pH and oxygen 

levels. The c studies have begun to elucidate potential regulating mechani sms and have 

suggested that changes in intracellular pH may provide an intracellular signal that 

integrates metabolic dcprc sion in both the mitochondrial and cytopla mic compartments 
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(Kwast and I land 1993). As well, it has been ·uggestcd that anoxia induced dormancy i 

mediated through the presence or a molecular oxygen sensor within mitochondria (Kwast 

and Hand 1996 ab). The investiga tion of mitochondrial protein synthe. is in other 

hypomctabolic animal has been very limited and an exc iting avenue lor future rc ·carch 

will be to determine if similar regulatory mechani sm , a de cribed in dormant Artemia, 

al o occur in higher animal . The usc of the cunner as a study organi sm would prov ide 

an ideal departure point as it would be poss ible to investigate po siblc regulating loci 

under both hypothermia and hypoxia, allowing us to determine if' the regulatory 

mcchani m of metabolic depression arc con crvcd or if they vary d pend ing on the 

specific challenge pre cntcd to the organi mba cd on the environmental trigger. 

The ability to fac ilitate a rapid recovery from metabolic dcprc sion is equally a 

important to the urvival of the animal a metabolic depression itself. De pitc this, few 

tudies have invc tigatcd the cellular rcspon c a ociatcd with the rc toration of cellular 

processes in hypomctabolic animals. Thi s th i. described the role of protein ynthc i in 

the recovery period after the extended winter dormancy of the cunner and the acute 

hypoxia exposure of the oscar. Based on the c two examples and from previous work on 

anoxia tolerant turtles and crucian carp, a pattern emerges. A a hypcractivation in 

protein synthc ·is occur after hypudH.:rmic trc · in tit ~.: l.ullner bu not po ·t-hypoxia stress 

in the oscar (nor in the studic on anoxic turtle or carp) it appear the rc pon c of protein 

ynthcsis during recovery may be stress pcci fie. However, when the length of the 

hypomctabolic period is taken into considerati on, with cunner remaining hypomctabolic 

for months compared to the acute challenge with hypoxia (hours) in the o car, carp and 

turtle, it ccm more likely that the amount of time pent in a hypomctabolic ·talc, i.e. the 
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size of the protein debt that is accumulated i · more likely the dictating factor on whether 

or not protein synthcsi will be hyperactivatcd during recovery. A comparison of 

recovery rates or protein synthcsi in cunner challenged with acute hypoxia and low 

temperature could determine whether the rc pons is related to the type or environmental 

stress or the amount of time spent in a hypometabolic tate. 

6.2 Future Directions 

The majority of early work on metabolic depression was conducted on hibernating 

mammals and till much of the work invc tigating the regu lating factors behind the 

coordinated shutting down of energy turnover i on mammalian cell line . Through this 

thesis work and other recent studic it i becoming more evident that metabolic 

depression i a1i adaptive rc ponsc that is u cd frequently and effectively by tclcosts. It is 

possible to find a tclco t pccics that ha evolved ways to cope with practically every 

environmenta l tress (i.e. hypoxia - o car , cyprinids; hypothermia - cunner; 

anaerobiosis - lungfish) and in some case the ability to cope with multiple 

environmental challenge exists (i.e. hypoxia and hypothcm1ia - cunner and cyprinids). 

The Krogh principle states "For a large number of problems there wi ll be omc animal of 

choice or a 11.:w ·uch animal · un which it can be ~.-onvcniently stuJicd··. ollowing this 

principle, the adaptive plasticity of tclco t make them excellent model on which future 

investigation into metabolic dcprc sion can be conducted. 

With each additional study it i becoming more apparent that the cellular 

procc ses and molecular mcchani ms behind metabolic depression arc conserved across 

phylogenetic lines. The next tcp is to unveil the regulating loci and the signal that 
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initiate the coordinated 'shutting down' or energy consuming and producing proces ·es. 

Recently, a ' hibernation induction trigger' has been described in hypomctabolic 

mammals (Horton et al. 1998); it will be in teresting to determine il' similar ex tracellular 

ignal (hormones) arc present in other hypomctabolic organi sm and il' the same trigger 

arc in titutcd in response to varying strcs ors. A well , the control loci that regulate the 

dcpres ion of protein synthesis during metabolic depression still remai n elusive. Initial 

studies have begun looking towards modilications in transcription, mR NA, translation 

factors and ribo omcs as potential sites (Frcrich et a l. 1998). It is becoming ev ident that 

in hibernating mammals, that protein synthc i i li ke ly controlled at the elongation stage 

th rough the incrca eel pho phorylation or the initiation fac tor ciF2 (Frerichs ct al. 1998). 

Similar result arc beginning to emerge from tudics on invertebrates, wi th quiescent 

Artemia embryos (llofmann and Hand 1994). To present, there is limited to no 

imformation on potential regulatory loc i in metabolically deprcs cd teleost , but a tudy 

on control of protein ynthes is in cold acclimated toadftsh ha uggc ted that in li ver, 

protein synthc is is regulated by the acti vity of aminoacyl tran era e (I Ia chcmeycr 

1969). The cunner would make an ideal model specie in which it could be dct rmincd if 

similar control of elongation via initiation factors and enzymes occurs in hypomctabolic 

teieo t . Anuthcr area that dc:.crvt.:s considt.: raolc atn;ution is the po t-hypomctabolic 

arousal or recovery period. As seen in the hypometabolic tcleo t studied in this thesis, 

the recovery period is often accompanied by a hypcractivation of metabolic processes. 

The question arise "how arc animals that arc energetically deprived and lacking in 

endogenous store capable of fueling such energetica lly demanding procc ··. The ability 

of the animal to in titutc a rapid and complete recovery from a metabo lica lly suppressed 
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state may be just as or even more important to an animal's urviva l than metabolic 

depression itself. The recent development of molecular and genomic techniques allow a 

compari son o f the di fferential cxpres ion ol· gene involved in the ' turning down' and 

' turning up' o f' mctaboli ·m. I believe it i · through investigation into the recovery 

response and the mechani m controlling the hyperactivation o f cellular processes that 

we will be able to elucidate key regulatory loc i and triggers a sociated with the 

hypomctabolic respon e in animals. 
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Appendix 1 

Validation Figm·e for Protein Synthe is in Tautogolabrus adspersus measured 

between 8°C November and 8°C July. 
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Figure A4. Post-injecti on time course fo r spec ifi c rad ioactivity o f fi·ee pool (DPM. nn10l phe·1
· , top figure) 

and incorporation of radiolabeled phenylalanine into protein (nmol phe . mg pr" 1
, bottom figure) in cunner 

at 4°C (June) fo r A) li ver, 8 ) white musc le, C) brain, D) heart and E) gill tissues. Values are means ± SE. 

n=4 fi sh at each sample time. Regressions calculated over 4 -24 hrs to r white muscle, heart and gill tissues 

and over 4 - 16 hrs for liver and brain tissues. 
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Figure AS. Post-injection time cour e for specific radioactivity of free pool (DPM. nmol phe 1
•• top ligure) 

and incorporation of radiolabeled phenylalanine into protein (nmol phe . mg p(1
, bottom figure) in cunner 

at goc (J uly) for A) liver. B) wh ite muscle. ) brain, D) heart and E) gi ll tissues. Values are means ± E. 

n=4 fi sh at each sample time. Regressions calculated over 4 - 24 hrs for all ti sues. 
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