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CHAPTER 1

INTRODUCTION

1.1 OVERVIEW OF POWER SYSTEM STATE

ESTIN*ATION

The importance of State I imation (..) in an electrical power system can be
realized by consid 1g the North-east blackout 2003 that took place in US and Canada,
due to poor control-room procedt . and failure of the power grid organization to keep it
from spreading [1]. This shows ti  a better power system estimating tool is necessary for
the safe operation of the power system and it can be established by 2 implementation of

state timation in power systems.









the squares of the weighted deviations of the estim ed measurements from the actual
measurements, 1s used in this thesis to implement state estimation for various case

studies.

1.2 OBJECTIVES OF THE THESIS

For various power system models, pov ' system state estimation, bad data
processing technique, network parameter error processing technique and for a large
power system addition of phasor measu  1ents to the conventional measurement data are
considered in this thesis. A reliable estimate of the system states of any electrical power
system is vital for all post state estimation applications and for the effective operation of
the power utility. The main goals of thisre  rch are as follows:

e Togainth ugh understanding of power sys n state estimation and its features.

e To implement WLS technique, bad data elimination, and finally estimate the
network parameter error.

e To enhance the performance of state estimation with the phasor measurements.

¢ To implement the studied methods for standard power syste  models






is facilitated by the normalized residual technique. The parameter ¢ rs are estimated

and the correct line reactance is updated into the syste model.

In addition to the conventional measurement data in a very large power system,
the performance of SE in the presence of phasor measurements is studied in Chapter 5. In
a multi-area power system, the two-level SE is fo  ilated using 6-bus and illustrated
using 39-bus and 118-bus power system models. The state variables of the individual area
are estimated in the first level of the two-level L... The measurement data for the Central
State Estimator (CSE) comprises t|  estimated state variables of the individual area, a
few boundary and external bus measurements and phasor measurements. The CSE

estimates the overall state of the system (which is the second level of the two-level SE).

Chapter 6 provides the conclusion of the thesis and enumerates the contributions

of this research. Finally, the possible future research in this area is discussed.



CHAPTER 2

POWER SYS1-M § IMATION

2.1 INTRODUCTION

As discussed in Chapter 1, the technique that can provide an estimate of the
unknown quantities with a few available measurements is known as state estimation. The
purpose of this chapter is to briefly study the application of power system state estimation
and to implement it using WLS  hniques f  various power system models. The power
system models used ¢ 6-bus and 39-bus system models. The estimated state variables
are compared with the actual value, to prove that a state estimator can give the best

estimate of the state of a power system.



2.2 APPLICATION OF POWER SYSTEM STATE
ESTIMATION (SE)

Power system state estimation is the process of reading field measurements and
deriving the best guess of the state of a power system. The power system states are the
voltage magnitudes and  ative _ase angles of all buses in the system. The estimated
state variables are used to calcul  the estimates of the real and reactive power flow
between the lines. With the estin  d power flows, the operator in a power system utility
will have access to the real time information and take necessary measures in case of
overloading to avoid blackouts in a power system. In addition, the power system state
variables are used in advanced applications, such as security analysis and optimal power

flow, implemented in the control cent

The energy control centre system security schematic in Figure 2.1 illustrates the
information flows between the various functions to be executed in an operations control
center. The remote terminal unit | forms various functions such as updating the system
regarding the current status of tl >wer system 1d encodir  measurement transducer
outputs and opened/closed status information into digital s*~als, which are transmitted to
the operations center over the ¢ mmications circuit. The control center can also
transmit control information, such as raise/lower commands to generators and open/close

commands to circuit breakers/switches. The information approaching the state estimator















power system are the bus voltage magnitudes and bus phase angles (except the reference
bus). The two systems are solved with two measurement data. The 6-bus system is solved
with 18 and 62 mecasurement data, and the 39-bus sys m with 131 and 277 mecasurement
data. The state estimator’s ability to estimate the state variables with a small number of

measurements is tested.
2.4.1 Modeling of Weighted Least Square Technique

WLS state estimation minimizes the weighted sum of the squares of the residuals.

Consider the measurement set vector z as in equation (2.1):

<4 hl(xl"xl’XB'“’xn) el]

ZW l‘) .’.7,"...3"
|| Pl S P R TP B @1

£

Zm hm (xl"xl’x3 .“"xn ) emJ

wt oe:z” :[zl, Zy, vy I | is the measurement vector.

e

h ! = [hl (x)’ h?_ (.\'), B! hm (":)]
h (x) is the nonlinear function relating measurement i to the state vector x

x" =[x, x,, -, x,]is the system state vector

e’ = [e,, €y, ", em] is e vector of the measurement  rors.



m is the number of measurements and »n is the number of state variables to be

estimated.

Let E(e) denote the expected value of ¢ with the following assumption:
Ele,)=0, i=1,--,m (2.2)
Measurement errors are independent, i.e. E[eiej] =0 Vj#i.Hence the covariance of
the error is given as:
cov(e) = E[e.eT] = R= diag{of,of,...o;i} (2.3)

o, is the standard deviation of each measurement i, calculated to reflect the expected

accuracy of the meter used [5].
The objective function to be minimized by weighted least square is given in

equation (2.4). It is the square of the difference between each measured value and the true

value divided by the covariance of the error.

J(x)= T ———— (2.4)

= [z n(x)I R [z - h(x)]

The gradient of the objective (residual vector) is taken and then equated to zero.
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R ’(v y
glx ) ~H"(x)R'[z-h(x)]=0 where, H(_\—){m{ q (2.5)
dx ox

Then, expanding the nonlinear function g(x) into Ta: Hr series and neglecting the higher

order terms lead to an iterative scheme, as in the Gauss-Newton method shown in

equation (2.6), which is used to solve equation (2.5)

A [G()C"’)]Al ~g(xk) (2.6)

where k is the iterative index and x* is the solution vector at the iteration k . G(x) is

the gain matrix, which is expressed in equation (2.7):

G(x* )= 1" ()R H (x*) 2.7)

s’ - R o) 28)

Usually, the gain matrix is sparse and is dect josed into triangular factors. The sparse

linear set of equations is solved usii forward or backw st stitution at each

iteration k , where Ax**' = x*"'  x*:

O N -9

The iteration is continued until Max|Ax"| <& whe € isavery small value.



2.4.2 Weighted Least Square Algorithm

The iterative solution to equation (2.9) gives a reliable WLS estimate of the

unknown state variable. The algorithm used for the technique is outlined in the flowchart,

shown in Figure 2.2.

l.

Begin the iteration by settir the iteration index k =0 and defining A, to
any desired value, so that when the solutic does not converge, it will stop the
iteration. Then, set flat ¢t values | and O to bus voltage magnitudes and bus
phase angles, respectively. Finally, € is set to a very small value.

Terminate the iteration when &k > &;

Calculate the measurement function h(xk) , the Jacobian matrix H(xk) and
the gain matrix G(xk )= HT(x" )R"H(x" )
Solve Ax* usii equation (2.9).

If'AX ¢ I > & | then go to step 2. Otherwise stop (algorithm converged).
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2 i-vy (G,sin6, - B,cos 0,)

9 9,‘ (2.15)

oP. - .

A Zl V. (G cos 8, B, sin 6, )+ V.G, (2.16)

oP.

— G,cos €, + B,sin 0,

v, )
The formulae for the Jacobian of reactive power injection measurement are given in
equations (2.18)-(2.21)

N 2
= Z 'A% (G cos 6, + B, sin 6, ) V. G, (2.18)
j=1
20 . :
Jo = V,.Vj(— G, cos 0, — B, sin ,j) - 19)
J

00 - : \

Sy Z Vj(GU. sin 8, B cos8,, VB, (2.20)
i j=1

20, :

'aT V,- (GU Sin Hl‘j - Bij COS ‘9:'1) (2.21)

J

The formulae for the Jacobian of real line power flow measurement are given in

equations (2.22)-(2.25).



P ..

06

i

P .
90,

=VV, (g ;sin 6, — b, cos 9,.1.)
— —V,.Vj(g ; sin 9,.j - b,.j cos 9,.1.)
= —Vj(g,,j cos 6, — b, sin 9,.])— 2(8,-,- t & )Vi

= -V, (g,j cos @, + b, sin 911)

(2.23)

(2.24)

(2.25)

The formulae for the Jacobian of the rr :ti' line pov  flow measurement are given in

equations (2.26)-(2.29).

20,

—V,.Vj(g ; €08 0, + b sin 9,.])

V,.Vj(g ; €os 0, + b, sin 9:‘1)

T = —Vj(g ;sin @, b, cos 0, )— 2(bij + b )V,—

-V. (g i sin 9,.1. — b,.j cos 9:‘1 )

(2.26)

(2.27)

(2.28)

(2.29)











































2.5 SUMMARY

State estimation is a unique approach estimating the unknown system state
variable at any particular point of time, with only a few available measurements. The
estimated variables are reliable and can be used to estimate the line power flows in a
power system. These estimated line power flows are utilized to evaluate the system
condition so as to make a decision or even to predict the faults before they occur. Only

static state estimation was studied in this chapter.

In this chapter, a detailed study of the state estimation method is presented. The
measurement and components were formulated and implemented. The implementation
was done using the two ac systems, 6-bus and 39-bus system. Both systems were initially
solved with fewer measurements and later with full measurement data. In both cases, the
state estimator was able to provide a reliable estimate of the state variables. The results

were compared with the actual case from the Power World Simulator.

Another important aspect of state est  1ition is the ability to identify, detect and,
if possible, eliminate the bad data pre it in measurement data. This application is

examined in the next chapter.

j%)
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CHAPTER 3

BAD DA 1 A DETE 'TION, IDENTIFICATION
AND ELIMINATION

3.1 INTRODUCTION

The power system mu nents are acquired from the central computer n a
power system. Figure 3.1 illustre ; varic m urements in a power system. The
measured data are all gathered in the Remote Terminal Unit (RMU) in a substation. The
RMU provides an interface for the measurements to be transferred to the central
computer through telemetry. The analc ea e1 . from the meters are converted to

digital signals by the analc~ to-d*~*tal converter in the RMU. In F 1re 3.1, meters 1, 2
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A few obvious bad data, for example, are negative voltage magnitude and very
large measurements with higher order than the expected values, which can be easily
detected and eliminated, but most of the bad data are unfortunately undetectable.
Therefore the state estimator should be well equiy 1 with ad' 1ced features to detect
and identify any type of bad data. The bad data may appear due to the type, location and

number of measurements that a 1n  ror.

The bad data can be broadly classified as single bad data and multiple bad data. In
single bad data, only one of the 1 i1su nents in the large system will have a large error
and in multiple data more tI 1 one measurement will be in error. The multiple bad data is
further classified as follows [5]:

e Multiple non-int¢  :ting bad data: They occur in measurements with weakly
correlated measurement residuals.

e Multiple interacting but non-conformit bad data: Non-conforming bad data in
measurements with strongly correlated residuals.

e Multiple interacting and conforming bad ita: Consistent bad data in the

measurements with stror ~'y correlated measurement residu

In this chapter the bad data processing techniques are formulated and implemented to 6-

bus  139-bus systems.
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level, it is determined whether the errors exceed the bounds of what is expected by
chance alone. The significance level is the upper bound on the probability that a type 1
error occurs upon conducting a hypothesis test. A type I error occurs when the null
hypothesis is correct but is rejected. A s° ificance level of 0.03 indicates that there is a
3% chance that a bad data exists, or  97% level of confidence in the goodness of the

data.

The steps involved in this method are summarized in a flowchart shown below in
Figure 3.2. Initially, the WLS s e estimation is used to solve the system to get the
estimate of the unknown state v ables x. With estimated values, the weighted sum of

errors or the objective function J(%)is computed using the formula in equation (3.2):

R PR A )
J(z [2—02(—)] (3.2)

i=l {
where: x is the estimated state vector.

k(%) is the estimated measurement i.

Z. is the measured value of the measurement i.

o} =R, is the variance of the ¢ )rin the measurement i.

m is the number of m( surements.

The value of J(%) is compared with the chi-squared value of a particular degree

of freedom and significance  -el. If the valh  of J(i) is greater than or equal to the ,1’2
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3.2.1 6-Bus System

In order to study the chi-squared method, four bad data were introduced in the
measurement data. This system has 11 state vi ibles (n) with 62 measurements (m). The
real and reactive line power flow from bus | to bus 4 (measurement 20 and 23) and from
bus 2 to bus 4 (measurement 31 and 33) were arbitrarily cha to represent the bad
data (bad data is high lighted in bold fonts in Table 3.1). The WLS technique is executed
to this system with bad data. A Matlab prc - -am is formulated to compute the weighted
sum of the error J(,%) with the estin :d st = variables using the equation (3.2). The
confidence level assumed for thissys m 9! and :de_ :of freedomis 51, ie. m-

n=62-11=51.

The J(&) calculated is ~3.71! It is comy I with the ,1’2 distribution value
found using the Matlab command CHI2INV (0.95, 51), which is 68.6693. The value of
J(i) is much greater than the ,1’2 distribution value. Hence, the presence of bad data in

the measurements is detected. Table 3.1 displays bad data introduced to the easurement

set and the J(i) value calculated for both (no bac 1d bad data) cases.
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3.4 SUMMARY

Error detection and elimination of |  data are an additional aspect of state
estimation, apart from the estimation of the 1 10wn system state variable. The bad data
is detected using a chi-squared test. Then, it is identified and eliminated using a largest
normalized residual test. In this chapter, both hods were explored for 6-bus and 39-
bus systems. The bad data were introduced to the system arbit 1ly to demonstrate the
error detection. In the next cl ter, the network parameter error estimation will be

studied and implemented.






The electrical power system requires network parameters to build the network
model used in EMS applications. State estimation is one of the EMS applications that
play an important role in providing the network model [ ~". Some of the network
parameters are the transmission line resistance, line reactance, line charging capacitance,
transformer reactance, transformer tap, shunt capacitor/reactor values, etc. The error in
the network model is known as the network parameter error. The presence of error in the
estimated state variables, using state estimation, may be due to bad data in the
measurement, network parameter error and/or topology error. The topology errors occur
when the open/close status of circuit breakers/switches is misread or when an out of
service transmission line is considered to be in service durii  tl  state estimation. The
parameter error identification 1 estimation are the additional features of the state

estimation.

The influences of the parameter error on state estimation results are: a) correct
measurements being identified as | 1data due to their inconsistencies with the incc  :ct
network parameters, b) se' €  Dact on the quality of the state estimation solutions, c)
this misleads other applications, such as security assessment, optimal power flow, and d)
the operator loses confidence in the state estimation results [5]. Hence the state estimation
should also be equipped to identify bad parameters and estimate the correct parameter

value.









4.2 NETWORK PARAME : ER IDENTIFICATION

A parameter error has the same effect as a set of correla  errors acting on all
measurements involved in the erroneous branch, namely the power flow measurements
and the power injection measurements located at the end nodes. This fact leads to a

simple manipulation of the | iicn asu it 1odel [13]:

Z, = h\\_(x,p) te =h, (x,po) + [h_\. (x,p) - hs(x, po)] t+ e, 4.1

whe pand p,: respectively the true and erronec s value of the network parameter
and the subscript s refers to the set of jac 1t measurements. The term A, is the
nonlinear functions, relating measi 1 1t to state variables. The terms in brackets in
equation (4.1) are equivalent to additional measurement error and if the parameter error is
large enough, this term will lead to the identification of the bad data. When this happens,
the adjacent measurements will most likely have the largest normalized residual [13]. The

equivalent measurement error can be linearized as:

h,(x,p)- h_\_(x, po) = {é—}el (4.2)



where (071}\ /o}?) 1s a s-dimensional column vector of partial derivatives of /i with respect
to p, and e, = p-p, is the parameter error. Those branches whose adjacent

measurements have the largest normalized residual should be declared suspicious.
4.3 NETW(C . PARAN TERESTIMATION

The technique used in parameter estimation is based on the sensitivity relationship
between residuals and measurement errors [13]. Equation (3.4), r = S.e from Chapter 3
gives the measurement residuals. By combining tI  equation (4.1) and equation (3.4), a
linear relationship can be establis/ | betv 1 the residual of the adjacent measurement

r, and the parametere " e,:

rs = [S.\'.\' ;_) ep + F\ (43)

where S isthe sXxs submatrix of Scorr Hondir to the s involved measurements and
7.is the residual vector that would  obtained when the parameter is correct. Equation

(4.3) can be interpreted as a linear model linking sot : measurements r, to an unknown
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e, in the presence of noise 7,. This leads to the determination of ¢, as an estimation

problem [12]. The optimal linear estimate of ¢, from r, is given by:

R A ) ) R AN }
é,= RS |- | R 'r, (4.4)
) Vs L) BT

where R_is the corresponding covariance matrix of the involved measurements. The

parameter ( p) is estimated using the following relation:
p=pot ép 4.5)

The state estimation usit  the W™ 7 hnique is rerun using the new estimated parameter
and checked for parameter error using the la st normalized residual method. If the
calculated lar_ st normalized values are lower than the threshold value, the system is

declared to be free of error and tI  estimated value is e accurate parameter value.
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4.4 CASE STUDY

Two systems are used in this case study to demonstrate the identification of
suspicious parameter and parameter estimation. .nese are the 6-bus and 39-bus systems
from Chapter 2. The identification and estimation of the parameter is carried out
considering that the error occurs in line charac istic data used for state estimation. The
line reactance in the line characteristic data is subjected to random error manually. First,
the systems are subjected to one parameter error, then two and finally four parameter
error (for 39-bus system only). ...e parameter error is first identified and the correct
parameter is estimated. The estimated parameter is updated to the system to check for any
more bad parameters. An example from one parameter error case is illustrated below

using the 6-bus system to show the procedure followed in this chapter.

4.4.1 6-Bus System

The 6-bus system sho F 2.4, Chapter 2 is used in this case study. This
system is utilized to illustrate one and two (transmission line reactance) parameter error
identification and parameter estin ion. " e network p: eter identification is
facilitated using the normalized residual technique (chapter 3) and parameter estimation

is performed using residual sensitivity analysis.






























Thus network parameter estimation, which is another error detection property of
the state estimation, is demonstrated using the residual sensitivity analysis. The estimated
parameter values for all the case studies are found to be very close to the actual parameter

values.

4.5 SUMMARY

The transmission line ac 1ce parameter  Or estimation for 6-bus and 39-bus
systems is formulated and implemented using the residual sensitivity analysis. The 6-bus
is used for one and two parameter error estin ion. The 39-bus system is used for one,
two and four parameter error estir on. The estimation involves two steps: the error
identification and estimation of the parameter. The identification of 1e parameter error is
facilitated by the normalized residual technique. The suspicious measurement and its
adjacent measurements are all included for the parameter error estimation, which is
facilitated using the residual sensitivity analysis. A new parameter is designed with the
estimated parameter error. The newly designed |  meter value is included in the system
model. The normalized vall ; calculated, after upc ing the new parameter, are well
below the threshold value. Parameter ror « 1 is « |I" Hnal error detection

featu of state estimation.
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In the next chapter, some phasor measurements are assumed to be available with
the conventional measurement data, in order to enhance the ability of the central state

estimator to estimate the overall state of a very large power system.









PMUs are the instruments that give the voltage and current measurements, time
stamped with high precision [27]. These are equipment with Global Positioning Systems
(GPS) receivers that allow the synchronization of several readings taken at distant points
[28]. PMUs were developed from the invention of the symmetrical component distance
relay (SCDR) [27]. Synchroni: ion is made possible with GPS satellite system [29],
which consists of 36 satellites, of which 24 are u at one time to produce time signals at
the earth’s surface. The GPS receivers resolve these signals into (x, y, t, z) coordinates,
where t is time, by solving distance rate* time [27]. Then the PMU time stamps the
current and voltage reading with time obtained from the GPS receiver. The functional

block diagram of PMU is displayed in Figu 5.1.

PMUs make it possible to measure tI phase difference at different substations.
The bus phase ar es are one of the state variables that are estimated by the state
estimator, and if PMUs are placed at t | tive places, the 1ase a1 ‘es can be
directly measured. However, this is not always the case because it is very expensive to

install PMUs and it is not feasible to install them in all parts of a power system.
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Al Anle)

N=| d dv
H(s)= ah&?) 0‘ (5.1)
a6

Ahl e\
where: is the vector of the partial derivi ve of nonlinear functions, relating
dau

measurement to state var Hles, w 1 respect to respective bus phase angles.

ohls) . _ . . . :
L is the vector of the partial derivative of nonlinear functions, relating

dv
measurement to state variables, with respect to respective bus voltage magnitudes.

oh(6)

YR is the vector of the partial derivative of the phasor measurement with

respect to the respective bus phase angles.

In chapter 2, section 2.5.4, for 62 easurement data, the dimension of the
Jacobian  trix was 62X11. When two PMU measu nents were :  ":d to the
measurement data, its dimension changed . as shown in Table 5.1. The dimension of
the Jacobian matrix changed to 64X11 as in equation 5.2. A few expressions from the

equation 5.2 are detailed below:

Oh(PMIITY_
dv -

oh(PMU
36,

[















The state variables associated with these buses can be defined for any area as in

equation 5.3

I . Al 1
X rb ,xml ,X“I ]f (53)

The vector x,.b cor ts of the bus voltage magnitudes and phase angles at the
boundary buses of area i; the vector x,"" consists of the bus voltage magnitudes and phase

angles of the internal buses of area i; the vector x, consists of the bus voltage

magnitudes and phase . lesof tl 2xte il buses of area i.

5.5 FORMULATION OF TWO-LEVEL STATE

ESTIMATION

In a very la :powersys n, there are many control areas. Each control area has
its own state estimator that processes the measurement received fre  its local substation,
which is the first level SE. Ger  lly, the individual areas do not sh:  their network data
or estimated state variable di  with the ne bors ar ~ t  tend to operate

independently. In « ler to schedule power  1sactions, which involve several control

&3




































power flow values of integrated SE and two-level ! (Multi-area SE) were compared
against the actual values using a bar chart. Different shades were used in the bar chart to
represent each case (blank for actual value, dark for integrated SE data and slightly

shaded for two-level SE data).

The cc  arison between actual values and a few est 1t ~ line power flows and
voltage magnitudes is given in F 1re 5.10 throo 1 F 1re 5.18. In all the loading
conditions, the estimated line power flows of the multi-area L.. were found to be very
close to the actual value in most ci s, which  »ves that, even with a smaller number of
measurements, the CSE was " le to pc wm well with the presence of the synchronized
PMU measurements. In summarizing the results of the estimated values, it can be
concluded that they lie close to the actual case va  ; and differ only by a slight degree in

both cases.





















5.7 SUMMARY

State estimation for a very large system was investigated with 39 and 118-bus
systems. Initially, the systems we¢  separated into smaller areas with internal, boundary
and external buses. Each separa area had its own state estimator to estimate its states,
detect and eliminate bad data. Phasor measu nents were assun | to be available for the
CSE. The estimated state variables and phasor measurements were transmitted to the
CSE, which determ :d the ovi | state of the power systt . The results of the CSE
were found to be very close to the actual val  The CSE also de :ted the bad data that
existed in measurements, which became a critical measurement due to decomposition,
when the measurement redundancy was low. This was verified by introducing a bad
measurement to the measurement data which was detected and eliminated by the CSE
with the aid of phasor measurements. The phasor measurement improved the efficiency
of the CSE by "~ intheove " est ition ° the state variables of the system even

when the measurement redundancy was low.
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CHAPTER 6

CONC" USIUNS N™ FUTURE WORK

6.1 CONCLUSIONS

The main focus of any pov - utility is the reliable and secure operation of its
power system, so it can deliver  unir  rupted power supply to its customers. A reliable
estimate of any power system is essential for its smooth operation. The technique that
estimates the state of any power system is sta estimation. Estimated state variables are
then used in estimating the line power flows, which are tt  used in syst  control
centers in the implementation of the curity-constrained dispatch and control of the

power system.













Parameter estimation based on state vector augmentation may also be
implemented for network parameter estimation. In state vector augmentation the
suspected parameter is included in the state vector and simultaneously estimated

with the state variables.

In this thesis the power system models used were 6-bus, 39-bus and 118-bus
systems. A more complex and larger system with more areas can be used for

multi-area state estimation.

Topology errors, such as branch stai  errors and substatio configuration errors
[5], can also be studied and implemen  for various power system models. This
information is s ificant, since the b iker/switches status in any substation can
cause the network topology to char : The estimated state variables and power

values with flawed network topology will also be in error.
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APPENDIX A

DATA FOR THE 6-BUS SYS:2M A VD STA 1 n.

ESTIMATION RESU. 13

Appendix A containst data for the 6-bus syst  discussed in the thesis and the
state estimation results for the system. The main characteristics of the system are given in
Table A.l1. Table A.2 gives the t 1smission line . aracteristics for the sys n. The
estimated state variable for 18 and 62 meas :ment data are tabi ited with the actual
value in Table A.3. In the T. le A.4 the actual value of bus power injection and
estimated bus power injection for both 18 and 62 measurement data are tabulated. Table
A.5 gives the actual value « : power flows, tabulated together with the estimated line

power flows for both 18 and 62n  su nent data.









APPENDIX B

DATA FOR THE ")-"'NIT 39-BUS NEW ENGLAND TEST

SYSTEM AND STATE ESTIMATION RESULTS

Appendix B contains the data for the 10-unit 39-bus New Ei "and test system
discussed in the thesis. ..ae main characteristics of the system are given in Table B.1.
Table B.2 gives the transmission line characteristics for the system. The estimated state
variables are tabulated with the actual value in Table B.3. In the Table B.4, the actual
value of bus power injection d estimated bus power injection are tabuilated. Table B.5
gives the actual value of line pc - flows >ulated tc :ther with the estimated line

power flows for few values.
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Table B.1: Main characteris  of the 39-bus syst

INUMDET Ol DUsSES | I

Number o0 nes ! 46

wumber of generators | 10
Vi
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