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FRAME STRUCTURE

iaaaasaainianl 1

ACTUAL ICE LOADING

e frireeet

SIMPLIFIED ICE LOADING

F re 1.4.2: Frame, acti  ice ing and simplified ice loading










































solution time of ten hour per ysis, the total time . d effort required to carry out such

an exercise would become o us thereby making it practically impossible.

Combining DOE and FEM, new regression equations for estimating web he” it and web

he it to thickness ratio are formu ed. Validation of e regression models is also done.
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2.4.6 Solution

Both large deformations and s s stiffening were employed in the solution phase.

T. reaction at the support nodes were summed up for each load sub-step, which is equal

to the applied force at each sub-step.
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2.6.2 Compai’ T
Fig e 2.6.2 presents the com;  .on of deformed s pe between experimental results

and ANSYS analysis using solid nents.

The results of finite element an rsis using solid element has shown similar formation

pattern as in the experimental resu

Fig e 2.6.2: Comparison ¢_ 1 :d shape— experin 1tal vs. solid elements
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ANSYS offers many iterative schemes for solving >n-linear simultaneous equations.
Tt most common and default method is the Newton-Raphson. Other schemes were only

us. once Newton-Raphson failed to converge.

ANSYS offers many convergen e ancement feat s like line search, automatic load
stepping and bisection. These f :ures reduces the time required for solution and hence

were utilized whenever p- itted by the iterative sch  : used.
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All the plating and stiffeners considered for the study satisfy the IACS requirements of

po - class vessel.

3.2 Iceload

The ice pressure distribution « vertical side of a ship is not uniform. The ice edges
shi - off and the pressu tends to concentrate to the center. As ice is crushed, rubble is
for :d. In the worst case scet 1o, solid ice presses through the ice rubble and makes
direct contact with the structure. T  ice exerts a concentrated high pressure on the
structure, and the ice rubble a relatively lower pressure on both sides. In this

sit ion, the ice sheet is bracec ; the rubble, thus strengthening the ice sheet.

The ice pressure used in the y is based on the ice load proposed by Daley and
Ke¢ rick (2008). The ice loadi idealized as a distributed pressure load with a center

peak, as shown in Figure 7 ™ 1.

FRAME STRUCTURE

Tﬂﬁm\ { i

ACTUAL ICE LOADING

iEEEEEEE i EE RSN

SIMPLIFIED ICE LOADING

Figure 3.2.1: Frame, actual :e ng and simplified ice loading
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3.5 °  Finite elements
The Shelll81 element was u to model the structure. For more details about the

element, refer to Section 2.4.2.1.

3.5.3 Loading

The pressure distribution durii  an ice structure interaction was conside 1 for the
analysis. The loading consider the analysis is illustrated in Figure 3.5.1. For details

of the pressure load, refer to Section 3.2.

5.82

Rela
Pres:
-2.484 -4.213 -3.14« —Z.U/1L -1
Figure 3.5.1: Loading consi analysis
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thick frame deforms only locally and takes the load without much sharing with adjacent

m ibers.

Load sharing has important lications for ice class ship structures. If the effect were
sit lar in all frames, then the p  ical significance would be small. However, the effect
varies considerably. It is notab it larger, higher ice class structures are less well able
to distribute the loads. This iplies that higher class vessels will not only need to
withstand higher loads, but will :d to do so more 1 ally than lower class vessels. Most
pr tical experience has been 1 with lower class vessels. Consequently this issue
should be of concern for the r  y new large and high ice class vessels that are currently

or e drawing boards.
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pr essing of results, it is clear t  traditional methods are not efficient in studying these

kinds of problems.

By using the DOE method, ficant reduction in the number of experiments is
achieved. The number of ¢ 1 s required to study a ten factor problem by CCD
wi  minimum run resolution V  sign is 77. The ¢« bin ons of factors : generated

using Design Expert™ software.

The details of experiment are gi* | Section 4.6

98





















































































Figure 5.1.2: Lateral tc 1al bucking or tripping

Consider two frames as shown re 5.1.3. ..e mes have different web heights
(300 mm and 600 mm res :tive but all other geometric and material properties are

the same.

600 mm web height

300 height
7 — J ]
Frame span = 2000 | ate =350 mm x 20 mm; Web thi. 1ess = variable
E = 2,000,00( Et = 2,000 MPa; Yield Strength 3001 ’a

Figure 5.1.3:: Two fra with different we aeights
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