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Abstract 

Organic solar cells have attracted considerable attention in recent years for 

their unique advantages, such as solution processing, flexibilities, and low cost for 

mass production. The highest power conversion efficiency reported so far is 6.5%. 

However, it is widely believed that the efficiency barrier of 10% has to be exceeded 

before polymer solar cells can be commercialized. Our study focuses on developing 

universal techniques for the improvement of the efficiency of organic solar cells and 

flexible polymer solar cells on two types of bulk heterojunction devices i.e. poly(3-

hexylthiophene) (P3HT) and [6,6]-phenyi-C61-butyric acid methyl ester (PCBM), 

and (poly[2-methoxy,5-(2-ethylhexoxy)-l ,4-phenylene vinylene]) (MEH-PPV) and 

PCBM. The universal techniques we propose and demonstrate to achieve efficiency 

improvement include treatment of anode electrode by chemical and optical techniques, 

optimization of buffer layer, and device processing with additives. All reported 

organic solar cells of high efficiencies have been achieved under inert environment, 

among which some devices are either encapsulated devices or tandem devices. The 

polymer solar cells studied in this thesis are unencapsulated single cells tested at 

ambient environment. The efficiency of the P3HT:PCBM device with ITO substrate 

irradiated by UV light has been enhanced to 3.65%, as compared with the efficiency 

of 2.01% from the device fabricated on untreated ITO substrate. To improve the 

efficiency of organic solar cell, we reveal an approach to effectively adjust the 

properties of the buffer layer, Poly(ethylene-dioxythiopene):poly(styrenesulfonate) 

(PEDOT:PSS), achieving an improvement in the efficiency from 2.08% to 2.92%. 
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The properties of MEH-PPV:PCBM devices processed with either of the two 

additives, dimethyl sulfoxide (DMSO) or 1 ,8-octanedithiol (ODT) demonstrate 

significant increases in the efficiency, i.e., from 2.5% to 2.8% after doped 2 vol% of 

ODT, and from 2.5% to 3.15% by doping 5 vol% of DMSO, surpassing the highest 

efficiency ofMEH-PPV:PCBM solar cells reported so far. 

We demonstrate the operation of flexible solar cells, which are fabricated on 

polyethylene terephthalate (PET) substrates. Size effect on the performance of 

flexible solar cells indicates that the efficiency of the solar cell increase in the device 

size. The relationship between the efficiency and the bending angle of the flexible 

solar cells as well as the mechanisms of the degradation in efficiency are evaluated 

for the finite time . . 
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harvests a specific fraction of sunlight and thus achieves a PCE value above 30% [4]. However, 

the manufacture of silicon photovoltaic (PV) cells (silicon and silicon-based components) 

requires millions of gallons of water and temperature as high as 300-500 °C during fabrication as 

well as a large amount of solvents including highly toxic ones. In contrast, organic photovoltaic 

materials show great promise in various low-cost, large-area applications. For instance, after 

applying the metal and organic multi layers as thin as 10 nanometers to a flexible plastic substrate 

at a cost approaching 1 cent per square centimeter (compared to a dollar or so to produce a 

square centimeter of silicon substrate), an organic photovoltaic cell could weight 1 00 times less 

than a cell of silicon substrate [5]. Compared with the inorganic counterparts, organic 

photovoltaic materials with the merits of flexibility, light weight, and low cost will lead to new 

markets for solar energy, potentially powering everything from watches and calculators to laptop 

computers. However, the highest PCE value of an organic photovoltaic cell reported so far is 

only 6.5% under the standard Air Mass (AM) 1.5G one Sun test condition (100 mW/cm2
) [6]. 

The photovoltaic effect is the fascinating phenomenon that generates direct electrical 

power measured in watts (W) or kilowatts (kW) from functional materials when they are 

illuminated by photons. This property is essential for solar cells to realize power conversion from 

light to electrical energy. Recently, organic photovoltaic materials have attracted significant 

attention. After Weiss et al. first reported high conductivity in iodine-doped oxidized polypyrrole 

in 1963 [7] , much effort has been devoted to the electronic properties of semiconducting organic 

materials in the recent decades. H. Shirakawa, A. J. Heeger, and A, G, MacDiarmid received the 

Noble prize in Chemistry in 2000 for the discovery and development of conductive polymers [8]. 

Polymeric solar cells based on conjugated polymer/fullerene to form a donor/acceptor (D/A) 

3 



bulk heterojunction blend system was first reported in 1995 [9]. Previous work has worked on 

various D/A systems with examples such as (3-hexylthiophene) (P3HT), poly[2-methoxy, 5 

ethyl(2' hexyloxy) paraphenylenevinylene] (MEH-PPV), and [6,6]-phenyl-C61 -butyric acid 

methyl ester (PCBM) [10,11,12,13,14,15] . Compared with other organic donor materials, P3HT 

possesses some unique characters, such as high degree of crystallinity, high hole mobility in 

regioregular state (1 o-4 to 10-2 cm2 N s ), extended absorption in the red spectra region (to 650 

nm), and environmental stability [16] . As a donor material, MEH-PPV has similar properties to 

P3HT, for example, high hole mobility (10-5 cm2N s) [17], high absorption in the red spectrum 

region (to 500 nm), and good environmental stability. PCBM is a common acceptor material for 

photovoltaic cells. It possesses favourable characteristics, such as solubility and absorption 

profiles. The major difference in the functionalities of a donor and an acceptor is that the 

acceptor molecules stabilize free electrons. PCBM is a derivative of fullerene (C60), which 

possesses a high electron affinity. However, since the solubility of C6o is low, it is necessary to 

improve its solubility, which can be realized by attaching a long chain on the C6o molecules to 

form a PCBM molecule. Both pure C60 and its simple derivatives absorb at wavelengths shorter 

than 400 nm [18], and in visible to infrared regions as well. 

1.3 Device structures and operation principles 

The early polymer solar cells consisted of a heterojunction bilayer, in which the donor 

and acceptor phases were deposited sequentially on the top of the other layer with a single 

common interface (Fig. 1.1 a). Since the majority of the excitons were generated at a distance 
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more than Lex away from the heterojunction interface, very low PCE values were achieved, 

where Lex was the distance that an exciton can travel within its lifetime. This problem can be 

solved by using a bulk heterojunction (BHJ) with a planar-layered structure, where the organic 

light absorbing layer is sandwiched between the two different electrodes (Fig. 1.1 b). In bilayered 

and BHJ solar cells, one of the electrodes must be transparent, for which an indium-tin-oxide 

(ITO) film is a common selection, though FTO (Fluorine tin oxide) can also be used. The other 

electrode is usually aluminum, while calcium, silver, gold or other metals may also be used. 

D or 

Anode 

(a) (b) 

Figure 1.1: Schematic illustration of an organic PV cell: (a), an organic bilayered solar cell; and (b), an 

organic bulk-heterojunction solar cell. 

1.3.1 Bilayer PV cells 

In bilayer PV cells, organic donor and acceptor materials contact together through two 

thin film layers. Each donor or acceptor material has a characteristic HOMO (highest occupied 

molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies, with the HOMO 
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and LUMO of the donor being higher in energy than those of the acceptor, respectively. The gap 

between the HOMOs and LUMOs is referred to as the optical band gap (Fig. 1.2a). This 

determines the minimum wavelength of the light required for excitation in each material. Due to 

the fact that the optical band gap is smaller than the energy required to create a free electron hole 

pair, when photons hit either donor or acceptor materials to excite an electron from the HOMO 

to the LUMO, it will generate only a couple of electron-hole pairs called excitons, not free 

electron-hole pairs. In order to generate a free electron-hole pair, the exciton must travel to the 

interface between the donor and acceptor molecules. At the interface between these two layers, 

an electrical field results from the initial movement of electrons from the acceptor to donor, and 

the movement of holes in the reverse direction. This process quickly reaches equilibrium and 

forms a barrier to further charge transport. When light hits the cell, free electron-hole pairs are 

created, and migrate to the p-n interface where they separate due to the inherent electrical 

potential-energy difference in the cell. In this process, electrons, which have been excited to the 

LUMO of the donor molecule, can jump into the LUMO of the acceptor (Fig. 1.2b), driven by 

the LUMO level offset between the donor and the acceptor, or holes in the HOMO of an acceptor 

can jump into the HOMO of the donor (Fig. 1.2b ), driven by the HOMO level offset between the 

donor and the acceptor, thus the exciton becomes a free electron and a free hole [19]. This 

dissociation can occur only ifthe difference in energy between the HOMOs or LUMOs is greater 

than the binding energy of the exciton. The separated free electrons and holes from the excitons 

then migrate to their respective electrodes; and an external current should be measured. 
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F igure 1.2: Schematic representatjon of (a) energy-band diagram and (b) migration of electrons and holes 

in the bilayer PV cells. 

1.3.2 Bulk-heterojunction (BHJ) PV cells 

The idea of a heterojunction is to prepare a junction by using two materials of different 

electron affinities and ionization potentials, in order to favour exciton dissociation. In this case, 

electrons will be accepted by the material with the larger electron affinity and holes by the 

material with the lower ionization potential. The simplest BHJ structure is a layer where an 

electron-accepting and an electron-donating material are blended together, sandwiched between 

two different conducting contacts, typically a material of high work function (e.g. ITO) and a 

metal of low work function (e.g. AI, Ca or Ag). The difference in the work function provides an 

electrical field that drives holes flow to the high work function metal (anode) and electrons to the 

low work function metal (cathode) from the blended organic layer. This electrical field allows 

for the differences in the potential energies that are larger than the exciton binding energy, to 
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break up the photon generated excitons. These excitons may be broken up to supply the electrons 

and holes. Furthermore, the blended layer thickness is usually similar to the exciton diffusion 

length, and then wherever an exciton is photogenerated in either metal, it can easily diffuse to an 

interface and break up. If continuous processes exist in each material from the interface to the 

respective electrodes, then the separated charge carriers may travel to the contacts (Fig. 1.2) and 

deliver current to the external circuit. This effect has been reported independently by several 

groups for a blend of two conjugated polymers [20,21 ,22]. 

Compared with the bilayer organic PV cell, the bulk-heterojunction overcomes the 

limitation of charge generation at a two-dimensional interface (bilayer) by distributing the 

acceptor more or less homogeneously into the donor matrix, thereby generating a three 

dimensional network of photoinduced charge interfaces. Recently, BHJ type PV cells composed 

of mixtures of conjugate polymer/fullerene derivatives have exhibited conversion efficiency as 

high as 6.1% under solar simulator [23]. 

1.3.3 Fullerene-Based solar cells 

PCBM is the most widely utilized electron conducting acceptor type-polymers in organic 

solar cells due to its solubility. Important representatives of hole conducting donor-type 

semiconducting polymers on the other side are (i) derivatives of phenylene-vinylenes, for 

example, MEMO-PPV and MEH-PPV, (ii) derivatives of thiophene chains such as P3AT, P30T, 

and P3HT, and (iii) derivatives of phthalocyanine, such as copper phthalocyanine (CuPc), zinc 

phthalocyanine (ZnPc), and magnesium phthalocyanine (MgPc). 
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a) PPV-PCBM solar cells 

Shaheen et al. showed that a power efficiency of 2.5% under AM 1.5 conditions can be 

obtained by using chlorobenzene as a solvent for spin-casting in the weight ratio of 1 :4 for 

MDMO-PPV:PCBM[24]. since PPV possesses a larger EHoMo value, for example, EHoMo of 

MEH-PPV is 5.3 eV, High Voc is the characteristics of the PPV-PCBM solar cells, for example, 

0.8 V Voc can be obtained from MDMO-PPV:PCBM solar cells, and Voc of MEH-PPV:PCBM 

solar cells is 0.85 V in this thesis (Chapter 4). 

b) P3HT-PCBM solar cells 

Thiophenes are conjugated polymers with good environmental stability, solubility and 

processability. Regioregular poly(3-alkylthiophenes )(P3AT), poly(3-hexylthiophene )(P3HT), 

and poly(3-octylthiophene) are used as electron donors in polymer:fullerene bulk heterojunction 

solar cells with record power conversion efficiencies up to 5%[12]. P3HT is the most widely 

used donor conducting donor type-polymers in thiophene:fullerene solar cells, using P3HT as 

donor and PCBM as acceptor, bulk heterojunction solar cells have been realized with power 

conversion efficiencies up to 5%[12,25]. The high efficiency of these devices is proposed to be 

due to a microcrystalline lamellar stacking in the solid state packing [26], and P3HT exhibits a 

hole mobility up to 0.1 cm2N·s [27,28]. 
9 



c) CuPc-PCBM solar cells 

Since 1986, Tang use a copper phthalocyanine (CuPc)/3,4,9,10-perylenetetra-carboxylic-

his-benzimidazole heterojunction to improve the power conversion efficiency from almost zero 

to 0.95%[29]. Phthalocyanine (Pc) have attracted great interest recently for the possibility to 

build a high PCE solar cell. The most common phthalocyanine used in organic solar cell are 

copper phthalocyanine[30,31 ], zinc phthalocyanine[32], tin (II) phthalocyanine[33], and even 

copper hexadecafluorophthalocyanine[34] . These studies have shown Pes can be used to build a 

bilayer structure OSC by thermal evaporation. However, the PCE of the Pc solar cells is still low 

compared to poly(3-hexylthiophene) (P3HT):([6,6]-phenyl-C61 butyric acid methyl ester) 

PCBM bulk heterojunction solar cells. The reason for that is the bulk heterojunction concept has 

heavily increased (orders of magnitude) the interfacial area between the donor and acceptor 

phases compared to bilayer structure[35]. On the other hand, in a conjugated polymer blend, both 

components exhibit a high optical absorption coefficient and cover complementary parts of the 

solar spectrum[36]. Bilayer-structured solar cells are usually prepared by thermal evaporation 

while the bulk heterojunction can be achieved by the co-deposition of donor and acceptor 

pigments or solution casting of polymer/polymer, polymer/molecule, or molecule/molecule, 
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donor/acceptor blends[36]. The cost of thermal evaporation is high for industrial production, and 

the deposition process is complicated as compared with spin coating. 

d) Tandem solar cells 

Tandem solar cells, which is two solar cells with different absorption characteristics are 

linked in order to take advantage of a wider range of the solar spectrum, is the tendency of the 

development of the organic solar cell. Using P3HT:PC70BM as the front cell and 

PCPDTBT:PCBM as the back cell, tandem solar cells have been realized with open circuit 

voltage up to 1.24 V and power conversion efficiency up to 6%[6]. The high efficiency of this 

device is proposed to be due to the wide solar spectrum and two open circuit voltage of the front 

cell and back cell in series, for example, open circuit voltages of P3HT:PC70BM and 

PCPDTBT:PCBM solar cells are 0.63 and 0.66 V, respectively. 

1.4 Characterization of organic solar cells 

1.4.1 Solar radiation 

The Air Mass is a measure of the extent of the absorption in the atmosphere which affects 

the spectral content and intensity of the solar radiation reaching the earth' s surface. A widely 

used standard for comparing solar cell performance is the AM 1.5 spectrum normalized to a total 

power density of 1 kW/m2 (1 00 mW/cm2
). Figure 1.3 shows the solar energy distribution at AM 

1.5 as a function of wavelength, in which the peak energy occurs at ~580 nm. In order to increase 
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the absorption of solar energy, the peak absorbance of the film used in the polymer solar cell 

should occur around 580 nrn. 
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Figure 1.3: Schematic illustration of different Air Mass (AM) solar irradiation spectra as received on earth 

and spectral irradiance for AM 1.5G reference spectrum (Global tilt). 

1.4.2 Electrical properties ofPV cells 

The performance of a PV cell is measured under the standard irradiation condition. The 

standard reporting conditions for rating organic solar cells are: 1000 wm-2 (100 mW/cm2
) 

irradiance, AM (air mass) 1.5 globe reference spectrum, and 25°C cell temperature. The power 

conversion efficiency (PCE) of a PV cell is the power output divided by the incident light power, 

which equals to: 

(1.1) 

Each term in the Eqn. ( 1.1) is explained in the following paragraphs: open circuit voltage ( Vac) is 

the potential difference between the work functions of the two metal contacts [36]. However, in a 
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p-n junction, the maximal available voltage is determined by the difference of the quasi Fermi 

levels of the two charge carriers, that is, n-doped semiconductor energy level and p-doped 

semiconductor energy level, respectively. In organic solar cells, Voc is found to be linearly 

dependent on the HOMO level of the electron donor and the LUMO level of the electron 

acceptor [3 7,3 8]. 

l sc is the short circuit current, which is determined by the product of the photoinduced 

charge carrier density and the charge carrier mobility within the organic semiconductors: 

(1.2) 

where n is the density of the charge carriers, e is the elementary charge, 11 is the mobility, and E 

is the electric field [3 6]. 

Pin is the incident light power density, which is identified at 1000 W/m2 with a spectral 

intensity distribution matching that of the sun on the earth's surface at an incident angle of 48.2°, 

called the AM 1.5 spectrum [39]. It should be pointed out that mobility is not a material 

parameter but a device parameter; it is also sensitive to the nanoscale morphology of the organic 

semiconductor films[ 40,41 ,42]. Mobility can also be defined as: 

(1 .3) 

where VH is the Hall voltage, Rs is the sheet resistance, I is the current, and B is the magnetic 

field, and Rs is determined by the following formula: 

(1.4) 

where t is the thickness of the film, p is the sheet resistivity, which is equal to the inverse of the 

conductivity, i.e. 
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1 
p = 

a 

where (J is the conductivity. 

(1.5) 

Fill factor (FF) is defined as the ratio of the maximum power divided by the short circuit 

current and the open circuit voltage in the current density-voltage (J- V) characteristics of the 

solar cell: 

I xV FF = mpp mpp 

Jsc X Voc 
(1.6) 

where lmpp and Vmpp are the current and voltage at the maximum power point (maximum area of 

J-V curve as indicated in Fig. 1.4, respectively. 
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Figure 1.4: Current-voltage (J- V) curve of an organic solar cell. 

In view of the role that each term plays in Eqn. (1.1), it is obvious that large values of the 

three parameters {15c, V0 c, and FF) generate a higher PCE value. 
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1.4.3 Optical properties ofPV cells 

Optical properties of PV cells include absorption coefficient and refractive index. 

Absorption coefficient a is a material property which defines the extent to which a material 

absorbs light energy, 

t 
(1.4) 

where ]0 is the intensity of the incident light, 11 is the intensity of the light after passing through 

the film, and t is the thickness of the film. The extinction coefficient k for a particular substance 

is a measure of the amount of absorption loss when the electromagnetic wave propagates through 

the material. Equation (1.5) shows the dependence of the absorption coefficient on the extinction 

coefficient and wavelength. 

47l"k 
a =--

..1. 
(1.5) 

where A. is the wavelength in vacuurp. The parameter used to describe the interaction of 

electromagnetic radiation with matter is the complex index of refraction, N, which consists of a 

real part (n) and an imaginary part (extinction coefficient k). 

N = n- ik (1.6) 

where, n is the refractive index indicating the phase velocity (n = c/v), and k represents the 

damping of an electromagnetic wave inside the film. Both of n and k can be determined by 

ell ipsometry. 
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1.5 Material selection 

For a bulk-heterojunction photovoltaic cell, the active blend layer consists of an acceptor 

and a donor. It has been recognized that the most efficient exciton dissociation in organic 

materials occurs at the D/ A interface. At this interface, the donor molecules must satisfy several 

conditions in order to function efficiently: (1) absorption of visible or IR light is important for 

the conversion of photons into excitons; (2) donor molecules must have the space which allows 

the movement of the exciton to a donor-acceptor interface; (3) donor molecules must have 

energy differences in HOMO to acceptor's HOMO and LUMO to acceptor's LUMO which 

allow for exciton dissociation; (4) once exciton dissociates, the hole should be transferred to the 

anode [5]. Organic donor materials (Fig. 1.5) reported so far include PCPDTBT [43,6], 

pentacene [44], MEH-PPV [14,15], phthalocyanine [45,46,47] , and P3HT [1 0,11 ,13]. On the 

other hand, in order to function efficiently, an acceptor is required to possess: (1) photon 

absorption property; (2) allowable space for the exciton movement; and (3) proper HOMO and 

LUMO difference. In addition to the three factors just mentioned, acceptor molecules are also 

expected to stabilize free electrons. PCBM is an acceptor material which has a high electron 

affinity. Reported acceptor materials used in the organic PV cells include PTCBI and F8BT. 

There are many combinations from these materials. Performance of some reported organic PV 

cells is reviewed in Table 1.1. PCDTBT-PCBM PV cell shows a high efficiency, due to the use 

of the polymer absorbing over a wide range of the solar spectrum. It can be found from Table 1.1 

that P3HT -PCBM PV cells possess relatively high PCE values. The data from Table 1.1 also 

indicate that PC71BM gives comparable or better performance as compared with the PCBM in 

fullerene- P3HT PV cells. The highest PCE reported so far is 6.5% by A. J. Heeger and 
16 
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Figure 1.5: Molecular structures of selected semiconducting polymers used in PV cells 
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his coworkers[6]. A new structure, tandem cell architecture, is used in their cells to achieve this 

high efficiency. The principle of tandem cell architecture is two solar cells in series, with 

different absorption characteristics to cover a wider range of the solar spectrum, are fabricated 

with each layer processed from solution with the use of bulk heterojunction materials comprising 

semiconducting polymers and fullerene derivatives. The device structure of the polymer tandem 

solar cell is Glass/ITO/PEDOT/PCPDTBT:PCBM/TiOx/PEDOT/ P3HT:PC71BM/Ti0x/Al. The 

highest PCE of the single BHJ PV cell reported to date is from PC70BM-PCDTBT by A.J. 

Heeger' s group [23]. The high PCE is attributed to a combination of the use of a polymer which 

absorbs over a wide range of the solar spectrum and 1 ,8-alkanediothiol additive that improves 

the morphology of these films. 

It can be found from Table 1. 1 that P3HT-PCBM PV cells generally reaches high PCE 

values. The highest PCE reported for these PV devices to date is 5.0%. Molecular structures of 

selected polymers used in PV cells are shown in Fig. 1.5. These materials are p-type, hole 

conducting material that works as electron donor. It is obvious from Table 1.1 that MEH-PPV 

possesses a larger EHoMo value and P3HT has a relatively higher mobility (Table 1.2). Therefore, 

P3HT and MEH-PPV are selected as the donors of the PV cells in this study. Among these D/A 

systems (Table. 1.1), P3HT:PCBM shows a high PCE, i.e, 4.4-5.0%, due to some unique 

properties of P3HT and MEH-PPV over other polymers [17,48]. Figure 1.5 shows the molecular 

structures ofMEH-PPV and P3HT. It is found that both of them have long alkyl chains, to render 

P3HT and MEH-PPV high solubility in most common solvents, including chloroform, 

chlorobenzene, and dichlorobenzene. 
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Table 1.1: Performance of reported organic solar cells with their full names given in the list of 

abbreviations. 

Donor Acceptor Solvent Thickness P (mW/cmL) PCE (%) Ref. 
(nm) 

PCDTBT PC11BM DCB 100 6.] [23] 
PCPDTBT PC11BM CB 110 100 5.5 [43] 
P3HT PCBM CB 100 90 5.0 [25] 
P3HT PCBM CB 80 4.9 [12] 
P3HT PCBM DCB 220 100 4.4 [1 0] 
P3HT PCBM CB 175 85 4.4 [ 1 ] ] 
P3HT PC11BM CB 100 85 4.1 [49] 
P3HT PCBM CB 100 85 3.8 [49] 
P3HT PCBM DCB 225 100 3.7 [50] 
P3HT PCBM DCB 200 100 3.6 [50] 
CuPc PCBM 150 3.6 [51] 
P3HT PCBM DCB 290 100 3.5 [50] 
P3HT PCBM DCB 250 100 3.5 [50] 
P3HT PCBM DCB 330 100 3.5 [50] 
P3HT PCBM CHCb 150 100 3.4 [52] 
PCPDTBT PC11BM DCB 200 100 3.2 [53] 
P3HT PCBM Xylene 100 100 3.0 [54] 
MEH-PPV PCBM 20 2.9 [9] 
MDMOPPV PCBM 2.5 [24] 
P3HT PCBM DCB 200 85 2.4 [ 11] 
P3HT PCBM DCB 140 100 2.1 [50] 
ZnPc PCBM 100 1.9 [55] 
P3HT PCBM CB 200 85 1.8 [ 11] 
P3HT PCBM DCB 72 100 1.8 [50] 
P3HT PCBM 96 1.7 [56] 
P3HT PCBM TMBZ 125 100 1.5 [57] 
MEH-PPV PCBM DCB 170 130 1.5 [ 15] 
CuPc PTCBI 100 1.4 [47] 
P30T PCBM TMBZ 125 100 1.1 [57) 
PEBT PCBM CB 90 100 1.1 [58] 
PTV PCBM CB 100 0.6 [59] 
P3HT PCBM Xylene 100 100 0.25 [54] 
P30T SWNT CHCl3 100 100 0.22 [60] 
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Table I.2. Comparison of PV cells with different semiconducting polymers [27]. 

Polymer EwMo EHOMO E Hole mobility 
g 2 

(eV) (eV) 
(em Ns) 

(eV) 
PTAA -2.00 -5.00 3.00 -4 .J 

I 0 -10 

MEH-PPV -2.90 -5.30 2.40 -4 .j 

I 0 -I 0 
P3HT -3.00 -5.10 2.IO -4 - 1 

I 0 -I 0 
PTV -3.I 0 -4.90 1.80 - ) - j 

10 -10 
PDOCPDT -3.35 -5.I5 1.80 -4 -3 

I 0 -10 
PCPDTBT -3.57 -5 .30 1.73 -L 

10 
PBTTT -3.60 -5.10 1.50 0.2-0.6 
PDDTT -3.60 -4.70 1.10 

Table.1.1 shows that PCBM is a common material which has been used as an acceptor in 

photovoltaic cells. C60 and its derivatives show an n-type, electron conducting behavior and 

serve as electron-acceptor material. With the molecular structure in Fig. 1.6a, C60 has a high 

electron affinity, with an efficient capture of the free electrons. However, the solubility of 

pristine C60 is quite low. As a soluble C60 derivative, PCBM was first synthesized by Wuld et a/. 

[61] and has been widely used in polymer/fullerene solar cells with the molecular structure 

illustrated in Fig.1.6. 

There are some constraints limiting the efficiency of a conjugated polymer-based PV 

device, which include short exciton diffusion length (exciton generation), low mobility of the 

charge carriers (carrier collection), and photon collection (light absorption). It has been reported 

that exciton generation and carrier collection has close relationships with the morphology of the 

film [62]. Increasing the roughness of the morphology of the film will result in an increased 

contact area between the polymer film and the metal cathode [16]. Therefore, when the exciton 

diffusion length is increased, more exciton will be generated. Due to the fact that a rough surface 
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of the film improves the film crystallinity, the hole mobility in the film will also be increased as 

the film surface increases. 

Figure 1.6: Molecular structures of (left) C60 and (right) [6, 6]-phenyl C61 butyric acid methyl ester 

(PCBM). 

To achieve an efficient photo-induced charge transfer, it is very important to understand 

the following aspects: (1) Selection of the solvent is very important for obtaining good 

morphology of the films as well as the efficiency and stability of the PV devices. These solvents 

may include xylene, toluene, chloroform, chlorobenzene and 1, 2-dichlorobenzene. (2) The 

morphology of the films should be sufficiently good, which should be free from pinholes, kinks, 

and overlapping of chains. The composition of donor/acceptor thus plays an important role to 

achieve good device performance. If the concentration of the acceptor is too high, the films will 

have kinks, overlapping chains, and the photo-induced charge transfer rate will be low[62]. On 

the other hand, if the concentration of an acceptor is too low, the interface of the organic layer 

and the electrode will become smooth, and the exciton will not have enough space to diffuse, 

resulting in a low exciton generation efficiency [62]. (3) Thermal annealing was found to be a 

possible approach to enhance the photon absorbance, improve the short circuit current, fill factor, 
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and therefore the efficiency of the device. To achieve a higher efficiency, the optimal annealing 

conditions of P3HT/PCBM and MEH-PPV/PCBM films must be determined. My previous 

research work studied these aspects in order to discover optimal parameters for sample 

preparation as well as optical constants of thin films for multilayer design and performance 

improvement [63]. The optimal solvent, composition ratio, and thermal annealing conditions 

have been discovered through the characterization of the optical properties of thin films, aided by 

the morphology observation with atomic force microscopy (AFM). The refractive index of the 

film blended with two materials is a complex number, with a real part and an imaginary part 

(extinction coefficient, k), which can be determined by an ellipsometry. The absorption 

coefficient can be derived from the relationship between the absorption coefficient and the 

extinction coefficient. 

1.6 Outline 

The majority of research on device fabrication and characterization of organic solar cells 

has been carried out in vacuum or inert atmosphere in order to prevent the rapid degradation of 

the films and device. Efficiency and stability of the devices are two major limitations to be 

overcome before organic solar cells find practical applications. In this study, we aim at 

developing universal techniques to improve the efficiency of organic solar cells. Except vacuum 

deposition of aluminum film as the cathode, all other steps of device fabrication and 

characterization have been carried out in ambient environment. 
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Our research here starts from the preliminary study reported in my Honour thesis [63]. In 

Chapter 2, we study efficiency improvement in OSCs by using a modified ITO anode, in which 

the influence of chemical and UV treatments of ITO on the performance of organic solar cell is 

investigated. A high conductivity approach for efficiency improvement is discussed in Chapter 3, 

aided by experiments with atomic force microscopy (AFM), and spectrophotometer. The optical 

calculation verifies the effectiveness of this approach, indicating that light harvested in the active 

layer is improved in this approach. Therefore, the efficiency of OSCs based on this approach is 

improved. In Chapter 4, the properties of devices processed with either of two additives, 

dimethyl sulfoxide (DMSO) or 1 ,8-octanedithiol (ODT), are studied by AFM, scanning electron 

microscopy (SEM) and spectrophotometer. After doping with a small amount of ODT or DMSO, 

efficiencies of the devices are significantly enhanced. Moreover, the efficiency achieved by 

processing with DMSO is the highest efficiency reported so far for the MEH-PPV:PCBM solar 

cells. We demonstrate successful operation of flexible solar cells in Chapter 5. In addition, we 

reveal the relationship between the efficiency and the bended OSC. SEM studies show that the 

bended PH510 film (anode) and the aluminum film have a rough, cracked, and inconsistent 

morphology. The degradation in the performance of OSC as a function of bending angle is 

experimentally measured. 
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Chapter 2 

Surface treatments of indium-tin-oxide substrates 

for efficiency improvement 

Abstract 

In this chapter, the influence of different surface treatments of indium tin oxide (ITO) on 

the performance of organic solar cells is investigated, which includes chemical treatments by 

processing ITO substrates in either HCl or NaOH solutions, ultraviolet (UV) ozone treatments 

with two UV light sources of different emission spectra and intensities referred as UVl and UV2 

herein, and different combinations of these methods. Heterojunction solar cells 
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(ITO/PEDOT:PSS/P3HT:PCBM/ AI) with different ITO treatments have been tested. After 

characterizing the changes in the surface properties of ITO anode with techniques such as Hall 

measurement, Seebeck coefficient measurements, absorption spectroscopy, surface sheet 

resistance measurement, atomic force microscope (AFM), and cyclic voltammetry, it has been 

found that the surface treatments change the properties of the ITO thin film (sheet resistance, 

carrier concentration, surface roughness, transmittance, work function and contact angle). As a 

consequence, the device performance has been significantly altered. The PCE of the device at 

AM 1.5 with ITO treatment by higher intensity UV2 light illumination exhibits a pronounced 

increase to 3.65%, as compared with 2.01% from the untreated ITO substrate. 

2.1 Introduction 

Organic solar cells have been the focus of research in terms of efficiency and stability for 

their advantages of low cost and great potential in the photovoltaic market [9, 12,1 0]. Due to the 

high transmittance in the visible region, relatively low sheet resistivity and suitable work 

function, indium tin oxide (ITO)-coated glass substrates are commonly used as the anode in the 

organic solar cells [11 ,30,64]. The efficiency of organic solar cells with as-deposited ITO, 

however, is limited by many factors, such as short circuit, unstable J- V characteristics and low 

fill factor (FF). To mitigate these problems, various surface treatments using chemical solvent 

[65,66,67,68], UV ozone [30,64,69,70], and gas plasma [71,72] have been studied to optimize 

ITO properties, mostly in the study of organic light emitting diodes (OLEDs) with a few reports 

on organic solar cells [30,73]. Properties ofthe ITO films, for example, surface morphology and 
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sheet resistivity, are closely related with the performance of the organic solar cells. The effects of 

several surface treatments on the ITO parameters such as work function, surface roughness, sheet 

resistance, and carrier mobility have been extensively studied in the applications of OLEDs 

[64,69,70,71 ,72]. Kim et al. studied the effect of the oxygen plasma, aquaregia, and 

combinations of these two treatments on ITO surface properties, in which the best OLED 

performance was obtained with oxygen plasma treatment [64,65,66,68,67]. On the other hand, 

Nuesch et al. [74,75,76,77] also studied the chemical surface treatments and plasma treatments, 

and found that the OLED device with ITO acid treatment possesses a higher efficiency compared 

with the plasma treatment alone or its combination with acid treatment. It was also demonstrated 

that the optimal ITO surface treatment condition depends on the initial properties of ITO, 

material used, deposition method and annealing condition [65,78]. Djurisic et al. have performed 

a comprehensive study on the performance of copper phthalocyanine (CuPc)/C60 solar cells with 

ITO surface treatments (acid treatment with HCl solution, UV ozone treatment, mechanical 

treatment, and their combinations) [30]. The lowest sheet resistance in their work was obtained 

with UV ozone treatment as determined by Hall measurements, whereas the mechanical 

treatment followed by UV ozone and HCl solution gave the lowest resistance from four point 

probe ( 4pp) technique. UV ozone followed by HCl solution treatment resulted in the highest 

surface roughness. On the other hand, the largest value of the Seebeck coefficient was obtained 

from the untreated ITO while surface treatment slightly decreased the Seebeck coefficient. After 

characterizing ITO substrates with different surface treatments, it was found that the relationship 

between the ITO parameters and the performance of the solar cells was very complicated. It was 

observed that the HCl treatment, whether alone or in combination with UV ozone, increased the 
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short circuit current. UV ozone treatment alone also increased the short circuit current for a small 

amount, while the open circuit voltage was increased. The conclusion drawn by Djurisic et al. 

also indicated that the PCE of the CuPc/C60 cell (- 0.1 %) with the optimal surface treatment 

(mechanical + UV + HCl) was one order of magnitude larger than the PCE of the solar cell 

fabricated on an untreated ITO substrate (- 0.01 %), However, recent research has been mostly 

focused on the blends of regioregular poly(3-hexylthiophene) (P3HT) and a soluble fullerene 

derivative ([6,6]-phenyl C61 -butyric acid methyl ester, PCBM), the material combination that has 

led to high PCE values until now (4%- 5 %) [10,13]. In this chapter, the relationship between 

the ITO surface properties and the performance of the organic solar cell will be investigated to 

address the fact that different approaches for ITO treatment are required for different 

photovoltaic active materials and different initial properties of ITO films. In order to understand 

the influence of ITO surface treatment on the performance of P3HT:PCBM solar cells and to 

identify optimal parameters for ITO surface treatment, a series of ITO surface treatments have 

been performed in this study to optimize the efficiency of the P3HT:PCBM solar cells, including 

hydrochloric acid (HCl) treatment, sodium hydroxide (NaOH) treatment, low-intensity UV 

ozone treatment (UV1), high-intensity UV treatment (UV2), and different combinations of these 

approaches. The properties of the ITO films with different treatments will be characterized by 

sheet resistivity, surface roughness, Seebeck coefficient and AFM morphology. 
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2.2 Experimental details 

2.2.1 Device fabrication 

(a) Treatment of ITO surface 

Seven different approaches for ITO treatment have been used to modify the surface of ITO 

substrates, before spin-coating the PEDOT:PSS and the polymer films. These approaches are: 

(1) Ultrasonic cleaning: The ITO substrate is successively washed in an ultrasonic bath of 

acetone and alcohol for 15 min each, then rinsed in deionized (DI) water for 1 min, and 

dried on a hot plate at - 50°C for 20 min. 

(2) Acid treatment: Acid treatment is performed by dipping the substrate into a I 0% aqueous 

acid solution for 10 min at room temperature first followed by ultrasonic cleaning (1 ). 

The acid solution used in this study is HCl, which was reported to achieve the best results 

for OLEDs [79]. 

(3) Sodium hydroxide (NaOH) solution treatment: The substrate is dipped in a 7% NaOH 

solution at room temperature for 10 min, followed by ultrasonic cleaning (1). 

(4) UV1 ozone: UV ozone treatment is carried out with the irradiation of an ITO substrate by 

an UV lamp (UVS54, Mineralight) at a distance of 5 em between the lamp and the 

sample for 30 min [69], the intensity of the UV light is -1 mW/cm2 measured by the 

power meter, and then followed by the ultrasonic cleaning (1 ). 

(5) UV2 ozone: UV2 ozone treatment is performed with a 75 W UV light source for 15 min, 

with a distance of 5 em between the lamp and the sample and an intensity of -23 

mW/cm2 followed by the ultrasonic cleaning (1). 
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(6) HCl + UV: HCl treatment is carried out first on the ITO substrate followed by the UV1 

and cleaning. 

(7) HCl + UV2: HCl treatment is performed first on the ITO substrate followed by the UV2 

and cleaning 

The ITO coated glass substrates with surface sheet resistance of 10 ± 5 0 /square (CB

SOIN-0111) have been purchased from Delta Technologies, Ltd. All ITO substrates are first 

etched by - 20% HCl solution for - 30 min to the designed pattern followed by rinsing in DI 

water and dried on the hot plate at - 50°C for 20 min. Then, the ITO substrates will be treated in 

different ways. 

(b) Fabrication of organic solar cells 

For the organic solar cells fabricated using P3HT as the electron donor and PCBM as the 

electron acceptor, each device has an active area of - 12 mm2 with a structure of 

ITO/PEDOT:PSS/P3HT:PCBM/Al. Regioregular P3HT and PCBM have been purchased from 

American Dye Source Inc. and Nano-C Inc. , respectively, and used as received. A PEDOT:PSS 

layer between the ITO and the active layer is adopted in the device to improve the hole collection, 

and an AI electrode is used for electron collection. Organic solar cells have been fabricated 

according to the following steps: The treated ITO substrate is first ultrasonicated sequentially in 

acetone, alcohol and Dl water for 15 min each, and then dried on a hot plate at - 50 °C for 20 min. 

PEDOT:PSS (Clevios P VP AI 4083) aqueous solution is filtered by a 0.45 11m filter, followed 

by spin-cast at 4000 r.p.m. for 120 s. The substrate is then dried on the hot plate for 10 min at 70 

°C. The device with the best performance has been observed when the mixed solution had a 

P3HT:PCBM ratio of 1:0.8, i.e., with a concentration ofP3HT (10 mg/ml) and PCBM (8 mg/ml) 
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in 1,2-dichlorobenzene [13]. A blended solution with a P3HT:PCBM ratio of 1:0.8 is stirred at 

40°C for 24 h. After that, the 1 ,2-dichlorobenzene solution comprising P3HT (1 0 mg/ml) and 

PCBM (8 mg/ml) is spun cast at 700 r.p.m. for 40 son the top of the PEDOT:PSS layer. Finally, 

an AI film is thermally deposited on the top of the active layer as a cathode. The device is then 

thermally annealed at ~ 150°C for 30 min and cooled to the room temperature inside a petri dish 

before the measurements. The complete structure of a P3HT:PCBM solar cell is shown in Fig. 

2.1. The characterization of the PCE of the PV cell has been described in the previous chapter. 

P3HT 
3 .0 eV 

4.3eV 

Figure 2.1: Schematic illustration and energy level diagram of a bulk heterojunction P3HT:PCBM solar 

cell. 
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2.2.2 ITO characterization and device measurement 

Surface sheet resistance is determined from four point probe measurement (Fig. 2.2). The 

four point probe (4pp) setup used in our experiment consists of four equally spaced piano wire 

tips with a small radius ( -125 f..Lm) and each tip is flexible in order to minimize sample damage 

during probing. A high impedance current source is used to supply current through the outer two 

probes while a voltmeter measures the voltage cross the inner two probes to determine the 

sample resistivity. Typical probe spacing (s - 1 mm) is adopted [80]. For a very thin layer ( t << 

s), the sheet resistivity can be expressed as [80]: 

v 
Rs = 4.53(-) 

I (2.1) 

In our study, Keithley 2420 source meter is used to provide the impedance current as well 

as to measure the inner probe voltage simultaneously. 

r + -. ~ 

Sample 

Figure 2.2: Schematic illustration of 4-point probe measurement. 

Seebeck coefficient measurement is performed using a home-built setup consisting of a 

digitally controlled hot plate (TP294, Sigma Systems) and a metal plate. Since the specific heat 

capacity of glass is large, it is possible to generate a temperature difference ( - 8 °C) between the 
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two sides of an ITO substrate. The procedures for the measurement are to heat the metal plate to 

a temperature T1 first, set the temperature of the hot plate to be T1 + 8, put one side of ITO on the 

hot plate and the other side on the metal plate, then use Keithley 2420 to measure the voltage 

between these two sides. The spacing between the two electrodes is 2 em. The Seebeck 

coefficient can be expressed as [81] 

S (T ) = lim Vs (T' !1T) = k (~"'.E + A) 
6T-->o !1T e kT (2.2) 

where k is the Boltzmann constant, T is the temperature in Kelvin, M is the energy difference 

between the top of the valence band and the Fermi level. The parameter A can be considered as a 

constant of the organic material. In a degenerate semiconductor, Seebeck coefficient is defined 

as [82] 

S = n
2 

k (+~I 2) 
3 e 77 

where r is the scattering parameter, and 17 * is the reduced Fermi energy, i.e. E~kT, 

(2.3) 

After characterizing ITO substrates with different surface treatments, bulk hetero-

junction solar cells are fabricated and their J- V curves are measured with a Keithley 2420 

SourceMeter under simulated AM 1.5G irradiation (1 00 m W cm-2
) from a xenon-lamp-based 

solar simulator (Newport Oriel 96000 150W solar simulator) with filters. 

2.3 Results and discussion 

Figure 2.3 shows the AFM images of pristine ITO substrate and ITO substrates after 

separate treatment with NaOH solution, or UV light irradiation (UVl or UV2), or HCl solution, 

32 



Figure 2.3: AFM images of (a) an untreated ITO substrate, and ITO substrates processed with (b) HCI, (c) 

NaOH, (d) UVI, (e) UV2, (f) HCI + UVl , and (g) HCI + UV2 treatments. 
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or HCl solution treatment combined with UV light treatments. Different treatments result m 

different surface morphology and roughness, are listed in Table 2.1. Untreated ITO substrate 

possesses a relatively rough surface with a high rms value (cr) of 65.7 nm. NaOH and HCl 

treatments result in a similar rms value of - 54.6 and 53.4 nm, respectively. HCl solutiOn 

treatment followed by UV ozone produces a smooth surface with an rms value of 50.2 nm. The 

UV ozone treatments slightly decrease the surface roughness to 51.4 nm, and an rms value of 

-28.9 nm is found when the UV light intensity is increased to UV2. The experimental results 

indicate that the UV light treatment results in a reduction of surface roughness. 

Table.2.1: Changes in the rms roughnesses of the ITO films after different surface treatments. 

ITO treatment rms roughness (nm) 
Untreated 65.7 
HCJ 53.4 
NaOH 54.6 
UVJ 51.2 
UV2 28.9 
HCJ+UVI 50.2 
HCI+UV2 46.4 

All treatments employed in this work yield rms roughnesses between 28.4 and 66.3 nm, 

which are higher than the values reported by Djurisic et al. from their ITO treatments [30] . The 

reason for this is that, in our experiment, the ITO substrates have been first etched by 36.6% 

concentrated HCl solution for 30 min in order to acquire patterns of organic solar cells, followed 

by ITO treatments with different approaches. These untreated and treated ITO substrates were 

stick by the PVC tape during the etching procedure, however, they immersed in a strong acid 

environment. Since the ITO surface rms roughness increases as a function of the etching time [65] 

and the roughness of the ITO depends on their initial condition (ITO used in Djurisic experiment 
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purchased from China Southern Glass Holding Co. Ltd), it is not surprising to find the difference 

between our results and those in Ref. [30] 

Table 2.2: Changes in the sheet resistances of the ITO films after different surface treatments. 

Treatment Initial resistance (.0/o) Resistance after Resistance differe nee 
treatment (.0/o) (.0/o) 

Untreated 10.48 - -

HCl 10.96 14.58 3.62 
NaOH 11.59 11.19 -0.4 
UV1 12.27 11.76 -0.51 
UV2 9.21 8.38 -0.83 
HCI + UV1 9.65 13.11 3.46 
HCl + UV2 10.05 13.47 3.42 

It should be noted that the obtained results are strongly dependent on the initial ITO used 

[30,65,69]. Even though the sheet resistance of the ITO glass substrates used in this study has 

been specified as 10 ± 5 0/o(sheet resistance unit) by the manufacture, the initial resistance of 

the ITO film was measured before each treatment in order to obtain accurate change in the sheet 

resistance. After treated by different methods, the sheet resistances were measured again and the 

results are summarized in Table 2.2. After HCl solution treatment, the sheet resistance of the ITO 

film increases significantly, however, after NaOH solution or UV light treatment (UVI or UV2), 

the sheet resistance of the ITO film decreases. These results are in agreement with the results 

reported by Li et al. [ 69] and You et al. [70]. When a UV light of higher intensity (UV2) is 

adopted, the sheet resistance of the ITO film indicates a larger resistance difference of -0.83 0/o, 

as compared with -0.51 0/o for the UVl light treatment. This conclusion is also confirmed by 

HCl solution treatment followed by UV2 light treatment, the magnitude of the difference in the 

sheet resistance of ITO by this treatment (3.42 0/o) is lower than that for the HCl solution 

treatment followed by UVl light treatment (3.46 0/o). UV2 light treatment in this experiment 

exhibits the lowest sheet rest stance, whtch mdtcates a promising htgh performance of the devices. 
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The finding here is in agreement with the observation by Djurisic et al. that the lowest sheet 

resistance of ITO shows the highest device performance for CuPc/PCBM solar cells [30]. 
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Figure 2.4: Seebeck coefficient versus temperature for the ITO films after different surface treatments. 

Previous study on ITO surface treatments didn' t reveal any simple relationships among 

the work function, sheet resistance, and the chemical composition ofiTO [65]. The shifts in the 

work function and the changes in the carrier concentration after ITO treatments are still not well 

understood [30]. In order to study the carrier concentration, the dependence of the Seebeck 

coefficient on the temperature is shown in Fig. 2.4. The Seebeck coefficients measured in this 

study are in good agreement with a previous study on the Seebeck coefficient of pyrolytic ITO 

(16 !! V /K) [30,83], which exhibits a nonlinear temperature dependence. The smallest Seebeck 

coefficient is obtained on the untreated ITO, while surface treatment results in an increased 

Seebeck coefficient, which is also in agreement with the results ofDjurisic et al. [30]. According 

to Eq. (2.2), the Seebeck coefficient is proportional to the separation between the Fermi level and 

the conducting band, which indicates that surface treatments increase the separation between the 
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Fermi level and the conduction band. The largest separation obtained in this study is from HCl 

solution treatment. 
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Figure 2.5: Transmittance spectra of the ITO films after different surface treatments in the wavelength 

range of200 - 1300 nm (a) and 400 - 700 nm (b). 

The transmittance spectra of the ITO before and after different surface treatments are 

examined in the UV-vis spectra (200-1300 nm), which is shown in Fig. 2.5. The relationship 

between these spectra is complicated, indicating that it is hard to identify which treatment will 
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result in a greater transmittance of ITO from 200 to 1300 run. In order to match with the solar 

spectra (AM1.5G) of peaks mainly in the range of 400 - 700 run, ITO treated with HCl exhibits 

the highest transmittance, followed by HCl+UV 1, HCl+UV2, UV2, UV 1, NaOH, and untreated 

ITO with the lowest transmittance from 530 to 680 run. Lower transmittance means fewer 

photons can arrive at the active layer, which may result in a lower efficiency of the OSC. 
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Figure 2.6: Schematic illustration of cyclic voltammetry measurement. 

The work functions of ITO films with different treatments have been measured by cyclic 

voltarnrnetric method (Epsilon-C3, Bioanalytical Systems, Inc.) in 0.1 M tetrabutylammonium 

tetrafluoroborate (TBATFB) acetonitrile solution, where the cyclic voltammetric system has 

been constructed using a three-electrode electrochemical cell consisted of an ITO and organic 

thin film sample as the working electrode, a platinum wire as the counter electrode, and Ag/ Ag + 

as the reference electrode (Fig. 2.6). The area of the ITO exposed to the electrolyte is about 0.5 

cm2 and the current densities are calculated with respect to this area. All presented potentials are 
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plotted against the saturated calomel electrode (SCE). The energy levels have been calculated 

using the ferrocence (FOC) value of -4.8 eV with respect to the vacuum level which is defined as 

zero [84]. Thus, the work function of ITO should be (4.8 + Yonset) eV [85]. Fig. 2.7 shows cyclic 

voltammetry of ITO before and after various treatments. Table 2.3 summarizes the work function 

of ITO before and after various treatments. 

Table 2.3: Work functions of ITO films after different treatments 

ITO Work function (eV) ± 0.05 
Initial Treated 

HCl 4.42 4.62 
NaOH 4.59 4.52 
UV1 4.23 4.56 
UV2 4.21 4.61 
HCl+UVl 4.24 4.64 
HCl+UV2 4.35 4.49 

It has been found that, after the acid (HCl) or UV treatment, the work function of ITO 

generally increases; however, the treatment with base (NaOH) decreases the work function. 

Therefore, the work function shifts due to the ITO surface acid-basicity. Acidic sites such as 

positively charged surface metal atoms can easily bind a hydroxyl group, while basic sites such 

as negatively charged surface oxygen atoms can easily bind a proton. Therefore, a mineral acid 

will protonate the surface and the anions accumulate on the top of the adsorbed protons, giving 

rise to a surface dipole (Fig. 2.8a). Similarly, the base will dissociate and form a surface bound 

hydroxyl layer on the ITO, and then protons are likely to assemble on the top of the hydroxyl 

layer (Fig. 2.8b ). Thus, acid and base treatments generate opposite work function shifts [76]. In 

this experiment, UV treatments also improve the work function of ITO; it can be attributed to 

carbon removal from the ITO surface [86,87]. Oxidative treatments such as UV and oxygen 

plasma can decrease the atomic concentration of carbon [87]. 
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Figure 2.7: Cyclic voltammogram of ITO substrates for the measurement of work function: (a) HCl 

treatment, (b) NaOH treatment, (c) UV l light treatment, (d) UV2 light treatment, (e) HCI treatment 

fo llowed by the UV I treatment, and (f) HCl treatment followed by the UV2 treatment. 
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Figure 2.8: Illustration ofthe adsorption of acids (a) and bases (b) onto an ITO substrate. 

Figure 2.9: Set-up of contact angle measurement. 

The contact angle is the angle at which a liquid/vapour interface meets the solid surface, 

and their measurements have been performed using a FUJIFilm FINEPIXZ300 digital camera. 

The digital camera is mounted on a tripod to adjust its relative height and level for edge-on views 

of water or di-iodomethane (DIM) droplets. The ITO sample is placed on a lab jack covered by a 

black cloth, a portable lamp is mounted on the right of the ITO sample (Fig. 2.9), and a micro-
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syringe is used to deposit a liquid drop of 3-4 IlL on the surface of the substrate[88]. The steady-

state contact angle was recorded within 30 s after the formation of the drop, and an average IS 

obtained from the five readings. Distilled water and DIM (Aldrich, reagent plus grade) were 

chosen as test liquids with their surface energy parameters are listed in Table 2.4. 

Table 2.4: Surface energy parameters of the test liquids (mJ/m2
) 

Test liquid 
Distilled water 51.0 21.8 72.8 
Di-iodomethane (DIM) 2.3 48.5 50.8 

The surface energies of the ITO with different treatments have been calculated using the 

following equation applied to the two test liquids [89]: 

(l+cosB)rl =2()r:ri +)r:r~d ) (2.4) 

where () is the contact angle, y1 and Ys are the surface energies of the test liquids and ITO 

substrate, respectively. yP and yd corresponds to the polar and the dispersive components of the 

total surface energy, respectively. After calculating y/ and Ysd, the total surface energy Ys and 

polarity Xp can be obtained by the equations: Ys = ri + Ysd andxp = ri Irs, respectively. 

Figures 2.10 and 2.11 show the droplets of the distilled water and DIM on the untreated 

and treated ITO substrates, respectively. Software ImageJ [90] with a contact angle plug-in [91] 

was utilized to measure the contact angles from the captured images. Table 2.5 lists the measured 

contact angles of distilled water and DIM on the untreated and treated ITO substrates. The 

calculated surface energy and polarities of all ITO substrates is listed in Table 2.5, which shows 

that the surface energy and polarity are strongly dependent on the surface treatments. The water 

contact angles of the substrates decrease in the order of UV2, as-received, UV 1, HCl, HCl+UV2, 
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Figure 2.10: Representative images of distilled water droplets in contact with (a) untreated, (b) HCI, (c) 

NaOH, (d) UVl , (e) UV2, (f) HCI + UVI, and (g) HCI + UV2 treated JTO substrates. 
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Figure 2.11: Representative images of DIM droplets in contact with (a) untreated, (b) HCI, (c) NaOH, (d) 

UVI, (e) UV2, (f) HCI + UVl , and (g) HCI + UV2 treated ITO substrates. 

HCl+UVl, and NaOH treated ITO. NaOH treatment results in the largest decrease in the contact 

angle as compared with untreated ITO substrate, from 90.02° to 75.32°, which indicates that 

NaOH treated ITO substrate is highly polar [89]. The observation that the NaOH treated ITO 

substrate exhibits the minimum DIM contact angle (35.21 °) is agreeable to the high polarity 

found on the NaOH treated ITO substrate. The increases in the surface energy and polarity can 

be attributed to the removal of hydrocarbon, which turns the surface more hydrophilic and raises 

the surface energy due to the fact that hydrocarbon possesses relatively low surface energy. 
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Table 2.5 Contact angles, surface energies, and polarities of untreated and treated ITO substrates. 

Treatment Contact angle (0
) Surface en ergy Polarity 

Distilled water Di-iodomethane (mJ/m 2) 

As-received 90.02 41.76 5.24 0.59 
HCl 80.76 35.52 47.29 0.64 
NaOH 75.32 35.21 73.41 0.59 
UV1 85.19 42.20 15.65 0.68 
UV2 92.42 43.41 55.73 0.42 
HCI+UV1 78.23 38.85 8.78 0.24 
HCl+UV2 80.63 37.86 53.94 0.21 

After studying ITO properties with different surface treatments, bulk-heterojunction 

ITO/PEDOT:PSS/P3HT:PCBM/Al devices have been fabricated on ITO substrates after 

different ITO treatments. In Fig. 2.12, the J- V characteristics of seven devices with different ITO 

treatments are compared under AM 1.5 illumination with an intensity of 100 m W cm-2
. The 

device without ITO treatment shows a low performance with Voc = 0.6 V, fsc = 9.77 rnA cm-2, FF 

= 34.3%, and a resultant PCE value of rJe = 2.01 %. UV treatments improve the short circuit 

current to 10.8 rnA cm-2, and for UV2 treatment, the short circuit current is further increased to 

15.3 rnA cm-2. The results indicate that the short circuit current increases with the increase in the 

intensity of UV light, since UV2 intensity ( ~23 m W /cm2
) is much higher than UV 1 intensity ( ~ 1 

m W/cm2
). This improvement in the device performance with the UV treatments is also proved 

by the devices with HCl solution treatment combined with different UV light irradiation. HCI 

solution treatment, whether alone or in combination with either UV 1 or UV2 ozone, raises the 

short circuit current to 11.9, 11.3, and 12.9 rnA cm-2
, respectively. For the HCI solution treatment, 

the fill factor slightly decreases from 34.3% to 33.7%, whereas after being combined with UV1 

or UV2 treatments, fill factor increases to 42.1% and 36.5% respectively. Thus it can be 
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concluded that UV light of appropriate intensity can effectively improve the fill factor, however, 

excess UV intensity decreases the fill factor. Figure 2.12 clearly indicates that UVI and UV2 

treatments are powerful in enhancing the short circuit current and fill factor, which are 10.8 rnA 

cm-2 and 43.2%, and 15.3 rnA cm-2 and 39.8%, respectively. The summary of the device 

performance for different devices with different ITO treatments is listed in Table 2.6. 

The comparison of the device performance, evident from Table 2.7, signifies the 

importance of the surface roughness and morphology of the ITO. The surface of UV2 treated 

ITO film exhibits the smallest roughness, indicating that the performance of the device has a 

close relationship with the nanoscale morphology of the organic solar cells. 
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Figure 2.12: Current density - voltage (J- V) characteristics of P3HT:PCBM heterojunction cells with 

different JTO treatments under AM l.SG illumination. 
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Table 2.6: Summary of the device performance of the P3HT:PCBM heterojunction cells prepared on ITO 

substrates after different treatments. 

ITO treatment lsc(mA em- Voc(V) FF (%) PCE(% 
Untreated 9.77 0.60 34.3 2.01 
NaOH 11.7 0.60 34.4 2.41 
HCl 11.9 0.62 33.7 2.49 
UV1 10.8 0.58 43.2 2.70 
UV2 15.3 0.60 39.8 3.65 
HCl + UV1 11.3 0.60 42.1 2.86 
HCl + UV2 12.9 0.62 36.5 2.92 

which is also in agreement with the results ofDjurisic et. al. [30] . Thus, it can be concluded that 

the surface roughness and the ITO morphology play a significant role in the performance of an 

organic solar cell. ITO roughness and morphology influence the fabricated devices and hence the 

exciton dissociation, which will depend on the substrate used. In addition, ITO interface will also 

play a role in the carrier collection. The highest efficiency of the device is obtained by UV2 

treated ITO, which possesses the lowest sheet resistance (Rs) and the highest work function. 

Table 2.7 Comparison of the performance of the ITO/PEDOT:PSS/P3HT:PCBM/AJ devices and ITO 

properties after different treatments. 

ITO PCE Roughness tJ.R.s (0/o) !'!.(work Surface Polarity 
treatment (%) (nm) function) (eV) energy 

(mJ/m2
) 

As-received 2.01 65.7 N/A N/A 5.246 0.592 
HCl 2.41 53.4 3.62 0.2 47.293 0.648 

NaOH 2.49 54.6 -0.4 -0.1 73.413 0.599 
UV1 2.70 51.2 -0.51 0.3 15.651 0.689 
UV2 3.65 28.9 -0.83 0.4 55.732 0.425 

HCl+UVl 2.86 50.2 3.46 0.4 8.783 0.241 
HCl+UV2 2.92 46.4 3.42 0.1 53.947 0.217 
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2.4 Conclusions 

In summary, effects of different surface treatments (NaOH, HCl, UVl, UV2, HCl + UVl, 

HCl + UV2) on the ITO properties (sheet resistance, surface roughness, morphology, Seebeck 

coefficient, transmittance, work function, and contact angle) have been studied on the 

performance of organic solar cells. All of these treatments improve the roughness of the ITO 

surface. Four point probe measurement shows that HCl solution treatment increases the sheet 

resistance, while UV and NaOH solution treatments yield a lower sheet resistance. HCl solution 

treatment also generates the largest separation between the Fermi level and the conducting band 

as well as the lowest Seebeck coefficient. Furthermore, the influences of the surface treatments 

of the ITO substrates on the characteristics of organic solar cells have been studied by the 

photovoltaic properties of the devices. Experimental results indicate that UV2 treatment on the 

ITO substrate increases the short circuit current and the fill factor, and consequently, improves 

the device performance. 
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Chapter 3 

High efficient organic solar cells with a modified 

buffer layer 

Abstract 

In this study, the effect of two different kinds of PEDOT in the PEDOT:PSS layer is 

investigated, i.e., Clevios PVP Al4083 (Al4083) and Clevios PH51 0 (PH51 0). The composition 

of the PEDOT component in the PEDOT:PSS layer is varied from pristine Al4083 to pristine 

PH510 with the following volume percentages ofPH510 in Al4083: 0, 25, 29, 33, 40, 50, 67, and 

100. The relationship between the conductivity of the PEDOT:PSS layer, light transmission, and 

the performance of the organic solar cells has been systematically investigated. Specifically, 

addition of PH510 into Al4083 solution increases the conductivity of the spin coated PEDOT 

buffer layer, but remarkably reduces the transmission of the buffer layer. In order to achieve the 
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highest power conversion efficiency (PCE), an optimized ratio of PH 510 and Al4083 at 1 :2.5 (29 

wt% of PH 51 0) is identified as a buffer layer in the organic solar cells, for which a short circuit 

current Usc) of 12.06 mA/cm2
, open-circuit voltage (Voc) of0.6 V, and PCE of2.92% under AM 

1.5G (1 00 m W/cm2
) condition are achieved under ambient atmosphere. In addition, optical 

modeling of organic PV devices with different buffer layers is used to compare the optical 

electric field distributions in the case of pristine Al4083. It is found that the field distribution is 

slightly more advantageous for the optimized mixture. 

3.1 Introduction 

Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) has 

been applied in polymer optoelectronic devices, such as light emitting diodes [92,93], thin-film 

transistors [94,95], and organic solar cells [10] owing to the prospect of relatively high 

conductivity [96,97,98], high transmission [96], and solution-based manufacturing via spin 

coating. In organic solar cells, PEDOT:PSS is usually used to match the photoanode Femi Level 

to the energy of the polymer HOMO and also acts as a hole transporting layer [27]. From Eqs. 

1.3-1.5, mobility is inversely proportional to the sheet resistivity, and proportional to the 

conductivity. Clevios PVP AI 4083 is the most commonly used PEDOT:PSS material in organic 

solar cells [10,49,15,99]. Recently, a new type of PEDOT:PSS with high conductivity, i.e. 

Clevios PH510, has been available as a polymer anode in OLEDs [100] or OSCs 

[96,101,102,103] . For an ideal PV device, a low series resistance is required, which includes the 

resistance of the active layer, metal-organic contact, the electrodes, and the buffer layer 
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[104,105,46]. A mismatched PEDOT:PSS layer will reduce the lsc and FF owing to the increased 

series resistance [106]. In this study, the effects of the conductivity of the buffer layer on 

P3HT:PCBM PV devices are investigated, by using several different buffer layer systems based 

on PH51 0, Al4083 and combinations of them. Different conductivities are obtained by doping 

Al4083 with 25, 29, 33, 40, 50, and 67 vol% ofPH510. 

With regard to another limitation of light absorption in the active layer, the transfer 

matrix formalism (TMF) is used in this study in order to evaluate the photon absorption in the 

PV devices and the internal optical electrical field distribution IE 12 inside the devices. This 

approach has already been explained elsewhere [107,108], and applied several times to OSCs 

[109,110,111]. However, it is used here to examine P3HT:PCBM PV systems that make use of 

PH510, Al4083 and mixtures thereof as the buffer layers. Moreover, it is seen that 1£1 2 is 

strongly influenced by the interference effects, and a maximum of 89% in the absorption of the 

incident photons is revealed to occur at 500 nm. 

3.2 Experimental details and optical modeling 

3 .2.1 Device fabrication 

A composite solution with 10 mg/ml P3HT (American Dye Source, Inc.) and PCBM 

(Nano-C, Inc.) in 1:0.8 wt ratio is prepared using 1,2-dichlorobenzene solvent. The polymer PV 

devices are fabricated with a typical sandwiched structure ofiTO/PEDOT:PSS/P3HT:PCBM/AI. 

The ITO coated glass substrates are subsequently cleaned in ultrasonic bath by acetone, alcohol, 
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and distilled water for 30 min each. PEDOT P100, P67, P50, P40, P33, P29, P25, and PO are 

prepared by adding 100, 67, 50, 40, 33, 29, 25 and 0 volume percentage ofPH510 (H. C. Starck) 

to PVP Al4083 (H. C. Starck), and then each PEDOT:PSS solution is stirred for ~24 h before 

using. The PEDOT layer is spun cast at 4000 r.p.m. for 120 s from the pre-dissolved composite 

PEDOT solution after filtering through a 0.45 ~m syringe filter. The PEDOT:PSS layer is baked 

on a hot plate at 100 °C for 5 min. A blended solution with a P3HT:PCBM ratio of 1 :0.8 is 

stirred at 40 °C for 24 h. After that, the 1, 2-dichlorobenzene solution comprising P3HT (1 0 

mg/ml) and PCBM (8 mg/ml) is spin-casted at 700 r.p.m. for 40 son the top of the PEDOT layer. 

Finally, an AI film is thermally deposited on the top of the active layer as a cathode. After 

vacuum evaporation, the device is thermally annealed at ~ 150 °C for 30 min, and then the device 

is stored inside a covered petri-dish and cooled to room temperature before measurements. 

Current density-voltage (J-V) characteristics of all polymer PV cells are measured by 

KEITHLEY 2420 under the illumination of simulated solar light with 100 mW/cm2 (AM1.5G) 

by Newport Oriel 96000 150 W solar simulator. Optical transmission spectra are obtained by 

Cary 6000i spectrophotometer (Varian Inc.). Surface sheet resistance is determined from four 

point probe ( 4pp) measurements (Fig. 2.2), which has been described in Chapter 2.2. 

3 .2.2 Optical modeling 

The methods of using TMF to evaluate the photon absorption and the internal optical 

electrical field distribution 1£12 
inside the PV device have been described by 0 . lnganas [1 09], 

which is briefly summarized below: 
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Considering a plane wave incident from the left at a general multilayer structure having m 

layers between a semi-infinite transparent ambient and a semi-infinite substrate, each layer} (j= l , 

2, .... , m) has a thickness dj and its optical properties are described by its complex index of 

refraction n = 7J + ik , where 17 is the refractive index and k is the extinction coefficient. An 

interface matrix describing each interface in the structure is 

(3.1) 

where rjk and fjk stand for the Fresnel complex reflection and transmission coefficients at 

interface jk, respectively. The Fresnel complex reflection and transmission coefficients are 

expressed in the form 

(3.2a) 

(3.2b) 

for light with electric field perpendicular to the plane of incidence (s-polarized or TE waves), and 

- A. [ -2 2 · A. ] I / 2 q
1

= n
1

cos'f'
1

= n
1

-7] 0 Sin'f'o 

where ¢
1 

is the angle of refraction in layer j. fi is complex index of refraction, ¢o is the angle of 

incidence, in this calculation, I assume ¢o is 0, thus, qi is simplified to n;The layer matrix of 

the propagation through layer j is given by 

(3.3) 
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and 

(3.4) 

where (jdj presents the layer phase thickness, which is related to the phase change that the wave 

experiences as it traverses layer j. From the interface matrix and the layer matrix of Eqs. (3 .1) 

and (3.3), the total system transfer matrix Scan be written 

S12 ] Tim S = ( J(v-J)vLJ . Jm(m+l ) 
22 v=l 

(3.5) 

In this formalism, the optical electric field in layer j , E1, is broken down into a component 

propagating to the right E+1, and out to the left E; ; S relates the components of the field in the 

ambient to those in the substrate in the following way, 

(3.6) 

When the light is incident from the ambient side in the positive x direction, there is 

underlined propagation in the negative x direction inside the substrate, which means Km+J = 0. In 

our case, the substrate is the aluminum. For the total layered structure, the resulting complex 

reflection and the transmission coefficients can be expressed by using the matrix elements of the 

total system transfer matrix ofEq. (3.5) as 

s r = _ 2_1 

sll 

(3.7) 

1 
t = -

s]] 

(3.8) 

To calculate the internal electric field in layer j, the layer system can be separated into 

two subsets, divided by layer j, and then the total system transfer matrix can be written as 
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(3.9) 

The left boundary (j-1 )j partial system transfer matrices for layer j are defined as 

(3.1 0) 

and the right boundary j(j+ I) partial system transfer matrices for layer j are described by 

(3.11) 

The expression of the total electric field in an arbitrary plane in layer j at distance x to the 

right of boundary (j-I )j is given by 

(3.12) 

where 0:::; x:::; d
1 

, we are considering the case where ¢
1 
= 0. 

3.3 Results and discussion 

3.3 .1 Properties of PV devices with different buffer layers 

Figure 3.1 shows the J-V characteristics of the cells with PO, P25, P29, P33, P40, P50, 

P67, and PIOO layer, respectively. 
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Figure 3 .1 : J- V characteristics of P3HT:PCBM devices with buffer layers of PEDOT Al4083 doped with 

different amounts of PH51 0 under AM l .SG solar illumination. 

Figure 3.2 shows the PV performance such as l sc, Vac, FF, and PCE under the AM 1.5 

conditions of P3HT:PCBM solar cells with buffer layers of Al4083 doped with PH51 0 of 

different concentrations. The performance of the cells with different concentrations varies 

significantly, which is due to the sensitivity to the processing conditions and characterization in 

ambient conditions [112]. Each data point in this figure is the average of eight devices prepared 

under the identical conditions, yielding uncertainties within + 7.5%. The reference cell, which is 

the cell with pristine Al4083 buffer layer, has l sc= 10.3 mA/cm2
, V0 c= 0.58 V, FF = 32%, and a 

resulting PCE = 2.1 %. The addition of a low wt% of PH 510 shows a similar value of l sc, V0 c, FF, 

and PCE. The photovoltaic parameters reach a maximum for the devices with a PH51 0 volume 

percentage of29. The achieved values are l sc = 12.66 mA/cm2
, Vac = 0.6 V, FF = 0.39, and PCE = 

2.9 %. For the cells with higher PH51 0 weight percentages (33%, 40%), the photovoltaic 
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Figure 3.2: Photovoltaic performance of P3HT:PCBM bulk heterojunction devices processed with 

Al4083 buffer layers doped with different amounts of PHS! 0. 
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performance rapidly decreases. The corresponding PCE are 2.51 and 1.47%, respectively. After 

increasing PH 510 wt% to 50% and 67%, the performance of the PV devices decreases gradually 

with PCE = 1.45% and 1.13%, respectively. 

From Fig. 3.2, Voc remains nearly constant at 0.56 ± 0.04 V, which is agreeable with the 

fact that V0 c is a parameter dependent on the nature of the materials used and the structure of the 

devices [ 112]. Since lsc is a parameter sensitive to the series resistance of the device and the 

absorption of the active layer, l sc of the cells here reach a maximum for a buffer layer with 29% 

PH51 0 in Al4083 PEDOT. 

To confirm the effect of PH51 0 addition on the conductivity of the PEDOT buffer layer, 

the current-voltage (1- V) characteristics of a modified PEDOT buffer layer deposited on a glass 

substrate are measured. The conductivity is estimated by the Eqs. (1.3) - (1.5). The resistances of 

these PH510 treated PEDOTs (R) are obtained from 4pp measurement and shown in Fig. 3.3. 

The resistance is gradually reduced by adding PH510 as expected. According to Eq. (3 .5), the 

conductivity of modified PEDOT layer can be calculated from the slopes of curves in Fig. 3.3 

and summarized in Fig. 3.4. 

The conductivity is inversely proportional to the resistance and gradually increases by 

adding PH 510 as expected. From the photovoltaic performance curve (Fig. 3 .2), the photovoltaic 

parameters reach a maximum for the devices with a PH51 0 concentration of 29 vol%. At this 

percentage, the conductivity of the PEDOT buffer has been improved by more than 70 folds, 

from 0.0004 (pure Al4083) to 0.028 S/cm (29% PH510). 
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Figure 3.3: (a) Typical 1-V curves for the Al4083 PEDOT film doped with PH510 of different 

concentrations. An enlarged figure without the curve for PH51 0 concentration of 1 00% is shown in (b). 
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Figure 3.4: (a) Conductivities of the Al4083 PEDOT films doped with PHS I 0 of different concentrations. 

An enlarged figure is shown in (b). 

Figure 3.5 shows the atomic force microscope (AFM) images of the modified PEDOT 

film deposited on the glass substrate. It has been found that the surface of a pure Al4083 film is 
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Figure 3.5: AFM images (5 J.Lmx5 J.Lm) of PEDOT films coated on glass substrates. 
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very rough. However, as the amount of PH510 is increased, the surface morphology of the 

modified PEDOT film becomes smooth (Fig. 3 .6). The reason for that is due to the fact that the 

PEDOT:PSS ratios in the Al4083 and PH51 0 are different, in which Al4083 has a larger 

PEDOT:PSS ratio of 1 :6, whereas PH51 0 has a smaller PEDOT:PSS ratio of 1 :2.5. Since the 

active layer is directly deposited on the top of the PEDOT:PSS buffer layer, and the short circuit 

current fsc is sensitive to the morphology of the active layer[112], thus the morphology of 

PEDOT buffer layer has a significant effect on l sc· 
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Figure 3.6: Root mean square roughnesses of PEDOT films with different PH 510 volume percentages. 

Transmission spectra of Al4083 PEDOT layer with different volume percentages of 

PH510 are shown in Fig. 3.7, indicating that the transmittance decreases gradually with the 

increase in the amount of PH51 0. 
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Figure 3.7: Transmission spectra of modified PEDOT:PSS films on glass substrates. 

3.3.2 Optical modeling of P3HT:PCBM devices with modified buffer 

layer 

In order to measure the optical electrical field distribution inside the device, the complex 

indices of refraction of the glass, ITO, and AI are extracted from literature [ 113,114]. The optical 

parameters (rt and k) of modified PEDOT, and P3HT:PCBM used in the calculations then have 

been determined by a L116A ellipsometer from GAERTNER Corp. Assuming charge generation 

occur at the active layer, and the efficiency of the device is dependent on the distribution of the 

internal optical electrical field, thus, the maximized internal optical field in the active layer could 

increase the efficiency of the devices. In this part, the internal optical field distribution for 

different buffer layer is different. Reflection and absorption of the device with different ITO 

thickness were calculated. From these calculations, we are able to find the optimal thickness of 
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ITO; we then find that the optical electrical field distribution in the active layer is maximized by 

using ITOs of the optimal thickness. 
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Figure 3.8: Calculated distribution of the normalized modulus squared ofthe optical electric field 1£12 

inside the photovoltaic device, IT0(130 nm)/PEDOT:PSS(AI4083) (50 nm)/P3HT:PCBM(l l 0 nm) /AI 

(dash line) and ITO(l30 nm)/PEDOT:PSS(29% PH510 in Al4083) (50 nm) /P3HT:PCBM(ll0 nm) /AI 

( solid line). 

As stated in Section 3.2.2 on optical modeling, the generation ofphotoexcited species at a 

particular position inside the thin film structure is proportional to the product of the modulus 

squared of the electric field, the refractive index, and the absorption coefficient. The calculated 

distribution of the normalized modulus squared of the incident optical electrical field for two 

devices by using different PEDOT buffer layer (Al4083 and 29%PH510 in Al4083) for A. = 632.8 

nm are shown in Fig. 3.8. The ellipsometer used only measures at 632.8 nm, and the solar light 

spectrum shows a great intensity (Fig. 2.4) at 632.8 nm. The active layer in the device is the 

64 



P3HT:PCBM layer, within which excitons form and dissociate. To increase the photocurrent, it 

is advantageous to maximize 1£12 
within the active layer, particularly near the interfaces with 

other layers in order to allow carriers to exit the active layer before recombining. Layer thickness 

and optical properties affect 1£12 
thoughout the cell. As seen in Fig. 3.8, 1£12 

within the active 

layer is different, with the modified buffer device showing a slightly larger (roughly 5%) IEI2 
in 

the active layer as compared with the regular Al4083 buffer layer device. Due to the optical 

interference between the incident (from the ITO side) and back-reflected light, the intensity of 

the light is nearly zero at the aluminum cathode. 

In order to obtain the maximal light intensity in the active layer zone, the relationship 

between the ITO thickness and device reflection R is estimated in Fig. 3.9a. The reflectance is 

calculated by using optical constants at 633 nm. The reflectance is R = lr f , where r is defined 

by Eq. (3. 7). Since the AI layer is much thicker than the incident depth of light at 633 nrn, the 

total light absorption in the device equals to 1 - R, which is shown in Fig. 3.9b. According to the 

calculation of R and A (Fig. 3.1 0), devices show the lowest reflectance and the highest absorption 

by using a 100 nm ITO as the anode. The calculated distribution of the normalized modulus 

squared of the incident optical electric field for the device by using ITO of 1 00 nm thickness as 

the anode and modified PEDOT layer is shown in Fig. 3.10. Thus, the peak of the modulus 

squared of the optical electric field increases to 2 from 1. 8, indicating a 10% increase in the 

generation of photo carriers. 
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Figure 3.9: Calculated reflection R (a) and absorption A (b) from P3HT:PCBM devices with Al4083 

doped with 29% PHS! 0 buffer layer. 
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Figure 3.10: Calculated distribution of the normalized modulus squared of the optical electric field 1£12 

inside the photovoltaic device by using 100 nm thick ITO, compared with ITO (130 

nm)/PEDOT:PSS(Al4083)(50 nm)/P3HT:PCBM(l10 nm)/AI (dash line) and ITO(l30 nm)/ 

PEDOT:PSS(29% PHSIO in Al4083) (50 nm) /P3HT:PCBM(l10 nm) /AI (solid line). 

3.4 Conclusions 

In this chapter, two typical PEDOT buffer layers (PH51 0 and PVP Al4083) and their 

mixtures with different ratios for applications in organic solar cells are investigated. By 

increasing the volume percentage of PH51 0 doped to Clevios PVP AI 4083, the conductivity 

increases as measured by 4pp method, however, the transmission and surface roughness decrease, 

as obtained by the respective spectrophotometer and AFM. The effect of different PEDOT buffer 

layers on the device performance of P3HT:PCBM photovoltaic cells is studied. Polymer solar 

cells with PCE approaching 3% have been achieved by using the buffer layer doped with 29% 

PH 51 0 into Al4083, demonstrating a 40% increase in the PCE of the devices, as compared with 

the device adopting the regular Al4083 buffer layer. In order to reveal the mechanisms for the 
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increase in the PCE, optical modeling based on these two systems has beeen implemented, which 

shows that, the photovoltaic device with modified PEDOT buffer layer has a greater maximal 

absorption than the devices with the regular PEDOT buffer layer. The modulus squared of the 

electric field at the active layer of the photovoltaic device with modified buffer layer is larger 

than the modulus squared of the electric field at active layer of the photovoltaic device fabricated 

by the regular Al4083 buffer layer. 
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Chapter 4 

Efficiency enhancement • Ill solar cells by 

processing with additives 

Abstract 

The techniques to increase the PCEs of polymer photovoltaic cells are investigated by 

doping of additives. The doped BHJs in this study are polymer photovoltaic cells with poly [(2-

methoxy-5-ethylhexyloxy)-1 , 4-phenylenevinylene] (MEH-PPV) as the electron donor and [6,6]-

phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor. Two additives, i.e. 1,8-

octanedithiol (ODT) or dimethyl sulfoxide (DMSO), have been used in this study. The 

measurement on the lifetimes of the photovoltaic cells has been carried out m ambient 
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environment. For the periods of time studied here (1000 min), the short circuit current lsc and the 

efficiency decrease rapidly in the first 50 minutes. The effect on the performance of photovoltaic 

cells by incorporating a few volume percentages of additives in the solution for spin-cast is 

studied. After 1 val% ODT doping, the efficiency of the photovoltaic cell has been improved 

from 2.5 to 2.8% accompanied by changes in the morphology of the bulk heterojunction. We 

propose for the first time to incorporate DMSO into MEH-PPV:PCBM bulk heterojunction and 

demonstrate the effectiveness of the doping effect from the significant increase in the PCE of the 

device. The efficiency ofthe photovoltaic cell increases from 1.75 to 3.15% by doping 5 val% of 

DMSO. The power conversion efficiency of 3.15% achieved here is the highest value reported so 

far for the MEH-PPV:PCBM solar cells. 

4.1 Introduction 

Much of recent attention has focused on the blends of P3HT and PCBM with the 

corresponding bulk heterojunction reaching a high PCE value of 4.5- 5% [12,10,13]. However, 

the open circuit voltage (Voc) ofthe P3HT:PCBM composite is around 0.6 V, which is lower than 

the Voc of MEH-PPV:PCBM devices (0.8 V). The following relationship has been reported from 

a comprehensive study of26 different PCBM-polymer PV cells [27]: 

Voc = <IEHoMo(o)I - IEwMo<Pc:BMJ I) - 0.3 
e (4.1) 
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where EHoMO(D) and ELuMO(PCBM) are the HOMO and LUMO energies of donor and PCBM, 

respectively. The HOMO energies ofMEH-PPV and P3HT are -5.3 eV and -5.1 eV, respectively 

[115,28]. Therefore, Voc of the MEH-PPV:PCBM solar cell is larger than that of the 

P3HT:PCBM device. Short circuit current Usc) and fill factor (FF) are the other important factors 

to determine the device' s efficiency. However, fsc and FF are sensitive to other factors, such as 

the thicknesses of the multilayers in the device, annealing temperature and duration, additives 

doped in the active layer, and solvents used to dissolve the organic materials for spin-coating. 

Recently, some papers reported techniques to enhance the efficiency of OSCs through the 

improvement of fsc and FF [23,11]. Since the V0c of MEH-PPV devices is higher than that of the 

device consisting of P3HT, the efficiencies of MEH-PPV devices possesses a possibility to 

achieve a value higher than that of the devices consisting of P3HT through the identification of 

optimallsc and FF values. 

s 
(a) (b) 

Figure 4.1 : Molecular structures of(a) 1,8-octanedithiol, and (b) DMSO. 

The efficiency of the device could be enhanced, by incorporating a few volume 

percentages of addictive in the precursor used to spin-cast films comprising a low-bandgap 

polymer and a fullerene derivative. 1 ,8-octanedithiol (ODT), with its chemical structure shown 

in Fig. 4.la, is an additives successfully used in P3HT:PCBM and PCPDTBT:PC71BM devices, 
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for which the efficiencies ofthe devices have been improved from 2.5% to 3.6% [116] and from 

2.8% to 5.5% [43], respectively. Poly(3,4-ethylene dioxythiophene) (PEDOT) doped with 

poly(4-styrene sulfonate) (PSS) has been commonly used to prepare a spin-coated layer on ITO 

surface ofOLED and OSCs in order to improve the surface quality ofthe ITO electrode [10,92] . 

However, PEDOT is limited by a low conductivity, - 2 ± 0.05 S/cm [117] and the conductivity of 

PEDOT obtained in the Chapter 3 is only 0.0004 S/cm. Recently, it is discovered that the 

conductivity of a PEDOT film can be enhanced by over 100-folds if a high dielectric solvent 

dimethyl sulfoxide (DMSO), is added to the PEDOT aqueous solution [118]. DMSO, with its 

molecular structure shown in Fig. 4.1 b, is a hydrophilic polar aprotic solvent capable to dissolve 

P3HT, MEH-PPV, and PCBM. DMSO possesses a low toxicity, which is advantageous for the 

applications of photovoltaic devices in ambient atmosphere. In this study, we analyze the 

absorption spectra as a function of the volume percentage of the additives. The morphology and 

the Raman spectroscopy of the MEH-PPV:PCBM films doped with different percentages of the 

additive are investigated by atomic force microscopy (AFM) and Raman spectrometer, 

respectively. We demonstrate that the PCE increases from 2.5% to 2.8% by incorporating 1% of 

ODT into MEH-PPV:PCBM films. Furthermore, a large efficiency of 3.15% was obtained by 

doping 5% DMSO into MEH-PPV:PCBM layers, which surpasses all efficiencies reported for 

MEH-PPV solar cells. 
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4.2 Experimental details 

In the experiment, MEH-PPV, purchased from American Dye Source, Inc., is first 

dissolved in 1 ,2-dichlorobenzene (DCB) to make 4 mg/ml solution, followed by blending with 

PCBM (Nano-C, Inc.) in I :4 ratio. The blend solution is stirred for - 15 h at 70°C on a hot plate. 

ODT, purchased from Sigma-Aldrich, Inc. , is added to MEH-PPV:PCBM solution with varying 

addictive concentration from 0 to 3 vol%. For the DMSO experiments, DMSO of varying 

concentrations at 5, 10, 20 and 30 vol% is incorporated into MEH-PPV:PCBM solution. Polymer 

solar cells are fabricated on indium-tin oxide (ITO) coated glass substrates (Delta technologies, 

Inc.). After spin-coating a PEDOT layer at 2000 r.p.m. for 80 s, the blend solution is spin-coated 

at 2000 r.p.m. for 40 s. The devices are completed upon the evaporation of an AI cathode, as 

shown in Fig. 4.2. 

MEH-PPV 
2 .9 eV 

4.3eV 4 .3eV 

AI 

Figure 4.2: Schematic illustration and energy level diagram of a polymer solar cell with a multilayer 

structure of ITO/PEDOT:PSS/MEH-PPV :PCBM/ AI. 
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Testing has been carried out in the ambient condition under AM 1.5 G irradiation (1 00 

m W /cm2
) using a Newport Oriel 96000 solar simulator, whereas the J- V curve is collected by a 

Keithley 2420 source meter. Absorption spectra are obtained using a Cary 6000i 

spectrophotometer. AFM and optical microscopy images are observed in the acoustic mode of 

the atomic force microscopy modes of Alpha SNOM (WITec), which is a combined unit 

featuring a scanning near-field optical microscope, a confocal microscope, and an atomic force 

microscope. Raman spectra are obtained on confocal LabRAM (HORIBA Jobin Yvon). Cyclic 

voltammetry are measured by Epsilon-C3 (Bioanalytical Systems, Inc.) 

4.3 Results and discussion 

4.3 .1 Octanedithiols doping for efficiency improvement 

Figure 4.3 shows the UV-visible absorption spectra of MEH-PPV:PCBM films with 

curves representing films from solution without the ODT doping and doping concentrations of 1, 

2, 2.5 and 3%, respectively. The absorbance decreases as the concentration of the ODT increases. 

It was reported that, as the doping concentration increases, the absorption band of the film 

exhibits a red shift in the P3HT:PCBM film doped with different vol % of ODT [116]. However, 

for the ODT doped MEH-PPV:PCBM fi lms studied here, no red shift is evident in Fig. 4.3 as the 

absorbance peak is constant at ~51 0 nm at different ODT concentrations. 
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Figure 4.3: UV-visible spectra of MEH-PPV:PCBM films cast from dichlorobenzene as well as 

dichlorobenzene containing 1, 2, 2.5, and 3 val % ofODT. (b) is an enlarged figure of(a) over a narrow 

wavelength range. 
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Figure 4.4: AFM images of(a) MEH-PPY:PCBM film cast from dichlorobenzene, and MEH-PPV:PCBM 

films cast from dichlorobenzene containing (b) 1 val%, (c) 2 val%, (d) 2.5 val %, and (e) 3 val% ODT. 

The insets cover exactly the same regions with the variations in height shown explicitly. 
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Figure 4.4 shows the surface morphology observed by AFM on MEH-PPV:PCBM films 

cast from DCB solvent as well as DCB doped with different ODT concentrations of 1, 2, 2.5, and 

3 vol%, respectively. The root-mean-square (rms) values for the surface roughnesses of MEH-

PPV:PCBM films doped with ODT are calculated and plotted in Fig. 4.5. The surface of the film 

with ODT doping is much rougher than that without ODT doping. As the concentration of the 

ODT increases from 0 to 3 vol %, the rms value increases from 1.23 to 12.31 nm. 
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Figure 4.5: Surface roughness of the MEH-PPV:PCBM film as a function ofODT doping concentration. 

J- V curves of the films doped with different volume percentages of ODT under Air Mass 

1.5 (1 00 m W cm-2) are shown in Fig. 4.6. The device without ODT doping (reference cell) shows 

an efficiency of 2.5%, which is close to the highest efficiency of MEH-PPV device reported so 

far, i.e., 2.9% [119]. When 1 vol % of ODT is doped, l sc increases from 7.72 mA/cm-2 to 9.47 

rnA/em -2, corresponding a PCE value of 2.8%. Calculated from the reciprocal of the slope above 
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J = 0 on the J-V curves, the series resistances of the MEH-PPV:PCBM devices doped with 

different amounts of ODT are shown in Fig. 4.7. The series resistance of the device steadily 

increases with the increase in the amount ofODT in the MEH-PPV:PCBM layer. 

The photovoltaic performance of MEH-PPV:PCBM solar cells fabricated by doping 

various volume percentages of ODT is shown in Fig. 4.8. The BHJ solar cells doped with ODT 

exhibit enhanced l sc and PCE, while, V0 c and FF remain constant. Since Voc is basically 

determined by the energy difference between the highest occupied molecular orbital of the 

polymer donor and the lowest unoccupied molecular orbital of the fullerene (Eqn. 4.1 ), it is 

reasonable to see that V0c remain constant as the donor and acceptor materials in this study are 

MEH-PPV and PCBM, respectively. Compared with the reference cell, l sc values of the devices 

with ODT doping increase in the concentration range studied here. Analysis based on the surface 

roughness (Fig. 4.5) and the absorption spectra (Fig. 4.3) indicates that the roughness of the 

MEH-PPV:PCBM layer is proportional to the volume percentage of the doping ODT, while the 

absorbance is inversely proportional to the volume percentage of the doping ODT. Since l sc is 

closely related with the surface morphology of the active layer and the absorption, as a 

compromise to achieve both high device efficiency and maximal photon absorption, the highest 

l sc and PCE occur at the ODT doping concentration of - 1 vol %. 
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4.3.2 Dimethyl sulfoxide (DMSO) for efficiency improvement 

The UV -visible absorption spectra of a MEH-PPV:PCBM film cast from DCB solvent as 

well as films cast from DCB solvent doped with DMSO at volume percentages of 5, 10, 20, and 

30 vol % are shown in Fig. 4.9. Since DMSO is a transparent solvent, it is reasonable to observe 

the decrease in the absorbance as the DMSO doping concentration increases, which is evident 

from Fig. 4.9. 
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Figure 4.9: UV-visible spectra of MEH-PPV:PCBM films cast from dichlorobenzene solvent (reference), 

and MEH-PPV :PCBM films cast from dichlorobenzene doped with DMSO of different volume 

percentages at 5 (DSS), 10 (DS 1 0), 20 (DS20), and 30 vol % (DS 30). 

Figure 4.10 shows the optical micrographs of MEH-PPV:PCBM films cast from DCB 

solvent, and films cast from DCB doped with DMSO of different volume percentages at 5, 10, 

20 and 30 vol %. Since MEH-PPV is insoluble in DMSO, as the DMSO amount increases, the 

film quality deteriorates. The rms roughnesses ofthe MEH-PPV:PCBM films doped with DMSO 
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Figure 4.10: Optical micrographs of (a) a MEH-PPV:PCBM film cast from DCB solvent, and MEH

PPV:PCBM films cast from DCB doped with DMSO of concentrations at (b) 5, (c) 10, (d) 20, and (e) 30 

vol %. 
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are calculated from the AFM images of Fig. 4.11. As the concentration of DMSO increases from 

0 to 5 vol %, the surface roughness increases from 2.94 to 3.23 nm accordingly. However, when 

the DMSO doping concentration is increased further, the roughness is hard to measure by AFM 

as the quality ofthe film is not satisfactory, which is evident from (c), (d), and (e) in Fig. 4.10. 

Figure 4.11 : AFM morphology of (a) a MEH-PPV:PCBM film cast from DCB solvent (reference) and (b) 

a MEH-PPV:PCBM film cast from DCB doped with DMSO of 5 val%. 

Figure 4.12 shows the J-V curves of a MEH-PPV:PCBM films cast from DCB solvent 

(DO), and MEH-PPV:PCBM films cast from DCB doped with DMSO of 5 vol% (D5), 10 vol% 

(D10), 20 vol% (D20), and 30 vol% (D30). From the slopes of the curves of DO, D5, and D10, 

it is evident that the series resistance Rs (inverse slope above J = 0) decreases as the doping 

concentration increases from 5 to 10 vol %. Starting from a series resistance of 27.53 O/cm2 for 

DO, after increasing the DMSO concentration to 5 and 10 vol%, the series resistance decreases to 

19.62 and 10.32 O/cm2
, respectively. Since the film quality of the MEH-PPV:PCBM films 
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doped with either 20 vol% or 30 vol% of DMSO is low, as shown in (d) and (e) of Fig. 4.10, 

their series resistances are not compared with those values for the cases of low DMSO dopings. 

Nevertheless, the series resistance decreases from D20 to D30 due to the increase of the DMSO 

concentration. The photovoltaic performance of the solar cells fabricated by incorporating 

various amounts of DMSO is shown in Fig. 4.13. The BHJ solar cells doped with 5 vol % of 

DMSO exhibits enhanced l sc, FF, and V0 c, corresponding to a higher PCE of ~3.15% from 1.75% 

for the film without DMSO doping. However, when the DMSO concentration is further 

increased to 10, 20, and 30 vol %, the performance of the devices degrades rapidly. From the 

observed morphologies of the film, it can be found that the performance of the device is closely 

related with the morphology of the film, i.e., reasonably increased surface roughness enhances 

the efficiency of the device. However, if the roughness is too large, the photovoltaic performance 

decreases due to the deteriorated film quality. 
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Figure 4.12: J- V characteristics of a MEH-PPV :PCBM film cast from DCB (DO), and MEH-PPV :PCBM 

films cast from DCB with different DMSO doping concentrations of 5 (DS), 10 (D 1 0), 20 (D20), and 30 
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Figure 4.14: Normalized decay in the photovoltaic performance of a MEH-PPV :PCBM cell processed 

with 5 vol% DMSO in ambient environment. 
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The degradation of the MEH-PPV:PCBM solar cells doped with 5 vol % of DMSO in 

ambient enviroment is shown in Fig. 4.14, which exhibits a short lifetime of the devices as the 

efficiency is only 20% of its initial efficiency in 100 min after the device fabrication. The 

lifetime of the half maximum in efficiency is ~20 min. However, compared with the degradation 

of MEH-PPV solar cells (Fig. 4.15), the lifetime of MEH-PPV:PCBM solar cell without DMSO 

(~75 min) is longer than that of the MEH-PPV:PCBM solar cell processed with DMSO. 
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Figure 4.15: Normalized decay in photovoltaic performance of a MEH-PPV :PCBM solar cell without 

DMSO doping in ambient environment. 

The mechanism for the degradation in the efficiency of MEH-PPV devices over time is 

complicated. Change in the series resistance may be one reason as the efficiency of the device is 

inversely proportional to the series resistance of the device [120]. Fig. 4.16 shows that, it takes 
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370 min for the series resistance of the MEH-PPV:PCBM solar cells to increase from 38.8 to 429 

O/cm2
, in contrast to 1060 min that is needed for the Rs of the MEH-PPV:PCBM solar cells 

processed with 5 vol% DMSO to increase from 18 to 492 O/cm2
. The detail of the degradation 

mechanisms is still under investigation. 
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Figure 4.16: (a) Series resistances of a MEH-PPV:PCBM solar cell and (b) a MEH-PPV:PCBM cell 

processed with 5 vol% DMSO, in ambient environment as a function of time. 

In order to investigate the origin of the improved efficiency induced by DMSO doping, 

scanning electron microscopy (SEM) has been used to examine the· morphologies of the DMSO-

treated and untreated MEH-PPV:PCBM layers, SEM images of single droplets of untreated, 5 

and 10 vol% DMSO treated MEH-PPV:PCBM, deposited on a PEDOT fi lm are shown in Figs. 

4.17, 4.18, and 4.19, respectively. 
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Figure 4.17: SEM images of the MEH-PPV:PCBM droplet on the PEDOT film, observed at (a) 75°, (b) 

45°, (c) 15°, (d, e) 0° above the horizontal direction, and side view with a magnification of2000 times (f). 
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The untreated MEH-PPV:PCBM droplet exhibits a crater-like shape (Fig. 4.17), which 

might be caused by "coffee stain effect" [94]. Specifically, solvent evaporation at the edge of the 

film is faster than that in the center region, resulting in different rates of volume changes in the 

central and edge regions of the MEH-PPV:PCBM droplet, therefore there is a net flow from the 

center to the edge of the droplet. As a comparison, in the case of the 5 vol% DMSO-treated 

MEH-PPV:PCBM droplet, a flat film is observed (Fig. 4.18), which may be due to a decrease in 

Figure 4.18: SEM images of the 5 vol% DMSO doped MEH-PPV:PCBM droplet on the PEDOT film, 

observed at (a) 90°, (b) 15° above the horizontal direction, and side views with a magnification of 2000 

times (c, d). 
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the evaporation rate caused by the addition of DMSO of a high boiling point (189°C). A reduced 

evaporation rate is expected to decrease the net flow in the droplet. However, when 10 val % of 

DMSO is doped into MEH-PPV:PCBM film, the quality of the film becomes worse with many 

insoluble DMSO spots on the MEH-PPV:PCBM droplet, as shown in Fig. 4.19. 

Figure 4.19: SEM images of the 10 vol% DMSO doped MEH-PPV:PCBM droplet on the PEDOT film, 

observed at (a) 90°, (b) 75° above the horizontal direction, and side views with magnifications of2000 

times (c) and 4000 times (d). 
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In addition, SEM images of the evaporated AI films on untreated, 5 and 10 vol% DMSO 

treated MEH-PPV:PCBM are shown in Figs. 4.20, 4.21, and 4.22, respectively. The untreated 

MEH-PPV:PCBM film presents a rough, irregular edge on AI film, and some air gaps between 

the electrode and the MEH-PPV:PCBM film. In contrast, the 5 and 10 vol% DMSO treated 

MEH-PPV:PCBM has improved interfacial stability, resulting in a smooth, uniform edge and no 

air gap in the contact region, as evident in Figs. 4.21 and 4.22, respectively. 
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Figure 4.20: SEM images of the MEH-PPV:PCBM droplet on the AI film, observed at magnifications of 

50 times (a, b) and 200 times (c, d). 
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Figure 4.21: SEM images of 5 val% DMSO doped MEH-PPV :PCBM droplet on the AI film, observed at 

magnifications of20 times (a, b) and 200 times (c, d). 
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Figure 4.22: SEM images of 10 val% DMSO doped MEH-PPV:PCBM droplet on the AI film, observed 

at magnifications of 50 times (a, b) and 200 times (c, d). 
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The effects of DMSO additives on the electrochemical behaviours of MEH-PPV:PCBM 

films have been studied by cyclic voltammetry (CV) in 0.1 M tetrabutylammoniurn 

tetrafluoroborate (TBATFB) acetonitrile solution as illustrated in Chapter 2. Figures 4.23 and 

4.24 show the CV results for the ITO, DMSO treated and untreated MEH-PPV:PCBM films at 

scan rates of 50 and 100 m V /s, respectively. It is evident that the current density integrated over 

the potential range is almost doubled after treated with 10 val% DMSO at these scan rates. Four 

reduction peaks and one oxidation peak can be found on the MEH-PPV:PCBM films with 5 and 

10 vol% of DMSO doping concentrations. However, as the DMSO amount is increased to 5 and 

10 val%, the current density of the reduction peak increases, while, only the current density of 

the oxidation peak for the 10 val% DMSO doped MEH-PPV films exhibits pronounce increase. 
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Figure 4.23: Cyclic voltammogram oflTO, MEH-PPV:PCBM, 5 and 10 vol% DMSO doped MEH

PPV:PCBM films. Scan rate: 50 mV/s. 
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Figure 4.24: Cyclic voltammogram of ITO, MEH-PPV:PCBM, 5 and 10 val% DMSO doped MEH

PPV:PCBM films. Scan rate: 100 mV/s. 

4.4 Conclusions 

Photovoltaic performance of MEH-PPV:PCBM solar cells doped with different amounts 

of ODT and DMSO has been studied. The morphology observation and the absorption spectra 

indicate that the surface roughness increases within certain doping levels as the concentrations of 

the addictives increases, whereas the absorbance decreases. The change in the surface roughness 

corresponds to a change in the efficiency of the device with an increase from 2.5% to 2.82% 

after doping with 1 vol % of ODT, equivalent to a - 15% improvement. In contrast, the efficiency 

of the MEH-PPV:PCBM solar cell doped with 5 vol% of DMSO rises to 3.15% from 1.75%, 
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exhibiting a - 80% enhancement. However, the lifetime of the half maximum in the efficiency of 

the device doped with 5 val % of DMSO in ambient is reduced to 20 min from 75 min for a 

reference cell without DMSO doping, a larger series resistance in the device doped with 5% 

DMSO may be one reason for that. The detail of the degradation mechanisms is still under 

investigated. 
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or PET (P7) substrate. ITO or FTO on glass substrates are selectively patterned by a femtosecond 

laser and subsequently cleaned with de-ionized water. Patterned ITO or FTO on glass substrate is 

then undergone final cleaning in acetone and alcohol by ultrasonic bath for 30 min each. In order 

to avoid thermal shrinkage of the plastic substrates, the cleaned PET substrates are dried at room 

temperature. ITO or FTO on glass substrates is dried on the hot plate at - 90°C for 30 min. The 

PH51 0 or PH750 film is prepared by spin-coating on cleaned PET or glass at a speed of 3000 

r.p.m. for 80 s, and then the sample is allowed to dry under gentle air flow for 10 mins to obtain 

relatively thick film with lower sheet resistance. Subsequently, PEDOT PVP AI 4083 is spin

coated (4000 r.p.m.) on the dried PH510 as a buffer layer. The P3HT powder or flake is first 

dissolved in 1, 2-dichlorobenzene (DCB) to prepare 10 mg/ml solution, followed by blending 

with PCBM at 1:0.8 ratio. Then, the blend is stirred for - 24 hat 40°C on the hot plate. The active 

layer is obtained by spin-coating the blend at 800 r.p.m. for 40 s, followed by drying in a covered 

glass petri dish on the hot plate at 70 °C for 10 min. Aluminum cathode is deposited by thermal 

evaporation. J- V curves are measured with a Keithley 2420 source meter under simulated AM 

1.50 irradiation (100 mW cm-2) using a xenon-lamp-based solar simulator (Newport Oriel 96000 

150W solar simulator). Since the typical active area of an OSC is 0.09- 0.15 cm2 [23,10,12,46] , 

which is too small for bending test, the active area of the OSC needs to be enlarged in order to 

measure the relationship between the bending angle and the performance of OSCs. Here, OSCs 

with six active areas of0.12, 0.25, 0.5, 0.75, 1.0, and 1.25 cm2 are fabricated and tested. 

Surface sheet resistance is determined from four point probe measurement, as described 

in the Chapter 3. Transmission spectra are measured by Cary 6000i spectrophotometer (Varian 

Inc.). 
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Figure 5.1: Bending angle measurement: (a), experimental setup, and (b) geometry definition. 

As shown in Fig. 5.1 (a), a home-built system is used to measure the relationship between 

the bending angle and the performance of the OSCs. The bending angle B is defined by 

B = 2tan-1(_k_) 
2h (5.1) 

where b is the opening between the jaws of the substrate, and h is the height of the bending solar 

cells, as illustrated in Fig.5.1 b. 

5.3 Results and discussion 

In order to maximize the number of photons arriving at the active layer, both the anode 

and substrate need to be highly transparent. Figure 5.2(a) shows the optical transmittances of the 

PET and glass substrate, which indicate that the transmittance of PET (90%) from 300 to 1300 

nm is lower than that for the glass substrate (94%) as a reference. The transmittance spectra of 

PH510, PH750, FTO and ITO are shown in Fig. 5.2(b). The relationship between these 

transmittances is complicated; which is hard to tell which anode has a greater transmittance over 
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Figure 5.2: Transmission spectra of (a) PET film and glass substrate, and (b) PHS I 0, PH750, FTO and 

ITO anodes. 

the wavelength range from 200 to 1300 nm. In order to match with the solar spectra (AM1.5G) 

with the peaks mainly in the range of 400 - 700 nm, PH750 exhibits the highest transmittance, 
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followed by ITO, FTO, and PH51 0 in the order of decreasing integrated transmittance over the 

wavelength range. Lower transmittance means fewer photons can arrive at the active layer, 

which may result in a lower efficiency of the OSC. 

In order to reveal the relationship between the efficiency of the OSCs, the transmittances 

of anodes on the substrates need to be measured, which are shown in Fig. 5.3 for PH750 on glass 

(G7), FTO on glass (GF), PH510 on glass (G5), ITO on glass (GI), PH510 on PET (P5), and 

PH750 on PET (P7). A comparison of these anode/substrate systems over the range of 400- 700 

nrn indicates that the transmittances of these anode/substrates exhibit the highest transmittance 

for G7, followed by P7, GF, and GI in the order of decreasing transmittance. However, GF and 

GI show a higher transmittance than G7 in the range of 600 - 700 nm as well as a higher 

transmittance than P7 over the whole wavelength range (200 - 1300 nrn). The transmittance of 

ITO on glass (GI) is higher than that of FTO on glass (GF). Although G5 exhibits higher 

transmittance at short wavelengths (300- 350 nm) than other anode/substrate systems except GI, 

the transmittance of G5 is still low over the whole wavelength range (200- 1300 nrn), especially 

for the infrared range (800 - 1300 nrn). The lowest transmittance is obtained by P5 in the 

wavelength range of 400 - 700 nm, although the transmittance of P5 is higher than that of G5 at 

infrared wavelengths. 

To compare the conductivities of ITO, FTO, PH750, and PH51 0 anodes, the current

voltage (1-V) characteristics of each of these films on a glass substrate are shown in Fig. 5.4. The 

sheet resistance of a 120 nrn thick ITO film is 10.11 0/o, which is agreeable with the 

specifications provided by Delta Technologies, Inc. (10 ± 5 0 /o), indicating a conductivity of 

8240 S/cm. The sheet resistance of the FTO is 11.43 0 /o, matches with the sheet resistance 
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Figure 5.3: Transmission spectra of different anode/substrate systems: PH750 (G7), FTO (GF), PHSlO 

(GS), ITO (Gl) on glass substrates, and PHSI 0 (PS), PH750 (P7) on PET substrates. 

resistance specified by Solaronix SA (~10 0/o), thus the conductivity is 7290 S/cm. The sheet 

resistance of the PH 510 film with a thickness of 65 nm is 500 0/o, corresponding to 310 S/cm 

for the conductivity, which falls in the range suggested by H. C. Starck (> 300 S/cm). The sheet 

resistance of the PH750 film is 342 0 /o, which corresponds to 630 S/cm with a good agreement 

with the conductivity given by H. C. Starck (650 S/cm). In device applications such as organic 

thin film transistor, solar cell, and dye-sensitized solar cell, the effect of a highly conductive 

anode on the device performance has been studied [94,96, 117], which indicated that an anode of 

higher conductivity or a lower sheet resistivity results in a superior device performance. 
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Figure 5.4: 1-V curves for different anodes (lTO, FTO, PH750, and PHS! 0) on glass substrates. 

Figure 5.5 shows the AFM images of ITO, FTO, PH510, and PH750 films coated on 

glass substrates and PH 510 coated on a PET substrate. It is difficult to perform a morphological 

observation on PET film by AFM because plastics suffer from shrinkage (Fig. 5.5e). The rms 

roughnesses of the ITO and FTO films on glass are 1.986 and 1.657 nm, respectively. The rms 

roughnesses of the PH510 and PH750 films spin-coated on glass are 2.157 and 2.717 nm, 

respectively. These rms roughness data were calculated from the AFM software "WITec Project 

1.92", this software calculated the roughness with three decimal places, and without 

experimental uncertainty. Djurisic et al. studied the influence of the anode roughness on the 

performance of an organic solar cells by using CuPc and C6o as donor and acceptor materials, 

respectively, and reported that the short circuit current of the organic solar cells is inversely 

proportional to the rms roughness of the anode [30]. Therefore, low roughness of FTO on a 

glass substrate should 
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(e ) 

Figure 5.5 Morphologies of different anodes observed by AFM in AC mode: (a) ITO on a glass substrate, 

(b) FTO on a glass substrate, (c) PH51 0 on a glass substrate, (d) PH750 on a glass substrate, and (e) 

PHS! 0 on a PET substrate. 
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have a positive effect on the performance of OSCs. However, the performance of an OSC is not 

solely dependent on the roughness of the anode film, which is also influenced by other factors, 

such as the transmittance and conductivity of the anode. It is not conclusive to determine which 

anode/substrate system gives the best photovoltaic performance simply by judging the roughness 

of the anode film. 

After characterizing PH51 0 and PH750 on glass or PET substrate, P3HT:PCBM solar 

cells based on these six different anode/substrate systems are fabricated. J- V curves of these six 

different solar cells are compared in Fig. 5.6. The reference cell (ITO on glass) shows a 

relatively high performance with l sc = 9.51 mA/cm2
, Voc = 0.59 V, FF = 41%, corresponding a 

PCE of 2.33%. The highest PCE (2.35%) which is close to the PCE of the reference cell is 

obtained by using FTO as an anode, due to the accompanying lowest roughness, second highest 

conductivity and relatively high transmittance. The corresponding l sc, V0 c, and FF are 9.58 

mA/cm2
, 0.56 V, and 41%, respectively. For the systems of glass substrate with the lowest 

conductivity, the second largest roughness, and relatively low transmittance, the device 

consisting of PH51 0 shows the lowest PCE, with lsc = 8.19 mA/cm2
, V0c = 0.56, FF = 32%, and 

PCE = 1.47%. Compared with G5 devices, the device of PH750 on glass substrate shows a 

relatively higher performance with l sc= 9 mA/cm2
, Voc = 0.56 V, and FF = 32%, corresponding a 

PCE of 1.62%. The reason for that is because PH750 film has a larger transmittance, and higher 

conductivity which is nearly double the value for the PH51 0 film, though the PH750 film has a 

rougher surface than the PH51 0 film. 

A femtosecond laser is not able to pattern an anode film on a plastic substrate due to the 

thermal shrinkage. In this case, a PVC tape is used to pattern the anode on the plastic substrate. 
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The viscosity ofPH510 (20 - 100 mPa.s) is higher than that ofPH750 (15 - 40 mPa.s). After the 

patterning, some parts of the PH750 film are peeled off by the tape, while the PH51 0 anode 

exhibits a better quality after patterning. Because of the lower surface quality of the PH750 film, 

the flexible cell P7 (PH750 on PET) exhibits an l 5c of 7.21 mA/cm2
, which is the same as that of 

the P5 cell (7.20 rnA!cm2
) , a FF value of 29%, and a Voc value of 0.54 V, which are lower than 

those values of the P5 cell, i.e., 36% and 0.56 V, respectively. Thus, the PCE ofthe P7 is 1.14%, 

which is lower than that of the P5 cell (1.45%). However, the comparison between PH51 0 and 

PH750 on glass substrates shows that the PH750 film possesses a better photovoltaic 

performance than PH51 0, e.g. high transmittance, and high conductivity. This difference is 

attributed to the defferences in the anode properties on soft and hard substrates. 

The V0 c values in these six anode/substrates systems remain nearly constant (0.54 - 0.59 

V). The reason is that Voc is influenced mainly by the difference between the highest occupied 

molecular orbital level of the donor and the lowest unoccupied molecular orbital level of the 

acceptor [3 7] as well as the difference in the work functions between the two electrodes [ 124]. 

The work function of ITO has been reported in the range from 4.4 to 5.1 eV [65,76,87,125]. 

According to the data sheet provided by H. C. Starck Inc., the work function of PH51 0 is 

approaximately 5.2 eV. Since the active layers and the cathodes adopted in these six devices are 

the same, the difference in the work functions of PH750 and PH51 0 accounts for the small 

variation in Voc· 

Since the performance of the device is influenced by many factors, including anode 

surface roughness, transmittance, and conductivity, it is impossible to conclude which 

anode/substrate system could generate the highest PCE simply by taking account of single factor. 
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However, as we can find from the slopes of the curves in Fig. 5.6, the series resistance Rs 

(inverse slope above J= 0) increases with the anode sheet resistance. Rs of the GI, GF, G7, and 

G5 devices are 15.1, 16.8, 36.8, and 40.5 .Ocm·2, respectively. These results agree well with the 

sheet resistances of these anodes on glass substrates, which are 10.11, 11.43, 342, and 500 .0/o 

for the GI, GF, G7, and G5 devices, respectively. It can be concluded that the series resistance of 

the device is proportional to the sheet resistances of the anode, and thus inversely proportional to 

the conductivity ofthe anode. 
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Figure 5.6: J-V characteristics under AM 1.5 (100 mW/cm2
) illumination for the cells with the 

substrate/anode systems of glass/ITO (GJ), PET/PH51 0 (P5), glass/PH51 0 (G5), glass/FTO (GF), 

PET/PH750 (P7) and glass/PH750 (G7). 

After studying the performance of the flexible devices, the effects of the cell area on the 

performance ofthe OSCs are studied. Figure 5.7 shows the effect of the six different active area 
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0.12 cm2 (A0.12), 0.25 cm2 (A0.25), 0.5 cm2 (A0.5), 0.75 cm2 (A0.75), 1.0 cm2 (Al.O), and 1.25 

cm2 (Al.25) on the photovoltaic performance under AM1.5 illumination with an intensity of 100 

mW/cm2
. As we can find from the slopes ofthe curves, the series resistance Rs (inverse slope 
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Figure 5. 7: Influence of device size on the J- V characteristics of polymer solar cells with a configuration 

of PET/PH51 O/PEDOT:PSS(Al4083)/P3HT: PCBM/ AI 

above J = 0) increases with the cell area while the shunt resistance (inverse slope below V = 0) 

remains approximately unchanged. Rs values of 37.2, 42.3, 53.7, 64.4, 137.9, and 2285 Ocm-2 

have been obtained for the device areas of 0.12, 0.25, 0.5, 0.75, 1.0 and 1.25 cm2
, respectively. 

This tendency is in excellent agreement with the results reported by Pandey eta/., in which the 

performance of a pentacene/PCBM device is inversely proportional to the device area [120]. The 

parameters ofthe OSCs, i.e., l 5c, V0c, FF, and PCE, are shown as a function of the cell area in Fig. 
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Figure 5.8: Photovoltaic performance of a flexible polymer solar cell as a function of active area: (a), Voc 

and PCE, and (b), and FF. The device configuration is 

PET/PH51 O/PEDOT:PSS(AI4083)/P3HT:PCBM/ AI. 
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5.8. Therefore, by increasing the area of the solar cell, we demonstrate that while the open circuit 

voltage remains unchanged (Fig. 5.8a), the electric parameter l sc and FF decrease, corresponding 

to a decrease in the PCE. Because of the higher series resistance which results in lower FF and 

Jsc, a device with a large area (larger than 0.5 cm2
) exhibits a loss of 50% in the PCE. 

The main advantage of OSCs is that they offer a low-cost, printable, portable and flexible 

renewable energy source. For the J-V measurement of a flat solar cell, Pin equals to P0 (100 

mW/cm2
) (Fig. 5.9). However, for a bent solar cell, the average Pin equals to Po times the ratio of 

:+<---A--~>: . A' . . ..- ----.. 
Figure 5.9: Schematic illustration of light incidence on a flat cell (left) or on a bent cell (right). 

The projected area of the bent OSC area (A') over the flat OSC area (A), which is less than 100 

mW/cm2
. The relationship between Pin and Po can be expressed as: 

p = P0 A' 
m A (5.2) 
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The bending angle measured here is not the real bending angle, if b equals to 14 mrn, 

while b is the opening between the jaws of the PET substrate (Fig. 5.1), the shape of the bent 

OSC is a half-circle, which will be described with the definition illustrated in Fig. 5.1. A device 

with a smaller bending angle B (less than 90°), which corresponds to a more significant bending 

of the cell, exhibits a loss of 50% in the overall performance because of the damaged 

morphology of the active layer that is responsible for the lower l sc and Voc· lsc is influenced by 

the morphology of the active layer, which has been previously reported [ 16,1 0]. Voc is mainly 

affected by the work function of the materials used in OSCs and some experimental observations 

have indicated that Voc is also influenced by the morphology ofthe active layer [16,116] which is 

due to the fact that the local internal field is changed when the morphology of the active layer is 

changed [116]. The relationship between the performance of OSCs and the bending angle is 

shown in Fig. 5.1 0. 

The SEM images of a flat cell observed under two different magnifications are shown in 

Fig. 5.11, indicating a smooth and uniform film. After bending the device to 100°, the SEM 

images of three different regions on the bent cell are shown in Fig. 5.12. Figure 5.12a illustrates 

the locations on the cell for the SEM observations in Fig. 5.12(b) - (c). The image manifests 

many cracks and rods aggregated at the abruptly bent region (Fig. 5.12c), whereas only a few 

cracks and rods existing on the less bent regions of the devices (Fig. 5.12 b and d). SEM images 

of four observation regions of a cell bent at a bending angle of 30° are shown in Fig. 5.13 with 

many cracks and rods at these four observation regions. The quantities of the cracks and rods are 

more than those of the cell with a bending angle of 100° or a flat cell. For a flexible solar cell 

with a bending angle of 100°, in addition to the occurrence of cracks, the film becomes rough 
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and inhomogeneous (Fig. 5.12). These cracks may result in the degradation of conduction in 

some parts of the active layer, thus an inhomogeneous layer is not desired in optoelectronic 

devices, e.g. OLED, organic thin film transistor (OTFT), and OSC. More cracks appear (Fig. 

5.13) in the case for a flexible solar cell with a bending angle of 30°. Fortunately, these cracks do 

not connect together to cause an open circuit and a J- V curve is still possible to obtain. Therefore, 

the performance of an OSC critically depends on the bending angle with the PCE of the OSC 

decreases as the bending angle decreases. 

Figure 5.11: SEM images of a flexible solar cell before bending observed under different magnifications. 

In order to reveal the morphology changes of each layer of the cell under bending, the 

SEM images of each layer of the multilayered cell before and after bending are shown in Figs. 

5.14-17. A flat PH510 deposited PET is uniform and smoothes (Fig. 5.14a). However, after 
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Figure 5.12: SEM images of the flexible solar cell with a bending angle of 100° observed at different 

locations: (a), schematic illustration of the regions on the device for observation, (b), image taken at one 

side of less bent region, (c), image taken at the bent region, and (d) image taken at the other side of the 

less bent region. 

bending PH51 0 film to 30°, there are many rods occurred at the abruptly bent regions, which is 

evident in Fig. 5.14(c)- (e), whereas only a few rods are found in less bent regions (Fig. 5.14c). 

Similar rods can also be found after further increasing the observation magnification. These rods 
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Figure 5.13 : SEM images of the flexible solar cell with a bending angle of 30° observed at different 

locations: (a), schematic illustration of the regions on the device for observation, (b), image taken at one 

side of less bent region, (c), image taken at the bent region, and (d) image taken at the other side of Jess 

bent region, (e) image taken at the other side of bent region. 
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do not exist on a flat PH51 0 film in the SEM observation under the same magnification (Fig. 

5.14b). SEM images of PVP AI 4083 and P3HT:PCBM films deposited on the PET substrates 

are shown in Figs. 5.15 and 5.16, respectively. Figure 5.15 (a), (c), and (e) show the 

morphologies of the flat PVP Al4083 film observed at increasing magnifications. After bending 

the 4083 film to 30°, as shown in Fig. 5.15(b), (d), and (f), the film shows the similar 

morphology as the flat 4083 film, which is smooth and uniform. P3HT:PCBM layer also exhibits 

a less influence upon bending, the flat P3HT:PCBM film on PET substrate is smooth and 

uniform, as shown in Fig. 5.16(a), (c), and (e). After bending the P3HT:PCBM film to 30°, no 

significant change in the morphology has been found in Fig. 5.16 (b), (d), and (f), which are 

similar to the quality of the flat P3HT:PCBM film. As shown in Fig. 5.17(a), (c), and (e), a flat 

AI film deposited on the PET substrate shows a smooth and uniform morphology, however, 

some inhomogeneities appear on the film when the AI film is bent with a bending angle of 30° 

(Fig. 5.17b), thus the film becomes rough. Many cracks are visible from the image taken at a 

higher magnification, and become significant when the SEM magnification is further increased 

as shown in Fig. 5.17 (d), and (f). The SEM observation of the individual layers of the device 

(Figs. 5.14-17) indicates that the morphologies of the AI and PH51 0 films are significantly 

deformed by the bending effect, which is evident from the occurrence of many cracks and rods in 

the bent AI and PH51 0 films. Since both PVP Al4083 and P3HT:PCBM films are soft materials, 

they are less susceptible to the bending. Although PH51 0 is also a soft material, the rods found in 

the bent PH 510 films may be due to the tension resulted from the bending as the thickness of the 

PH51 0 is the largest in the device. As shown in Fig. 5.18 for the SEM images of PH51 0/PVP 

Al4083 films deposited on the PET substrates, this bilayer system presents a smooth and uniform 
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Figure 5.14: SEM images of the PHSIO film: (a) and (b), observed before bending with different 

magnifications, and (c), (d), and (e), with a bending angle of30° observed at different magnifications. 

morphology in Fig. 5.18 (a), (c), and (e) before bending. When the film is bent with a bending 

angle of 30°, there are some cracks and wrinkles observed on the films, and some parts of the 

film become thin as seen in Fig. 5.18 (b). When the magnification is further increased, more 
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Figure 5.15: SEM images of the PVP Al4083 film: (a), (c), and (e), observed before bending with 

different magnifications and (b), (d), and (f), with a bending angle of30° at different magnifications. 
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Figure 5.16: SEM images of the P3HT:PCBM film: (a), (c), and (e), observed before bending with 

different magnifications, and (b), (d), and (f), with a bending angle of 30° observed at different 

magnifications. 
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wrinkles and bubbles can be observed in Fig. 5.18 (d) and (f). From the SEM images of 

PH510/PVP Al 4083/P3HT:PCBM films deposited on the PET substrates shown in Fig. 5.19, a 

flat film ofPH510/PVP Al4083/P3HT:PCBM exhibits uniform morphology, however, cracks are 

observed on the film at a bending angle of 30° in Fig. 5.19(b ). When the magnification is 

increased to 500, some bubbles and black holes display on the film. With a further increased 

magnification, these black holes appear to be the aggregation of some bubbles. 

5.4 Conclusions 

The relationship between the performance of OSCs and electrode properties is studied on 

four kinds of anodes (ITO, FTO, PH750, and PH51 0), and six anode/substrate systems in order 

to identify a low-cost, efficient and flexible anode/substrate system. Since the FTO and ITO 

films have a high transmittance, conductivity, and relatively low roughness, OSCs with FTO and 

ITO films on glass substrates show PCE values of 2.35% and 2.33%, respectively. Due to the 

fact that the PH750 film has a higher transmittance and conductivity than those of PH51 0 film, 

the PCE value of PH750 film on glass substrate (1.62%) is higher than that of PH510 film 

(1.47%). Series resistance of an OSC is proportional to the sheet resistance of the anode. For 

flexible solar cells, since the PH51 0 film shows a better film quality after patterning, the 

performance of the PH510 film on a PET substrate (1.45%) is higher than that of the PH750 film 

on PET substrate (1.14%). Since the typical size of an OSC is 0.09-0.15 cm2
, which is too small 

to be bent, OSCs of varying sizes have been fabricated in order to measure the relationship 

between the bending angle and the performance of OSCs. Due to the fact that the series 
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Figure 5.17: SEM images of the AI film: (a), (c), and (e), observed before bending with different 

magnifications, and (b), (d), and (f), with a bending angle of30° observed at different magnifications 
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Figure 5.18: SEM images of the PH510/PVP Al4083 bilayer: (a), (c), and (e), observed before bending 

with different magnifications, and (b), (d), and (f), with a bending angle of 30° observed at different 

magnifications. 
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(b) 

Figure 5.19: SEM images of the PH510/PVP AI4083/P3HT:PCBM trilayer: (a), (c), and (e), observed 

before bending with different magnifications, and (b), (d), and (f), with a bending angle of 3 0° observed at 

different magnifications. 

126 



resistance of an OSC increases with the increase in the device area, the performance of the OSC 

is inversely proportional to the area of the device. Considering the size and the performance of 

the OSC, an active area with a size of 20 mm in length and ~ 1.2 mm in width is adopted in this 

study to measure the relationship between the device performance and the bending angle. SEM 

study indicates that the quality and morphology of the films become worse after bending with 

more cracks at significant bending. The SEM images of the individual layer of the device reveal 

that the morphologies of the PH51 0 and AI layers are significantly influenced by the bending 

effect. The performance of an OSC gradually decreases as the bending angle decreases. 
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Chapter 6 

Conclusions and future work 

6.1 Conclusions 

The goal of this thesis is to develop universal techniques in ambient environment to 

improve the efficiency of organic solar cells, which has been carried out with several approaches: 

(a) surface treatments of ITO substrates, (b) optimization of buffer layer, and (c) device 

processing with additives. 

There are a few reports so far on the ITO treatments used in OSCs, however, our study 

here presents the first investigation on the ITO treatment for P3HT solar cells. The efficiency of 

the device with ITO irradiated by 23 mW/cm2 UV light shows an 80% increment, as compared 

with the efficiency of the device fabricated on untreated ITO substrate. PH51 0 is a highly 

conductive PEDOT usually used on electrode, PVP Al4083 is another PEDOT commonly used 
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as buffer layer. Here, we first propose an approach to blend and dissolve them at 1:2.5 ratio in 

solvents, and then spin coating this precursor on the top of ITO to be the buffer layer of OSCs. 

The efficiency of the OSCs indicates a significant improvement of 40%, i.e., from 2.08% to 

2.92%. We find for the first time that the efficiency ofMEH-PPV solar cell can be enhanced by 

processing with either 1 ,8-octanedithiol (ODT) or dimethyl sulfoxide (DMSO) additives, i.e. , 

efficiency of MEH-PPV solar cell increases from 2.5% to 2.8% after doped 1% of ODT, and 

from 2.5% to 3.15% by doping 5% (vol) of DMSO. Our PCE value of 3.15% is the highest 

efficiency of MEH-PPV solar cells reported so far. 

Figure 6.1: A flexible organic solar cell . 

One main advantage of OSC is its flexibility. However, most of the OSCs reported so far 

are based on glass substrates. In this study, we succeed in the fabrication of OSCs on a flexible 

PET substrate (Fig. 6.1 ). The efficiencies of the OSCs with different anode/substrate systems are 

measured and compared. In order to measure the bending effects of OSCs, large-sized OSCs 

have been adopted instead of conventional small cells with an area between 0.04 and 0.15 cm2
. 
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The size effect of OSCs has been revealed, indicating that the efficiency of the devices decrease 

as the device area increases due to the increase in the series resistance. Furthermore, the 

relationship between the bending angle of an OSC and its efficiency has been identified as the 

efficiency of the OSC decreases as the bent angle decreases, due to the significant change in the 

morphology of PH 51 0 and AI films at a small bending angle. 

6.2 Future work 

In this study, the efficiency of the OSC has been improved through three universal 

techniques. However, the lifetime and stability issues associated with organic solar cells are still 

challenging aspects for further study. 

All the FF values of the OSCs in this study are lower than those of the OSCs fabricated in 

nitrogen condition. The reason is that Al oxidizes quickly in ambient condition, which is a fast 

process to change Al to Ah03, accompanying with ten millions times increase in the resistivity. 

Since the series resistance of the device is proportional to the Al cathode resistance, series 

resistance of the cell built in ambient condition is much larger than that of the device fabricated 

in nitrogen condition. Since FF is closely related with the series resistance, it will be interesting 

to fabricate OSCs in an inert environment in order to compare the FF value with that of the OSC 

built in ambient condition. 

Recently, zinc oxide (ZnO) has attracted much attention as solar cell electrode (126,127], 

optical spacer [128,129], and active layer additive [130,131]. It may be possible to use ZnO film 

as the electrode in OSCs, or as a buffer layer in an OSC instead ofPEDOT. 
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6.3 Contributions 

Part of the results in this thesis has been reported and published in the following 

conferences and proceedings. Several journal submissions are currently in preparation. 

1. Y. Ding and Q. Chen, "Improved bulk-heterojunction polymer solar cells with 

paraphenylenevinylene and fullerene," in Conference on Lasers and Electro

Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) 

(Optical Society of America, 2009), paper CFQ6. 

2. Y. Ding, P. Lu, and Q. Chen, Optimizing material properties of bulk-heterojunction 

polymer films for photovoltaic applications, Proc. SPIE, 7099, 7099-57 (2008). 

3. Y. Ding and Q. Chen, "Improving composite polymer films for photovoltaic 

applications" , Canadian Association of Physicists Congress, June 8-11, 2008, Quebec 

City, Quebec, Canada. 
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