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Abstract 

The goal of this work was to localize one of the enzymes involved in proline 

oxidation, 111-pyrroline-5-carboxylate dehydrogenase (P5CDh) and to gain an 

understanding of the factors affecting proline catabolism in rat liver. In this 

regard we performed a systematic subcellular localization for P5CDh and studied 

proline catabolism in response to dietary protein and exogenous glucagon. Our 

results indicate that P5CDh is located solely in mitochondria in rat liver. With 

respect to factors affecting proline catabolism we observed that rats fed a diet 

containing excess protein (45% casein) display a 1.5 fold increase in activity of 

P5CDh and proline oxidase (PO), and a 40% increase in flux through the 

pathway resulting in complete oxidation of proline in isolated mitochondria. We 

also observed that rats administered exogenous glucagon exhibit a 2 fold 

increase in PO activity and a 1.5 fold increase in P5CDh activity, and a 2 fold 

increase in flux through the pathway resulting in complete oxidation of proline in 

isolated mitochondria. 14C02 production from 14C-proline in the isolated 

nonrecirculating perfused rat liver was also elevated 2 fold in the glucagon 

treated rat. We also studied the transport of proline into isolated hepatocytes and 

observed a 1.5 fold increase in the transport of proline in rats given exogenous 

glucagon. 

Conclusions: 

Subcellular localization: 

a) The spectrophotometric assay is valid and provides a quick, easy method 
for assays of P5CDh 

b) P5CDh is located strictly in the mitochondrial matrix 
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High protein diet increases: 

a) flux through the proline catabolic pathway in mitochondria resulting in the 
production of C02 

b) activity of PO, P5CDh, and ornithine aminotransferase (OAT) in rat liver 
mitochondria 

Glucagon increases: 

a) proline transfer from plasma to hepatocytes 

b) oxidation of proline by perfused liver 

c) flux through the proline catabolic pathway resulting in the production of 
C02 

d) activity of PO, P5CDH and glutamate dehydrogenase (GDH) in rat liver 
mitochondria 
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Chapter 1: Introduction 

Proline is a dietary non-essential amino acid that is found in significant 

amounts in mammalian body fluids. In fact proline in extracellular fluid can reach 

concentrations as high as 0.35 mM and is exceeded only by those of glutamine 

and alanine (85). Proline is considered to be a neutral molecule in free solution at 

physiologic pH and is a secondary amine because the nitrogen and alpha carbon 

atoms are part of a pyrrolidine ring. 

Proline (figure 1.1) is a unique amino acid due to the presence of this 

cyclic pyrrolidine ring. The ring structure of proline gives proline characteristics 

that dictate the role of proline as a component of proteins as well as in regard to 

metabolism. The presence of the secondary amino group excludes proline from 

the pyridoxal-5'-phosphate dependent transamination reactions that are so 

important for general amino acid metabolism. In regard to incorporation into 

proteins, proline is an integral component of numerous proteins and is often 

termed as an a-helix breaking amino acid (1 09). That is, the structure of proline 

does not easily fit into the a-helix motif that is such a common structural 

component of proteins. The most common protein that is associated with proline 

is collagen where proline is present in a ratio of approximately 110-130 residues 

per 1000 residues (85). 

The relatively large amount of proline present in collagen is largely 

responsible for the left-handed helix for which collagen is known. This type of 
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Figure 1.1: Enzymes involved in metabolism of~ 1-pyrroline-5-carboxylic acid in 
rat liver. 

Enzymes: 1, ornithine aminotransferase; 2, ~ 1-pyrroline-5-carboxylic acid 
dehydrogenase; 3, ~ 1-pyrroline-5-carboxylic acid reductase; 4, proline oxidase. 
Abbreviations; a-KG, a-ketoglutarate; Glu, glutamate; Fp, flavoprotein. 
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helix is commonly referred to as a poly-pro helix which signifies the importance of 

proline residues in determining the secondary structure of this protein. A 

derivative of proline, 4-hydroxy-L-proline is also present in mammalian body 

fluids as well as in collagen. The presence of hydroxyproline in collagen is due to 

hydroxylation catalyzed by prolyl hydroxylase following synthesis of the collagen 

peptides (106). 

1.1 Proline catabolism 

The catabolism of proline in liver is a multi-step process. The first step, the 

oxidation of proline to ~ 1-pyrroline-5-carboxylic acid (P5C), is catalyzed by proline 

oxidase (PO) (EC number not assigned) while the second step is the conversion 

of P5C to glutamate by ~ 1-Pyrroline-5-carboxylic acid dehydrogenase (P5CDh) 

(EC 1.5.1.12) which uses NAD(Pt as a cofactor (Figure 1 ). 

1.1.1 Proline oxidase 

Proline oxidase is located in mitochondria in liver and is associated with 

the inner mitochondrial membrane. PO is thought to transfer electrons generated 

from the oxidation of proline to the electron transport chain via an intervening 

flavoprotein (63). Human cDNAs for PO have been identified and the gene has 

been located at 22q11 .2 (82). Proline oxidase in humans is a 561 amino acid 

protein that is located primarily in liver, kidney and brain tissue with liver 

displaying the highest activity (35). 
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The product of the reaction catalyzed by PO, P5C is in spontaneous 

equilibrium with an open chain tautomer known as glutamic-y-semialdehyde. It is 

not known with certainty whether P5C or glutamic-y-semialdehyde is the 

preferred substrate for enzymes that utilize this compound; however the 

equilibrium is known to favour P5C under conditions in vivo (23). P5C is present 

in body fluids such as plasma, cerebrospinal fluid, urine and saliva. Interestingly, 

plasma concentrations have been observed to follow a diurnal pattern (22). 

The plasma concentration of P5C appears to fluctuate from a baseline 

level of approximately 0.40 J.!M to values that are in the order of 3-5 fold higher. 

The highest peak in P5C concentration appears to occur at approximately 08:00 

and does not necessarily correspond strictly to a fed or fasted state (22). The fact 

that plasma concentrations of P5C may fluctuate considerably and that 

fluctuations of this nature are generally not observed with other amino acids has 

lead to the thought that P5C may function as a regulator of various cellular 

processes (22). At this time however there is no substantial evidence to implicate 

P5C as a regulator of cellular metabolism. 

1.1.2 A 1-pyrroline-5-carboxylate dehydrogenase 

The second step in the proline catabolic pathway is catalyzed by ~ 1-

pyrroline-5-carboxylate dehydrogenase. P5CDh catalyzes the NAD+ -dependent 

conversion of P5C to glutamate and has been purified from rat liver mitochondria 

(99). It has long been felt that P5CDh is located in both mitochondria and the 

cytosol (12). There is some controversy, however, regarding the presence of a 
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cytosolic enzyme (see chapter 3) (12). P5CDh is thought to be present in most 

mammalian tissues (82). 

P5CDh isolated from rat liver mitochondria is thought to be an a-2-dimer 

with subunits of 59,000 daltons while the human protein which is also thought to 

be an a2-dimer may be slightly larger at 70,600 daltons (23). The larger size of 

the human enzyme has been challenged by Small and Jones (99). Western blot 

analysis of tissue extracts obtained from various rat and human tissues illustrated 

that P5CDh from both species gave bands corresponding to a protein with a 

mass of 59,000 daltons. 

P5CDh is considered to be a non-reversible enzyme, as the results of in­

vitro assays were unable to show the production of P5C from glutamate (99). The 

purified rat enzyme has a Km of 0.09 mM and a Vmax of 9.3 nmol/min with P5C as 

a substrate but does exhibit the ability to catalyze reactions involving other 

semialdehydes although they occur at a much reduced rate (99). 

In 1996 two full length P5C dehydrogenase cDNAs were generated that 

differ only in the presence of a 1-kb intron located in the 3' untranslated region 

(37). Although the significance of the difference between the two cDNAs is not 

known at present, the longer transcript is more prevalent in most tissues. The 

gene for human P5CDh has been mapped to chromosome 1 and encodes a 

protein of 563 residues and also contains a putative N-terminal mitochondrial 

targeting sequence (37). 
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1.1.3 Glutamate dehydrogenase 

Glutamate dehydrogenase (GDH) (EC 1.4.1.2) is a mitochondrial matrix 

enzyme that catalyzes a reaction that produces a-ketoglutarate and free NH3 

from glutamate using NADH as a cofactor (8). GDH appears to be freely 

reversible in mammalian liver and is known to be allosterically inhibited by GTP 

and allosterically activated by ADP (45). GDH is an important enzyme in the 

continuing metabolism of proline since GDH connects glutamate produced from 

proline with the Kreb's cycle and also is an important early step in the production 

of glucose from proline. 

GDH in mammals is a homohexamer with the GLUD1 gene being located 

on chromosome 1 Oq (73). GDH is found in liver, brain, kidney and the pancreas 

(45). A second gene for GDH, GLUD2 has also been found on the X 

chromosome that codes for a protein with 95% homology with that of GLUD1 

(45). The tissue expression and function of GLUD2 has not been demonstrated. 

1.1.4 Other enzymes involved in PSC metabolism 

Proline oxidase and P5CDh are not the only enzymes that form and/or 

utilize P5C. Depending on the tissue and its requirements at any given time (eg. 

ATP production, gluconeogenesis, protein synthesis) there are other enzymes 

that may play important roles in P5C metabolism. 
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1.1.4.1 1!.1-pyrroline-5-carboxylate reductase 

/11-pyrroline-5-carboxylate reductase (P5C reductase) (EC 1.5.1.2) is a 

cytosolic enzyme that catalyzes the conversion of P5C to proline using NAD(P)H 

as a cofactor (65). P5C reductase is commonly found in all mammalian tissues 

and catalyzes the final step in proline synthesis. 

P5C reductase isolated from different tissues appears to exhibit quite 

different characteristics which has led to the prediction that there may be 

numerous isoenzymes of P5C reductase which display differing affinities for 

cofactors and are inhibited by different metabolites (65). For example, P5C 

reductase from human erythrocytes preferentially oxidizes NADPH exhibiting a 

10-20 fold higher affinity than for NADH. The enzyme also displays a 5-10 fold 

increase in affinity for P5C as a substrate when NADPH is used as a cofactor as 

compared to NADH (65). This does not, however, appear to be the case with the 

enzyme expressed in liver. The hepatic P5C reductase demonstrates a 

preference for NADH, exhibiting activity with NADPH that is one tenth that 

observed with NADH as a cofactor (35). 

1.1.4.2 P5C synthase 

P5C synthase is a vital enzyme in the endogenous synthesis of proline. 

Glutamate is converted to P5C by P5C synthase, an enzyme that in mammals 

exhibits highest activity in the small intestine. P5C synthase activity has also 

been detected in colon, thymus, pancreas and brain but not in liver (112). 

Proline has been implicated as a potential neurotransmitter in the CNS and as 
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such the activity of P5C synthase in brain may play a role in producing the low 

concentration of proline ( <5~-LM) observed in the extracellular fluid of the CNS 

(75). 

1.1.4.3 Ornithine aminotransferase 

Ornithine aminotransferase (OAT) (EC 2.6.1 .13) is a member of the family of 

pyridoxal phosphate-dependent transaminases and is located in the 

mitochondrial matrix (60). OAT catalyzes the transamination of ornithine with the 

production of glutamate and P5C, and is thought to be freely reversible (35). 

However McGiven et al., (60) showed that in intact mitochondria ornithine was 

not produced from P5C unless oxidative phosphorylation was inhibited by the 

inclusion of rotenone in the assay. The presence of rotenone would inhibit 

complete oxidation of proline, which in turn would lead to increased 

concentrations of P5C in the mitochondrion. The increased availability of P5C 

could then allow OAT to function in the direction of ornithine production. This 

would suggest that in liver, in vivo, OAT functions mainly in catabolism and not 

synthesis of ornithine in actively respiring mitochondria and that inhibition of 

proline oxidation at the level of P5CDh or beyond must occur to produce 

ornithine from proline. OAT is present in numerous tissues with the kidney, small 

intestine and liver all having high activity. Recent work in our lab also supports 

the fact that OAT from liver does not appear to be reversible as it was not 

possible to show the production of ornithine from P5C in isolated hepatocytes 

(87). 
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1.2 Regulation of proline catabolism 

Regulation of proline catabolism has been described in response to 

hormones, diet and various metabolites. In many cases however proline 

catabolism has been studied as a very small part of a larger study focusing on 

other amino acids or metabolites. The effect of this is that there is not a 

tremendous amount known about the regulation of proline catabolism in 

mammalian liver and what is known is often conflicted in published data. As an 

example of this, Kowaloff et al. , (48) reported that proline oxidase activity is 

increased in response to glucocorticoids while Kawabata et al. , (44) could not 

duplicate this result. In the present study we have focused our attention solely on 

the proline catabolic enzymes. 

1.2.1 Proline catabolism in response to diet 

Hormonal response to diet composition is thought to play an important role 

in determining the fate of ingested nutrients. Two hormones released from the 

islets of Langerhans of the mammalian pancreas, insulin and glucagon, appear 

to play a key role in regulating pathways of amino acid metabolism. The plasma 

concentration of the glucogenic hormone glucagon is known to be increased in 

response to starvation, diet and decreasing levels of glucose in plasma 

(51 ;53;71). It has been observed that the plasma concentration of glucagon can 

increase as much as 3-fold following four days on a high protein diet (78). 

The maintenance of nitrogen balance is an important function of tissues 

such as kidney, muscle, intestine and liver with the latter playing by far the 
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largest role in nitrogen homeostasis. A diet high in protein increases the demand 

on enzymes involved in the catabolism of amino acids and in order to remain in 

nitrogen balance it is necessary to dispose of the increased quantity of nitrogen. 

It has been observed in man that the ingestion of a normal protein load of 

approximately 100 g per day would require an amount of oxygen in excess of 

what the liver is known to consume on a daily basis in order to completely oxidize 

the protein content in the diet (11 ). Given this fact it is obvious then that the liver 

must utilize the ingested amino acids for other purposes such as 

gluconeogenesis, ketogenesis, protein synthesis and production of other nitrogen 

containing macromolecules. Regulation of amino acid catabolic pathways is 

therefore likely to occur in order to shuttle carbon skeletons away from pathways 

that lead to complete oxidation. 

The catabolism of amino acids produces the toxic weak acid NH4 + that is 

incorporated into the non-toxic forms of urea and glutamine by the liver for 

disposal (2). Urea and glutamine can be exported by the liver and later removed 

from circulation by the kidneys with urea being directly excreted in urine while 

NH3 is added to urine following cleavage of glutamine by renal glutaminase (32). 

The production of urea is known to increase in response to a high protein diet as 

are the activities of various enzymes involved in amino acid catabolism (36; 111 ). 

An increase in the catabolism of proline in response to a diet high in 

protein could be expected to increase the rate of urea synthesis by supplying 

glutamate for the production of N-acetylglutamate which is a known activator of 

hepatic glutaminase (1 06). Proline catabolism as previously mentioned could 
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also provide glutamate for the production of glutamine and aid in the scavenger 

pathway of NH4 + detoxification. 

It has been shown that the activities of PO (44) and P5CDh (57) are 

increased in rat liver mitochondria in response to a diet high in protein. However, 

the protein content of the diets employed in these studies was not a true 

reflection of physiologically relevant situations (60% and 70% respectively) . Our 

goal was therefore to investigate the role of dietary protein in the catabolism of 

proline under conditions that were physiologically attainable. 

1.2.2 Proline metabolism in response to glucagon 

Hormonal regulation of amino acid catabolism is a common theme in the 

mammalian liver. Insulin, glucagon, glucocorticoids, catecholamines and thyroid 

hormone have all been reported to influence amino acid catabolism (49;54; 101 ). 

Specifically the regulatory effects of glucagon on amino acid metabolism are well 

known. For example, in liver it can activate the glycine cleavage system, 

stimulate amino acid transport, and induce the five urea-cycle enzymes 

(29;55; 1 00). It has also been observed that patients with a glucagonoma have 

diminished plasma amino acid levels that appear to be related to increased 

clearance by the liver (4). Given the effects of glucagon on amino acid 

metabolism, it appears likely that proline catabolism could be similarly regulated, 

since it is an important intermediate in various pathways as previously discussed. 

The response of the proline catabolic enzymes to long-term exposure to 

glucagon has not been studied to date. However in experiments with isolated 
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from glutamate using NADH as a cofactor (8). GDH appears to be freely 

reversible in mammalian liver and is known to be allosterically inhibited by GTP 

and allosterically activated by ADP (45). GDH is an important enzyme in the 

continuing metabolism of proline since GDH connects glutamate produced from 

proline with the Kreb's cycle and also is an important early step in the production 

of glucose from proline. 

GDH in mammals is a homohexamer with the GLUD1 gene being located 

on chromosome 1 Oq (73). GDH is found in liver, brain, kidney and the pancreas 

(45). A second gene for GDH, GLUD2 has also been found on the X 

chromosome that codes for a protein with 95% homology with that of GLUD1 

(45). The tissue expression and function of GLUD2 has not been demonstrated. 

1.1.4 Other enzymes involved in PSC metabolism 

Proline oxidase and P5CDh are not the only enzymes that form and/or 

utilize P5C. Depending on the tissue and its requirements at any given time ( eg. 

ATP production, gluconeogenesis, protein synthesis) there are other enzymes 

that may play important roles in P5C metabolism. 

1.1.4.1 /11-pyrroline-5-carboxylate reductase 

111-pyrroline-5-carboxylate reductase (P5C reductase) (EC 1.5.1.2) is a 

cytosolic enzyme that catalyzes the conversion of P5C to proline using NAD(P)H 
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as a cofactor (65). P5C reductase is commonly found in all mammalian tissues 

and catalyzes the final step in proline synthesis. 

P5C reductase isolated from different tissues appears to exhibit quite 

different characteristics which has led to the prediction that there may be 

numerous isoenzymes of P5C reductase which display differing affinities for 

cofactors and are inhibited by different metabolites (65). For example, P5C 

reductase from human erythrocytes preferentially oxidizes NADPH exhibiting a 

10-20 fold higher affinity than for NADH. The enzyme also displays a 5-10 fold 

increase in affinity for P5C as a substrate when NADPH is used as a cofactor as 

compared to NADH (65). This does not, however, appear to be the case with the 

enzyme expressed in liver. The hepatic P5C reductase demonstrates a 

preference for NADH, exhibiting activity with NADPH that is one tenth that 

observed with NADH as a cofactor (35). 

1.1.4.2 P5C synthase 

P5C synthase is a vital enzyme in the endogenous synthesis of proline. 

Glutamate is converted to P5C by P5C synthase, an enzyme that in mammals 

exhibits highest activity in the small intestine. P5C synthase activity has also 

been detected in colon, thymus, pancreas and brain but not in liver (112). 

Proline has been implicated as a potential neurotransmitter in the CNS and as 

such the activity of P5C synthase in brain may play a role in producing the low 

concentration of proline (<5~M) observed in the extracellular fluid of the CNS 

(75). 
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1.1.4.3 Ornithine aminotransferase 

Ornithine aminotransferase (OAT) (EC 2.6.1 .13) is a member of the family of 

pyridoxal phosphate-dependent transaminases and is located in the 

mitochondrial matrix (60). OAT catalyzes the transamination of ornithine with the 

production of glutamate and P5C, and is thought to be freely reversible (35). 

However McGiven et al., (60) showed that in intact mitochondria ornithine was 

not produced from P5C unless oxidative phosphorylation was inhibited by the 

inclusion of rotenone in the assay. The presence of rotenone would inhibit 

complete oxidation of proline, which in turn would lead to increased 

concentrations of P5C in the mitochondrion. The increased availability of P5C 

could then allow OAT to function in the direction of ornithine production. This 

would suggest that in liver, in vivo, OAT functions mainly in catabolism and not 

synthesis of ornithine in actively respiring mitochondria and that inhibition of 

proline oxidation at the level of P5CDh or beyond must occur to produce 

ornithine from proline. OAT is present in numerous tissues with the kidney, small 

intestine and liver all having high activity. Recent work in our lab also supports 

the fact that OAT from liver does not appear to be reversible as it was not 

possible to show the production of ornithine from P5C in isolated hepatocytes 

(87). 

1.2 Regulation of proline catabolism 

Regulation of proline catabolism has been described in response to 

hormones, diet and various metabolites. In many cases however proline 
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catabolism has been studied as a very small part of a larger study focusing on 

other amino acids or metabolites. The effect of this is that there is not a 

tremendous amount known about the regulation of proline catabolism in 

mammalian liver and what is known is often conflicted in published data. As an 

example of this, Kowaloff et al. , (48) reported that proline oxidase activity is 

increased in response to glucocorticoids while Kawabata et al. , (44) could not 

duplicate this result. In the present study we have focused our attention solely on 

the proline catabolic enzymes. 

1.2.1 Proline catabolism in response to diet 

Hormonal response to diet composition is thought to play an important role 

in determining the fate of ingested nutrients. Two hormones released from the 

islets of Langerhans of the mammalian pancreas, insulin and glucagon, appear 

to play a key role in regulating pathways of amino acid metabolism. The plasma 

concentration of the glucogenic hormone glucagon is known to be increased in 

response to starvation, diet and decreasing levels of glucose in plasma 

(51 ;53;71 ). It has been observed that the plasma concentration of glucagon can 

increase as much as 3-fold following four days on a high protein diet (78). 

The maintenance of nitrogen balance is an important function of tissues 

such as kidney, muscle, intestine and liver with the latter playing by far the 

largest role in nitrogen homeostasis. A diet high in protein increases the demand 

on enzymes involved in the catabolism of amino acids and in order to remain in 

nitrogen balance it is necessary to dispose of the increased quantity of nitrogen. 
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It has been observed in man that the ingestion of a normal protein load of 

approximately 100 g per day would require an amount of oxygen in excess of 

what the liver is known to consume on a daily basis in order to completely oxidize 

the protein content in the diet (11 ). Given this fact it is obvious then that the liver 

must utilize the ingested amino acids for other purposes such as 

gluconeogenesis, ketogenesis, protein synthesis and production of other nitrogen 

containing macromolecules. Regulation of amino acid catabolic pathways is 

therefore likely to occur in order to shuttle carbon skeletons away from pathways 

that lead to complete oxidation. 

The catabolism of amino acids produces the toxic weak acid NH/ that is 

incorporated into the non-toxic forms of urea and glutamine by the liver for 

disposal (2). Urea and glutamine can be exported by the liver and later removed 

from circulation by the kidneys with urea being directly excreted in urine while 

NH3 is added to urine following cleavage of glutamine by renal glutaminase (32). 

The production of urea is known to increase in response to a high protein diet as 

are the activities of various enzymes involved in amino acid catabolism (36;111 ). 

An increase in the catabolism of proline in response to a diet high in 

protein could be expected to increase the rate of urea synthesis by supplying 

glutamate for the production of N-acetylglutamate which is a known activator of 

hepatic glutaminase (1 06). Proline catabolism as previously mentioned could 

also provide glutamate for the production of glutamine and aid in the scavenger 

pathway of NH4 +detoxification. 
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It has been shown that the activities of PO (44) and P5CDh (57) are 

increased in rat liver mitochondria in response to a diet high in protein. However, 

the protein content of the diets employed in these studies was not a true 

reflection of physiologically relevant situations (60% and 70% respectively). Our 

goal was therefore to investigate the role of dietary protein in the catabolism of 

proline under conditions that were physiologically attainable. 

1.2.2 Proline metabolism in response to glucagon 

Hormonal regulation of amino acid catabolism is a common theme in the 

mammalian liver. Insulin, glucagon, glucocorticoids, catecholamines and thyroid 

hormone have all been reported to influence amino acid catabolism (49;54;1 01 ). 

Specifically the regulatory effects of glucagon on amino acid metabolism are well 

known. For example, in liver it can activate the glycine cleavage system, 

stimulate amino acid transport, and induce the five urea-cycle enzymes 

(29;55; 1 00). It has also been observed that patients with a glucagonoma have 

diminished plasma amino acid levels that appear to be related to increased 

clearance by the liver (4). Given the effects of glucagon on amino acid 

metabolism, it appears likely that proline catabolism could be similarly regulated, 

since it is an important intermediate in various pathways as previously discussed. 

The response of the proline catabolic enzymes to long-term exposure to 

glucagon has not been studied to date. However in experiments with isolated 

hepatocytes incubated for 30 minutes in the presence of glucagon (300 nm) it 

has been shown that glucagon increases gluconeogenesis from proline by 
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approximately 30% (104). The increase in catabolism of proline in response to 

glucagon is felt to be due to a cAMP mediated effect and while the duration of the 

effect was not determined beyond 30 minutes, it is believed to be of relatively 

short duration (1 04). 

The increase in proline catabolism observed via short term incubation of 

hepatocytes in the presence of glucagon is not a unique finding as results of this 

nature have been reported for other amino acids such as threonine, glycine, and 

arginine (36;42;77). It is worthy to note that acute regulation of amino acid 

catabolism by glucagon is not simply a characteristic of amino acid catabolism in 

general since ornithine catabolism does not exhibit such an increase in the 

presence of glucagon in perfused liver (77). 

In addition to acute modification of enzyme activities, exposure to 

glucagon for longer periods of time is known to induce various enzymes related 

to amino acid catabolism. For example enzymes of the urea cycle are known to 

be induced by long-term glucagon treatment (111 ). In the case of the urea cycle 

enzymes, increased transcription of mRNA for arginase and carbamyl phosphate 

synthase has been observed (111 ). An increase in the flux through the 

transsulfuration pathway in liver has also been reported in response to long-term 

treatment with glucagon (40). 

1.3 Possible roles for proline catabolism (old and new) 
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The production of glutamate from proline following the reactions catalyzed 

by PO and P5CDh provides a number of possibilities as to the final catabolic 

product of proline. With regard to catabolism, proline is a very versatile amino 

acid which given the correct conditions supplies needed substrates for synthesis 

of glucose, glutamate, glutamine, ATP and proteins. Proline as a substrate for 

the production of reactive oxygen species (ROS) has also been implicated as a 

mediator of apoptosis (18;58;59). 

The catabolism of proline could supply glutamate for glutamine synthesis 

and in so doing provide an auxiliary source of glutamine which is considered to 

be a conditionally essential amino acid during trauma, major surgery or during 

other times of stress (11 0). Glutamine, a common extracellular amino acid 

reaching a plasma concentration of 0. 7 mM is also utilized extensively by cells of 

the immune system and the intestine (7 4 ). Hepatic production of glutamine by 

glutamine synthase (GS) could occur utilizing glutamate obtained from the 

oxidation of proline. The glutamine produced in this manner could subsequently 

be exported to the circulation and taken up by lymphocytes. It is known that the 

enzymes required occur in rat liver and O'Sullivan et. al. , (76) demonstrated that 

P5CDh must occur in the same intrahepatic zone as GS. 

Glutamine production has also been described as a potential method to 

decrease the amount of toxic NH3 released from the liver as a by-product of 

amino acid catabolism. In this manner glutamine synthesis functions in a so­

called scavenger fashion to remove endogenously produced NH3 + (32). 
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Glutamate supplied from proline could also be oxidized via Kreb's cycle 

following conversion to a-ketoglutarate by GDH, or be converted to glucose via 

the gluconeogenic pathway starting once again with conversion to a­

ketoglutarate by GDH and subsequent production of oxaloacetate via Kreb's 

cycle enzymes. 

As previously mentioned proline has been implicated in the induction of 

apoptosis in colorectal cancer cells. Maxwell and Davis (58) have shown that 

induction of proline oxidase occurs in response to the tumour suppressor protein 

p53. The increased activity of PO in response to p53 is postulated to play a role 

in pathways that are designed to prevent the generation of mutations and 

eventually tumours. 

The tumour suppressor protein p53 functions in various manners, one of 

which is to arrest the cell cycle at G1 in response to DNA damage (59). The result 

of halting the cell cycle is to allow the DNA damage to be repaired prior to 

replication. The induction of proline oxidase is felt to possibly play two roles, one 

of which may aid in repair of DNA while the other is implicated in the induction of 

apoptosis should DNA repair fail. 

1.3.1 Proline and DNA repair 

The pathway of proline induction that may aid in DNA repair is based on 

an intracellular proline/P5C cycle between mitochondria and cytosol that 

generates NADP+ in the cytosol (figure 1.2) (80). The increased concentration of 

NADP+ in the cytosol is proposed to lead to an increase in the oxidation of 
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glucose through the pentose phosphate pathway and eventually increased 

production of nucleotides. NADP+ is a cofactor required by the first enzyme of the 

pentose phosphate pathway, glucose-6-phosphate dehydrogenase and NADPH 

is known to be an inhibitor of the enzyme (21 ). The increased production of 

nucleotides provides needed substrates for DNA repair. Increased activity of the 

pentose phosphate pathway has been observed in response to P5C in 

erythrocytes and fibroblasts and although it has not been demonstrated in liver 

the complement of enzymes required is present (81 ;114). 

The proposed proline/P5C cycle transfers redox potential into 

mitochondria in the form of proline that is then oxidized by PO with the transfer of 

electrons into the electron transport chain and the generation of ATP (84 ). The 

molecule of P5C formed by PO is then transported into the cytosol and reduced 

to proline by P5C reductase with the production of NADP+. Induction of PO and 

increased production of nucleotides may play a role in DNA repair but it is felt 

that the potential contribution of PO to apoptosis is of greater importance since 

the availability of nucleotides and ATP have been implicated in the expression 

and activation of caspases that are required for apoptosis (59). 

1.3.2 Proline and apoptosis 

The role of PO in apoptosis has been investigated in bladder cell 

carcinomas, renal carcinomas, non-small cell lung carcinoma and colorectal 

carcinomas. Although studies have not been conducted with hepatoma cell lines, 
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it is possible that some of the findings described may apply to cancers of the liver 

(18;58;59). 

Initial investigations in cells that are susceptible or resistant to p53-

mediated apoptosis led to the observation that induction of PO occurs in cells 

susceptible to p53-mediated apoptosis (58). The generation of ROS via PO is felt 

to occur by disruption of the electron transport chain and an interruption of the 

normal flow of electrons generated by the oxidation of proline. PO donates 

electrons to cytochrome c and one of the characteristics of apoptosis is the 

mitochondrial membrane permeability transition that results in the release of 

cytochrome c into the cytosol (18). The release of cytochrome c into the cytosol 

could disrupt the flow of electrons from proline oxidation and lead to the 

production of ROS. 
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Figure 1.2: Proposed proline/P5C cycle. 

Proline enters the mitochondrion and is oxidized by proline oxidase to P5C which 
leaves the mitochondrion. Cytoplasmic P5C is then reduced by P5C reductase to 
proline with the concomitant oxidation of NADPH. Proline formed in the cytosol 
can then re-enter the mitochondrion to start a new cycle. The increased ratio of 
NADP+/NADPH stimulates flux through the pentose phosphate pathway, which in 
turn increases synthesis of ribose-5-phosphate and thus phosphoribosyl 
pyrophosphate (81 ). 
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The actual role of PO in inducing apoptosis in vivo has not been 

determined. However mitochondrially derived ROS do appear to play a 

substantial role in the pathway of apoptosis (94) and given the fact that PO under 

the correct conditions may produce ROS it is not inconceivable that p53 induction 

of PO may have a role in this pathway. To exactly what extent PO contributes to 

apoptosis if at all is yet to be determined. 

1.4 Proline transport 

1.4.1 Transport across the plasma membrane 

Transport across the plasma membrane is a vital step in the catabolism of 

amino acids. Given the correct circumstances this process could exert 

considerable control over the rate of amino acid catabolism. For example, 

transport of alanine, a major gluconeogenic amino acid, into hepatocytes is 

thought to be the rate-controlling step for the catabolism of this amino acid (97). 

It has also been shown that the transport of glutamine across the plasma 

membrane of hepatocytes may be an important factor in determining the rate of 

glutamine breakdown and synthesis (33). Given the fact that the liver is a major 

organ of amino acid metabolism the importance of amino acid transport cannot 

be discounted. 

System A is almost ubiquitous in regard to distribution and transports 

small neutral amino acids showing a preference for alanine, serine and glutamine 

(62). System A is characterized by its ability to transport N-methyl amino acid 

derivatives and the non-metabolized alanine analogue N-methylamino-a-

26 



isobutyric acid (meAl B), tolerance of substitution of Li+ for Na+ (depending on the 

isoform), trans-inhibition and sensitivity to pH (62). The stoichiometry of the 

reaction catalyzed by the system A family of transporters is 1 Na+:1 amino acid 

(31 ). 

Proline transport has classically been considered to occur by the transport 

system known as system A (46). In mammals system A is a Na+ dependent co­

transport system and is found in numerous tissues including liver (62). The 

family of amino acid transporters previously known as system A is now known to 

consist of at least three transporters, ATA1, ATA2, and ATA3. The members of 

this family of transporters have been cloned and although they are classified 

together they exhibit differing characteristics in regard to specificity, and tissue 

distribution (9). ATA2 and ATA3 are present in mammalian liver and while both 

transport the usual substrates reported for system A transporters, AT A3 also 

transports arginine and, in fact, may preferentially transport arginine (31 ). 

System ATA2 is thought to be the major inducible transporter of small 

neutral amino acids in the mammalian liver ( 46). System A activity is known to 

be induced in response to amino acid starvation (adaptive response), various 

hormones (glucagon, insulin and growth hormone) and hyperosmotic stress 

(1 ;5). 

1.4.2 Mitochondrial transport 

Transport of proline into the mitochondrion is an obligate step in the 

oxidation of proline and as such is also a possible point of control. The transport 
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of amino acids across mitochondrial membranes has not been studied in depth 

and does not appear to be considered as an important step in controlling amino 

acid metabolism. The outer mitochondrial membrane is not considered to be a 

barrier to amino acid transport due to the presence of the protein complex porin 

that provides channels for the free movement of molecules (1 06). The inner 

mitochondrial membrane does, however, provide a barrier to amino acid 

movements and thus the transport of various amino acids into the mitochondrial 

matrix is a vital component of hepatic metabolism. The presence of 

mitochondrial transport proteins or carriers for some amino acids has been 

known for some time as is the case for biologically important molecules such as 

ADP/ATP and carnitine/acylcarnitine (69). 

It is not known at the present time exactly what role the transport of proline 

across the inner mitochondrial membrane may play in the regulation of proline 

catabolism. However transport of amino acids into the mitochondrial matrix has 

been suggested as a potential rate-limiting step for catabolism. McGiven et al. , 

(60) have suggested that the transport of ornithine across the inner mitochondrial 

membrane is the rate-limiting step in the catabolism of ornithine and/or urea 

synthesis. The data supporting this conclusion include the observation that in 

intact mitochondria Km and Vmax values are very similar for both transport and 

ornithine catabolism while in solubilized mitochondria the V max for ornithine 

aminotransferase is considerably higher (60). 

In regard to proline transport across the inner mitochondrial membrane it 

was believed for quite some time that proline simply diffused into the 
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mitochondrial matrix (28). However the findings by Meyer (66) that proline 

transport into mitochondria is stereospecific, subject to inhibition and able to 

create a concentration gradient of proline which favours the intramitochondrial 

accumulation of proline would certainly seem to disprove the thought that proline 

simply diffuses into liver mitochondria. The nature and identity of the transporter 

responsible for proline entry into mitochondria has not be determined to date. 

1.4.3 Regulation of proline transport 

System A (ATA2) is often termed the major inducible amino acid 

transporter of eukaryotes (46). Numerous investigators have described increases 

in system A activity in response to stimuli such as amino acid starvation and 

hormones. At present it appears as though only ATA2 is subject to regulation and 

that the other two members of the system A transport family may function in a 

strictly constitutive manner (91 ). 

System ATA2 is subject to control by glucagon, insulin, and 

glucocorticoids (46). Data on glucocorticoid control of system ATA2 is not 

conclusive but appear to point to a permissive role for glucocorticoids as has 

been observed in other situations when glucocorticoids are combined with either 

insulin or glucagon (96). 

In regard to system ATA2 induction by glucagon LeCam and Freychet (52) 

observed that half maximal stimulation is observed at a concentration of 1.5 nM 

and appears to occur via a cAMP-dependent mechanism as cAMP is able to 

invoke the same effect as glucagon itself (46;52). The effect of glucagon requires 
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approximately sixty minutes to occur and is detected even if the hormone is 

removed shortly after exposure to isolated hepatocytes which has been 

interpreted to mean that protein synthesis is occurring (46;52). A similar result 

was reported by Edmondson and Lumeng (20). In addition to the supposed 

protein synthesis dependent increase in activity of system A, it was also 

observed that there was a small (20% compared to control) increase in activity 

during the first sixty minutes which was cycloheximide insensitive (20). 

Further evidence for increased synthesis of ATA2 in response to glucagon 

is provided by Barber et al, (5) who used tunicamycin, an inhibitor of asparagine­

linked glycoprotein synthesis to demonstrate that by blocking protein synthesis 

there is no increase in system A activity in response to glucagon following that 

observed in the first sixty minutes. It has also been proposed that a regulatory 

protein may be involved in system ATA2 induction in response to glucagon and 

other hormones (5). The existence of a regulatory protein has not been 

demonstrated to date. 

1.5 Disorders of proline catabolism 

The importance of proline catabolism is readily illustrated by considering 

disorders of proline catabolism that result in increased plasma concentrations of 

proline. Hyperprolinemia has been associated with renal disease, seizures and 

mental retardation. Type I hyperprolinemia is associated with decreased or 

absent proline oxidase activity while type II hyperprolinemia is associated with 

decreased or absent P5CDh activity (82). Type I and type II hyperprolinemia are 
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both autosomal recessive diseases and are due to mutations/deletions at 

different loci (82). 

Proline has been implicated as a possible neurotransmitter in the CNS and 

has been shown to act as an excitatory neurotransmitter in rat spinal neurons (3). 

With this in mind, Nadler et al. (72) demonstrated that proline is toxic towards rat 

hippocampal neurons and have hypothesized that this may be the reason for 

neurological and cognitive deficits seen with hyperprolinemia. The concentration 

of proline present in the extracellular fluid of the CNS in individuals afflicted with 

hyperprolinemia is markedly increased reaching levels that are well above the 

normal level of< 5 1-lM. 

1.5.1 Type I hyperprolinemia 

Type I hyperprolinemia has generally been regarded as a benign disease 

with a possible relation to renal disease and relatively little or no neuropathy but 

as of this time there is no direct correlation between the observed increase in 

plasma proline and renal dysfunction. There does, however, appear to be a 

degree of variability with respect to the phenotype displayed by affected 

individuals as a report by Humbertclaude et al., (38) reported a case of type I 

hyperprolinemia in which the individual displayed severe neurologic dysfunction 

with no impairment of renal function. 
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1.5.2 Type II hyperprolinemia 

Type II hyperprolinemia as previously mentioned is a disease caused by a 

deficiency in P5CDh and is characterized by increased incidences of seizures, 

often in childhood, and mental retardation (24). The phenotype of this disease is 

an increase in the plasma and urine concentrations of both proline and P5C. 

Levels of proline in plasma of affected individuals have been reported as high as 

2.3 mM (normal <0.30 mM) while urinary concentrations of 40.0 mM (normal <0.1 

mM) have been observed (24). The plasma level of proline in individuals with 

type I hyperprolinemia rarely reaches 2.0 mM while in type II hyperprolinemia the 

plasma level of proline is virtually never below 1.0 mM (95). The higher plasma 

levels of proline and the accumulation and excretion of P5C are indicators of type 

II hyperprolinemia. 

Geraghty et al., (24) have determined that there are various mutations that 

can cause type II hyperprolinemia ranging from deletions of a single base pair 

that causes a frameshift mutation and a non-functional protein, to what appears 

to be a neutral mutation in the putative mitochondrial targeting sequence. In 

regard to the neutral mutation in the gene for P5CDh it is not known how this 

relates to a deficiency in functional protein, but it would appear the mutation 

would lead to a decrease in functional protein in the mitochondrial matrix. Type II 

hyperprolinemia has an estimated frequency of 1 in 200,000 which translates to a 

carrier frequency of 1 in 223 (24 ). 
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1.6 Problem of investigation 

The first step in understanding the factors that influence the catabolism of 

any substance is to determine the location of the enzymes metabolizing that 

substance. In that regard our first task was to determine the location of P5CDh. 

The subcellular location of this enzyme has not been definitively shown. In order 

to perform a true subcellular location of an enzyme a valid assay for the enzyme 

in question is required. Therefore we first had to develop an assay that would 

allow us to assay the activity of P5CDh in rat liver so we could subsequently 

determine the subcellular location of P5CDh. 

In order to gain an understanding of the changes that may occur in proline 

catabolism in liver we have studied enzymes involved in proline degradation 

under varying conditions. The two major enzymes involved in proline catabolism 

in the mammalian liver, PO and P5CDh, catalyze sequential reactions that result 

in the production of glutamate from proline. Glutamate produced from proline can 

subsequently be combined with ammonia to form glutamine via glutamine 

synthetase (GS), enter Kreb's cycle as a-ketoglutarate via glutamate 

dehydrogenase (GDH), or supply carbons for glucose production via 

gluconeogenesis. Given that proline is one of the most abundant free amino 

acids in plasma (90) and that proline degradation can supply substrates for a 

diverse range of products, it is probable that regulation of the proline catabolic 

enzymes occurs in response to a variety of metabolic signals. Specifically it has 

been observed that significant changes in the catabolism and/or transport of 
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amino acids can occur in response to changes in the level of ingested protein 

(53) and in response to the catabolic hormone glucagon (4;56). It has also been 

observed that the plasma level of glucagon is increased in response to a diet 

high in protein (4). Given the implication of proline in the induction of apoptosis 

and the diversity that proline exhibits in regard to the formation of metabolic 

products, the regulation of the proline catabolic enzymes is of increasing 

importance. Therefore we have studied the response of proline catabolism in 

liver to a diet containing excess protein and injections of glucagon. 
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Chapter 2: Materials and methods 

2.1 Materials 

All chemicals were of the highest quality available and were purchased 

from Sigma (Oakville, ON, Canada), except where noted in the text. 

2.2 Animals 

Male Sprague-Dawley rats (supplied by the University's breeding colony) 

weighing between 200-300 grams were used in all studies and were fed 

laboratory chow (Lab diet, 5POO Prolab RMH 3000) ad libitum except when 

protein was varied , and had free access to water. The rats were exposed to a 12-

hour light: 12-hour dark cycle beginning with lights on at 8 am. All studies were 

conducted 2 hours following termination of the dark cycle. All procedures were 

approved by Memorial University's Institutional Animal Care Committee and are 

in accordance with the principles and guidelines of the Canadian Council on 

Animal Care. 

2.3 High protein diet 

Male Sprague-Dawley rats weighing 21 0-285g were housed separately in 

polycarbonate cages and fed a modified AIN-93G diet (89) that contained 15% 

(control) or 45% (high) protein for 7 days. The modified diet conformed to AIN-

93G specifications for energy, fat and micronutrients but varied in the amount of 

protein (casein) (table 2.1 ). Energy density was kept equal to that in the original 

AIN-93G diet by substituting protein (casein) for cornstarch, sucrose and 
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Table 2.1: Contents of diets 

45% protein 15% protein 
(g/1 OOOg) (g/1 OOOg) 

Casein 450 150 

Corn starch 238 429 

dextrinized-corn starch 79 143 

Sucrose 60 108 

Soya bean oil 70 70 

Alpha cell (AIN) 50 50 

Mineral mix (AIN) 35 35 

Vitamin mix 10 10 

Cysteine 3 3 

Choline Bitartrate 2.5 2.5 

T-butyl hydroquinone 0.014 0.01 4 
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dextrinized cornstarch (removed in proportion to their concentration in the original 

formulation). All animals were weighed daily at 8:00 AM. The amount of the diet 

that each animal consumed was also tracked by daily weighing of the feeders 

assigned to each animal. Animals were sacrificed at 10:00 AM on the last day of 

the study. 

Using data obtained from our study in regard to food intake (chapter 4) 

and data obtained from ICN Biomedicals (Aurora, Ohio) with respect the amino 

acid composition of the casein (Cat# 960128) that we used in our study it was 

possible to determine the approximate intake of proline per day by the study 

animals (table 2.2). As well using data obtained for the food intake of control 

animals (table 4.1) fed a standard chow diet and data obtained from Lab diet 

(Richmond, IN) regarding the amino acid content of the Prolab RMH 3000 rodent 

diet we also calculated the intake of proline in animals consuming a regular chow 

diet (table 2.2). 

2.4 Glucagon treatment 

Glucagon treatment followed the procedure of Jacobs et al. , (40). 

Glucagon (Eli Lilly Canada Inc.) (4mg/kg body weight/24 hrs, subcutaneously) 

was administered in three injections at eight-hour intervals for two days while 

control animals received the vehicle (diluting solution provided by Eli Lilly Canada 

Inc.). All animals were fasted overnight on the last day of the study. Two hours 

following the last injection, rats were anesthetized using sodium pentobarbital 

(6.5mg/100g body wt.). Following a midline abdominal incision, a blood sample 
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Table 2.2: Content and amount consumed of proline, arginine and glutamate in 
standard rat chow and modified AIN 93G diets. 

Standard 
chow 

Modified 
45% diet 

Modified 
15% diet 

Content 
(g/1 00 g of diet) 

Consumption 
(g/day) 

Proline Arginine Glutamate Proline Arginine Glutamate 

1.73 1.37 5.33 0.45 0.36 1.47 

4.95 1.67 9.50 1.20 0.38 2.29 

1.65 0.56 3.17 0.42 0.14 0.84 
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was collected from the abdominal aorta. The liver was then rapidly removed, a 

portion freeze-clamped at -70°C while the remaining tissue was used to isolate 

mitochondria. Heparinized tubes containing the blood samples were placed on 

ice until plasma was separated by centrifugation in a clinical centrifuge (3700xg 

for 15min). The plasma was stored at -70°C until required. 

2.5 Subcellular fractionation of liver 

Rats were anesthetized using 6.5 mg of sodium pentobarbital per 100 gram. 

Following a midline incision the liver was quickly removed, weighed, and placed 

in ice-cold homogenization buffer, consisting of 5 mM Hepes (pH 7.4), 1 mM 

EGTA, and 0.33 M sucrose to a final volume of 5 ml of buffer per gram of liver. 

The liver was finely minced with scissors, washed three times in ice-cold 

homogenization buffer and homogenized at approximately 500 rev/min by 5-6 

strokes of a motor driven loose fitting teflon pestle (clearance 0.13-0.18 mm). 

The homogenate was diluted to 10 ml per gram of liver with ice-cold 

homogenization buffer and filtered through two layers of cheesecloth. Following 

filtration 1 Oml of the homogenate were removed and labelled as total 

homogenate (TH) while the remaining filtrate was fractionated by differential 

centrifugation into a nuclear fraction (N), a heavy mitochondrial fraction (M1 ), a 

light mitochondrial fraction (M2), a lysosomal fraction (L), a microsomal fraction 

(P), and a cytosolic fraction (S). The method proposed by DeDuve et al. (17) 

was followed with the following modifications. All procedures were completed at 

4°C. 
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The nuclear fraction was obtained by centrifugation of the homogenate at 

384xg for 2 minutes. The resulting pellet (intermediate) was resuspended (by 

manual shaking) in 20.0 ml of ice-cold homogenization buffer and centrifuged 

again at 384xg for 2 minutes. The final nuclear pellet was resuspended in 10.0 ml 

of ice-cold homogenization buffer and the supernatant pooled with the previous 

supernatant, to give the post nuclear supernatant. The heavy mitochondrial 

fraction was isolated employing two centrifugations of the post nuclear 

supernatant at 1 OOOxg for 10 minutes. The same procedure for resuspension of 

the intermediate and final pellets was employed as for the nuclear fraction. The 

resultant supernatants were again pooled. The light mitochondrial fraction was 

obtained by an initial centrifugation of the post heavy mitochondrial supernatant 

at 3500xg for 10 minutes, followed by resuspension of the intermediate pellet as 

above and a second centrifugation at 3000xg for 1 0 minutes. The lysosomal and 

microsomal fractions were obtained by single centrifugations of 9090xg for 20 

minutes and 1 OO,OOOxg for 60 minutes respectively and resuspension of the 

resulting pellets as before. The supernatant obtained following the centrifugation 

at 1 OO,OOOxg represents the cytosolic fraction. Exact volumes were noted for all 

fractions and they were packaged in 1.0 ml aliquots and stored at -70°C until 

analysis. 

2.6 Preparation of mitochondria 

Rats were anesthetized using 6.5 mg of sodium pentobarbital per 100 

grams. Following a midline incision the liver was quickly removed, weighed, and 
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placed in ice-cold homogenization buffer, consisting of 5 mM Hepes at pH 7.4, 

1.0 mM EGTA, 0.225 M mannitol and 0.075 M Sucrose, to a final volume of 5.0 

ml per gram of liver. The liver was finely minced with scissors, then 

homogenized at approximately 500 revs/min by 5-6 strokes of a motor driven 

loose fitting teflon pestle (clearance 0.13-0.18 mm). The homogenate was filtered 

through two layers of cheese-cloth and mitochondria were isolated according to 

the method of Jois et al., (42) with minor modifications. Briefly, the homogenate 

obtained above was centrifuged at 2250xg for 10 minutes and the resulting pellet 

was discarded (nuclei/cellular debris) while the supernatant was transferred to 

clean 50 ml centrifugation tubes and centrifuged at 8200xg for 10 minutes. The 

pellet obtained was resuspended in homogenization medium and the 

centrifugation and resuspension steps repeated three times. The final pellet was 

resuspended in a small volume of homogenization medium (1.0-1.5 ml) which 

routinely resulted in a mitochondrial protein concentration of 60-80 mg/ml as 

determined via the Biuret method (25). Mitochondrial integrity was assessed via 

determination of respiratory control ratios using a Clark oxygen electrode with 

1 OmM a-ketoglutarate as the substrate according to (42) and was always greater 

than 4. Samples of mitochondria were stored at -70°C until required for 

measuring enzyme activity or were used freshly prepared for oxidation of proline. 

2.7 Proline oxidation by isolated mitochondria 

Aliquots of the freshly prepared mitochondria were added to 25ml 

Erlenmeyer flasks to give a final concentration of 0.25 mg/ml of mitochondrial 
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protein and were pre-incubated for 15 minutes in a shaking water bath at 25°C in 

a buffer solution consisting of 100 mM potassium chloride, 50 mM mannitol, 20 

mM sucrose, 10 mM potassium phosphate, 0.1 mM EGT A, 1.0 mM magnesium 

chloride, 1.0 mM ADP, 25 mM Hepes at pH 7.4 (final volume 3.0 ml). Following 

the 15-minute pre-incubation 20 ~-tl of the appropriate concentration of [U]-14C­

proline 1 (286.0 mCi/mmol) (Perkin Elmer Life Sciences Inc. Boston, MA) was 

added to the flasks. Each flask was then fitted with a centre well containing a 

small piece of fluted filter paper and 0.30 ml of NCS tissue solubilizer to trap 

14C0 2 released after the reaction was stopped following a 10 minute incubation. 

The assay was terminated by the addition of 0.30 ml of ice-cold 30% (w/v) 

perchloric acid by syringe through the centre well. 14C02 was collected for 60 

minutes at which time the centre wells were removed from the flasks and the 

piece of filter paper was transferred to a scintillation vial containing 15 ml of 

ScintiSafe Plus™ 50%, (Fisher Scientific, Nepean, ON) and radioactivity was 

determined in a LKB 1214 Rackbeta Liquid Scintillation Counter. All samples 

were run in triplicate as were zero time blanks in which the acid was added prior 

to the addition of proline and zero protein blanks in which no mitochondrial 

protein was added to the appropriate flasks which were then subjected to the 

same procedure as all other samples. 

1 14C-proline is taken to represent [U]-14C-proline unless stated in the text 
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2.7.1 Linearity with time and protein and kinetic assays 

To determine linearity with time and protein for the production of 14C02 from 

14C-proline in isolated mitochondria a series of experiments were conducted in 

which the concentration of protein was varied from 0.10 mg/ml to 1.0 mg/ml 

(figure 2.1 A) and for times ranging from 2 to 20 minutes (figure 2.1 B). Once it 

was determined over which intervals the reaction was linear in regard to time and 

protein the concentration of proline was varied over the range of 0.25 mM to 5.0 

mM using 0.25 mg of mitochondrial protein and an incubation time of 10 minutes 

in both control and animals receiving exogenous glucagon. All analyses were 

conducted in triplicate. 

43 



Figure 2.1: Linearity of proline oxidation in mitochondria with time and protein 

Oxidation of [U]-14C-proline in freshly isolated, actively respiring mitochondria. 
Mitochondria were isolated from the livers of animals that had received 
exogenous glucagon ( 4mg/kg body weight/24 hrs for two days, subcutaneously). 
Control animals received the vehicle (diluting solution provided by Eli-Lily). A: 
Linearity with protein: incubations were conducted for 10 minutes at 25°C with 
concentration of mitochondrial protein from 0.0-1.0 mg/ml and 1.0 mM proline. 
B: Linearity with time: Incubations were conducted with 0.25 mg/ml of 
mitochondrial protein for up to 20 minutes at 25°C with 1.0 mM proline. Data 
presented are means± SO, n=4. 
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2.8 Amino acid, glucose and hormonal analyses 

For amino acid determination, plasma and freezed-clamped liver were 

deproteinized with 10% sulfosalicylic acid. Following centrifugation, the resulting 

supernatant was adjusted to pH 2.2 with lithium citrate buffer. The samples were 

analysed on a Beckman 121 MB Amino Acid Analyser using Benson D-X, 0.25 

Cation Xchange Resin and a single column, three buffer lithium method as per 

Beckman 121 MB-TB-017 application notes. Results were quantified using a 

Hewlett Packard Computing Integrator Model 3395A. Plasma glucose 

concentrations were determined enzymatically (hexokinase/glucose-6-

phosphatase) according to the method of (6). Plasma insulin and glucagon levels 

were measured by Linco Research Inc (St. Charles, MO) using rat insulin and 

glucagon, respectively, as standards. Intracellular hepatic amino acid 

concentrations were calculated according to the method of Jacobs et al. (40). 

2.9 Enzyme assays 

2.9.1 .11-pyrroline-5-carboxylic acid dehydrogenase 

P5CDh activity was measured, using either NAD+(Roche Biochemicals) or 

NADP+ (Roche Biochemicals) as a cofactor. The method of Strecker (105) was 

used as a basis for designing the assay conditions used in this study. The assay 

was modified by the presence of 10 1-1M rotenone in the reaction mixture to 

prevent reoxidation of NADH. The reaction mixture consisted of 260 1-1L of a 

solution containing 1 mM EDTA and 12 mM He pes at pH 7 .8, 10 1-1L of 0.300 mM 

rotenone (dissolved in dimethyl sulfoxide), 10 1-1L of a 0.12 mg/ml suspension of 
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mitochondrial protein and 10 )ll of 100 !lM NAD+ or NADP+. The reaction was 

started by the addition of 1 O)ll of 12 mM DL-P5C. The resultant final 

concentrations in the assay were: EDTA 0.87 mM, Hepes 10.4 mM, 0.010 mM 

rotenone, 0.033 !lM NAD(Pt, 0.40 mM P5C and 1.2 !lg of protein. All samples 

were run in triplicate and the progress of the reaction at 3JOC was measured by 

recording the production of NADH/NADPH at 340 nm. 

2.9.2 Preparation of~ 1-pyrroline-5-carboxylic acid 

P5C was obtained as the 2,4-dinitrophenylhydrazone derivative and 

prepared for use in enzyme assays according to the method of Mezl and Knox 

(67). Determination of DL-P5C concentration was carried out according to the 

method of Piez et al. (86). 

2.9.3 DNA and protein analysis 

DNA was extracted from the subcellular fractions using the method of 

Schneider (93), and the concentration of DNA in each sample was determined 

using the method described by Burton (13) with calf thymus DNA as standard. 

Protein concentration in each fraction was determined by the biuret method (25) 

using Bovine serum albumin as standard, following solubilization of membranous 

material for 15 minutes with 5% deoxycholate (39). 
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2.9.4 Other enzyme assays 

LDH activity was measured according to Morrison et al. (70), succinate 

cytochrome C reductase and NADPH cytochrome C reductase activity were 

measured according to Sottocassa et al. (1 02), proline oxidase according to 

Herzfeld et al. (35), ornithine aminotransferase according to Herzfeld and Knox, 

(34) with the addition of 0.05 mM pyridoxal-5-phosphate, glutaminase according 

to Lacey et al. (50), glutamate dehydrogenase according to Morrison et al. , (70) 

and p-glucuronidase according to deDuve (17). Zero time, zero protein and/or 

zero substrate blanks were completed as appropriate. All enzyme assays were 

completed in triplicate, conducted at 37°C following disruption of organelles via 

three cycles of freezing and thawing, and were linear with time and protein. 

2.10 Preparation of hepatocytes 

Primary rat hepatocytes were isolated via the method of Berry et a/. , (7). An 

anaesthetised rat was injected with 0.10 ml of heparin (1 000 units/ml) through 

the femoral vein. A cannula was then inserted into the portal vein and non­

recirculating perfusion commenced immediately, (the inferior vena cava was cut 

below the kidney), with 500 ml calcium-free Krebs-Henseleit medium (144 mM 

Na+, 6 mM K+, 1.2 mM Mg2+, 126 mM cr. 1.2 mM H2 P04-, 1.2 mM so/-, 25 mM 

HC03-) containing 2 mM EGTA, 20 mM glucose, 2.1 mM lactate, 0.3 mM 

pyruvate (pH 7.4). The flow rate was 40 ml/minute and the medium was gassed 

with 19:1 0 2/C02 for 20 minutes before use. Following a 12-minute flow through 

period, the medium was switched to 500 ml Krebs-Henseleit medium containing 
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1.3 mM Ca2
+, 20 mM glucose, 2.1 mM lactate, and 0.3 mM pyruvate (also gassed 

for 20 min before use). A cannula was then inserted through the right atrium and 

into the inferior vena cava and the inferior vena cava was tied off above the renal 

artery to stop flow through the previously made cut. Krebs-Henseleit medium 

supplemented with 0.25 % BSA and collagenase (50 mg/100 ml) was then 

recirculated through the liver. The recirculation of perfusate continued until the 

liver became soft ( 15-20 minutes), at which point the liver was transferred to a 

petri dish containing approximately 20ml of the collagenase containing medium 

and massaged gently to liberate cells. The resulting suspension was incubated at 

37°C for 10 minutes in a shaking water bath under constant gassing (19:1 

0 2/C02). Following filtration through cheesecloth, the cells were centrifuged at 

600 rpm for 2 minutes and then resuspended in Krebs-Henseleit medium 

containing calcium, and the process was repeated. A final wash with Krebs­

Henseleit medium containing 2.5% BSA was completed, and the cell pellet was 

resuspended in this medium. Hepatocytes were quantified by drying 3.0 ml of 

resuspended cells or 3.0 ml of 2.5% BSA Krebs-Henseleit medium in pre­

weighed foil pans at 50°C for 24 hours. The difference in the weights represented 

the dry weight of the cells. Cell viability was determined by 0.1% trypan blue 

exclusion and was always greater than 95%. 
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2.11 Proline transport into hepatocytes 

Proline transport into isolated hepatocytes was measured as described by 

Salter et a/., (92). Freshly prepared hepatocytes (-5.0 mg/ml) were pre­

incubated for 20 minutes in Krebs-Henseleit medium (pH 7.4), gassed with 0 2-

COz (19:1) with added lactate and pyruvate (2.1 and 0.3 mM, respectively). After 

pre-incubation 14C-proline was added to give final concentrations of 0.5 mM, 1.0 

mM, 2.0 mM, 3.0 mM, 4.0 mM, 5.0 mM, 6.0 mM, 7.0 mM, 8.0 mM and 9.0 mM. At 

30 seconds following the addition of proline, 1 ml aliquots were transferred to 1.5 

ml microcentrifuge tubes containing 0.25 ml of silicone oil mixture (2: 1 (v/v) Dow 

Corning 550 silicone oil and diononyl phthalate) layered on top of 0.1 ml of 6% 

(v/v) perchloric acid. The tubes were centrifuged at 14,000g for 15 seconds to 

pellet cells through the silicone oil and into the acid layer, leaving the 

extracellular component on top of the oil. Following centrifugation, the tubes were 

frozen in liquid nitrogen and were then cut through at the bottom of the silicone 

oil layer. The bottom layer, containing the intracellular 14C-proline, was placed in 

a scintillation vial containing 10 ml of ScintiSafe Plus™ (Fisher Scientific, Nepean, 

ON) and radioactivity was determined in a LKB 1214 Rackbeta Liquid 

Scintillation Counter. The volume of extracellular space that was carried through 

the silicone oil was determined by measuring the bottom layer following parallel 

cell incubations with carboxyi-14C-inulin. This value was used to correct rates of 

proline transport. Proline transport rates were also corrected by subtracting zero 

time rates determined from samples placed on ice which represent amino acids 
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non-specifically binding to membranes, from the values obtained at subsequent 

time points. All samples were run in triplicate. 

2.11.1 Linearity with time 

The exact method as described above was employed but the incubations 

were allowed to continue for times ranging from 5 to 60 seconds (figure 2.2) with 

a final concentration of 14C-proline of 1.0 mM and a concentration of cells of 

approximately 5.0 mg/ml. 

2.12 Proline oxidation by perfused liver 

Nonrecirculating perfusions of rat livers were carried out as described by 

O'Sullivan et al., (76). Briefly, Krebs-Henseleit medium (pH 7.4), gassed with 0 2-

C02 (19:1) with added lactate and pyruvate (2.1 and 0.3 mM, respectively), 

served as the basic perfusion medium. The flow rate was maintained at 40.0 

mllmin. 14C-proline was added at a final concentration of 0.5 mM, and the 

production of 14C02 was determined in the effluent. The rate of infusion was such 

that no change in pH or Pc02 was discernible. To ensure that livers were viable 

throughout the procedure, oxygen consumption, perfusate (Pc02) , and pH were 

monitored by means of a blood gas analyzer (model 238, Ciba Corning, Bayer, 

Toronto, On, Canada). Oxygen consumption was approximately 2.5 1-Jmol/min/g 

liver. An initial sample of each influent medium was taken. Effluent samples were 

collected at 5-min intervals after that. Samples for 14C02 analysis were taken 

under mineral oil. To measure 14C02 production, 25 ml Erlenmeyer flasks 
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Figure 2.2: Proline transport (linearity with time). 

The transport of proline into isolated hepatocytes was conducted at a final 
concentration of [U]-14C-proline from 1.0 mM. Incubation times ranged from 0-60 
seconds and contained -5mg of cells (dry weight). All assays were conducted in 
triplicate and were completed at 37°C. Data presented are means± SO. 
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containing 0.40 ml of 1 N HCL were fitted with center wells containing filter paper 

and 0.40 ml of NCS tissue solublilizer. Into each flask, 5 ml of perfusate was 

injected through the stopper. The flasks were incubated in a shaking water bath 

at 37°C for 1 hour to ensure that all of the evolved C02 would be trapped in the 

center wells. The center wells were transferred to scintillation vials containing 1 0 

ml of scintillation fluid and radioactivity was determined. Medium blanks were 

prepared to ensure that no preformed 14C02 was present in the radioactive 

compounds. 

2.13 Statistical analysis 

Data are presented as means ± SO unless otherwise noted. Student's 

unpaired t test was performed to compare means unless otherwise noted in the 

text. A p value of <0.05 was taken to indicate a significant difference. 
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Chapter 3: Localization of A 1-pyrroline-5-carboxylate 
dehydrogenase 

3.1 Assay of L\ 1-pyrroline-5-carboxylate dehydrogenase 

Small and Jones (98) have stated that spectrophotometric assays for 

P5CDh activity that rely on the reduction of NAD+ to assess the progress of the 

reaction are unacceptable due to a lack of linearity with time and protein. In this 

study, 10 1-1M rotenone was used to inhibit oxidation of NADH by the electron 

transport chain. The spectrophotometric assay was found to be linear with time 

for a minimum of 15 minutes following the addition of P5C (figure 3.1 A) and with 

protein up to 3.4 1-lg of mitochondrial protein in a 300 1-1L assay volume (figure 3.1 

B). 

3.2 Subcellular localization of P5CDh 

Table 3.1 shows the distribution of P5CDh activity as compared to that of 

markers in the subcellular fractions isolated from a homogenate of rat liver in the 

manner proposed by deDuve (16). We have added an extra mitochondrial 

fraction because we were consistently getting a significant amount of cross 

contamination within the nuclear and mitochondrial fractions obtained using the 

classical method which yields one mitochondrial fraction. The recoveries of 

enzyme activity, DNA and protein ranged from 87-103% (Table 3.1). The 

distribution patterns of typical nuclear (DNA), mitochondrial (succinate 

cytochrome C reductase), lysosomal (B-glucuronidase), microsomal (NADPH 

cytochrome C reductase) and cytosolic (lactate dehydrogenase) markers, shown 

in figure 3.2, are similar to those reported by deDuve et al. (17). 
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Figure 3.1: Linearity with time and protein for P5CDh assay 

Assay conditions are given in Materials and Methods. A: P5CDh activity as a 
function of time of assay. Assays were conducted with 1.2 l-l9 of mitochondrial 
protein and allowed to continue for 15 minutes. 8 : P5CDh assay as a function of 
mitochondrial protein in the assay. Assays were conducted for 10 minutes with 
the amounts of mitchondrial protein indicated. Values represent mean ± SO, n=3. 
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Table 3.1 : Specific activities of markers and P5CDh from subcellular 
fractionation 

Specific activities and recovery of P5CDh, marker enzymes, DNA and protein 
from subcellular fractions of rat liver. Specific activities of enzymes are given as 
nmol of product formed per minute per !-l9 of protein. DNA is expressed as !-l9 per 
mg of protein. All values are presented as means ± SO, n=6. Abbreviations; N, 
nuclear fraction; M1 , first mitochondrial fraction; M2, second mitochondrial 
fraction; L, lysosomal fraction; P, microsomal fraction; S, cytosolic fraction. 
Recoveries are based on homogenate values as 100%. 
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Fraction 
Enzyme 

N M1 M2 L p s Recovery 
% 

Ornithine 
1.29±0.63 7.51 ±1.43 12.90±2.64 7.07±1.1 9 0.40±0.31 0.81±0.57 100 

aminotransferase 

P5CDh (NAD+) 0. 030±0. 006 0.229±0.037 0.299±0.037 0.079±0.019 0.006±0.001 0.020±0.004 92 

P5CDh (NADP+) 0.019±0.003 0.149±0.024 0.188±0.037 0.052±0.015 0.005±0.003 0.016±0.001 93 

Glutaminase 5.33±3.75 47.54±10.17 39.58±6.05 11 .57±6.8 1.05±1.28 0.09±0.22 96 

Proline oxidase 0.64±0.38 5.94±2.23 8.42±5.00 2.74±1.51 0.50±0.37 0.10±0.21 103 

Succinate cytochrome c 
5.15±1.79 52.28±20.72 62.71 ±22.39 21.12±7.84 3.27±4.85 0.00±0.00 89 

reductase 

~-glucuronidase 0.12±0.06 0.22±0.15 0.43±0.27 1.21 ±0.42 0.29±0.30 0.04±0.03 93 

NADPH cytochrome c 
7.46±2.12 4.30±2.37 5.31 ±3.05 18.69±7.58 86.71±14.75 9.54±9.19 87 

reductase 

Lactate dehydrogenase 0.54±0.21 0.33±0.1 0 0.20±0.1 3 0.13±0.1 1 0.52±0.73 4.98±1.1 4 98 

DNA 612.4±168 18.1±4.5 3.4±2.6 0.0±0.0 0.0±0.0 0.0±0.0 102 
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Figure 3.2: Relative specific activities of markers and P5CDh in subcellular 
fractionation 

Distribution pattern of P5CDh, DNA, and marker enzymes in fractions for rat 
liver. Ordinate: mean relative specific activity of markers (specific activity in 
fraction I specific activity in homogenate, calculated from data given in Table 
3.1 ). Absicca: relative protein content of fractions (cumulatively from left to right). 
N, nuclear fraction ; M1, first mitochondrial fraction; M2, second mitochondrial 
fraction; L, lysosomal fraction; P, microsomal fraction; S, cytosolic fraction , n=6. 
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In our study we have used several marker enzymes for mitochondria: 

succinate cytochrome C reductase, an intrinsic protein in the mitochondrial inner 

membrane (17); glutaminase (61) and proline oxidase (41 ), extrinsic proteins 

associated with the inner mitochondrial membrane; ornithine aminotransferase, a 

soluble enzyme located in the mitochondrial matrix (34). The distribution pattern 

of P5CDh closely follows that of these mitochondrial enzymes (figure 3.2). 

There is no leakage of the membrane-associated enzymes into the cytosolic 

fraction, but approximately 7-8% of the matrix enzymes do appear in this 

compartment, indicating a slight release of soluble enzymes from mitochondria. 

A similar amount of P5CDh also appears in the cytosolic fraction , whether 

assayed with NAD+ or NADP+ as cofactor. It can therefore be concluded that 

P5CDh occurs solely in mitochondria in liver. 

It has been proposed by Phang (79) that the presence of P5CDh in the 

cytosol may represent an isoenzyme that could show a preference for NADP+ 

versus NAD+ (79). The results obtained do not support this and in fact show that 

the specific activity of P5CDh decreases when NADP+ is used as a cofactor in all 

fractions (table 3.1 ). The fact that the specific activity for P5CDh in the cytosol 

does not increase when NADP+ is used as a cofactor also suggests that the 

activity observed in the cytosol is due to leakage of the enzyme during 

fractionation and not to a true cytosolic enzyme or isoenzyme. 
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The finding in this study that P5CDh is located solely in mitochondria is in 

contrast to data from Brunner and Neupert (12). Rat liver also contains the 

cytosolic enzyme P5C reductase which catalyzes the conversion of P5C to 

proline (83). The assay employed by Brunner and Neupert followed the 

disappearance of P5C and assumed that this would be due only to P5CDh. 

When Brosemer and Veerabhardrappa (1 0) originated this assay for P5CDh in 

insects, more P5C disappeared than could be accounted for as glutamate, 

although they inhibited further glutamate metabolism. The assay as conducted by 

Brunner and Neupert (12) would not discriminate between the loss of P5C due to 

glutamate synthesis by P5CDh or proline synthesis by P5C reductase. It is likely 

that the activity which was attributed to the presence of P5CDh in the cytosol was 

in fact due to the presence of P5C reductase which occurs in this compartment 

(83). 

In regard to the proposed cycle between proline and P5C (figure 1.2), the 

activity of P5CDh and its subcellular location are quite important. The reduction 

of P5C in the cytosol by P5C reductase is dependent on the presence of P5C. If 

P5CDh were in fact located in the cytosol then there would be competition 

between the two enzymes for the substrate P5C. The same situation occurs in 

mitochondria as P5C produced by PO must not be converted to glutamate by 

P5CDh in order for the P5C/proline cycle to function in a manner that does not 

require continual replenishing of substrates. It would appear that our finding that 

P5CDh is located solely in mitochondria in rat liver supports the possiblity of a 
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P5C/proline cycle in liver; however the problem of removal of P5C by P5CDh in 

the mitochondrial matrix has not been addressed, nor is anything known about 

the control of P5C transport out of mitochondria. 

It has been suggested , by Hagedon and Phang (27) that P5CDh in the 

mitochondrial matrix could be subject to inhibition. The presence or identity of an 

inhibitor, however, has not been described. The effect of the proposed 

P5C/proline cycle would be to increase the concentration of NADP+ in the cytosol 

and therefore stimulate ribose-5-phosphate synthesis. However P5C reductase 

isolated from liver appears to prefer NADH to NADPH, exhibiting 10-fold lower 

activity with the later cofactor (35). While the preference of hepatic P5C 

reductase for NADH would not abolish the activity of a P5C/proline cycle it could 

tend to decrease its effectiveness in generating NADP+ which could lead to less 

nucleotide synthesis. 
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Chapter 4: Proline metabolism in rats receiving a diet 
containing adequate or excess protein 

The protein content and hence availability of amino acids in a diet is of 

great importance if an organism is to thrive. The complement of amino acids in 

the diet, especially dietary essential amino acids must be sufficient to support 

protein synthesis and for the other functions of amino acids as previously 

mentioned. In addition, excess amino acids must be catabolized since there is 

no storage form of amino acids. The need for catabolism of excess amino acids 

is unique when considered against two other major dietary components, 

carbohydrate and fatty acids which can be stored as glycogen and triacylglycerol 

respectively. 

Excess protein in a diet would therefore be expected to lead to an 

increase in amino acid catabolism and this has indeed been observed in 

numerous studies which demonstrate increased activity of the urea cycle 

enzymes as well as other enzymes involved in amino acid catabolism 

(8;57;77;111 ). We have therefore studied the oxidation of proline in response to 

a diet high in protein. The content of protein in the diets that we employed was 

15% in the case of the adequate protein diet which is in line with current 

recommendations and 45% which is excessive but not uncommon in a western 

diet (8;57;77;89). 
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4.1 Characteristics of rats fed 15% or 45% protein diets 

Figure 4.1 shows that the animals in both the excess and adequate 

protein groups in our study gained weight at the same rate. There was no 

change in the liver weights of animals fed the 15% or 45% diets and all animals 

consumed approximately the same quantity of their respective diets (table 4.1 ). 

4.2 Proline oxidation in mitochondria 

Using actively respiring mitochondria isolated from these animals we 

measured the production of 14C02 from 14C-proline. The production of 14C0 2 was 

increased by approximately 40% in mitochondria isolated from animals fed the 

45% protein diet as compared with that observed in animals fed the 15% diet 

(figure 4.2 A). Increased oxidation of proline occurred at all levels of proline 

utilized in the study including the physiological concentration of 0.25 mM (figure 

4.2 A). The apparent Km for proline oxidation was not altered in animals fed the 

adequate protein diet versus the excess protein diet while a significant increase 

in the Vmax for the oxidation of proline was observed in the animals fed a high 

protein diet. (table 4.2 B). 

The kinetic parameters that we have calculated are for the pathway of 

proline oxidation in intact mitochondria and therefore relate to the entire pathway 

of proline oxidation including transport across the inner mitochondrial membrane. 

Although an increase in Vmax without an increase in the apparent Km suggests 

that there is an increase in the absolute capacity of one or more of the proline 
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Figure 4.1: Growth curves for animals fed a modified synthetic AIN-93G diet. 

Animals were fed either an adequate (15% protein) or an excessive (45%) 
protein diet for 7 days. Animals were weighed each morning at 10:00 AM. 
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Table 4.1: Food intake and liver weight for rats fed 15% and 45% protein diets 

Food intake Wet liver 
(g/day/rat) weight (g) 

15% 
protein 25.6 9.8 

diet 
45% 

protein 24.2 9.6 
diet 

Animals were fed either an adequate (15% protein) or an excessive (45%) 
protein diet for 7 days. Animals were weighed and food intake calculated each 
morning at 10:00 AM. Livers were weighed immediately after removal. Animals 
were sacrificed at 10:00 AM on the last day of the study. Data presented are 
means, n=4. 
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Figure 4.2: Proline oxidation in mitochondria 

Oxidation of [U]-14C-proline by freshly isolated, actively respiring mitochondria. 
Mitochondria were isolated from the livers of animals that had been fed a control 
(15%) or high (45%) protein diet for 7 days. Animals were sacrificed at 10:00 AM 
on the last day of the study. Incubations were conducted with 0.25 mg/ml of 
mitochondrial protein for 10 minutes at 25°C at the concentrations of proline 
indicated. A) Michaelis-Menten plot B) Lineweaver-Burk plot. Data presented are 
means ± SD, n=4, * denotes statistical significance versus control , p ~ 0.05, 
Students t-test. 
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Table 4.2: Kinetic data obtained for proline oxidation in isolated mitochondria 

Control 

Treated 

Apparent Km 
(mM) 

0.90±0.23 

0.61±0.1 

Vmax 
(nmoles/min) 

1.78±0.36 

2.47±0.27* 

Data were obtained using freshly isolated , actively resp1nng mitochondria. 
Mitochondria were isolated from the livers of rats that had been fed a control 
(15%) or high (45%) protein diet for 7 days. Rats were sacrificed at 10:00 AM on 
the last day of the study Incubations were conducted with 0.25 mg/ml of 
mitochondrial protein for 10 minutes at 25°C at the concentrations of proline 
indicated in figure 4.2. Data presented are means, n=4, * denotes statistical 
significance versus control , p ~ 0.05, Students t-test. 
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catabolic enzymes, it does not provide information as to exactly which step may 

be increased. 

4.3 Proline catabolic enzymes 

The increase in proline oxidation suggests that enzymes involved in 

proline catabolism may exhibit increased activity. We therefore studied the 

activities of the proline catabolic enzymes in animals fed diets as previously 

described (figure 4.3). The activity of PO was increased by approximately 50% 

while the activity of P5CDh increased by 40%. The activity of GDH was not 

increased in response to a diet high in protein. 

As previously mentioned Kawabata et al., (44) reported that the activity of 

proline oxidase could be increased in response to a diet high in protein. They 

observed that rats fed a diet containing 60% protein exhibited approximately a 2-

fold increase in PO activity versus control animals fed a diet containing 25% 

protein. This study however did not consider possible changes in the other 

enzymes that are involved in proline catabolism and the 25% control diet is 

considered to be in excess of that required for animals to thrive (89). 

It has also been observed that the activity of P5CDh can be increased in 

response to diet (57). Once again however the protein diets in this study were 

not physiologically relevant. The low protein diet contained 5% protein while the 

high protein diet contained 70% protein and the study design did not contain a 

control group of animals. The animals in this study did not thrive and the animals 
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Figure 4.3: Enzyme activities in animals fed high protein diets. 

Animals were fed a modified synthetic AIN-93G diet that contained either 15% 
protein (control) or a 45% protein (high) for 7 days. Animals were sacrificed at 
10:00 AM on the last day of the study. All enzyme assays were performed on 
freshly isolated mitochondria which were subjected to 3 cycles of freezing and 
thawing to disrupt the mitochondrial membranes and were conducted at 37°C. 
Data presented are means± SD, n=4, *denotes p :::; 0.05, Students t-test 
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in the low protein group had to be enticed to eat by the addition of cheese and 

sardines to their food. In regard to growth the animals in the high protein group 

gained twice as much weight during the study period. 

The greatest increase in activity occurred in OAT which displayed 

approximately a 500% increase in activity. The increase observed in the activity 

of OAT is quite substantial and is most likely important in the catabolism of 

excess arginine contained in a diet high in protein (table 2.2). An increase in OAT 

activity such as we observed in response to a diet high in protein has been 

observed by other investigators (54,57). 

As mentioned above the increase in activity of OAT is probably important 

for the catabolism of dietary arginine. It could however be argued that the 

increase in OAT activity supplies substrates for the urea cycle which would be 

required to remove excess nitrogen during times of increased protein ingestion. 

This would not appear to be the case in liver since OAT has been shown to be 

non-reversible (ie. functions only in degradation) in both rat liver mitochondria 

(43) and hepatocytes (87). 
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Chapter 5: Proline metabolism in glucagon treated rats 

In chapter 4 we saw that a diet containing excess protein would cause an 

increase in the liver's capacity to oxidize proline. It is well accepted that one of 

the physiological changes that occurs with a high protein diet is an increase in 

the plasma level of the hormone glucagon. Thus it is possible that the effect of a 

high protein diet is due, at least in part, to glucagon. 

The regulatory effects of glucagon on amino acid metabolism have been 

well documented. It increases the catabolism of a variety of amino acids (e.g. 

glycine, glutamine, arginine, and phenylalanine), it increases gluconeogenesis 

from amino acids, and it increases the rate of ureagenesis 

(14;55;64;77;103;113). Despite the abundance of proline present both in plasma 

and intracellularly there are few data on the effect of glucagon on proline 

catabolism. With this in mind, an investigation of the specific effects of glucagon 

on proline catabolism is certainly warranted. 

5.1 Characteristics of control and glucagon treated rats 

Table 5.1 gives information on weight gain, food intake, liver weight and 

plasma levels of glucagon, insulin and glucose in our glucagon treated and 

control rats. Plasma glucose was increased by 50% following glucagon 

treatment. Plasma glucagon was increased approximately 30-fold versus control 

rats, while plasma insulin was unaltered. In our study glucagon administration did 
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Table 5.1: Body weight, food intake, plasma glucose, insulin and glucagon 
concentrations in control and glucagon-treated rats. 

Control Glucagon 

Weight gain (g/day) 4.57 ± 1.02 3.71 ± 2.32 

Food Intake (g/day) 26.3 ± 4.5 27.5 ± 3.7 

Wet liver Weight (g) 11 .3 ± 0.6 12.1 ± 0.4 

Plasma Glucagon (TJ9 /ml) 79.5 ± 12.1 2630 ± 1040 * 

Plasma Insulin (T)g/ml) 8.9 ± 1.7 7.1 ± 2.6 

Plasma Glucose (mM) 8.0 ± 0.8 14.1 ± 1.3* 

Rats were administered glucagon (4mg/kg body weight/24 hrs for two days, 
subcutaneously) while control rats received the vehicle (diluting solution provided 
by Eli-Lily). Food intake and body weight were measured daily. Blood samples 
were taken at 10:00 AM on the last day of the study from the abdominal aorta 
and centrifuged for plasma separation. Data shown are means ± SD, n=4, * 
denotes a significant difference versus control rats, P<0.05, Students t-test. 
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not change weight gain, food intake, or wet liver weight in accordance with an 

earlier study (40). 

Plasma proline levels were decreased by 82% by glucagon treatment 

(Table 5.2). Table 5.2 also shows the effects of glucagon on glutamate, 

glutamine and ornithine. The plasma concentration of each of these amino acids 

was decreased, but not to the extent of that observed with proline. Although the 

plasma concentration of each of the amino acids studied was reduced , proline 

was the only amino acid that displayed an increase in the liver concentration and 

a substantial increase in the liver:plasma ratio. The approximately 12-fold 

increase in the liver:plasma ratio of proline may suggests that there is an active 

transport of proline from plasma. 

5.2 Proline oxidation by perfused liver 

In order to determine flux through the entire pathway of proline oxidation 

we measured 14C02 production from 14C-proline in the isolated non-recirculating 

perfused rat liver. The amount of 14C02 formed is a direct measure of hepatic 

proline oxk::lation. The production of 14C02 was constant during the 30-minute 

perfusion procedure representing a steady state of proline oxidation (figure 5.1 

A) . Statistical analysis via two-way anova revealed that there was no difference 

between time points in either the control or treated animals, but there was a 

statistically significant effect of glucagon. Since there was no difference with 

respect to time it was possible to combine the values at all time points and 
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Table 5.2: Amino acids in plasma of control and glucagon treated animals 

Control Ratio Glucagon Ratio 

Amino [Plasma] [Liver] Liver: Plasma [plasma] [Liver] Liver: Plasma 
acid (uM) (uM) (uM) (uM) 

Proline 196 ± 6 107 ± 20 0.54 35 ± 4 * 232 ± 76 * 6.70 

Glutamate 144 ± 23 3252 ± 857 22.50 55 ± 14* 2233 ± 432 40.00 

Glutamine 667 ± 71 10572 ± 2000 15.80 147 ± 11* 663 ± 117* 4.50 

Ornithine 63 ± 5 340 ± 38 5.4 38 ± 10* 375 ± 95 10 

Rats were administered glucagon (4mg/kg body weight/24 hrs for two days, 
subcutaneously) while control rats received the vehicle (diluting solution provided 
by Eli-Lily). Food intake and body weight were measured daily. Blood samples 
were taken at 10:00 AM on the last day of the study from the abdominal aorta 
and centrifuged for plasma separation, liver samples were removed from the rats 
and immediately freeze-clamped in liquid nitrogen. Data shown are means ± SO, 
n=4, *denotes statistical significance versus control, p ~ 0.05, Students t-test. 
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Figure 5.1 : Proline oxidation during a non-recirculating perfusion of rat liver 

Proline oxidation in rats given exogenous glucagon (4mg/kg body weight/24 hrs 
for two days, subcutaneously) . Control animals received the vehicle (diluting 
solution provided by Eli-Lily). Flow-through assays were performed at 37°C, at a 
flow rate of 40 ml/min, with 0.50 mM proline. Data presented are means ± SO, 
n=6, *denotes p ::; 0.05, two-way anova. A) proline oxidation as a function of time 
B) comparison of proline oxidation in control and treated animals at a 
concentration of 0.50 mM proline expressed as nmoles of 14C02 formed/min/ g 
wet liver. Values in B are means ± SO of all time points for the corresponding 
group. 
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analyze them as a group (figure 5.1 B). At approximately physiological 

concentrations (0.50 mM), proline oxidation was elevated 60% in the glucagon­

treated rat (figure 5.1 B). 

5.3 Proline transport 

Our calculations show that the hepatic intracellular concentration of proline 

was elevated in the glucagon-treated rat (Table 5.2). Of particular interest is the 

fact that the ratio of liver to plasma proline was 12-fold greater in the glucagon­

treated rat. This could be explained by an effect of glucagon on proline transport. 

Proline transport rates were, therefore, measured from hepatocytes isolated from 

control and glucagon-treated rats. Proline transport was found to be linear with 

time for up to 60 seconds (figure 2.2). Glucagon treatment resulted in an 

approximate 45% increase in proline uptake at concentrations of proline ranging 

from 0.50 to 9.0 mM in a concentration and time dependent manner (Figure 5.2). 

Visual examination of the data presented in figure 5.2 suggested the potential of 

two distinct transport systems. We therefore analyzed the data between the 

intervals of 0.50-4.0 mM and 5.0-9.0 mM by fitting lines via linear regression 

(figure 5.3, table 5.3). The results of this analysis show that over the interval of 

0.50-4.0 mM the slopes of lines describing proline transport in hepatocytes 

isolated from control and glucagon treated rats are significantly different and that 

glucagon increases proline uptake. Over the interval 5.0-9.0 mM the slopes of 

the lines are not significantly different from each 
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Figure 5.2: Proline transport in isolated hepatocytes. 

The transport of proline into isolated hepatocytes was conducted at final 
concentrations of [U)-14C-proline from 0.0-9.0mM. Incubations were for 30 
seconds with -5mg of cells (dry weight) and were completed at 37°C. Data 
presented are means ± SD, n=4, Data were analyzed via a two-way anova p ~ 
0.05, which determined that there is a significant difference in proline transport in 
both groups with respect to proline concentration and between the transport of 
proline in glucagon injected animals and control animals. 
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Figure 5.3: Proline transport in isolated hepatocytes. 

The transport of proline into isolated hepatocytes was conducted at final 
concentrations of [U]-14C-proline from 0.0-9.0mM. Incubations were for 30 
seconds with -5mg of cells (dry weight) and were completed at 37°C. Data 
presented are means ± SO, n=4, Data were analyzed via linear regression over 
the intervals of 0-4 mM and 5-9 mM. 
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Table 5.3: Slope of lines describing proline transport in rat liver 

Interval 0.0-4.0 mM 5.0-9.0 mM 

Control 4 .85±0.12 7.55±0.92 

Treated 6.1 0±0.21 * 8.77±1.29 

The transport of proline into isolated hepatocytes was conducted at final 
concentrations of [U]-14C-proline from 0.0-9.0mM. Incubations were for 30 
seconds with -5mg of cells (dry weight) and were completed at 37°C. Data 
presented are means ± SO, n=4, Data were analyzed via linear regression over 
the intervals of 0-4 mM and 5-9 mM. Data shown are means ± SD, n=4, * 
denotes statistical significance versus control , p :::;; 0.05, Students t-test. 
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other with respect to control and glucagon treated rates; however the rate of 

proline uptake when analyzed as control versus control , and treated versus 

treated, over the intervals 0.50-4.0 mM and 5.0-9.0 mM, shows that proline 

uptake is significantly increased in both cases. 

Thus our data may suggest that there is indeed more than one transporter 

for proline present in rat liver. One transport system appears to function over the 

interval of proline concentrations ranging between approximately 0.0-4.0 mM and 

is responsive to glucagon. The second transport system functions at least over 

the interval 5.0-9.0 mM, may have an increased V max as compared to the 

transport system functioning at lower concentrations and may or may not be 

responsive to glucagon. 

Relatively little specific information is available on mechanisms of proline 

transport in hepatocytes. It is generally felt that proline transport in hepatocytes 

occurs mainly by the system A transport system. The system A transporter, 

ATA2, which is present in hepatocytes and is known to transport proline is felt to 

be a weakly accumulating transporter due to the fact that this transporter exhibits 

trans-inhibition (30;96). As such it is possible that the increase in intra-hepatic 

proline concentration that we have observed may not be due solely to an 

increase in the activity of ATA2. Given that numerous amino acids are 

transported via ATA2 (30) it would also be unlikely that transport of one amino 

acid would predominate to the extent we noted for proline at the expense of all 

others. The 12-fold increase in the liver to plasma ratio for proline may therefore 
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imply that another more specific transporter for proline is active in hepatocytes in 

the presence of exogenous glucagon. 

Recently it has been shown that there may indeed be another transporter 

present in liver that is capable of transporting proline (15). It is thought that this 

transporter may be the imino transporter that has been known to exist in the 

small intestine for some time (15). Amino acid transporters are generally 

present in limited amounts in plasma membranes and it is possible that the imino 

transporter had not been detected in liver for this reason. That is, the imino 

transporter may be present in the plasma membrane of hepatocytes at a barely 

detectable level under basal conditions and in response to the correct stimuli (eg. 

hormonal via glucagon) is induced or recruited from an intracellular pool to 

increase the uptake of proline from plasma. 

5.4 Proline oxidation in mitochondria 

The enzymes involved in proline oxidation are all known to be located in 

mitochondria, so isolated actively respiring mitochondria are a viable model for 

studying proline oxidation. We observed a 2-fold increase in the production of 

14C02 from 14C-proline at virtually all concentrations of proline tested in 

mitochondria from glucagon treated rats, including the physiological 

concentration of proline of 0.25 mM (figure 5.4 A). 

Kinetic parameters obtained from a Lineweaver-Burk plot (figure 5.4 B) of 

the data obtained for the oxidation of proline in actively respiring mitochondria 

indicated that the apparent Km for oxidation was not altered by glucagon 
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Figure 5.4: Proline oxidation in mitochondria 

Oxidation of [U]-14C-proline in freshly isolated, actively respiring mitochondria. 
Mitochondria were isolated from the livers of animals that had received 
exogenous glucagon (4mg/kg body weighU24 hrs for two days, subcutaneously). 
Control animals received the vehicle (diluting solution provided by Eli-Lily). 
Incubations were conducted with 0.25 mg/ml of mitochondrial protein for 10 
minutes at 25°C at the concentrations of proline indicated . A) Michaelis-Menten 
plot, B) Lineweaver-Burk plot. Data presented are means ± SO, n=4, * denotes 
statistical significance versus control , p ~ 0.05, Students t-test 
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treatment but the Vmax of proline oxidation did show a significant increase in the 

treated animals (table 5.4) . The increase in Vmax for proline oxidation of 

approximately 2-fold coupled with no change in the apparent Km values may 

suggest that an increase in the quantity of certain enzymes involved in the 

oxidation of proline has occurred. 

In order to compare the oxidation of 14C-proline in perfused liver and in 

isolated mitochondria we calculated values for proline oxidation based on wet 

liver weights. The calculation involved determining the protein content of a total 

homogenate as well as isolated mitochondria in control and glucagon treated 

animals. The values obtained for the content of mitochondrial protein (mg)/g of 

wet liver and the fact that we used 0.25 mg of mitochondrial protein in our kinetic 

assays allowed us to determine the mitochondrial activity with respect to grams 

of wet liver. The data obtained also confirmed that there was no change in the 

content of protein in a homogenate of liver or in mitochondria as a result of 

glucagon injections (figure 5.5 AlB). 

The actual rates of 14C02 production in mitochondria versus that observed 

during non-recirculating perfusions are very similar when expressed as nmoles 

14C02 produced/min/g wet liver in regard to the maximum production of 14C02 in 

both treated and control animals (table 5.5). The similar 60% increase in proline 

oxidation in intact liver and isolated mitochondria may therefore suggest that 

although transport may play a vital role in the increase in oxidation of proline in 

situations of increased plasma glucagon it may not be the rate-limiting step. 
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Table 5.4: Kinetic data obtained from proline oxidation in rat liver mitochondria 

Control 

Treated 

Apparent Km 
(mM) 

0.63 

0.58 

Vmax 
(nmoles/min) 

1.61 

3.23* 

Data were obtained using freshly isolated, actively resp1nng mitochondria. 
Mitochondria were isolated from the livers of animals that had received 
exogenous glucagon (4mg/kg body weight/24 hrs for two days, subcutaneously). 
Control animals received the vehicle (diluting solution provided by Eli-Lily). 
Incubations were conducted with 0.25 mg/ml of mitochondrial protein for 10 
minutes at 25°C at the concentrations of proline indicated in figure 5.3. Data 
presented are means, n=4, * denotes statistical significance versus control, p ::::; 
0.05, Students t-test 
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Figure 5.5: Protein content of control and glucagon treated rats 

Protein content /gram of wet liver was determined in a total homogenate of liver 
and in mitochondria which were isolated from the livers of control animals and 
livers of animals that had received exogenous glucagon (4mg/kg body weight/24 
hrs for two days, subcutaneously). Control animals received the vehicle (diluting 
solution provided by Eli-Lily). Animals were sacrificed at 10:00 AM on the last day 
of study. A) Total homogenate, B) Mitochondria. Data presented are means ± 
SO, n=4, * denotes p ~ 0.05, Students t-test. 
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Table 5.5: Comparison of 14C02 production during perfusion and in isolated 

mitochondria 

Isolated 
mitochondria 

Perfused 
liver 

14C02 production 
(nmoles/min/g wet liver) 

Control 
Glucagon 
treated 

21 .37 37.06 

25.41 43.72 

Values for 14C02 production were calculated from perfusions of rat liver with a 
constant concentration of proline (0.50 mM) and from mitochondria incubated 
with 0.50 mM proline; mitochondrial assays were carried out at 25°C while liver 
perfusion were conducted at 3JCC. Data presented in figure 5.3 were not 
obtained from the same rats as those used in the perfusion and mitochondrial 
incubations therefore no statistical analysis could be prepared but the data in 
figure 5.3 were integral to the calculation of activity per gram of wet liver. Data 
presented are means, n=6 for liver perfusions and n=4 for isolated mitochondria. 
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It is worthy of note that as described in chapter 2, assays with isolated 

mitochondria were conducted at 25°C since isolated mitochondria are not viable 

at 37°C, while the liver perfusions were carried out at 37°C. This difference in 

temperature for the two assays that we compare in table 5.4 could possibly lead 

us to conclude that there is no difference in the rate of proline oxidation in 

isolated mitochondria and during liver perfusions. However if the actual rate of 

proline oxidation in isolated mitochondria is being underestimated due to the 

lower assay temperature then there may indeed be a difference in the rates of 

proline oxidation in isolated mitochondria and the perfused liver. If the rate of 

proline oxidation in isolated mitochondria is indeed significantly higher than for 

the perfused liver then proline uptake by hepatocytes might potentially be a rate­

controlling step. 

5.5 Proline catabolic enzymes 

Such an increase in hepatic proline oxidation, coupled with altered levels 

of plasma and intracellular proline, suggests an appreciably altered metabolism. 

Therefore, we assayed enzymes related to catabolism of proline. The activities of 

P5CDh and GDH were elevated by 25% whereas proline oxidase was increased 

2-fold by glucagon treatment (figure 5.6). 

Glucagon, as previously described increases the production of glucose 

from proline (104) . It was stated by these authors that the increase in glucose 

production that was observed in isolated hepatocytes could have been due to an 

increase in the 
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Figure 5.6: Enzyme activities in glucagon treated and control rats 

Activity of hepatic enzymes metabolizing P5C in rats given exogenous glucagon 
(4mg/kg body weighU24 hrs for two days, subcutaneously) . Control animals 
received the vehicle (diluting solution provided by Eli-Lily). All enzyme assays 
were performed on freshly isolated mitochondria which were subjected to 3 
cycles of freezing and thawing to disrupt the mitochondrial membranes and were 
conducted at 37°C. Data presented are means ± SO, n=4, * denotes p ~ 0.05, 
Students t-test. 
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activity of GDH. An increase in the activity of GDH certainly could account for 

increased production of a-ketoglutarate and subsequent production of 

oxaloacetate and finally glucose. However it is also true that in this situation that 

GDH would have to be the rate-limiting step in gluconeogenesis from proline. 

The maximal activity of GDH in control animals is approximately 30 fold greater 

than PO and 2000 fold greater than P5CDh. Given the substantially higher basal 

activity of GDH it is likely that the 25% increase in activity of GDH that we 

observed may not be of great significance under normal physiological conditions. 

Staddon and McGivan (1 04) did not investigate enzymes catalysing the 

intermediate steps between proline and glutamate/glucose and simply theorized 

that GDH could be responsible for increased glucose production since this 

enzyme connects proline catabolism with other pathways involved in glucose 

production. 

As previously mentioned the activity of PO is increased 2-fold and the 

activity of P5CDh is increased by 25% versus control animals in response to 

glucagon injections. An increase in the activities of PO and/or P5CDh mediated 

by glucagon has not been previously described and may play a role in catabolism 

of the increased content of intracellular proline that we reported in table 5.2. The 

increased activity of PO may also be important as a first step in the generation of 

ATP or the production of glutamate from proline via PO and P5CDh could 

provide substrate for glutamine synthesis to aid in the removal of excess NH/ 

generated from increased amino acid catabolism. 
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There was no change observed in the activity of OAT with increased 

levels of plasma glucagon (figure 5.6). This was somewhat surprising as it has 

long been reported that OAT is responsive to glucagon (88). However upon 

closer examination of data in the earlier studies, it became apparent that OAT 

only responds to glucagon when the diet is very low in protein so that the activity 

of OAT is very low (54) . For example the increase in OAT activity observed in 

the presence of glucagon did not occur in animals fed a diet containing 

approximately 20-30% protein (or higher). While animals consuming a diet 

containing 60% protein did exhibit an increase in OAT activity, relative to animals 

on a 30% protein diet, OAT was not responsive to further increases in activity in 

the presence of glucagon (54). 
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Chapter 6: Discussion 

6.1 Subcellular localization of P5CDh 

Our experiments to determine the subcellular location of P5CDh involved 

the development of a reliable, timely and cost-effective assay for P5CDh activity. 

Small and Jones (98) stated that the spectrophotometric assay for P5CDh 

developed by Strecker (1 05) is not valid since it is not linear with time and 

protein. Small and Jones (98) developed a radiochemical assay for P5CDh. The 

assay developed by Small and Jones is certainly a valid assay, but drawbacks 

such as working with radioactivity, considerable time to complete the assay and 

cost make their assay less than desirable. 

The assay developed by Strecker (1 05) relies on the reduction of NAD+ 

and as such is susceptible to under-estimation should re-oxidation of NADH 

occur. With this in mind we added rotenone to the assay cocktail. The result of 

the addition of rotenone has been presented in chapter 3 and it is obvious that 

this modification to the original assay as employed by Strecker (1 05) has resulted 

in an assay that is linear with both time and protein. In addition our assay is 

reliable, cost effective and can be completed on numerous samples in a short 

time period (20 minutes) utilizing 96 well plates. The results we obtained with this 

assay are comparable to those obtained with the radioactive assay by Kowaloff 

et al. (47). The development of this assay is an invaluable asset to the continuing 

study of proline catabolism. 
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The second development of our experiments to locate P5CDh is that we 

have determined that P5CDh is located strictly in mitochondria in rat liver 

(chapter 3). While it may seem that this is the answer to a relatively old question, 

any attempt to study regulation of enzyme activity must begin with knowledge of 

the location of the enzyme in question. The subcellular location of an enzyme 

has implications for regulation and function. For example, P5CDh located in the 

cytosol would not have direct access to P5C produced in the mitochondrial matrix 

from either proline or arginine catabolism and would require P5C to be 

transported from the mitochondrial matrix or taken up from plasma. P5CDh in the 

cytosol would therefore be in direct competition with P5C reductase for P5C. The 

mitochondrial location of P5CDh places one enzyme utilizing P5C in the cytosol 

(P5C reductase) and one in the mitochondrial matrix (P5CDh) since OAT does 

not appear to function in the direction of ornithine production in liver (87). 

Finally the increased interest in proline oxidase as a potential partner in a 

cycle to increase the production of nucleotides (114) or as a mediator of 

apoptosis (18) will require complete knowledge of the location within liver and 

regulation of the proline catabolic pathway in order to determine what role if any 

proline oxidation may play in these processes. 
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6.2 Regulation of amino acid catabolism 

Following the subcellular localization of P5CDh, the main focus of the 

work presented here is in regard to the regulation of proline catabolism. However 

we have not addressed one simple question; why regulate proline catabolism at 

all? That is, why not simply allow proline catabolism to proceed at a rate 

sufficient to oxidize the total amount of ingested proline? In the absence of 

regulation , homeostasis would not be served and there would be large 

fluctuations in the plasma and intracellular concentrations of proline between the 

fed and fasted state. In addition, the inability to increase the activity of catabolic 

enzymes in response to a high protein diet could potentially increase the 

concentration of proline to the point where a negative effect (seizures due to 

CNS perturbations) would be observed. The opposite situation also applies 

during times of dietary restriction when proline levels could decrease such that 

inhibition of growth and development occurs or during injury/growth when there is 

increased demand for protein synthesis, especially collagen. The fact that there 

is no storage form of amino acids contributes to the need to closely regulate 

amino acid catabolism since there is no ready supply of amino acids should 

demand exceed the dietary supply and excess amino acids cannot be stored and 

therefore must be catabolized. 
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6.3 Proline metabolism in response to dietary protein 

The increase in activity of PO, OAT and P5CDh and the increased flux 

through the proline degradative pathway (albeit under optimal conditions) that we 

have observed in response to a diet containing excess protein may play a role in 

removing surplus proline and arginine present in such a diet. An increase in the 

activity of amino acid catabolic enzymes has been reported by various 

investigators for amino acids such as threonine, glycine and arginine in response 

to a diet containing a moderately high protein content (8). We are now adding 

proline to this list and extending the studies of O'Sullivan et al. (77). 

The use of a diet containing adequate (15%) or a moderate excess of 

protein (45%) in our study has allowed us to study proline catabolism under 

conditions that relate to those that are physiologically possible. The reports by 

Kawabata et al., (44) and Matsuzawa et al. (57), in regard to increases in the 

activity of PO and P5CDh respectively, while showing increased activity of these 

two enzymes did not utilize physiologically relevant conditions. The use of a diet 

containing an extremely low (5%), or extremely high (65%) protein content, as in 

these studies, does not provide cl inically useful information. Our study provides 

information on the proline catabolic enzymes that has not previously been 

reported and our study design suggests that changes in proline catabolism may 

occur during normal fluctuations in dietary protein. 

As previously mentioned the production of glutamate from proline could 

potentially play a role in a proposed scavenger system for the removal of NH/ 
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generated by the catabolism of amino acids. The increased catabolism of amino 

acids that must occur in response to a diet high in protein would increase the 

production of NH/ and, as we have shown, the same diet also increases flux 

through the proline catabolic pathway. Increased flux through the proline 

catabolic pathway could increase the intracellular concentration of glutamate 

which could then be converted to glutamine via GS. 

Glutamine production from proline may in fact be an important outcome of 

proline catabolism since it has been shown that intravenous injections of 14C­

proline in rats resulted in a considerable amount of 14C becoming localized to the 

kidney in the form of 14C-glutamate (26). It is quite possible that a portion of the 

14C-glutamate observed in the kidney was a result of 14C-glutamine production in 

the liver and subsequent release to plasma. 14C-glutamine could subsequently be 

taken up by the kidney where renal glutaminase could release NH4 +for excretion 

with the resulting production of 14C-glutamate. Renal activity of P5CDh is only a 

fraction of that observed in liver which may make it difficult for kidney to produce 

a large amount of labelled glutamate from proline (57). 

6.4 Glucagon treatment 

The dose of glucagon used in this study was indeed pharmacological. We 

observed a substantial increase in plasma glucagon using this dosage (table 

5.1 ), well above circulating levels in control animals. Although these levels are 

not observed in a healthy organism, patients with glucagon-producing tumours 

have been reported to have a 60-fold increase in plasma glucagon (4). Therefore 
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our model is a good reflection of human glucagonoma. This view is supported by 

the similar decreases in total and specific plasma amino acids in both the 

glucagon-treated rat and the human glucagonoma patient (4). The decrease in 

amino acids in glucagonoma patients has been linked to increased clearance 

from the plasma, likely by the liver, rather than to decreased export from the 

muscles (4). 

We observed a 60% increase in the oxidation of proline during both non­

recirculating liver perfusions (figure 5.1 B) and incubations with intact 

mitochondria (figure 5.3) with the absolute rate of 14C02 production from 14C­

proline approximating 23 nmoles/min/g wet liver in control animals and 40 

nmoles/min/g wet liver in glucagon treated animals. The fact that there is no 

change in the rate of proline oxidation in the intact perfused liver where transport 

across the plasma membrane would be a vital step and in intact mitochondria 

where transport across the plasma membrane is not an issue would suggest that 

the transport of proline across the plasma membrane may not be a rate-limiting 

step in the oxidation of proline. However the conditions used during the 

mitochondrial incubations are optimal conditions for the assay while the liver 

perfusion is a more physiologically correct situation. Specifically, the differences 

in assay temperatures as discussed in chapter 5 (25°C in isolated mitochondria 

versus 37°C during perfusions) could also lead to incorrect conclusions regarding 

the rate of proline oxidation in mitochondria and the importance of proline uptake. 
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Our results show that there is an increase in proline transport in glucagon 

treated animals versus control animals at concentrations of proline from 0.50 to 

9.0 mM (figure 5.2). Using data from Berry et al. (7), we have calculated the rate 

of proline transport as a function of grams wet liver. At the physiologically 

relevant concentration of 0.50 mM our data for the transport of proline shows that 

the rate of proline transport was 22.34 and 32.83 !-!moles/min/ g wet liver for 

control and glucagon treated animals respectively. The transport of proline 

across the plasma membrane would therefore appear to occur at a rate that is 

approximately 1 000 fold in excess of the rates observed for proline oxidation in 

both perfused liver and isolated mitochondria. Once again these results must be 

considered as suggestive since the data were collected under ideal conditions 

and in vivo the situation may vary. 

The 12-fold increase in the liver:plasma ratio coupled with an 

approximately 1000 fold higher rate of transport may suggest that the rate limiting 

step in proline oxidation occurs beyond transport across the plasma membrane. 

If this were not the case, then the hepatic concentration of proline should not 

increase to such an extent. That is, it would appear from our data that the 

transport of proline into hepatocytes is occurring at a rate in excess of that 

displayed by the proline catabolic pathway. 

It is apparent from our data that there must be an activation event that 

occurs in response to glucagon that signals hepatocytes to actively transport 

proline from plasma. The approximately 12-fold increase in the intracellular 
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concentration of proline could be due to induction or activation of the system A 

transporter ATA2. However, ATA2 is described as a weakly accumulating 

transporter which transports numerous small neutral amino acids and as such 

may not be responsible for the very specific increase in intra-hepatic proline 

concentration (1 08). Proline transport in response to glucagon may therefore be 

due to the induction or activation of a transporter with the ability to concentrate 

proline beyond what may be possible via the system A transporter ATA2. 

Our data suggest that there may be more than one transporter for proline 

present in hepatocytes. This suggestion is also supported by data obtained in our 

lab that show that !::.1-pyrroline-2-carboxylate (P2C) a competitive inhibitor of 

proline oxidase is able to decrease the amount of proline transported by isolated 

hepatocytes by no more than 50% regardless of the ratio of inhibitor to proline 

concentration used in the assay (19). It has been shown that P2C does not 

affect the transport of the model substrate for system A, methyl-aminoisobutyric 

acid (MeAIB) (68). Given our data and that P2C can inhibit the transport of 

proline by 50% while not affecting the transport of MeAIB it would appear that 

there is indeed a previously uncharacterized transporter for proline present in 

hepatocytes. 

In regard to activities of the proline catabolic enzymes the lack of an 

increase in the activity of OAT in response to glucagon while being previously 

described has not been satisfactorily explained to date (54) . It has been 

postulated that OAT activity is directly related to plasma glucagon levels and that 
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the endogenous supply of glucagon that is released in response to protein in the 

diet is sufficient to produce a maximal response under the conditions at that time 

(54). Given that there is an increase in OAT activity in animals fed a diet 

containing 60% protein versus those fed a 30% protein diet, it would seem logical 

that animals fed a 30% protein diet and administered exogenous glucagon 

should exhibit OAT activity that approaches or exceeds that observed in animals 

fed a 60% protein diet. This is not the case. 

It appears that the administration of glucagon results in an increase in 

hepatic OAT activity only when the protein content of the diet is low but has no 

effect on OAT activity when the protein content of the diet is in the normal range . 

However, ingestion of a diet containing excess protein can further increase the 

activity of OAT. The fact that OAT activity does not increase in a direct 

relationship with glucagon may suggest that the induction of OAT by glucagon or 

amino acids is not as straightforward as originally thought. 

We have observed that the activity of P5CDh under optimal conditions is 

somewhat lower than that observed for the other enzymes involved in proline 

catabolism (figure 4.3/5.6). The flux through the proline catabolic pathway under 

ideal conditions in both perfused rat liver and isolated mitochondria is 

considerably higher than the activity of P5CDh in broken mitochondria. This 

would suggest that in vivo the activity of P5CDh must be increased since the 

maximal rate of P5CDh that we have observed (which agrees with other 

investigators (47;105)) cannot account for the rate of 14C02 we have observed 
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during perfusions and with isolated mitochondria. An increase in the activity of 

P5CDh in vivo could potentially occur if the proline catabolic enzymes constitute 

a metabolon. For example, P5CDh could be associated with PO in the 

mitochondrial inner membrane and/or with the unknown transporter that is 

required to mediate the entrance of proline into the mitochondrion, such that the 

product of one step has direct access to the active site of the next enzyme, for 

which it is a substrate. 

6.5 Conclusions 

Subcellular localization 

a) The spectrophotometric assay is valid and provides a quick, easy and 
inexpensive method for assays of P5CDh 

b) P5CDh is located strictly in the mitochondrial matrix 

High protein diet increases: 

a) flux through the proline catabolic pathway in mitochondria resulting in the 

production of C02 

b) activity of PO, P5CDh and OAT in rat liver mitochondria 

Glucagon increases: 

a) proline transfer from plasma to hepatocytes 

b) oxidation of proline by perfused liver 

c) flux through the proline catabolic pathway resulting in the production of C02 

d) activity of PO, P5CDh and GDH in rat liver mitochondria 
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