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ABSTRACT 

Dietary supplementation of fish oil has been associated with reduced risk of 

cardiovascular disease. However, previous studies from our lab showed severe 

hyperlipidemia and elevated oxidative stress levels in BioF1B hamsters fed 20% (w/w) 

fish oil supplemented diet. BioF1B hamster, an inbred strain from Bio87.2 and Bio 1.5 

parent strains, is an animal model for diet induced hyperlipidemia and atherosclerosis. 

BioFlB hamsters have significantly lower post-heparin lipoprotein lipase (LPL) activity 

as compared to Golden Syrian hamsters, which is further reduced in response to 20% 

(w/w) fish oil diet. Reduced LPL activity in BioF1B hamsters is believed to interfere 

with the clearance of chylomicron-like particles and thus responsible for fish oil induced 

hyperlipidemia. In the present study we compared the effects of two ro-3 PUF A-rich 

sources, fish oil and seal oil, on regulation of lipid metabolism and oxidative stress in 

BioFl B hamsters. The two marine sources of ro-3 PUF A differ in the intramolecular 

distribution of ro-3 PUFA on their triglyceride (TG) molecules. While EPA and DHA are 

primarily located in sn-2 position in fish oil TG, these are distributed in sn-1 and sn-3 

positions in seal oil TG. Fish oil and seal oil further differ in their fatty acid composition 

with significantly higher levels of DP A and MUF A in seal oil as compared to fish oil. We 

hypothesized that BioF 1 B hamsters will be able to tolerate seal oil better than fish oil due 

to differences in positional distribution of ro-3 PUF A in TG molecule as well as 

differences in the fatty acid composition. Moreover, increased resistance to oxidation has 

been reported with seal oil. Significantly lower plasma and liver lipid levels were 

observed with 20% (w/w) seal oil fed BioF1B hamsters as compared to 20% (w/w) fish 
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oil fed BioFlB hamsters. RT-PCR analysis showed significantly reduced SREBP-lc 

mRNA expression levels in seal oil fed hamsters which can partially explain the 

suppression of lipogenesis in response to dietary seal oil compared to fish oil. Seal oil fed 

BioFlB hamsters also showed significantly lower plasma and liver TBARS levels, thus 

suggesting reduced oxidative stress relative to fish oil fed hamsters. Since fish oil fed 

hamsters showed elevated levels of oxidative stress, we wanted to investigate possible 

beneficial effects of antioxidant supplementation in hamsters fed high fat diets. Berry 

extract rich in anthocyanins has gained prominence as a potent antioxidant in recent 

years. Study of the role of anthocyanin enriched (25% w/w) elderberry extract 

supplementation on plasma lipid levels in marine oil fed BioFlB hamsters also revealed 

significant reduction in all plasma lipid parameters upon addition of elderberry extract to 

respective marine oil fed BioFlB hamsters. While cosupplementation with elderberry 

extract resulted in significantly lower hepatic total cholesterol and cholesterol ester 

concentrations in both fish oil and seal oil fed BioFlB hamsters, reductions in hepatic TG 

and free cholesterol levels was seen in fish oil fed group alone. Moreover, both plasma 

and hepatic TBARS levels showed significant reductions upon elderberry extract 

supplementation in fish oil fed BioF 1 B hamsters. Thus, current fmdings suggest that seal 

oil may confer greater benefits compared to fish oil in lowering lipid and oxidative stress 

levels under certain genetic conditions. Furthermore, co-supplementation of fish oil with 

anthocyanin enriched elderberry extract may be beneficial under these conditions than 

fish oil alone. 
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Chapter 1: Introduction 



1.1 Fish oil in cardiovascular disease 

Dietary fish oil consumption is widely believed to confer beneficial effects in 

cardiovascular disease (CVD). Fish oil first gained attention when Bang and Dyerberg 

(1976) and Kromann and Green (1980) reported low incidence of heart disease in 

Eskimos and Greenland Inuits consuming large doses of fish and marine mammals. Since 

these preliminary observations, epidemiological and clinical studies and research 

initiatives have substantiated a beneficial role of fish oil consumption in heart disease 

(Hirai et al. , 1980; Krornhout eta/., 1995; Harris, 1997; Hu eta/., 2002). Fish and marine 

mammals are a rich source of essential omega-3 polyunsaturated fatty acids ( ro-3 PUF A), 

especially eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6). In 

1999, GISSI Prevenzione study, a randomized controlled trial to study the effects of 

dietary ro-3 PUF A supplementation, demonstrated significantly reduced cardiovascular 

mortality in patients who had previously experienced myocardial infarction. Dietary ro-3 

PUF A has a beneficial role in the prevention of arrythmias and sudden cardiac death 

(Jones and Lau, 2002; Lemaitre et a/., 2003). The anti-atherogenic effects of fish oil 

intake have been associated with the hypolipidemic, anti-thrombotic and anti

atheromatous effects of ro-3 PUF A (Simopoulos, 1999). 

1.2 Beneficial effects of fish oil on lipid and lipoprotein profile 

Hypertriglyceridemia was accepted as an independent risk factor for CVD when a 

meta-analysis of 17 population-based studies revealed a strong correlation between 

elevated triglyceride (TG) concentrations and the risk of CVD (Hokanson and Austin, 
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1996). Alterations in lipid and lipoprotein metabolism, which affect the synthesis, 

secretion and clearance of TG-rich lipoproteins, viz. chylomicrons (CM), very-low 

density- lipoprotein (VLDL) and low density-lipoprotein (LDL) are the major cause of 

hypertriglyceridemia. Fish oil feeding studies m normolipidemic and 

hypertriglyceridemic subjects have consistently demonstrated dramatic reductions in 

plasma TG and the rate of VLDL secretion (Connor et al., 1993; Rambjor et al., 1996; 

Putadechakum et al. , 2005; Harris 1997; Menuet et al., 2005). In addition to lowering 

fasting TG levels, dietary fish oil supplementation also effectively reduces postprandial 

plasma TG concentrations (Sanders et al., 1997; Roche and Gibney, 1996). Moreover, 

significant reduction in postprandial chylomicronernia reported in w-3 PUF A fed rats has 

been attributed to accelerated chylomicron clearance and not to reduced chylomicron 

production/ secretion (Harris et al. , 1997a). The net reduced postprandial lipemic 

response following w-3 PUF A consumption is either due to reduced production/secretion 

or enhanced clearance/uptake of these TG-rich lipoproteins. Thus, fish oil consumption is 

gaining immense popularity in light of its beneficial hypotriglyceridemic effects. 

1.2.1 Mechanisms for the regulation of lipid and lipoprotein metabolism by fish oil 

There are two important postprandial pathways for the metabolism of TG-rich 

lipoproteins. The exogenous pathway involves CM secreted by the intestine, which 

transport dietary TG between the gut and blood and are finally taken up by the liver. The 

second pathway involves the synthesis of hepatic VLDL that transports endogenous TG. 

Circulating VLDL is then converted to low density lipoprotein (LDL), which delivers 
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cholesteryl esters to peripheral tissues and liver (Chan et al., 2004). Thus, the net 

lipoprotein levels in circulation depend on their rates of secretion and removal from the 

plasma. Dietary ro-3 PUF A regulate TG concentrations at various stages of CM and 

VLDL metabolism i.e. assembly, secretion and clearance from circulation. 

Apolipoprotein B (ApoB) is an essential surface apolipoprotein involved in the 

synthesis of both CM and VLDL. While the liver secretes ApoB 100 exclusively, the 

intestine secretes ApoB48, a truncated form of ApoB100. ro-3 PUFA supplementation in 

normolipidemic subjects has revealed reduced absolute concentrations of ApoB48 and 

VLDL ApoB100 (Tinker et al. , 1999; Bordin et al., 1998; Park and Harris 2003). These 

reduced levels may be due to suppression at the level of ApoB synthesis or secretion 

(Tinker et a!. , 1999). Reduced VLDL-ApoB 100 pool size observed in normolipidemic 

males fed fish oil was not accompanied by any alteration in ApoB 1 00 synthesis, but 

showed a significant decrease in VLDL assembly (Bordin et a!. , 1998; Wilkinson et al., 

1998). DHA and EPA have been shown to reduce ApoB secretion by fifty percent in cell 

culture studies using newborn swine enterocytes (Wang et al. , 2001). Significantly 

decreased hepatic secretion of ApoB has been reported in men with visceral obesity and 

hyperlipidemic patients upon fish oil supplementation (Chan et al. , 2003; Shidfar et a!., 

2003). Several fish oil feeding studies have confirmed that ro-3 PUF A reduce ApoB 

secretion by targeting ApoB for post-translational degradation within the rough 

endoplasmic reticulum (Kendrick and Higgins 1999; Fisher et al., 2001). However, other 

studies by Fisher et al. (1998) show that ApoB production was not responsive to fish oil 
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supplementation in hypertriglyceridemic patients with diabetes. Thus, fish oil can have 

variable effects on CMJ VLDL assembly and secretion by influencing ApoB levels. 

In addition to the effects of fish oil feeding on CMJVLDL assembly and secretion, 

hypolipidemia can also result owing to enhanced clearance of CMJVLDL from the 

circulation. The clearance of circulating CMJVLDL involves lipoprotein lipase (LPL) 

which hydrolyses the TG molecules of CM and VLDL to free fatty acids (FF A) and 

glycerol. Fish oil supplementation has yielded conflicting results for the regulation of 

LPL activity. While some studies in normolipidemic and hypertriglyceridemic subjects 

show that there is no effect of ro-3 PUF A from fish oil on LPL activity (Bordin et a!., 

1998; Nozaki eta!. , 1991), others showed an increase in pre-heparin LPL activity during 

the fed state with no effect on post-heparin LPL. The latter study also demonstrated 

reduced CM-TG half lives and decreased CM particle sizes, thus suggesting a role for ro-

3 PUF A supplementation in accelerating CM-TG clearance through increased LPL 

activity (Park and Harris 2003). Insulin resistant rats fed fish oil demonstrated a two-fold 

higher LPL activity in adipose tissue but not in muscle tissue (Peyron-Caso et a!., 2003). 

These findings indicated that fish oil might exert its effects on the regulation of LPL 

activity in a tissue specific manner. 

Upon the action of LPL, CM or VLDL are converted into CM or VLDL remnants 

and are taken up by specific receptors present on the liver. Tissues such as liver, intestine, 

heart and adipose tissue take up FF As via membrane associated fatty acid transporters 

(FAT), e. g. fatty acid translocase CD36 and fatty acid binding protein. Fish oil treatment 

can influence plasma FF A levels by altering the activity of membrane associated FAT. 
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Exposure of skeletal muscle cells to EPA increased the activity ofF AT CD36 compared 

with control cells (Aas et al. , 2006). Thus, fish oil potentially exerts its hypolipidemic 

effects by regulating various metabolic pathways involved in lipid transport and storage. 

1.2.2 Fish oil mediated regulation of gene expression 

Besides regulating metabolic pathways at the enzymatic level, fish oil 

supplementation appears to regulate the expression of various genes involved in lipid 

metabolism. co-3 PUF A has been shown to alter plasma TG levels by regulating the 

expression of genes involved in lipid synthesis and oxidation. Downregulation of hepatic 

genes involved in lipogenesis e.g. Fatty acyl synthase (F AS) and Acetyl CoA carboxylase 

(ACC) has been reported in rodents fed co-3 PUF A (Clarke et al. , 1990; Salati and Clarke 

1986). In addition to the negative regulation of lipogenic genes, co-3 PUF A upregulates 

several hepatic genes involved in fatty acid oxidation and storage, such as fatty acyl CoA 

synthetase (Martin et al. , 1997) and carnitine palrnitoyl transferase-! (Chatelain et a!., 

1996). DHA-fed pigs demonstrated significantly increased liver and muscle acyl-CoA 

oxidase mRNA expression, suggesting that DHA treatment may increase peroxisomal 

fatty acid oxidation in these tissues (Hsu et al. , 2004). Thus, co-3 PUF A exerts a dual 

action on the lipid metabolism by decreasing the expression of lipogenic enzymes and 

activating the genes involved in lipid oxidation and storage. This results in a net negative 

fat balance, attesting to the beneficial role of co-3 PUF A in the management of 

hyperlipidemia (Sampath and Ntambi 2005). 
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Besides regulating the expression of genes involved in lipid synthesis and 

oxidation, ro-3 PUF A have also been shown to alter the expression of genes involved in 

the clearance of lipids. There is evidence for the tissue specific regulation of LPL gene 

expression by ro-3 PUF A. Rats fed fish oil showed significantly higher LPL mRNA 

expression in the epididymal adipose tissue compared with maize oil fed rats, while LPL 

mRNA was higher in perirenal adipose tissue in the maize oil fed rats compared with the 

fish oil fed rats (Murphy et al. , 1993). On the other hand, human studies examining the 

effects of ro-3 PUF A on LPL gene expression in adipose tissue demonstrated no 

significant effect on LPL gene expression (Murphy et al. , 1999a). However, ro-3 PUF A 

have been shown to increase LPL gene expression in the adipose tissue of subjects with 

atherogenic lipoprotein phenotype (Khan et a/. , 2002). These studies suggest tissue

specific regulation of LPL gene expression by fish oil. 

ro-3 PUF A also regulates the gene expression of specific FAT, which determines 

fatty acid uptake, oxidation and storage. FA T/CD36 mRNA expression was found to 

increase after EPA treatment in human skeletal muscle cells (Aas eta/., 2006). Similarly, 

spontaneously hypertensive rats fed ro-3 PUF A showed increased adipose tissue CD36 

mRNA levels as compared to the control Kyoto-Wistar rats (Aguilera el a/. , 2006). Thus, 

ro-3 PUF A appears to regulate plasma TG concentrations by altering lipid transport and 

storage pathways at the molecular level. 

Recently, eDNA microarrays have been used to study the effects of ro-3 PUF A on 

the transcription of hepatic genes involved in lipid metabolism in mice models. These 

microarray experiments have further confirmed the role of ro-3 PUF A in the regulation of 
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genes involved in fatty acid synthesis, desaturation, transport and oxidation (Berger et al., 

2002; Lapillonne et al. , 2004). Evidently, co-3 PUFA play a major role in the regulation 

of gene expression in lipid metabolism. 

1.2.3 Regulation of transcription factors and nuclear receptors by fish oil 

co-3 PUF A mediated changes in gene expression were previously attributed to 

alterations in signaling by eicosanoid metabolites. However, the rapid and sustained 

changes in gene expression by co-3 PUF A were more consistent with a ligand mediated 

event, such as a PUF A binding transcription factor (Clarke 2000). The key transcription 

factors and nuclear receptors studied in response to co-3 PUFA mediated regulation are: 

1) Sterol-Regulatory Element Binding Proteins, 2) Peroxisome Proliferator-Activated 

Receptors and 3) Liver X-Receptors 

1.2.3.1 Sterol-Regulatory Element Binding Proteins (SREBP): SREBPs are helix-loop

helix transcription factors which regulate lipid levels by binding to the sterol regulatory 

elements in promoters of genes involved in lipogenesis and cholesterol metabolism 

(Sam path and Ntambi 2005). There are three known isoforms of SREBP i.e. SREBP-1 a, 

SREBP-1c and SREBP-2. While SREBP-1c preferentially activates lipogenesis, SREBP-

2 preferentially enhances the transcription of genes involved in cholesterogenesis (Le 

Jossic-Corcos et al. , 2005). SREBPs play an important role in the co-3 PUF A induced 

suppression of lipogenic enzymes e.g. FAS, stearoyl CoA desaturase-1 (SCD1) and S14 

(Jump et al. , 1994; Xu et al., 1999b; Kim et al. , 1999; Y ahagi et al., 1999). DHA has 
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been shown to regulate nuclear SREBP-1 abundance in rat hepatocytes (Botolin et al. , 

2006). Regulation of SREBP-1 proteolytic degradation by ro-3 PUF A is considered to be 

the main mechanism controlling SREBP nuclear abundance. PUF A have also been shown 

to lower intracellular levels of SREBP-1c mRNA [Xu et al. , 1999b; Kim et al. , 1999; 

Y ahagi et al. , 1999]. This inhibition is dependent on chain length and degree of 

unsaturation, with EPA and DHA being more potent inhibitors than linoleic or oleic acids 

(Sam path and Ntambi 2005). While PUF A mediated regulation of SREBP-1 c mRNA 

levels involves an enhanced rate of SREBP-1 c mRNA turnover rather than inhibition of 

gene transcription in primary hepatocytes, several reports have demonstrated inhibition at 

the transcriptional level (Jump et al. , 2002; Ou et al. , 2001 ; Hannah et al. , 2001 ; Sealls et 

al. , 2008). 

1.2.3 .2 Peroxisome Proliferator-Activated Receptors CPP ARs): Three isoforms of PP AR, 

PP AR -a, -~/8, - y have been identified. The isoform PP ARa is predominant in the liver 

and regulates genes involved in lipid transport and oxidation. On the other hand, PP ARy 

is expressed in muscle and adipose tissue and aids in adipocyte differentiation. All PP AR 

isoforms bind EPA with Kd ranging from 1-4 )lM (Jump 2002). EPA is reported to bind 

to PP AR in two conformations. In the first conformation, EPA gets completely buried in 

the binding pocket and alters the conformation to stabilize the activator function 2 helix. 

This stabilization allows for coactivator recruitment and subsequent PP AR mediated gene 

expression. Second conformation reveals that fatty acid hydrophobic tail stays exposed to 

the solvent. Since fatty acids <14 carbons or >20 carbons cannot fit in the docking site 
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and stay exposed to solvent, thereby hindering helix stabilization, 18 carbon (oleic acid) 

and 20 carbon (EPA) fatty acids appear to be optimal for PP AR activation (Xu et al., 

1999a). Next, though PP ARa binds EPA and oleic acid with similar affinity, EPA but not 

oleic acid activates PP ARa in primary rat hepatocytes (Xu et al. , 1999a; Ren et al. , 

1997). This physiological discrimination is explained by the fact that compared to EPA, 

oleic acid is the preferred substrate for diacylglycerol acyl transferase in triglyceride 

synthesis. Reduced metabolism of EPA results in elevated cellular levels of EPA needed 

for PP AR activation. EPA, but not DHA, has been shown to induce mRNA expression of 

PP ARy (Chambrier et al. , 2002). Structural analysis showed that EPA is an endogenous 

ligand for PP ARs and DHA needs to be converted to EPA to activate PP ARs (Xu et al. , 

1999a; Sprecher 2000). Moreover, eicosanoid metabolites of PUF A are more potent 

activators of PP ARs than their fatty acid precursors (Sam path and Ntambi 2005). Genetic 

polymorphisms in PP ARy2 have been associated with the inter-individual variability in 

serum TG response to co-3 PUF A (Lindi et al., 2003). Some recent reports have shown 

agonist-driven PPARa activation to induce hepatic FAT/CD36 expression (Bonen et al., 

2004) and hepatic LPL mRNA as well as LPL activity (Auwerx et al. , 1996). These 

findings emphasize a need for a better understanding of the regulation of PP ARs by co-3 

fatty acids in vivo. 

1.2.3.3 Liver X Receptors (LXRs): LXRa and LXR~ regulate the expression of several 

genes involved in lipid metabolism, e.g. cholesterol ?a-hydroxylase (Cyp7a), LPL, F AS, 

ACC and SREBP-1 c (Sampath and Ntambi 2005). While fish oil enrichment of diet 
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resulted in the induction of PP ARs and repression of SREBP, dietary fish oil did not 

reveal any effect on classical LXR target genes such as Cyp7a and ABCG5 in HEK293 

cells (Pawar et a!., 2003). Previously, SREBP mediated repression of lipogenesis by 

PUF A was considered to be LXR dependent (Yoshikawa et a!. , 2002b ), however recent 

evidence suggests that the repression of SREBP-1 c mRNA levels by PUF A is 

independent of LXR. It was observed that treatment of HEK293 cells with EPA resulted 

in SREBP-1c mRNA inhibition both in the presence and absence of an LXR agonist 

(Pawar et al., 2003). However, to date there is no in vivo evidence for the regulation of 

LXR by ro-3 PUF A. 

1.3 Controversies associated with the beneficial health effects of fish oil 

A large systematic study on the effects of ro-3 PUF A on total mortality due to 

CVD suggested that the beneficial effects of ro-3 PUF A were not conclusive (Hooper et 

al., 2006). Recently, a meta-analysis of randomized controlled trials in patients at risk of 

ventricular arrhythmia showed enormous heterogeneity in patient response to fish oil 

supplementation (Jenkins et al. , 2008). Moreover, while the hypotriglyceridemic effects 

of fish oil are well established, the effects of fish oil on plasma total cholesterol and 

LDL- cholesterol are still controversial. While some studies show LDL-cholesterol 

reducing effects of fish oil feeding in normolipidemic patients, other studies report 

elevated plasma total- and LDL-cholesterol levels in response to fish oil in 

normolipidemic and hyperlipidemic individuals (Illingworth et a!., 1984; Neste! et a!. , 

1984; Sullivan eta!., 1986; Hsu et al., 2000; Harris, 1997; Rivellese et al., 2003). Pre-
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existing dyslipidemia, e.g. hypertriglyceridemia and Type II diabetes, are believed to 

cause greater elevations in plasma total- and LDL-cholesterol concentrations upon fish 

oil consumption (Farmer et al. , 2001 ). 

Dietary fish oil has also been reported to induce hyperlipidemia, which was more 

evident in animals fed fish oil and cholesterol (Kubow et al. , 1996; Lu et al. , 1996; Lin et 

al. , 1995). Addition of cholesterol (0.5% w/w) to fish oil diet primarily resulted in an 

increase in total plasma, VLDL- and LDL-cholesterol levels in Golden Syrian hamsters 

(Lin et al. , 1995). Interestingly, however, TG levels were reduced even further upon 

supplementation of fish oil diet with 0.5% w/w cholesterol. Dose dependent 

hypercholesterolemic effect of dietary cholesterol given with the fish oil diet was shown 

in the hamster model. Fish oil in Golden Syrian hamsters has been reported to increase 

the ApoB/ ApoA 1 ratio, which has been linked to an increased risk of atherosclerosis 

(Hayes et al., 1990). 

Previous studies from our laboratory have shown that BioF 1 B hamsters are highly 

susceptible to fish-oil induced hyperlipidemia at high fat levels (de Silva et al. , 2004). 

Another study from our laboratory compared the effects of fish oil feeding in Golden 

Syrian hamsters and BioF1B hamsters (Cheema and Cornish, 2007). High levels of fish 

oil feeding in BioF 1 B hamsters demonstrated dramatic hyperlipidemic response as 

compared to Golden Syrian hamsters. This study showed for the first time that alterations 

in LPL activity and mRNA expression levels play an important role in the varied 

response of these hamsters to dietary fats (Cheema and Cornish, 2007). These findings 
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highlight the significance of genetic background in the regulation of lipid and lipoprotein 

metabolism in response to fish oil. 

1.3.1 Dietary fish oil and oxidative stress 

Fish oil supplementation has been commonly associated with increased in vivo 

lipid peroxidation and compromised anti-oxidant status in organs, blood and urine of 

experimental animals and humans (Kaasgaard et al., 1992, Cho et al. , 1995; Ando et al. , 

1998; Ando et al. , 2000). High fish oil diet (19% (w/w) menhaden oil) markedly 

increases the oxidative potential in the mammary gland of spontaneously hypertensive 

rats (Mehta et al. , 1994). High dietary fish oil (20% (w/w) menhaden oil) has also been 

reported to increase the hepatic and faecal levels of oxidized lipids in male F344 rats 

(Dommels et al. , 2003). Yuan and Kitts (2003) reported the effect of high menhaden oil 

diet on lipid oxidation and anti-oxidant enzyme status in spontaneously hypertensive rats 

and Wistar Kyoto rats. Significantly elevated levels of lipid peroxidation in the hearts and 

livers of menhaden oil fed animals were attributed to alterations in anti-oxidant enzyme 

activities. Interestingly, addition of cholesterol (5g/kg diet) significantly lowered the 

hepatic reduced glutathione levels and exerted a protective effect against enhanced 

oxidative stress in these rats. It was concluded that high doses of ro-3 PUFA enhance the 

tissue susceptibility to oxidation, which can be modulated by supplementing dietary 

cholesterol in spontaneously hypertensive rats and Wistar Kyoto rats. Atalay et al. (2000) 

demonstrated increased activity of catalase, glutathione peroxidase and glutathione - S

transferase in rats in response to fish oil and exhaustive exercise. Increased aortic lesions 
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and elevated plasma lipid peroxidation levels have been reported for rabbits fed fish oil 

(Thiery and Seidel, 1987). Additionally, fish oil supplementation induced oxidative stress 

resulted in an increased requirement for vitamin E (Atalay et al. , 2000). 

ro-3 PUF A in dietary fish oil can efficiently be incorporated into tissue membrane 

phospholipids by displacing the ro-6 PUF A. The increased unsaturation of membrane 

phospholipids due to incorporation of EPA and DHA from fish oil is thought to be the 

major cause of elevated in vivo lipid peroxidation since these membranes are likely to be 

more susceptible to oxidative stress (Leibovitz et a!., 1990). Fish oil induced lipid 

peroxidation has further been related to fish oil induced hyperlipidemia (Kubow, 1998). 

On the contrary, some investigators have reported protective effects of dietary fish 

oil against oxidative stress. Erdogan et al. , (2004) assessed the effect of fish oil 

supplementation on plasma thiobarbituric acid-reactive substances (TBARS), nitric 

oxide, xanthine oxidase, superoxide dismutase and glutathione peroxidase in rats. These 

authors concluded that ro-3 PUF A enhanced resistance to free radical attack and lowered 

lipid peroxidation. ApoE knockout mice fed fish oil showed increased anti-oxidant 

enzyme activities in macrophages and reduced atherosclerotic lesions compared to com 

oil fed animals (Wang et a!. , 2004). These findings further support the anti-oxidant 

effects of ro-3 PUFA in spontaneously hypertensive rats (Frenoux eta!. , 2001). Thus, 

fish oil supplementation may help restore the balance between anti-oxidant status and 

oxidative stress in the cell. Increased anti-oxidant enzyme activity can lead to increased 

free radical scavenging, thereby conferring enhanced resistance against free radical 

damage and delay the progression of atherosclerosis. 
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Interestingly, inverse correlation has been reported between the extent of lipid 

peroxidation and DNA damage in response to dietary fish oil. Kikugawa et al. (2003) 

suggested that dietary fish oil co-administered with vitamin E induced lipid peroxidation 

via increased levels of hydroperoxides and TBARS but lowered DNA damage in rat liver 

in vivo. DNA damaging potencies of the peroxidation products is proposed to be lower 

compared to that seen with ROS mediated oxidative stress. This explains how an increase 

in the extent of lipid peroxidation results in the attenuation of oxidative stress induced 

DNA damage, pointing to the protective effects of fish oil feeding. Consuming ro-3 

PUF A is also believed to confer resistance to CM remnants against free radical attack and 

thus attenuates their potential atherogenic properties (Napolitano et a!. , 2004). Fish oil 

supplementation has also been associated with reduced oxidative stress in 

hyperinsulinemic rats (Nyby et a!. , 2005). These contradictory results of fish oil feeding 

emphasize the need to study the regulation of fish oil induced oxidative stress under 

hyperlipidemic conditions. 

1.3.2. Combination of fish oil and vitamin E in the prevention of CVD 

ro-3 PUF A such as DHA has been reported to decrease vitamin E levels in plasma 

and tissues of several experimental animals (Farwer et al. , 1994; Kubo et a!., 1997; Surai 

and Sparks, 2000). Thus, fish oil induced lipid peroxidation can be correlated with 

reduced vitamin E levels. Elevated lipid peroxidation and low tocopherol concentrations 

have further been associated with increased tissue cholesterol concentrations 

(Chupukcharoen eta!. , 1985). Hence, an increase in oxidative stress may be a causative 
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factor in diet induced hyperlipidemia. Cho and Choi (1994) proposed that increasing 

vitamin E supplementation could be an effective strategy for preventing tissue 

peroxidation in co-3 PUF A supplemented subjects. Vitamin E has been shown to protect 

erythrocyte and liver microsome lipids rich in co-3 PUF A against lipid peroxidation 

during postnatal development of rats (Suarez' et al. , 1999). Vitamin E is believed to 

efficiently inhibit fatty acid peroxidation via its anti-oxidant effects. This further helps to 

enhance the incorporation of co-3 PUF A in different tissues, thereby lowering co-6/co-3 

ratio and improving the efficiency of dietary fish oil. High supplemental dosage of 

vitamin E has been shown to significantly enhance the hypotriglyceridemic effects of 

dietary fish oil in normolipidemic humans (Haglund eta!. , 1991 ). 

Kubow et a!. (1996) reported that supplementing dietary fish oil with vitamin E 

significantly reduced the extent of tissue lipid peroxidation and hyperlipidemia in Golden 

Syrian hamsters. Cosupplementation of vitamin E with fish oil markedly decreased fish 

oil induced antioxidant enzyme activities in the livers of rats after exhaustive exercise 

(Atalay et a!., 2000). These studies suggest that vitamin E supplementation can 

potentially confer protection against CVD either by regulating oxidative stress or lipid 

metabolism. However, the beneficial effects of combination of vitamin E and co-3 PUF A 

on CVD mortality in the randomized controlled GISSI trial were attributed to co-3 PUF A 

alone with no significant effects of vitamin E supplementation (Shekelle et a!. , 2004). 

Other independent randomized controlled trials to evaluate the effects of vitamin E on 

cardiovascular events/cardiovascular mortality have also revealed that anti-oxidant 
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vitamin E does not affect CVD either positively or negatively (Vivekananthan et al. , 

2003; Morris and Carson, 2003). 

O'Malley (2004) offered possible explanations for the failure of potential anti

oxidant therapy in clinical outcomes. Firstly, anti-oxidant therapy might be more 

effective in retarding/inhibiting the progression of atherosclerosis if implemented at early 

stages of the disease. Anti-oxidant therapy in most randomized controlled trials is either 

aimed at secondary prevention in patients who had experienced myocardial infarction or 

primary prevention in older high-risk patients. Secondly, optimal anti-oxidant activity 

necessary to affect complex atherogenic processes might not be achieved in the form of 

supplemental pills due to limited absorption and bioavailability. These observations 

emphasize the need to investigate more biologically active antioxidants in future. 

1.4 Anthocyanins as biologically active anti-oxidants 

In an attempt to discover biologically active anti-oxidants, research has now 

focused on anthocyanins, due to their high anti-oxidant potential and abundance in fruits 

such as berries. Anthocyanins are water soluble, glycosylated and non-acetylated 

polyphenolic compounds which belong to the flavanoid class of compounds and impart 

red, blue and purple colour to various fruits and vegetables (Bell and Gochenaur, 2006; 

Clifford, 2000; Galvano et al. , 2004). While approximately 400 individual anthocyanins 

have been identified, six are most commonly found in colored fruits especially berries. 

These are classified on the basis of number and position of hydroxyl and methoxyl 

moieties on the flavan nucleus (Mazza, 2007). Cyanidin is believed to be the most 
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abundant anthocyanidin in nature. Free radical scavenging capacity of anthocyanins is 

reduced upon glycosylation due to reduced ability of the anthocyanin radical to delocalize 

electrons (Mazza, 2007). Thus, a comparison between the anti-oxidant potential of 

different anthocyanidin molecules revealed direct proportionality to the number of 

hydroxyl groups and inverse proportionality to the number of glycosyl groups (Fukomoto 

and Mazza, 2000). Anthocyanins possess a wide spectrum of therapeutic properties such 

as anti-oxidant, hypolipidemic, anti-inflammatory and anti-thrombotic effects (Wang et 

a!. , 1997; Fukumoto and Mazza, 2000; Mazza et a!. , 2002; Wang and Mazza, 2002; 

Morazzoni and Magistretti, 1990; Satue-Gracia eta!. , 1997). 

1.4.1 Anti-oxidant potential of anthocyanins 

Anthocyanins are potent anti-oxidants and reactive oxygen species scavengers 

and thus can be beneficial in reducing oxidative stress associated with CVD. Dietary 

flavanoids have been demonstrated to significantly reduce the amounts of dienes 

produced during 12 hours of oxidation in PUFA rich diet fed rats (Fre'mont L eta!. , 

1998) and lengthened the lag time in rats fed monounsaturated fatty acids (MUF A). 

These flavanoids can potentially protect circulating and membrane lipids by sparing 

vitamin E and endogenous antioxidants. Proanthocyanidin administered rats showed 

increased resistance against copper-ion induced oxidation of blood plasma (Koga eta!. , 

1999). Proanthocyanidin rich extracts can trap reactive oxygen species in plasma and 

interstitial fluid of the arterial wall, thereby inhibiting LDL oxidation and potentially 

preventing the progression of atherosclerosis. Dietary supplementation with grape seed 
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proanthocyanidins lowered the postprandial oxidative stress by decreasing the oxidant 

and increasing the anti-oxidant levels in the plasma of healthy human volunteers (Natella 

et al. , 2002). Proanthocyanidin rich grape seed extract also resulted in improved 

resistance to oxidative modification of LDL by reducing plasma lipid hydroperoxides and 

the oxidant/ antioxidant status. Grape seed proanthocyanidins significantly inhibited the 

progression of atherosclerosis in the aorta of cholesterol fed rabbits (Yamakoshi et al., 

1999). 

Analysis of anthocyanins to detect radical scavenging activity present in different 

berries showed potent antiradical activities in all berry extracts (Nakajima et al. , 2004). 

Interestingly, anthocyanins have significantly higher anti-oxidant potential compared to 

classical anti-oxidants such as butylated hydroxyanisole, butylated hydroxytoluene and 

vitamin E and vitamin C (Wang et al., 1997; Fukumoto and Mazza, 2000). In vitro 

inhibition of enzymatic and non-enzymatic PUF A-mediated peroxidation occurred in a 

dose dependent manner by purified anthocyanins (Narayan et al. , 1999). Many studies 

report inhibition of LDL oxidation in vitro, further attesting to the anti-oxidant activity of 

anthocyanins (Teissedre et al. , 1996; Aviram and Fuhrman, 2002). Cyanidin-3-0-beta

glucopyranoside, an anthocyanin, is known to significantly inhibit malondialdehyde 

generation in a dose dependent manner, with the extent of inhibition being significantly 

higher than those obtained with similar concentrations of resveratrol and ascorbic acid 

(Amorini et al. , 200 I). Fruits and vegetables rich in anthocyanins showed concentration 

dependent anti-oxidant activities in the inhibition of copper-induced liposome 
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peroxidation as well as in inhibiting co-oxidation of linoleic acid and beta-carotene 

(Hassirnotto et al. , 2005). 

Ramirez-Tortosa et al. (200 1) reported that dietary anthocyanins significantly 

improved plasma anti-oxidant capacity and lowered the vitamin E deficiency-enhanced 

hydroperoxides and 8-oxo-deoxyguanosine concentrations in rat livers. Anthocyanins 

from chokeberry significantly reduced the levels of TBARS and thiol protein groups and 

improved the overall anti-oxidant status in Wistar rats (Kowalczyk et al. , 2002). A study 

on male subjects consuming freeze dried blueberries reported that the serum 

anthocyanins concentration correlated positively with the serum anti-oxidant capacity 

(Mazza et al., 2002). Elderberry anthocyanins are efficiently incorporated into the plasma 

membrane and cytosol of vascular endothelial cells (Youdim et al. , 2000). This 

enrichment of endothelial cells is proposed to confer significant protection against 

oxidative insult. Bagchi et al. (2004) evaluated several combinations of berry extracts and 

developed a synergistic formula OptiBerry IH 141 , which exhibited higher anti-oxidant 

and anti-angiogenic potential compared to other combinations studied. 

Anthocyanin doses of 40 mg/kg improved the total anti-oxidant capacity with 

increased superoxide dismutase activity and reduced serum malondialdehyde levels in 

models of Freund' s adjuvant induced arthritis (He et al., 2006). Han et al. (2006) reported 

antioxidant capacities of pigmented fractions from purple potato flakes in vitro due to 

increased radical scavenging activity and inhibition of linoleic acid oxidation. Authors 

further studied the anti-oxidant potential of anthocyanin-rich purple potato flake diet in 

rats. In comparison to the rats fed cornstarch rich diet, rats on purple potato flake diet had 
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significantly lower hepatic lipid peroxidation and elevated hepatic Cu/ Zn- and Mn

superoxide dismutase and glutathione peroxidase mRNA expression and thus, improved 

anti-oxidant potential. Thus, anthocyanins can potentially exert anti-oxidant effects by 

regulating the genes involved in oxidative stress. These interesting findings emphasize 

the need to elucidate the efficacy of anthocyanins against oxidative stress in vivo and to 

establish whether anthocyanin supplementation could be a better alternative to vitamin E 

supplementation. 

1.4.2 Anti-atherogenic potential of anthocyanins 

Recently, some studies have reported that anthocyanins appear to play a major 

role in regulating various pathways involved in the development or progression of heart 

disease. Valcheva et a/. (2007a) reported significant hypoglycemic and hypolipidemic 

effects of anthocyanin-rich aronia melanocarpa fruit juice (1 0 and 20mL/kg body weight) 

in streptozotocin-induced diabetic rats. Fruit juice rich in anthocyanins significantly 

reduced plasma glucose and TG to levels comparable to normal rats and also 

counteracted the influence of streptozotocin on total cholesterol, LDL-cholesterol and 

high-density lipoprotein- (HDL) cholesterol. These authors also showed 

antihyperlipidemic effects of anthocyanin-rich aronia melanocarpa fruit juice in rats with 

dietary induced hyperlipidemia (Valcheva et al. , 2007b). Anthocyanin-rich juice 

significantly hindered elevations in plasma total cholesterol, LDL-cholesterol and TG 

levels seen in rats fed high cholesterol in the diet. Lyophilized grape powder 

supplementation, a rich source of flavans such as anthocyanins, significantly reduced 
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plasma TG, LDL-cholesterol, ApoB, ApoE levels as well as cholesterol ester transfer 

protein (CETP) activity in both pre-and post-menopausal women (Zem et al. , 2005). 

While LDL oxidation was not affected upon supplementation, whole-body oxidative 

stress assessed by urinary-F2-isoprostanes was significantly reduced in these subjects. In 

another study, rats fed a combination of high fat diet and black soybean anthocyanins had 

significantly lower serum TG and cholesterol levels and markedly elevated HDL

cholesterol concentrations as compared to animals fed high fat diet alone (Kwon et a!. , 

2007). A randomized, placebo controlled trial studied the effects of elderberry juice 

(containing 10% anthocyanins) on serum lipids and anti-oxidant status in healthy 

volunteers (Murkovic et a!., 2004 ). While low dose treatment (equivalent to SmL 

juice/day for 2 weeks) did not reveal any significant differences in serum lipid levels and 

anti-oxidant status, higher, but nutritionally relevant doses (single dose equivalent of 50 

rnL juice) significantly lowered postprandial serum lipids. Thus this dosage was used as a 

reference standard for the current thesis investigation (details in methodology section). 

Furthermore, soybean anthocyanins have been proposed to possess anti-obesity 

effects which can potentially reverse the effects of high fat diets on body weight, adipose 

tissue weight and serum lipid profile (Kwon eta/., 2007). Other studies have also shown 

that anthocyanin supplementation can effectively suppress increases in body weight gain 

observed in response to high fat diet and may be beneficial in prevention and control of 

obesity (Tsuda et a!. , 2003; Jayaprakasam et a!., 2006). Polyphenol compounds might 

have anti-obesity effects in female Zucker fatty rats through inhibition of fat metabolizing 

enzymes (pancreatic lipase, adipose-tissue derived LPL and glycerphosphate 
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dehydrogenase activities) and enhanced lipolysis (Yoshikawa et al. , 2002a). 

Anthocyanins can also exert anti-atherogenic effects by modulating several inflammatory 

pathways. Berry extract anthocyanins have been shown to play an immuno-modulatory 

role by attenuating various parameters of inflammation such as nitric oxide synthesis, 

adhesion molecules and prostaglandins (Pergola et al. , 2006; Rossi et al. , 2003). 

Moreover, atherosclerotic plaque stability was shown to improve remarkably in 

ApoE -deficient mice upon dietary supplementation with an anthocyanins-rich extract 

from black rice (Xia et al. , 2006); extracts rich in anthocyanins dramatically improved 

serum lipid profile by lowering TG, total-cholesterol and non-HDL cholesterol levels. 

Lipid-lowering and anti-inflammatory properties of anthocyanins are thought to be 

primarily responsible for the beneficial effects of anthocyanins in ApoE deficient mice. 

On the contrary however, adverse effects of anthocyanin supplementation on plasma 

cholesterol and LDL- cholesterol levels were observed in Watanabe Heritable 

Hyperlipidemic rabbits fed purified anthocyanins (Finne-Nielsen IL et al. , 2005). Thus, 

therapeutics involving anthocyanins must be viewed with caution, particularly in patients 

with Familial Hypercholesterolemia (Frolov and Hui, 2007). More studies need to be 

done to evaluate the safety and efficacy of anthocyanins with regard to variability in 

genetic background of experimental models. 

1.5 Other marine source of ro-3 PUF A: Seal oil 

To date studies reporting health benefits of co-3 PUF A have primarily focused on 

increasing the consumption offish oil. These studies, however, have failed to consistently 
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achieve low levels of CVD upon fish oil supplementation as that observed in the Eskimo 

and Greenland Inuit populations. The inconsistencies could partly be due to the fact that 

the Greenland Eskimos also consumed other marine mammals such as seal and whale 

besides fish. Seal oil supplementation in healthy volunteers was found to significantly 

reduce plasma TG and ro-6/ro-3 ratio of plasma and erythrocytes without any significant 

effects on cholesterol levels (Bonefeld-Jorgensen et al. , 2001). Another study by Conquer 

et al. (1999) demonstrated that seal oil supplementation resulted in lower ro-6/ro-3 ratio 

and higher EPA, DHA and docosapentaenoic acid (DPA; 22:5) levels in healthy, 

normocholesterolernic subjects. They further showed that seal oil increased the ratio of 

EPA/arachidonic acid and DHA/arachidonic acid in the serum phospholipids and FF As. 

However, no significant differences were observed on glucose, plasma TG and 

cholesterol levels in response to seal oil consumption. 

There are some differences in the ro-3 PUF A composition of seal oil and fish oil. 

While EPA and DHA content of seal oil is slightly lower as compared to fish oil, DP A 

levels are approximately 3 fold higher in seal oil (Brox et al. , 2001 ). The two marine 

sources of ro-3 PUF A further differ in the intramolecular distribution of ro-3 PUF A on 

their TG molecules. While EPA and DHA are primarily distributed in the sn-1 and sn-3 

positions of seal oil TGs, they are located in the sn-2 position in case of fish oil TGs 

(Christensen et al. , 1994). Seal oil and fish oil fed guinea pigs showed significantly 

higher concentration of ro-3 PUF A in different organs and plasma as compared to com oil 

fed animals (Murphy et al. , 1999b ). Differences in the pattern of incorporation of ro-3 

PUF A were also noted for the two marine oils. While fish oil feeding resulted in higher 
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levels of EPA in plasma TG, dietary seal oil led to maximal incorporation of EPA in 

heart polar lipids. DHA levels were significantly higher in heart TG from fish oil fed 

guinea pigs compared to seal oil fed guinea pigs. In contrast, heart polar lipids had 

significantly higher levels of DP A in response to dietary seal oil compared to fish oil. 

Yoshida et a/. (1999) reported the effects of dietary seal and fish oils on TG 

metabolism in rats. Their findings showed that seal oil was more effective compared to 

fish oil in lowering serum and liver TG concentrations. Significantly lower activities of 

fatty acid synthase, glucose-6-phosphate dehydrogenase and hepatic TG lipase were 

observed in seal oil fed rats compared to those fed linoleic acid. In a similar study on 

hamsters, these authors also showed that dietary seal oil reduced arachidonic acid content 

m liver phosphatidylcholine and phosphatidylethanolamine, and serum 

phosphatidylcholine more effectively as compared to fish oil (Yoshida et al., 2001 ). 

Different intramolecular distribution of ro-3 PUF A in dietary fats is believed to 

regulate lipid metabolism differently in experimental animals. These structural 

differences can potentially influence the uptake and bioavailability of ro-3 PUF A due to 

the stereospecificity of pancreatic lipase and gastrointestinal lipase, both of which 

hydrolyze primary ester bonds of TG molecule. While ro-3 PUF A are mostly absorbed as 

sn-2 monoacylglycerols upon fish oil consumption, these are absorbed as FF As after 

consuming seal oil. This can potentially alter the digestion and absorption efficiency of 

different ro-3 PUF A (Christensen et al. , 1995). A comparison of the rate of CM clearance 

following either seal oil or fish oil injection showed a faster clearance of seal oil CM 
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compared to fish oil CM. This has been attributed to structural differences in 

intramolecular distribution of co-3 PUF A in TO of dietary fats (Christensen eta!., 1995). 

Another potential advantage of seal oil supplementation is enhanced resistance to 

oxidation compared to fish oil (Nakhla, 1997). While co-3 PUF A from fish oil are highly 

susceptible to oxidation resulting in the formation of lipid hydroperoxides, seal oil co-3 

PUF A are relatively resistant to oxidation. In light of these findings, there is a need to 

further investigate the role of seal oil in comparison with fish oil in the regulation of lipid 

metabolism and oxidative stress. 

1.6 Choice of hamster as an animal model 

The hamster is an animal model of choice to study lipoprotein metabolism and 

atherosclerosis because the lipoprotein profile of hamsters closely resembles that of 

humans (Nistor eta!., 1987; Spady and Dietschy, 1988). Hamsters carry a significant 

proportion of their circulating lipoprotein in LDL fraction, which is similar to humans 

(Ohtani eta!., 1990). Moreover, as opposed to rodents, hamsters possess plasma CETP 

activity similar to that in humans (Ahn et a!. , 1994; Ha and Barter, 1982). Hamsters also 

resemble humans in the secretion of TO-rich lipoproteins in that the origin of ApoB48 

and ApoB100 is intestinal and hepatic respectively, however in case ofrats and mice both 

the ApoB isoforms are secreted from liver. In the context of cholesterol metabolism, 

hamsters show hepatic cholesterol synthesis similar to that in humans (Spady and 

Dietschy 1988; Woollett et al. , 1989) and partial regulation of cholesterol metabolism by 

LDL receptors (Chen et a!., 1996; Remillard et al. , 2001). Dietary cholesterol and 
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saturated fat have been shown to result in greater serum LDL-cholesterol concentrations 

similar to that observed in humans (Sullivan et al., 1993). Moreover, genetic variability 

in hamster strains has been associated with differences in response to dietary fats 

(Dorfman et al. , 2003). 

BioF1B hamster, an inbred strain from Bio 87.2 and Bio 1.5 parent strains, is an 

established model for diet-induced hyperlipidemia and atherosclerosis. Kowala et al. 

(1991) reported that the BioF1 B strain of hamsters showed atherosclerotic lesions even at 

low concentrations of dietary cholesterol. Increased concentrations of TG-rich 

lipoproteins upon cholesterol supplementation have been associated with the increased 

susceptibility of BioF 1 B hamsters to hyperlipidemia and atherosclerosis (McAteer et al., 

2003). Dyslipidemic individuals (hypertriglyceridemic, diabetic) have been reported to 

show greater elevations in plasma total and LDL cholesterol levels (Hsu et al., 2000, 

Farmer et al., 2001), compared to normolipidemic subjects in response to dietary fish oil. 

Similar to hyperlipidemic humans, BioF1B hamsters fed an atherogenic diet showed 

increased total cholesterol/HDL levels and increased susceptibility to atherosclerosis 

(Trautwein et al. , 1993). Our lab has previously demonstrated that BioF1B hamsters are 

susceptible to fish oil induced hyperlipidemia at high fish oil levels, in contrast to GS 

hamsters fed similar levels of fish oil. These lipid profile changes further suggest that 

genetic variability might play an important role in determining the final outcome of co-3 

PUFA supplementation. More studies are needed to ascertain whether BioF1B hamsters 

are representative of differential effects (if any) of high fish oil diet in hyperlipidemic 

humans. However, the relevance of genetic variability in the regulation of lipid 
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metabolism upon fish oil feeding emphasizes the need for investigating lipid regulation in 

fish oil fed hyperlipidemic animal models and subsequently hyperlipidemic human 

populations. 

1. 7 Justification of the study 

Existing data suggests that differential responses to dietary treatments might arise 

due to heterogeneity in genetic background and gene-nutrient interactions in different 

experimental models (Katan eta/., 1986; Overturf et al., 1990). Previous studies from our 

laboratory to investigate the effects of high fish oil feeding i.e. 20% (w/w) vs 5% (w/w), 

on the regulation of lipoprotein metabolism have reported the occurrence of diet induced 

hyperlipidemia in genetically susceptible BioF1B hamsters (de Silva et a/. , 2004). 

Interestingly, BioFlB hamsters fed the high fish oil diet showed the presence of milky 

plasma rich in CM like particles after an overnight fast. High fish oil supplementation 

also resulted in elevated plasma TG and plasma-, VLDL- and LDL- cholesterol 

concentrations in BioF1B hamsters as compared to BioF1B hamsters fed a mixture of 

lard and safflower oil (1.5: 1 ). Dietary fish oil supplemented BioF1 B hamsters further 

showed reduced hepatic LDL-receptor mRNA expression and significantly lowered 

CETP activity (de Silva eta/. , 2005). Following these preliminary observations from our 

laboratory using BioFlB hamsters, another study was undertaken to compare the effects 

of different types of high fat diets (fish oil, MUF A and ro-6/ ro-3 ratio of 5: 1) in Golden 

Syrian hamsters and BioF1B hamsters (Cheema and Cornish 2007). Contrary to the 

observations with fish oil fed BioFlB hamsters, fish oil fed Golden Syrian hamsters did 
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not reveal any milky plasma after an overnight fast. BioF1B hamsters fed high fat fish oil 

diet showed significantly elevated lipid levels as compared to fish oil fed Golden Syrian 

hamsters, highlighting the importance of genetic heterogeneity in response to dietary fat. 

Moreover, among the three different dietary treatments in BioF1B hamsters, diet induced 

hyperlipidemia was specific only to high fat fish oil diet. Molecular analysis revealed that 

fish oil fed BioF 1 B hamsters had higher levels of ApoB48 and ApoB 100 as compared to 

other dietary treatments, suggesting a reduced clearance of TG-rich lipoproteins (Cheema 

and Cornish, 2007). BioFlB hamsters revealed significantly lower post-heparin LPL 

activity as compared to Golden Syrian hamsters. Fish oil supplementation further 

inhibited the LPL activity in BioF1B hamsters compared to MUFA and ro-6/ ro-3 fed 

BioF1B hamsters (Cheema and Cornish, 2007). 

In an attempt to investigate the extent of oxidative stress in Golden Syrian and 

BioFlB hamsters in response to high fat diets, we measured the levels of lipid 

peroxidation and anti-oxidant enzymes in the liver. We observed significantly higher 

lipid peroxidation in BioFlB hamsters as compared to Golden Syrian hamsters. Fish oil 

feeding in BioFlB hamsters resulted in a further increase in the extent of lipid 

peroxidation compared to MUFA and ro-6/ro-3 fed BioFlB hamsters (Dubey and 

Cheema, unpublished data). Fish oil fed BioFlB hamsters also showed compromised 

anti-oxidant enzyme status suggesting an oxidative potential of high dietary fish oil in 

genetically susceptible BioFlB hamsters. 

The ro-3 PUF A, such as EPA and DHA are primarily located in sn-2 position in 

fish oil TGs, while these are distributed in sn-1 and sn-3 positions on seal oil TGs. The 
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structural differences in location of co-3 PUF A in the fish oil and seal oil TGs are 

considered to be important in producing better clearance and uptake of lipids from seal 

oil as compared to fish oil. Since fish oil-induced hyperlipidemia in BioFlB hamsters 

was attributed to hindered clearance of TG-rich lipoproteins and lower post heparin LPL 

activity, the current study was designed to investigate whether seal oil, another rich 

source of co-3 PUF A, with different distribution of co-3 PUF A in TG molecule as 

compared to fish oil, will differentially regulate lipid metabolism in BioFlB hamsters. 

We hypothesized that BioFIB hamsters will be able to metabolize dietary seal oil better 

as compared to fish oil due to positional distribution of co-3 PUFA. Moreover, seal oil is 

believed to be relatively resistant to oxidation as compared to fish oil. It was further 

hypothesized that the extent of oxidative stress will be lower in seal oil fed BioF1B 

hamsters as compared to fish oil fed hamsters. Anthocyanins are potent anti-oxidants 

with higher anti-oxidant potential as compared to classical anti-oxidants such as Vitamin 

E and Vitamin C. It was further hypothesized that a combination of anthocyanins and 

fish oil diet will suppress diet-induced hyperlipidemia and oxidative stress as compared 

to fish oil diet alone. We treated BioFlB hamsters with high fat diets (20% fat w/w) 

containing either fish oil or seal oil alone, or a combination of high fat diets (fish oil and 

seal oil) containing anthocyanin-rich elderberry extract (25% w/w anthocyanin). 

Thus, the present study was undertaken with two key objectives: 

1. To evaluate the effects of dietary seal oil, an alternative source of co-3 PUFA, on 

the regulation of lipoprotein metabolism and oxidative stress in BioF 1 B hamsters. 
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2. To investigate the effects of combination of anthocyanin-rich elderberry extract 

and ro-3 PUF A (fish oil and seal oil) on lipid profile and oxidative stress in 

BioF 1 B hamsters. 

The findings will help us to understand whether seal oil differentially regulates lipid 

and lipoprotein metabolism in BioFlB hamsters, and whether combinational therapy with 

anthocyanin rich elderberry extract and marine oils will have a greater effect on lowering 

plasma lipids and oxidative stress as compared to marine oils alone. 
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Chapter 2: Methodology 
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2.1 Animals and diets 

Bio FIB hamsters (male, 7 weeks old) were obtained from Bio Breeders Inc 

(Water Town, MA). During the initial equilibration period, hamsters were kept on a chow 

diet for 1 week. Hamsters were then divided into 4 groups (n = 6) and kept on specified 

diets for 4 weeks. The specified diets consisted of custom-made fat-free semipurified diet 

(ICN Biomedical Inc., OH, USA) that was either supplemented with 20% (w/w) fish oil 

(FO) (Menhaden oil, Sigma- Aldrich, Ontario, Canada) or 20% (w/w) seal oil (SO) 

(Ocean Choice Ltd, NL, Canada). Within each high fat diet group, hamsters were either 

fed 20% (w/w) fat alone or were given a combination of 20% (w/w) fat and elderberry 

extract (40 glkg diet) (Murkovic et al., 2004). Elderberry (25% w/w anthocyanin), spray

dried powder (Nutrican Nutritionals Ltd. ON, Canada) was mixed with fat and added to 

the diets. All the diets were stored at -20°C. The diet composition is given in Table 2.1 . 

Experimental design for different dietary treatments is given in Figure 2.1. 

The animals were housed in individual cages in a single room. The room 

conditions were maintained at 12-12hr light-dark cycles (room was lit from 07:00 to 

19:00 hrs), temperature kept at 23 ± 1 oc and humidity at 35 ± 5%. Fresh diets were given 

to the animals daily, and experimental diets and water were given ad libitum for 4 weeks. 

Food intake was measured daily and body weight was measured once a week. All 

experiments were approved by Memorial University's Institutional Animal Care 

Committee in accordance with the guidelines of the Canadian Council for Animal Care. 

At the end of 4 week feeding period, animals from each diet group were euthanized after 
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Table 2.1: Composition (g/kg) offish oil and seal oil di et. 

Components (g!kg) Fish Oil Diet • Seal Oil Diet • 
Casein 200 200 
DL-Methionine 3 3 
Sucrose 305 305 
Com Starch 190 190 
Vitamin Mix a 11 11 

AIN Mineral Mix a 40 40 
Fibre P 50 50 
Fat 200 200 

* Semi-purified diets were designed to obtain 200g!kg fat 
a Formulated to meet the national requirements (Natio nal Research Council, 1995) 

icals Inc., OH, USA) P Supplied as Alphacel non-nutritive bulk (ICN Biomed 
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Figure 2.1: Diagrammatic representation of the experimental design for different dietary 

treatments. 

Fish oil 

BioFlB hamsters 

(male, 8-week old, 20% (w/w) fat) 

Fish oil + Elderberry 
extract 

Seal oil 

I 4 weeks 

Overnight fast 

l 
Plasma and tissues stored at -80°C 
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an overnight fast. Blood samples were obtained by cardiac puncture and collected in 

tubes containing EDTA, centrifuged immediately at 3000 rpm, 4°C for 15 min to separate 

plasma. Plasma samples were stored on ice at 4°C. Liver tissues were snap frozen in 

liquid nitrogen and stored at -80°C until further use. 

2.2 Gas liquid chromatography 

The fatty acid composition of the diets was analyzed by Gas Liquid 

chromatography (GLC) (Table 2.2). Lipids were extracted from diets with 2: 1 

chloroform: methanol using the method of Y okode et al. (1990). Trans-methylation of 

lipids was done by adding 2 mL of transmethylation reagent (94% methanol, 6% HCl 

with few crystals of hydroxyquinone) followed by incubation at 65°C for 2 hrs. Fatty

acid methyl esters were then extracted into the organic, hexane layer by adding hexane (1 

mL) and deionised water (1 mL). The upper hexane layer was evaporated under nitrogen 

and the fatty acid methyl esters were dissolved in 20 I-LL of carbon disulfide. The fatty 

acid methyl esters were run on an Omegawax x 320 (30 mm*0.32 mm) column from 

Supelco (Sigma-Aldrich, ON, Canada) using a flame ionization detector (FlO) for 1 hr. 

The GLC parameters were set as follows: oven at 196°C, injector at 240°C and detector 

at 250°C. Fatty acids were identified by comparison of retention times with those of 

known standards (Sigma-Aldrich, ON, Canada). 
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Table 2.2: Fatty acid composition offish oil and seal oil diets using Gas Liquid 
Chromatography 

Fatty acids* Fish oil Seal oil 
14:0 11 6.5 
16:0 18 10.1 
16:1 ro-7 12.2 16.8 
18:0 3.1 1.4 
18:1 ro-9 8.9 22.9 
18:2 ro-6 1.9 1.8 
18:3 ro-3 1.5 0.6 
18:4 ro-3 3.5 ND 
20:1 ro-9 1.1 10.9 
20:4 ro-6 0.8 0.5 
20:5 ro-3 12.6 9 
22:5 ro-3 2.2 5.2 
22:6 ro-3 12.1 11.7 

ISFA 32.1 18 
IMUFA 22.2 50.6 
IPUFA 34.6 28.8 

I ro-3PUFA 31.9 26.5 
I ro-6PUFA 2.7 2.3 
ro-6/ ro-3 ratio 0.085 0.087 

• Fatty acids are shown as % of the total fatty acids and represent the average of duplicate 
values. 
ND- Not detected 
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2.3 Plasma lipoprotein fractionation and lipid analysis 

Plasma samples were allowed to sit overnight on ice at 4 °C and the top layer 

containing the CM fraction was removed after centrifugation at 10000 rpm for 15 min. 

Density gradient ultracentrifugation was done to isolate VLDL, LDL (LDL+IDL) and 

HDL fractions corresponding to specific densities of <1.006, 1.006-1.060 and > 1.060 

g/mL respectively (de Silva et al. , 2004 ). Sequential separation of different fractions was 

obtained by using solutions containing increasing amounts of NaCl (VLDL and LDL 

fraction), or NaBr (HDL fraction) to adjust the density of plasma. 

For VLDL separation, 0.5 mL of plasma was mixed with 0.5 mL NaCl (density: 

1.0063 g/mL). Samples were then centrifuged at 100,000 rpm at l6°C for 2.5 hrs with an 

acceleration of 5 and a deceleration of 7 using TL 1 00 fixed angle rotor (Beckman 

instruments Inc., CA). The top 0.5 mL (density <1.006) was then transferred carefully to 

a tube labeled VLDL and kept on ice at 4°C. To isolate LDL, the remaining 0.5 mL 

bottom layer was mixed with 0.5 rnL NaCl (density: 1.12 g/mL) and centrifuged under 

conditions similar to VLDL isolation. After centrifugation, 0.5 mL of upper layer (LDL 

fraction) was again removed carefully and kept on ice at 4°C. Finally, to separate HDL, 

0.5 rnL of NaBr (density: 1.36 g/mL) was mixed with the remaining sample and 

centrifuged for 3.5 hrs under similar conditions as above. After centrifugation, 0.5 mL of 

upper layer was removed and kept on ice at 4°C. Isolated lipoprotein fractions i.e. VLDL, 

LDL and HDL were stored on ice at 4°C for lipid analysis. 

Whole plasma and the individual lipoprotein fractions were assayed immediately 

for total TG (Kit# 236-60, Diagnostic Chemicals Ltd, PE, Canada), total cholesterol (Kit# 
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225-S7, Diagnostics Chemicals Ltd, PE, Canada) and free cholesterol (Kit# 274-471 09E, 

Free cholesterol Enzymatic Kit, Wako Chemicals, VA, USA). Cholesterol ester 

concentrations were determined by subtracting free cholesterol concentrations from total 

cholesterol concentrations. 

2.4 Liver lipid analysis 

Lipids were extracted from liver tissue by homogenizing liver m 

chloroform/methanol (2: 1) (Folch eta/. , 1957). The lower organic phase was dried under 

nitrogen, and resuspended in 100 ~L of isopropanol. Hepatic lipids were analyzed for 

total cholesterol (Kit# 225-S7, Diagnostic Chemicals Ltd, PE, Canada), total TG (Kit# 

236-60, Diagnostic Chemicals Ltd, PE, Canada) and free cholesterol (Kit# 274-471 09E, 

Free cholesterol Enzymatic Kit, Wako Chemicals, VA, USA). Cholesterol ester 

concentrations were determined by subtracting free cholesterol concentrations from total 

cholesterol concentrations. Standards were also suspended in isopropanol for consistency. 

2.5 Plasma thiobarbituric acid reactive substances (TBARS) assay 

Plasma TBARS were assayed using the method of Ohkawa et al. (1979). The 

standards were prepared with 0.1mM 1,1,3,3 tetramethoxy propane (TMP) solution in 

absolute ethanol and 29 mmol/L thiobarbituric acid (TBA) solution was prepared in 

8.75M acetic acid. The following were added to 75 ~L of plasma or TMP standards: 100 

~L of 0.9% sodium chloride, 100 ~L of 15% trichloroacetic acid (TCA), 100 ~L of 

2.5mM butylated hydroxytoluene (BHT), 150 ~L of TBA and 60 ~L of 8.1% sodium 
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dodecyl sulfate (SDS). Tubes were then vortexed for 15 sec and kept in a water bath at 

95°C for 60 min. The samples were cooled on ice for 10 min and 750 IlL of n-butanol 

was added to all the tubes. This was followed by centrifugation at 4400 rpm (4°C) for 20 

min and the absorbance of the supernatant was read at 532 nm. TBARS concentration in 

the blood plasma was expressed as nmol MDAI!lL plasma from the standard curve. 

2.6 Liver TBARS assay 

The protocol for liver TBARS was similar to plasma TBARS with mmor 

modifications (Williamson et al. , 2003). TMP standards were prepared as described 

earlier for plasma TBARS assay. Approximately 100 mg of liver tissue was homogenized 

in 1 mL PBS and 300 IlL of the sample or standard was transferred to eppendorf tubes. 

This was followed by adding 150 IlL of 15% TCA, 150 IlL of 0.25 N Hydrochloric acid 

(HCl), 150 IlL of2.5mM BHT, 150 IlL of0.375% TBA and 60 IlL of8.1% SDS to each 

tube. Tubes were then vortexed for 15 sec and kept in a water bath at 95°C for 60 min. 

All samples were cooled on ice and centrifuged at 4400 rpm ( 4 °C) for 20 min. The 

supernatant was filtered through 0.45 llm syringe filters and the absorbance of the filtrate 

was measured at 532 nm. TBARS concentration in the tissue samples was expressed as 

nmol MDA/mg tissue from the standard curve. 

2.7 RNA isolation and reverse transcriptase PCR (RT-PCR) analysis 

Total RNA from hamster livers was extracted using TRIZOL reagent (Invitrogen 

Life Technologies Inc., Gaithersburg, MD, USA) and Fast Prep (BiolOl , ThermoSavant) 
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instrument. The yield of RNA samples was assessed by measuring the absorbance at 260 

nm and 280 nm. The integrity of RNA samples was verified by running the samples on 

1.2% agarose gels at 50V. Isolated RNA samples were stored at - 20°C until further 

analysis. 

RT-PCR was done to analyze the hepatic mRNA expressiOn of varwus 

transcription factors of BioF1B hamsters fed different diets. Isolated RNA samples were 

treated with RNase free DNase I (Promega) to remove any genomic DNA. Briefly, 4 J...Lg 

RNA sample was treated with 4 J...LL DNase (1 J...Lg/J...LL) and 1 J...LL DNase buffer (lOX). The 

final volume was made up to 10 J...LL with DEPC water. The samples were incubated at 

37°C for 30 min and reaction was terminated by adding 2 J...LL DNase stop solution. The 

samples were then incubated at 70°C for 10 min to inactivate DNase. 

Complementary DNA (eDNA) was synthesized by reverse transcription from 

DNase treated total RNA using AMV reverse transcriptase (Roche, QC, Canada) and 

used as template for PCR amplification. Briefly, DNase treated RNA (5 J...LL), IX random 

primers (1 J...LL) and 5 J...LL DEPC water were mixed and incubated at 70°C for 10 min. The 

samples were cooled on ice and centrifuged briefly. This was followed by addition of 8 

J...LL reaction mixture (4 J...LL of 5X RT buffer, 1 J...LL RNase inhibitor, 2 J...LL of 10 mM 

dNTPs and 1 J...LL DEPC water). Finally 1 J...LL of reverse transcriptase was added to each 

tube (except negative control) and incubated at 42°C for 1 hr. The eDNA template was 

stored at -20°C until PCR analysis. 
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PCR reactions were performed in the Genius PCR machine (Roche, QC, Canada) 

using the eDNA templates. PCR conditions were as follows: initial denaturation at 95°C 

for 10 min and then amplification cycles (denaturation at 95°C for 1 min, annealing for 2 

min and elongation at 72°C for 2 min). This was followed by a final elongation step of 10 

min at 72°C. The total number of cycles was chosen to remain within the exponential 

phase of the reaction. The specific primers used for SREBP-1 c (Shimomura eta!. , 1997), 

SREBP-2 (Field eta!. , 2003), PPAR-a (Valeille eta!. , 2005) and LXR-a (Valeille et al. , 

2005) and their specific annealing temperatures are given in Table 2.3. Different genes 

were amplified simultaneously with hamster P-actin pnmers (sense 5' 

CATCGTACTCCTGCTTGCTG-3 ' and antisense 5' -GCTACAGCTTCACCACCACA-

3 ' ) in a multiplex PCR. Figure 2.2 - Figure 2.4 depict the PCR amplification of SREBP

lc, PPAR-a and LXR-a genes respectively. The mRNA expression of these genes was 

normalized to P-actin mRNA content and expressed as relative units. 

2.8 Statistical analysis 

Statistical analysis was performed using GraphPad Prism Software (GraphPad 

Software Inc., CA, USA). Differences between high fat diets were assessed using 

unpaired t-test and the effects of fat type and elderberry extract supplementation were 

analyzed using 2-way ANOV A. Newman-Keuls post-hoc test was used to test significant 

differences obtained by ANOVA analysis. Results are expressed as group means (n = 6) 

and ± SEM (standard error of mean). Differences were considered statistically significant 

at p-value ~ 0.05. 
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Table 2.3: Primer sequences and annealing temperatures for different genes studied. 

Gene Primer Sequence PCR Temp 
(bp) (oC) 

PPAR-a Sense: 5' -GAGAAAGCAAAACTGAAAGCAGAGA-3 ' 179 62 
Antisense: 5 ' -GAAGGGCGGGTTATTGCTG-3 ' 

LXR-a Sense: 5'-GCAACTCAATGATGCCGAGTT-3 ' 171 62 
Antisense: 5 ' -CGTGGGAACATCAGTCGGTC-3 ' 

SREBP-1c Sense: 5'-GCGGACGCAGTCTGGG-3 ' 95 60 
Antisense: 5' -ATGAGCTGGAGCATGTCTTCAAA-3' 

SREBP-2 Sense: 5'-AGCTGGCAAATCAGAAAAACAAG-3 ' 93 56 
Antisense: 
5 ' -GATT AAAGTCTTCAA TCTTCAAGTCCAC-3' 
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Hamster P-actin 
501 bp 

Hamster SREBP-1c 
95 bp 

1 2 3 

Figure 2.2: RT-PCR of SREBP-lc and P-actio. Hepatic mRNA from high fat fed 
BioF1B hamsters was reverse transcribed and multiplex PCR was performed to 
simultaneously amplify SREBP-1c and P-actin (described under the methods section). 
Lane1 depicts amplification in the absence of reverse transcriptase, lane2 shows the 
amplification of SREBP-1 c and P-actin in the presence of reverse transcriptase and lane3 
shows the 1 OObp ladder (molecular marker). 
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Hamster P-actin 
501 bp 

Hamster PP AR -a 
179 bp 

1 2 3 

Figure 2.3: RT-PCR ofPPAR-a and P-actio. Hepatic mRNA from high fat fed BioF1B 
hamsters was reverse transcribed and multiplex PCR was performed to simultaneously 
amplify PPAR-a and P-actin (described under the methods section). Lane1 depicts 
amplification in the absence of reverse transcriptase, lane 2 shows the amplification of 
PPAR-a and P-actin in the presence of reverse transcriptase and lane 3 shows the 1 OObp 
ladder (molecular marker). 
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Hamster P-actin __. 
501 bp 

Hamster LXR-a --. 
171 bp 

1 2 3 

Figure 2.4: RT-PCR ofLXR-a and P-actio. Hepatic mRNA from high fat fed BioF1B 
hamsters was reverse transcribed and multiplex PCR was performed to simultaneously 
amplify LXR-a and P-actin (described under the methods section). Lane1 depicts 
amplification in the absence of reverse transcriptase, lane 2 shows the amplification of 
LXR-a and P-actin in the presence of reverse transcriptase and lane 3 shows the 1 OObp 
ladder (molecular marker). 
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3.1 Effect of fish oil and seal oil 

3.1.1 Body weight and diet consumption 

At the end of 4-week dietary treatment, body weight gain (g) for BioFlB hamsters 

fed either fish oil (19.18±3.58) or seal oil (17.07±3.68) did not reveal significant 

differences. The average daily food consumption (g/day) of fish oil fed hamsters was also 

not significantly different as compared to hamsters fed seal oil (5.41 ± 0.21 and 6.05 

± 0.56 respectively). 

3.1.2 Plasma and lipoprotein lipid profile 

Plasma samples from BioF 1 B hamsters fed fish oil showed milkiness due to the 

presence of CM like particles. Milky plasma was however, not seen in seal oil fed 

BioF 1 B hamsters (Figure 3.1 ). 

TG concentrations in whole plasma and different lipoprotein fractions in fish oil and seal 

oil fed BioF1B hamsters are given in Figure 3.2 and Figure 3.3 respectively. Whole 

plasma TG concentrations in fish oil fed hamsters were significantly higher compared to 

seal oil fed hamsters (p< 0.0001). Significantly higher levels of TG were also noted in 

different lipoprotein fractions from fish oil fed hamsters compared to seal oil fed 

hamsters (p< 0.0001 for VLDL and LDL; p= 0.002 for HDL fractions). BioFIB hamsters 

fed fish oil also showed significantly higher whole plasma total cholesterol levels (p< 

0.0001) as compared to the seal oil fed animals (Figure 3.4). Analysis of different 

lipoprotein fractions for total cholesterol concentration showed a similar pattern where 

fish oil fed BioF 1 B hamsters revealed significantly higher concentrations of total 
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Fish Oil Seal Oil 

Figure 3.1: Fish oil fed BioFlB hamsters showed milky plasma containing chylomicron 
like particles. BioFl B hamsters were fed 20% (w/w) fish oil or 20% (w/w) seal oil diets 
for 4 weeks as described under the methods section. Blood was collected after 14 hours 
of fasting and plasma was separated. 
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Figure 3.2 Whole plasma triglyceride concentrations of BioFlB hamsters fed either fish 
oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma samples were 
assayed for triglycerides as described in the methods section. Values given are means ± 
SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.3 Triglyceride concentrations in lipoprotein fractions of BioFlB hamsters fed 
either fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma samples 
were collected; lipoprotein fractions were separated by density gradient centrifugation 
and assayed for triglycerides as described in the methods section. Values given are means 
± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.4 Whole plasma total cholesterol concentrations of BioFlB hamsters fed either 
fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma samples were 
assayed for total cholesterol as described in the methods section. Values given are means 
± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 

52 



cholesterol (p< 0.0001 for VLDL and LDL; p= 0.005 for HDL) as compared to seal oil 

fed animals (Figure 3.5). 

Plasma cholesterol esters and free cholesterol concentrations in fish oil and seal 

oil fed BioF 1 B hamsters also followed a similar trend as the TG and total cholesterol 

concentrations. Whole plasma from fish oil fed BioF1B hamsters showed significantly 

higher levels of cholesterol esters (p< 0.0001) and free cholesterol (p= 0.0002) compared 

to seal oil fed hamsters (Figure 3.6 and Figure 3.8 respectively). Moreover, 

concentrations of cholesterol esters (p< 0.0001 for VLDL and LDL; p= 0.005 for HDL) 

(Figure 3.7) and free cholesterol (p= 0.0003 for VLDL; p< 0.001 for LDL; p= 0.003 for 

HDL) (Figure 3.9) were significantly higher in different lipoprotein fractions from fish 

oil fed BioF 1 B hamsters. 

3.1.3 Hepatic lipids of hamsters fed fish oil and seal oil 

Hepatic TG concentrations are shown in Figure 3.1 0. Fish oil feeding resulted in 

significantly higher TG concentrations as compared to seal oil feeding (p= 0.004). 

Hepatic total cholesterol, cholesterol esters and free cholesterol concentrations were also 

significantly different in response to different type of fat in the hamster diet (Figure 3.11 

- Figure 3.13). For all three lipid parameters, fish oil fed BioF1B hamsters had 

significantly higher concentrations (p< 0.0001) for total cholesterol (Figure 3.11 ), 

cholesterol esters (Figure 3.12) and free cholesterol (Figure 3.13). While hepatic total 

cholesterol and cholesterol ester concentrations were about 50% higher in fish oil fed 
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Figure 3.5 Total cholesterol concentrations in lipoprotein fractions of BioFlB hamsters 
fed either fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma 
samples were collected; lipoprotein fractions were separated by density gradient 
centrifugation and assayed for total cholesterol as described in the methods section. 
Values given are means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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Figure 3.6 Whole plasma cholesterol ester concentrations of BioFIB hamsters fed either 
fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma samples were 
assayed for cholesterol esters as described in the methods section. Values given are 
means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different 
letters depict statistically significant differences (p< 0.05). 
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Figure 3.7 Cholesterol ester concentrations in lipoprotein fractions of BioFIB hamsters 
fed either fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma 
samples were collected; lipoprotein fractions were separated by density gradient 
centrifugation and assayed for cholesterol esters as described in the methods section. 
Values given are means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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Figure 3.8 Whole plasma free cholesterol concentrations of BioFIB hamsters fed either 
fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma samples were 
assayed for free cholesterol as described in the methods section. Values given are means 
± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 

57 



4 --..J 
::::: 
0 
E 3 - a 
E -- T 
0 
1.. 
Cl) 2 ... 
tn 
Cl) -0 

- f a 

T 
.c: 
(.) 1 -
Cl) 
Cl) 
1.. 

LL 
b -~ b 

0 

VLDL LDL HDL 

Figure 3.9 Free cholesterol concentrations in lipoprotein fractions of BioFlB hamsters 
fed either fish oil (open) or seal oil (shaded) for a period of 4 weeks. Fasting plasma 
samples were collected; lipoprotein fractions were separated by density gradient 
centrifugation and assayed for free cholesterol as described in the methods section. 
Values given are means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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Figure 3.10: Hepatic triglyceride concentrations of BioFlB hamsters fed either fish oil 
(open) or seal oil (shaded), for a period of 4 weeks. Liver lipids were isolated and assayed 
for triglycerides as described in the methods section. Values given are means ± SEM 
(n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.11: Hepatic total cholesterol concentrations of BioFlB hamsters fed either fish 
oil (open) or seal oil (shaded), for a period of 4 weeks. Liver lipids were isolated and 
assayed for total cholesterol as described in the methods section. Values given are means 
± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.12: Hepatic cholesterol ester concentrations of BioFlB hamsters fed either fish 
oil (open) or seal oil (shaded), for a period of 4 weeks. Liver lipids were isolated and 
assayed for cholesterol esters as described in the methods section. Values given are 
means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different 
letters depict statistically significant differences (p< 0.05). 
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Figure 3.13: Hepatic free cholesterol concentrations of BioFlB hamsters fed either fish 
oil (open) or seal oil (shaded), for a period of 4 weeks. Liver lipids were isolated and 
assayed for free cholesterol as described in the methods section. Values given are means 
± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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hamsters compared to hamsters on seal oil diet, relatively smaller differences (25%) were 

observed for liver TG and liver free cholesterol. 

3.1.4 Hepatic mRNA expression of various transcription factors 

The hepatic mRNA expression of SREBP-1c, SREBP-2, PPAR-a, and LXR-a 

was measured from hamsters fed fish oil and seal oil diets. SREBP-1 c mRNA expression 

was significantly elevated in fish oil fed hamsters (p= 0.04) compared to seal oil fed 

hamsters (Figure 3.14). Expression levels ofSREBP-2 mRNA showed a trend towards an 

increase in fish oil fed hamsters compared to seal oil fed hamsters, however, this was not 

statistically significant (p= 0.08) (Figure 3 .15). There was no significant effect of fish oil 

or seal oil on the mRNA levels ofPPAR-a and LXR-a (Figure 3.16 and Figure 3.17 

respectively). 

3.1.5 Plasma and liver TBARS of BioFlB hamsters 

The extent of lipid peroxidation in fish oil and seal oil fed hamsters was evaluated 

using TBARS assay. Hamsters fed fish oil showed significantly higher levels of plasma 

lipid peroxides (p< 0.001) compared to seal oil fed hamsters (Figure 3 .18). Liver TBARS 

also showed significant effect of diet (Figure 3 .19), where fish oil fed hamsters had 

significantly elevated levels of liver TBARS compared to seal oil fed hamsters (p< 0.01 ). 
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Figure 3.14: Hepatic SREBP-lc mRNA expression of BioFlB hamsters fed either fish 
oil (open) or seal oil (shaded), for a period of 4 weeks. Total liver RNA was extracted, 
reverse transcribed and the eDNA template for SREBP-lc and ~-actin was amplified as 
described in the methods section. SREBP-lc mRNA expression was normalized against 
~-actin mRNA expression and expressed as relative units. Values given are means ± 
SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.15: Hepatic SREBP-2 mRNA expression of BioFlB hamsters fed either fish oil 
(open) or seal oil (shaded), for a period of 4 weeks. Total liver RNA was extracted, 
reverse transcribed and the eDNA template for SREBP-2 and P-actin was amplified as 
described in the methods section. The SREBP-2 mRNA expression was normalized 
against P-actin mRNA expression and expressed as relative units. Values given are 
means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different 
letters depict statistically significant differences (p< 0.05). 
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Figure 3.16: Hepatic PP AR-a mRNA expression of BioFlB hamsters fed either fish oil 
(open) or seal oil (shaded), for a period of 4 weeks. Total liver RNA was extracted, 
reverse transcribed and the eDNA template for PP AR-a and ~-actin was amplified as 
described in the methods section. The PP AR-a mRNA expression was normalized 
against ~-actin mRNA expression and expressed as relative units. Values given are 
means ± SEM (n=6) analyzed by unpaired t-test. Mean values shown with different 
letters depict statistically significant differences (p< 0.05). 
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Figure 3.17: Hepatic LXR-a mRNA expression of BioFlB hamsters fed either fish oil 
(open) or seal oil (shaded), for a period of 4 weeks. Total liver RNA was extracted, 
reverse transcribed and the eDNA template for LXR-a and ~-actin was amplified as 
described in the methods section. The LXR-a mRNA expression was normalized against 
~-actin mRNA expression and expressed as relative units. Values given are means ± 
SEM (n=6) analyzed by unpaired t-test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.18: Plasma TBARS levels in BioFlB hamsters fed either fish oil (open) or seal 
oil (shaded) for a period of 4 weeks. Plasma samples were assayed for TBARS as 
described in the methods section. Values given are means ± SEM (n=6) analyzed by 
unpaired-t test. Mean values shown with different letters depict statistically significant 
differences (p< 0.05). 
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Figure 3.19: Hepatic TBARS levels in BioFlB hamsters fed either fish oil (open) or seal 
oil (shaded) for a period of 4 weeks. Liver samples were assayed for TBARS as described 
in the methods section. Values given are means ± SEM (n=6) analyzed by unpaired-t test. 
Mean values shown with different letters depict statistically significant differences (p< 
0.05). 
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Table 3.1 Body weight gain after 4-weeks of dietary treatments in Bio FIB hamsters fed 
either fish oil or seal oil alone or in combination with elderberry extract. 

Diet Type Weight gain (g) 
Fish Oil 19.18±3.58 a 

Fish Oil & 
Elderberry Extract 13.56±3.46 b 

Seal Oil 15.2±2.21 a 

Seal Oil & 
Elderberry Extract 1 0.32±1.56 c 

Values are given as mean± SEM (n=6) 
Dietary groups were analyzed by 2- way ANOV A and the Newman-Keuls post-hoc test 
Mean values shown with different letters depict statistically significant differences (p< 
0.05). 
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3.2 Effect of a combination of marine oils and elderberry extract in BioFlB 

hamsters 

3.2.1 Body weight and diet consumption 

The analysis of weight gain at the end of 4-week period revealed no significant 

differences in hamsters fed fish oil and seal oil diet alone. However, these high fat diets 

when cosupplemented with elderberry extract resulted in significantly lower body weight 

gain in hamsters fed the combination diet compared to hamsters on high fat diet alone 

(Table 3.1 ). While cosupplementation with elderberry extract in fish oil fed hamsters 

resulted in a 29% decrease in body weight gain as compared to hamsters fed fish oil diet 

alone (p= 0.04), a 32% decrease in weight gain was observed for hamsters fed a 

combination of seal oil and elderberry extract than animals fed seal oil alone (p= 0.004). 

Addition of elderberry extract to high fat diets however, did not result in significant 

differences in the average daily food intake (g/day) of BioF1B hamsters (fish oil: 5.41 

± 0.21; fish oil + elderberry extract: 5.30 ± 0.15; seal oil : 6.05 ± 0.56; seal oil + 

elderberry extract: 5.75 ± 0.64). 

3.2.2 Plasma lipids in BioFlB hamsters fed a combination of marine oils and 

elderberry extract 

Fasting plasma samples from hamsters fed fish oil and seal oil alone and those fed 

a combination of marine oils and elderberry extract were analyzed for TG (Figure 3.20), 

total cholesterol (Figure 3.21 ), cholesterol esters (Figure 3 .22) and free cholesterol 

(Figure 3.23) concentrations. All lipid parameters showed significant differences when 
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elderberry extract was added. Two-way AN OVA revealed a significant effect of marine 

oils (p< 0.0001) as well as elderberry extract (p< 0.0001) on plasma TG, total cholesterol, 

cholesterol esters and free cholesterol. One-way ANOVA was also performed, as there 

was a significant interaction between marine oils and elderberry extract (p< 0.0001). 

While fish oil fed BioF 1 B hamsters showed significantly higher levels of plasma 

TG compared to seal oil fed hamsters, addition of elderberry extract to fish oil diet 

resulted in a 90% decrease in the levels of plasma TG compared to BioF 1 B hamsters fed 

fish oil alone (p< 0.001) (Figure 3.20). These levels were comparable to plasma TG 

levels of BioF1B hamsters fed seal oil diet alone. Addition of elderberry extract to seal 

oil further led to a 70% decrease in plasma TG levels as compared to hamsters fed seal 

oil diet alone (p< 0.0001). There was a 80% decrease in plasma total cholesterol 

concentrations in hamsters fed a combination of fish oil and elderberry extract (p = 

0.0005) (Figure 3.21) as compared to feeding fish oil alone. Total cholesterol levels of 

hamsters fed a combination of fish oil and elderberry extract were comparable to 

hamsters fed seal oil alone. Elderberry extract supplementation in the seal oil dietary 

group also showed a 70% lowering of total cholesterol levels as compared to seal oil fed 

hamsters (p< 0. 000 1). 

Plasma cholesterol ester (Figure 3.22) and plasma free cholesterol (Figure 3.23) 

concentrations showed a similar trend to plasma TG and cholesterol concentrations. 

BioF1B hamsters fed a combination of fish oil and elderberry extract had significantly 

lower cholesterol ester (p = 0.0002) and free cholesterol (p = 0.002) concentrations 

compared to fish oil fed hamsters. 
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Figure 3.20: Plasma triglyceride concentrations in BioFlB hamsters fed either fish oil or 
seal oil in the presence (shaded) and absence (open) of elderberry extract for a period of 4 
weeks. Fasting plasma samples were collected and assayed for triglycerides as described 
in the methods section. Values given are means ± SEM (n=6) analyzed by 2-way 
ANOV A and the Newman- Keuls post-hoc test. Mean values shown with different letters 
depict statistically significant differences (p< 0.05). 
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Figure 3.21: Plasma total cholesterol concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Fasting plasma samples were collected and assayed for total 
cholesterol as described in the methods section. Values given are means ± SEM (n=6) 
analyzed by 2-way ANOV A and the Newman- Keuls post-hoc test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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Figure 3.22: Plasma cholesterol ester concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Fasting plasma samples were collected and assayed for cholesterol 
esters as described in the methods section. Values given are means ± SEM (n=6) 
analyzed by 2-way ANOVA and the Newman- Keuls post-hoc test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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Figure 3.23: Plasma free cholesterol concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Fasting plasma samples were collected and assayed for free 
cholesterol as described in the methods section. Values given are means ± SEM (n=6) 
analyzed by 2-way ANOV A and the Newman- Keuls post-hoc test. Mean values shown 
with different letters depict statistically significant differences (p< 0.05). 
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The levels of cholesterol esters and free cholesterol of BioF1B hamsters fed a 

combination of fish oil and elderberry extract were similar to the levels observed for 

hamsters fed seal oil diet. Addition of elderberry extract to seal oil diet further reduced 

the levels of cholesterol esters (p< 0.0001) and free cholesterol (p< 0.0001) as compared 

to hamsters fed seal oil alone. 

3.2.3 Liver lipids of hamsters fed a combination of marine oils and elderberry 

extract 

Hepatic TG concentrations of hamsters fed either fish oil or seal oil alone or a 

combination of marine oils and elderberry extract are given in Figure 3.24. Two-way 

ANOV A revealed significant differences in different dietary groups in response to fat 

type (p= 0.04), elderberry extract (p= 0.01) and interaction between fat and elderberry 

extract (Fat*elderberry extract; p= 0.01). BioF1B hamsters fed a combination of fish oil 

and elderberry extract showed significantly lower TG concentrations (p< 0.001 ) as 

compared to hamsters fed fish oil alone. In contrast, the combination of seal oil and 

elderberry extract had no effect on hepatic TG levels as compared to hamsters fed seal oil 

alone. 

Liver total cholesterol concentrations were significantly different in response to 

different marine oils and elderberry extract (Figure 3.25). Hepatic total cholesterol 

concentrations were significantly reduced when BioF1B hamsters were· fed marine oils 

along with elderberry extract as compared to the respective fat diet alone (p< 0.001 for 

fish oil treated hamsters and p< 0.05 for the seal oil fed hamsters). 
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Figure 3.24: Hepatic triglyceride concentrations in BioFlB hamsters either fed fish oil or 
seal oil in the presence (shaded) and absence (open) of elderberry extract for a period of 4 
weeks. Liver samples were assayed for triglycerides as described in the methods section. 
Values given are means ± SEM (n=6) analyzed by 2-way ANOVA and the Newman
Keuls post-hoc test. Mean values shown with different letters depict statistically 
significant differences (p< 0.05). 
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Figure 3.25: Hepatic total cholesterol concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Liver samples were assayed for total cholesterol as described in the 
methods section. Values given are means± SEM (n=6) analyzed by 2-way ANOVA and 
the Newman- Keuls post-hoc test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.26: Hepatic cholesterol ester concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Liver samples were assayed for cholesterol esters as described in the 
methods section. Values given are means± SEM (n=6) analyzed by 2-way ANOVA and 
the Newman- Keuls post-hoc test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Figure 3.27: Hepatic free cholesterol concentrations in BioFlB hamsters fed either fish 
oil or seal oil in the presence (shaded) and absence (open) of elderberry extract for a 
period of 4 weeks. Liver samples were assayed for free cholesterol as described in the 
methods section. Values given are means± SEM (n=6) analyzed by 2-way ANOVA and 
the Newman- Keuls post-hoc test. Mean values shown with different letters depict 
statistically significant differences (p< 0.05). 
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Analysis of hepatic cholesterol esters revealed significant differences in response 

to different dietary treatments (Figure 3.26). Similar to total cholesterol concentrations, 

cholesterol esters were also significantly reduced in BioFIB hamsters fed a combination 

of marine oils and elderberry extract as compared to hamsters fed the respective fat diet 

alone (p< 0.001 for fish oil and seal oil fed hamsters). 

Hepatic free cholesterol levels were also influenced by treatment with marine oils 

(p< 0.0001) as well as elderberry extract (p< 0.01) (Figure 3.27). A combination of fish 

oil and elderberry extract caused a significant reduction in hepatic free cholesterol 

concentrations as compared to hamsters fed fish oil alone (p= 0.04). However, no 

significant difference was observed in the seal oil fed hamsters in the presence or absence 

of elderberry extract. 

3.2.4 Plasma and liver TBARS of hamsters fed marine oils and elderberry extract 

Figure 3.28 shows plasma TBARS levels to evaluate the extent of lipid 

peroxidation in response to different diets. Two-way ANOV A revealed a significant 

effect of fat and elderberry extract (p< 0.0001 and 0.001 respectively) on plasma lipid 

peroxide concentrations in hamsters fed different diets. Seal oil fed BioF 1 B hamsters had 

significantly lower levels of lipid peroxides (p< 0.001) compared to fish oil fed hamsters. 

A combination of fish oil and elderberry extract significantly reduced plasma TBARS as 

compared to hamsters fed fish oil alone (p< 0.001). In contrast to fish oil fed hamsters, a 

combination of seal oil and elderberry extract had no significant effect on plasma TBARS 

as compared to hamsters fed seal oil alone. 
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Liver TBARS from hamsters fed different marine oils in the absence or presence 

of elderberry extract are shown in Figure 3.29. Fish oil fed hamsters had significantly 

higher levels of liver TBARS as compared to seal oil fed hamsters (p< 0.01). Addition of 

elderberry extract to fish oil fed BioFIB hamsters significantly reduced liver TBARS as 

compared to hamsters fed fish oil alone. On the other hand, addition of elderberry extract 

to seal oil had no significant effect on liver TBARS as compared to seal oil alone fed 

hamsters. 
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Figure 3.28: Plasma TBARS levels in BioFl B hamsters fed either fish oil or seal oil in 
the presence (shaded) and absence (open) of elderberry extract for a period of 4 weeks. 
Plasma samples were assayed for TBARS as described in the methods section. Values 
given are means± SEM (n=6) analyzed by 2-way ANOV A and the Newman- KeuJs post
hoc test. Mean values shown with different letters depict statistically significant 
differences (p< 0.05). 
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Figure 3.29: Hepatic TBARS levels in BioFIB hamsters fed either fish oil or seal oil in 
the presence (shaded) and absence (open) of elderberry extract for a period of 4 weeks. 
Liver samples were assayed for TBARS as described in the methods section. Values 
given are means± SEM (n=6) analyzed by 2-way ANOV A and the Newman- Keuls post
hoc test. Mean values shown with different letters depict statistically significant 
differences (p< 0.05). 

85 



Chapter 4: Discussion 
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4.1 Effects of dietary fish oil in BioFlB hamsters 

Previous studies from our laboratory have shown that high levels of fish oil cause 

hyperlipidemia in BioFlB hamsters (de Silva et al. , 2004). These hamsters showed milky 

plasma rich in CM like particles and significantly elevated plasma-, VLDL-, LDL

cholesterol and TG concentrations. While there is a possibility that fish oil induced 

hyperlipidemia could partly be contributed by VLDL fraction, however, CM appears to 

be the major candidate. Subsequent findings demonstrated that diet induced 

hyperlipidemia in BioFlB hamsters were specific to fish oil compared to a diet rich in 

MUF A or ro-6/ ro-3 diet (Cheema and Cornish, 2007). Presence of milky plasma, rich in 

CM like particles, in fish oil fed BioFlB hamsters indicated that fish oil feeding either 

affected the synthesis and secretion or clearance of TG-rich lipoproteins. Diet induced 

hyperlipidemia was partly explained by reduced post-heparin LPL activity and thus, 

appeared to have hindered the clearance of CM- like particles from circulation. For the 

present study, we hypothesized that BioFlB hamsters will be able to metabolize seal oil 

better than fish oil due to differences in fatty acid composition and the positional 

distribution of fatty acids in the TG molecule. We had previously established that fish oil 

feeding in BioFlB hamsters led to increased lipid peroxidation and compromised anti

oxidant status as compared to the other diets (Dubey and Cheema, unpublished data). 

Thus, we compared the effects of fish oil and seal oil on the regulation of lipid 

metabolism and oxidative stress in BioFlB hamsters. 
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4.2 Effect of dietary fish oil or seal oil on plasma lipids 

4.2.1 Effect of dietary fish oil or seal oil on plasma TG 

Feeding a high fat seal oil diet for 4 weeks to BioF1B hamsters did not cause 

milky plasma after an overnight fast (Figure 3.1 ). The whole plasma (Figure 3 .2) and 

individual lipoprotein fractions (Figure 3.3) showed significantly lower TG 

concentrations in seal oil fed hamsters as compared to hamsters fed fish oil. Other studies 

have also reported significantly higher TG concentrations in fish oil fed rabbits and 

hamsters (Kristensen et al. , 1988; Hayes et al. , 1992; Kubow et al. , 1996). The absence 

of milky plasma and significantly lower plasma TG levels in BioF1B hamsters fed seal 

oil as compared to fish oil fed hamsters suggested differences in the clearance of TG rich 

lipoproteins. Hydrolysis of TG in circulating CM and VLDL to FF A and glycerol by LPL 

represents a rate-limiting step in the clearance of these TG-rich lipoproteins from the 

circulation. Reduced post-heparin LPL activity has been associated with an increased 

accumulation of CM in BioFlB hamsters fed a cholesterol supplemented diet (McAteer 

et al., 2003). Significantly lower post-heparin LPL activity was observed in BioF1B 

hamsters compared to Golden Syrian hamsters which was further reduced by fish oil 

feeding (Cheema and Cornish, 2007). BioFlB hamsters also showed significantly 

reduced adipocyte LPL mRNA levels as compared to Golden Syrian hamsters indicating 

variations in genetic background between the two hamster strains. It appears that lower 

levels of LPL may be sufficient to clear lower density lipoproteins from seal oil fed 

hamsters as compared to fish oil fed hamsters, likely due to positional distribution of fatty 

acids in the triglyceride molecule. 
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Both fish oil and seal oil are rich sources of co-3 PUF A with fundamental 

differences in the composition and intramolecular distribution of co-3 PUF A. In addition 

to EPA and DHA found in fish oil, seal oil contains higher levels of DP A. Christensen et 

al. (1994) showed that while EPA and DHA are primarily located in sn-2 position in fish 

oil TG, these are distributed in sn-1 and sn-3 positions in seal oil TG. These structural 

differences may play an important role in the differential metabolism of these oils in the 

BioFIB hamsters. The pancreatic lipase and gastrointestinal lipase hydrolyze primary 

ester bonds in TG. While co-3 PUP A from fish oil are primarily absorbed as sn-2 

monoglycerols, these are absorbed as FF A upon seal oil consumption. It is suggested that 

differences in intramolecular distribution of co-3 PUP A in the two marine oils can 

potentially alter their uptake and bioavailability. Previous studies have shown a faster 

clearance of seal oil CM compared to fish oil CM (Christensen et al., 1995). Yoshida et 

al. (1999) have also demonstrated seal oil to be more effective than fish oil in reducing 

serum and liver TG levels. These findings are in support of our observations for the 

absence of CM like particle enriched plasma in seal oil fed BioF1B hamsters compared to 

fish oil fed hamsters. 

4.2.2 Effect of dietary fish oil or seal oil on plasma cholesterol levels 

In the present study, whole plasma total cholesterol (Figure 3.4), cholesterol esters 

(Figure 3.6) and free cholesterol (Figure 3.8) concentrations were significantly lower in 

seal oil fed BioFIB hamsters as compared to fish oil fed BioF1B hamsters. Additionally, 

significant reductions in total cholesterol, cholesterol esters and free cholesterol 
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concentrations were observed in the individual lipoprotein fractions namely VLDL, LDL 

and HDL, in BioFlB hamsters fed seal oil as compared to those fed fish oil. 

While several studies on fish oil supplementation have reported reduced VLDL 

cholesterol levels, the effects of fish oil on plasma total and LDL-cholesterol 

concentrations are inconsistent. Though some studies show lower LDL-cholesterollevels 

in response to dietary fish oil, others reveal high plasma total- and LDL- cholesterol 

concentrations upon fish oil feeding (Neste! et al. , 1984; Sullivan et al, 1986; Hsu et al. , 

2000; Rivellese et al. , 2003). Genetic susceptibility to dyslipidemia in certain populations 

can further result in elevated LDL-cholesterol levels upon fish oil supplementation. In 

fact, our laboratory has reported increased plasma VLDL and LDL- cholesterol 

concentrations in fish oil fed BioF1B hamsters as compared to hamsters fed a mixture of 

lard and safflower oil (1.5:1) (de Silva et al., 2004). It was previously reported that both 

fish oil and seal oil significantly lowered plasma total cholesterol concentrations as 

compared to com oil fed guinea pigs (Murphy et al. , 1999b ). However, no significant 

differences in total cholesterol, LDL-cholesterol and HDL cholesterol were observed in 

fish oil and seal oil fed normocholesterolemic subjects as well as moderately 

hypercholesterolemic subjects (V ognild et al. , 1998; Conquer et al. , 1999; Brox et al., 

2001). Recently, a study on dietary response to ro-3 PUFA in hypertriglyceridemic 

volunteers revealed reductions of 7% and 14% in plasma triglyceride levels of fish oil 

and seal oil fed subjects respectively, compared to control group (Meyer et al. , 2009). 

Moreover, our findings show that dietary seal oil fed BioF1B hamsters had lower 

cholesterol concentrations as compared to fish oil fed BioF1B hamsters. These data 
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further suggest that genetic variability might be crucial in determining any differential 

response of ro-3 PUF A supplementation on lipid profile and other biological variables, 

based on the type of ro-3 PUF A fed. 

Preliminary observations from our laboratory show that the CM fatty acid 

composition is different in fish oil fed and seal oil fed BioF1B hamsters (Banfield, 2008). 

Fatty acid analysis showed significantly higher EPA and DHA concentrations in CM 

from fish oil fed BioF 1 B hamsters compared to seal oil fed BioF 1 B hamsters. These 

findings suggest that the uptake and/or removal of these fatty acids might not be as 

efficient in fish oil fed BioF1B hamsters as compared to seal oil fed BioF1B hamsters. 

Fish oil feeding in BioF1B hamsters has also been shown to lower LPL activity compared 

to BioF1B hamsters fed MUFA and ro-6/ ro-3 diets (Cheema and Cornish, 2007). In 

addition to regulating energy distribution in the form of free fatty acids, LPL is also 

known to play an important role in lipoprotein metabolism by controlling the distribution 

of cholesterol to LDL and HDL (Tsutsurni, 2003). LPL-mediated hydrolysis of VLDL 

leads to the formation of LDL, which is considered to be an independent predictor of 

CVD. LPL is a rate-limiting enzyme in the formation of LDL particles; structural 

mutations in the LPL gene have revealed a genetic linkage to LDL particle size 

(Hokanson et a!. , 1999). A clinical study reported by Ando et a!. (200 1) has shown 

genetic LPL deficiency to be associated with hypercholesterolemia due to increased 

VLDL and LDL levels. Over expression of LPL in transgenic Watanabe heritable 

hyperlipidemic rabbits significantly suppressed high fat diet induced hyperlipidemia, 

suggesting therapeutic potential of LPL genetic manipulation in human Familial 
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Hypercholesterolemia (Koike eta!. , 2004). In our study, it appears that BioFlB hamsters 

with reduced LPL activity clear CM and VLDL more efficiently in response to dietary 

seal oil as compared to fish oil. Plasma LDL cholesterol levels have been negatively 

correlated with the rate of clearance of TG-rich lipoproteins from plasma (Chung eta!. , 

2004; Sposito et a!. , 2002). This further supports our hypothesis that hindered TG-rich 

lipoprotein clearance in fish oil fed BioFlB hamsters contributes to elevated plasma LDL 

levels. However, to date there are no reports on the association of altered clearance of 

TG-rich lipoproteins and plasma cholesterol levels in seal oil and fish oil fed BioFlB 

hamsters as well as the molecular mechanisms involved. The possibility of fat 

malabsorption in differentially fed hamsters also needs to be explored. Thus, more 

elaborate studies to investigate the differential regulation of VLDL, LDL and HDL 

cholesterol levels in fish oil and seal oil fed BioFlB hamsters need to be carried out. 

The differential regulation of lipoprotein metabolism by the two ro-3 rich PUF A 

sources in BioFlB hamsters could also involve LDL receptor, which is important in the 

clearance of lipoprotein cholesterol from the circulation. Theobald eta!. (2004) reported 

elevated LDL cholesterol concentrations and reduced LDL receptor expression after 

DHA consumption (0.7g/day) in middle aged men and women for 3 months. Similarly, 

fish oil induced hyperlipidemia in BioFlB hamsters revealed significantly lower hepatic 

LDL-receptor mRNA levels as compared to ro-6/ ro-3 diet fed hamsters (de Silva et al. , 

2004). It still remains to be explored whether ro-3 PUF A in seal oil exert any effect on 

LDL receptor gene expression and alter lipoprotein clearance. 
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Lecithin:cholesterol acyl transferase (LCA T) and CETP play a major role in 

"reverse cholesterol transport", a process which facilitates the removal of free cholesterol 

from extrahepatic tissues and transports cholesterol to liver. In the plasma, LCA T and 

CETP mediate the esterification of free cholesterol as well as reciprocal exchange of 

cholesterol esters and TG between cholesterol-rich lipoproteins (LDL and HDL) and TO

rich lipoproteins (CM and VLDL) (Chung et al., 2004; Tall 1993; Glomset and Norum, 

1973). Reduced CETP activity has been demonstrated in the plasma of patients with LPL 

deficiency (Bagdade et al., 1996). Differential regulation of LCA T and CETP might 

partially account for differences in the rate of clearance of TG-rich lipoproteins as well as 

cholesterol levels in response to two marine oils in BioF 1 B hamsters. Thus, precise 

mechanisms involved in differential regulation of lipid metabolism by the two co-3 PUF A 

rich marine oils, especially with regards to heterogeneity in genetic background need to 

be studied in detail. 

4.2.3 Effect of dietary fish oil or seal oil on hepatic lipid profile 

We observed significantly lower hepatic TG, total-cholesterol, cholesterol esters 

and free cholesterol levels in seal oil fed BioFlB hamsters as compared to fish oil fed 

BioFlB hamsters (Figure 3.10 - Figure 3.13). Elevated hepatic lipid levels have 

previously been shown from our laboratory in fish oil fed BioFlB hamsters (de Silva et 

al. , 2004, Cheema and Cornish, 2007). While all the hepatic lipid parameters were 

significantly lower in seal oil fed BioFlB hamsters as compared to the fish oil fed 

BioFlB hamsters, the differences for hepatic total- cholesterol and cholesterol esters were 
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more dramatic as compared to the hepatic TG and free cholesterol concentrations in 

BioFlB hamsters fed dietary seal oil. Seal oil fed BioFlB hamsters showed almost 50% 

lower hepatic total cholesterol and cholesterol ester concentrations, which suggests that 

seal oil specifically alters the regulation of metabolic pathways involved in cholesterol 

metabolism in the liver. 

Liver is believed to be the most important organ in cholesterol regulation and the 

metabolic mechanisms that influence hepatic free cholesterol and cholesterol ester levels 

are critical in maintaining total body cholesterol homeostasis. Since cholesterol primarily 

contributes to the development of CVD by accumulating in the arterial plaques as 

cholesterol esters (Rudel and Shelness, 2000), it is important to study in detail the 

transport and storage of cholesterol in BioF 1 B hamsters fed marine oils. A key 

cholesterol esterification enzyme, acyl Co A: cholesterol acyl transferase 2 (ACA T -2) is 

expressed in the liver and intestine. Cholesterol esters generated by ACAT-2 in the 

intestine are incorporated into CM and are rapidly and selectively removed from the 

circulation by the liver (Klein and Rudel, 1983, Goodman, 1962). ACAT-2 further 

regulates hepatic cholesterol metabolism as well as the secretion and transport in plasma 

lipoproteins (Rudel and Shelness, 2000). ACAT also regulates biliary cholesterol 

secretion by influencing the availability of "metabolically active" free cholesterol for 

transport into bile (Turley and Dietschy, 1988). ACAT -2 deficient mice have been shown 

to be resistant to diet-induced hypercholesterolemia with reduced capacity to absorb 

cholesterol (Buhman et al. , 2000). These authors reported that disruption of cholesteryl 

ester formation in the intestine by ACA T -2 prevents cholesteryl ester accumulation in the 
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liver, within lipoprotein particles as well as in the bile. Since we observed drastic 

differences in the cholesterol levels of fish oil and seal oil fed BioFlB hamsters with 

more pronounced changes in total cholesterol and cholesteryl ester levels, it will be 

interesting to study any effects of different diets on ACAT expression and activity. 

Contrary to the role of ACAT, cholesteryl ester hydrolase (CEH) hydrolyses 

cholesteryl esters to generate free cholesterol. When cellular free cholesterol levels are 

depressed, cytosolic CEH releases free cholesterol from the intracellular cholesteryl ester 

storage, thus contributing to maintaining a constant cellular free cholesterol pool (Ghosh 

and Grogan, 1989; Ghosh et al. , 1990; Lee and Carr, 2004). Regulation of CEH in the 

liver mainly occurs at the transcriptional level (Grogan et al., 1991 ; Ghosh et al. , 1998). 

ACAT and CEH are likely to be coordinately regulated since they act together in a cyclic 

and opposite manner (Lee and Carr, 2004). It remains to be ascertained whether fish oil 

and seal oil differently regulate CEH expression and activity in BioFlB hamsters. 

Interestingly, gas chromatography analysis of the two co-3 PUFA rich diets 

revealed that the MUF A content in seal oil was more than double of that found in fish oil 

(22.2% in fish oil and 50.6% in seal oil). These observations lead us to believe that 

increased MUF A content of seal oil diet might partially account for significantly lower 

hepatic total cholesterol and cholesterol ester levels in seal oil fed BioF 1 B hamsters as 

compared to fish oil fed BioFlB hamsters, along with differential regulation of 

transcription factors as discussed in the following sections. 
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4.2.4 Effect of dietary fish oil or seal oil on mRNA expression of transcription 

factors 

Dramatic effects of ro-3 PUF A rich marine oils, namely fish oil and seal oil, on 

plasma and liver lipid profile suggest that the two marine oils might be differentially 

regulating the molecular mechanisms involved in lipid and lipoprotein metabolism. Thus 

we investigated whether the differences in gene regulation by fish oil and seal oil were 

evident at the level of transcription factors and nuclear receptors, i.e. SREBP-1c, 

SREBP-2, LXR-a and PPAR-a. 

4.2.4.1 Effect of dietary fish oil or seal oil on SREBP mRNA expression 

Regulation of lipid metabolism involves SREBPs, helix-loop-helix transcription 

factors, which bind to the sterol regulatory elements in promoters of genes involved in 

lipogenesis and cholesterol metabolism (Sam path and Ntambi, 2005). While SREBP-1 c 

preferentially activates lipogenesis, SREBP-2 preferentially enhances the transcription of 

genes involved in cholesterogenesis (Le Jossic-Corcos eta!., 2005). In our study, seal oil 

fed BioFlB hamsters showed significantly reduced hepatic SREBP-1c mRNA expression 

as compared to the fish oil fed BioF1B hamsters (Figure 3.14). The suppression of 

lipogenesis in seal oil fed BioF1B hamsters can be partially explained by reduced 

SREBP-1 c mRNA levels. On the other hand, fish oil and seal oil fed hamsters did not 

show any significant differences in hepatic SREBP-2 mRNA levels (Figure 3.15), though 

there was a trend towards reduced SREBP-2 mRNA expression in seal oil fed BioF 1 B 

hamsters compared to the fish oil fed BioF 1 B hamsters. 
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Dietary ro-3 PUF A can exert an inhibitory effect on lipogenesis either by 

inhibition of SREBP maturation or repression of SREBP mRNA. In addition to 

regulation of SREBP-1 proteolytic degradation by ro-3 PUF A in vivo (Xu et al. , 1999b; 

Kim et al. , 1999), some studies have reported lower intracellular levels of SREBP-1 c 

mRNA in response to dietary ro-3 PUFA (Kim et al., 1999; Yahagi eta!., 1999). These 

suppressive effects of dietary fish oil on the expression of lipogenic enzymes at the level 

of SREBP-1 mRNA expression as well as proteolytic processing of mature SREBP-1 

have been reported in rodent liver and human cell lines (Kim et al. , 1999; Hannah et al., 

2001). Similar to our findings with seal oil supplementation in BioF1B hamsters, EPA 

and DHA treatment in H4IIEC3 cells showed reduced levels of SREBP-1c mRNA 

expression, with no changes seen with SREBP-1a and SREBP-2 levels (Le Jossic-Corcos 

et al. , 2005). 

Thus, lower SREBP-1c mRNA levels in seal oil fed BioF1B hamsters indicate a 

potential role of SREBP-1 c in differential regulation of lipogenesis in response to the 

marine oils in BioF 1 B hamsters. However, it needs to be elucidated whether the 

regulation of SREBP-1 c levels occurs at the level of mRNA synthesis or mRNA stability. 

Moreover, no significant differences in SREBP-2 mRNA expression were seen in fish oil 

and seal oil fed BioF 1 B hamsters. This may suggest that either SREBP-2 is not involved 

in regulating lipid levels in response to the high fat diets or the diets might exert 

differential effects on lipid metabolism via SREBP-2 activation at translational or post

translational level. Further studies are needed to elucidate precise downstream effectors · 
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of differential SREBP-lc expression that contribute to the anti-hyperlipidemic outcome 

in seal oil fed BioFlB hamsters. 

4.2.4.2 Effect of dietary fish oil or seal oil on PPAR-a mRNA expression 

PPAR-a is predominantly found in the liver and regulates genes of lipid transport 

and oxidation. Since the two different co-3 PUF A rich sources in our study showed drastic 

alterations in plasma and liver lipid profile, we investigated whether there were 

alterations in the regulation of hepatic PP AR- a expression levels in fish oil and seal oil 

fed BioFlB hamsters. We did not observe any significant differences in PPAR-a 

expression in response to fish oil or seal oil feeding in BioFlB hamsters (Figure 3.16). 

Nakatani et al. (2003) has previously reported an activation of PPAR-a in rodents fed fish 

oil. Increased hepatic expression of PPAR-a in fish oil fed mice also demonstrated 

increased expression of peroxisomal and microsomal fatty acid oxidation genes (Larter eL 

al. , 2008). The expression of several PP AR dependent enzymes mediating fatty acid 

oxidation was also significantly increased upon menhaden oil supplementation in the 

livers of corpulent JCR rats (Deng et al. , 2004 ). Structural analysis had demonstrated that 

EPA is an endogenous ligand for PP ARs while DHA needs to be converted to EPA to 

activate PP ARs (Xu et al. , 1999a; Sprecher 2000). Though the two marine oils in our 

study differ in their co-3 PUF A composition and MUF A content, these changes did not 

seem to significantly alter the hepatic PPAR-a expression. Thus, the observed changes in 

plasma and hepatic lipids by seal oil and fish oil feeding in the BioFlB hamsters were not 

due to alterations in the mRNA expression ofPPAR- a. 
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4.2.4.3 Effect of dietary fish oil or seal oil on LXR-a. mRNA expression 

LXR -a and -~ are believed to be involved in the regulation of several genes of 

lipid metabolism, e.g. Cyp7a, FAS, LPL, ACC. The transcription of SREBP-lc has also 

been shown to be under the positive control of LXR- a (Repa eta/. , 2000). While some 

studies suggest that SREBP-mediated repression of lipogenesis by PUF A is LXR 

dependent (Yoshikawa et a/. , 2002b ), others propose that repression of SREBP-1 c 

mRNA levels by PUF A is LXR-independent (Pawar et al., 2003). Since we observed 

reduced SREBP-lc mRNA levels in seal oil fed BioFIB hamsters as compared to fish oil 

fed BioF1B hamsters, we decided to elucidate the effects of marine oils on LXR-a 

expression in BioF 1 B hamsters. Our results did not show any significant differences in 

hepatic LXR-a mRNA expression in the fish oil and seal oil fed BioFlB hamsters (Figure 

3.17). Thus, the effect of seal oil on SREBP-lc inhibition is likely due to LXR

independent pathways. 

4.2.5 Effect of dietary fish oil or seal oil on plasma and liver lipid peroxidation 

The consumption of long chain PUFA, i.e. ro-3 PUFA in marine oils, can confer 

increased susceptibility to oxidative stress. Dietary ro-3 PUF A has been shown to 

displace ro-6 PUF A and get efficiently incorporated into membrane phospholipids. 

Leibovitz et a/. (1990) reported that membranes rich in ro-3 PUF A were more prone to 

oxidative stress. Previous studies from our laboratory demonstrated significantly higher 

liver lipid peroxidation levels in BioFlB hamsters as compared to Golden Syrian 

hamsters (Dubey and Cheema, unpublished data). BioFlB hamsters fed fish oil showed 
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significant elevations in liver lipid peroxidation levels as compared to BioFIB hamsters 

on MUFA and ro-6/ ro-3 diets. We observed reduced catalase activity in fish oil fed 

BioFIB hamsters as compared to ro-6/ ro-3 diet fed BioFIB hamsters. These findings 

support several reports in which fish oil supplementation has been shown to enhance in

vivo lipid peroxidation and compromise anti-oxidant enzyme status and potentially 

contribute to atherogenesis (Kaasgaard et a/.,1992; Cho eta!., 1995; Ando et al. , 1998; 

Ando eta!. , 2000; Dommels eta!., 2003; Yuan and Kitts, 2003). Fish oil induced lipid 

peroxidation has been associated with fish oil induced hyperlipidemia (Kubow, 1998). 

Hence, the elevations in lipid peroxide levels and compromised anti-oxidant defenses in 

fish oil fed BioF 1 B hamsters can also potentially contribute to fish oil induced 

hyperlipidemia in BioF 1 B hamsters. In contrast to most studies that propose detrimental 

effects of dietary fish oil on oxidative stress, other studies report beneficial effects of fish 

oil against oxidation (Erdogan et al. , 2004; Wang et al. , 2004). 

In the present study, we compared the effects of dietary fish oil and seal oil on the 

extent of oxidative stress in BioF1B hamsters. It was observed that both plasma (Figure 

3 .18) and liver (Figure 3 .19) lipid peroxidation levels were significantly lower in seal oil 

fed hamsters as compared to fish oil fed BioF1B hamsters. However, the plasma TBARS 

levels showed more dramatic differences as compared to the liver TBARS. The plasma 

malondialdehyde levels in seal oil fed BioFlB hamsters were almost one-third of that 

observed for fish oil fed BioF1B hamsters. The possible explanation for differences in 

oxidation levels in response to the two ro-3 PUFA rich marine oils could be due to the 

fact that ro-3 PUF A from seal oil are relatively more stable and less prone to lipid 
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oxidation than fish oil (Nakhla, 1997). Furthermore, while high levels of MUF A in seal 

oil diet compared to fish oil can also potentially confer resistance to oxidation, there is a 

possibility that an as yet unknown antioxidant in seal oil might be responsible for its 

resistance to oxidation. Our findings suggest that seal oil feeding does not induce 

oxidative stress as compared to dietary fish oil in BioFIB hamsters. The effect of two 

different sources of ro-3 PUF A on anti-oxidant enzyme activities in seal oil and fish oil 

fed BioFlB hamsters remains to be investigated. More studies need to be undertaken to 

gain a better understanding of the potential beneficial effects of seal oil as an alternative 

source of ro-3 PUFA compared to fish oil in BioFlB hamsters. 

4.3 Effects of a combination of marine oils and elderberry extract 

Recent studies have focused on the investigation of biological anti-oxidants such 

as anthocyanins. Several plant anthocyanins have been reported to be more potent anti

oxidants when compared to traditional vitamins such as vitamin E and vitamin C (Tsao 

and Deng, 2004; Bakowska-Barczak et al. , 2007). The potential health benefits of 

anthocyanins have mainly been attributed to their anti-atherogenic and anti-oxidant 

properties. Since our preliminary findings showed higher oxidative stress in fish oil 

BioFlB hamsters as compared to MUFA and ro-6/ ro-3 diets, we investigated the effects 

of co-supplementation of anthocyanin-rich elderberry extract (25% w/w) along with high 

fat diets rich in fish oil or seal oil. 

There was no significant effect on the average food intake upon dietary 

supplementation with anthocyanin-rich elderberry extract when given with either fish oil 
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or seal oil. At the end of the 4-week treatment period, there was no significant change in 

the weight gain data for BioFlB hamsters fed fish oil or seal oil alone. However, 

cosupplementation with elderberry extract in BioFlB hamsters fed high fish oil and seal 

oil diets resulted in significant reductions in weight gain after 4-weeks treatment (29% 

decrease in fish oil group and 32% decrease in seal oil group (Table 3.1). These 

observations support the existing reports about the possible anti-obesity effects of 

anthocyanins. Tsuda et al. (2003) demonstrated that dietary cyanidin-3 glucoside rich 

purple com color significantly suppressed the high-fat diet induced increase in body 

weight gain as well as white and brown adipose tissue weights in mice. Anthocyanin 

treatment in C57BL/6 mice fed high fat diet showed about 24% decrease in body weight 

gain (Jayaprakasam et al., 2006). Similarly, rats fed high fat diet and black soybean 

anthocyanins showed significantly lower weight gain than the rats fed high fat diet alone 

(Kwon et al. , 2007). Oral administration of anthocyanins-rich Hibiscus sabdariffa 

resulted in significantly reduced body weight gain in obese mice (Alarcon-Aguilar eta!. , 

2007). Overall, these reports suggest that anthocyanins might influence various metabolic 

pathways and thus exert potential beneficial effects in ameliorating obesity. 

4.3.1 Effect of marine oils and elderberry extract on plasma lipid and lipoprotein 

profile 

Anthocyanins might have preventative effects on the progression of CVD due to 

their lipid-lowering properties. We investigated the role of anthocyanin-rich elderberry 

extract supplementation on plasma lipid levels in marine oil fed BioF 1 B hamsters. An 
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observation of great significance was that BioF1B hamsters fed high fat fish oil diet along 

with elderberry extract did not show milky plasma. All the lipid parameters namely 

plasma TG, total-cholesterol, cholesteryl esters and free cholesterol concentrations were 

significantly reduced upon addition of elderberry extract to the marine oils in BioFIB 

hamsters (Figure 3.20 - Figure 3.23). These observations are in support of earlier reports 

on hypolipidemic effects of anthocyanin supplementation in several experimental animals 

(Kwon et a!. , 2007; Valcheva et a!., 2007 (a, b). The hypolipidemic effects of 

anthocyanins have further been reported to retard the progression of atherogenesis. 

Supplementation of anthocyanin rich black rice to rabbits significantly improved the lipid 

profile and inhibited atherosclerotic plaque formation (Ling et a!., 2001; Ling et a!. , 

2002). Xia et a!. (2006) also showed that anthocyanin rich extract from black nee 

improved lipid profile and enhanced plaque stabilization in ApoE deficient mice. 

Our experimental model for increased susceptibility to diet induced 

hyperlipidemia, BioF 1 B, showed lipid lowering effects of anthocyanin rich elderberry 

extract in both fish oil and seal oil fed hamsters. The reductions in plasma lipid levels 

were more pronounced in the fish oil fed hamsters as compared to the seal oil fed 

hamsters. Interestingly, for all the studied lipid parameters, we noted that the lipid levels 

for the fish oil fed hamsters along with elderberry extract were comparable to those seen 

for the seal oil alone fed Bio FIB hamsters. Moreover, plasma lipid concentrations in seal 

oil fed hamsters were similar to MUFA supplemented BioF1B hamsters. Our results 

suggest that supplementing anthocyanin rich elderberry extract in BioF1B hamsters fed 
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fish oil more effectively lowered lipid levels due to the inherent susceptibility of BioFIB 

hamsters to high dietary fish oil induced hyperlipidemia. 

The mechanism of action of elderberry extract on the regulation of lipid and 

lipoprotein metabolism in experimental animals or humans is not known. Berry extract 

can potentially regulate numerous pathways involved in the lipoprotein metabolism, i.e. 

the synthesis or clearance of TG-rich lipoproteins or cholesterol transporting lipoproteins. 

Absence of milky plasma in BioFlB hamsters fed fish oil and elderberry extract strongly 

suggests a role of elderberry extract in promoting lipoprotein clearance, which is 

inhibited in high fish oil fed BioFlB hamsters. The hypolipidemic action of dietary 

blueberry extract has been suggested to be due to improved TG-rich lipoprotein clearance 

in ethanol-treated normolipidemic and in genetically hyperlipidemic Yoshida rats 

(Cignarella et al., 1996). These authors concluded that supplementing blueberry extract 

might prove to be beneficial for treating dyslipidemias associated with impaired TG-rich 

lipoprotein clearance. Since BioFlB hamsters are an experimental model with reduced 

LPL activity, and thus impaired TG-rich lipoprotein clearance, the precise effects of 

elderberry extract on lipoprotein catabolism need to be explored in future studies. 

4.3.2. Effect of marine oils and elderberry extract on liver lipids 

Supplementing elderberry extract in fish oil fed BioFlB hamsters effectively 

lowered hepatic TG (Figure 3.24) and free cholesterol levels (Figure 3.27) in contrast to 

seal oil fed BioFlB hamsters, which did not show any significant change in hepatic TG 

and free cholesterol levels upon elderberry extract supplementation. Previous studies 
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have reported significant reductions in the hepatic TG levels and decreased hepatic lipid 

accumulation in high fat and anthocyanin fed C57BL/6 mice (Jayaprakasam et al. , 2006). 

It appears that elderberry extract was more effective in lowering hepatic TG and free 

cholesterol levels under hyperlipidemic conditions as observed in fish oil fed hamsters. 

Effects of elderberry extract on hepatic TG synthesis and/or the uptake of TG-rich 

lipoproteins by liver need to be explored to understand the mechanisms involved. 

Both fish oil and seal oil fed BioFIB hamsters showed significantly lower hepatic 

total cholesterol (Figure 3.25) and cholesterol ester (Figure 3.26) concentrations upon 

cosupplementation with elderberry extract. These fmdings indicate that anthocyanin rich 

elderberry extract might specifically regulate the cholesterol synthesis and metabolic 

pathways in exerting its anti-hyperlipidemic effects in fish oil and seal oil fed BioF I B 

hamsters. Since we are the first to report lipid lowering effects of elderberry extract in 

fish oil and seal oil fed BioF I B hamsters, there is no existing data on the precise 

metabolic pathways involved in the regulation of cholesterol metabolism by elderberry 

extract. However, a recent report suggested that anthocyanin-rich extract might have 

greater potential against atherosclerosis progression as compared to simvastatin in ApoE

deficient mice model (Xia et al. , 2006). It is well established that statin class of drugs 

lower plasma cholesterol levels by inhibiting 3-hydroxy-3-methyl-glutaryl-CoA 

reductase, the rate-limiting enzyme in cholesterol biosynthesis. Interestingly, ApoE

deficient mice on anthocyanin-rich extract demonstrated lower total cholesterol and non

HDL cholesterol with elevated HDL-cholesterol as compared to those on simvastatin 
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(Xia eta/. , 2006). Such findings emphasize the need to conduct more studies to evaluate 

the metabolic pathways affected by anthocyanins. 

In addition to affecting cholesterol biosynthesis, anthocyanins might also lower 

hepatic cholesterol ester concentrations by inhibiting ACAT activity thereby affecting 

cholesterol absorption and its incorporation into lipoproteins. Inhibition of ACAT activity 

in response to anthocyanin rich elderberry extract might be yet another mechanism for 

the dramatic decrease in hepatic cholesterol ester levels observed in marine oil fed 

BioF1B hamsters. Cranberry extract induced significantly higher LDL-receptor 

expression and increased intracellular cholesterol uptake in hepatocytes in a dose 

dependent manner (Chu and Liu, 2005). This study proposed the beneficial effects of 

berry extract in the clearance of excessive plasma cholesterol from the circulation. 

Anthocyanin rich extract from black rice has been reported to suppress cholesterol 

accumulation in the liver and aorta and significantly ameliorate hypercholesterolemia, 

suggesting a potential role in cholesterol efflux from the tissues (Xia et a/. , 2003). Xia et 

a/. (2005) recently showed that anthocyanins can induce cholesterol efflux from mouse 

peritoneal macrophages and macrophage derived foam cells by increasing gene 

expression of A TP binding cassette A 1, a key mediator of reverse cholesterol transport. 

This study further showed that stimulation of cholesterol efflux by anthocyanins in these 

cells was dependent on the activation of nuclear factors PP AR-y and LXR-a thereby 

suggesting that differential regulation of various nuclear receptors and transcription 

factors by anthocyanins might also play an important role in the regulation of lipid and 

lipoprotein metabolism in BioF1B hamsters. These reports further emphasize the need to 

106 



investigate the anti-hyperlipidemic effects of anthocyanin rich elderberry extract on 

various metabolic mediators as well as nuclear receptors and transcription factors 

involved in lipid and lipoprotein metabolism in marine oil fed BioF 1 B hamsters. 

4.3.3 Effect of marine oils and elderberry extract on plasma and liver lipid 

peroxidation 

Anthocyanins have gained much attention due to their ability to act as potent anti

oxidants and reactive oxygen species scavengers, thus preventing CVD progression 

(Ramirez-Tortosa et al. , 2001 ; Stintzing et al. , 2002; Kahkonen and Heinonen, 2003, Wu 

et al. , 2004, Bell and Gochenaur, 2006). Vinson et al. (1995) showed that single 

anthocyanin cyanidin-3-0-glucose chloride was more effective in protecting against 

oxidant degradation of LDLs as compared to vitamin C, E and beta-carotene combined. 

On examining the effects of anthocyanin enriched elderberry supplementation on plasma 

TBARS in marine oil fed BioFlB hamsters, we noted significant reductions in the levels 

of plasma lipid peroxidation in fish oil fed BioF1B hamsters in response to elderberry 

extract (Figure 3.28). Supplementation of seal oil fed BioF1B hamsters with elderberry 

extract did not show significant differences in the extent of lipid peroxidation when 

compared to hamsters fed seal oil alone. Similarly, we noted significant lowering of liver 

TBARS for BioF1B hamsters fed elderberry extract and fish oil as compared to hamsters 

fed fish oil alone (Figure 3.29). No significant changes for liver TBARS were seen in 

BioF 1 B hamsters fed either seal oil alone or a combination of seal oil and elderberry 

extract. Hence, our findings suggest that elderberry extract supplementation proved more 
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effective in lowering the extent of lipid peroxidation in fish oil fed BioFlB hamsters 

partly due to an increased susceptibility to oxidative stress in fish oil fed BioFlB 

hamsters. Seal oil fed BioFlB hamsters, however being relatively resistant to diet 

induced oxidative stress, showed no significant differences on plasma and lipid 

peroxidation levels upon supplementing with elderberry extract. 

The ability of anthocyanins to inhibit oxidation of lipids (Ramirez-Tortosa eta/., 

2001) and LDLs (Vinson et al. , 1995; Kano eta/. , 2005; Chang et al. , 2006) has mostly 

been reported based on in vitro studies. Y oudim et al. (2000) demonstrated increased 

protection against oxidative stress due to increased incorporation of elderberry 

anthocyanins into the membrane and cytosol of vascular endothelial cells. However, there 

are a few reports on the beneficial effects of anthocyanins against oxidative stress in-vivo. 

Acylated anthocyanins from dietary cabbage proved their anti-oxidant potential by 

preventing paraquat induced oxidative stress in rats (Igarashi eta/. , 2000). Moreover, rats 

fed anthocyanin-rich purple potato flakes showed improved anti-oxidant potential with 

significantly reduced serum lipid peroxidation and elevated mRNA expression of anti

oxidant enzymes (Han et al. , 2006; Han et al. , 2007). In this study, we report the 

protective effects of anthocyanin-rich elderberry extract in fish oil fed BioFlB hamsters, 

with significantly reduced levels of plasma and liver peroxidation levels, as compared to 

fish oil fed BioF 1 B hamsters. In the future, it will be relevant to study the mechanisms of 

action of anthocyanin rich elderberry extract by measuring enzyme activity and mRNA 

expression of different anti-oxidant enzymes. 
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4.4 Conclusions and future directions 

Previous studies from our laboratory have shown severe hyperlipidemia with 

increased TG and cholesterol concentrations in fish oil fed BioFlB hamsters (de Silva et 

al., 2004). Diet induced hyperlipidemia was further shown to be specific for fish oil when 

compared to MUFA and ro-6/ ro-3 diets, and specific to BioFlB hamsters when compared 

to Golden Syrian hamsters. Molecular studies to compare the two strains of hamsters 

showed significantly lower LPL activity, adipocyte LPL mRNA levels and elevated 

ApoB expression in BioFlB hamsters compared to Golden Syrian hamsters (Cheema and 

Cornish, 2007). These differences partially attribute the fish oil induced hyperlipidemia 

to genetic diversity in the hamster strains. 

In the current study, we showed that an alternative ro-3 PUFA-rich source, seal 

oil, did not cause hyperlipidemia at high doses as seen with fish oil feeding in BioFlB 

hamsters. Seal oil feeding showed significantly lower plasma and liver lipid levels in 

comparison to the fish oil diet. In the future, it will be interesting to investigate the 

regulation ofLPL expression and activity in the BioFIB hamsters fed seal oil and fish oil. 

The differences in the positional distribution of ro-3 PUF A in the TG of the two marine 

oils might potentially confer better TG clearing capacity in seal oil fed BioF 1 B hamsters 

as compared to fish oil fed BioFlB hamsters. It further needs to be investigated whether 

the anti-hypertriglyceridemic effects of seal oil are exclusively due to the differences in 

ro-3 PUF A composition and positional distribution of fatty acids in the triglyceride 

molecule of two oils or is it partly also due to increased MUF A levels or an as yet 

unidentified antioxidant in seal oil. In vitro assays to react commercial LPL with CM 
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from marine oil fed hamsters will help elucidate whether there is greater resistance to 

LPL in case of fish oil CM compared to seal oil CM. Transgenic studies targeting LPL 

gene expression in fish oil and seal oil fed animals will help shed more light on the 

importance of the differences in the positional distribution of co-3 PUF A in the two oils 

on the regulation of lipid metabolism. 

Supplementation of dietary fish oil and seal oil, along with elderberry extract in 

BioF 1 B hamsters, resulted in significant reductions in weight gain at the end of the 4-

week study period as compared to BioF1B hamsters on fish oil or seal oil alone. 

Moreover, co-supplementation of fish oil and seal oil with elderberry extract showed 

significantly improved plasma lipid profile for both dietary fats in BioF1B hamsters. 

Further, comparing the effects of elderberry supplementation on lipid peroxidation levels 

in plasma and liver revealed significant reductions in oxidative stress in fish oil fed 

hamsters, while no significant changes were observed for seal oil fed BioF1B hamsters. 

Thus, anthocyanins showed immense potential in improving lipid profile as well as the 

extent of lipid peroxidation in fish oil fed BioF1B hamsters. However, the mechanisms 

by which anthocyanins, alone or in combination with marine oils, elicit these effects are 

not known, which should be undertaken in the future. 

This study shows that BioF1B hamsters fed high seal oil diet resist hyperlipidemia 

and oxidative stress as compared to fish oil fed BioF1B hamsters. While we believe that 

differences in co-3 PUF A composition and positional differences in TG from two marine 

oils are likely responsible for the differences in the regulation of lipid and lipoprotein 
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metabolism, the differences in fatty acid composition of the two marine oils might also 

play an important role, which could be a topic for future investigations. 

Overall, findings from the present study suggest that seal oil may be better than 

fish oil to lower plasma lipid levels and to prevent oxidative stress under genetically 

variable conditions. Our findings further suggest that co-supplementation of fish oil with 

anthocyanin rich berry extract may be beneficial under these conditions than fish oil 

alone. 

111 



Chapter 5: Bibliography 

112 



Aas, V., Rokling-Andersen, M.H., Kase, E.T., Thoresen, G.H. and Rustan, A.C. (2006) 
Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured 
human skeletal muscle cells. J Lipid Res. 47(2): 366-374. 

Accinni, R., Rosina, M., Bamonti, F., Della Noce, C., Tonini, A., Bernacchi, F., 
Campolo, J. , Caruso, R., Novembrino, C. , Ghersi, L., Lonati, S., Grossi, S., Ippolito, S., 
Lorenzano, E., Ciani, A. Gorini M. (2006) Effects of combined dietary supplementation 
on oxidative and inflammatory status in dyslipidemic subjects. Nutr. Metab. Cardiovasc. 
Dis. 16(2): 121-127. 

Ahn, Y.S., Smith, D. E., Osada, J. , Li, Z., Schaefer, R.J. and Ordovas, J.M. (1994) 
Dietary fat saturation affects apolipoprotein gene expresssion and high density 
lipoprotein size distribution in golden syrian hamsters. J Nutr. 124: 2147-2155. 

Alarcon-Aguilar, F.J., Zamilpa, A., Perez-Garcia, M.D ., Almanza-Perez, J.C., Romero
Nufiez, E., Campos-Sepulveda, E.A. , Vazquez-Carrillo, L.l. and Roman-Ramos, R. 
(2007) Effect of Hibiscus sabdariffa on obesity in MSG mice. J Ethnopharmacol. 
114(1): 66-71. 

Alexander Aguilera, A., Diaz, G.H. , Barcelata, M.L., Guerrero, O.A. and Ros, R.M. 
(2006) Induction of Cd36 expression elicited by fish oil PUF A in spontaneously 
hypertensive rats. J Nutr. Biochern. 17(11): 760-765. 

Amorini, A.M., Fazzina, G., Lazzarino, G., Tavazzi, B., Di Pierro, D., Santucci, R. , 
Sinibaldi, F., Galvano, F. and Galvano, G. (2001) Activity and mechanism of the 
antioxidant properties of cyanidin-3-0-beta-glucopyranoside. Free Radic. Res. 35(6): 
953-966. 

Ando, H., Nishimura, Y., Nemoto, T., Takamura, T., Nagai, Y. and Kobayashi, K. (2001) 
Severe hypercholesterolemia in a double heterozygote for lipoprotein lipase deficiency 
(LPL (Arita)) and apolipoprotein epsi1on4: a report of a family with LPL(Arita). Endocr. 
J 48(1):113-118. 

Ando, K. , Nagata, K. , Beppu, M., Kikugawa, K. , Kawabata, T., Hasegawa, K. and 
Suzuki, M. (1998) Effect ofn-3 fatty acid supplementation on lipid peroxidation and 
protein aggregation in rat erythrocyte membranes. Lipids 33(5): 505-512. 

Ando, K. , Nagata, K. , Yoshida, R. , Kikugawa, K. and Suzuki, M. (2000) Effect of n-3 
polyunsaturated fatty acid supplementation on lipid peroxidation of rat organs. Lipids 
35(4): 401-407. 

Atalay, M., Laaksonen, D.E., Khanna, S., Kaliste-Korhonen, E., Hanninen, 0. and Sen, 
C.K. (2000) Vitamin E regulates changes in tissue antioxidants induced by fish oil and 
acute exercise. Med. Sci. Sports Exerc. 32(3): 601-607. 

113 



Auwerx, J., Schoonjans, K., Fruchart, J.C. and Staels, B. (1996) Regulation of 
triglyceride metabolism by PP ARs: fibrates and thiazolidinediones have distinct effects. 
J Atheroscler. Thromb. 3(2): 81-89. 

Aviram, M. and Fuhrman, B. (2002) Wine flavonoids protect against LDL oxidation and 
atherosclerosis. Ann. N Y Acad. Sci. 957:146-161. 

Bagchi, D., Sen, C.K., Bagchi, M. and Atalay, M. (2004) Anti-angiogenic, antioxidant, 
and anti carcinogenic properties of a novel anthocyanin-rich berry extract formula. 
Biochemistry (Mosc). 69(1):75-80. 

Bagdade, J.D., Ritter, M.C., Lithell, H., Bassett, D., Mailly, F. , Talmud, P. and Hayden, 
M.R. (1996) Reduced cholesteryl ester transfer in plasma of patients with lipoprotein 
lipase deficiency. J Lipid Res. 37(8): 1696-1703. 

Bakowska-Barczak, A.M., Marianchuk, M. and Kolodziejczyk, P. (2007) Survey of 
bioactive components in Western Canadian berries. Can. J Physiol. Pharmacal. 85(11): 
1139-1152. 

Banfield, H.J. (2008) Comparison of plasma and tissue fatty acid composition ofBioFlB 
hamsters fed fish oil and seal oil. Memorial University ofNewfoundland, Canada. 

Bang, H.O., Dyerberg, J. and Hjoome, N. (1976) The composition of food consumed by 
Greenland Eskimos. Acta Med. Scand. 200(1-2): 69-73. 

Bell, D.R. and Gochenaur, K. (2006) Direct vasoactive and vasoprotective properties of 
anthocyanin-rich extracts. J Appl. Physiol. 100(4): 1164-1170. 

Bennett, A.J., Billett, M.A., Salter, A.M., Mangiapane, H.E. , Bruce, J.S., Anderson, K.L., 
Marenah, C.B. and Lason, N. (1995) Modulation of hepatic apolipoprotein B, HMG-coA 
reductase and low density lipoprotein receptor mRNA and plasma lipoprotein 
concentrations by defmed dietary fats. Biochem. J 311: 167-173. 

Berger, A., Mutch, D.M., German, J.B. and Roberts, M.A. (2002) Unraveling lipid 
metabolism with microarrays: effects of arachidonate and docosahexaenoate acid on 
murine hepatic and hippocampal gene expression. Genome Bioi. 3(7): 1-4. 

Bonefeld-J0rgensen, E.C., M0ller, S.M. and Hansen, J.C. (2001) Modulation of 
atherosclerotic risk factors by seal oil: a preliminary assessment. Int. J Circumpolar 
Health 60(1): 25-33. 

Bonen, A., Campbell, S.E., Benton, C.R., Chabowski, A., Coort, S.L., Han, X.X., 
Koonen, D.P., Glatz, J.F. and Luiken, J.J. (2004) Regulation of fatty acid transport by 
fatty acid translocase/CD36. Proc. Nutr. Soc. 63(2): 245-249. 

114 



Bordin, P., Bodamer, O.A., Venkatesan, S. , Gray, R.M., Bannister, P.A. and Halliday, D. 
(1998) Effects of fish oil supplementation on apolipoprotein B 1 00 production and 
lipoprotein metabolism in normolipidaemic males. Eur. J Clin. Nutr. 52(2): 104-109. 

Botolin, D., Wang, Y., Christian, B. and Jump, D.B. (2006) Docosahexaneoic acid 
(22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S 
proteasome-dependent pathways. J Lipid Res. 47(1): 181-192. 

Brox, J. , Olaussen, K., Osterud, B. , Elvevoll, E.O., Bj0mstad, E., Bratteb0g, G. and 
Iversen, H. (2001) A long-term seal- and cod-liver-oil supplementation in 
hypercholesterolemic subjects. Lipids 36(1): 7-13. 

Buhman, K.K., Accad, M., Novak, S., Choi, R.S., Wong, J.S. , Hamilton, R.L., Turley, S. 
and Farese, R.V. Jr. (2000) Resistance to diet-induced hypercholesterolemia and 
gallstone formation in ACAT2-deficient mice. Nat. Med. 6(12): 1341-1347. 

Chambrier, C., Bastard, J.P., Rieusset, J. , Chevillotte, E., Bonnefont-Rousselot, D., 
Therond, P., Hainque, B., Riou, J.P. , Laville, M. and Vidal, H. (2002) Eicosapentaenoic 
acid induces mRNA expression of peroxisome proliferator-activated receptor gamma. 
Obes. Res. 10(6): 518-525. 

Chan, D.C., Barrett, P.H. and Watt, G.F. (2004) Lipoprotein transport in the metabolic 
syndrome: methodological aspects of stable isotope kinetic studies. Clin. Sci. 107 (3): 
221-232. 

Chan, D.C., Watts, G.F., Mori, T.A., Barrett, P.H., Redgrave, T.G. and Beilin, L.J. (2003) 
Randomized controlled trial of the effect of n-3 fatty acid supplementation on the 
metabolism of apolipoprotein B-1 00 and chylomicron remnants in men with visceral 
obesity. Am. J Clin. Nutr. 77(2): 300-307. 

Chang, Y.C., Huang, K.X., Huang, A.C., Ho, Y.C. and Wang, C.J. (2006) Hibiscus 
anthocyanins-rich extract inhibited LDL oxidation and oxLDL-mediated macrophages 
apoptosis. Food Chem. Toxicol. 44(7): 1015-1023. 

Chatelain, F., Kohl, C., Esser, V., Me- Garry, J.D., Girard, J. and Pegorier, J.P. (1996) 
Cyclic AMP and fatty acids increase carnitine palmitoyltransferase I gene transcription in 
cultured fetal rat hepatocytes. Eur. J Biochem. 235(3): 789- 798. 

Cheema, S.K. and Cornish, M.L. (2007) Bio FIB hamster: a unique animal model with 
reduced lipoprotein lipase activity to investigate nutrient mediated regulation of 
lipoprotein metabolism. Nutr. Metab. (London) 4: 27. 

115 



Chen, J. , Song, W. and Redinger, R.N. (1996) Effects of dietary cholesterol on hepatic 
production of lipids and lipoproteins in isolated hamster liver. Hepatology 24(2): 424-
434. 

Cho, S.H. and Choi, Y.S. (1994) Lipid peroxidation and antioxidant status is affected by 
different vitamin E levels when feeding fish oil. Lipids 29(1): 47-52. 

Cho, S.H., Im, J.G., Choi, Y.S. , Son, Y.S. and Chung, M.H. (1995) Lipid peroxidation 
and 8-hydroxydeoxyguanosine formation in rats fed fish oil with different levels of 
vitamin E. J Nutr. Sci. Vitaminol. (fokyo) 41(1): 61-72. 

Christensen, M.S., H0y, C.E. and Redgrave, T.G. (1994) Lymphatic absorption of n- 3 
polyunsaturated fatty acids from marine oils with different intramolecular fatty acid 
distributions. Biochim. Biophys. Acta 1215(1-2): 198-204. 

Christensen, M.S., Mortimer, B.C., Hoy, C.E. and Redgrave, T.G. (1995) Clearance of 
chylomicrons following fish oil and seal oil feeding. Nutr. Res. 15 (3): 359-368. 

Chu, Y.F. and Liu, R.H. (2005) Cranberries inhibit LDL oxidation and induce LDL 
receptor expression in hepatocytes. Life Sci. 77(15): 1892-1901. 

Chung, B.H., Cho, B.H., Liang, P., Doran, S., Osterlund, L., Oster, R.A., Darnell, B. and 
Franklin, F. (2004) Contribution of postprandial lipemia to the dietary fat-mediated 
changes in endogenous lipoprotein-cholesterol concentrations in humans. Am. J Clin. 
Nutr. 80(5): 1145-1158. 

Chupukcharoen, N., Komaratat, P. and Wilairat, P. (1985) Effects of vitamin E 
deficiency on the distribution of cholesterol in plasma lipoproteins and the activity of 
cholesterol 7 alpha-hydroxylase in rabbit liver. J Nutr. 115(4): 468-472. 

Cignarella, A., Nastasi, M. , Cavalli, E. and Puglisi, L. (1996) Novel lipid-lowering 
properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in 
several models of rat dyslipidaemia: a comparison with ciprofibrate. Thromb. Res. 84(5): 
311-322. 

Clarke, S.D., Armstrong, M.K. and Jump, D.B. (1990) Dietary polyunsaturated fats 
uniquely suppress rat liver fatty acid synthase and S 14 mRNA content. J Nutr. 120(2): 
225- 231. 

Clarke, S.D. (2000) Polyunsaturated fatty acid regulation of gene transcription: a 
mechanism to improve energy balance and insulin resistance. Br. J Nutr. 83(1): S59-S66. 

Clifford, M.N. (2000) Anthocyanins- nature, occurrence and dietary burden. J Sci. Food 
Agricul. 80: 1063-1072. 

116 



------~----------~~--------------------------

Connor, W.E., Prince, M.J., Ullmann, D., Riddle, M., Hatcher, L., Smith, F.E. and 
Wilson, D. (I993) The hypotriglyceridemic effect of fish oil in adult-onset diabetes 
without adverse glucose control. Ann. N Y Acad. Sci. 683: 337- 340. 

Conquer, J.A., Cheryk, L.A., Chan, E., Gentry, P.A. and Holub, B.J. (1999) Effect of 
supplementation with dietary seal oil on selected cardiovascular risk factors and 
hemostatic variables in healthy male subjects. Thromb. Res. 96(3): 239-250. 

De Silva, P.P., Agarwal-Mawal, A. , Davis, P.J. and Cheema, S.K. (2005) The levels of 
plasma low density lipoprotein are independent of cholesterol ester transfer protein in 
fish-oil fed FIB hamsters. Nutr. Metab. (London) 2(1): 8. 

De Silva, P.P., Davis, P.J. and Cheema, S.K. (2004) Hyperlipidaemic effect of fish oil in 
Bio FIB hamsters. Br. J Nutr. 91(3): 341-349. 

Deng, X., Elam, M.B. , Wilcox, H.G., Cagen, L.M., Park, E.A., Raghow, R., Patel, D., 
Kumar, P., Sheybani, A. and Russell, J.C. (2004) Dietary olive oil and menhaden oil 
mitigate induction of lipogenesis in hyperinsulinemic corpulent JCR: LA-cp rats: 
microarray analysis of lipid-related gene expression. Endocrinology 145(12): 5847-5861. 

Dommels, Y.E., Heemskerk, S., van den Berg, H., Alink, G.M., van Bladeren, P.J. and 
van Ommen, B. (2003) Effects of high fat fish oil and high fat com oil diets on initiation 
of AOM-induced colonic aberrant crypt foci in male F344 rats. Food Chem. Toxicol. 
41(12): 1739-1747. 

Dorfman, S.E., Smith, D.E., Osgood, D.P. and Lichtenstein, A.H. (2003) Study of diet 
induced changes in lipoprotein metabolism in two strains of golden syrian hamsters. J 
Nutr. 133: 4183-4188. 

Dubey, P. and Cheema, S.K. (2008) Seal oil has greater benefits to lower plasma lipid 
levels as compared to fish oil. 12th World Congress on Clinical Nutrition: Nutritional 
factors in health and disease. Nutrition Bulletin 33: 67-71. 

Erdogan, H., Fadillioglu, E., Ozgocmen, S., Sogut, S., Ozyurt, B. , Akyol, 0. and 
Ardicoglu, 0. (2004) Effect of fish oil supplementation on plasma oxidant/antioxidant 
status in rats. Prostaglandins Leukot. Essent. Fatty Acids 71(3): 149-152. 

Farmer, A., Montori, V., Dinneen, S. and Clar, C. (2001) Fish oil in people with type 2 
diabetes mellitus. Cochrane Database Syst. Rev. 3: CD003205. 

Farwer, S.R., der Boer, B.C., Haddeman, E., Kivits, G.A., Wiersma, A. and Danse, B.H. 
(1994) The vitamin E nutritional status of rats fed on diets high in fish oil, linseed oil or 
sunflower seed oil. Br. J Nutr. 72(1): 127-145. 

117 



Field, F.J., Born, E. and Mathur, S.N. (2003) Fatty acid flux suppresses fatty acid 
synthesis in hamster intestine independently of SREBP-1 expression. J Lipid Res. 44: 
1199- 1208. 

Finne Nielsen, I.L., Elb0l Rasmussen, S., Mortensen, A., Ravn-Haren, G. , Ma, H.P., 
Knuthsen, P., Hansen, B.F., McPhail, D., Freese, R. , Breinholt, V., Frandsen, H. and 
Dragsted, L.O. (2005) Anthocyanins increase low-density lipoprotein and plasma 
cholesterol and do not reduce atherosclerosis in Watanabe Heritable Hyperlipidemic 
rabbits. Mol. Nutr. Food Res. 49(4): 301-308. 

Fisher, E.A., Pan, M., Chen, X., Wu, X., Wang, H., Jamil, H., Sparks, J.D. and Williams, 
K.J. (2001) The triple threat to nascent apolipoprotein B. Evidence for multiple, distinct 
degradative pathways. J Bioi. Chern. 276(30): 27855-27863. 

Fisher, W.R., Zech, L.A. and Stacpoole, P.W. (1998) Apolipoprotein B metabolism in 
hypertriglyceridemic diabetic patients administered either a fish oil- or vegetable oil
enriched diet. J Lipid Res. 39(2): 388-401. 

Folch, J. , Lees, M. and Sloane Stanley, G.H. (1957) A simple method for the isolation 
and purification oftotallipides from animal tissues. J Bioi. Chern. 226(1): 497-509. 

Fremont, L., Gozzelino, M.T., Franchi, M.P. and Linard, A. (1998) Dietary flavonoids 
reduce lipid peroxidation in rats fed polyunsaturated or monounsaturated fat diets. J 
Nutr. 128(9): 1495-15 02. 

Frenoux, J.M., Prost, E.D., Belleville, J.L. and Prost, J.L. (2001) A polyunsaturated fatty 
acid diet lowers blood pressure and improves antioxidant status in spontaneously 
hypertensive rats. J Nutr. 131(1): 39-45. 

Frolov, A. and Hui, D.Y. (2007) The modern art of atherosclerosis: a picture of colorful 
plants, cholesterol, and inflammation. Arterioscler. Thrornb. Vase. Bioi. 27(3): 450-452. 

Fukumoto, L.R. and Mazza, G. (2000) Assessing antioxidant and prooxidant activities of 
phenolic compounds. J Agric. Food Chern. 48(8): 3597-3604. 

Galvano, F., La Fauci, L., Lazzarino, G., Fogliano, V., Ritieni, A., Ciappellano, S., 
Battistini, N.C., Tavazzi, B. and Galvano, G. (2004) Cyanidins: metabolism and 
biological properties. J Nutr. Biochern. 15(1): 2-11. 

Ghosh, S. and Grogan, W.M. (1989) Activation of rat liver cholesterol ester hydrolase by 
cAMP-dependent protein kinase and protein kinase C. Lipids 24(8): 733-736. 

118 



Ghosh, S., Kounnas, M.Z. and Grogan, W.M. (1990) Separation and differential 
activation of rat liver cytosolic cholesteryl ester hydrolase, triglyceride lipase and retinyl 
palmitate hydrolase by cholestyramine and protein kinases. Lipids 25( 4): 221-225. 

Ghosh, S., Natarajan, R., Pandak, W.M., Hylemon, P.B. and Grogan, W.M. (1998) 
Regulation of hepatic neutral cholesteryl ester hydrolase by hormones and changes in 
cholesterol flux. Am. J Physiol. 274: G662-668. 

GISSI Prevenzione Investigators. (1999) Dietary supplementation with n-3 
polyunsaturated fatty acids and Vitamin E after myocardial infarction: results of the 
GISSI Prevenzione trial. Lancet 354 (9177): 447-455. 

Glomset, J.A. and Norum, K.R. (1973) The metabolic role of lecithin: cholesterol 
acyltransferase: perspectives from pathology. Adv. Lipid Res. 11: 1-65. 

Goodman, D.S. (1962) The metabolism of chylomicron cholesterol ester in the rat. J 
Clin. Invest. 41 : 1886-1896. 

Grogan, W.M., Bailey, M.L., Heuman, D.M. and Vlahcevic, Z.R. (1991) Effects of 
perturbations in hepatic free and esterified cholesterol pools on bile acid synthesis, 
cholesterol 7 alpha hydroxylase, HMG-CoA reductase, acyl-CoA:cholesterol 
acyltransferase and cytosolic cholesteryl ester hydrolase. Lipids 26(11): 907-914. 

Ha, Y.C. and Barter, P.J. (1982) Differences in plasma cholesteryl ester transfer activity 
in sixteen vertebrate species. Comp. Biochem. Physiol. B. 71(2): 265-269. 

Haglund, 0., Luostarinen, R., Wallin, R., Wibell, L. and Saldeen, T. (1991) The effects 
of fish oil on triglycerides, cholesterol, fibrinogen and malondialdehyde in humans 
supplemented with vitamin E. J Nutr. 121(2): 165-169. 

Han, K.H., Sekikawa, M., Shimada, K., Hashimoto, M., Hashimoto, N., Noda, T., 
Tanaka, H. and Fukushima, M. (2006) Anthocyanin-rich purple potato flake extract has 
antioxidant capacity and improves antioxidant potential in rats. Br. J Nutr. 96(6): 1125-
1133. 

Han, K.H., Shimada, K., Sekikawa, M. and Fukushima, M. (2007) Anthocyanin-rich red 
potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. 
Biosci. Biotechnol. Biochem. 71(5): 1356-1359. 

Hannah, V.C., Ou, J. , Luong, A. , Goldstein, J.L. and Brown, M.S. (2001) Unsaturated 
fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 
cells. J Bioi. Chern. 276(6): 4365-4372. 

119 



Harris, W.S., Hustvedt, B.E., Hagen, E., Green, M.H., Lu, G. and Drevon, C.A. (1997a) 
N-3 fatty acids and chylomicron metabolism in the rat. J Lipid Res. 38(3): 503-515. 

Harris, W.S., Lu, G., Rambjm, G.S., Walen, A.l., Ontko, J.A., Cheng, Q. and Windsor, 
S.L. (1997b) Influence ofn-3 fatty acid supplementation on the endogenous activities of 
plasma lipases. Am. J Clin. Nutr. 66(2): 254-260. 

Harris, W.S. (1997) N-3 fatty acids and serum lipoproteins: human studies. Am. J Clin. 
Nutr. 65(5 Suppl): 1645S-1654S. 

Hassimotto, N.M., Genovese, M.l. and Lajolo, F.M. (2005) Antioxidant act1v1ty of 
dietary fruits, vegetables, and commercial frozen fruit pulps. J Agric. Food Chern. 53(8): 
2928-2935. 

Hayes, K.C., Khosla, P., Kaiser, A., Yeghiazarians, V. and Pronczuk, A. (1992) Dietary 
fat and cholesterol modulate the plasma lipoprotein distribution and production of 
pigment or cholesterol gallstones in hamsters. J Nutr. 122(2): 374-384. 

Hayes, K.C., Pronczuk, A., Stephan, Z.F. and Lanzkron, S. (1990) Comparative lipemias 
in hamsters and three monkey species fed fish oil, in Proceedings of the AOCS short 
course on polyunsaturated fatty acids and eicosanoids (Lands, WE.M , ed.), American 
Oil Chemists' Society, Champaign: 334-339. 

He, Y.H., Zhou, 1., Wang, Y.S., Xiao, C., Tong, Y., Tang, J.C., Chan, A.S. and Lu, A.P. 
(2006) Anti-inflammatory and anti-oxidative effects of cherries on Freund's adjuvant
induced arthritis in rats. Scand. J Rheumatol. 35(5): 356-358. 

Hirai, A., Hamazaki, T., Terano, T., Nishikawa, T., Tamura, Y., Kumagai, A. and Sajiki, 
1. (1980) Eicosapentaenoic acid and platelet function in Japanese. Lancet 2(8204): 1132-
1133. 

Hokanson, J.E. and Austin, M.A. (1996) Plasma triglyceride level is a risk factor for 
cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta
analysis of population-based prospective studies. J Cardiovasc. Risk 3(2): 213-219. 

Hokanson, J.E., Brunzell, J.D. , Jarvik, G.P., Wijsman, E.M. and Austin, M.A. (1999) 
Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous 
lipoprotein lipase deficiency. Am. J Hum. Genet. 64(2): 608-618. 

Hooper, L., Thompson, R.L., Harrison, R.A., Surnmerbell, C.D., Ness, A.R., Moore, H.J., 
Worthington, H.V., Durrington, P.N., Higgins, J.P., Capps, N.E., Riemersma, R.A., 
Ebrahim, S.B. and Davey Smith, G. (2006) Risks and benefits of omega 3 fats for 
mortality, cardiovascular disease, and cancer: systematic review. Br. Med. J. 332(7544): 
752-760. 

120 



Hsu, H. C., Lee, Y.T. and Chen, M.F. (2000) Effect of n-3 fatty acids on the composition 
and binding properties of lipoproteins in hypertriglyceridemic patients. Am. J Clin. Nutr. 
71(1): 28-35. 

Hsu, J.M., Wang, P.H., Liu, B.H. and Ding, S.T. (2004) The effect of dietary 
docosahexaenoic acid on the expression of porcine lipid metabolism-related genes. J 
Anim. Sci. 82(3): 683-689. 

Hu, F.B., Bronner, L., Willett, W.C., Stampfer, M.J., Rexrode, K.M., Albert, C.M., 
Hunter, D. and Manson, J.E. (2002) Fish and omega-3 fatty acid intake and risk of 
coronary heart disease in women. JAMA 287(14): 1815-1821. 

Igarashi, K., Kimura, Y. and Takenaka, A. (2000) Preventive effects of dietary cabbage 
acylated anthocyanins on paraquat-induced oxidative stress in rats. Biosci. Biotechnol. 
Biochem. 64(8): 1600-1607. 

Illingworth, D.R., Harris, W.S. and Connor WE. (1984) Inhibition of low density 
lipoprotein synthesis by dietary omega-3 fatty acids in humans. Arteriosclerosis 4(3): 
270-275. 

Jayaprakasam, B., Olson, L.K., Schutzki, R.E., Tai, M.H. and Nair, M.G. (2006) 
Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by 
anthocyanins and ursolic acid in Comelian cherry (Comus mas). J Agric. Food. Chern. 
54(1): 243-248. 

Jenkins, D.J. , Josse, A.R., Beyene, J. , Dorian, P., Burr, M.L., LaBelle, R., Kendall , C.W. 
and Cunnane, S.C. (2008) Fish-oil supplementation in patients with implantable 
cardioverter defibrillators: a meta-analysis. CM4J 178(2): 157-164. 

Jones, P.J. and Lau, V.W. (2002) Effect ofn-3 polyunsaturated fatty acids on risk 
reduction of sudden death. Nutr. Rev. 60(12): 407-409. 

Jump, D.B., Clarke, S.D., Thelen, A. and Liimatta, M. (1994) Coordinate regulation of 
glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J Lipid Res. 
35(6): 1076-1084. 

Jump, D.B. (2002) The biochemistry of n-3 polyunsaturated fatty acids. J Bioi. Chern. 
277(11): 8755-8758. 

Kaasgaard, S.G., H0lmer, G., H0y, C.E., Behrens, W.A. and Beare-Rogers, J.L. (1992) 
Effects of dietary linseed oil and marine oil on lipid peroxidation in monkey liver in vivo 
and in vitro. Lipids 27(10): 740-745. 

121 



Kahkonen, M.P. and Heinonen, M. (2003) Antioxidant activity of anthocyanins and their 
aglycons. J Agric. Food Chern. 51(3): 628-633. 

Kano, M., Takayanagi, T., Harada, K., Makino, K. and Ishikawa, F. (2005) Antioxidative 
activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar 
Ayamurasaki. Biosci. Biotechnol. Biochem. 69(5): 979-988. 

Katan, M.B., Beynen, A. C., de Vries, J.H. and Nobels, A. (1986) Existence of consistent 
hypo- and hyperresponders to dietary cholesterol in man. Am. J Epidemiol. 123(2): 221-
234. 

Kendrick, J.S. and Higgins, J.A. (1999) Dietary fish oils inhibit early events in the 
assembly of very low density lipoproteins and target apoB for degradation within the 
rough endoplasmic reticulum of hamster hepatocytes. J Lipid Res. 40(3): 504-514. 

Khan, S., Minihane, A.M., Talmud, P.J., Wright, J.W., Murphy, M.C., Williams, C.M. 
and Griffin, B.A. (2002) Dietary long-chain n-3 PUFAs increase LPL gene expression in 
adipose tissue of subjects with an atherogenic lipoprotein phenotype. J Lipid Res. 43(6): 
979-985. 

Kikugawa, K., Yasuhara, Y., Ando, K., Koyama, K., Hiramoto, K. and Suzuki, M. (2003) 
Protective effect of supplementation of fish oil with high n-3 polyunsaturated fatty acids 
against oxidative stress-induced DNA damage of rat liver in vivo. J Agric. Food Chern. 
51(20): 6073-6079. 

Kim, H.J. , Takahashi, M. and Ezaki, 0. (1999) Fish oil feeding decreases mature sterol 
regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1 c 
mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic gene 
mRNAs. J Bioi. Chern. 274(36): 25892- 25898. 

Klein, R.L. and Rudel, L.L. (1983) Cholesterol absorption and transport in thoracic duct 
lymph lipoproteins of nonhuman primates. Effect of dietary cholesterol level. J Lipid 
Res. 24(4): 343-356. 

Koga, T., Moro, K. , Nakamori, K. , Yamakoshi, J. , Hosoyama, H. , Kataoka, S. and Ariga, 
T. (1999) Increase of antioxidative potential of rat plasma by oral administration of 
proanthocyanidin-rich extract from grape seeds. J Agric. Food Chern. 47(5): 1892-1897. 

Koike, T., Liang, J. , Wang, X., Ichikawa, T., Shiomi, M., Liu, G. , Sun, H., Kitajima, S. , 
Morimoto, M. , Watanabe, T., Yamada, N. and Fan, J. (2004) Overexpression of 
lipoprotein lipase in transgenic Watanabe heritable hyperlipidemic rabbits improves 
hyperlipidemia and obesity. J Bioi. Chern. 279(9): 7521-7529. 

122 



Kowala, M.C., Nunnari, J.J., Durham, S.K. and Nicolosi, R.J. (1991) Doxazosin and 
cholestyramine similarly decrease fatty streak formation in the aortic arch of 
hyperlipidemic hamsters. Atherosclerosis 91(1-2): 35-49. 

Kowalczyk, E ., Kopff, A., Niedworok, J., Kopff, M. and Jankowski, A. (2002) 
Anthocyanins--an adjunct to cardiovascular therapy? Kardiol. Pol. 57(10): 332-336. 

Kristensen, S.D., Roberts, K.M., Lawry, J. and Martin, J.F. (1988) The effect offish oil 
on atherogenesis and thrombopoiesis in rabbits on high cholesterol diet. Artery 15(5): 
250-258. 

Kromann, N. and Green, A. (1980) Epidemiological studies in the Upemavik district, 
Greenland. Incidence of some chronic diseases 1950-1974. Acta Med Scand 208(5): 
401-406. 

Krornhout, D., Feskens, E.J. and Bowles, C.H. (1995) The protective effect of small 
amount of fish on coronary heart disease mortality in an elderly population. Inter. J 
Epidemiol. 24: 340-345. 

Kubo, K. , Saito, M., Tadokoro, T. and Maekawa, A. (1997) Changes in susceptibility of 
tissues to lipid peroxidation after ingestion of various levels of docosahexaenoic acid and 
vitamin E. Br. J Nutr. 78(4): 655-669. 

Kubow, S. (1998) The Role of Oxidative Stress and Antioxidant Supplementation on 
Lipoprotein Metabolism, Rec. Res. Dev. Lipids 2: 81- 99. 

Kubow, S., Goyette, N., Kermasha, S., Stewart-Phillip, J. and Koski, K.G. (1996) 
Vitamin E inhibits fish oil-induced hyperlipidemia and tissue lipid peroxidation in 
hamsters. Lipids 31: 839-847. 

Kwon, S.H., Ahn, I.S., Kim, S.O., Kong, C.S., Chung, H.Y., Do, M .S. and Park, K.Y. 
(2007) Anti-obesity and hypolipidemic effects of black soybean anthocyanins. J Med 
Food 10(3): 552-556. 

Lapillonne, A., Clarke, S.D. and Heird, W.C. (2004) Polyunsaturated fatty acids and gene 
expression. Curr. Opin. Clin. Nutr. Metab. Care. 7(2): 151-156. 

Larter, C.Z., Yeh, M.M., Cheng, J. , Williams, J. , Brown, S., dela Pena, A., Bell
Anderson, K.S. and Farrell, G.C. (2008) Activation of peroxisome proliferator-activated 
receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental 
steatohepatitis because of hepatic lipoperoxide accumulation. J Gastroenterol. Hepatol. 
23(2): 267-275. 

123 



Le Jossic-Corcos, C., Gonthier, C., Zaghini, 1., Legette, E., Shechter, I. and Bournot, P. 
(2005) Hepatic farnesyl diphosphate synthase expression is suppressed by 
polyunsaturated fatty acids. Biochem. J 385: 787-794. 

Lee, J.Y. and Carr, T.P. (2004) Dietary fatty acids regulate acyl-CoA:cholesterol 
acyltransferase and cytosolic cholesteryl ester hydrolase in hamsters. J Nutr. 134(12): 
3239-3244. 

Leibovitz, B.E., Hu, M.L. and Tappel, A.L. (1990) Lipid peroxidation in rat tissue slices: 
effect of dietary vitamin E, com oil-lard and menhaden oil. Lipids 25(3): 125-129. 

Lemaitre, R.N., King, I.B., Mozaffarian, D., Kuller, L.H., Tracy, R.P. and Siscovick, D.S. 
(2003) N-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal 
myocardial infarction in older adults: the Cardiovascular Health Study. Am. J Clin. Nutr. 
77(2): 319-325. 

Lin, M.H., Lu, S.C., Hsieh, J.W. and Huang, P.C. (1995) Lipoprotein responses to fish, 
coconut and Soybean oil diets with and without cholesterol in the Syrian hamster. J 
Formos Med. Assoc. 94: 724-731. 

Lindi, V., Schwab, U., Louheranta, A., Laakso, M., Vessby, B., Hermansen, K. , Storlien, 
L., Riccardi, G., A Rivellese, A: KANWU Study Group. (2003) Impact of the Pro12Ala 
polymorphism of the PP AR-garnma2 gene on serum triacylglycerol response to n-3 fatty 
acid supplementation. Mol. Genet. Metab. 79(1): 52-60. 

Ling, W.H., Cheng, Q.X., Ma, J. and Wang, T. (2001) Red and black rice decrease 
atherosclerotic plaque formation and increase antioxidant status in rabbits. J Nutr. 
131(5): 1421-1426. 

Ling, W.H. , Wang, L.L. and Ma, J. (2002) Supplementation of the black rice outer layer 
fraction to rabbits decreases atherosclerotic plaque formation and increases antioxidant 
status. J Nutr. 132(1): 20-26. 

Lu, S.H., Lin, M.H. and Huang, P.L. (1996) A high cholesterol (n-3) polyunsaturated 
fatty acid diet induces hypercholesterolemia more than a high cholesterol (n-6) 
polyunsaturated fatty acid diet in hamsters. J Nutr. 126: 1759-1765. 

Martin, G., Schoonjans, K., Lefebvre, A.M., Staels, B. and Auwerx, J. (1997) Coordinate 
regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase 
genes by PPARalpha and PPARgarnma activators. J Bioi. Chern. 272(45): 28210-28217. 

Mazza, G., Kay, C.D., Cottrell, T. and Holub, B.J. (2002) Absorption of anthocyanins 
from blueberries and serum antioxidant status in human subjects. J Agric. Food Chern. 
50(26): 7731-773 7. 

124 



Mazza, G.J. (2007) Anthocyanins and heart health. Ann. 1st Super Sanita. 43(4): 369-374. 

McAteer, M.A. , David, C., Grimsditch, Vidgeon-Hart, M., Benson, G.M. and Salter, M. 
(2003) Dietary cholesterol reduces lipoprotein lipase activity in the atherosclerosis
susceptible Bio F1B hamster. Brit. J Nutr. 89: 341-350. 

Mehta, R.S., Gunnett, C.A., Harris, S.R., Bunce, O.R. and Hartle, D.K. (1994) High fish 
oil diet increases oxidative stress potential in mammary gland of spontaneously 
hypertensive rats. Clin. Exp. Pharmacol. Physiol. 21(11): 881-889. 

Menuet, R., Lavie, C.J. and Milani, R.V. (2005) Importance and management of 
dyslipidemia in the metabolic syndrome. Am. J Med. Sci. 330(6): 295-302. 

Meyer, B.J., Lane, A.E. and Mann, N.J. (2009) Comparison of seal oil to tuna oil on 
plasma lipid levels and blood pressure in hypertriglyceridaemic subjects. Lipids 44(9): 
827-835. 

Morazzoni, P. and Magistretti, M.J. (1990) Activity of Myrtocyan®, an anthosyanoside 
complex from Vaccinium myrtillus (VMA), on platelet aggregation and adhesiveness. 
Fitoterapia 61: 13- 21 . 

Morris, C.D. and Carson, S. (2003) Routine vitamin supplementation to prevent 
cardiovascular disease: a summary of the evidence for the U.S. Preventive Services Task 
Force. Ann. Intern. Med. 139(1): 56-70. 

Murkovic, M., Abuja, P.M., Bergmann, A.R., Zirngast, A., Adam, U., Winklhofer-Roob, 
B.M. and Toplak, H. (2004) Effects of elderberry juice on fasting and postprandial serum 
lipids and low-density lipoprotein oxidation in healthy volunteers: a randomized, double
blind, placebo-controlled study. Eur. J Clin. Nutr. 58(2): 244-249. 

Murphy, M.C., Zampelas, A., Puddicombe, S.M., Furlonger, N.P., Morgan, L.M. and 
Williams, C.M. (1993) Pretranslational regulation of the expression of the lipoprotein 
lipase (EC 3.1.1.34) gene by dietary fatty acids in the rat. Br. J Nutr. 70(3): 727-736. 

Murphy, M.C., Brooks, C.N., Rockett, J.C., Chapman, C., Lovegrove, J.A., Gould, B.J., 
Wright, J.W. and Williams, C.M. (1999a) The quantitation of lipoprotein lipase mRNA in 
biopsies of human adipose tissue, using the polymerase chain reaction, and the effect of 
increased consumption of n-3 polyunsaturated fatty acids. Eur. J Clin. Nutr. 53(6): 441-
447. 

Murphy, M.G., Wright, V., Scott, J. , Timmins, A. and Ackman, R.G. (1999b) Dietary 
menhaden, seal, and corn oils differentially affect lipid and ex vivo eicosanoid and 

125 



thiobarbituric acid-reactive substances generation in the guinea pig. Lipids 34(2): 115-
124. 

Nakajima, J.I., Tanaka, I., Seo, S. , Yamazaki, M. and Saito, K. (2004) LC/PDNESI-MS 
Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries. J 
Biomed. Biotechnol. 2004(5): 241-247. 

Nakatani, T., Kim, H.J., Kaburagi, Y. , Yasuda, K. and Ezaki, 0. (2003) A low fish oil 
inhibits SREBP-1 proteolytic cascade, while a high-fish-oil feeding decreases SREBP-1 
mRNA in mice liver: relationship to anti-obesity. J Lipid Res. 44(2): 369-379. 

Nakhla, A. (1997) The Potential of Seal Oil as w-3 Polyunsaturated Fatty Acid 
Supplements. PhD thesis, Memorial University ofNewfoundland. 

Napolitano, M., Bravo, E., Avella, M., Chico, Y., Ochoa, B., Botham, K.M. and 
Rivabene, R. (2004) The fatty acid composition of chylomicron remnants influences their 
propensity to oxidate. Nutr. Metab. Cardiovasc. Dis. 14(5): 241-247. 

Narayan, M.S., Naidu, K.A., Ravishankar, G.A., Srinivas, L. and Venkataraman, L.V. 
(1999) Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid 
peroxidation. Prostaglandins Leukot. Essent. Fatty Acids 60(1): 1-4. 

Natella, F., Be1elli, F., Gentili, V., Ursini, F. and Scaccini, C. (2002) Grape seed 
proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric. 
Food Chern. 50(26): 7720-7725. 

Nestel, P.J., Connor, W.E., Reardon, M.F., Connor, S., Wong, S. and Boston, R. (1984) 
Suppression by diets rich in fish oil of very low density lipoprotein production in man. J 
Clin. Invest. 74(1): 82-89. 

Nistor, A., Bulla, A., Filip, D.A. and Radu, A. (1987) The hyperlipidemic hamster as a 
model of experimental atherosclerosis. Atherosclerosis 68(1-2): 159-173. 

Nozaki, S., Garg, A., Vega, G.L. and Grundy, S.M. (1991) Postheparin lipolytic activity 
and plasma lipoprotein response to omega-3 polyunsaturated fatty acids in patients with 
primary hypertriglyceridemia. Am. J Clin. Nutr. 53(3): 638-642. 

Nyby, M.D., Matsumoto, K., Yamamoto, K., Abedi, K., Eslami, P., Hernandez, G., 
Smutko, V., Berger, M.E. and Tuck, M.L. (2005) Dietary fish oil prevents vascular 
dysfunction and oxidative stress in hyperinsulinemic rats. Am. J Hypertens. 18: 213-219. 

Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues 
by thiobarbituric acid reaction. Anal. Biochem. 95(2): 351-358. 

126 



Ohtani, H., Hayashi, K. , Hirata, Y., Dojo, S., Nakashima, K., Nishio, E. , Kurushima, H., 
Saeki, M. and Kajiyama, G. (1990) Effects of dietary cholesterol and fatty acids on 
plasma cholesterol level and hepatic lipoprotein metabolism. J Lipid Res. 31: 1413-
1422. 

O'Malley, P.G. (2004) Review: vitamin E, vitamin C, and possibly coenzyme Q10 are 
ineffective for preventing or treating cardiovascular disease. ACP J Club 140(3): 73. 

Ou, J. , Tu, H. , Shan, B., Luk, A., DeBose-Boyd, R.A., Bashrnakov, Y. , Goldstein, J.L. 
and Brown, M.S. (2001) Unsaturated fatty acids inhibit transcription of the sterol 
regulatory element-binding protein-1 c (SREBP-1 c) gene by antagonizing ligand
dependent activation of the LXR. Proc. Nat/. Acad. Sci. USA. 98(11): 6027-6032. 

Overturf, M.L., Smith, S.A., Gotto, A.M. Jr. , Morrisett, J.D., Tewson, T., Poorman, J., 
Loose-Mitchell, D.S. (1990) Dietary cholesterol absorption, and sterol and bile acid 
excretion in hypercholesterolemia-resistant white rabbits. J Lipid Res. 31(11): 2019-
2027. 

Park, Y. and Harris, W.S. (2003) Omega-3 fatty acid supplementation accelerates 
chylomicron triglyceride clearance. J Lipid Res. 44(3): 455-463. 

Pawar, A., Botolin, D., Mangelsdorf, D.J. and Jump, D.B. (2003) The role of liver X 
receptor-alpha in the fatty acid regulation of hepatic gene expression. J Biol. Chern. 
278(42):40736-40743. 

Pergola, C., Rossi, A., Dugo, P., Cuzzocrea, S. and Sautebin, L. (2006) Inhibition of 
nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide 
15(1): 30-39. 

Peyron-Caso, E. , Quignard-Boulange, A., Laromiguiere, M., Feing-Kwong-Chan, S., 
Veronese, A., Ardouin, B., Slama, G. and Rizkalla, S.W. (2003) Dietary fish oil increases 
lipid mobilization but does not decrease lipid storage-related enzyme activities in adipose 
tissue of insulin-resistant, sucrose-fed rats. J Nutr. 133(7): 2239-2243. 

Putadechakum, S., Tanphaichitr, V., Leelahagul, P., Pakpeankitvatana, V., Surapisitchart, 
T. and Komindr, S. (2005) Long-term treatment of N-3 PUF AS on plasma lipoprotein 
levels and fatty acid composition of total serum and erythrocyte lipids in 
hypertriglyceridemic patients. J Med. Assoc. Thai. 88(2): 181-186. 

Rambjor, G.S., Walen, A.l. , Windsor, S.L. and Harris, W.S. (1996) Eicosapentaenoic 
acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans. Lipids 
31: S45- S49. 

127 



Ramirez-Tortosa, C., Andersen, O.M., Gardner, P.T., Morrice, P.C., Wood, S.G., Duthie, 
S .J., Collins, A.R. and Duthie, G. G. (200 1) Anthocyanin-rich extract decreases indices of 
lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic. Bioi. Med. 
31(9): 1033-1037. 

Remillard, P., Shen, G., Milne, R. and Maheux, P. (2001) Induction of cholesteryl ester 
transfer protein in adipose tissue and plasma of the fructose-fed hamster. Life Sci. 69(6): 
677-687. 

Ren, B., Thelen, A.P., Peters, J.M., Gonzalez, F.J. and Jump, D.B. (1997) 
Polyunsaturated fatty acid suppression of hepatic fatty acid synthase and S 14 gene 
expression does not require peroxisome proliferator-activated receptor alpha. J Bioi. 
Chern. 272(43): 26827-26832. 

Repa, J.J. , Liang, G., Ou, J. , Bashmakov, Y., Lobaccaro, J.M., Shimomura, 1., Shan, B., 
Brown, M.S., Goldstein, J.L. and Mangelsdorf, D.J. (2000) Regulation of mouse sterol 
regulatory element-binding protein-1 c gene (SREBP-1 c) by oxysterol receptors, 
LXRalpha and LXRbeta. Genes Dev. 14(22): 2819-2830. 

Rivellese, A.A., Maffettone, A., Vessby, B., Uusitupa, M., Hermansen, K., Berglund, L., 
Louheranta, A., Meyer, B.J. and Riccardi, G. (2003) Effects of dietary saturated, 
monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial 
lipid metabolism in healthy subjects. Atherosclerosis 167(1): 149-158. 

Roche, H.M. and Gibney, M.J. (1996) Postprandial triacylglycerolaemia: the effect of 
low-fat dietary treatment with and without fish oil supplementation. Eur. J Clin. Nutr. 
50(9): 617-624. 

Rossi, A., Serraino, 1., Dugo, P., DiPaola, R. , Mondello, L., Genovese, T., Morabito, D., 
Dugo, G. , Sautebin, L., Caputi, A.P. and Cuzzocrea, S. (2003) Protective effects of 
anthocyanins from blackberry in a rat model of acute lung inflammation. Free Radic. 
Res. 37(8): 891-900. 

Rudel, L.L. and Shelness, G.S. (2000) Cholesterol esters and atherosclerosis-a game of 
ACAT and mouse. Nat. Med. 6(12):1313-1314. 

Salati, L.M. and Clarke, S.D. (1986) Fatty acid inhibition of hormonal induction of 
acetyl-coenzymeA carboxylase in hepatocyte monolayers. Arch. Biochem. Biophys. 
246(1): 82- 89. 

Sampath, H. and Ntarnbi, J.M. (2005) Polyunsaturated fatty acid regulation of genes of 
lipid metabolism. Annu. Rev. Nutr. 25: 317-340. 

128 



- ----------------------------------------------------------

Sanders, T.A., Oakley, F.R., Miller, G.J., Mitropoulos, K.A. , Crook, D. and Oliver, M.F. 
(1997) Influence of n-6 versus n-3 polyunsaturated fatty acids in diets low in saturated 
fatty acids on plasma lipoproteins and hemostatic factors. Arterioscler. Thromb. Vase. 
Bioi. 17(12): 3449-3460. 

Satue-Gracia, M.T., Heinonen, M. and Frankel, E.N. (1997) Anthocyanins as 
antioxidants on human low density lipoprotein and lecithin-liposome systems. J Agr. 
Food Chern. 45: 3362-3367. 

Sealls, W., Gonzalez, M., Brosnan, M.J., Black, P.N. and DiRusso, C.C. (2008) Dietary 
polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic 
lipogenesis. Biochim. Biophys. Acta. 1781(8): 406-414. 

Shekelle, P.G., Morton, S.C., Jungvig, L.K., Udani, J. , Spar, M., Tu, W.J., Suttorp, M., 
Coulter, I. , Newberry, S.J. and Hardy, M. (2004) Effect of supplemental vitamin E for the 
prevention and treatment of cardiovascular disease. J Gen. Intern. Med. 19(4): 380-389. 

Shidfar, F., Keshavarz, A., Jallali, M., Miri, R. and Eshraghian, M. (2003) Comparison of 
the effects of simultaneous administration of vitamin C and omega-3 fatty acids on 
lipoproteins, apo A-I, apo B, and malondialdehyde in hyperlipidemic patients. Int. J 
Vitam. Nutr. Res. 73(3): 163-170. 

Shimomura, 1., Bashrnakov, Y., Shimano, H., Horton, J.D., Goldstein, J. L. and Brown, 
M. S. ( 1997) Cholesterol feeding reduces nuclear forms of sterol regulatory element 
binding proteins in hamster liver. Proc. Nat/. Acad. Sci. USA. 94: 12354-12359. 

Simopoulos, A.P. (1999) Essential fatty acids in health and chronic disease. Am. J Clin. 
Nutr. 70(3 Suppl): 560S-569S. 

Spady, D.K. and Dietschy, J.M. (1988) Interaction of dietary cholesterol and triglycerides 
in the regulation of hepatic low density lipoprotein transport in the hamster. J Clin. 
Invest. 81: 300-309. 

Sposito, A.C., Santos, R.D., Hueb, W., Ventura, L.I. , Vinagre, C.C., Ramires, J.A. and 
Maranhao, R.C. (2002) LDL concentration is correlated with the removal from the 
plasma of a chylomicron-like emulsion in subjects with coronary artery disease. 
Atherosclerosis 161(2): 447-453. 

Sprecher, H. (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. 
Biophys. Acta 1486 (2-3): 219-231. 

Stintzing, F.C., Stintzing, A.S., Carle, R., Frei, B. and Wrolstad, R.E. (2002) Color and 
antioxidant properties of cyanidin-based anthocyanin pigments. J Agric. Food Chern. 
50(21): 6172-6181. 

129 



Suarez', A., Ramirez-Tortosa, M., Gil, A. and Faus, M.J. (1999) Addition ofvitamin E to 
long-chain polyunsaturated fatty acid-enriched diets protects neonatal tissue lipids against 
peroxidation in rats. Eur. J Nutr. 38(4): 169-176. 

Sullivan, D.R., Sanders, T.A., Trayner, I.M. and Thompson, G.R. (1986) Paradoxical 
elevation of LDL apoprotein B levels in hypertriglyceridaemic patients and normal 
subjects ingesting fish oil. Atherosclerosis 61(2): 129-134. 

Sullivan, M.P., Cerda, J.J. , Robbins, F.L., Burgin, C.W. and Beatty, R.J. (1993) The 
gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab. Anim. Sci. 
43(6): 575-578. 

Surai, P.F. and Sparks, N.H. (2000) Tissue-specific fatty acid and alpha-tocopherol 
profiles in male chickens depending on dietary tuna oil and vitamin E provision. Poult. 
Sci. 79(8): 1132-1142. 

Tall, A.R. (1993) Plasma cholesteryl ester transfer protein. J Lipid Res. 34(8): 1255-
1274. 

Teissedre, P.L., Frankel, E.N., Waterhouse, A.L., Peleg, H. and German, J.B. (1996) 
Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and 
wines. J Sci-Food Agric. 70 (1): 55-61. 

Theobald, H.E., Chowienczyk, P.J., Whittall, R., Humphries, S.E. and Sanders, T.A. 
(2004) LDL cholesterol-raising effect of low-dose docosahexaenoic acid in middle-aged 
men and women. Am. J Clin. Nutr. 79 (4): 558-563. 

Thiery, J. and Seidel, D. (1987) Fish oil feeding results in an enhancement of cholesterol
induced atherosclerosis in rabbits. Atherosclerosis 63(1): 53-56. 

Tinker, L.F., Parks, E.J., Behr, S.R., Schneeman, B.O. and Davis, P.A. (1999) (n-3) fatty 
acid supplementation in moderately hypertriglyceridemic adults changes postprandial 
lipid and apolipoprotein B responses to a standardized test meal. J Nutr. 129(6): 1126-
1134. 

Trautwein, E.A, Liang, J. and Hayes, K.C. (1993) Plasma lipoproteins, biliary lipids and 
bile acid profile differ in various strains of Syrian hamsters, mesocritus auratus. Comp. 
Biochem. Physiol. 104A: 829-835. 

Tsao, R. and Deng, Z. (2004) Separation procedures for naturally occurring antioxidant 
phytochemicals. J Chromatogr. B. Analyt. Techno/. Biomed. Life. Sci. 812(1-2): 85-99. 

130 



Tsuda, T., Horio, F., Uchida, K., Aoki, H. and Osawa, T. (2003) Dietary cyanidin 3-0-
beta-D-glucoside-rich purple com color prevents obesity and ameliorates hyperglycemia 
in mice. J Nutr. 133(7): 2125-2130. 

Tsutsumi, K. (2003) Lipoprotein lipase and atherosclerosis. Curr. Vase. Pharmacal. 1(1): 
11-17. 

Turley, S.D. and Dietschy, J.M. (1988) The metabolism and excretion of cholesterol by 
the liver. The Liver: Biology and Pathobiology (Chapter-34) Second Ed. Raven press 
Ltd., New York. 

Valcheva-Kuzmanova, S., Kuzmanov, K., Tancheva, S. and Belcheva, A. (2007a) 
Hypoglycemic and hypolipidemic effects of Aronia melanocarpa fruit juice in 
streptozotocin-induced diabetic rats. Methods Find Exp. Clin. Pharmacal. 29(2): 101-
105. 

Valcheva-Kuzmanova, S., Kuzmanov, K. , Mihova, V., Krasnaliev, I. , Borisova, P. and 
Belcheva, A. (2007b) Antihyperlipidemic effect of Aronia melanocarpa fruit juice in rats 
fed a high-cholesterol diet. Plant Foods Hum. Nutr. 62(1): 19-24. 

Valeille, K., Fen!zou, J., Amsler, G., Quignard-Boulange, A., Parquet, M., Gripois, D., 

Dorovska-Taran, V. and Martin, J.C. (2005) A cis-9,trans-11-conjugated linoleic acid

rich oil reduces the outcome of atherogenic process in hyperlipidemic hamster. Am. J 
Physiol. Heart Circ. Physiol. 289(2): H652-H659. 

Vinson, J.A., Dabbagh, Y.A., Serry, M.M. and Jang, J. (1995) Plant flavonoids, 
especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for 
heart disease. J Agric. Food Chem. 43: 2800-2802. 

Vivekananthan, D.P., Penn, M.S., Sapp, S.K., Hsu, A. and Topol, E.J. (2003) Use of 
antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of 
randomised trials. Lancet 361(9374): 2017-2023. 

Vognild, E., Elvevoll, E.O., Brox, J., Olsen, R.L. , Barstad, H. , Aursand, M. and Osterud, 
B. (1998) Effects of dietary marine oils and olive oil on fatty acid composition, platelet 
membrane fluidity, platelet responses, and serum lipids in healthy humans. Lipids 33(4): 
427-436. 

Wang, H., Lu, S., Du, J. , Yao, Y. , Berschneider, H.M. and Black, D.D. (2001) Regulation 
of apolipoprotein secretion by long-chain polyunsaturated fatty acids in newborn swine 
enterocytes. Am. J Physiol. Gastrointest. Liver Physiol. 280(6): G1137- G1144. 

131 



Wang, H., Cao, G. and Prior, R.L. (1997) Oxygen radical absorbing capacity of 
anthocyanins. J Agric. Food Chern. 45: 304-309. 

Wang, H.H., Hung, T.M., Wei, J. and Chiang, AN. (2004) Fish oil increases antioxidant 
enzyme activities in macrophages and reduces atherosclerotic lesions in apoE-knockout 
mice. Cardiovasc. Res. 61(1): 169-176. 

Wang, J. and Mazza, G. (2002) Inhibitory effects of anthocyanins and other phenolic 
compounds on nitric oxide production in LPSIIFN-gamma-activated RAW 264.7 
macrophages. J Agric. Food Chern. 50(4): 850-857. 

Wilkinson, J., Higgins, J.A., Fitzsimmons, C. and Bowyer, D.E. (1998) Dietary fish oils 
modify the assembly of VLDL and expression of the LDL receptor in rabbit liver. 
Arterioscler. Thrornb. Vase. Bioi. 18(9): 1490-1497. 

Williamson, K.S., Hensley, K. and Floyd, R.A. (2003) Fluorometric and colorimetric 
assessment of thiobarbituric acid-reactive lipid aldehydes in biological matrices. Methods 
in Pharmacology and Toxicology: Methods in Biological Oxidative Stress; Hensley, 
K., Floyd, R. A., Eds. Humana Press: Totowa, NJ. 57-65. 

Woollett, L.A., Spady, D.K. and Dietschy, J.M. (1989) Mechanisms by which saturated 
triacylglycerols elevate the plasma low density lipoprotein-cholesterol concentration in 
hamsters. Differential effects of fatty acid chain length. J Clin. Invest. 84(1): 119-128. 

Wu, X., Gu, L., Prior, R.L. and McKay, S. (2004) Characterization of anthocyanins and 
proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their 
antioxidant capacity. J Agric. Food Chern. 52(26): 7846-7856. 

Xia, M., Ling, W.H., Ma, J., Kitts, D.D. and Zawistowski, J. (2003) Supplementation of 
diets with the black rice pigment fraction attenuates atherosclerotic plaque formation in 
apolipoprotein E deficient mice. J Nutr. 133(3): 744-751. 

Xia, M., Hou, M., Zhu, H., Ma, J. , Tang, Z., Wang, Q., Li, Y., Chi, D. , Yu, X. , Zhao, T., 
Han, P., Xia, X. and Ling, W. (2005) Anthocyanins induce cholesterol efflux from mouse 
peritoneal macrophages: the role of the peroxisome proliferator-activated receptor 
{gamma}-liver X receptor {alpha}- ABCA1 pathway. J Bioi. Chern. 280(44): 36792-
36801. 

Xia, X., Ling, W., Ma, J. , Xia, M. , Hou, M., Wang, Q., Zhu, H. and Tang, Z. (2006) An 
anthocyanin-rich extract from black rice enhances atherosclerotic plaque stabilization in 
apolipoprotein E-deficient mice. J Nutr. 136(8): 2220-2225. 

Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G. , Brown, P.J., 
Sternbach, D.D., Lehmann, J.M. , Wisely, G.B., Willson, T.M., Kliewer, S.A. and 

132 



Milburn, M.V. (1999a) Molecular recognition of fatty acids by peroxisome proliferator
activated receptors. Mol. Cell3(3): 397-403. 

Xu, J. , Nakamura, M.T., Cho, H.P. and Clarke, S.D. (1999b) Sterol regulatory element 
binding protein-1 expression is suppressed by dietary polyunsaturated fatty acids. A 
mechanism for the coordinate suppression of lipogenic genes by polyunsaturated fats. J 
Bioi. Chern. 274(33): 23577-23583. 

Yahagi, N., Shimano, H., Hasty, A.H., Amemiya-Kudo, M., Okazaki, H ., Tamura, Y., 
Iizuka, Y., Shionoiri, F., Ohashi, K. , Osuga, J. , Harada, K., Gotoda, T., Nagai, R. , 
Ishibashi, S. and Yamada, N. (1999) A crucial role of sterol regulatory element-binding 
protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J 
Bioi. Chern. 274(50): 35840-35844. 

Yamakoshi, J. , Kataoka, S., Koga, T. and Ariga, T. (1999) Proanthocyanidin-rich extract 
from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed 
rabbits. Atherosclerosis 142(1): 139-149. 

Yokode, M., Hammer, R.E. , Ishibashi, S., Brown, M.S. and Goldstein, J.L. (1990) Diet
induced hypercholesterolemia in mice: prevention by overexpression of LDL receptors. 
Science 250(4985): 1273-1275. 

Yoshida, H., Ikeda, I. , Tomooka, M., Mawatari, M., Imaizumi, K. , Seto, A. and Tsuji, H. 
(2001) Effect of dietary seal and fish oils on lipid metabolism in hamsters. J Nutr. Sci. 
Vitarninol. (Tokyo) 47(3): 242-247. 

Yoshida, H., Mawatari, M., Ikeda, 1., Imaizurni, K. , Seto, A. and Tsuji, H. (1999) Effect 
of dietary seal and fish oils on triacylglycerol metabolism in rats. J Nutr. Sci. Vitarninol. 
(Tokyo) 45(4): 411-421. 

Yoshikawa, M., Shimoda, H., Nishida, N., Takada, M. and Matsuda, H. (2002a) Salacia 
reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities 
have mild antiobesity effects in rats. J Nutr. 132(7): 1819-1824. 

Yoshikawa, T., Shimano, H., Yahagi, N., Ide, T. , Amemiya-Kudo, M., Matsuzaka, T., 
Nakakuki, M., Tomita, S., Okazaki, H., Tamura, Y., Iizuka, Y., Ohashi, K. , Takahashi, 
A., Sone, H., Osuga Ji, J. , Gotoda, T., Ishibashi, S. and Yamada, N. (2002b) 
Polyunsaturated fatty acids suppress sterol regulatory element-binding protein1c 
promoter activity by inhibition of liver X receptor (LXR) binding to LXR response 
elements. J Bioi. Chern. 277(3): 1705- 1711. 

Youdim, K.A., Martin, A. and Joseph, J.A. (2000) Incorporation of the elderberry 
anthocyanins by endothelial cells increases protection against oxidative stress. Free 
Radic. Bioi. Med. 29(1): 51-60. 

133 



Yuan, Y.V. and Kitts, D.D. (2003) Dietary (n-3) fat and cholesterol alter tissue 
antioxidant enzymes and susceptibility to oxidation in SHR and WKY rats. J Nutr. 
133(3): 679-688. 

Zem, T.L., Wood, R.J. , Greene, C., West, K.L. , Liu, Y., Aggarwal, D., Shachter, N.S. 
and Fernandez, M.L. (2005) Grape polyphenols exert a cardioprotective effect in pre- and 
postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr. 
135(8): 1911-1917. 

134 








