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and the PSDs are calculated. Centroid positions of the Bragg peak regions are located
and compared to the theoretical vah Statistical properties of the Bragg fluctuations
are investigated and comparison with re  cet to that for the pulsed waveforin is carvied
out. Field data from the Wellen R r (WERA) are used to verify the simulation results

and the fluctuations of the Bragg peaks for the FMCW waveforim,
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Chapter 5 provides an overall suummary  the investigations 1« some suggestions for

future rescarch related to the findings lhiere.






Typically, the ocean spectrum of waveve ' IV, S (1\'), witll its direction in @z may be
expressed as the product of  non-directional spectrum, Sy (/) and a normalized directional

factor, D (0) (c.g. Kinsman [3] 1d Tucker [66]):
S (K) =58 D(0z) . (2.1)
The normalization on D (6z) is such that
2
[ D6y =1. (2.2)
0
Clearly,
2w —
/ i (K)d = Si(K). (2.3)
0

The Pierson-Moskowitz nc  directional spectrum Spyy [67] is s cted as the ocean wave

spectrum with a modification of

4

Si(K) =5, on(R) (2.4)

by Gill [65], where

—0.74¢?
QPN L2y
) =0 )

2R

—
Q)
(o]

-

AV

In this equation. apyy Is a constant with value 0.0081 and w,, represents the wind speed
mecasured at 19.5 m above the occan surface.
The directional distribution D (6;) in equation (2.1) is actually also a function of

wavenumber A, which can vt as

D(#g ) =F(s(K))c M) {@—_;-(i‘—)} (2.6)
























by Lipa and Barrick [27]. Letting

we have

KNidi, = 7Yy, (2.28)

Since Ay = N — Iy, and t magnitude and direction of A” is kunown, imposing the law of

cosines, [y may be derived as

K3 = K} 4k = 1K kycos (0 — Oy)

= Y ak] = Phocos (6, = ON) (2.29)
Letting
Dy () 01\’1) = -y (m,\/r’]% /112\/1\3)
= —yy {le + 1y [Y’X + kS - 1Y %k cos (()I\fl — (’)N)]} .
(2.30)

the delta function constral  becomes

) (UJ([ +nuy gk + 1122\/_(11\'3) =4 [w’([ - D Y, (),\r])] . (2.31)

The Jacobian of the trans  mation will be

% mymy (Y — 4V kg cos (6
‘()) _ .(1_% - My [ ()(os( A - (2.32)
JdDp 0, [)’4 + dhg — 4Y 2k cos (6,\?] -6 J ' ‘

After evaluating the delta function constra - by the Newton-Raphson method, equation
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Figure 2.23: Standard dev  ions of the B 1g peaks as a fuin on of the width of the
Bragg region.

squared sine function satisfies

The Bragg scatter associated with the mon  atic radar cross section is

: N -
Sa? | (K —2k)| . (2.60)
L 2
where the parameters are defined following equation (2.10). Substitution of equation (2.60)

into equation (2.59) gives the first-order nulls adjacent to the theoretical Bragg frequencies,

which is

Ap,

(R — 2k) = ? (K = 2ky) = %7 . (2.61)
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scattering into two distinet parts as was doue for the FMCW waveform, the first-order

scattering field for the FM W waveform 1 ~omes

(EG,), ) = (Bs), 0+ (EL) (). (3.42)

The (E&,) 0 (t,) termrepre  nts the field for a single scatter from first-order surface waves,

and it can be expressed as

20, T T,
—jl t, — /h—llf]-‘,]—?q+‘—)r
+ _ ‘ [& | 4
<E()g>” (t:) = . N Rect -
Z 1PI;_w\/K(,‘jrr/-l(,J(w'()ly+n7rt}"-)(,J'/)a(1\'—21\'1)‘_'1”2—".”‘)Sa Azps /[\' _ 2}‘.() __ 47T(’\f"):|
I:',w ~
(3.43)

The (E} t.} term rep ents a single atter from the second-order surface waves
Og 1o N

produced by the hydrodynamic coupling pr = ess. It takes the form

2 Nol t 20 T, - I
+ =1 ARG (py) Apy & Ny nTy— 5+
(E();/)l.z (t,) = —— (rp )P Z;) Rect, -

. . =i )Ajlwote+amnt?
Z Z nlp P 1P, voo€ ! )

Ry Kows

o (I 2k Amete Apy (. dmaf, :
()jph(l\ =2ko— = )Sa [ ‘;Dl (1\ — 2y — T ):| , (344)
C

Z

where 1P,€1 " and 1]’,\72 », are the Fourier irface coefficients associated with the inter-
acting first-order waves au ;Tp is the hy  sdynamic coupling coefficient for the patch

scatter as defined previously.
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practice, the upper limit of the range estin ion will be a few hundred kilometres at the
most due to signal attenuation. When the unpling process is applied within the sweep
interval, according to the sampling theoremn, only those signals with frequencies that are
equal to or less than one If the samplit  frequency f; will be reconstructed without
distortion. This means that the sampling process will work as a low-pass filter that selects

those signals with

1 1 Ny
Af < —fi=—-—. 3.61
[ <555 (3.61)
. . o . . BAt
wlhere Ny is the number of samiples within - sweep interval T,.. Since Af — oAt = 5
2ps . g '
and At = —, cquation (3.61) beconies
-
h 1 1 Ny
—fo=-— 3.62
Sghea (8.62)
or
9]?/)\, 1NF
— < ——. 3.03
e, — T, (3.63)
In this result, the maximu:  range p,,.,. will occur for the case of equality, i.c. when
Ny o
Pmar = 4]),_ (3()‘”
, ¢ _cm . .
Since SE= 9 = Apy, equation (3.64) may also be written as
i Yy
Pmar = 3 )HN'I' . (‘;()‘5>

Equation (3.64) or (3.65) is the governing equation for the maximum range estimation.
Particularly, for a fixed swe  bandwidth, the range resolution Ap, will be fixed. Increasing

the sampling number Ny v liin the sweep interval will inercase the maximun detection
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where

F‘“ - Ap
A LN =2k0) (ps — =L -
E(!I_jA ' ()( ‘ ) (3./1)
and
F. . s
o= U2k (ot ) (3.72)

JApPG I — ZRhy)

Thus. the range spectrum (w,) will be the Fourier transform of equation (3.70) with

vespect to f, (c.g. Barrick [50]).  at is

r A\ A B Qo
O (w) = F {( o (r,.)} =F[E}N -FE)] . (3.73)
with
20, M
) e T OO o) . (8
/ / : Z g (- =L ro = Ju by
]-'[Eg] = EU-"/,IL- 2 Rect —c . ¢ TN e m s g
2 n g
(3.74)
and
/ 2py T, T,
B p [T fr ¢ nty - Qq o T (put T2 =t
2 n=0 Y

In equations (3.74) and (3.75), the int  sal of integration over 7, is juterrupted by the
gating function so that ¢, © 5 in the interval given typically by
)H 7-'" DR
<t, < =4nT,+71, - . (3.76)
¢ ‘ Z

2p,
0 +nly —
. ‘

£




Therefore, the integration  equations (3 and (3.75) may be written as
N-1 *"qu'*Tv/ I Cdma Apg
Fle = e X e
g g =0 s 4nT, ~ I
and

B

eIt

Le Tyt - I_,‘-
FE?] =B

41“)
e (
—‘-"-+n

ps“"é‘[‘l)lrt,_./wr{rdt
Equations (3.77) and (3.78) can be reduced to

(3.78)

N—1
S T B Y o -
Wy — W‘r‘):| Z CJ(”]”-‘F_{T‘.{»_‘.L# B )(u“ <) ('3!9)
n=y
and
NoL
F [EQBJ = OJTJSA [ (wy — )} Z o (T 282 45— T Y —wy) . (3.80)
n=0
47y Ap, dma Ap, L
where w, = — (/)S — Tp> and wy, = — (ps + 2[) ) the same definitions as that in
Section 3.3.2 for the FMCW waveforni.
Equation (3.79) can be further manipula
nential function to give

F[i) - R

T, o
g
1o Tgoa { 5 (wy — w,,)} o
= U(]T‘]Sd {

2ps
:
0(] T,,Sd {

1 by evaluating the sunmnation of the expo-

Ty
2 4

o |

N-1

%—)(-uu*w,-) Z ()_]717'(,( o —wh)
(ujll - w,‘)} ()I(El‘il+.rl 7"

n=0
] LZL)(H—'u_WI )

1 pdlen—wNT,
. ONT,
(s — )} sin J—Zi (we — wy)
a r '

o |

1 — elwe—w)T,
,‘ 2T,
sin # (wy — w))
Simiilarly, for equation (3.80)

5=

Flwamed - (381)
FBy] =

T, sin (wn —w,)
()(}T(/Sa |:7(] (wb —_ w‘,,)} r

(J(iﬂ’-+—1'[',,+1§i—%)(ul.
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the FMCW waveform will  nerate a single peak corresponding to that range. However.
for the radar system with t - FMICW wav.  rm, range ambiguity will occur for the same
discrete target. This is due to the fact that the predominant peaks appear in the range
sin . .

estimation spectrum as de  2d by a o fu  tion for t - FMICW waveforn, rather than
a sine function for the FAICW waveform.

It has been shown that for the FNICW . 1 MICW wavefor s, the first- and second-
order cross sections are identical after reasonable approximation for a specific scattering
patell over the occan surface except for an amplitude wodulation of squared duty cycle

for the FMICW waveform. The cross sectic s for the FMCW v veform are equal to the

cross sections when the same scattering patch is illmninated by a pulsed waveform.
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significantly influence haré  wget detection if HF radar were deployed for the purpose of
surveillanee.

Due to the widespread deploynient of HF radar systems v It FN wavefors, it is
desirable to develop the b atic cross seet s for these waveforms. This process should
be facilitated by the fact that similar work has heen already done for the pulsed HF radar
waveforms (e.g. Walsh and Dawe {34], Gill and Walsh [35]). Furt a1more, with availability
of the cross sections for the FA waveforins, an algorithin to extract the occan surface wave
spectrum can be developed folle g the methods that have already been developed by
previous investigators (e.g. Gill and Walsh [39], Howell and W sh [40], Zhang and Gill
[41]).

With the further modc g 1d experimentation suggested hiere it is to be expected

that HF radar. as a marine remote sensing tool, will become mercasingly importaunt.
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FMICW waveforins, may have a common form as

E (f,v) = EC()_jﬂ'/“lej '+(mt"2‘)()-’./’n(l\'—‘_’k()f‘”i" )

An drat,
Sa ' ( ok - & )} , (A.3)
L 2 &

where . is a collection of  used factors. It can be written as

<t < . (A4)

vo| 3
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E(t,) = E.cos [u)()fr + mrf',‘). + (U)] .

o(t,
(f’) <<
dt,

. . . . d
where ©(¢,) is summation «  all the other | ase termns with assumiptions that

wy + 2amt,. After absorbing Iy into £,, > anodulation of E(t,) gives,

EP(t,) = LPF {i(t,)E (1,)}
= LPF {E(. cos (u)()fr + (>7rt'f) Cos [u)()f,. + amt? + (—)(z‘r)] }

E(' 2 & c
LPF {7 cos [Qwof,. + 2amt; + @(t,’)] + ET cos [—@(fr)}} = - cos {(—o(t)} .

where E2(t,) represents the demodulation with respect to E(t,) and LPF {-} refors to the

opcration of an ideal low-p  filtering. Equ  ion (A.5) may be written in a coucise form

as
EP(t)) =i(t,)E*(t,), (A.G)
where E*(t,) is complex conjuga of E(t,). Thercfore, the demodulation of equation
(A.3) can be expressed as
EP (1,) = E.cim/emin(K-2ko-teete” [AQ’)” (1\' 9k — 4”(‘#")] | (A7)
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since, compared with /{7 and 2k, the term is much smaller and can be neglected.

Therefore, equation (A.8) becomes

Jps s — 2ky)
{e—j(’\'—ﬂ'n)(ﬂs— e P M a2k (pak S ) A (pak SR

B Ly W

= Y- EB (A.12)

where

EO — " __ ) _.'A_QL
Ed = 0 LI *"")(/’* ) A.13
0 JAps (K — Qko)( ( )

and

BP - Eo o=kl (k32 (A.14)

JAps (K = 2ky)
The second-order range s; rum ) (w,) v be obtained by the Fourier transform of
cquation (A.12) with respect to t, following 1e process for the development of the first-
order range spectrumn (equations (3.52) to (3.57)), since the ouly difference is within the
factor Fy. With the same assumption and :  Hroximations as for the first-order case, the

second-order range speetrum will be obtaine  as equation (3.58) in Section 3.3.1.

A.2.2 For the FMICW Waveform

The development of the second-orr  range spectrum for the FMICW waveforin starts
from equation (3.44). With the expericuce of derivation of the first-order range spectrum
for the FMICW waveform ai the  cond-or  range spectrum for the FNCW waveforni,

we may find that the only difference to the  st-order case is the definition of the factor



Ey,, which is

_ —jlol]oAlA(Q)FQ (

ps) Dps o r
(27p, )3/ > >0 ulp Py, 1P, VR (ALD)

1\'1 sw l\';g yw2

E()

Then, the received field equ don (3.41). at  the demodulation, will be

2p4 = T,
D P e —nTy — , +T' (16 2k Aot
o+ _ [N C Z ,mIps IV 2k —
(Eg), () = Eo N Rect - ¢
e /. dmad, .
Sa L 2—5 (I\ — 2kg — . ’)} . (A.106)
or, with the sinc function being expanded.
D
+ A B
(E()_r]>12 (t) = Ey - Eg
T, T,
N-1 t, — —nT, — TJ + Tr . Sy
= E(‘;L Z Rect = LN G L
n=0 Ty
: T, T
N-1 t,— - —nT, - ELANE s s
— Eé; S Reet 2 2 (e ){,.‘
n=0 T.‘I
(A.17)
where
A i UK =2k (pa= 2
E()g - ’ ;: ? = (A18)
APy — 2hy)
and
E() SO o). RY
E‘B — (,“J(l\‘z’\())(/).~+ 0 ) ) A19
g JAp, (I — 2ky) ( )

The range spectrum @5 (w,) will be .+ tained by the Fourier transforn of equation (A.17)

with respect to f,. The resulting expression  equation (3.91) in Section 3.3.2.
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App~ndix

Critical Value stimation 1 r the FM

Waveforms

Here, the eritical values for different FFT 1 lutions (Appps) are determined for the FAM
wavefornis using the same 1 merical scheme as was nsed for  1e pulsed radar waveforn in
Chapter 2. The process of the LSM fitting  depicted in Figure B.1 to Figure B.9. The
resulting critical values, as well as values of “critical width (3.)” for the Bragg region, and
the “critical number (N.)” of frequency po s within the Bragg region are tabulated in
Table 4.1 in Section 4.3.4. L..ccor  Hondi  analysis is also given associated with Table

4.1.






























