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Abstract 

An examination of the fluctuations of the Bragg peaks in high frequency (HF) radar 

received backscatter spectra from the ocean surface is considered in the light of recent cross 

section models. It is well known that there are likely several factors giving rise to this 

phenomenon. In the first part of the research work, the effect that is purely cau ed by th 

use of a pulsed Doppler radar waveform is examined. The radar received signal is assumed 

to be scattered from a time-varying random rough surface represented as a zero-mean, 

Gaussian random process. Numerical examinations of the existence and distribution of 

Bragg fluctuations are carried out first. Various radar operating frequencies and pulse 

widths are selected to simulate the time series for different conditions. Doppler spectra 

(power spectral density, PSD) are estimated as periodograms. The centroids of the Bragg 

peaks are obtained and compared with theoretical values and the Bragg fluctuation from 

time to time are observed. The statistical properties of the centroid positions are indicated 

and compared with resolutions of the fast Fourier transform (FFT) algorithm to reveal 

their significance. Then the physical processes which underlie the observed variabili ty of 

the HF ea echo over short time periods are examined. It will be seen that, by implementing 

both numerical and analytical techniques, interrogation of such a surface via a pulsed signal 

inherently leads to temporal variation of echo power at every frequency position of the 

Doppler spectrum. 

The second part of the research work is an investigation of the Bragg fluctuations 

when HF radar uses the frequency modulated waveforms, which include frequency mod

ulated continuous wave (FMCW) and frequency modulated interrupted continuous wave 

(FMICW) sources. Such waveforms are often employed in practical radar systems. The 

mathematical expressions of the cross sections for the FMCW and FMICW waveforms are 

worked out and their properties are addressed. Then, similar to the previous analysis for 

the pulsed waveform, time series of the radar received electric field signals are simulat d 
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and the PSDs are calculated. Centroid position of the Bragg p ak r gions are located 

and compared to the theoretical value . Statistical properties of the Bragg fluctuations 

are investigated and comparison with respect to that for the pulsed waveform is carried 

out. Field data from the Wellen Radar (WERA) are used to verify the simulation re ults 

and the fluctuations of the Bragg peaks for the FMCW waveform. 
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Chapter 1 

Introduction 

1.1 General Introduction 

When high frequency (HF, 3-30 MHz) ground wave radar is employed as a remote sensing 

tool in a marine environment , the transmitted signals, which are guided by a good con

ducting medium like ocean water, travel along the earth s curvature, reach far beyond the 

line-of-sight horizon, and couple strongly with the ocean surface. The radar received sig

nals contain a large amount of information about the ocean surface itself as well as about 

objects on or near the surface. Useful data products include surface current vectors, wind 

and wave speeds and directions, and velocity information for hard targets uch as ship , 

low-flying aircraft, and icebergs. 

Figure 1.1 is a typical example of the Doppler spectrum (power spectral density, (PSD)) 

simulated with the radar frequency of 25 MHz and the wind velocity of 15 m/ s, perpen

dicular to the radar look direction. The most significant effect which the ocean has on the 

Doppler spectrum is the production of two large peaks on each side of the zero Doppler 

frequency. These peaks, which are denoted as the first-order peaks, or Bragg peaks, are 

surrounded by a continuum that contains higher-order interactions between the electro

magnetic (e-m) waves and ocean waves (Hasselmann, [1]). In Figure 1.1, the simulated 

continuum contains only t he second-order scattering effects. 
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The fundamental mechanism of HF radar scat ter over the ocean surface has been well 

accepted as Bragg scatter . Crombie [2] experimentally observed energy peaks at discrete 

frequency shifts above and below the carrier frequency in the radar spect rum. These peaks 

correspond uniquely to ocean waves which move directly toward and away from the radar 

(for posit ive and negative Doppler , respectively) and which for grazing incident angles have 

wavelengths exactly one-half the radar operating wavelength. Originally, ocean gravity 

waves of different wavelengths travel at different speeds as determined by the dispersion 

relationship for such waves. The occurrence of non-linear interaction among the ocean 

waves results in second-order and/or higher-order ocean waves with variable speeds. The 

signal backscattered from them will contain a range of Doppler frequencies as evidenced 

by the continuum in the received spectra . 

The HF frequency band includes radiation of dekametric wavelengths, and the ocean 

surface waves responsible for the Bragg scatter in this context will have similar wave

lengths. These waves, which are generated by wind and which are subject to a gravi

tational restoring force, are typically referred to as gravity waves. Gravity waves wit h 

various lengths (periods), heights, and directions disturb the ocean surface in four dimen

sions (three in space and one in t ime). The quant itative interpretation of the disturbed 

ocean surface requires the combination of deterministic and statistical analyses. Kinsman 

[3] summaries the various treatments in detail. 

The similari ty of wavelengths between e-m waves and ocean gravity waves causes a 

strong interaction between the two and provides the basis for HF radar to be a powerful 

oceanic remote sensing tool. Since the early 1970's, HF ground wave radar has proven use

ful in several import ant marit ime applications. These include environmental assessment, 

fisheries management, offshore engineering and construction , earch and rescue, national 

defense, and oceanographic research. In part icular , HF radar ocean surface current mea

surement systems have been well developed and successfully operated throughout the 

world. The principle of these current measurement systems involves a frequency shift of 

the measured Bragg peaks from their theoretical positions in the Doppler spectra derived 
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from the Bragg scatter mechanism. This shift i primarily due to the motion of current 

beneath the water waves. The radial current speed along the radar look direction can be 

obtained from the magnitude of this shift . The current velocity can be extracted through 

vector summation if two separated radar receivers are employed and radial current speeds 

are measured individually and simultaneously. 

Over the last three decades, several mathematical models have been d veloped to 

explain Crombie's experimental conclusions (e.g. Barrick [4], Sriva tava [5], Walsh et 

al. [6]). All of these models successfully predict defini te locations of the Bragg peaks. 

However, when comparing the theoretical result with practical measurement, fluctuations 

of the Bragg peaks and variations of the Doppler spectral magnitudes at every frequency 

point may b ob erved. These phenomena imply the existenc of randomness in the 

radar received ignal that needs further investigation, particularly since they influence 

the precision of the ocean surface current parameters deduced from the radar data. It is 

conjectured that the randomness of the ocean surface being interrogated by the radar is 

at least one of the reasons why the Bragg peaks fluctuate. 

Initially in this thesis, the fluctuation of the Bragg peaks is considered under th 

assumption of a pulsed sinusoid being used as the transmitted waveform. In recent years, 

frequency modulated (FM) signals have been used extensively in HF radar remote sensing 

applications, and consequently will be considered here also. Of particular interest are 

the frequency modulated continuous wave (FMCW) and frequency modulated interrupted 

continuous wave (FMICW). The properties of the radar received signals from the ocean 

surface illuminated by such FM sources are highly desired in practice and will be carefully 

investigated in this study. 

1.2 Obje ctives 

The underlying mechanism of the fluctuations of the Bragg peaks will be examined based 

upon statistical analysis. T he time series of radar return from the ocean surface will be 
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simulated u ing the radar cross section equation developed for the pulsed radar backscat

ter (see Walsh et al. [6]) and Pierson's mod l [7] of the ocean surface profile. Since in 

practice, measurements are always over finite space and finite time, it is desirable to find 

a way to describe the variability in the Doppler spectra, and thus the Bragg centroid ran

domness from the finite length time series obtained from a finite width of the scattering 

patch over the ocean surface. This forms the primary objective of the first part of this 

research, which may be stated as the theoretical characterization of the Bragg fluctuations 

when the pulsed HF radar is used in ocean surface measurement. 

T he main differences between the proposed approach and earlier analyses (e.g. Barrick 

and Snider [8] and Barrick [9]) are that: (1) a pulsed source is assumed, corresponding to 

a finite radial width of the scattering patch, and (2) the dependence of the surface Fourier 

coefficients as function of wave vectors with random phases is explicitly entered into the 

electric field equations before any other statistical averaging is carried out. Preliminary 

results for the pulsed signals appear in Zhang et al. [10] and further quantitative analysis 

forms a main portion in this thesis. It is expected that this analysis will help to determine 

appropriate error bounds for current measurement over the oc an surface. 

In addition to the ordinary pulsed sinusoidal waveform, FM waveforms have become 

popular in HF radar systems. Consequently, it is desired to further check the feature of 

scatter and the Bragg fluctuation properties for these waveforms. As noted in Section 

1.1, two linearly frequency modulated waveforms, namely FMCW and FMICW, will be 

considered. T he first step of the second portion of the research is to evaluate the temporal 

electric field equations based on the general equations in Walsh et al. [6] (also appearing in 

the open literature in Walsh and Gill [11]) . The PSD functions are obtained by calculating 

the Fourier transform of the autocorrelation function of the electric field equations. The 

radar cross sections will be obtained with the assumptions of a monostatic radar config

uration (i.e. co-location of radar transmitter and receiver) and a time-varying Gaus ian 

ocean surface profile. In the development of the second-order FMCW and FMICW cross 

sections, only th patch scatter from second-order waves resulting from hydrodynamic 
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coupling, which is dominant of all the second-order scatter cases, will be considered. The 

fluctuation properties of the Bragg peaks for the FM waveforms will be examined care

fully following the process which is first developed for the pulsed radar waveform. The 

simulation results and the fluctuations of the Bragg peaks for the FMCW waveform will 

be compared with field data obtained from a Wellen Radar (WERA) (e.g. Wyatt et al. 

[12]) . 

1.3 Literature Review 

1.3.1 Cross Section D evelopment and R elated Work 

The phenomenon of scattering e-m waves from rough surfaces has been studied extensively 

as a classical problem in radio wave propagation, especially for surface wave communica

tions. The analysis of developing a radar cross section model over the ocean surface finds 

its roots in the work of Lord Rayleigh on the scattering of acoustic waves from rough 

surfaces by a perturbation method (see Strutt [13]) . The radar cross section is defined as 

"that area which, when multiplied by the power flux density of the incident wave, would 

yield sufficient power that could produce by isotropic radiation, the same radiation inten

sity as that in a given direction from the scattering surface" [14]. When the same method 

has been used by later investigators in analyzing e-m wave scatter from rough surfaces, 

the assumption of "slightly rough" is imposed. The term "slightly rough" is defined as 

that the product of the incident wavenumber and any surface deviation from the mean 

should be very much less than unity. 

Following Rayleigh's perturbation method, Rice [15] investigated e-m wave scatter from 

a non-time-varying, two-dimensional "slightly rough" surface. Besides the slightly rough 

assumption, Rice chose the scattering surface to be a perfect conductor and the incident 

wave to be plane. It is through the boundary conditions that the surface parameters 

enter into the expression of the e-m field over the surface. In Rice's investigation, the 
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scattering field intensities were obtained up to second-order for both horizontal and vertical 

polarizations. Based upon Rice's perturbation approach , Peake [16] obtained the first

order backscatter cross section for a dielectric slightly rough surface for both polarizations. 

Rice's and Peake's analyses did not take the rough surface as a time-varying medium, 

however. 

Valenzuela [17] developed the first- and second-order HF radar cross sections using 

a Neumann spectrum and cosine-squared directional distribution to describe the fully 

developed sea surface. A fully developed sea is one for which the wind blows over the 

surface sufficiently long from the same direction so that the created ocean waves will reach 

their saturation state. When the sea waves are fully developed, the wind will no longer be 

able to add net energy to them, and the sea state will have reached its maximum. 

Barrick [18] extended Rayleigh's perturbation method to include a good conducting 

surface. He introduced the effective surface impedance when HF and very high frequency 

(VHF) e-m waves are incident on the ocean surface at grazing angles. He also found 

that the e-m wave propagation losses would increase according to the increased sea tate. 

Barrick [4] t hen achieved an expression for the HF radar first-order cross section over 

a time-varying ocean surface, which gave Crombie's [2] experimental deductions a solid 

theoretical verification. In Barrick's first-order cross section expression, two symmetric 

Dirac delta functions are used to define the first-order Bragg "peaks" which appear at 

WB = ±J2gk0 , where ws is Doppler rad ian frequency of the Bragg peaks, g is acceleration 

clue to gravity, and k0 is wavenumber of the incident radiation, k0 = w0 ,jji()EE, where w0 is 

the angular frequency of the electric field, while Eo and f..lo are the electrical permittivity 

and magnetic permeability of free space, respectively. The Dirac delta functions in [4] 

result from the fact that the incident signal is chosen to be a plane wave. 

In [19], Barrick developed the second-order backscatter cross section over the ocean 

surface. This is indicated by the continuum surrounding the Bragg peaks in Figure 1.1. 

He determined that the second-order cross section could be modeled as one scatter from 

a combination of two first-order ocean wave components or two successive scatters from 
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two first-order oc an waves. In keeping with the Bragg scatter mechani m, the wavelength 

of the combined components should match one-half the radar wavelength after vector ad

dition and the direction of the combination should be along th radar beam. This cross 

section formulation is a nonlinear, two-dimensional, Fredholm-type integral equation, in 

which the integrand contains the hydrodynamic and e-m coupling coefficients correspond

ing to the different mechanisms of the econd-order interactions between the radar signal 

and water wave as mentioned above. The nonlinearity of the econd-order cro s section 

arises from the product of two ocean wave directional spectra. A Dirac delta function in 

the integrand constrains the manner in which the wave vectors from the two spectra mu t 

be related to produce the continuum. 

Other contribut ions to the topic of e-m field cattering from rough urfaces include 

the methods of physical optics (Kodi [20], Barrick and Bahar [21]), th composite surface 

scattering approach (e.g. Brown [22, 23]), and the full-wave technique (e.g. Bahar [24], 

Bahar and Rajan [25]). 

Largely based on Barrick's models, investigations were undertaken to obtain ocean 

surface information, including currents, directional wave spectra, and wind fields from 

the HF radar received signals (e.g. Barrick et al. [26], Barrick [9], Lipa and Barrick 

[27, 2 ], Wyatt [29]). Lipa [30] reduced Barrick' [19] second-order cross section to a set 

of linear equations, which may be used to obtain the directional features of the ocean 

spectrum. Barri k and Lipa [31] discussed ocean current measurement from the first-order 

cross section of the radar received signal. They further derived a set of expressions [32] to 

account for shallow water. All of thes models are for backscatter return , and assumption 

are made for grazing incidence and vertical polarization of the radar wave. 

As noted above, Barrick's cross section methods [4, 19] (and those of several others), 

which are denoted as Barrick's method, are d veloped based on the assumption of a plane 

wave for the incident wave field . The Bragg scatter mechanism appearing in the cro 

section equations of Barrick's method i addr ssed by means of Dirac delta functions . This 

means that theoretically, the width of the Bragg peak is infinitesimal. In practice, however, 
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the Doppler spectra of the received signals exhibit finite-width Bragg peaks. These finite 

widths are commonly explained as a combined consequence of system timing limitations, 

external noise, such as noise from man-made sources and motion of the ionosphere, and 

surface current variability. Development of a cross section that better addresses at least 

the system timing issues is considered next. 

Based on a generalized function method (e.g. Walsh [33]) , Walsh and his colleagues 

(Srivastava, Dawe, Howell, and Gill) addressed the problem of e-m wave scatter from the 

ocean surface under the same assumptions as Barrick but with a pulsed radar waveform 

(see, for example [5, 6, 34, 35]). This approach , denoted as Walsh's method, leads to a 

squared sine function in the cross section equations. In Walsh's method, it is the squared 

sine function that models the connection between the radar radiation wavenumber k0 and 

ocean wavenumber I< through the Bragg scatter mechanism. In the spatial sense, the 

appearance of the squared sine function in the cross section expression corresponds to the 

finite width of the scattering patch, which is determined by the duration of the transmitted 

pulse. With the squared sine function , the positions of the Bragg peaks and the width 

of the Bragg region are sufficiently determined by k0 and the radial extent D.p8 of the 

scattering patch, or equivalently, by the pulse width r 0 . As the pulse duration tends to 

infinity, which it would for a plane wave, the scattering patch would be of infinite extent, 

the squared sine function would be reduced to a Dirac delta function, and Walsh's results 

would reduce to those of Barrick's. 

Walsh's method has been well developed over the last two decades and has gained 

extensive acceptance in the HF radar remote sensing community. The successful models 

include the first- and second-order cross sections developed by Srivastava and Walsh [5] 

for backscatter , higher-order backscatter cross sections by Walsh et al. [6], and bistatic 

radar cross sections by Walsh and Dawe [34], Gill and Walsh [35], and Gill et al. [36]. 

Based upon the e cross ections, algorithms for extracting current velocity (e.g. Bobby 

[37], Jin [38]), wave height spectra (e.g. Gill and Walsh [39], Howell and Walsh [40], Zhang 

and Gill [41]), and HF radar received clutter and noise model [42] have been developed. 
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Several of these algorithms have been validated with field experiments. 

In illustrating outcomes from Walsh's technique, the ocean surface profile has been 

typically described by Pierson's model [7], in which the time-varying ocean surface is a 

weighted combination of sinusoids with an infinite number of frequency and wavenumber 

components. The weighting factor contains a square-root of the wave directional spectrum 

which is a function of wind speed and direction . For each frequency or wavenumber 

component there is a time independent random phase factor which indicates its initial 

condition. The random phase variable is uniformly distributed from 0 to 2n. Pierson's 

model is a Gaussian interpretation of the ocean surface not only in space but also in 

time. While it is known the ocean surface is certainly not always Gaussian in nature, this 

description has been often successfully employed by both oceanographers (e.g. Kinsman 

[3]) and other researchers requiring a model for radar applications (e.g. Barrick and Snider 

[8]). Pierson 's model has been successfully used in Walsh's radar cross sections for both 

monostatic and bistatic configurations, the latter referring to deployments for which the 

transmitter and receiver are widely separated from each other. 

In much of the work by Walsh and his colleagues, the fact that the Fourier coefficients 

of the ocean surface are stationary time-varying random variables is implicit. Averaging 

over ideally long periods of time will remove any randomness and time dependency from 

the resulting Doppler spectra. However, if the power spectra are constructed from finite 

length time series, they will definitely exhibit a stochastic nature, which is an interesting 

problem of radar remote sensing that needs to be explored in depth. 

1.3.2 HF Radar for Ocean Current Measurement 

Conventional current measuring techniques may be distinguished by two types: Lagrangian 

and Eulerian [43]. Lagrangian type instruments, such as drifters, are deployed in a region 

where the current is to be measured. They will then drift following the motion of the water. 

T heir positions must be tracked by ship, plane, or satellite. On the other hand, current 
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meters and acoustic Doppler current profilers (ADCP) are examples of Eulerian devices 

that are used to measure the velocity of water at a fixed position. An ADCP transmits 

and receives three to four acoustic beams and calculates the Doppler shifts in several 

directions. Each beam gives the radial current speed in the beam look direction, and the 

combination of several radial speeds will give the current velocity. Both Lagrangian and 

Eulerian methods are expensive for large-area monitoring, and, for the latter, since th 

acoustic frequencies are chosen typically from 0.25 MHz to 1 MHz, they are primarily 

useful for water depths from 3m to over 100m, i.e. the surface is excluded. 

Crombie [44] first studied surface currents using HF ground wave radar. Subsequent 

experiments were carried out in 1972 at San Clemente Islands, USA, to investigate the 

resolution of current velocity (e.g. Stewart and Joy [45], Barrick et al. [26]). Results 

were compared with those obtained independently from drifters, and it was found that the 

resolution was better than 10 cm/s. It was also concluded that the current speed measured 

by HF radar is a mean value from sea surface to a depth of approximately Aj81r, where >. 

is the wavelength of the ocean wave from which the Bragg scatter will occur under grazing 

illumination by HF radar. 

It may be pointed out that the nature of HF radar ocean current measurement may, in 

a sense, be considered from both the Lagrangian and Eulerian viewpoints (e.g. Fernandez 

[46]). From the Lagrangian perspective, the surface waves can be viewed as the drifters 

flowing with the current at the patch illuminated by the radar. Current speed along 

the radar look direction will cause additional Doppler shifts upon the theoretical Bragg 

frequency. Usually, these additional Doppler shifts have the same value and directions 

for left and right Bragg scatters. As a Eulerian type measurement, on the other hand, 

HF radar is considered to be used to measure the current within a specific region. This 

special characteristic of both Lagrangian and Eulerian types of HF radar measurements 

implies that the statistical averages are taken not only in a limited range but also in a 

limited duration. 

There are many advantages in using HF radar for current measurement. Depending 
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on the operating frequency, it may routinely and economically provide over-the-horizon 

( OTH) coverage to more than 300 km in the radial direction over an area of a few thou and 

square kilometres. The ocean surface within the HF radar coverage is divided into many 

cells. The size of these cells depends upon the radar beam width and the width of the 

transmit pulse. Typically, a cell has a size scale from several hundred square metres to 

several square kilometres. HF radar ocean surface current measurement can be perform d 

in near real time. A typical example of where such measurements would be highly ben ficial 

is in the Grand Banks region, NL, Canada, where the offshore oil and gas industry is under 

active growth. The platformed structures may be hazarded by icebergs and bergy bits, 

which may attain significant velocities under the influence of surface currents. Therefore, 

detailed current records of this region may be helpful in the design and deployment of the 

oft'shore oil platforms. 

In practical current measurements radar Doppler spectra are calculated from the re

ceived time-varying field signals by means of spectral estimation. For the purpose of this 

work it includes three steps: The first step is to calculate the autocorrelation function of 

the time series. The second is to Fourier transform the autocorrelation function to obtain 

the Doppler PSD. The last is to locate the Bragg peak positions, positive and negativ , 

and compare them to the theoretical Bragg frequencies. The Doppler difi'erence of the 

Bragg lines from their theoretical positions is a clear indication of the underlying radial 

surface current. The product of the first and econd steps is typically referred to as the 

periodogram, which may be equivalently calculated by the square of the magnitude of the 

Fouri r transform of the radar received time series (Wiener-Khintchine theorem, s e, for 

example, Proakis [47]). 

Ideally, it would be desired that the positions of the Bragg peaks be stable over temporal 

periods as ociated with the radar measurem nts. However, fluctuations of the Bragg 

peaks have been ob erved when a specific ocean area is illuminated continuously and 

the Doppler spectra are calculated from consecutive time periods. Barrick and Snider 

[8] studi d the statistical properties of the HF sea-echo signals received from the ocean 
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surface. Since the ocean surface height is recognized by oceanographers (e.g. Kinsman [3]) 

as a Gaussian random variable to first-order, Barrick and Snider asserted that the radar 

received sea echo signal is also Gaussian because: (1) it is synthesized as the sum of a 

large number of independent random events (Central Limit Theorem), (2) the expression 

of the backscattered electric field is essentially a linear operation upon a Gaussian random 

variable which gives another Gaussian random variable, and (3) real radar data are used 

to check the assumption and the results are positive. 

Under the assumption of a. Gaussian distribution of the sea echo signal, Barrick and 

Snider [8] pointed out that at each frequency position in the Doppler spectrum, the mag

nitude of the PSD will be a chi-square random variable with two degrees of freedom. Real 

data. from HF radar located on the west coast of San Clemente Island were used to examine 

this deduction [8]. The normalized standard deviations of the power at specific spectral 

positions were calculat ed for 9 x 200 s t ime segments. Radar data. of different operat

ing frequencies, pulse widths, and different ranges were calculated to check t he possible 

dependencies upon these parameters. Results indicated that no such dependencies were 

evident for all of them. Therefore, Barrick and Snider confirmed the Gaussian nature of 

the received scattering signal and gave a partial explanation to the Bragg fluctuations. 

Based on the initial analysis, Barrick [48] derived an equation for the standard deviation 

of the Bragg fluctuations, which can be applied to bound the error of current measurement. 

The deduction of this equation applies under two conditions. The first is that the power 

at each frequency point is chi-square distribution with two degrees of freedom. The second 

is that the equivalent number of spectral points within the Bragg region be large. The 

latter condition ensures the distribution of the Bragg fluctuations is Gaussian and a closed 

form expression can be approximated. The influence of the shape of the Bragg region is 

also discussed. Because Barrick 's equation for the standard deviation does not include 

a particular shape of the Bragg region, two models of shapes are checked: a rectangular 

shape and a Gaussian shape. The results show a very weak dependence upon shape. 

Barrick's [48] standard deviation equation for the Bragg fluctuations does not specify 
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where the width of the Bragg region comes from. As mentioned earlier, Barrick's radar 

cross section method describes the Bragg scatter mechanism by a Dirac delta function, 

which dictat s that the width of the Bragg region is infinitesimally narrow if other influ

ences are abs nt. Therefore, the width of the Bragg region can only be considered to arise 

from some secondary sources, such as urrent variability and/or ionospheric motions. 

In some HF radar field experiments a narrow Bragg peak can be achi ved. For xample, 

Barrick and Snider [8] used 20 f..LS and 100 f..LS pulse widths, corresponding to the range 

sizes (i.e. radial resolutions) of 3, 000 m and 15, 000 m, respectively. Within the operating 

frequency band, 3 MHz to 30 MHz, these pulse widths are large "enough" so that the 

incident radiation may be approximated as plane waves. However, 3 km and 15 km range 

resolutions ar fairly coarse for ocean surface measurement. In fact orne modern HF 

radar systems have bandwidths large enough to give resolutions of 400 m or less (e.g. 

Hickey [49], Wyatt et al. [12]). 

Since the width of the Bragg region likely results from multiple factors, it is important 

to investigate th se factors. The Dirac delta function definition of the Bragg peak is not 

physically suited to such considerations. 

As noted, in Walsh's formulations for the first-order field equation, the broadness of 

t he Bragg region appears naturally from the analysis due to the specification of a pulsed 

source. In Walsh's Doppler spectrum, every frequency point within the Bragg region has a 

clear definition. That is, unlike the Dirac d Ita function that has value only at one point, 

the squared inc function alluded to in Section 1.3.1 is , in fact , defin d throughout the 

whole frequency domain. 

As a further reason for the present investigation, it may be point d out that modern 

HF radar sy terns are utilized not only for the remote sensing of ocean surface parameter , 

but may also be utilized for continuous over-the-horizon surveillance within a nation's 200 

nautical mile exclu ive economic zone (EEZ). This task includes d tection of hard targets 

such as ships, missiles, and low-flying aircraft; and in these applications, the ocean clutt r 

appearing in the Doppler spectrum will be viewed as the spectral background of the u eful 
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information. In orne cases the radial speed information of the target may be masked by 

the Bragg peaks, but clutter suppression techniques may be employ d to uncover t hem. In 

view of these issues, a detailed knowledge of the Bragg scatter m hanism and its statistical 

propertie will b vital in t he development of such clutter suppression algorithms. 

1.3.3 Transmitting Waveforms for HF Radar 

It is known that the phenomenon of the Bragg fluctuations is evident no matter what radar 

waveform is mployed. As noted previou ly, in the HF radar remote en ing community, 

frequency mo lulated waveforms, such as FMCW and F new, are widely us d . Barrick 

[50] presented two fast Fourier tran form (FFT ) based technique for proce sing F MCW 

radar signal . The first technique includ two consecut ive FFT pro s. Radar signal 

are fir t FFT tran formed within a sweep interval to obtain the range information. T hen 

the second FFT is carried out over everal sweep intervals to give Doppler information. 

The second technique involves performing a ingle long FFT t ran form over s vera! sw ep 

intervals. Range and Doppler information can be derived simultaneou ly. Both techniques 

are shown to give id ntical results with the same FFT execution t im . 

Khan and Mitchell [51] presented a waveform analysis for a radar system with a de ign 

capability for over-th -horizon detection of ocean surface targ t up to 400 km and a 

range resolution of 400 m. This analysi has b en applied in the operation of a shor -

based long range HF ground wave radar (HFGWR) system at Cap Ra , Newfoundland , 

Canada. Several experiments have been onducted to verify the capabilit ies of t he Cape 

Race HFGWR system using the FMICW wav form (e.g. Khan et al. [52]). In the 

experiments, a navy vessel, a helicopter and three different iceberg were d tected and 

encouraging results were obtained. In addition to the hard target detection and tracking 

over the ocean urface, Khan and Mitchell [51] suggest the possible capability of oc an 

surface parameter extraction by the radar system. However , th r i no further report 

along this direction in that publication. 
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Both FMICW and FMCW radar transmitting waveforms can achieve good range and 

Doppler resolutions depending on bandwidth and sweep period. The FMCW waveform 

may be viewed as a special case of the FMICW waveform with duty cycle of the inter

rupt sequences equal to unity (see Khan and Mitchell [51]). Within a single frequency 

sweep, the use of the FMCW and FMICW waveforms ideally requires an instantaneous 

changing of radar transmitting frequencies. Even within a single pulse for the FMICW 

waveform, strictly speaking, the frequencies are changing from beginning to end. Recalling 

the mechanism for the Bragg scattering, the changing of operating frequency corresponds 

to different wavelengths of ocean waves for which Bragg scatter occurs. If the PSDs of 

the radar received sea echo signals within a finite time duration are examined, the Bragg 

fluctuations might be expected to exhibit some features which differ from those associated 

with the pulsed waveform. Therefore, derivation of the radar cross sections and examina

tion of the Bragg fluctuations for the FM waveforms are of particular interest for ocean 

surface applications. 

1.3.4 A Brief Consideration of HF Radar Systems Worldwide 

Table 1.1 lists some of the major past and present HF radar ocean surface measurement 

systems around the world. In this table, the methods of range resolution include three sorts 

of waveforms: pulsed, FMCW and FMICW. Among them the FM waveforms are becoming 

more popular, specially in state-of-the-art systems. Direction finding and beamforming 

are two techniques of azimuthal resolution and are denoted in the table by D and B, 

respectively. Direction finding is based on the Fourier decomposition of the time series 

received by several (usually three or four) antennas [53]. Each Fourier component i 

attributed to a Doppler shift and in turn to a radial speed. Different radial speeds can 

be obtained by comparing the phases at the antenna receivers. The main advantages of 

the direction finding technique are that the compact phase-measuring arrays used may be 

quickly deployed and require little real estate. 
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Table 1.1: Past and Existing HF Radar Systems around the World . "D" represents 
direction finding and "B" represents beamforming. 

System Country Waveform D/ B 

CODAR (Barrick [53]) USA pulsed D 

COSRAD (Heron et al. [54]) Australia pulsed B 

HF ocean radar of CRL (Takeoka et al. [55]) Japan FMICW B 

HFGWR (Hickey [49]) Canada FMICW B 

OSMAR2000 (Yang et al. [56]) China FMICW B 

OSCR (Prandle et al. [57]) UK pulsed B 

PISCES (Shearman and Moorhead [58]) UK FMICW B 

SeaSonde (Paduan and Rosenfeld [59]) USA FMICW D 

WERA (Gurgel et al. [60]) Germany FMCW D/ B 

Another method to extract directional information is beamforming. In this method, 

large antenna arrays are used to generate a narrow radar beam. The radial speeds of 

targets (or ocean current) along the radar look direction can be measured. When two 

radar systems are deployed to cover the same area, the current velocity can be obtained 

through vector combination. The main advantage of beamforming, in general, is that in 

comparison to the compact systems used in direction-finding, large arrays allow for the 

extraction of higher-resolution information from the Doppler continuum and put less sev r 

restrictions on signal quality. The information so obtained includes directional ocean-wave 

spectrum and surface wind velocity. 

Other HF radar ocean remote sensing systems include multifrequency coastal radar, 

or the MCR system, which was originally designed by Stanford University in 1970's (e.g. 

Teague [61] and Fernandez [46]) and then developed jointly by the University of Michigan, 

the Environmental Research Institute of Michigan (ERIM), and Stanford University (e.g. 

Teague et al. [62]). This system can transmit signals at four different frequencies, simulta-

neously. Since different frequencies correspond to current speeds for different depths, the 

MCR system is able to measure the current speeds in different depths in the same scat-

tering patch; i.e. the current shear in the vertical plane from the top to some maximum 
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depth, determined by the lowest of the multiple frequencies, may be estimated. 

Ground wave propagation is not the only mode of operation which can be used to 

remotely sense the ocean surface. There are several HF radar systems that are designed 

to measure the ocean surface using the skywave mode (e.g. Six et al. [63]). In skywave 

mode, the transmitted signal will be first reflected by the ionosphere then scattered by 

the ocean surface. The scattered wave will also travel back to the radar receiver by means 

of ionospheric reflection. Of course, the fundamental principles on which the skywave 

systems operate are similar to those for HFGWR. One advantage is that this system is 

able to measure the ocean surface that is thousands of kilometres away from the radar 

location. However , this system is much more complicated and the received signal from the 

ocean surface is very much contaminated by the unstable motion of the ionospheric layers. 

Of all the HF radar systems, an HFGWR system developed by researchers and engi

neers at Memorial University of ewfoundland, MU , is of particular interest here because 

the simulated data in this research are largely based on the parameters of this radar (e.g. 

Hickey [49]). The HF radar research work was initiated by Dr. John Walsh in the Fac

ulty of Engineering and Applied Science, in the early 1980's. Within an approximate ten 

years research period, several programs were conducted, including those which clearly es

tablished the feasibility of using HF radar for the over-the-horizon detection of ice, the 

measurement of the ocean surface parameters, such as currents and waves, and the detec

tion of hard targets, such as ships and low-flying aircraft. Many successful experiments 

have been carried out, not only to legitimize HF radar as a powerful oceanic remote sen or 

but also to help validate Walsh's generalized function approach to e-m wave scattering 

(e.g. Walsh et al. [64], Gill and Walsh [39]). It was, in fact, the observation of data 

collected from the Cape Race system which suggested that the variability of the centroid 

positions of the Bragg regions in the Doppler spectra was a problem that needed further 

scrutiny. 
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1.4 Outline of the Thesis 

This st udy begins with the e-m field equations describing the radiation received by HF 

radar when the target is the ocean surface. The main purpo e of this study is to investi

gate the behavior of the randomness of the Bragg peaks when the PSDs of finite length 

t ime series are calculated as periodograms. The emphasis is upon the description of the 

significance of the Bragg fluctuations when pulsed and FM waveforms are used as radar 

transmitting waveforms. 

In Chapter 2, the investigation is focused on the pulsed waveform. Long t ime series 

of radar received signals are simulated for various operating frequencies and pulse widths 

based on the HF radar received clutter model developed by Gill and Walsh [42] and the 

cross sections developed by previous investigators (e.g. Walsh et al. [6], Walsh and Dawe 

[34], Gill and Walsh [35], Gill et al. [36]) . These long time series are segmented into equal 

length sequences and PSDs are calculated for each of them. The centroids of the Bragg 

peaks are located from the PSD plots and compared to the theoretical Bragg frequencies. 

The means and standard deviations of the Bragg fluctuations are tabulated and plotted. 

The significance of the Bragg fluctuations is discussed and the properties are explored 

numerically and theoretically. 

In Chapter 3, radar backscatter cross sections for the FM waveforms are developed. 

This is a major new initiative based upon earlier work by Walsh et al. [6], Walsh and Dawe 

[34], and Gill and Walsh [35]. Since the fluctuation investigation is mainly in the vicinity 

of the Bragg regions, only the hydrodynamic coupling mechanism will be considered for 

the second-order scatter. 

In Chapter 4, the first- and second-order cross sections for the FM waveforms are 

depicted and compared to those for the pulsed waveform. The Bragg fluctuation properties 

for the FM waveforms are investigated in a manner similar to that presented in Chapter 

2 for the pulsed waveform. Field data for the FMCW waveform are used to examine the 

simulation results and the fluctuations of the Bragg peaks. 
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Chapter 5 provide an overall summary of the investigation and some suggestions for 

future research related to the findings here. 
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Chapter 2 

Fluctuations of the Bragg Peaks for 

the Pulsed Radar Waveform 

To illustrate the phenomenon of the fluctuations of the Bragg peaks, i.e. to verify that such 

a phenomenon indeed exists and to examine its properties, time series of the backscat

tered electric field over the ocean surface are simulated based on cross sections for the 

pulsed waveform. Radar operating frequencies from the upper, middle and lower HF band 

are chosen for investigation. Various radar pulse widths are selected in the time series 

simulation. The Doppler spectra are estimated as periodograms. 

In this chapter, the statistical properties of the Bragg fluctuations will be analyzed. 

The significance of the Bragg fluctuations will be defined and conditions of the significance 

will be examined. A hybrid analytical and numerical scheme is used for investigation and 

interpretation. 

2.1 Choice of the Ocean Spectral Model 

Any description of the scattering of the radar signal from the ocean surface obviously must 

incorporate a model of that surface. This model will be addressed in advance, following 

the description of Gill and Walsh [42] (see also Gill [65]). 
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----------------------------------------------------------------·--

Typically, the ocean spectrum of wavevector R, sl ( R) , with its direction in ej( may be 

expressed as the product of a non-directional spectrum, S1 (K) and a normalized directional 

factor, D (Bg) (e.g. Kinsman [3] and Tucker [66]) : 

(2 .1) 

The normalization on D ( e R) is such that 

(2.2) 

Clearly, 

(2 .3) 

The Pierson-Moskowitz non-directional spectrum SpM [67] is selected as the ocean wave 

spectrum with a modification of 

(2.4) 

by Gill [65], where 

(
-0.74g2

) 

S (K ) = apMe ](2u! . 
PM 2](4 (2.5) 

In this equation, apM is a constant with value 0.0081 and uw represents the wind speed 

measured at 19.5 m above the ocean surface. 

The directional distribution D ( e j() in equation (2.1) is actually also a function of 

wavenumber K , which can be written as 

(2 .6) 
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where s(K) is referred to as the spread function and iJ (K) is the dominant direction of 

the waves (e.g. 1\1cker [66]). In simulations, iJ (K) is usually replaced by Bw, the wind 

direction with respect to the radar look direction. When the dependence of frequency is 

removed from the spread function (e.g. Tucker [66]), the simplified directional distribution 

is written as, 

[
f)- -fJ] D ( fJ!?) = F ( s) cos28 

K 
2 

w . (2.7) 

A typical value of s = 2 is chosen following the suggestion of previous investigators (for 

example, Lipa and Barrick [28], Howell [68], Gill and Walsh [42]). For this case, 

4 
F(s = 2) = 

3
1!" , 

and the directional ocean wave spectrum will be 

(2. ) 

(2.9) 

Figure 2.1 is an illustration of Pierson-Moskowitz ocean wave spectra as a function of 

ocean wavenumber. The reference direction has been switched to the direction that is 
(1-m)n 

perpendicular to the radar look direction through a term of 
2 

with m = ±1. 

Wind speeds are chosen to be 10 m/s, 13 m/s, and 16 m/s, respectively for comparison 

purpose. It is noticed that the peak increases in amplitude and shifts to lower frequency 

as the wind speed increases. This has a significant effect on HF radar spectra, but does 

not affect the first-order cross section to any great extent. This is due to the fact that the 

ocean waves that produce the first-order peaks are generally in the high frequency end of 

the ocean spectrum, corresponding to the saturated region. 
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Figure 2.1: Pierson-Moskowitz ocean wave spectra as functions of wind speed and 
wavenumber. 

2.2 First- and Second-order Backscatter 

Field Equations 

2.2 .1 First-order Cross Section 

For the monostatic scattering configuration shown in Figure 2.2, the expression for the 

first-order cross ection 0"1p(wd) may be obtained from Walsh et al. [6], or from Walsh and 

Gill [11] as a special case with the bistatic angle equal to zero. The result is 

(2.10) 

where the subscript p indicates that the radar transmitting waveform is a simple pulsed 

s inusoid. In this equation, wd is the radian Doppler frequency, S1(mK) is the ocean 

directional wave spectrum as in equation (2.9), and 6p8 is the width of scattering patch, 
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Reference direction 

Figure 2.2: Monostatic radar configuration and the geometry of the scat tering patch. The 
reference dire tion is fixed hereafter. 

which is the smallest radial distance that can be unambiguou ly d i tinguished by the HF 

radar. Of course 6 p5 depends on the pul e width To of the tran mitted radar signal and 

is given by 

(2. 11) 

where c is the vacuum speed of light (3 x 108 m/ ). T hem = ± 1 in equation (2.10) i used 

to distingui h the positive and negativ portions of the Doppler hift, which ari e from 

two sets of o ean waves, one with wave components moving along the radar look direction 

and another moving in the oppo ite direction; i.e. 

m = 1 wh n wd < 0 (2.12) 

and 

m = - 1 when wd > 0 . (2 .13) 
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The Doppler fr qu ncies are related to t he cattering wavenumber J( by the dispersion 

relationship which is given by 

(2.14) 

Sa(-) is the sine function ( Sa(x) = sin;x)). It may be noted from quation (2.10) that it 

is the squared inc function that generates the first-order or Bragg peak . Thi is the mo t 

ignificant difference between the Wal h s and Barrick's first-order cross section expression 

(e.g. Wal h et al. [6] and Barrick [4]); the lat ter contains a Dirac delta function as are ult 

of u ing a plan wave as the transmitted ignal. From equation (2.10), the magnitude I<s 

of the Bragg wavenumber responsible for the firs t-order scatter i specified as the value of 

K which maximizes Sa2
(-). Clearly, then for the monostatic radar configuration 

Ks = 2k0 . (2.15) 

2.2.2 Second-order Cross Section 

According to pr viou investigation (e.g. Has elmann [1]) the s cond-order patch scatter 

consists of two typ s of interaction between the radar signal and ocean waves. One i 

due to the -m ignal interacting with a second-order ocean wave, which is denoted as 

the hydrodynamic coupling effect , while another is from the intera tion between the radar 

wave and two first-order ocean waves, which is denoted as the electromagnetic coupling 

effect . If i(, and i(2 are the wave vector of the ocean waves, in order to generate the 

second-order scatt r , /{ 1 and J( 2 must atisfy the condition, 

(2.16) 

Here!? is in the dir ction of the radar look direction ()N and has a magnitude of 2k0 . 
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Figure 2.3: Four portions of the second-order cross section. The operating frequency is 
25 MHz, the wind velocity is 15 m/s, 0° to the reference direction. Only the ]{1 < ]{2 case 
is simulated here. 

The second-order cross section for patch scatter may be given as (e.g. Walsh et al. [6]) 

0"2p (wd) = 2
3
1fk66Ps m'f±l m'f±l fooo 1: fooo St ( mJ(l) St ( m2J?2) I sf pj

2 
K

2 

Sa2 [6;s (K- 2ko)] 5 (wd + m1/ii(; +m2/ii(;) KtdKtdBJ(
1
dK , (2.17) 

in which 5(-) is the Dirac delta function . Figure 2.3 is a typical example of a second-order 

cross section of the patch being as depicted in Figure 2.2. Only the hydrodynamic coupling 

effect - i.e. the first of the two effects mentioned above - is plotted for the purpose of 

illu tration. As shown in Figure 2.3, there are four portions corresponding to four possible 

combinations of m 1 and m2 , which represent four different Doppler frequency regions in 

the second-order cross section, respectively. If m 1 = m2 , 

w < -wg, when m1 = m2 = 1 } w > wg, when m1 = m2 = - 1 
(2.18) 
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-WB < W < 0, 

and 

m1 = -1, m2 = +1 if K1 > K2 or 

m1 = +1, m2 = -1 if K1 < K2 

(2 .19) 

The parameter sfp in equation (2.17) is referred to as the coupling coeffici nt. It is 

defined as 

(2.20) 

with 

(2.21) 

where H r p is the hydrodynamic coupling coefficient and e f p is the electromagnetic cou-

pling coefficient. The hydrodynamic and electromagnetic coupling coefficients correspond, 

respectively, to the two scattering mechanisms referred to at the beginning of this subsec

tion. The general expression of the hydrodynamic coupling coefficient is given by Walsh 

et al. [6], and for deep water, it can be simplified as 

(2.22) 

where w1 and w2 are frequencies of the ocean waves associated with the ocean wavenum-

bers K 1 and K2, respectively, which have w1 = ,.,(91(; and w2 = ..fiK;. according to the 

dispersion relationship. () !?, is the angle of R1 from the reference direction. For the sake 

of completeness, we note that the electromagnetic coupling coefficient for t he backscatter 
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is expressed as (e.g. Walsh et al. [6]) 

(2 .23) 

where .i = R and ]{ ;:::::: 2k0 . When simulating the second-order cross section, the 

hydrodynamic coupling coefficient is generally predominant (e.g. Gill [69]). An important 

issue associated with this research is the determination of the nulls which exist between 

the first- and second-order scatters (see Figure 1.1). Since the electromagnetic portion 

of sf p is significantly smaller than the hydrodynamic portion in these regions, it will be 

ignored in the remainder of the analysis. 

To calculate the second-order cross section of equation (2.17), the squared sine function 

must be addressed (e.g. Walsh et al. [6]). Ftom Lathi [70] 

lim MSa2 [Mx] =no (x) , 
M-> 

and with the assumption that the cattering patch 6p8 is large, we have 

lim Sa2 
[
6

2
Ps (K - 2ko)] 

~_, 

2 6ps 2 [6Ps )] - lim -Sa - (K - 2ko 
D. ps ~_, 2 2 

2n ;:::::: --;;:-o (K- 2k0) 
ups 

and equation (2. 17) becomes 

CT2p(wd) ;:::::: 26n2k~m"f±lmf;±l/~la sl (mJ<t) St (m2R2) 

IHfPI2 
o ( wd + m1 j;i{; + m2~) J(ldKldOg, , 

(2.24) 

(2.25) 

(2.26) 

The Dirac delta function in equation (2.26) can be evaluated using a t chnique presented 
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by Lipa and Barrick [27]. Letting 

(2.27) 

we have 

(2.2 ) 

Since K2 = .R- i(1, and the magnitude and direction of .R is known, imposing the law of 

eosin s, K2 may be derived as 

Letting 

Ki K? + 4k5- 4KJko cos (e1<, - e ) 

Y 4 + 4k5- 4Y2ko cos (e1<, - e ) . 

- y/g ( ml\(K; + m2 JK;) 
- y/g { m 1 Y + m2 [ Y 4 + 4k5 - 4 Y 2 ko cos ( B 1(, - BN)] } 

the delta function con traint become 

The J acobian of th transformation will be 

- l 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

After evaluating the delta function con traint by the Newton-Raph on m thod , equation 
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(2.26) becomes 

~ 12srr2 k~ 2::: 2::: j 1r fo st(m1R1) s1 (m2R2) 
mt = ±lm2= ± 1 -1r 0 

IHfPI 2 8[wd-DP(Y,B1<J ]Y3 1:;PI_ dDpdB1<1 , 

of{ I 
(2.33) 

or 

(2.34) 

which can be calculated numerically. 

2.2.3 Radar Received Time Series 

The first- and second-order electric field equations may be simulated from the cross section 

equations (2. 10) and (2.34) (e.g. Pierson [7], Walsh [71], and Gill and Walsh [42]) with 

(2.35) 

where C is a collection of factors from the radar equation defined as (e.g. Barton [72]) 

C = >..6PtGtGr IF (Ps)l
4 

Ap 
(4rr)3 p~ 

(2.36) 

Here, Pt and Gt represent the peak power and free space antenna gain, respectively, of 

the transmitting source and Gr is receiver gain; F(p8 ) , denoted as the rough spherical 

earth attenuation function, is a function of sea state, distance from radar transmitter 

to scattering patch and from scattering patch to receiver, constitutive parameters of the 

ocean surface (relative permittivity ER = 80, average conductivity aR = 4 S/m are used for 

t he ocean surface) , and radio wave frequency. F(-) can be calculated from a FORTRAN 
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routine developed by Dawe [73]; Ap is the area of the scattering patch over the ocean 

surface; A71 ~ p5 6p5 BN , where Ps is the range of the scattering patch; E(w) in equation 

(2.35) is a random phase variable with a uniform distribution between 0 to 27T; and CJ(w) 

is the summation of the first- and second-order cross sections, CJ(w) = CJ1p + CJ2p · 

Equation (2.35) can be calculated by converting the integral equation to a summation 

equation (e.g. Pierson [7]) 

(2.37) 

where p and q are integers and w0, w1 , w2 , · · ·w2q+2 are net points over the w-axis. 

Figure 2.4 depicts a simulation of electric field tim.e series using the model in equation 

(2.37) . The parameters of the simulation include an operating frequency of fo = 25 MHz 

(>-o = 12 m), peak power Pt = 16 kW, transmitting antenna gain Gt = 2 dBi ~ 1.585, 

scattering patch range of 50 km, receiving array gain 

G 
=5.48(Na+1)d5 =

6 76 
r >-o 5. ' (2.38) 

with linear array element number Na = 23 and element spacing ds = 0.5>-0 , a pulse width 

of 8 J-LS , corresponding to a patch width of 6p5 = 1200 m, a wind velocity of 15 m/s, 0° to 

the reference direction, and a sampling period of 0.25 s. Figure 2.5 is an expanded view 

of the first 512 points of the time series in Figure 2.4. From Figure 2.5 we can ob erve 

a periodic modulation of the e-m field indicating the existence of sinusoidal compon nts. 

These sinusoidal components give rise to the Bragg peaks in the backscatter Doppler 

spectrum. 
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Figure 2.4: An 192-point time series of the first- and second-order electric field with the 
fo = 25 MHz, To = J.LS , a wind velocity of 15 m j s, oo to the refer nee direction, and a 
sampling p riod of 0.25 s. 
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Figure 2.5: An expanded view of the first 512 points of the time series in F igure 2.4. 
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2.3 Doppler Spectra and Centroids 

of the Bragg Peak Regions 

In the previou ection, the algorithm for simulating the first- and second-order HF radar 

received time rie has been described. Following this proces th resulting electric fi lei 

voltages will b tationary Gaussian random variables [ ]. In this ection, the Doppler 

spectra (PSD) of the time-varying electric fields are calculat cl as perioclograms. Th 

centroids of th Bragg peak regions are located and the eli tribution of the centroid 

estimated numerically. 

2.3.1 Calculation of the Doppler Spectra 

If x(t) is a time-varying random proce , the Doppler spectra may bee timatecl [47] by 

(2.39) 

where the time interval is from t 1 to t2 , i.e. t.t = t2 - t 1 . Th quantity P(w) is th 

so-called perioclogram and is an estimate of the spectrum of x(t). An alternate procedure 

to calculate the periodograrn is to Fourier tran form the autocorrelation of x(t) within th 

arne tim interval (e.g. Proakis [47]). 

2.3.2 Locations of t he Centroids 

The centroid of the Bragg peak is defined as the frequency position that separates the 

Bragg p ak region into two portion with qual areas. A numerical pro dure for locating 

the centroid i presented by Bobby [37]. The basic steps are: 

1. Locate th positions of the maximum values of the positive and n gative Doppler 

spectra, r pectiv ly, as the approximate peaks; 

2. Find the average values of th pectra in the ranges 11. wsl < w < l1.2wsl and 
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I0.8wsl < w < I0.3wsl of the Doppler spectrum; 

3. For each peak, posit ive and negative, determine the first-order nulls on each side of 

the peal< as those frequency values that fall underneath the corresponding average; 

4. Locate the centroid frequency for each side of the Doppler spectrum as that frequency 

value at which half of the ent ire area of the peak is covered. 

It is known that , in pract ice, ocean swell will cause narrow peaks in the second-order 

Doppler spectrum adj acent to the first-order lines. The presence of the swell peaks could 

potentially affect the identification of the null locations based on the algorithm above. 

However , for simplicity, t he influence of swell is not considered in this analysis. Figure 2.6 

depicts an example of t he Doppler spectrum and centroid location of the t ime series in 

Figure 2.4. To see the variation of the Bragg peaks, we segment the time series into four 

equal-length consecutive parts, each having a length of 512 points. T he Doppler spectrum 

is estimated and the position of the cent roid is calculated for each segment . In Figure 

2.6, a plot of the four Doppler spectra is depicted , and because of scaling, the variation of 

the centroid position indicated as dashed lines from top to bottom, are not immediat ely 

obvious. Figure 2.7 presents a closer look around the right-hand side peak of Figure 2.6. 

The variations of the magnitudes of t he Bragg peaks can now be readily observed and these 

variations will obviously lead to fluctuations of t he centroid posit ions. Similar results to 

those of Figures 2.6 and 2.7, but for an operating frequency of 5 MHz, are found in Figures 

2.8 and 2.9, respectively. 

2.4 Distribution of the Bragg Fluctuations 

2.4.1 Numerical Calculation of the Standard D eviation 

Since, as shall be seen, the distribut ion of the centroid positions is somewhat dependent 

on the width of the Bragg region, which is, in turn, dependent on the operating frequency 
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Figure 2.6: Fluctuations of the centroid positions for fo = 25 MHz. The centroid positions 
are indicated as dashed lines from top to bottom. 
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and the pulse width, we attempt to determine the statistical properties of the distribution 

numerically. In this section, histogram plots of the centroid position for both positive 

and negative Bragg regions are depicted. 

Figures 2.10 to 2.12 are the investigation for the distributions of the centroid positions 

for different operating frequencies with a fix d pulse width of 4 J..LS. Radar operating fre-

quencies of 25 MHz, 15 MHz, and 5 MHz, i.e. frequencies from the upper middl and 

lower portions of the HF band are select d. In order to calculate the Doppler spectra, fast 

Fourier transform (FFT) algorithm is u eel to implement the discrete Fourier transform 

(DFT). FFT resolution (b.FFT) and standard deviations (STDs) of the centroid posit ions 

with re pect to the theoretical Bragg frequencies are plotted for comparisons. The con-

clition of significant fluctuations of the Bragg peaks is defined as the STD exceeding the 

half b.FFT· In Figures 2.13 to 2.15, results for a fixed operating frequency of 5 MHz 8J1d 

pulse widths of J..LS, 4 J..LS , and 2 J..L , resp ctively, are shown. 

Throughout the numerical estimations, the sea state is fixed by a steady wind velocity 

of 15 m/s, 0° to the reference direction. For each case, a time series of 65 , 536 points is 

generated from equation (2.37) with the ampling interval of 0. s. Then, the time series 

is segmented into 128 equal-length sequences with each containing 512 points. PSDs for 

these 512-point sequences are calculat d and t he centroid positions for both left and right 

sides of the Bragg r gions are derived. The half b.FFT of each 512-point sequence is 

obtained as 0.0012 Hz. This b.FFT is fixed for various radar· frequencies and pulse widths 

in our simulations in this section. 

Table 2.1 summarizes the results of Figures 2.10 - 2.12 and also gives additional out-

come for other operating frequencies. In this table, VFFT is ocean surface current re olu-

( I ) . cb.FFT tion in sp eel em s corresponding to the half b.FFT of 0.0012 Hz. Smce VFFT = 
210 

, 

VFFT will tal<e different values for different op rating frequencies. "STDL" and "STDR" 

are the standard deviations for the left- and right-hand Bragg region . VL and VR ar 

speeds in cm/s associated with "STDL" and "STDR", respectively. 

Table 2.2 summarizes the results of Figures 2.13- 2.15 and includes outcomes for other 
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pul e width values. Half 6FFT is 0.0012 Hz, corresponding to a current resolut ion of 

7.3 cm/s for fo = 5 MHz. "STDL' and "STDR", VL and Vn have the ame definitions as 

in Table 2.1. 

Figures 2.16 and 2.17 are plots of the standard deviations as function ofradar frequency 

and pulse width, respectively. In these figures, half of the 6FFT value is indicated as the 

bold solid line. Comparing with the half 6FFT the significance of the standard deviations 

will be identified. 

The immediate conclusion from the previous simulation and estimation results i that 

the Bragg fluctuations do indeed xist and, under some circumstances, are significant. 

That is, under certain operating parameters, the standard deviation of the Bragg fluctua

t ions lies outside the resolution imposed by the FFT. For example, as seen in Figure 2.12, 

when fo = 5 MHz and r0 = 4 J..LS, the measured standard deviation of the left-hand peak 

position is 0.0016 Hz (Table 2.1), which exceeds half of the 6FFT of 0.0012 Hz. Sine 

our purpose is to measure the ocean current speed, expressing these values in the units 

of speed, the half 6FFT corresponds to a speed of 7.3 cm/s while the standard deviation 

corresponds to 9.6 cm/s. 

Because there is no noise or other contamination in the time series simulation at this 

stage, the only conclusion t hat must be drawn i that th source of the fluctuations with 

its standard deviation beyond the half 6FFT is the randomness of the ocean surface. 

Since the width and position of the Bragg peak are determined by the operating fre

quency and pulse width, it is reasonable to investigate the dependence of the standard 

deviation of the Bragg fluctuations with respect to these two parameters, individually. 

Plots in Figures 2.16 and 2.17 show the existences of these dependencies. It may be ob

served that given a fixed pulse width, the standard deviation will, generally, decrease when 

the operating frequency is increased. On the other hand, given a fixed radar frequency, the 

standard deviation will also generally decrease when the radar pulse width is increased. 

However, when Figures 2. 16 and 2.17 are examined carefully it may be observed that 

the dependencies differ for the two general cases. Some of the details underlying these 
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Table 2.1: Standard deviations for different operating frequenci s when To = 4 f..lS. The 
definition of VFFT> 'STDL" and "STDR ', and Vr, and VR are given in text. 

fo(MHz) VFFT (cm/s) STDL (Hz) Vr, (cm/s) STDR (Hz) VR (cm/s) 

25 1.5 0.0011 1.2 0.0008 1.0 

20 1.8 0.0012 1. 0.000 1.2 

15 2.4 0.0014 2.8 0.0012 2.4 

5 7.3 0.0016 9.6 0.0014 .4 

3 12.2 0.0045 45.0 0.0042 42.0 

Table 2.2: Standard deviations for different pulse widths with fo = 5 MHz. 

To (f..l ) STDL (Hz) Vr, (em/ ) STDR (Hz) VR ( m/ ) 

8 0.0011 6.6 0.000 4. 

7 0.0012 7.2 0.0008 4. 

6 0.0014 .4 0.0012 7.2 

5 0.0012 7.2 0.0017 10.2 

4 0.0016 9.6 0.0014 8.4 

3 0.0021 12.6 0.0020 12.0 

2 0.0023 13. 0.0024 14.4 

1 0.0045 27.0 0.0042 25.2 
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observations are considered in the following section. 

2.5 Theoretical Analysis of the Bragg Fluctuations 

In this section, the fundamental rea on for th Bragg fluctuation found in the previous 

section will be examined. We will review the electric field equations and incorporate 

explicitly in them the randomness of the cattering surface. It is hop d that the final 

outcome will help to establish error estimation in ocean surface current measurement on 

a sound th or t ical base. 

2.5.1 Sources of the Bragg F luctuat ions 

In order to inve tigate the source of the Bragg fluctuation wh n Doppler spectra ar 

calculated from finite t ime erie received from HF radar, the el ctric field equation of 

Walsh et al. [6], Walsh and Dawe [34], or Gill and Walsh [35] should be examined carefully. 

The numerical ver ion of the field equation (2.37) in Section 2.2.3 i rewritten here as 

E(t) ~ C (2.40) 

Here, the ( Eri ) 
12 

(t) has been simplifi d as E(t). All parameters have b en defined in 

Section 2.2.3. To simplify the problem, along the frequency net points from w0 to w4 , two 

arbitrary adjacent frequencies w1 and w3 are considered, with random phases of ~: 1 and ~:3 

respectively (e.g. Pierson [7]) . The total fi ld , E 13 (t), received from these two components 

becomes from equation (2.40) 

(2.41) 
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If A1 (wl) is defined as 

(2.42) 

(2.43) 

and the exponential term ei[wt+<(w)J is written explicitly so as to show the behavior of the 

random phase term, equation (2.41) may be cast as 

E13(t ) 

(2.44) 

Equation (2.44) may be viewed as the prototype of the e-m field t ime series received from 

the ocean surface; i.e. it represents the field which would be received if only two distinct 

wave frequencies with random phases were presented on the surface. Figure 2.18 provides 

a plot of this signal. 
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Fourier transforming the first term of quation (2.44) over an arbitrary finite t ime 

interval [t1, t2] gives 

(2.45) 

where 6.t = t2 - t1 and c:x1 
tl + t2 

E1 + -
2
- (w1 - w). Similarly, for the second term in 

equation (2.44) 

(2.46) 

tl + t2 . . 
where c:x3 = E3 + -

2
- (w3 - w). The total PSD, Pr(w) 1s the square of the magmtude of 

the sum of E1(w) and E3 (w) within the time interval 6.t; i.e. 

Pr(w) 

where 

1 2 
6.t JE1 (w) + E3(w) J 

2 2 [6.t ] 2 2 [6.t ] A16.tSa 2 (w1- w) + A36.tSa 2 (w3- w) 

+ A1A36.tSa [~t (wi- w)] Sa [~t (w3 - w)] cos(c:x13) 

P1 (w) + P3(w) + P13(w) , (2.47) 

(2.4 ) 

In equation (2.4 7) , it can be seen that the first and second term , which are denoted as 

P1(w) and P:J(w), respectively, are the PSD of E 1(t) and E3(t), individually. The third 

term, which is denoted as P13 (w) , i a cro term and represents the interaction between 

the two sinusoidal functions. The nece ary and sufficient condition that the cro s term 
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exists are: (1) there is more than one frequency component and (2) the length of time 

series is finite. 

In equation (2.47), Pr(w) is defined across all possible frequencies. If the behavior of 

the PSD at frequency w1 is considered (i.e. by setting w = wl), after absorbing b..t into 

the A's, 

(2.49) 

This equation also can be explained as the magnitude of the spectrum at frequency w1 

influenced by the adjacent frequency component at w3 . The first two terms of equation 

(2.49) on the right are deterministic terms no matter how the t ime series is segmented. 

They are actually the average value of the PSD estimate at frequency point w 1. The last 

term on right side of equation (2.49) contains randomness and is of primary interest here. 

Several points are noteworthy. Firstly, in view of equation (2.48), this term contains the 

random phases E1 and E3. This means that the initial conditions of the two sinusoidal 

components will affect the result of the spectral estimate. Secondly, the spectral estimate 

results will be affected by t he values of t
1 

; t
2

, which occur at the midpoints of the 

segmented time series. This means that we may not obtain the same PSD from time to 

time when the time series is divided into discrete sections. These properties are crucial 

since they imply that there exists a fundamental uncertainty in the magnitude of the 

PSD at each frequency point. Figure 2.19 shows that when equal length, consecutive time 

sequences are used to calculate PSDs from the time series of Figure 2.18, the resulting 

curves are similar but not coincident. 

The previous analysis thus shows that there is randomness in the PSD when the finite 

length time series is calculated. While this example has been established using only two 

frequency components, the general idea must be applied to a continuum (in a discrete 

sense) of frequencies. This is true becau e, as is well known, the sea echo received by 
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Figure 2.19: Fluctuations of PSDs. Each time sequence has a length of 128 points. Four 
consecutive time sequences are calculated and plotted together. 

HF radar contains many frequency components corresponding to scatter from many ocean 

wavelengths. Therefore, there will be potentially a large number of cross terms that could 

introduce uncertainty to the power estimate at one frequency point. 

2.5 .2 Further Numerical Investigation 

of the Bragg Fluctuations 

To numerically check the uncertainty of the power at each frequency point of the Doppler 

spectrum due to the influence from other frequencies, a finite but large number of fre-

quencies will be examined. If N is the number of frequencies , equation (2.49) may b 

written in an expanded , more general, form with Wn at the frequency position under the 

consideration as 

(2.50) 
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Clearly, equation (2.50) may be written more concisely as 

N N 

Pr(wn) = L P;(wn) + L P;j(wn) , (2.51) 
i=l i,j=l 

where the second term denotes the summation of the cross terms (i -=/= j). These are, in 

fact, the terms where the randomness is contained. There are totally 1+2+3+ .. . +N -1 = 

N(N-
1
) cross terms. Each cross term can be represented as a weighting factor times a 

2 
cosine funct ion Ct;j as in equation (2.49). The weighting factor is a function of frequency 

and time. The cosine function contains a random phase and a time dependency t ; ; tj. 

The distribution of the summation of these cross terms is to be estimated. 

Figure 2.20 shows histogram results of the distribution of the summation of the cross 

term at several Doppler frequency positions when the op rating frequency is fo = 25 MHz 

and a wind velocity is 15 mjs, 0° to the reference direction. Figure 2.21 is for fo = 15 MHz, 

and Figure 2.22 is for fo = 5 MHz. In these figures, t he radar pulse width is fixed at 4 f.lS, 

corresponding to the size of the scattering patch of 600 m. The length of each time series 

is 512-point and the sampling interval is 0.5 s, corresponding to a frequency resolution 
47r 

of !::.w = 
512 

rad/s and a frequency range from -21r to 21r in frequency domain. Since 

the absolute square of the variables with Gaussian distribution will result in a chi-square 

distribution with two degrees of freedom, the probability density function (PDF) of a 

chi-square distribution with two degrees of freedom is plotted for comparison. In Figures 

2.20-2.22, the amplitudes have been normalized to the maximum value of 0.5. 

In practice, those frequencies that are at and close to the Bragg peaks are of most 

concern. For illustration, the surrounding region of the positive Bragg peaks is examined. 

The frequency points of the Doppler spectrum being considered in each figure from top 

to the bottom, are at positions -2b.w, -1!::.w, 0, + 1!::.w , and +2b.w, respectively, with 

respect to the theoretical Bragg peak. Each figure is a histogram plot of 4096 events, 

which represents the length of t ime series of 4096 x 512 points, or 4096 x 256 seconds in 

time. The reason for assuming such large numbers of events is that we want to clearly 
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Figure 2.20: Hi togram plots showing fluct uations of PSDs (dash d line) with fo = 

25 MHz. From top to the bottom, the testing frequency points are - 26.w, - 16.w, 0, 
+16.w, and + 26.w with respect to the Bragg peak. A plot of a normalized chi-square 
distribution with two degrees of freedom (solid line) is for compari on. 
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55 

15 MHz. The arne 



- - - Simulated Dlst. 
--Chi-square D ist. 

0.1 

10 15 20 

- - - Simulate d Dist. 
--Chi-square Dist. 

"' "0 

"0 

~ 

~ 
0 . 1 

10 15 20 

- - - Simulated Dist. 
--Chi-square D lst. 

"' ~ 
~0.3 

al 0 .2 !E 
'8 
::::;o 

0 . 1 

00 10 1 5 20 

- - - Simulated Dist. 
--Chi-square Dist. 

"' ~ 
~0.3 

"" "0 

"' !E 0 .2 
'8 
::::;o 

0 . 1 

0 
0 10 15 20 

- - - Simulated Dist. 
--Chi- square D lst. 

"' ~ 
l0.3 

al 
!E 
'8 
::::;o 

0 . 1 

00 10 15 20 
Normalized Powe r 

Figure 2.22: Histogram plots showing fluctuations of PSDs with fo 
test frequency points are chosen as in Figure 2.20. 

56 

5 MHz. The same 



observe the distribution of power at each frequency point. Of course, it is assum d that 

the radar parameters and sea state statistics are fixed within the whole time period. The 

solid line on each figure is a plot of a chi-square distribution with two degrees of freedom 

for comparison. 

To investigate the relative magnitude of t he fluctuations to the mean values, the mag

nitude of power is normalized by the corresponding mean; i.e. from equation (2.51) we 

have 

N N 

L P;(wn) + L P;j(wn) 

Pnorm 
i=l i,j=l 

N 

L P;(wn) 
i=l 

N 

L P;j(wn) 
1 + ...::i,J_·=_l __ _ 

N (2.52) 

L P;(wn) 
i=l 

Since 

N N 

Pr(wn) = L P;(wn) + L P;j(wn) 2: 0 , (2.53) 
i=l i,j= l 

we have 

N N 

L P;j(wn) 2: - L P;(wn) , (2.54) 
i,j=l i=l 

and 

i,j=l 
_:.:_N ___ 2: -1 ' (2.55) 

l:P; (wn) 
i=l 
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and therefore, from equation (2.52) 

N 

L Pij(wn) 
i,j=l 

Pnorm = 1 + N 2: 0 . (2.56) 

L~(wn) 
i=l 

Equation (2.56) indicates that at each frequency position, the magnitude of the power may 

have opportuni ty to be zero due to the summation of the cross terms with randomness. 

This conclusion may be used to explain the phenomenon in practical experiment, that the 

Bragg region is som times split into two or mor portions. 

As another check for the distribution of the power at each frequency position, according 

to Barrick and Snider [8], the normalized tandard deviations are examined for the previou 

simulation. The normalized standard deviation (nSTD) is defined as [ ] 

(2.57) 

where Rk is a random variable at an arbitrary posit ion k and (-) is ensemble average. In 

these studies, Rk is the power of the Doppler spectrum at frequency po ition k. If Rk 

is chi-square di tributed with two degrees of freedom, then the nSTD would be equal to 

unity. 

Tables 2.3-2.5 list the means and nSTDs of th distributions corresponding to Figur s 

2.20 to 2.22 . It can be seen that the means are all around zero. All nSTDs that are not at 

the Bragg frequencies are slightly le s than unity. At the Bragg frequencies, how ver, the 

nSTD value are a little further less than unity. Thi phenomenon is in excellent agreem nt 

with Barrick and Snider's result [8] where real data were check d. This provides strong 

evidence that, at frequency points around the Bragg position, the distribution of the power 

spectrum is chi-squire with two d grees of fr edom. 
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Table 2.3: Means and normalized standard deviations of the centroids at 25 MHz. This 
table is related to Figure 2.20, where "DF" indicates the Doppler frequency point and WB is 
the Bragg frequency of the Doppler spectrum. "Means" are mean values of the variables at 
each frequency point, "nSTD" is normalized standard deviations at each frequency point . 

DF l-26 w I - 16w WB I + 16w I + 26 w 

Means 0.0009 - 0.0176 - 0.0214 0.0102 - 0.0179 

nSTD 0.9268 0.9196 0.8315 0.9595 0.9181 

Table 2.4: Means and nSTD of t he centroids at 15 1Hz. This table is related to Figure 
2.21. 

DF - 26 w I - 16w I WB + 16w I + 26 w 
Means - 0.0054 0.0153 -0.0215 - 0.0076 0.0084 
nSTD 0.8901 0.9242 0.7349 0.9049 0.8951 

Table 2.5: Means and nSTD of the centroids at 5 MHz. This t able is related to Figure 
2.22. 

DF 
Means 
nSTD 
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2.6 Fluctuations as Functions of the Width of the 

Bragg Region and 6FF T 

The previous section shows that the distribution of the power within the Bragg region of 

the Doppler spectrum seem to be chi-square. However, the distribution of the Bragg fluc

tuations may not be easily obtained analytically from the chi-square distribution. Barrick 

[48] achieves a closed form expression of the standard deviation of the fluctuations. His 

expression is un ler an assumption that there are large numbers of frequency points within 

the Bragg region. T he "large numbers of frequency points" assumption ensures that the 

distribution of the centroid position can be reduced to be Gaussian distributed based on 

the Central Limit Theorem. To make the assumption valid, the Bragg region should be 

wide and the average of PSDs over several consecutive time segments hould be carried 

out to include more frequency points. For example in Barrick's examination [48] , at least 

10 frequency points within the Bragg region are required if the rectangular spectral shape 

is considered. 

In our study, Barrick's assumption does not apply for two reasons: First, the width 

of the Bragg region, which is explicitly defined by the squared sine function, is relatively 

narrow. Second, the averaging process is not carried out since the time-varying behavior 

of the Bragg peaks is desired. Under this circumstance, a closed form expression of the 

standard deviation may not be obtained. However, numerical means may be used to 

investigate the problem. According to Walsh's method (e.g. Walsh et al. [6], Walsh and 

Dawe [34], Gill and Walsh [35]), for a known operating frequency and pulse width, the 

width of the Bragg region has been well defined. The analysis is therefore categorized 

as two cases: in the first instance, the standard deviations as a function of the width of 

the Bragg peaks for a fixed D.FFT is considered; secondly, the relationship between t he 

standard deviations and D.FFT for a fixed width of the Bragg peak is examined. To achi ve 

these aims, a large quantity of radar received time series will be simulated by: (1) varying 

the radar frequency and pulse width with fixed D.FFT and (2) varying D.FFT with fixed 
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radar frequency and pulse width. The Doppler spectra are calculated as periodograms and 

the standard deviations of the Bragg peaks associated with each time series are obtain d . 

2.6.1 Fluctuation as a Function of the Width 

of the Bragg Region 

In this subsection an analytical expression for the width of the Bragg region will be deduced 

first, and then the detail of the dependence between the standard deviation of the Bragg 

peaks and the width of the Bragg region will be examined. 

In the previous work shown in Figures 2.16 and 2. 17, the standard deviations (in Hz) of 

the Bragg peaks are plotted against the operating frequency and pulse width, respectively 

for a fixed 6FFT· It is known that in each case the dependence is not linear. However, 

when the standard deviations are plotted with respect to the width of the Bragg region, 

the dependence is approximately linear. This can be seen in Figure 2.23 where the values 

of width of the Bragg region are obtained numerically from the PSD of the simulated 

electric field data. The 6FFT is fixed as 0.0012 Hz. 

The linear relationship between the standard deviation and the width of the Bragg 

region, 6wP, for the pulsed waveform, implies an equation of the form 

(2.58) 

where STD is standard deviation and b1 and b2 are constants which can be determined by 

the least square method (LSM) of fitting (Proakis [4 7]). 

Theoretical Width of the Bragg Region 

The width of the Bragg region 6wp is defined by the width of the main beam of the squared 

sine function (e.g. equation(2.10)), which is calculated by the frequency difference between 

the first nulls adjacent to the principal maximum on left and right, i.e. the nulls of the 
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Figure 2.23: Standard deviations of the Bragg peaks as a function of the width of the 
Bragg region. 

squared sine function satisfies 

in2 x 
--- = 0 when x = ±n. 

x2 

The Bragg scatter associated with the monostatic radar cross section is 

(2.59) 

.(2.60) 

where the parameters are defined following equation (2. 10). Substitution of equation (2.60) 

into equation (2 .59) gives the first-order nulls adjacent to the theoretical Bragg frequencies, 

which is 

f:lps CTo 
-

2
- (K- 2ko) = 4 (K- 2k0 ) = ±n, (2.61) 
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or 

w2 4n 
J( = - = ±-+ 2ko . 

g CTo 
(2.62) 

Therefore, the total width of the Bragg region, from null to null , !:::.w11 (left and right are 

equal) is 

(2.63) 

Since for the HF frequency band, fo is from 3 MHz to 30 MHz and th radar pulse width 
1 

To is generally larger than 2 11s, the value (j0Tor 1 has a maximum of G' or in mo t cases of 

fo and To combinations, it is suffici nt to as ume that (j0T0 ) -I < < 1. Binomial expansion 

of the term insid the rectangular bra kets gives 

(2.64) 

Thus, equation (2.63) becomes 

(2.65) 

In equation (2.65), wg = ..;'29fO is the Bragg frequency for the mono tatic radar config
T, 

uration and (j0T0 ) -
1 may be written as ~~ where T0 = 1/ fo i the period of the radar 

To 
T, 

wave. The reciprocal of ~ is actually the number of the wave periods within one pul e 
To 

width, i.e. N71 = ~, so equation (2 .65) can be rewritten as 

(2.66) 
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Equation (2.66) is the theoretical expre ion of the width of the Bragg region for the pulsed 

radar received Doppler spectrum. A compari on of equation (2.66) with the numerical 

calculation of the width of the Bragg region (after averaging) shows excellent agreement 

between them, and, therefore, 6.wp in equation (2.5 ) can be replac d by equation (2.66). 

Equation (2.66) may al o be used to examine the dependence of th tandard deviation 

of the Bragg fluctuations on either th radar frequency or the pul e width. In ord r to 

explicitly see these relationship , equation (2.65) may be cast as 

- 1 - ~ where E = To fo . 

(2.67) 

For a practi a! consideration, it is desired to know for what value of th radar frequency 

fo and pulse width To the standard leviation will be significant as compared to the 6.FFT· 

In equation (2.67) the factor ~ i a on tant, and in view of quation (2.58) it may 

be concluded that the standard d viation STD i linearly proportional toE- It is u eful to 

plot the STD as a function of E (rather than 6.wp)· From quation (2.5 ), the governing 

linear equation i 

(2.6 ) 

where b1 and b2 are re-defined as dictat d by equation (2.67). Applying the LSM method 

[47] to fit the curve give 

(2.69) 
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and 

(2.70) 

Here, xi and Yi corresponds to data array of~ and STD, resp ctiv ly, with n element 

inside. Equation (2.68) is plotted in Figure 2.24 as compared to the imulated results. 

In Figure 2.24, the STD is normalized by the half ~FFT (denoted as STD) to check 

its significance. If the value of the STD i larger than unity, th Bragg fluctuation are 

considered to be significant. The unity value of NSTD corresponds to the value~ = 79 .39 

as indicated in Figure 2.24. This means thaL when the value ~ i equal to or larger than 

79.39 th Bragg fluctuations will be significant. In Figure 2.25 the pulse width is plotted 

as a function of th radar frequency for tho e curves that have~ valu s equal to or larger 

than 79.39. The e curves show that for a required ~FFT , th re is a trade-off between the 

pulse width and the radar frequency. Wh n the values of ~ are in ide the shadow region 

in Figure 2.25, the significant fluctuation are expected. As an xample, from Figure 2.25, 

the standard deviation of the Bragg fluctuations for the operating fr quencies of 25 MHz, 

15 MHz, and 5 MHz are significant when the pul widths are less than 2. f..L , 3.4 f..LS, and 

6.0 f..LS , respectively. On the other hand , the OSCR radar sy t m referred to in Table 1.1 

uses an operating frequency of 25 MHz and pulse width of 6.667 f..L , which gives a value 

~ ::::::::: 30. According to Figure 2.25, this combination of operating parameter will not cause 

significant flu ctuat ion of the Bragg peaks. 

As another practical consideration, to en ure that the standard deviat ion of the Bragg 

fluctuations do not exc eel a particular ~FFT the previou re ults may be used to choo e 

the proper combination of radar operating frequency and pulse width. 

2.6.2 Standard Deviations for Different .6..FFTS 

As examin d in Section 2.6.1, th Bragg fluctuations result from the randomness of the 

ocean surface waves when finite t ime ries are used to estimate th Doppler spectra. For 
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a fixed 6ppT, th tandard deviation of t he Bragg fluctuations is linearly proportional to 
I 

the width of th Bragg region, which is sufficient ly defined by a factor~ = T0-
1 f 0-

2 . 

A sub equ nt logical question will be: Is there any explicit relationship between th 

standard deviation of t he Bragg fluctuation and the 6 FFT for a fixed value of ~, or 

equivalently, for a fixed width of t he Bragg region? A simple approach is to plot standard 

devia tion again t t he 6FFT · Obviously, t he increase of 6 FFT will decrease the precision 

of the measurement. However , finer 6 FFT will bring more fr quency points to t he Bragg 

region, which means more randomness will be added to t he fixed region . As will be s en 

in th next ub ection, there does not appear to be any simple linear relationship between 

the Bragg flu t uation and the 6FFT· 

Standard Deviation as a Function of 6FFT 

As a numerical examination, time s rie are simulated for a fix d ~ but processed wi th 

different 6ppTs· Two ways are used to alter the 6ppTs: one is to change the sampling 

interval, another i to change th number of samples (this number should be a power of 

two du to FFT algorithm). Here, the sampling intervals are chosen from 0.2 s to 0. 

while t h number of amples are selected as 256, 512, 1024, and 204 . The data sets are 

simulated with a fix d pulse width of 4 J..l and two operating fr quencies of 5 1Hz and 

15 MHz. T he standard devia tion of the centroids for the left and r ight Bragg regions are 

obtain d using the procedure described b fore. The 6ppTs and tandard deviations of 

the left and right Bragg regions are tabulated in Table 2.6 for 5 MHz and Table 2.7 for 

15 1Hz. Examination of t he valu of standard deviation and 6 ppTs hows that there 

is no obviou rela ion hip between them. 

Barrick [4 ] introduces t he concept of equivalent number of frequency points within 

the Bragg region to analyze t he Bragg flu t uations. In his analysis, with an assumpt ion of 

many frequency points within the Bragg region , t he distribution f t h centroid position 

reduces to Ga us ian according to the Central Limit T heorem. T he tandard deviation will 

be expre eel as function of 6 FFT and the square root of the equivalent number of t he 
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frequency points within the Bragg region 

(2.71) 

The equival nt number of the frequency point' within the Bragg region is defined as 

P1 + P2 + ·· · + P 
Ne = --------

P.nax 

n=l (2. 72) 

where Pn is power of the Doppler spectrum at fr quency f n within the Bragg region, N i 

the number of the frequency positions withii the Bragg region, and Pmax i the maximum 

value in th tof{P,1 ,n= l 2, ··· ,n}. 

In Table 2.6 for fa = 5 MHz and Table 2.7 for fa = 15 MHz a t of values of e for 

differ nt .6.FFTS and standard deviations are li ted. The standard deviation are plotted 

against .6.FFT ...(Jir;_ in Figures 2.26 and 2.27 with the operating frequencie of 5 MHz 

and 15 MHz. According to examination, there i no obvious r lation hip between th 

standard deviation of the centroid po ition and the square root of e · This simulation 

result indicate that Barrick's result cannot be applied in the analysi . Another means of 

addressing th problem is required . 

D etermination of t he C rit ical Value of~ 

In the last subsection we found a value of~ for a specific .6.FFT as the critical value say ~c, 

that, when a combination of fa and To makes the value~ larger than ~c , ignificant Bragg 

fluctuations will occur. Implied in thi tatement is that for different .6.FFT the critical 

value ~c will not be the same. If th relat ion hip between the .6.FFT and th ~c can b 

establi heel in a simple, explicit manner , we may at least know how to choose the radar 

parameters and the .6.FFT to avoid the significant Bragg fluctuations. Following this idea, 

large amounts of data have been simulated and processed using variou .6.FFT . 

F igures 2.2 and 2.29 are plots that can be used to estimate ~c by t he least square 
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Table 2.6: STD as a function of b.FFT (in Hz) for fo = 5 MHz and To = 4 J.LS. STDL and 
STDR have b en cl fined in Table 2.1, NeL and Nen are the equivalent numbers of the 
frequency points in t he left- and right-hand Bragg regions, respectively. 

0.5b.FFT (Hz) STDL (Hz) STDR (Hz) NeL Nen 

0.0098 0.0057 0.0053 1.6384 1.6705 

0.0065 0.0041 0.0042 1.7760 1.7633 

0.0049 0.0034 0.0030 1.7757 1.8405 

0.0039 0.0026 0.0029 1.8891 1.8307 

0.0033 0.0021 0.00255 2.0093 1.8747 

0.0028 0.0025 0.0021 2.1307 2.0326 

0.0026 0.0020 0.0021 2.0811 2.0982 

0.0024 0.00197 0.00207 2.2186 2.1068 

0.0020 0.0023 0.0015 2.3659 2.3791 

0.0016 0.00165 0.00175 2.5094 2.2825 

0.0014 0.0016 0.0019 2.8198 2.6962 

0.0013 0.0014 0.0016 2.59 0 2.4829 

0.0012 0.00157 0.00147 2.6486 2.7259 

9.77 X 10- 4 0.0016 8.203 X 10- 4 3.1992 3.27 2 

.13 0 X 10- 4 0.00096 0.0014 3.3018 3.231 

6.9754 X 10-4 0.0013 0.0013 4.0929 3 .2 17 

6.5104 X 10-4 0.0013 0.0014 3.8401 3.8375 

6.1035 X 10- 4 0.00115 0.00105 3.6087 3.9922 

4.8828 X 10-4 7.71 X 10- 4 5.57 X 10-4 4.6574 4.4320 

4.0690 X 10- 4 7.7786 X 10- 4 0.0011 4.8329 5.1852 

3.4877 X 10- 4 9.1921 X 10- 4 7.6748 X 10- 4 5.2892 4.9578 

3.2552 X 10- 4 5.9857 X 10- 4 0.0012 5.1319 4.8158 

3.0518 X 10- 4 7.2033 X 10- 4 8.3782 X 10- 4 6.5789 6.7138 
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Table 2.7: STD as a function of ~FFT for fo = 15 MHz and To= 4 f..lS. The symbols have 
the same definitions as in Table 2.6. 

0.5~FFT (Hz) STDL (Hz) STDR (Hz) N eL N eR 

0.0039 0.0027 0.0027 1.7899 1.7300 

0.0033 0.0019 0.0022 1.7493 1.7438 

0.0030 0.0016 0.0020 1.7531 1.8013 

0.0028 0.0018 0.0018 1.7940 1.8554 

0.0026 0.0016 0.0017 1.7817 1.8439 

0.0024 0.0018 0.0012 1.7727 1.8654 

0.0020 0.0013 0.0013 1. 7538 1.9523 

0.0016 0.0013 0.0012 1.9259 1.9919 

0.0015 0.0010 0.0012 2.1428 2.1333 

0.0014 0.0011 0.0012 1.9452 2.2745 

0.0013 9.9672 X 10- 4 0.010 2.1645 2.1726 

0.0012 0.0014 8.6551 X 10-4 2.2913 2.2538 

9.7656 X 10- 4 0.0010 7.2067 X 10- 4 2.1980 2.7378 

8.1380 X 10- 4 8.2646 X 10- 4 9.1552 X 10- 4 2.9269 2.5963 

7.5120 X 10-4 9.2063 X 10-4 0.0012 2.3202 2.8079 

6.9754 X 10- 4 8.8607 X 10-4 8.9518 X 10-4 2.6479 2.7260 

6.5104 X 10- 4 8.6104 X 10- 4 8.4710 X 10-4 3.1920 2.7222 

6.1035 X 10- 4 0.0011 8.1536 X 10- 4 2.9751 2. 635 

4.8828 X 10- 4 9.4407 X 10- 4 4.8643 X 10- 4 2.6668 3.5461 

4.0690 X 10- 4 5.8762 X 10- 4 6.0098 X 10- 4 3.1094 3.6339 

3.7560 X 10- 4 5.9541 X 10- 4 7.3967 X 10- 4 3.2670 3.9474 

3.4877 X 10-4 7.1049 X 10-4 5.0619 X 10-4 4.1169 4.4781 

3.2552 X 10- 4 6. 7800 X 10- 4 8.2001 X 10- 4 4. 1862 4.0625 

3.0518 X 10- 4 6.1355 X 10- 4 5.1003 X 10-4 4.4042 4.4838 
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Table 2. : Estimation of the critical values for different 6FFT . Ec is critical value, f3c is 
critical width of th Bragg region, an INc is the critical number of fr qu ncy points within 
t he Bragg region. 

6FFT (Hz) Ec f3c (Hz) Nc 

0.0130 3 1.77 0.0390 2.99 

0.007 220. 0 0.0225 2. 9 

0.0066 192.40 0.0196 3.02 

0.0048 147.8 0.0151 3.14 

0.0040 126.27 0.0129 3.22 

0.0032 101.76 0.0104 3.19 

0.0024 79.39 0.0081 3.37 

0.0020 71.40 0.0073 3.73 

0.0012 39. 0 0.0041 3.33 

method (LSM) of fitt ing. These figure ar plotted in the same manner a Figure 2.24 

and 2.25 except th 6 FFT is changed to be 0.0040 Hz. In Figure 2.2 , the Ec value has 

been indi ated in the x-axis as 126.27. Figure 2.29 depicts tho e fo and r0 combination 

that make E 2: ~c· 

Similarly, Figure 2.30 and 2.31 are for a 6FFT = 0.0012 Hz, Figure 2.32 and 2.33 

are for a 6FFT = 0.0020 Hz. The corresponding Ec's are 39. 0 and 71.40, re pectively. 

More case are tudied and t he results ar li ted in Table 2.8. In Figure 2.34, the Ec values 

are plotted against the corresponding 6FFT . An approximately linear relation between 

them is observed. 

Since for each E, there is a unique width of the Bragg region associated with it (equation 

(2.67)), th critical values ~c in Table 2. will define a set of 'criti al width " f3c, of th 

Bragg region. The f3c will be linearly proportional to the 6FFT· If f3c is divided by th 

corre ponding 6FFT> the result will be a con tant and denoted as N c = A f3c . c 1 
UFFT 

actually the "critical number" of fr quency points within the Bragg region. f3c and Nc 

are also li ted in Table 2.8. Since f3c is a linear function of 6FFT ' Nc will be a onstant 

for different 6FFT . The physical meaning of this is that, when the numb r of frequency 
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points within the Bragg region is larger than e, significant Bragg flu tuation will occur. 

In practice, however, Ne has variable values due to our numerical scheme. Ne may b 

determined by the LSM of fitt ing [47]. Similar to equation (2.69) , we have 

n n n 

n L 6.FFTi/3~- L 6.FFTi L ,8~ 
e -

i= l i=l i=l 

n ~ 6.}FTi- (~ 6.FFTir 

(2. 73) 

wher n is the number of .Be obtain d. Ne has an approximated value of 2.9 determined 

by equation (2.73) with simulated data. Ne hould be positive but may not necessarily 

be an integ r. More precise estimation of e may be obtained if mor data sets are u d . 

Figure 2.35 d pict a plot of .Be ver u 6.rrT to determine c by th LSI\£ of fi tting. A 

an example the OSCR radar sy tern has a 6.rFT ~ 0.0059 Hz. ccording to F igures 2.34 

and 2.35, th ri t ical value ~e and critical width .Be can be approximately e timated as 1 0 

and 0.0018 Hz, respectively. 

2. 7 Chapter Summary 

According to Pierson [7], the ocean surface may be described by wav components with 

each compon nt having a det erministic magnitude and a random ini tial phase term, which 

is uniformly distributed on the interval [0 21r). Under Pierson 's model, the ocean surfa e 

fits the description of a Gaussian zero-mean process. While there are certainly instances in 

which the ocean docs not exhibit this behavior, it has been shown to be a satisfactory mod l 

for many purposes. Since any linear operation on a Gaussian random variable produce 

anoth r Gaussian random variable the HF radar received signals will be Gaussian as 

shown by Barrick and Snider [ ]. 

If a pulsed source is used to illuminate the ocean surfac , a finite catt ring pat h 

will be selected by the finite duration pulse (e.g. Walsh et al. [6], Walsh and Dawe [34], 

Gill and Walsh [35]). Since a pul e with fin ite duration in time domain corresponds to a 
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continuous spectrum in frequency domain, the transmitted signal is actually a combination 

of frequency components. According to the Bragg scatter mechanism these frequency 

components will strongly resonate with a set of ocean gravity wave components. The 

random phase associated with each ocean wave component will then explicitly enter into 

the cattered electric field equation. Expressing this in the frequency domain yields a 

squared sine function [6, 35] when the PSD is calculated. This is in contrast to the Dirac 

delta function which results from the plane wave incidence used in earlier analyses [4] . 

The width of the main lobe of the squared sine function gives at least one explicit reason 

for the finite width of the Bragg peak. 

If infinite length time series were used to calculate the Doppler spectrum as assumed 

in Walsh et al. [6], Walsh and Dawe [34], and Gill and Walsh [35], the power of th 

Doppler spectrum at each frequency component would be precisely determined because 

it is described by a Dirac delta function and independent from the others. All the initial 

randomness terms would be averaged out eventually when the PSD is estimated. Since an 

infinitely long time series is not realistic, the behavior of the Doppler spectrum calculated 

from finite t ime series is investigated to determine the error bound on the measurement of 

the position of the centroid of the first-order return. A numerical investigation has shown 

that when the PSD is calculated at an arbitrary frequency point from a finite length time 

sequence, the true power at the frequency point will be modified by power leaked from 

surrounding frequency points. The resulting power at that frequency position will become 

a random variable because the random phases of the scattering waves appear in the final 

expression as a summation of the cross terms. It is these cross terms that introduce the 

Bragg fluctuations. 

The distribution of these variations has been checked numerically. Several frequency 

points close to the Bragg peaks on both sides are chosen to en ure that only the first

order Doppler spectra are involved. The distributions of power have been depicted as 

histograms at several frequencies around the Bragg peak and plotted together with the 

normalized chi-square distributions for comparison. The means and normalized standard 
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deviations have been calculated and tabulated. All of these taken together confirm that 

the distribution of the power at each frequency point is chi-square. 

Another conclusion drawn from the previous numerical examination is that the distri-

bution of the fluctuations of the Bragg peaks is a function of the width of the Bragg region 

and the 6FFT· Theoretically speaking, the width of the Bragg region can be sufficiently 

described by the radar frequency and pulse width. An attempt to derive a theoretical 

expression of the standard deviation of the Bragg fluctuations following Barrick's idea 

[48] was unsuccessful because the assumption of many frequency points within the Bragg 

region is invalid. 

A numerical examination shows that for a fixed 6FFT' the standard deviation of 

the Bragg peak is linearly proportional to the width of the Bragg region, or to a value 
1 

( = r 0-
1 f 0-

2
. When ( is larger than a critical value ( c, the Bragg fluctuations will be 

significant, which means that the standard deviation of the Bragg fluctuations will be 

larger than the corresponding half 6FFT· The values of ( c vary for different 6FFTS, but 

they are linearly related. That is, for data processed with finer 6FFT, the value of (c will be 

lower, and vice versa. This observation has two consequences: first, for a fixed-width Bragg 

region, increasing 6FFT will cause a corresponding increase in Bragg fluctuations , and, 

secondly, for a fixed 6FFT, a wider Bragg region will cause more significant fluctuations. 

A careful check shows that when the width of the Bragg region is approximately 3.0 times 

larg r than the 6FFT, the Bragg fluctuations will be significant. 
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Chapter 3 

Radar Cross Sections for the FM 

Waveforms 

In the second part of the research work, HF radar backscatter eros ection will be derived 

with FM sourc being employed as the radar transmitted waveforms. Equations as oci

ated with FM waveforms will be presented and some of their prop rties will be discussed. 

Then, the el ctric field equations will be obtained based on Wal h' generalized function 

method [33]. The fir t- and second-order radar backscatter cro s section will be derived 

from th field equation and the results will be analyzed. 

In pul d radar systems, the range resolution is determined by the pul e width. Of 

course, narrower pul es result in higher rang resolutions. For example, as may be seen 

from equation (2.11), a 300m range resolution requires a pulse width of 2 J.LS. Additionally 

HF smface wave radar is anticipated to over ranges that are well beyond the line-of-sight 

horizon. Thi require that the pul e repetition time (prt) be increased correspondingly 

to isolate th tran mitter and receiver that are co-located. Increasing prt and decreasing 

pulse width will cause a decrease of the duty cycle, which mean a redu tion of the average 

power radiated to the ocean surface. Sin e it is the average power, rath r than the peak 

power, that is them asure of the capability of radar's range e timation [74] radar systems 

with the pulsed waveform have a limitation in providing enough average power to achieve 
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long rang . 

It is well known that the pul compression technique can be used to transmit higher 

average power with lower peak power. FMCW waveforms, incorporating compression 

techniques discu sed in this chapter hav been widely used throughout the radar remot 

ensing community (e.g. Cook and Bernfeld [75]). However , the du ty cycle of the F 1ICW 

waveform is 100%. As a con equence of this, when HF radar i op rated in a high power 

mono tatic ase, it is difficult to effectively isolate the transmitter and r ceiver (e.g. Khan 

et al. [52]) . This is the main r ason that the FMICW waveform h merged. The 

FMICW waveform may be viewed as a gated version of the FMCW waveform with the 

gate being t urn d on and off according to the operation period of the transmitter and 

receiv r r pectivcly. On the other hand, the FMCW waveform can be viewed as a 

F MICW waveform with 100% duty cycl . 

3.1 Expressions of the F M Waveform s 

The FMCW signal may be derived from the chirp ignal c(t), which i given by 

c(t)=cos[27r (fo±~t) t] , for all t, (3.1) 

where f o i radar operating frequency, t i time, a is the frequency sweep rate with a unit 

of Hz/s and ± corresponds to the up- and down-chirps, respectively. In thi analysis, only 

the up-chirp i considered . The FMCW ignal i a periodic repetit ion vcr ion of the chirp 

signal with fin ite frequency sweep interval Tr· T he sweep rate of th F l'viCW wav form 

(as i also the case for the FMICW waveform) may be expre sed as the ratio of the sweep 

bandwidth B and the sweep interval, i.e. 0:' = B / Tr. Th FM W waveform x(t) in on 

period may be cast as 

x(t) = cos [21r (!o + ~t) t] , Tr Tr -- < t <-. 2 - 2 (3.2) 
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Figure 3.1: An example of FMCW signal (a) and its frequency-time plot (b). The radar 
parameters are fo = 300Hz, B = 100Hz, and a= 100 Hz/s. 

To be consistent wit h previous investigations (e.g. Walsh et al. [6], Walsh and Dawe 

[34], Gill and Walsh [35]), we use the exponent ial function to express the FMCW current 

waveform i(t) as 

Tr Tr -- < t <-2 - 2 ) (3.3) 

where ! 0 is the amplitude of t he current and w0 is radian frequency of the ignal with 

wo = 2n f o. Figure 3.1 is an example of the FMCW waveform within one sweep interval 

with f o = 300Hz, T,. = 1 s, and B = 100 Hz. The sweep rate is therefore a = 100 Hz/s. 

In Figure 3.1, subplot (a) depicts a time sequence of the FMCW wav form and subplot 

(b) depicts the frequency sweep as a function of time. 
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Figure 3.2: An example of a gating sequence within the sweep interval Tr 
T9 = 0.125 s, T9 = 0.0625 s, and de= 50%. 

1 s with 

In order to construct an FMICW waveform, an equally spaced gating sequence is 

defined as 

( 

T
9 Tr ) N - 1 t - nT. - - + -

g(t) =ERect g Tg 2 2 , (3.4) 

where N is number of the gates within a sweep interval Tr, T9 is the period of the gate, 

and T9 is the open time of the gate. Other gating sequences are found in the literature. 

However, only a linear equally spaced gating sequence is considered in our analysis. The 

ratio of T9 to T9 is defined as the duty cycle de. Rect(-) is a rectangular function given by 

{ 

1 
1, lxl :::; -

Rect(x) = 2 . 
0, otherwise 

(3.5) 

Figure 3.2 is an example of a gating sequence with the gate period T9 = 0.125 s, the open 

time of the gate T9 = 0.0625 s, and the duty cycle de= 50%. 
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According to the definition, the FMICW signal may be written as 

( 

Tg Tr ) N-l t-nT--+-
ig(t) = i(t)g(t) = Ioe1(wot+ct7rt2)]; R ct g Tg 2 2 (3.6) 

Figure 3.3 depict an example of an FMICW signal with fo = 300 Hz, B = 100 Hz , and 

a = 100 Hz/ . The parameters of th gating equenc are the same as in Figure 3.2. 

Figure 3.4 depicts th PSDs of (a) the FMCW signal and (b) th FMICW signal. For 
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Figure 3.3: An example of FMICW signal (a) and its frequency-time plot (b). The radar 
parameters are fo = 300 Hz, B = 100 Hz, a = 100 Hzjs. The gating param t r ar 
T9 = 0.125 s, T9 = 0.0625 s, and de = 50%. 

the FMCW ignal in Figure 3.4 (a), the plane spectrum has been shown for the arrier 

frequency fo = 300 Hz with B = 100 Hz. For the FMICW waveform in Figure 3.4 
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(b), however, th frequency band from 250Hz to 350 Hz has been interrupted into eight 

portions. This orresponds to eight gate within the sweep interval. 
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Figure 3.4: PSDs for (a) the FMCW signal and (b) the FMICW signal. The spectra are 
stimated as periodograms. 

3 .2 Radar Received Temporal Field Equations 

According to previous investigations of HF radar scattering from rough surface (e.g. 

Walsh et al. [6], Wal h and Dawe [34], Gill and Walsh [35]) , the radar received temporal 

field equat ion can be viewed as a convolution of two port ions: one is a second-ore! r 

derivative of the current signal excited on the antenna; another is a time-varying "syst m" 

tha t involves the description of the rough surface. Of course, in the frequency domain t h 
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field equation i a multiplication of the two portions. The general form of the first-order 

backscatter field equation in frequency domain has been given in Wal h et al. [6], Walsh 

and Dawe [34], and Gill and Walsh [35]. It is rewritten here as 

(E+) ( ) = koCo ~ P- JK { F
2 

(Po) e}KPoe-j2koPoe-J"rrf4G(B)dp (3.7) 
o I wo (27r)3/2 ~ K,w }po (Po)3/2 o . 

K,w 

The radar backscattering configuration is depicted in Figure 2.2. In quation (3.7), Co i 

a dipole constant in the frequency domain with 

G _ I !J.lk6 
0 - . , 

JWof.o 
(3.8) 

where I is a general current excitation on the dipole of length !J.l . G(B) i the receiving 

antenna 'directivity' function, which in the narrow beam ense may be taken as approxi-

mately constant over the scatt ring patch. T he scattering surface is pecified as a Fourier 

series wi th coefficients PR,w for surface components whose wavenumbers and radian fre

quencies are j( and w, respectively. In our analysis, since a mono tatic configuration i 

assumed so that the radar tran mitter and receiver are co-located (Figure 2.2), the di -

tances from th tran mitter to the scattering patch p1 and from patch to the receiver p2 

are identical, i.e. p1 = p2 = p0 . Thi yields the quared factor of F 2 (p0) in equation 

(3.7). Ther also xists a parallel component of the field equation with omplex conjugat 

exponential e-j i<poeJ2koPoeJ"rr/4 and G(B + 1r) (see Walsh et al. [6], Walsh and Dawe [34], 

Gill and Walsh [35]). However this component i proven to be very small compared with 

equation (3. 7), and we therefore ignore it in future development. 

When equation (3.7) is inver ely Fourier tran formed to the time domain, according to 

the convolution theorem, 

1 _1 [ . 'f}o !J.l 2 ( ) ] t - I [~ rv (27r)312 F -]7w0 I wo * :F ~ Pi? ,w v ]( 
K ,w 
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(3.9) 

where F - 1 refers to the inverse Fourier transform, ~ refers to a convolution in the time 

domain, and rto = JEo/f..lo is the impedance of the free space. G(B) may be taken as any 

appropriate constant and since it does not affect the outcome of the subsequent analysis 

it is here chosen as unity as in Walsh et al. [6]. Since the inverse Fourier transform is 

with respect to wo or k0 , the second inverse Fourier transform on the right side of equation 

(3 .9) is actually operated on the factor e-j2kopo . This may be cast explicitly as 

(3.10) 

The first inverse Fourier transform of equation (3.10) can be evaluated as 

(3.11) 

where ic(t) is a general current excitation and will be replaced by equation (3.3) for the 

FMCW signal or equation (3.6) for the FMICW signal. 

3.2.1 Field Equations for the FMCW Waveform 

Having established the general procedure for developing the electric field equations, we 

now turn our attention to the FMCW waveform with the ic(t) in equation (3.11) being 

replaced by i(t) of equation (3.3). The second-order derivative of i(t) with respect to the 

timet is 

- J0d (wot+cr1rt
2

) (w5 + 4Jraw0 t + 47r2a 2t2- j21fa) 

~ - Iow5ej(wot+cmt2) ' 

87 

(3.12) 



where the approximation is due to the fact that 21rcd :::; 21r B < < w0 and - j21fo. is 

neglected. Substitution from equation (3.12) into equation (3.11) gives 

-r- 1 [ · 'r/oD..l 2! ( )] (t) _ · r 'r/oD..lw5 ~i(wot+mrt2 ) .r -J-2-wo wo - -Jlo 2 ~ . 
c c 

(3.13) 

The evaluation of the second inverse Fourier transform of equation (3.10) will give a Dirac 

delta function, which is 

(3.14) 

The convolution of quation (3.13) with a Dirac delta function of equation (3.14) yields a 

time shift of term 
2

Po to the time variable t . Equation (3.10) can be written as 
c 

[-j loryoD..lk6e1(wot+arrt2)] ~ [o (t- 2~o)J 

. 2 j[wo(t-~)+arr(t-~)2] = -JloryoD..lk0 e , (3.15) 

where k0 = wo is invoked. Therefore, from equation (3.9) for the FMCW waveform, the 
c 

first-order temporal electric field equation becomes 

(3 .16) 

The integration range p0 in equation (3 .16) is defined as a scattering patch ov r the rough 

f . h . d" h d f ct c(t - To) h 1 H sur ace w1t 1t 1stance to t e ra ar receiver rom 2 to 
2 

, w ere To = B. ere, 

To is analogou to the pulse width for the pulsed waveform. Equation (3.16) then becomes 

- jloryoD..lk5 ~ P - vK -irr/4 
(27r)3/2 ~ F<,w e 

K,w 

8 



(3.17) 

Equation (3.17) may be further simplified by expanding the phase term of the integrand 

as 

( 
2po) ( 2p0 )

2 

wo t-~ +mr t-~ wot- -- +em t - -- + -2wopo ( 2 4tpo 4p5) 
c c c2 

~ wot- Po ( 2ko + 4:at) + a1rt2. (3.1 ) 

4p2 
T he term -

2
° is dropped because it is not ignificant as compared to the other terms (p0 

c 
is on the order of only a few hundred of ki lometres, maximally). After bringing the p0 

independent factors e1wot and e1a:rrt
2 

out id the integral equation (3.17) becomes 

( Et) 
1 

(t) 

c t p2 ( ) ( 2 Po ejpo( F<-2ko-4"cot)d 
h<•;ro) (Po)3/2 Po · (3.19) 

The integral in equation (3.19) will be reduced following the procedure of previous inve ti

gators ( .g. Walsh et al. [6]). The range information is replaced by orne explicit distance 

expression . Let 

_ ~ [ct c(t- To) ] 
Ps - 2 2 + 2 (3.20) 

and 

(3 .21) 

where Ps is the distance from t he radar tran mitter and receiv r to th mi idle of th 

cattering patch , and l::ips is width of the scattering patch. With the aid of equations 
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(3.20) and (3.21) the limits of integration may be written as 

c(t- To) !:::..ps 
2 = Ps- - 2- (3.22) 

and 

ct !:::..ps 
2 = Ps + -2-. (3.23) 

The integration variable p0 in equation (3. 19) can be separated into two parts. One 

• 1 !:::.. ps !:::..ps . 
part is a constant distance p5 , another i a vartable Ps from --

2
- to -

2
-, t.e. 

Po= Ps + P~ · (3.24) 

Obviou ly dp0 = dp~, and the phase t rm of quation (3.19) will be 

( 
47rat) 1 ( 47Tat) Po J( - 2ko - -c- = (Ps + Ps) K - 2ko - -c-

( 
4?Tat) 1 ( 47rat) = Ps J( - 2ko - -c- + Ps J( - 2ko - -c- (3.25) 

Since Po:::: Ps >> p~, we have the attenuation factor 

(3.26) 

The p~ ind pendent factors can be brought out ide the integral after changing the integral 

variable from p0 to p~ for equation (3.19). Thi gives 

(3.27) 
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Evaluation of the integral in equation (3.27) yields 

sinx 
where Sa(x) has the usual form of--. Then the field equation (3.27) be ome 

X 

(3.28) 

(3.29) 

p to this point, the electric fi ld quation has been developed for a fixed range p , 

T. T. 
a patch width b.p5 and a sweep time t changing from - { to time {. Tr i the tim 

interval that th rough surface is illuminated by the radar and the surface is assumed to 

have no variability within that interval. Additionally, the time variable within a sweep 

interval Tr is red fined as tr and time variabl t will be retained when the time-varying 

ocean urface is introduced. After this modification, the first-order field quation over th 

rough surface becomes 

(3.30) 

The "fir t-order scatter" de cribed by equation (3.30) is more preci ely interpreted as 

the field receiv d after a single scatter from th rough surface. If we consider the ocean to 

consist of first and cond-order waves, th n thi field actually con i t of two di tinct part : 

one is a single catter from the first-order surface waves, another i a ingle scatter from 

the second-order urface waves produc d by the hydrodynamic coupling process referred 

to in Chapter 2. Using the same technique as found in Walsh et al. [6], Walsh and Dawe 
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[34], and Gill and Walsh [35], ( E6) 
1 

( tr) can be expanded as 

(3.31) 

where ( E6) 
11 

(tr) represents the received field due to a single scatter from first-order sur

face waves whose Fourier surface coefficients are symbolized as 1Pf( ,w · It can be expressed 

as 

(3.32) 

The second term of equation (3 .31), representing a single scatter from a second-order 

surface wave coupled from two first-order waves, takes the form 

where the two Fourier surface coefficients 1 P1<- and 1 P1<- are associated with the 
1 1W l 2 1W2 

interacting first-order waves which give rise to a second-order wave with coefficient 2pi(,w· 

According to the perturbational analyses, we have 

2PR,w = L IPJ?1,w1 1PJ?2,w2 HrP · 
Kl+K2=T( 
w=w1+w2 

(3.34) 

Here, the wave vector R = J(1 + K2 associated with the second-order surface wave does 

not satisfy the linear dispersion relationship (i.e. w f=. jgK). 11 fp is the hydrodynamic 

coupling coefficient for the patch scatter (e.g. Hasselmann [1]). 
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3.2.2 Field Equations for the FMICW Waveform 

Following the previous procedure for th FMCW waveform, th derivation of the fi ld 

equation for th FMICW waveform involve a second-order derivative of the radar tran -

mitted signal with r pect to time t . From th current waveform equation (3.6) we have 

(3.35) 

where the approximation 2n B < < w0 i invoked, and the leading and trailing dge impul e 

terms ar neg! cted in the derivation. The convolution with the delta fun tion 8 ( t -
2~0 ) 

as in equation (3.15) gives 

[ -j!0~0!1li;Jd(~<+·••')}; Rect (t-nT,~' i + ~) ] ! [o (t- 2
:) j 

( 

2po T9 Tr ) ·[ ( 2pn) ( 2p")2] N-1 t---nT. --+-
2 J wo t--"->< +o1r t - --'-'L 9 2 2 

= -jl o'f/o6.lk0 e c c L Rect -~c~----==------'!e... 
n=O Tg 

(3.36) 

Th refor , th first-order temporal electric field equation can be cast as 

-jl orJo6. lkJ "'""P - /Ke- 1,./4ei(wot+o ... t2 ) (lf F
2 

(Po) 
(2n)3/ 2 t I< ,w hc•~-ro) (po)3/ 2 

( 

2po Tg Tr ) N - J t---nT. --+-
e1Po(I<- 2ko- 4":'') L Rect c g 2 2 dpo' 

n=O Tg 
(3.37) 
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where the subscript g for "gates" on ( E~) 
1 

(t) indicates the use of the FMICW waveform. 

Using the same Ps and !:1p5 as previously defined in equations (3.20) to (3.21), respectively 

and again following the same procedure as for the derivation of the field equation with the 

FMCW waveform equation (3.37) becomes 

(
E+) (t) = -jlo'f/ol1lk5F2 (Ps) ~1 Rect t- 7- nTg - 2 + 2 

( 

2p5 Tg T,.) 
Og 1 (2np )3/2 ~ T 

s n=O 9 

where, as before, the approximation Po ::::::: Ps > > p~ gives 

(3.39) 

and 

. (3.40) 

The integration in equation (3.3 ) gives a sine function and the expression of the first-order 

scattering field become 

(3.41) 

Comparison of equation (3.41) for the FMICW waveform with equation (3.30) for the 

FMCW wav form how that the only difference between them is the multiplication of a 

delayed gating fun tion. When changing the variable t to tr and plitting the first-ord r 
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scattering into two distinct parts as was done for the FMGW waveform, the first-order 

scattering field for the FMICW waveform becomes 

(Eta ) 
1 

( tr) = (Eta) 
11 

( tr) + (Eta) 
12 

( tr) . (3.42) 

The (Eta) 
11 

( t •. ) term represents the field for a single scat ter from first-order surface wave , 

and it can be expressed as 

( 
2p8 T9 Tr) 

(
E +) (t ) = - j l or]o6tk5F 2 (Ps) 6ps ~~ Rect tr- ~- nTg- 2 + 2 

Og II r (27rp )3/ 2 0 T 
s n=O 9 

"" 
1
p _ v'Ke-j1rf4ej(wotr+arrtnt!P•(K-2k0 - 4"~'r) Sa [6 Ps (I<_ 2ko _ 47rCI:'tr) J 

~ K ,w 2 C 
l< ,w 

(3.43) 

The (Eta) 
12 

( tr) term represents a single scatter from the second-order surface waves 

produced by the hydrodynamic coupling process. It takes the form 

(3.44) 

where 1P1( w and 1P1( w are the Fourier surface coefficients associated with the inter-
1, l 2 , 2 

acting first-order waves and Hr p is the hydrodynamic coupling coefficient for the patch 

scatter as defined previously. 
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--~------------------------------------------------------------------------~~--~~----~ 

3.3 Range Estimation 

The range information may be found by Fourier transforming the received signal within 

the sweep interval Tr . Before doing this, the received signal should be demodulated (see, 

for example [50, 52]). In the previous analysis, the first-order scatter has been separated 

into two components based on their different scattering principles: a single scatter from the 

first-order ocean waves and a single scatter from second-order hydrodynamically coupled 

ocean waves. The second component is hereafter denoted as the second-order scatter, while 

the first component is denoted as the first-order scatter. In the following subsections, the 

expressions of range estimation from the first- and second-order field equations are derived , 

first for the FMCW waveform, then for the FMICW waveform. 

3.3.1 Range Estimation for the FMCW Waveform 

Scattering from the Firs t-order Waves 

The derivation is from the first-order field equation (3.32) . The demodulation is designed 

to approximate a matched filter. It is a "pre-process" which involves mixing the acquired 

signal with the original signal and low-pass filtering the outcome [50, 52] . The low-pass fil-

tering removes the frequency component at twice the carrier frequency (details are included 

in Appendix A) . As a result of the demodulation, the exponential factor ei(wotr+mrtn will 

be eliminated, ejp.(K-2ko-
4

"~'r) will be replaced by its complex conjugation, and the sine 

function will be unchanged. The result ing equation becomes 

(3.45) 

where the superscript D indicates the demodulation and Eo is collection of factors in 

equation (3.32) with 

(3.46) 
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sinx 
The sine function in equation (3.45) has a form of-- and the sin x can be expressed in 

X 

exponential form so that 

(3.4 7) 

The magnitude factor can be simplified by applying a binomial expansion to get 

[ 
.D.Ps ( 4natr)]-l 1 2]-2- K- 2ko- -c- ;::::: j6p

5 
(K- 2ko) ' (3.48) 

. . 4natr . 
smce, compared w1th K and 2k0 , the -- term IS much smaller and can be neglected. 

c 
A quick example is when a = 100 kHz and tr ~ Tr = 0.25 s, atr ~ 25 kHz, which is 

much smaller than the radar frequencies within the HF band . Therefore, equation (3.45) 

becomes 

( +) o ( Eo 
Eo 11 tr) = jD.ps (K- 2ko) 

[e-j(f<-2ko)(p.-¥ )e1 4~" (Ps-¥ )t.r _ e-j(K-2ko)(Ps+¥ )e1 4~0 (Ps+¥ )t,.] 
= Etej4~" (p.-¥)tr- Efej4~" (Ps+¥)t,. 

(3.49) 

where 

(3 .50) 

and 

(3.51) 
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The first-order range spectrum <P~ (wr) will be the Fourier transform of equation (3.49) 

with respect to tr over the sweep interval Tr (e.g. Barrick [50]), with Wr being the transform 

variable corresponding to tr. The result may be symbolized as 

(3.52) 

where 

IJ:. 
F [E A] = Et l~ d4~"(Ps-~)tre-jwrt,. dtr 

2 

= EtTrSa [~ (wa- Wr)] (3.53) 

. 4na ( D.ps) With Wa = -c- Ps - -2- , and 

(3.54) 

with Wb = 
4:a (Ps + D.;s). 

The arguments Wa and W& in the sine functions in equations (3.53) and (3.54) may be 
4na D.ps 

approximately equated as Wa ~ wb = -c-Ps for Ps >> -
2
-, and then equation (3.52) 

becomes 

(3.55) 

It may be seen that the sine function in equation (3.55) will generate a peak in the specific 

position of the spectrum, w.r = 4
1ra Ps that indicates the range. This is the principle 
c 

underlying range measurement for the HF radar when using FM waveform . In view of 

98 



equations (3.50) and (3.51) equation (3.55) may be further manipulated to give 

= EoT,. Sa [Tr (w _ 47ra p )] 
j6.p8 (K- 2ko) 2 r C s 

[ e-j{l< -2ko) (p,-~) _ e- j(l< -2ko)(Ps+~)] 

EoT,. S [Tr ( 47!"0' )] - jp., (l< - 2ko) a- w- --p e 
j 6.p8 (!<- 2ko) 2 r c s 

[e1~(J<-2ko) _ e-j~(I<-2ko )] , (3.56) 

or 

<I>r ( ) _ EoTrj6.ps (K- 2ko) S [Tr ( _ 47ra )] 
I w,. - j 6.ps (K- 2ko) a 2 Wr c Ps 

e - jp, (l< - 2kolsa [
6;s (K- 2ko)] . (3.57) 

In the fraction port ion of quat ion (3.57), the numerator factor can be obviou ly cancelled 

by the same factor in the denominator. By expanding the factor Eo in equation (3.46), 

the range spectrum of the first-order scatter for the FMCW waveform will be 

(3.5 ) 

The power spectrum associated with equation (3.58) is the square of the absolute valu 

of <I>~ (wr)· Figure 3.5 and 3.6 are examples of uch power sp ctra. In thes figures a fixed 

scattering patch is selected 50 km away from the radar over the rough o ean surface. Th 

ocean surface parameters are with a wind p ed of 15 m/ s, 0° to the reference direction, 

and a current of 1 m/ , 90° to the reference direction. To show th effect of changing th 

signal bandwidth, we consider two bandwidth values, B = 100 kHz and B = 500 kHz, 

in our illustration here and in th di cussion of cross sections in the later sections. Th 

reason for choosing th e two bandwidths is that B = 100 kHz has been us d elsewhere 
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(e.g. Barrick [50]) and the bandwidth B = 500 kHz will result in a range resolution of 

300m, which is among the finest resolutions found in HF radar literature (e.g. Gurgel et 

at. [60, 76]). In Figure 3.5, f o = 10 MHz, Tr = 0.75 s, and B = 100kHz, corresponding 

to a sweep rate of a = 133.33 kHz/s. In Figure 3.6, fo = 25 MHz and B = 500 kHz 

are used. The same sweep interval is applied as in Figure 3.5, resulting in a sw ep rate 

of a = 666.67 kHz/s. The sweep interval in each figure has been sampled 512 times, 

corresponding to a sampling rate of 682.67 Hz. 

It is observed from Figures 3.5 and 3.6 that the maximum range estimations for th 

two cases are different . In Figure 3.5, the actual maximum range is 384 km, while in 

Figure 3.6, this value is 76.8 km. This difference is due to t he different sweep bandwidths 

for a fixed number of samples within the sweep interval and is further addressed in what 

immediately follows. 

When the FM signal is scattered over the patch and received, the range information 

will be brought back with a time delay 6.t = 
2

Ps. For each 6.t , there will be a frequency 
c 

offset 6.f with respect to the carrier frequency f 0 . This is given by 

or 

2a 
6.J = er.6.t = -Ps , 

c 

4na 
6.w = --ps. 

c 

(3 .59) 

(3.60) 

Considering equation (3.58) in view of (3 .60) it may be seen that when Wr = 6.w, i.e. the 

frequency that the first sine function takes its principal maximum, the range spectrum <Pi 

achieves its maximum value. In fact, it is through examining 6.f that radar systems with 

FM waveforms provide the range information. The frequency offset 6.f has a maximum 

value of 6.fmax = aTr = B. This maximum defines a theoretical maximum range PMAX = 

cT. T' which is several hundr d thousand kilometres and cannot be reached in practice. In 
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Figure 3.5: An example of range estimation for a fixed scattering patch 50 km from radar. 
The radar parameters are of fo = 10 1Hz B = 100 kHz, and Tr = 0. 75 s. The ocean 
surface wind speed is 15 m/s 0° to the reference direction. A current of 1 m/ s, 90° to 
the reference direction is simulated. The radar received signal i sampled with a sampling 
rate of 6 2.67 Hz. 
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F igure 3.6: Estimate of the same range as Figure 3.5 with fo = 25 MHz and B = 500kHz. 
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.---------------------------------------------------------------

practice, the upper limit of the rauge estimation will be a few hundred kilometres at the 

most clue to signal attenuation. When the sampling process is applied within the sweep 

interval, according to the sampling theorem, only those signals with frequencies that are 

equal to or less than one half the sampling frequency !s will be reconstructed without 

distortion. This means that the sampling process will work as a low-pass filter that selects 

those signals with 

6 < ~ _ ~ Nr 
J - 2Js- 2 T ' 

r 

where Nr is the number of samples within a sweep interval Tr. 

2ps 
and l!.t =-,equation (3.61) becomes 

c 

or 

2Bp8 1 Nr --<-
cTr -2Tr. 

(3.61) 

Bl:!.t 
Since l:!.f = a l:!.t = y 

r 

(3.62) 

(3.63) 

In this result , the maximum range Pmax will occur for the case of equality, i.e. when 

cNr 
Pmax = 4B · 

. C CTo . · 
Smce 

2
B = 2 = 6p8 , equatiOn (3.64) may also be wntten as 

(3.64) 

(3.65) 

Equation (3.64) or (3.65) is the governing equation for the maximum range estimation. 

Particularly, for a fixed sweep bandwidth, the range resolution l:!.p8 will be fixed. Increasing 

the sampling number Nr within the sweep interval will increase the maximum detection 
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range. 

Equat ion (3.64) may be rewritten to show the rela tionship between the range and t he 

frequency number in the range spectrum. For a specific range, Pr ::::; Pmax, 

(3.66) 

where n1 is the frequency number in the range spectrum . For example, in F igure 3.5, 

the scattering pa tch of 50 km corresponds to a frequency number of 66.7 (i.e. a frequency 

between number 66 and 67) in the range spectrum. In Figure 3.6, however , the same range 

corresponds to a frequency number of 44.4 (i.e. a frequency b etween number 44 and 45) . 

Scatt ering from the Second-order Waves 

Start ing from equat ion (3.33) and following the same process as for t he scat tering from 

the first-order surface waves, the range sp ct rum for a single scatter from the second-order 

waves can b e obtained. Here we skip those intermediate steps and write t he resulting 

range spectrum directly Elli 

(3.67) 

where all symbols have been previously defined. The detailed derivation can b e found in 

Section 2 in Appendix A. 

3.3.2 Range Estimation for the FMICW Waveform 

The range est imat ion analysis for the FMICW waveform will follow the same procedure as 

that for the FMCW waveform. Among other features, it includes the signal demodulation 
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and Fourier transformation of the field equations with respect to the time variable tr within 

the sweep interval Tr. In this section, we first deal with the electric field that scatters from 

the first-order waves. Then the scattering from the second-order waves will be written out 

directly analogous to the first-order case, just as was done for the FMCW waveform. 

Scattering from the First-order Waves 

For the field equation (3.43), as a result of the demodulation proces , the exponential 

factor ef(wot,.+cnrtn will be eliminated. The resulting equation is 

( 
2ps T9 Tr ) 

N -1 t. - - - nT - - + -
Eo L Rect ' c 9 2 2 e-jp. (K-2ko-4"~'r) 

n=O 79 

Sa [ b.;s (/{- 2ko-
4n:tr)] , (3.68) 

where the subscript g indicates the application of the FMICW waveform and a collection 

of factor Eo is 

(3.69) 

The sine function in equation (3.68) may be simplified as was done in Section 3.3.1 and 

equation (3.68) will become 

EA -EB 
9 9 

( 
2p5 T9 Tr) N-1 t --- nT --+-

= Et92:Rect r c 9 2 2 ei 4~"(p.- ¥-)t,. 
n=O 79 

( 
2p5 T9 Tr) N-t t - - - nT - - + -

E~ L Rect r C 9 2 2 ef 4:o (Ps+¥- )t,. 
n=O T9 

(3.70) 
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where 

(3.71) 

and 

(3.72) 

Thus, the range spectrum <I>~9 (wr) will b the Fourier transform of equat ion (3.70) with 

respect to tr (e.g. Barrick [50]). That i 

(3.73) 

with 

and 

( 
2p9 Tg Tr) rr. N-1 t --- nT --+-

F [EB] = EB 12 "' Rect r C g 2 2 e}4~"(p.,+~ )tre-]wrtr dt 
g Og Tr. ~ T r · 

- 2 n=O 9 

(3.75) 

In equation (3.74) and (3.75), the interval of integration ov r Tr is interrupted by th 

gating function so that tr lies in the interval given typically by 

(3.76) 
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Therefore, the integration in equations (3 .74) and (3.75) may be written as 

(3.77) 

and 

(3.78) 

Equations (3.77) and (3.78) can be reduced to 

(3.79) 

and 

(3.80) 

h 47ra ( bop8 ) 47ra ( bops) w ere Wa = -c- Ps - -
2
- and wb = -c- Ps + -

2
- , the same definitions as that in 

Section 3.3.2 for the FMCW waveform. 

Equation (3.79) can be further manipulated by evaluating the summation of the expo-

nential function to give 

Similarly, for equation (3.80) 
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S
. !::::.ps 47rOPs . 
mce -

2
- < < Ps in practice, we may assume Wa = wb ~ -c- m the Sa(·) 

arguments. Using these results, the range spectrum equation (3.73) becomes 

. !:!..IJJ. ( 471"0' ) 

<I>r Wr = EoTg Sa [Tg (wr- 47ra s)] sm 2 Wr- -c-Ps 
19
() .i6.Ps(K-2ko) 2 c P sin?f(wr- 4~0 Ps) 

_ ·(!:!..=.J.T. +.:a__ Ii:.) _ · (K -2k +~ _ 8"2Ps _ N - l T. 4,-a _ 2,-arq + haTr) e J 2 g 2 2 Wr e JPs 0 c c 2 g c c c 

~2 ~2Jc c c [~i~(K-2ko-~-!:!..=.J.T, 4,-o _ horg +2,.0 Tr) 

-e 2 o c 2 u c c c 
-J·~(K-2k _S,.,p,_N-lT. 41fa_21forg+2,-oTr) ] 

or 

E T 1· !::::.p (I< _ 2k _ 81r~ps _ N -1 T. 47ra _ 21rarq + 21faT,. ) 
<I>r ( W ) = Og 9 5 0 c- 2 9 c c c 

19 r j 6.p8 (K- 2ko) 

-j (!:!..=..lr,+.:!L-Ii:.)wr [Tg( 47ra )]sin~(wr- 4~0 Ps) e 2 Y 2 2 Sa - w,.- --Ps ---=r.=--:-'---------:-'-
2 c sin T ( Wr - 4~0' Ps) 

-jps (J( -2ko+~- 8"'¥''- !:!..=.J.T.g 1.!J:!!:_ 21fotq + 21foTr ) e c c 2 c c c 

Sa [!::::.Ps (K _ 2ko _ 81raps _ N- 1T. 47ra _ 27raT9 + 21raTr )] 
2 c2 2 9 c c c 

In the first fraction portion in equation (3.84), the factor 

(
/{ _ 2ko _ 81raps _ N - 1 T. 47ra _ 27raT9 + 2rraTr ) 

c2 2 9 c c c 

(3.82) 

sin 
and 

sin 

(3.83) 

(3.84) 

(3.85) 

h b ( ) h 
81rap8 N - 1 T. 47ra 

in t e numerator can e approximated as K - 2k0 since t e ~, 
2 9 c , 

21raTr 27raT 
---, and --9 terms are all much smaller than K - 2k0 . This approximation allows 

c c 
the entire equation (3 .85) to be cancelled by (I< - 2k0 ) in the denominator to simplify 

equation (3.84). For the argument in the second sine function in equation (3.84), the 

108 



approximation 

f:.p8 (/{ _ 2ko _ 81rap8 _ N - 1 T. 47fa _ 21faT9 + 21faTr) ~ f:.ps (K _ 2ko) (3.86) 
2 c2 2 9 c c c 2 

is applied since 81rap8 < < c2
, 21faT9 < < c, and 

N - 1 T. 47fa ~ NT9 41fa _ 27faTr 
-2- 9 -c- ~ -2--c- - - c- (3 .87) 

with N >> 1 and NT9 = Tr . The argument of the last exponential function in equation 

(3.84) may be manipulated as 

. (]" k 2wr· 81rap8 N - 1 T. 47fa 21faT9 21faTr) 
-JPs \ -2 o+------- ----+--

c c2 2 9 c c c 
. [ 2wr 81rap8 27fa ( )] 

= - J Ps K - 2ko + - - -- + - T - T. . c c2 c 9 9 
(3.88) 

The approximations and manipulations of equations (3.85) to (3.88), t aken together, pro

vide a simplified version of equation (3.84), which is 

(3.89) 

or, with E0 being written explicitly, as 

(3 .90) 

The range spectrum has range related peaks defined by the sine function ( Sa(x) = si~~x) ) 
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ffin ~n 
and the function. A careful check shows that it is the function that gives the 

sin sin 

dominant rise, and the sine function Sa[? ( Wr-
4:a Ps ) J provides a magnitude floor of 

the spectrum. Comparison of this result with that obtained for the F MCW waveform in 

Section 3.3.2, where the range is indicated by the peak defined by a single sine function, 
sin 

shows some interesting properties. The most significant difference is that the -.- function 
Sill 

has periodic peaks that will give ambiguity results for the range measurement. F igures 

3.7 and 3.8 are examples of the range spectra (PSD) using the F MICW waveform. In 

these figures, all parameters are as given in Figures 3.5 and 3.6 except that the FMICW 

waveform is obtained by gating the respective FMCW waveform. The gating sequence 

includes 16 gates in a sweep interval wi th a duty cycle of 25%. 

The periodic peaks appearing in Figures 3.7 and 3.8 are analogous t o phenomena which 

arise in hard target detection such as discussed by Khan and Mitchell [51]. This is the main 

drawback when the FMICW waveform is used in the detection of discrete targets. Khan 

and Mitchell [51] point out that the frequency positions of those ambiguous peaks are 

well defined and a careful selection of the gating sequence will limit or even suppress their 

appearance. However, for the measurement of t he ocean surface, the target of detection 

is continuous in range and the target ambiguity will not be observed in practice. 

Scattering from the Second-order Waves 

Start ing from equation (3.44) for the FMICW wav form and following the same process 

as for t he scattering from the first-order waves, the range spectrum for the second-order 

waves can be obtained. Appendix A gives the detailed derivation. The resulting equation 

is 

. L:. ( 47fQ ) 
~ _. 14 [Tg ( 47ra ) ] Sln 2 Wr- - c- Ps . Tq - rq . 

V 1\ e 1" Sa - Wr - --p8 T. e1 2 w, 
2 c sin::..IL (w - 4""' p) 2 r c s 
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F igure 3.7: An example of range sp ctrum for the FMICW waveform. II parameter ar 
the arne as in Figure 3.5. There are 16 gates within a sweep interval with duty cycle of 
25%. 
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(3.91) 

Just as for the first-order case, the main difference between equations (3.91) and (3.67) is 

t hat there is a s~n factor involved in the range spectrum. 
sm 

3.4 Evaluation of Radar Cross Sections 

At this stage, t he first- and second-order range spectra for the FM waveforms have been 

obtained from the respective field equations. This work has been done by Fourier trans

forming t he electric field equation over a sweep interval Tr. For the development of the 

radar cross section, the analysis will include many sweep periods to examine the Doppler 

shift effect . To be consistent with modeling scatter from the ocean surface, a time-variation 

must be int roduced into the Fourier surface coefficients appearing in the electric field equa-

t ions, or equivalently in the range spectral equations (3 .58) and (3.67) for the FMCW 

waveform, and equations (3.90) and (3.91) for the FMICW waveform, respectively. Ac

cording to previous investigation (e.g. Walsh et at. [6]), a factor of ejwt, where w is the 

radian frequency of the ocean wave, is introduced into the surface coefficients to indicate 

the t ime-varying property of the ocean surface. Since the Doppler effect is examined for 

a specific scattering patch over the ocean surface, only those patches at the same range 

will be picked up from the range transforms. This process is implemented by passing the 

received signals through a window with frequency bandwidth Br = ~. If we agree to 
Tr 

choose an ideal window for our analysis, t he amplitude of the received field will be modi-

fied by a factor of Br. After these modifications, the t ime-varying equations corresponding 

to equations (3.58), (3.67), (3 .90), and (3 .91) may be written as 

n;.r ( t) _ 1 n;.r ( ) jwt 
'±'1 Wn - Tr '~'I Wr e ' (3.92) 
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n.r ( t) = ~M (w ) ej(w1 +w2)t 
'1'2 Wr' T. '1'2 r ' 

r 
(3.93) 

;J",r ( t) 1 n.r ( ) jwt 
'l'lg Wn = T,. '±'lg Wr e , (3.94) 

and 

(3.95) 

respectively, where w1 and w2 in the second-order equations are two radian frequencies of 

ocean waves that are involved in the second-order scatter. 

The next step is to derive the radar cross sections from the field equations (3.92) and 

(3.93) for the FMCW waveform, and equations (3.94) and (3.95) for the FMICW waveform. 

The general procedure involves an autocorrelation of the fields for a particular patch of 

ocean, a Fourier transformation of the resulting ensemble averages, and a comparison with 

the radar range equation to yield the cross sections (see, for example, Walsh et al. [6]) . 

The cross section results so obtained are idealized in that they assume the existence of 

infinitely many oceans with the same statistical features. 

Obviously, any given radar time series can be received from only a single ocean and, 

in fact, for a finite time and a finite ocean patch. To mimic this reality, time series, repre-

senting scatter from a specific range cell (patch), may be constructed using the idealized 

cross sections. The PSD may be estimated via the usual periodogram technique. In thi 

section, the first step is to derive the first- and second-order cross sections for the FMCW 

waveform. Then the cross sections for the FMICW waveform will be obtained following 

the same process. 
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-----------------------------------------------

3.4.1 PSD of the First-order Scatter for the FM CW Waveform 

Starting from equation (3 .92), the autocorrelation function of the field equation will be 

calculated with an assumption of a stationary ocean surface profile, such as Pierson 's 

model [7]. The assumption ensures that the autocorrelation will be a function only of the 

time shift, r. The autocorrelation with respect to t for the first-order backscattered field 

is written as (P apoulis, [77]) 

(3.96) 

where 0 refers to the statistical or ensemble average, * indicates complex conjugation, 

and Ar is the effective free space aperture of the receiving antenna, given by (see, for 

example, Collin [78]) 

(3.97) 

Substitut ion of equation (3.92) into equation (3.96) gives 

n (w r) = Ar17o IIot.ll
2 
k~F4 (Ps)t.p;""' ""' ( P - P *- ) jw(t+r) -jw't 

1 r, 2 (2 )3 0 ~ 1 I<,w 1 F<' ,w' e e 
7r Ps J( ,w I<' ,w' 

e-jp. (J( -2ko)eip.(I('-2ko) VK .JKiSa2 [~ ( Wr - 4:a Ps) J 

Sa [ t.;s (K- 2k0 )] Sa [ t.;s (K'- 2k0 )] , (3 .98) 

where 0 and the summation have been interchanged since the only randomness is in the 

first-order Fourier surface coefficients, 1 Pi? ,w and 1Pi(',w'· For a real , zero-mean surface, 

the Fourier coefficients have the properties that (Rice, [15]) 

p - = P*-1 - K, -w I K ,w (3.99) 

115 



and (Barrick, [4]) 

K = K' w=w' l 

(3 .100) 
otherwise 

211' 211' 
where Ns = -, L s being the fundamental wavelength of t he surface, Ws = -T , Ts being 

~ s 

the fundamental period, and S ( R, w) being the P SD of the ocean surface. The first-order 

component of S ( i{ , w) will be (Barrick, [4]) 

(3 .101) 

where o(-) is the Dirac delta function. 

For a very large region of ocean surface, the fundamental wavelength Ls and period Ts 

will be very large so that N 8 and W s become very small. Then we have N? --+ d2 R where 

d2K = dK xdKy = KdKdBg , and Ws--+ dw . Under these condit ions, the summations in 

equation (3.98) may be cast as integrals with t he result being 

R l (wr, T) = Ar1JO IIo6l l
2 
k~F:(Ps ) 6p; L J l" 100 

sl ( mi?) Jwr K 2 
4(27rp5 ) m=±l - -71" 0 

0 ( w + m{9K) Sa2 [~ ( Wr- 4:a Ps )] Sa2 
[ 
6;s (K - 2ko)] dK dBgdw . 

(3.102) 

Thew integral in equation (3.102) immediately yields 

(3 .103) 

116 



with w = -mVfiK. The first-order PSD, P 1 (wr, wd), will be 

(3.104) 

The Fourier transform operates on the factor ejwr appearing in equation (3. 103) . The 

result will be 

Therefore, the PSD of the first-order scatter becomes 

2 2 [T,. ( 4na )] 2 [D.ps ] K Sa 2 Wr- -c-Ps Sa -
2
- (K- 2ko) dK dBR . 

Evaluating the Dirac delta function with respect to K, we obtain 

so that 

2 
]( = wd 

g 

(3.105) 

(3. 106) 

(3.107) 

(3.108) 

Solving the wc~ integral while considering equation (3.108), equation (3.106) becomes 

]{
2

·
5 

2 [Tr ( 4na ) ] 2 [D.Ps ( ] V9 Sa 2 Wr- -c-Ps Sa -
2
- I<- 2k0 ) dBg . (3.109) 

Equation (3.109) is the PSD equation of the first-order field as a function of the Doppler 
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frequency wd. 

3.4.2 First-order Cross Section for the FMCW Waveform 

The incremental form of the radar range equation, in which dP is the average power 

spectrum of the backscatter received from an elemental scattering region dA1, over the 

ocean surface, with cross section O'(wd), is (see Walsh et al. [6]) 

(3.110) 

where Pt and Gt represent the average power and free space antenna gain of the transmit-

t ing sonrce, respectively. For a vertical dipole source (see, for example, Collin [78]), 

(3.111) 

and the receiver gain Gr is, from equation (3.97), 

G 
_ 41rA,. 

r- -X5 . (3.112) 

Using equations (3.111) and (3.112), equation (3.110) becomes 

(3.113) 

Equation (3.113) is a general form of the radar range equation for an elemental scattering 

region. The order of the cross section depends on the order of the PSD. In the later analysis 

for the first- and second-order cross sections for the FM waveforms, equation (3.113) will 

be applied successively. 

For a scattering patch of width b.p8 and annular arc of extent dBN at range p8 , the 
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elemental cattering region is given by 

(3.114) 

Using equations (3.109) and (3.114) along with th fact that d() is identital to dBt< gives 

](
2

·
5 

2 [Tr ( 47ra ) ] 2 [~Ps ] .;9 Sa 2 Wr - -c-Ps Sa - 2- (K - 2ko) . (3.115) 

Compari on of quation (3 .115) with equation (3.113) will give Lhe first-order radar cro 

O"J (w,., wd) = 167rkJ~p m~l S1 ( mR) 1~
5 

Sa
2 [~ ( Wr-

4
:a Ps)] 

Sa2 
[ ~;s (I< - 2ko)] . (3.116) 

Comparing equation (3.116) with its replica for the pul d waveform in equation (2.10), 

we can ee that the main difference is that there is a squared sine function factor involving 

the range of the scattering patch. 

3.4.3 Second-order Cross Section for the FMCW Waveform 

Following t he same process as for the first-order cross section, the econd-order patch 

scattering cro s e t ion for the FMCW waveform can be obtained imm diately. Starting 

from equation (3.93), the autocorrelation function will be 
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(3.117) 

Here, i(1 and K2 are the wave vectors of the first-order ocean wav s and j( = i(1 + i ( 2 , 

or J(2 = j( - K1 . The integrals with respect to w1 and w2 lead to w1 = -m1 Vi!(;_ and 

w2 = -m2 ...;gl(;. Equation (3.117) will become 

(3.118) 

In equation (3.118), the integral with respect to J( 2 has be n transformed to i( with the 

Jacobian of the transformation b ing unity. Fourier transformation of equation (3.11 ) 

will give the PSD of the second-order scatter. This Fourier transformat ion operates on 

the factor e1(w 1 +w2)r to give 

/_ ej(Wl +w2)r e-JWdT dT 

21r8 ( wd + m1 /9i(; + m2 M ) (3.119) 

Therefore, the PSD of the second-order scatter is 

P2 (w1., wd) = F [R 2 (wr, T)] 

= Ar77ollo6ll2:g~4(Ps)6p; L L ! 11" !OO J 1r ! sl(mlJ?l)st(m2J(2) 
167r Ps ml =±1 m2=±1 - 7r Jo -?r Jo 

IHf PI
2 

K
2
8 ( Wd + m1 /9i(; + m2/ii(;) Sa2 [~r ( Wr-

4:a Ps )] 

Sa2 
[
6;s (K - 2ko)] K 1dK 1d()1( 1

dKd()g. (3 .120) 
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When equation (3.120) is normalized wi th resp ct to an elemental cattering region dAP 

over the oc an surface as given by equation (3.114), we have 

(3.121) 

Comparison of equat ion (3.121) wi th equation (3 .113) gives the second-order cross section 

as 

(3.122) 

In Chapter 4, equation (3.122) will be evaluated and the second-order cross s ction for the 

FMCW waveform will be plotted. Its properties will be address d in association with the 

plot in Chapter 4. 

3.4.4 First-order Cross Section for the FMICW Waveform 

With the experience gained in developing the first- and second-order ocean surface cross 

sections for the FMCW waveform we may readily deduce the corresponding models when 

a FMICW source is used. In this sub ection the first-order cross ction is derived starting 

from equation (3.94), following the process of autocorrelation, P SD estimation, and nor

malization to a scattering patch. The second-order eros section is obtain d in the next 

subsection. 
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The autocorrelation R 19 (wr, T) with respect to t for equation (3.94) is 

where all the symbols and parameters have been defined in Section 3 .4.1. For a real, 

zero-mean large surface, equation (3.123) becomes 

( ) Ar7]o I Io~ll 2 k~F4 (Ps)~p;T; "" ! 00 ! rr looo ( ~) jwr 2 
Rlg w,., T = 3 L.., sl mK e [( 

4 (27rp8 ) Tr2 m=±l -oo -rr . 0 

4 · 2 L: ( 4rra ) 

( cz;) 2 [Tg ( 7r0: )] Sln 2 Wr - - c Ps 
8 w + my gK Sa 2 Wr- -c-Ps sin2 !JJ. (w - 4rra p) 

2 r c s 

2 [ ~Ps ] Sa -
2
- (K - 2k0 ) dKdBgdw . (3 .124) 

Thew integral in equation (3. 124) immediately yields 

with w = -my'g]{. The PSD, P19 (w,., wd), will be 

(3.126) 

The Fourier transform again operates on the factor ejwr. The result will be a Dirac delta 
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function, as 

(3.127) 

Therefore, the Doppl r PSD for the first-order scattering field becomes 

(3.128) 

Using the Dirac delt a function to carry out the K -integration , equation (3 .128) becomes 

For a scattering patch of width 6ps and annular arc deN at range Ps 

(3 .130) 

Comparison of equation (3.130) with the radar range equation (3 .113) gives the first-order 

cross section for the FMICW waveform as 

2 . 2 T ( 47ro ) 
2 ( Tg ) 2 [Tg ( 4na ) ] sm 2 Wr- - c-Ps 

()lg (w.r, wd) = 16n ko6 Ps T r Sa 2 Wr - - c- Ps sin2 ~ ( w,. - 4:o Ps) 
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------------

](2.5 [t::.p ] L sl ( mR) -Sa2 T (K- 2ko) . 
m=±l VlJ 

(3.131) 

It may be readily observed that equation (3. 131) exhibits Bragg peak positions but difl:'erent 

amplitude modulation as compared to that for the FMCW waveform in equation (3.116). 

3.4.5 Second-order Cross Section for the FMICW Waveform 

Following the same process as the derivation of the first-order cross section, the second-

order patch scattering cross section for the FMICW waveform can be obtained imme-

diately. Starting from t he electric field equation (3.95), the normalized autocorrelation 

function will be 

(3.132) 

T he integrals with respect to w1 and w2 and transformation of the 1(2 integral to a K 

integral with the unity Jacobian gives 

with Wt = -m1 ,.J9K; and w2 = -m2ViJ{;. The PSD will be 
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= ArrJo 1Iot:.ll
2 

kgF
4
(p5 )t:.p; (T9)2 Sa2 [Tg (wr _ 4na Ps)] sin

2 Jf (wr- ~Ps) 
16n2p~ Tr 2 c sin2 '!f(wr- 4:aPs) 

m~±lm~±l l:fooo I: fooo sl (mlKt) sl (m2J{2) I HfPI
2 

K
2 

8 (wd + m1/!)i{;. +m1 j;;i(;) Sa2 [
6

; s (K- 2ko)] Kld]{ldeF(
1
dKdBg. (3.134) 

When equation (3.134) is divided by an elemental scattering region dAP over the ocean 

surface (equation (3 .114)), we have 

dP?.g (wn wd) = ArrJo IIol::.ll2 ~g:4(Ps) l::.Ps (Tg)2 Sa2 [Tg (wr- 4na Ps)] 
dAP 16n Ps T,. 2 c 

s·n2 L:. ( 47ra ) 

s;n2 4 (:: = ;::) m~±I m~±l fooo I:fooo S1 (m1K1) S1 (m2K2) I HfPI
2 

K
2 

8 (wd + m1/!)i{;. +m1j;;i(;) Sa2 [
6
;s (I(- 2ko)] K 1dK1dB1( 1

dJ(. (3.135) 

Comparison of equation (3.135) with the radar range equation (3.113) gives the second

order cross section for the FMICW waveform as 

(3.136) 

A further discussion can be found in Chapter 4. 

3.5 Range Independent Cross Sections 

In a closer view of the first- and second-order cross sections for the FMCW waveforms as 

detailed by equations (3 .116) and (3.122), we can see that the range dependent factor i 

a squared sine function. The principal maximum of t he squared sine function will take a 
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value of unity when th argument of the sine function is equal to zero. For an arbitrary 

rang Ps within Pmax there will be a specific Wr corresponding to it, making the principal 

maximum equal to unity (see equation (3.60)). When investigating the properties of th 

cross section from the ocean surface we are actually concerned with an arbitrary range. 

Therefore, it i reasonable to write out the range independent cross section equations 

incorporating the maximum value of the quared inc function. For the FMCW case, this 

gives 

2 " ( -) K
2

·
5 

2 [6.Ps )] 16nk0 6.ps ~ S1 mK rn Sa - (K- 2ko 
m=±l yg 2 

(3.137) 

and 

(J2 (wd) = 8nk~6.Ps m~±lm?;±J fo l:fo sl (ml!?l) sl (m2I<2) IHfPI
2 

K
2 

fJ ( wd + m1 /9i(; + m2~) Sa2 [ 6.; (K- 2ko)] K1d](lde1<1 
d]( (3.138) 

forth first- and second-order, respectiv ly. Comparison of equations (3.137) and (3.13 ) 

for the FMCW waveform with equation (2.10) and (2.17) for the pul ed waveform shows 

that, after appropriate approximation, they are totally identical to the cro ection wh n 

the transmit waveform is a simple pulsed sinusoid. 

For the FMICW waveform, the eros section equations (3.131) and (3.136) have two 

factors which appear to indicate a range dependency. For a sp cific range, the squared 

sine function will take the maximum value unity while the squared s~n function will take 
sm 

T, 
the maximum value of 2 , where N = ; . Under these condition , tho e quations may 

g 

be reduced to range independent form to giv first- and second-order cro ction for 

the F ill CW case as 

(3.139) 
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and 

0"2g (wd) = 8nk5~Ps (~r m'f±lm"f±lla'X> j_1f1ffooo sl (mlJ(\) sl (m2K2) IHfPI
2 

K
2 

6 ( Wd + m1 j9i{: + m2{9i(;) Sa2 [ ~;s (K- 2ko) J K1dK1dB1( 1 
dK, (3.140) 

7 
respectively. The factor rJ is actually the duty cycle (de) of the gating sequence. Com

g 

parison of cross sections for the FMICW waveform with those for the FMCW waveform 

and simple pulsed sinusoid shows that they are identical in style except for an amplitude 

modulation by the squared duty cycle for the FMICW waveform. This result is reasonable 

because the F tiiCW waveform inherently radiates less power to the scattering patch than 

FMCW waveform if other parameters are identical. With this in mind, when cross sections 

are plotted and their properties are discussed in Chapter 4, we will not specify the FMCW 

and FMICW waveforms, but generally refer simply to FM waveforms instead. We will also 

simulate the ocean clutter based on these range independent cross sections (3.137)-(3.140) 

and investigate the fluctuation behavior of the Bragg peaks including comparisons with 

FMCW field data in that chapter. 

3.6 Chapter Summary 

In this chapter, the first- and second-order backscatter cross sections for the FM waveforms 

have been derived based on Walsh's method. The second-order results contain only the 

case of a single scatter from hydrodynamically coupl d ocean waves. The procedure of 

evaluation includes the development of the temporal field equations, calculation of the 

range spectra, estimation of the PSD functions, and finally, derivation of the cross section 

equations. 

The range estimation spectrum is obtained from the temporal field equation by Fourier 

transforming the sampled time series within a sweep interval. For a discrete target such as 

a vessel or a low-flying aircraft at a specific range within the radar coverage, a radar with 
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the FMCW waveform will generate a single peak corresponding to that range. However, 

for the radar system with the FMICW waveform, range ambiguity will occur for the same 

discrete target. This is due to the fact that the predominant peaks appear in the rang 
sin 

estimation spectrum as defined by a -.- function for the FMICW waveform, rather than 
Sll1 

a sine function for the FMCW waveform. 

It has been shown that for the FMCW and FMICW waveforms, the first- and second-

order cross sections are identical after reasonable approximation for a specific scattering 

patch over the ocean surface except for an amplitude modulation of squared duty cycle 

for the FMICW waveform. The cross sections for t he FMCW waveform are equal to the 

cross sections when the same scattering patch is illuminated by a pulsed waveform. 
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Chapter 4 

Interpretation of the Cross Sections 

and Fluctuations of the Bragg Peaks 

for the FM Waveforms 

In Chapter 2, th Bragg fluctuations for the pulsed waveform have b en analyzed. In 

Chapter 3, the radar backscatter cro ections for the FM waveforms have been derived. 

In this chapter, the cro section obtained in Chapter 3 will be numerically evaluated 

and depicted . One thing should be pointed out in advance. Since the cro s sections for 

the FMICW waveform have only differ nces in a squared duty-cycle factor , they will be 

several dBs lower in magnitude than those for the FMCW waveform. Therefore, in order 

to simplify the d pictions, cross sections arc plotted for the FMCW wav form only. Sine 

to the order of approximation used here the cross sections for the F 1lCW waveform are 

identical to tho for the pulsed waveform, w may consider their properties very quickly. 

Then the Bragg fluctuations of the radar rec ived Doppler spectrum for the FM waveforms 

will be inv t igated. At the end of the chapter, simulation results and fluctuation of the 

Bragg peaJ<s will be examined using field data. 
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4.1 First-order Cross Sections for the FM Waveforms 

The first-order cross section for the FM waveforms is expressed in equation (3.137) or 

(3.13g). Figures 4.1 and 4.2 are plots of the cross sections for the FM waveforms with 

operating frequencies of 25 MHz and 5 MHz, respectively. The operating frequency for the 

FM waveforms is defined as the central frequency of the sweep bandwidth and denoted as 

f 0 . In these figures , the directional ocean wave spectrum is from equation (2.g) , which has 

been addressed in Section 2. 1 and the ocean state is kept unchanged, i.e. the wind velocity 

is 15 m/s, 0° to the reference direction (defined as the direction that is perpendicular to 

the radar look direction - see Figure 2.2 in Chapter 2) and the ocean surface current speed 

is zero. The sweep interval is 0.25 s, and the sweep bandwidth in each case is 500 kHz, 

corresponding to a range resolution of 300 m. In both figures, the vertical clashed lines 

indicate the Bragg frequencies associated with the operating frequencies. From equation 

(3 .137) or (3.13g), the Bragg frequencies wl3 for the FM waveforms will be wl3 = ±/29f0, 

which, to the orders of approximation assumed in the intervening analysis, are identical 

to those for the pulsed waveform with the operating frequency f 0 . 

Figure 4.3 contains a set of plots of the cross sections for different wind directions. 

The radar parameters are fo = 25 MHz, Tr = 0.25 s, and B =500kHz. The wind speed 

is 15 m/s. Subfigures (a), (b) and (c) correspond to the wind directions of 30°, 60°, and 

goo to the reference direction, respectively. The magnitudes of the right-hand side peaks 

decrease with increasing wind direction angles until t he disappearance occurs at the angle 

of goo to the reference direction - at an angle that is perpendicular to the radar beam. 

4. 2 Second-order Cross Sections 

for the FM Waveforms 

The squared sine function in equation (3.138) or (3.140) may be approximated by a Dirac 

delta function with the assumption of a large scattering patch /:1p5 • Invoking equation 
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Figure 4.1: First-order cross section for the FM waveforms with fo = 25 MHz, Tr = 0.25 s, 
and B = 500kHz. T he wind velocity is 15 m/s, 0° to the reference direction and the ocean 
urface current speed is zero. 
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Figure 4.2: First-order cross section for the FM waveforms. All parameters are the same 
as in Figure 4.1 except fo = 5 MHz. 
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Figure 4.3: First-order cross sections for the FM waveforms with wind directions of (a) 
30°, (b) 60°, and (c) 90°, respectively. All the other parameters are the same as in Figure 
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(2.24) we have 

( 4.1) 

Then, evaluating the integral with respect to K , quation (3.13 ) or (3.140) becomes 

~ 647r2kci L L j tr 1')0 S1 (m1J(1) S1 (m2J?2) 
m t =± 1 m2=±l -tr 0 

IH f PI
2 o ( wd + m1 /ii(; + m2/9i(;.) KJdKJd01( 1 

• (4.2) 

Th delta function constraint in equation ( 4.2) can be evaluated following the process in 

Chapter 2.2.2 for the pul ed waveform. The resulting equation will be 

~ 1287r
2kci L L / " 1 S1 (mi i(t) S1 (m2I<2) 

mt=±l m2=±1 -tr 0 

I Hr PI'' [w,- Dp (Y, olr,) l Y'l :;p I.K, dDpdliJ{, ' (4.3) 

or 

(4.4) 

where I:; I is the Jacobian of the tran formation expre ed in quation (2.32) in 
p 0-

/( I 

Section 2.2.2. 

J u t as th rc are singularities appearing in the second-order ross ction for the pul d 

waveform (e.g. Walsh and Dawe [34], Gill and Walsh [35]), there arc al o singularities in t he 
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second-order cross sections for the FM waveforms. Since only the hydrodynamic coupling 

is considered, the singularities will only emerge in the Jacobian of the transformation. 

In equation (2.32), when eJ(I = eN, y = ..fJ('; = v'ko, and mlm2 = 1, the factor 

I
:; I will become infinite. This defines a pair of singularities with Kl = K2 = (ko, eN), 

p 0 -
/(I 

which implies 

(4.5) 

Here, ~ is actually the Bragg frequency wi3. A similar discussion for the monostatic 

configuration with the pulsed waveform can be found in Barrick [19] and Srivastava [5], 

and for the bistatic radar configuration, in Walsh and Dawe [34] and Gill and Walsh [35] . 

4 .2.1 Depictions of the Second-order Cross Sections 

Figure 4.4 depicts the second-order cross sections for the FM waveforms with fo = 25 MHz, 

Tr = 0.25 s, and B = 500 kHz. The wind velocity is 15 m/s, 0° to the reference direction. 

In F igure 4.5, all the parameters are the same as in Figure 4.4 except the radar operating 

frequency is / 0 = 5 MHz. 

Figures 4.6 and 4. 7 depict the combinations of the first- and second-order cross sections 

for the FM waveforms with the operating frequencies of 25 MHz and 5 MHz, respectively. 

All the other parameters are the same as in Figures 4.4 and 4.5. 

4.3 Fluctuation Properties of the Doppler Spectra for 

the FM Waveforms 

4.3.1 Simulation of the Received Time Series 

As in Chapter 2 for the pulse waveform, the simulation of the radar received time series 

from the ocean surface involves a transformation of t he FM radar eros sections from the 

134 



-20 

-30 

-Cl) 

~ -40 
c 
0 
+J 

~ -50 
(f) 

(/) 

~ -60 
1... u 

-70 

-80 

-90~--~----~----~--~----~--~ 

-1.5 -1 -0.5 0 0.5 1 1.5 
Doppler Frequency (Hz) 

Figure 4.4: Second-order cross sections for the FM waveforms with fo = 25 1Hz. The 
singularities are shown in frequency positions of ::r=J2wi3. The wind velocity is 15 m/ s, 0° 
to the referen e direction. 
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Figure 4.5: Second-order cross sections for the FM waveforms with fo = 5 MHz. Other 
parameters are as in Figure 4.4. 
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Other parameters are as in Figure 4.4. 
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configuration). Th wind velocity i 15 m/ , 0° to the reference direction. 

frequency to th time domain by employing Pierson's model [7] for a on -dimensional 

stationary Gaussian process. Equation (2.37) again suggests a numerical scheme to ac-

compli h thi by replacing a 1 + a 2 with a (w2q+l) from equation (3.137) and (3.139) for 

the FMCW waveform (or a 19 +a29 forth FMICW). This model has been detailed in Gill 

and Wal h [42]. Figure 4. is an example of 512-point time serie for the Fivl waveform . 

In this figure, the radar parameter ar fo = 25 !\1Hz, Tr = 0.25 , and B = 500 kHz. 

The scattering patch is 50 km from the radar transmitter and receiver ( monostatic con

figuration), and the wind velocity is 15 m/s, 0° to the reference direction. It should be 

mentioned that initially external noise is not added when the radar received time series 

and the resulting PSDs are simulated here. The randomness of the imulated data is due 

to the random ocean surface only. 

4.3.2 PSD of the Echo Signal from the Ocean Surface 

The PSDs of the cho signals are calculated as periodograms. Figure 4.9 i an example 

of a PSD of the ocean clutter for the F 1 waveform . The simulation parameters are th 
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same as for Figure 4.8. In (a) of Figure 4.9, the PSD is calculated from a 256-point time 

series. In (b) the time series is 512-point, and in (c) a 4096-point time series is used and 

15 averages of 512-point FFTs are implemented with a 50% overlap. Parameters in Figure 

4.10 are the same as those in Figure 4.9 except that fo = 5 MHz. 

In practice, one of the major contaminations to the actual radar received signal is 

external noise. In Gill and Walsh [42] (see also [65]), a model of Gaussian white noise has 

been introduced for the HF radar received signals for the pulsed waveform. Using this 

model and keeping the same assumptions as in Gill and Walsh [42] and Gill [65] (median 

values of noise figure Fam = 22 dB and 42 dB [79] are used for the external noi e for 

fo = 25 1Hz and fo = 5 MHz, respectively), noisy radar received signals are simulated 

and the PSDs are calculated for the FM waveforms. Figures 4.11 and 4.12 are examples 

of the PSDs of the noisy signals for the FM waveforms with radar operating frequencies 

of fo = 25 MHz and fo = 5 MHz, respectively. Since the main purpose of the thesis is 

to investigate the fluctuations of the Bragg peaks due to the randomness of the ocean 

surface, noise will not be considered in the fluctuation analysis. 

4.3.3 Determination of the Critical Values 

for the FM Waveforms 

Using the same process as in Chapter 2, we first give two examples to show the fluctuations 

of the Bragg peak regions when the FM waveforms are used. Figures 4.13 and 4.14 are 

plots of four Doppler spectra for fo = 25 MHz and fo = 5 MHz, respectively. The sweep 

bandwidths for the two plots are fixed as B = 500 kHz. In order to see the variation of 

the Bragg peaks, we segment the time series into four consecutive parts, each having a 

length of 512 points. The Doppler spectrum is estimated and the position of the centroid 

is calculated for each segment. For each figure , the centroid positions are indicated by 

solid lines from top to bottom. This process is the same as in Figures 2.6 to 2.9 in Section 

2.3.2 for the pulsed waveform. The variations of the magnitudes of the Bragg peaks can 
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be observed and these variations are at least one of the causes of the fluctuations of the 

centroid positions of the Bragg peaks. A numerical method should be invoked for detailed 

analysis as described in Chapter 2. Our goal is to determine the critical value ~c and critical 

number Nc for different .6-FFTs as described in Section 2.6 .2. For the FM waveform, the 
1 

critical value (c is defined the same as for the pulsed waveform because To = B. 

It may be recalled that the critical value ~c is a threshold for the fluctuations of the 

Bragg peaks being classed as significant. In Figure 4.15, the ~c values are plotted again t 

the corresponding .6-FFTS. The linear proportional relation between critical value and 

.6-FFT is observed clearly. In Table 4.1, critical values are listed associated with .6-FFTs. 

The definitions of the parameters in this table are the same as in Table 2.8. Detailed 

examples are given in Appendix B. Figure 4.16 is a plot of critical width of the Bragg 

region, f3c, as a function of .6-FFT· As an example, in the European Radar Ocean Sensing 

(EuroROSE) experiment conducted in Lyngoy, Norway on April 3, 2000 (e.g. , Wyatt et 

at. [12]), t he WERA radar used an operating frequency of fa = 27.65 MHz and a sweep 

bandwidth of B = 500 kHz. The calculated ( and f3 values are approximately 95.1 and 

0.0097 Hz, respectively. According to Figures 4.15 and 4.16, theoretically speaking, if 

data are processed with a .6-FFT finer than 0.0030 Hz, significant fluctuations of the Bragg 

peaks will occur. Figure 4.16 is used to calculate the Nc, the critical number of frequency 

points within the Bragg region, by the LSM fitting. The Nc is determined as 3.0, which is 

approximately equal to the value obtained for t he pulsed waveform. 

Figure 4.17 is a combined plot of Figures 2.35 and 4.16. This figure shows the similarity 

of the value Nc for the pulsed and FM waveforms. 

4 .4 Fluctuations of t he Bragg P eaks for F ield D ata 

Real HF radar data for the FMCW waveform have been obtained from the European Radar 

Ocean Sensing (EuroROSE) experiment conducted in Lyngoy, Norway on April 3, 2000 

(e.g., Wyatt et al. [12]). The radar system was the Wellen Radar, or WERA developed at 
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Table 4.1: Estimation of the critical values for different llppTs. 

'N 
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Figure 4. 17: Comparison of Figures 2.35 and 4.16. 
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the University of Hamburg, Germany, and manufactured by Helzel Messtechnik GmbH. 

The radar receive antenna was a 16-element linear array. For the experiment considered 

here, the radar parameters include an operating frequency of fo = 27.65 MHz, a sweep 

bandwidth of B = 500 kHz, a sweep interval of Tr = 0.26 s, and, for the purposes of 

this work, we consider time series lengths of approximately 9 min, corresponding to 2048 

sweep intervals for an ocean scattering patch width of 300 m. Figure 4.18 depicts the 

PSDs of the WERA data calculated using the periodogram method for (a) 512-point time 

series and (b) 13 averages of 512-point FFTs implemented with a 75% overlap. In Figure 

4.18, the half 6FFT is 0.0038 Hz. The vertical dashed lines indicate the theoretical Bragg 

frequencies. The amplitude of the PSD has been normalized with respect to the maximum 

value of the spectrum. A rectangular window is used in creating the PSDs. 

From Figure 4.18 we can see that during the radar measuring period for a specific 

scattering patch, the wind speed is strong enough to give a visibly clear second-order 

spectrum. The wind direction is approximately perpendicular to the radar look direction, 

making approximately the same amplitude for the left- and right-hand side Bragg peaks. 

There exists an apparent radial current underlying the wind wave moving away from the 

radar. Judging from the Doppler shifts of the Bragg peaks from their theoretical values, 

the radial current is approximately 11.9 cmjs [45]. 

Based on the parameters of the WERA data (operating frequency of 27.65 MHz, sweep 

bandwidth of 500 kHz, sweep interval of 0.26 s, and median value of external noise .fig'Ure 

of Fam = 21 dB [79] in the radar location) , time series with Gaussian white noise are 

simulated in a manner similar to those which gave rise to the plots in Figures 4.11 and 

4.12. The resulting PSDs are calculated as for Figure 4.18 and the results are depicted 

in Figure 4.19. The significant similarity between simulated data and real data shown 

in Figure 4. 19 gives a solid confirmation not only of the backscattering cross sections 

developed for the FMCW waveform in Chapter 3 in this thesis, but also of the simulation 

algorithm of the radar received signal developed by P ierson [7], and successfully used by 

Gill and Walsh [42] and Zhang and Gill [41]. 
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In Figure 4.20, Figures 4.18(a) and 4.19(a) are depicted together for further compari on. 

In this figure, the underlying current in the real and simulated sp ctra has been removed. 

Two points need to be highlighted. Fir t ly, the amplitudes of the high-frequency tails 

are significantly different between two spectra. Specifically, the amplitud of the high

frequency tail is about 10 dB higher for the WERA field data as compared to the simulated 

spectrum. This amplitude difference may be accounted for in at least two ways. First, 

in the simulation, a median value of Fam = 21 dB is used for the external noise figure. 

However , in practice, the external noi e will consist of atmo pheric, galactic, and man

made noise components. Each type of noise may vary according to the location, operating 

frequency, and the t ime of day or the season of year. The galactic noi e will even have 

an 11-year period depending on th solar activity. These practical conditions may not 

be specified exactly in data simulation. Another factor which could easily account for a 

difference between the imulated and actual noise floors, is that for the simulation only 

external Gaussian white noise is considered, while the real radar received signal may 

contain other typ s of noise, such as, but not limited to, system noise. 

Another difference between the simulated and field spectra as seen from Figure 4.20 are 

the respective widths of the Bragg regions. Thi point is particularly interesting because it 

will influence the accuracy of current measurement. In Figure 4.20(b), we provide a closer 

look at the left-hand side Bragg region to det ail the comparison. In accordance with the 

previous theoretical analysis, the width of the Bragg peaks will be determined sufficiently 

by operating frequency and sweep bandwidth (see equation (2.65) in Chapter 2). From 

equation (2.65), the theoretical width of the Bragg peaks in this case will be 0.0097 Hz. 

However , in Figure 4.20 for the simulated noi y pectrum, the width of the Bragg peaks is 

actually wider than the theoretical value due to contaminations of random noi e. In this 

example, th width of the Bragg peaks are estimated as 0.0300 Hz and 0.0526 Hz for the 

left and right regions, respectively. Also from Figure 4.20(b) we can see that the Bragg 

peak for th real Doppler spectrum is much wider (approximately doubt ) than that for 

the simulated spectrum. A numerical estimation shows that the widths of the Bragg peaks 
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for the field data are 0.0751 Hz and 0.0826 Hz for the left and right regions, respectively. 

This phenomenon implies that in practice, there will be some other reasons that enlarge 

and/or disturb the Bragg region, such as current fluctuations on the scattering patch, 

which is a good topic for future work. Since we have shown by the simulated data for 

the pulsed and FM waveforms, roughly speaking, the wider Bragg region will result in 

more opportunity for the significant fluctuations to occur, it is reasonable to expect that 

in practical current measurement significant fluctuations are more likely to be observed 

than when using simulated data. 

Figure 4.21 is an example plot of the fluctuations of the Bragg peaks for the WERA 

radar data used in Figure 4.18. In this figure, PSDs for the four consecut ive 512-point time 

sequences are calculated and depicted. The respective centroid posit ions are obtained and 

are indicated by the vertical lines. In Figure 4. 21 (b) a closer look at the left-hand side 

Bragg region is depicted . This figure clearly shows the fluctuations of the Bragg peaks. 

We are now in a position to quantitatively examine the significance of the Bragg fluc

tuations in the WERA field data. In order to evaluate the standard deviation of these 

fluctuations, a large number of events (512-point time series) is collected from WERA 

radar data that were obtained from six successive scattering patches. Since each scat

tering patch is 300 m in radial extent, six successive patches correspond to a 1800 m 

patch width over the ocean surface. We assume that in this big patch the ocean surface 

is statistically homogeneous spatially and st ationary temporally (within 9 min). Figure 

4.22 depicts the PSDs of the six successive patches. It is evident that the radial current is 

approximately fixed from subfigures (a) to (f) , which are associated with the six scattering 

patches, arranged near to far, for one WERA look direction. In the investigation of the 

statistical properties of the fluctuations of the Bragg peaks, we may remove the radial 

currents from each spectrum since we are considering the random ocean phases that cause 

the fluctuations - not the currents. 

The standard deviations for the 512-point time series segmented with different overlap 

percentages are tabulated in Table 4.2. From Table 4.2 we can see that despite the different 
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Table 4.2: Standard deviations calculated from WERA data for different overlap percent
ages. Nevent is number of statistical events. The defini tion of "STDL" and "STDR", 
and VL and VR have been given in Table 2.1 in Chapter 2. 

Overlap (%) Nevent STDL (Hz) Vr, (cm/s) STDR (Hz) VR (cm/s) 

0 24 0.0053 5.8 0.0052 5.6 

25 30 0.0049 5.3 0.0055 6.0 

50 42 0.0048 5.2 0.0053 5.8 

75 78 0.0050 5.4 0.0046 5.0 

87.5 150 0.0056 6.1 0.0048 5.2 

overlap percentages, the values of the standard deviations do not vary appreciably. It is 

evident that the standard deviations of the fluctuations of the Bragg peaks, left- and right-

hand sides, are greater than the half t.FFT· Therefore, there are significant fluctuations 

of the Bragg peaks, which should be considered when developing error bars for surface 

currents derived from the field data. As an example, Figure 4.23 depicts the 75% overlap 

case. From Table 4.2, for this case the standard deviations of the Bragg centroids are seen 

to be 0.0050 Hz and 0.0046 Hz for the left and right Bragg peaks, respectively. These 

values correspond to a speed fluctuation of about 5 cmjs. However , the half t.FFT of 

0.0038 Hz represents only a 4.2 cm/s resolution error. This difference is indicated by 

the widths between the two sets of dashed vertical lines in Figure 4.23. In Figure 4.23, 

standard deviations of the centroid positions to the left- (top) and right-hand (bottom) 

sides are depicted. The half t.FFT, 0.0038 Hz, corresponding to 4.2 cm/s in speed, is also 

plotted as a dotted line for illustration of significant fluctuations of the Bragg peaks. 

4.5 Chapter Summary 

In this chapter, the first- and second-order cross sections for the FM waveforms developed 

in Chapter 3 have been depicted and compared to cross sections for the pulsed wave

form. Based on the cross section equations, PSDs for the radar received clutter have been 
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simulated and the Bragg fluctuation features have been investigated. 

In the development of the second-order cross sections for the FM waveforms, only 

the hydrodynamic coupling effect has been considered. As for the pulsed waveform, the 

calculation of the Jacobian transformation will introduce a pair of singularities at ±v'2wi3\ 

where wi3 is the theoretical Bragg frequency for the FM waveforms. A comparison between 

the second-order cross sections for the pulsed and FM waveforms has shown that their 

singularities occur at the same positions. 

The Bragg fluctuations for the F 1 waveforms have been examined following the same 

procedure as for the pulsed waveform in Chapter 2. A numerical scheme has been used 

to determine the critical frequency number, Nc, within the Bragg region for the FM 

waveforms, which can be used to examine whether the significant fluctuations of the Bragg 

peaks will occur or not. The results have shown that this critical number is approximately 

equal to that for the pulsed waveform. This result may lead to a postulate that the critical 

number for the occurrence of significant fluctuations is independent of the transmitting 

waveform. 

Power spectral densities for the WERA field data have been calculated and depicted. 

Favourable comparisons between the field data and the simulations provide additional 

verification of the integrity of the cross section models developed here. 

Additionally, the fluctuations of the Bragg peaks for the WERA field data has been 

examined and t he occurrence of the significance has been observed. Since field data contain 

additional variability from the environment and system, relatively wider Bragg regions 

than those seen in simulated data would be obtained , and more significant fluctuations 

would likely be observed. A well design field experiment is desired to quantify the details. 
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Chapter 5 

Summary and Suggestions 

5.1 Summary 

The whole research work consists of two major parts. The first i an investigation of 

the Bragg fluctuations when pulsed HF radar is employed to measur the ocean surface, 

which is as urn d to be a Gaussian proces . The second part includes ad velopment of HF 

radar back atter cross sections and an investigation of the Bragg fluctuation propertie 

for the frequency modulated (FM) waveforms. Both of these initiatives have been accom

plished and ar intended to improve models which presently exi t for the application of 

HF radar to oc an urface current measurements and for related development, including 

the measurem nt of wave and wind parameter and the detection of hard targets. 

To tackle the first problem, lengthy time series of the radar received electric field for 

various radar operating frequencies and pul e widths are simulated based on existing cro 

section expr ion . The e time serie are egmented into equal length consecutive subse

quences and th power spectral densitie (PSDs) for these sub equences are calculated as 

periodograms. The centroids of the Bragg peaks are located and hi togram plots are used 

to depict the distributions of these centroids and their standard deviations are compared 

to the corre ponding FFT resolutions (6ppTs) . This procedure is unci rtaken to how 

that the analy is adequately model the existence of fluctuation in the first-order return 
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that is commonly observed in field data. It has been shown that the standard deviation 

of the Bragg fluctuations vary with operating frequency and pulse width and in some cases 

these fluctuations are more significant than the corresponding 6FFTS· Equivalently, the 

fluctuations are a function of the width of the Bragg region in the Doppler spectra. 

After reviewing the electric field equation of the radar return, it has been determined 

that the Bragg fluctuations are a consequence of the randomness of the ocean surface. The 

sources of randomness are the random phases, which are uniformly distributed between 0 to 

2n (e.g. Pierson [7]) and which are associated with each Fourier component of the surface. 

The field equation is then developed in such a way that the focus is placed on the behavior 

of these random phases. As a proof of concept, the original field equation is simplified 

by taking only two adjacent ocean wave frequency components into consideration. It has 

been shown that the fluctuations in the resulting signal are the consequence of a cross 

term incorporating the interactions between the two components. The simplified model 

has been extended to a general case in which many frequencies are involved and many 

cross terms with randomness are present. The distribution of the summation of these 

cross terms has been examined at some specific frequencies and the results have been 

depicted by histogram plots. Comparison with a chi-square distribution with two degrees 

of freedom has shown that there are distinct similarities. 

Extending the previous deliberations, the next step of the first research portion has 

been carried out to describe the distribution of the Bragg fluctuations. Barrick and Snider 

[8] achieved a Gaussian distribution with the assumption that there are many frequency 

points within the Bragg region. This method has been checked and the result is negative. 

The reason has been recognized that the assumptions of large scattering patch (several 

tens of kilometres) used by Barrick and Snider does not apply in this research. However, a 

numerical scheme has been used to check the dependence of the standard deviation of the 

Bragg fluctuations with respect to the width of the Bragg region. A linear connection be

tween them has been observed for a fixed 6FFT· Additionally, there are different "critical 

values ~c" associated with different 6FFTs· These ~c values are the thresholds that when 
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the combination of radar frequency and pulse width exceeds them, or ~ = T01 j 0-
2 2: ~c , 

the Bragg fluctuations will be significant. The critical value ~c has been recognized to be 

linearly proportional to the 6.FFT · This conclusion implies that if the radar operating fre

quency and the transmitted pulse width are known, an optimal choice of 6.FFT will avoid 

significance of the Bragg fluctuations, and vice versa. When ~c is multiplied by a factor 

~' the product will be the "critical width" of the Bragg region f3c · f3c is also linearly 

proportional to the 6-ppT, which means that when f3c is divided by the corresponding 

6-ppT, the ratio will be a constant, which is denoted as Nc. Nc is actually the critical 

number of the frequency points within the Bragg region. A physical explanation of Nc is 

that no matter how the radar parameters and the 6.FFT are chosen, if the number of the 

frequency points within the Bragg region exceeds Nc, significant Bragg fluctuations will 

always occur. Nc has been obtained as 3.0 based on a numerical examination. 

In the second part of this research, the radar cross sections have been developed un-

der t he condition that the radar transmitting waveforms are linear FM waveforms, i.e. 

frequency modulated continuous wave (FMCW) and frequency modulated int rrupted 

continuous wave (FMICW). The waveform equations have been inserted into the electric 

field equations to obtain the temporal field expressions. In this case, the radar operat-

ing frequency is no longer time independent as for the pulsed waveform, but a function 

of time within a frequency sweep interval. The resulting electric field equations there-

fore have been modified by a time-varying term. The first-order radar backscatter cross 

sections for the FM waveforms show that after appropriate approximation, Bragg peaks 

appear at the same Doppler frequency positions as that for the pulsed waveform with the 

same operating frequency. In addition to these first-order results , the second-order cross 

sections for the FM waveforms have been developed, but for t he hydrodynamic coupling 

condition only. The reason is that the electromagnetic portion of the second-order scatter 

is significantly smaller than the hydrodynamic portion in the vicinity of the Bragg peak 

regions, and will not influence the result of the Bragg fluctuations. As an intermediate 

result, the range spectra for the FM waveforms have also been extracted. For an individ-
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ual scattering patch over the ocean surface, ambiguity peaks have been observed in the 

range spectrum for the FMICW waveform. Mathematically, this is due to the fact that 
sin 

the range is indicated by the peaks that are defined by a -.- function, which inherently 
sm 

has multiple peaks at repeating deterministic positions. 

All the cross sections for the FM waveforms have been depicted in Chapter 4. The 

properties of the cross sections, such as the positions of the Bragg peaks for the first-order 

cross sections and singularities that occur in the second-order cross sections, have been 

explored. 

The behavior and properties of the Bragg fluctuations for the FM waveforms have been 

examined. The critical value ~c and critical number Nc for the FM waveforms have been 

obtain d by a numerical method analogous to that for the pulsed waveform. The critical 

number has been shown to be approximately equal to that for the pulsed waveform. A 

conclusion that the critical number is es ent ially independent of the choice of waveform 

has been achieved. 

The objectives of obtaining an appropriate model to describe the fluctuations of the 

Bragg peaks of the received Doppler spectrum for monostatic HF ground wave radar 

with pulsed and frequency modulated transmitted signals have been accomplished. The 

simulations for the FMCW waveform have shown favorable agreement with field data 

obtained using a high bandwidth WERA radar operating in the upper HF band. It is 

expected that the model developed here will provide a fundamental starting point for 

investigating the statistical properties of the HF radar received signals. F\uthermore, 

when the results for pulsed and FMICW are similarly verified with field data, the outputs 

of this thesis will help enhance the capabilities of HF radar as a powerful remote s nsing 

tool, especially from the perspective of properly constructing error bars for the various 

measurements. It is expected that the results will also help to improve clutter suppression 

algorithms for hard-target detection when HF radar is deployed along the coastline to 

monitor a nation's exclusive economic zone. 
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5.2 Suggestions for Future Work 

Based on the analyses in this thesis, several points may be suggest d for fut ure experi

mental and research work. 

First, although the algorithm shows reasonable and encouraging results, it still need 

to b e checked more extensively against real data. For example, the crit ical value ~c may be 

obtained from a well designed experiment with several combinations of ra tar frequencies 

and pulse widths. It should be pointed out that the values obtained from real data may 

be variable clue to other phenomena that cause broadening of the Bragg region (such as 

external noise, current variability, and iono pheric instabilities), and in a real Doppler 

spectrum, t he width of the Bragg peak may, for these reasons, b larg r than the theoret

ical width indi ated by the squared inc function appearing in the derived cross sections. 

Gill and Wal h [42] (see also [65]) provide a model of external noi e for the pulsed radar 

waveform as a zero-mean Gaussian process. Examples of time series have been simulated 

and PSD hav been depicted in Chapter 4. However , high bandwidth field data for t h 

pulsed waveform are desired to check the results . 

As noted , for the case of t he FMCW waveform a comparison of imulated spectra with 

WERA field lata has provided partial but encouraging results. However, exp rimentation 

dedicated t further verification of the mod I hould be conducted. Su h investigations 

should incorporate a variety of waveform and operating paJ.·ameters. 

In our cross section development for th FM waveforms, the second-or ler backscatter 

eros ection aJ.'ising from double scattering (th a-called electromagn t ic econd-ord r) 

has been ignor d for the sake of simplicity and becau e it would not ignificantly influence 

t he problem addressed here. However, it should be work d out b au e it may reveal 

important physical processes appearing in the Doppler spectra at positions appreciably 

removed from the Bragg region. For example, there is no doubt that the e-m coupling 

process will introduce singularities, such as the well known "corn r reflector" condition 

discussed by Barrick [19] and Srivastava [5] for monostatic op ration. This effect might 
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significantly influence hard-target detection if HF radar were deployed for the purpose of 

surveillanc . 

Due to the widespread deployment of HF radar systems with FM waveforms, it is 

desirable to develop the bistatic cross ections for these waveform . This process should 

be facilitated by th fact that similar work has be n already done for the pulsed HF radar 

waveforms (e.g. Wal hand Dawe [34], Gill and Walsh [35]). Furthermor , with availability 

of the cross ections for the FM waveforms, an algorithm to extract th ocean urface wave 

spectrum can be leveloped following the methods that have already been developed by 

previous investigators (e.g. Gill and Walsh [39], Howell and Walsh [40], Zhang and Gill 

[41]). 

With the further modeling and experimentation sugge ted here it i to be expected 

that HF radar, as a marine remote sensing tool, will become increasingly important. 
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Appendix A 

Derivation Pertinent to the Cross 

Sections for the FM Waveforms 

A.l Processing of the D emodulation 

In the development of the range spectra for the FM waveforms, the radar received signal 

should be demodulated by mult iplying it with an ungated version of the transmitted signal 

followed by a low-pass filter (e.g. [50, 52]). In our analysis, the ungated transmitted F 1 

signal equation (3 .3) is rewritten here as 

(A.l) 

or with its real part as 

(A.2) 

where tis replaced by t 1• as the time variable within the period Tr· All the other parameters 

are defined in Chapter 3. The first- and second-order received signals for the FMCW and 
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FMICW waveforms, may have a common form as 

(A.3) 

where Ec is a collection of unused factors . It can be written as 

(A.4) 

dG(t,.) 
where G(tr) is summation of all the other phase terms with assumpt ions that -d- << 

tr 
wo + 2a7rtr. After absorbing ! 0 into Ec, the demodulation of E(tr) gives, 

= LPF { Ec cos (wotr + 0:1rt;) cos [wotr + 0:1rt: + 8(tr)]} 

= LPF { ~c COS [2wotr + 2a7rt; + G(tr) J + ~c COS [-8(tr)] } = ~c COS { -8(tr)} , 

(A.5) 

where E 0 (tr) represents the demodulation with respect to E(tr) and LPF {-}refers to the 

operation of an ideal low-pass filtering. Equation (A.5) may be written in a concise form 

as 

(A.6) 

where E*(t,.) is complex conjugation of E(tr). Therefore, the demodulation of equation 

(A.3) can be expressed as 
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This demodulation process will be used in our analysis in Chapter 3 for the cross section 

derivation with FMCW and FMICW waveforms. 

A.2 Range Spectra for the 

Second-order Field Equations 

A.2.1 For the FMCW Waveform 

The derivation is from the first-order field equation (3.33) . The exponential factor 

eJ(wotr+a,.tn has been eliminated by means of demodulation, which gives 

where 

(A.9) 

The sine function in equation (A.8) has a form of sin x, and the sin x can be expressed in 
X 

exponential form so that 

[
6p8 ( 47rO'tr· )] [ . 6p8 ( 47rO'tr)J -1 

Sa -
2
- K- 2k0 - -c- = 2]-

2
- K- 2ko- -c-

e 2 c -e 2 c . 

r 
j 6p5 (K _ 2ko _ 47rO'tr) -j 6ps (K _ 2ko _ 47rO'tr) l 

(A.lO) 

The magnitude factor can be simplified by applying a binomial expansion to get 

[
2j 6ps (K - 2ko - 47rO'tr)] -1 ~ 1 

2 c j 6 p8 (K- 2ko) 
(A.ll) 
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4m:.ldr 
since, compared with K and 2k0 , the -- term is much smaller and can be neglected. 

c 
Therefore, equation (A.8) becomes 

( +) o Eo 
Eo 12 (tr) = j6ps (/( - 2ko) 

[ e-j(K -2ko) (p.-~) ej 4~" (p.-~ )tr _ e-j(/( -2ko)(p.,+~) ej 4~" (p.,+~ )tr] 
= Etel4~"(p.-~)tr- Efel4~" (p.,+~)tr 

(A.l2) 

where 

(A.l3) 

and 

(A.l4) 

The econd-order range spectrum 1>2 (wr) will be obtained by the Fourier t ransform of 

equation (A.12) with respect to tr following the process for the development of the first

order range spectrum (equat ions (3.52) to (3.57) ), since the only difference is wi thin the 

factor E0 . With the same assumption and approximations as for the first-order case, the 

second-order range spectrum will be obtained as equation (3.58) in Section 3.3.1. 

A .2 .2 For the FMICW Waveform 

The development of the second-order range spectrum for the FMICW waveform starts 

from equation (3.44) . With the experience of derivation of the first-order range spectrum 

for the FMICW waveform and the second-order range spectrum for t he FMCW waveform, 

we may find that the only difference to t he first-order case is the defini tion of the factor 
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E09 , which is 

r P P !]( -jrr/4 
H P1 J( w 1 J(wvn e . 1' 1 2, 2 

(A.15) 

Then , the received field equation (3.44), after the demodulation, will be 

( 

2p, Tg Tr) N-1 t - - - nT - - + -
Eo I: Rect r c T g 2 2 e-jp.( l<-2ko-4"~ ' r) 

n=O 9 

Sa [ ~;s (]( - 2ko-
41f:tr)] , (A.l6) 

or, with the sine function being expanded, 

EA- EB 
g g 

( 
2p8 Tg Tr) 

N-1 t --- nT --+-
Etai::Rect r C 

9 2 2 J4:0 (p.-~)t,. 
n=O Tg 

( 
2p8 Tg Tr) 

N-1 t --- nT --+-Efa I: Rect r C g 2 2 J4~o (Ps+~ )t,. ' 
n =O Tg 

(A.l7) 

where 

(A. l ) 

and 

EB = Eo e-j(l<-2ko) (Ps+~) 
09 J~Ps (K- 2ko) · 

(A. l 9) 

The range spectrum 1>2
9 

(wr) will be obtained by the Fourier transform of equation (A.l7) 

with respect to tr. The resulting expression is equation (3.91) in Section 3.3.2. 
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.-------------------------------------------------

Appendix B 

Critical Value Estimation for the FM 

Waveforms 

Here, the critical values for different FFT resolutions (6FFTs) are determined for the FM 

waveforms using the same numerical scheme as was used for the pulsed radar waveform in 

Chapter 2. The process of the LSM fitting is depicted in Figure B.1 to Figure B.9. The 

resulting critical values, as well as values of "critical width (f3c)" for the Bragg region, and 

the "critical number (Nc)" of frequency points within the Bragg region are tabulated in 

Table 4.1 in Section 4.3.4. The corresponding analysis is also given associated with Table 

4.1. 
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Figure B.l: Plot of (as a function of NSTD for the 6FFT of 0.0130 Hz. The critical value 
is determined as ( c = 384.5. 
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Figure B.2: P lot of (as a function of NSTD for the 6FFT of 0.0078 Hz. The critical value 
is determined as (c = 221.3. 
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Figure B.3: Plot of~ as a function of NSTD for the ~FFT of 0.0066 Hz. The cri tical value 
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F igure B.6: P lot of~ as a function of STD for t he b.FFT of 0.0032 Hz. The critical valu 
is determined as ~c = 106.1. 
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Figure B.8: P lot of~ as a function of NSTD for the 6FFT of 0.0020 Hz. The crit ical value 
is determined as ~c = 51.8. 
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Figure B.9: P lot of~ as a function of NSTD for the D.FFT of 0.0012 Hz. The critical value 
is determined as ~c = 27.6. 

185 










