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Abstract 

The primary goal of this study was to investigate the population dynamics and life 

history traits of boreal appendicularian species in Conception Bay, Newfoundland. 

Specific questions were; (1) What are the optimum environmental conditions for 

appendicularian species? (2) What are their generation time, and growth and secondary 

production rates? (3) How do length-at-age, age-at-maturity and fecundity vary under 

seasonally fluctuating environmental conditions and how do these demographic 

parameters relate to population growth rate? In order to study life history and 

demographic traits of naturally occurring populations of appendicularians, it was 

necessary to develop an in situ method of age determination. 

The temporal and spatial niche of appendicularian species is defined primarily by 

temperature and salinity in which Oikopleura vanhoeffeni is a cryophilic, stenothermal 

and stenohaline species, Fritillaria borealis typica is eurythermal and euryhaline and 

Oikopleura labradoriensis is mesothermal and mesohaline. Throughout the year, more 

than 70 % of the individuals of each species were present above 100 m, indicating that a 

majority of them experienced seasonal variation in abiotic and biotic factors. 

The presence of lipofuscin in the brain tissue, growth rings on the statolith and 

statolith diameter were explored as age indicators for appendicularians. The results 

indicated that statolith diameter was a feasible and reliable age indicator. A laboratory 

study of statolith diameter and somatic growth in 0. vanhoeffeni showed that variability 

in statolith diameter-at-age was substantially lower than that in trunk length-at-age, and 

that variability in statolith-at-age remained constant with age whereas variability in trunk 

length-at-age increased with age, suggesting that statolith diameter should be a better in 

situ indicator of age than body size. Using statolith diameter as a proxy for age, trunk 

length-at-age of 0. vanhoeffeni and 0. labradoriensis in Conception Bay varied 

seasonally depending on food type and concentration, indicating that conventional 

decomposition of cohorts from trunk length frequency distributions would lead to 

inaccurate estimation of age structure and thus population growth rates. 
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Based on age structures represented by statolith diameter, the generation time of 

0. vanhoeffeni was one year and that of 0. labradoriensis was between 8 months and one 

year. Somatic growth in both species was exponential, suggesting the absence of food

limitation and that there was no apparent energetic trade-off between growth and 

reproduction. Somatic growth rate of both species (mass basis) ranged from 0.007 to 

0.043 d- 1
• House production rate far exceeded somatic production in terms of carbon. 

The annual sum of somatic and house production of both oikopleurid species was 

equivalent to 49- 95% ofmesozooplankton production and 3.8- 7.3 % of primary 

production in Conception Bay. 

Age-at-maturity of 0. vanhoeffeni and 0. labradoriensis increased over winter 

and spring as temperature decreased, while size-at-maturity and potential fecundity 

increased to a maximum during the spring diatom bloom. The population growth rate of 

0. vanhoeffeni peaked in spring as age-at-maturity and fecundity increased whereas the 

population growth rate of 0. labradoriensis peaked in the fall when age-at-maturity and 

fecundity decreased. Thus, 0. vanhoeffeni has a life history strategy based upon 

maximization of clutch size and 0. labradoriensis has a life history based upon 

maximization of population turnover rate. Thus, the appendicularian tunicates appear to 

have multiple adaptations promoting niche separation including temporal segregation, 

different optimum temperature and salinity and differing life history adaptations, 

particularly involving variability in age and size-at-maturity and in individual fecundity. 
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General Introduction 

Understanding the determinants of population dynamics is pivotal in population 

ecology. A long history of investigation has revealed the complex nature of population 

dynamics. The geometric nature of population growth was described by Mal thus in 

1 

1798, while density-dependent population growth was addressed in a logistic model by 

Verhulst (1838). Population dynamics in relation to demographic traits was described 

mathematically in the Euler-Lotka equation, I lxmxe·rx = 1, where lx is age-specific 

survival, mx is age-specific fecundity and r is the Malthusian parameter of intrinsic rate of 

population growth (Euler 1760, Lotka 1925). Laughlin (1965) and May (1976) showed 

how population growth rate depends upon the number of offspring that survive to 

reproduce during each generation, and Lewontin (1965) and Caswell and Hastings (1980) 

described how population growth rate could be increased by decreasing generation time 

or increasing the number of surviving offspring. The development of a matrix 

representation of life history tables in the analysis of population dynamics based on 

demographic traits (Leslie 1945) enabled forecasting the pattern of population growth 

(Caswell 1989). 

Current studies in population dynamks show how both external and internal 

factors affect demographic traits and consequently population growth rates. External 

factors can be abiotic variables such as temperature, condition of substrates, toxicity and 

climate (Johnson 2000, Krebs 2002, Sibly and Hone 2002, Pena et al. 2005) and biotic 

variables such as food supply, predation, competition and parasitism (Krebs 2002,Sibly 

and Hone 2002). Internal factors which exist within the populations can be population 

density, genetic variation, physiological plasticity and life history strategies (Levinton 

1982, Sinclair 1989, Stearns 1992, Sibly and Hone 2002). However, external and internal 

factors may not independently influence demographic traits but may act together through 

various feedback mechanisms. For example, the effects of many external environmental 

factors can be population density dependent (Krebs 1995). 
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Determining the effect of external and internal factors on demographic traits and 

population growth rates of marine organisms in the field can be difficult for a variety of 

reasons. For example, most plankton populations are open to immigration and 

emigration, making it difficult to examine the time trajectory of a single cohort in a 

particular population. In addition, demographic studies of field populations require in situ 

methods for age determination and survivorship, conventionally involving mark

recapture techniques that are generally not feasible for zooplankton. For these reasons, 

studies of population dynamics in relation to demographic traits in the marine 

environment have been limited to organisms such as fish, mollusks, and mammals in 

which tagging and age determination are possible (Myers eta!. 1997, Brazeiro and Defeo 

1999, Pistorius et a!. 1999, Hutchings 2005). The few studies of population dynamics in 

this context for invertebrates such as copepods and cladocerans have been conducted in 

the laboratory (Hann 1985, Ltirling and van Donk 1997, Colin and Dam 2004, Mangas

Ramirez et al. 2004) where demographic traits can be more easily observed. 

The main goal of this study was to further our knowledge about the population 

dynamics of appendicularians. Appendicularians are pelagic tunicates that are common 

and abundant in all oceans. Most species are found in the euphotic zone, however, new 

species have also been described from mesopelagic and bathypelagic depths (Fenaux et 

a!. 1998, Hopcroft 2005). Appendicularians are semelparous and protandric 

hermaphrodites, except for a single species, Oikopleura dioica, which is dioecious 

(Fenaux 1998). The appendicularian life cycle can be divided into four distinct stages. 

After external fertilization and the hatching of eggs, metamorphosis occurs upon 

completion of organogenesis by a 180-degree rotation of the tail. Most somatic cells 

reach their definitive number early in development, and further growth is achieved by an 

increase in the volume of somatic cells accompanied by a high degree of endopolyploidy. 

Development is direct, and there are no separate instars or epidermal molts. When sexual 

maturity is reached, sperms are released via a spermiduct first and shortly after the 

oocytes are released by rupture ofthe gonad and body wall, resulting in the death of the 

animal (Fenaux 1976, Fenaux and Gorsky 1983, Galt and Fenaux 1990). Because the 



time periods in the spawning of sperms and eggs overlap, self-fertilization is possible in 

Oikopleura vanhoeffeni (Chapter 2), but the degree of self-fertilization in nature is not 

known. It has been noted that some appendicularian species form mating aggregations, 

thereby increasing the probability of fertilization (Alldredge 1982). 
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Appendicularians play several important roles in marine ecosystems. Using their 

complex filtering structure, called the 'house', they are able to feed on a wide size range 

of particles ranging from DOM (dissolved organic matter) to large diatoms (Deibel 1986, 

Flood et al. 1992, Urban-Rich et al. 2006). Because appendicularians are prey for many 

invertebrates and fish (refs. in Purcell et al. 2005), they efficiently transfer energy within 

food webs by short-circuiting intermediate trophic links (Gorsky and Fenaux 1998). In 

favorable conditions appendicularians can grow and multiply quickly, forming dense 

blooms that consume up to 50- 66% of the standing crop of phytoplankton daily 

(Alldredge 1981 , Deibel 1988, Maar et al. 2004). The sinking of appendicularian fecal 

pellets and discarded houses transports a substantial portion of primary production to the 

benthos (Silver and Alldredge 1981, Taguchi 1982, Bauerfeind et al. 1997, Maar et al. 

2004, Alldredge 2005, Dagg and Brown 2005, Robison et al. 2005). 

Temporal and spatial variation in the abundance and biomass of some 

appendicularian species have been studied in relation to temperature, salinity, food 

availability and predator abundance (Fenaux 1963, Shiga 1985, Acuna and Anad6n 1992, 

Acuna 1994, Nakamura et al. 1997, Tomita et al. 2003, Bamstedt et al. 2005, Lopez

Urrutia et al. 2005, Hoover et al. 2006). However, there is no field information regarding 

how environmental variation influences demographic traits and life history traits, both of 

which contribute to population growth. A major problem in determining demographic 

and life history traits of appendicularians is the lack of an in situ method for 

determination of age. 

The age of organisms can be estimated in various ways. Absolute age can be 

determined from chronologically accumulated markings (rings and striations) on calcified 

structures such as bones (Marmontel et al. 1996, Snover and Hohn 2004), statoliths 

(Lipinski 1986, Chatzinikolaou and Richardson 2007), otoliths (Campana and Neilson 
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1985) and shells (MacDonald and Thomas 1980). Relative age has been estimated using 

the concentration of lipofuscin, a fluorescent, pigment composed of lipid containing 

residues of lysosomal digestion that accumulate in postmitotic cells with age (Ettershank 

1984). Other metrics of relative age include, telomere length, which shortens with age 

(Haussmann and Vleck 2002), and otolith size, which generally increases with age 

(McDougall 2004). None of these methods have been tested for age estimation of 

appendicularians. 

The primary goal of this study was to investigate the population dynamics of 

boreal appendicularian species in Conception Bay, Newfoundland. Three species, 

Oikopleura vanhoeffeni, Oikopleura labradoriensis and Fritillaria borealis typica are 

found in Conception Bay. All three are transported to Newfoundland via the Labrador 

Current from the Arctic Ocean (Kramp 1942, Udvardy 1954, Grainger 1965). Conception 

Bay lies within the cold temperate Northwest Atlantic biogeographic province 

immediately below the Arctic realm (Spalding et al. 2007). This distribution provides the 

unusual opportunity to investigate the population dynamics of Arctic appendicularian 

species from a land-based laboratory at Memorial University. 

In Chapter 1 I described the temporal and vertical distribution of the three 

appendicularian species described above in relation to seasonal variation in physical and 

biological factors (i.e., temperature, salinity and chlorophyll a concentration) over one 

year. The optimal range of temperature and salinity for each species was defined as the 

physical niche. The vertical distribution of appendicularian species was essential 

information for the study of life history and population dynamics in the subsequent 

chapters of the thesis, because it is important to know whether the appendicularians are 

exposed to seasonal variation in temperature and food concentration that occurs primarily 

within the upper 100 m of Conception Bay. I also presented a new morphological key in 

Chapter 1 which is used to identify small juveniles of 0. vanhoeffeni and 0. 

labradoriensis. 

In Chapter 2 several methods for age determination of 0. vanhoeffeni were 

explored, including lipofuscin in brain tissue, incremental rings on the statolith, and 



statolith size (i.e., diameter). Laboratory and field studies indicated that statolith 

diameter is a robust age indicator for appendicularians while body size varies 

considerably with age and thus is not a reliable age indicator. 
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Using statolith diameter as an age proxy, several important questions regarding 

life history characters and population dynamics of two sympatric oikopleurid species, 0. 

vanhoeffeni and 0. labradoriensis, were answered in Chapter 3. Based on cohort 

analysis of age composition derived from statolith diameter, generation times, patterns of 

somatic growth and growth rates were determined. Somatic and house production rates 

were estimated and secondary production also determined. Finally, I determined how the 

population growth rates of these two oikopleurid species are related to variation in the 

demographic traits size-at-maturity, age-at-maturity and fecundity, under seasonally 

fluctuating temperature and food availability. 



Chapter 1 

Temporal and vertical distributions of appendicularians 
in Conception Bay, Newfoundland 

1.1 Introduction 

6 

Appendicularians are pelagic tunicates found in all oceans and are one of the most 

abundant zooplankton in marine ecosystems. The success of appendicularians is 

attributed to their ability to quickly grow and increase in abundance when conditions 

become favorable (King 1982, Hopcroft and Roff 1995). These suspension feeders use a 

secreted mucous house containing a complex set of filters to consume a wide size range 

of particles from colloidal organic matter through pico- and nanoplankton to large 

diatoms (Alldredge 1977, Deibel and Turner 1985, Deibel1986, Flood et al. 1992, 

Urban-Rich et al. 2006). They are preyed upon by numerous species of invertebrates, 

and larval and juvenile fish (Purcell et al. 2005). Thus, appendicularians bypass the 

microbial loop by directly transfering very small particulate organic matter to higher 

trophic levels (Azam et al. 1983, Gorsky and Fenaux 1998), creating a short circuit of 

energy within the food web. Appendicularians are also an important member of the 

'biological pump', in that they transport organic matter from the euphotic zone to deeper 

layers by producing a large number of fecal pellets and by discarding mucous houses 

containing trapped organic matter (Taguchi 1982, Sato et al. 2003, Alldredge 2005, Dagg 

and Brown 2005). 

In order to assess the ecological impact and understand the life history of 

appendicularians, it is important to know how environmental factors affect their temporal 

and spatial distribution. Previous studies of relationships between the temporal and 

vertical distributions of appendicularians and environmental variables have been 

conducted primarily in European and Japanese coastal waters on temperate and 

subtropical species (Fenaux 1968, Shiga 1985, Acufia and Anad6n 1992, Acufia 1994, 

Tomita et al. 2003, Lopez-Urrutia et al. 2005). Additional studies from other regions are 

necessary to gain a global perspective on the distribution of appendicularians in relation 

to environmental variation. 
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The focus of the present study is to determine the temporal and vertical 

distribution of cold-water appendicularian species in Conception Bay, Newfoundland. 

Three species, Oikopleura vanhoeffeni (max. trunk length, ca. 5 mm), Oikopleura 

labradoriensis (max TL, ca. 2 mm) and Fritillaria borealis typica (max TL, ca. 0.9 mm) 

occur in Conception Bay (Fig. 1.1 ). The distribution of 0. vanhoeffeni extends from the 

Arctic Ocean to the boreal North Pacific and North Atlantic oceans (Lohmann 1895, 

1896, Frost et al. 1933, Galt 1970; Shiga 1993) and that of 0. labradoriensis extends 

from the Arctic Ocean to the temperate North Pacific and North Atlantic oceans 

(Lohmann 1896, Udvardy 1954, Fenaux 1963, Shiga 1976, 1985). F. borealis typica 

lives in both hemispheres, and is distributed from the Arctic and Antarctic oceans to the 

temperate zone of the Atlantic and Pacific oceans (Lohmann and BUchmann 1926, 

Grainger 1965, Wyatt 1973, Buchanan and Browne 1981, Tomita et al. 2003). Although 

the feeding ecology and bioenergetics of these species have been investigated (Deibel 

1988, Lopez-Urrutia et al. 2003) their life histories and population biology are essentially 

unknown. There have been few studies that address temporal variation in the abundance 

of these three species (Frost et al. 1933, Udvardy 1954, Davis 1982, Mahoney and 

Buggeln 1983) and only one study reporting their vertical distribution in Newfoundland 

waters (Deibel 1988). Information on the abundance of appendicularians in 

Newfoundland waters cannot be used to address their population biology on annual time 

scales because the published literature is either focused on a particular season or is 

generic, i.e. 0. vanhoeffeni and 0. labradoriensis are lumped into the Oikopleuridae 

because of difficulties in determining the species identity of small juveniles (Davis 1982). 

As the present results demonstrate, lumping these two taxa will obscure marked species

specific differences in life history characteristics and resultant population dynamics. 

The objectives of this study were to describe the temporal and vertical distribution 

of appendicularians in relation to environmental variation in Conception Bay, 

Newfoundland, over a one year period, to determine the degree to which these sympatric 

species demonstrate niche separation, and to compare their environmental niches to those 

published for the same species from other boreal and temperate waters. Given that 



routine differentiation between 0. vanhoeffeni and 0. labradoriensis of all life history 

stages was crucial to this study, I also report on a new morphological character that is 

useful in the identification of juvenile specimens. 

1.2. Materials and Methods 

1.2.1. Study site 
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Conception Bay, located on the northeast coast ofNewfoundland, is 

approximately 70 km long and 32 km wide at its mouth, with a maximum depth of about 

300m (Fig. 1.2). At the mouth of the bay there is a sill at about 150m that restricts entry 

of deep water. In some years, pack ice advected by the Labrador Current and pushed 

ashore by onshore winds covers the bay from mid-March to late April, but the formation 

of local ice is rare. Freshwater runoff is relatively unimportant compared to the influence 

of seasonal ice-melt upstream of the bay, which largely determines surface salinity 

variability (de Young and Sanderson 1995). The residence time of water above 150m 

ranges from 30-42 d (de Young and Sanderson 1995). 

1.2.2. Sample collection 

Appendicularians were collected during daytime from July 3, 2002 to June 25, 

2003 at a site in Conception Bay, Newfoundland, with a bottom depth of ca. 235m 

(47°32.2'N; 53°07.9'W, Fig. 1.2). Samples were collected in 0-30, 30-100, and 100-225 

m depth strata with an opening-and-closing Tucker Trawl, with a mouth area of0.2 m2
, a 

total area of 1.5 m2 (open-area to mouth-area ratio = 4.6) and a mesh size of 110 J.!m. 

The mesh size was selected to quantitatively collect newly-hatched appendicularians, 

which have a trunk length of ca. 150 J.!m (0. vanhoeffeni, laboratory observations). The 

depth strata were chosen to bracket the depths above, within, and below the seasonal 

thermocline and halocline. The speed of oblique towing was 0.12 m sec· ' and the volume 

of water filtered was determined with a TSK™ flowmeter mounted on the net. Upon 

retrieval of the net, samples were immediately fixed in Bouin' s solution. Sampling was 

conducted monthly except during winter, when harsh weather conditions precluded 



sampling. A CTD cast was made before each tow using a Seabird SBE 25-01 equipped 

with a Seatech fluorometer to measure temperature, salinity and in situ relative 

fluorescence. Relative fluorescence units (RFU) were converted to chlorophyll a 

concentrations ().lg chi a L" 1
) using the equation Chi a= (0.398 x RFU) + 0.281 (r2 = 

0.73, n = 244) which was developed using historical data from Conception Bay (Cold 

Ocean Productivity Experiment I, unpublished). 

1.2.3. Sample analysis 

Appendicularian abundance was determined from subsamples produced using a 

Motoda zooplankton sample splitter (Motoda 1959). The animals were viewed and 

counted under a Zeiss stereomicroscope at 40 x and 60 x magnifications. The number of 

0. vanhoeffeni, 0. labradoriensis and F. borealis counted depended upon their seasonal 

abundance, ranging from 1-517,3-464, and 116-132 subsampte·' , respectively (n = 27 

subsamples for each species). The number of each species counted in each subsample 

resulted in median 95% confidence intervals (i.e. analytical error) of 18 %, 17 % and 16 

% of the count for each species, respectively (Alden et al. 1982). 
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Taxonomic differentiation between 0. vanhoeffeni and 0. labradoriensis was 

possible in large specimens using conventional morphological characters, including the 

patterns of inclusion bodies in the house rudiment and subchordal cells in the tail. The 

inclusion bodies of 0. vanhoeffeni were bean-shaped and randomly distributed over the 

surface of the house rudiment whereas the inclusion bodies of 0. labradoriensis were 

rod-shaped and arranged in a single, folded line on each side of the house rudiment 

(Lohmann & BUchmann 1926, BUchmann 1969, Galt and Flood 1998). Inclusion bodies 

were stained with Coomassie BlueR to enhance their visibility. Many clustered 

subchordal cells of 0. vanhoeffeni were aligned along the right side of the tail (viewed 

dorsally), covering at least half the length of the tail, while the few subchordal cells of 0. 

labradoriensis were aligned in a row on the right side of the tail, covering only 1/3 to 1/4 

of the length ofthe tail (BUchmann 1969, Shiga 1976, Mahoney 1981, Shiga 1993). 

However, inclusion bodies and subchordal cells could not be recognized in individuals 
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without house rudiments and with damaged tails. Moreover, these characteristics were 

difficult to recognize in small juveniles. In order to overcome this problem I examined 

their anatomy carefully, and discovered that the position of the endostyle on the oikoplast 

epithelium is diagnostic for these two species (Fig. 1.3). Viewing the trunk mid

ventrally, the endostyle of 0. vanhoeffeni extended posteriorly (i.e. towards the anus) and 

reached the end of the oikoplast epithelium (Fig. 1.3a, c) whereas the endostyle of 0. 

labradoriensis was located in the center of the oikoplast epithelium (Fig. 1.3b, d). This 

species-specific position of the endostyle relative to the oikoplast epithelium was the 

most reliable and easy to use taxonomic character in this study, particularly for juvenile 

life stages. 

1.2.4. Data analysis 

Relationships between water column abundance and environmental variables over 

the annual study period were determined using Spearman rank correlation. Parametric 

analysis was not suitable because the abundance data were not normally distributed even 

after transformation. Vertical distribution at each sampling time point was expressed as 

the percentage of abundance in each depth layer to the total abundance through the entire 

water column. Pearson correlation was used to determine the relationship between the 

percent of total abundance of each species in the surface layer (0-30 m) and 

environmental variables, after arcsine-transformation of the percent abundance. 

1.3. Results 

1.3.1. Hydrography 

Near-surface temperature ranged from -1.5 to 16.6 °C over the annual cycle, 

whereas the temperature below 150 m remained constantly below 0 °C (Fig. 1.4a). The 

water column was isothermal in April ( < 0 °C), but there was early indication of surface 

heating in May. The thermocline intensified over the summer as near-surface 

temperature reached a maximum in August and September before decreasing over the 

winter. Salinity ranged from 31.1 to 33.2 psu and generally increased with depth (Fig. 
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1.4b ). Salinity of the upper 75 m showed a distinct seasonal cycle, decreasing from a 

maximum in April and May to a minimum in October, followed by a gradual increase 

through December. This warmer and less salty surface water was mixed downward by 

winter storms and deep convection between November and December (Fig. 1.4a, b). The 

concentration of chlorophyll a ranged from 0.6-3.5 ).!g r 1
, with evidence of a spring 

bloom in April and May and a minor, deep chlorophyll maximum in July and August at 

the base of the thermocline (Fig. 1.4c ). These environmental data were averaged within 

the three depth strata from which the appendicularians were collected (Fig. 1.5). Most of 

the seasonal variation in mean temperature, salinity and chlorophyll a concentration 

occurred above 100m, with greater variation in the 0-30 m than in the 30-100 m stratum 

(Fig. 1.5). 

1.3.2. Total abundance of appendicularians over the entire water column 

Vertically-integrated water column abundance of the three appendicularian 

species displayed a non-overlapping cycle of seasonal dominance (Fig. 1.6). The 

abundance of 0. vanhoeffeni increased from April to May and peaked in June at 114,135 

ind. m-2
, followed by an increase in the abundance of F. borealis from June to a 

maximum of 107,431 ind.m-2 in August, similar to the maximum abundance of 0. 

vanhoeffeni (Fig. 1.6). 0. labradoriensis peaked in October at 61 ,937 ind.m-2
. 0. 

vanhoeffeni showed the highest seasonal variability (annual coefficient of variation, CV = 

206%) and F. borealis had the least variability (CV = 96%) while 0. labradoriensis 

showed intermediate variability (CV = 166%). Maximum total abundance of 

appendicularians (i.e. sum of the three species) occurred in June after the end of spring 

bloom (166,772 ind. m-2
), as a result of the peak abundance of 0. vanhoeffeni and an 

increase in the abundance of F. borealis. 



1.3.3. Temporal and vertical distribution of appendicularians in relation to 

environmental variables 
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The abundance of 0. vanhoeffeni remained low(< 27m-3
) from July 2002 to 

April 2003 and increased by 2 orders of magnitude in all three depth layers during May 

and June, reaching a peak abundance of 1124 m-3 in the surface layer (Fig. 1.7a). 

Variation in abundance over the year in all three depth layers was positively correlated 

with chlorophyll a concentration (Table 1.1 ). The vertical distribution displayed two 

distinct temporal modes annually (Fig. 1.7a). Abundance in the surface layer decreased 

below abundance in the middle and deep layers during summer (June to September) but 

increased above the middle and deep layers from autumn to spring (October to May) 

(Fig. 1.8a). Less than 1 %of the population inhabited the surface layer during summer as 

temperature increased, while the majority of the population remained in the middle and 

deep layers where temperature was lower (Fig. 1.8a). A large proportion of 0. 

vanhoeffeni population remained in the surface layer during spring when temperature 

reached its annual minimum. Correlation analysis indicated that the percent of total 

abundance in the surface layer was inversely related to temperature (Table 1.2). The 

annual mean (±SD) proportion of the 0. vanhoeffeni population occurring above 100m 

depth was 71 ± 21 %. 

The abundance of F. borealis in the surface layer increased from May to July, 

reaching a peak of 526m-3 (Fig. 1.7b). Abundance then generally decreased until the 

following April. The temporal pattern of abundance in the middle and deep layers was 

similar to that in the surface layer, reaching maxima of 639m-3 and 439m-3, respectively, 

during August. Throughout the year, the abundance of F. borealis in all depth layers 

was positively correlated with temperature and negatively correlated with salinity (Table 

1.1). Vertical distribution of abundance (Fig. 1.7b) and relative abundance (Fig. 1.8b) 

indicates that the majority of animals occurred below the surface layer in August, April 

and May, but within the surface layer in July and October- January. This pattern of 

variation in the surface was not correlated with the environmental variables observed in 
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this study (Table 1.2). The annual mean (±SD) proportion of F. borealis in the upper l 00 

m was 80 ± 18 %. 

Seasonal variation in the abundance of 0. labradoriensis was strongest in the 

surface and middle depth layers (Fig. 1.7c). Between September and October there was a 

1000-fold increase in abundance in the upper layer and a 100-fold increase in the middle 

layer, followed by a gradual decrease until spring (Fig. 1.7c). The abundance over all 

depths throughout the year was negatively correlated with salinity (Table 1.1 ). The 

vertical distribution of 0. labradoriensis displayed two distinct temporal modes, one in 

which abundance was highest in the surface layer from October to April and one in which 

abundance was lowest in the surface layer from May to September (Fig. 1.7c). In fact, no 

animals were collected from the surface layer from May to August. The relative 

abundance of 0. labradoriensis indicated that animals remained below the surface layer 

from May to September but were found in the surface layer from October to April (Fig. 

1.8c). The seasonal pattern in relative abundance in the surface layer was negatively 

correlated with salinity, indicating a preference for the lowest salinities (Table 1.2). 

Similar to the other two species, the annual mean (±SD) proportion of 0. labradoriensis 

in the upper 100m was 75 ± 21 %. 

1.3.4. Appendicularian niche defined by temperature and salinity 

The above temporal and spatial differences in abundance of these three species of 

appendicularians result in clear differences in t-s preferenda, particularly between the 

oikopleurid congeners (Fig. 1.9). The optimum t-s range of 0. vanhoeffeni defined as the 

range where greater than mean abundance occurred was narrow, from -1.3 to 4.6 °C and 

32.3- 32.7 psu (Fig. 1.9a), indicating a stenothermal (cryophilic) and stenohaline species. 

F. borealis displayed characteristics of a eurythermal and euryhaline species, with a wide 

optimum t-s range of -1.3 to 12.4 °C and 31.1-33.0 psu (Fig. 1.9b). 0. labradoriensis 

was a mesothermal and mesohaline species, with a t-s range intermediate between those 

of 0. vanhoeffeni and F. borealis, from 1.8 - 9.9 °C and 31.1 - 32.1 psu (Fig. 1.9c ). The 

niche separation of 0. vanhoeffeni and 0. labradoriensis was best defined by salinity, as 
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the optimum range of the two species did not overlap and was sharply and clearly defined 

for each (Fig. 1.9a, c). 

1.4. Discussion 

Taxonomic differentiation between 0. vanhoeffeni and 0. labradoriensis required 

the use of three morphological characters. In large specimens, differences in the patterns 

of inclusion bodies on the house rudiments, patterns of subchordal cells on the tails, and 

the position of endostyle relative to that of the ventral epithelium were all easily 

determined. However, inclusion bodies and subchordal cells often could not be used as 

good taxonomic characters because they were not clearly visible in small juveniles, 

possibly as a result of ontogenetic variation in their rate of development. In addition, 

frequent absence of house rudiments and tissue damage in tails often precluded 

differentiation of species based on these conventionally used characters. The new 

morphological character found in this study, the position of the endostyle relative to the 

ventral epithelial tissue, proved to be diagnostic for all body sizes of the two species in all 

samples collected. The use of this morphological difference has not been reported 

before, and further observation of specimens from other boreal and Arctic regions is 

therefore required to document within and between species variability in this character. 

The seasonal pattern and range of environmental characteristics in Conception 

Bay observed in this study are similar to those observed from 1996 to 2000 (Stead and 

Thompson 2003, Richoux et al. 2004). Previous measures of temperature, salinity and 

chlorophyll a concentration range from -1.5 to 15.9 °C, 32.0 to 34.0 psu and 0.14 to 5.3 

J.!g r 1
, respectively. A distinct thermocline occurs in the summer whereas temperature 

below 150 m remains < 0 °C throughout the entire year. However, the persistent 

halocline present during summer and autumn in the upper 75 m is not described in 

previous studies. The annual minimum of surface salinity in October is thought to be a 

lagged signal of spring ice meltwater from Baffin Bay and Hudson Strait that is advected 

into Conception Bay via the Labrador Current (Myers et al. 1990, deY oung and 

Sanderson 1995). In general, the spring phytoplankton bloom begins in March and peaks 
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in May, when temperatures are still below zero (Deibel et al. 1992, Stead and Thompson 

2003, Richoux et al. 2004 and data in 2002 in Chapter 2 ofthjs thesis). Timing of the 

spring bloom is associated with a decrease in wind velocity that coincides with sufficient 

light intensity and inorganic nutrients (Deibel et al. 1992, Stead and Thompson 2003). 

The occurrence of a smaller, secondary phytoplankton bloom in summer (July-August) 

has been reported in previous years (Stead and Thomspon 2003, Richoux et al. 2004), 

however, no explanation for the mechanism behind the secondary bloom has been 

provided. In general, seasonal variability ofthe above conditions indicates that 

Conception Bay is a cold boreal system with Arctic influence. 

Total abundance of appendicularians in Conception Bay peaked following the 

spring phytoplankton bloom, which is consistent with previous observations for 

Norwegian fjords and the Cantabrian Sea (Bamstedt et al. 2005, Lopez-Urrutia et al. 

2005). Thus, it seems that the total abundance of appendicularians is generally related to 

the phytoplankton biomass. The population response of appendicularians in Conception 

Bay was lagged by at least a month behind the peak of the spring phytoplankton bloom, 

which occurred in May when the temperature of the entire water column was 0 to -1 °C. 

This time lag is much longer than is typical in tropical waters, where appendicularian 

populations may respond to food pulses within days (Hoover et al. 2006). This latitudinal 

difference in the time lag between a pulse in food and a population response is likely a 

result oftemperature effects on the rate of appendicularian development. For example, 

0. vanhoeffeni hatches 2 days after fertilization at 0 °C (laboratory observations, 

Appendix 1 ), whereas the tropical and temperate species Oikopleura dioica hatches 3 

hours after fertilization at 22 °C (Fenaux 1976). 

Temporal variation in the abundance of temperate and tropical appendicularian 

species is correlated with temperature and salinity. Fenaux (1961 , 1963) documented 

species succession of appendicularians throughout the year in Mediterranean waters and 

attributed the seasonal pattern to differing temperature optima. Shiga (1985) showed that 

the seasonal occurrence of appendicularian species in Volcano Bay, Japan, coincided 

with intrusion of different water masses that could be defined by differences in 
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temperature and salinity. Lopez-Urrutia et al. (2005) concluded that the seasonal 

occurrence of appendicularian species in four European coastal environments is regulated 

primarily by temperature and secondarily by salinity. My results also indicate significant 

relationships between physical factors and abundance of appendicularian species in 

Conception Bay. F. borealis increased during summer at depths where temperature was 

high and salinity was low and 0. labradoriensis increased during autumn at depths where 

salinity was lowest. However, 0. vanhoeffeni was most abundant during spring at depths 

where chlorophyll a concentration was highest, suggesting that physical parameters alone 

do not adequately explain the temporal distribution of appendicularian species. 

Vertical distribution of oikopleurid species in Conception Bay was significantly 

correlated with temperature and salinity. Several studies from temperate regions have 

suggested that appendicularian species are vertically distributed according to temperature 

optima. In Volcano Bay, Japan, during summer, warm water species are distributed in 

the upper water column and cryophilic species are confined to the deeper, colder layer 

(Shiga 1985). In the Cantabrian Sea, cryophilic species are found in the colder, deeper 

layer during summer (Acufia 1994). Similarly in this study, the cryophilic 0. vanhoeffeni 

was most abundant in deeper, colder layers during summer. However, in Conception Bay 

the vertical distribution of 0. labradoriensis appeared to be strongly regulated by salinity, 

particularly during the annual salinity minimum in late summer and early fall. The 

importance of salinity as a determinant of the vertical distribution of appendicularians has 

also been reported in the brackish Bomholm Basin of the Baltic Sea, where tunicates 

were confined below the halocline (Schulz and Hirche 2007). 

A few studies have shown that the vertical distribution of appendicularian species 

is homogeneous when the water column is vertically mixed during winter (Fenaux 1968, 

Shiga 1985). This pattern was not observed in Conception Bay, in that each species 

displayed different depth distributions in April and May when the water column was 

isothermal and almost isohaline. During this time, 0. vanhoeffeni was more concentrated 

in the surface layer whereas F. borealis and 0. labradoriensis were distributed at greater 

depths. The explanation for this pattern is not clear, but it is certain that the vertical 



distribution of appendicularian species in Conception Bay is not a function of seasonal 

mixing and stratification of the water column. 
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In general, a large proportion (i.e.> 70 %) of the population of all three 

appendicularian species occurs within the upper 100 m over the year, perhaps as a result 

of higher concentrations of phytoplanktonic food above this depth. Tomita et al. (2003) 

observed a similar pattern in Toyama Bay, Japan, where most appendicularians were 

found in the upper 50 m throughout the year, where the chlorophyll a maximum 

consistently occurred and stated that vertical aggregation of appendicularians in the upper 

layer was due in part to higher food concentration. 

Temperature-salinity diagrams clearly indicate species-specific spatial and 

temporal niches of appendicularians in Conception Bay (Fig. 1.9). The fact that 0. 

vanhoeffeni is cryophilic and stenothermic, 0. labradoriensis mesothermic and F. 

borealis eurythermic in Newfoundland coastal waters supports previous hypotheses about 

thermal niche of appendicularian species in southern Labrador and the Grand Banks 

(Frost et al. 1933, Udvardy 1954). These three species have similar relative thermal 

niches in temperate and boreal European coastal waters (Lopez-Urrutia et al. 2005). In 

boreal Pacific waters, F. borealis displays a wider range of temperature and salinity 

preferenda than does 0. labradoriensis (Shiga 1985), similar to our results from 

Newfoundland. Thus, the niche breadth of these three appendicularian species is 

becoming better defined on a global scale. 

Niche separation of species in Conception Bay and around the world suggests that 

the distribution of appendicularians may be sensitive to climate forcing. Variation in 

surface temperature and salinity in Greenland, the Labrador Sea, and Newfoundland 

coastal waters is related to interdecadal cycles in the strength of the North Atlantic 

Oscillation as well as to global warming in general (Myers et al. 1988 Drinkwater 1995, 

Colbourne et al. 1997, Houghton and Visbeck 2002, Chylek and Lohmann 2005). Such 

changes in temperature and salinity in boreal and Arctic waters may affect the relative 

abundance of these three appendicularian species. With arctic temperature and rainfall 

both predicted to increase over the next century, the abundance of the stenothermic and 
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stenohaline 0. vanhoeffeni may decrease, while that of F. borealis and 0. labradoriensi 

may be expected to increase. In addition, recent surface warming is enhancing 

stratification and suppressing nutrient exchange through vertical mixing (Behrenfeld et 

al. 2006). Consequently, reduced availability of nutrients is leading to a decrease in the 

primary production and phytoplankton standing stocks in the ocean' s upper layer 

(Behrenfeld et al. 2006). This trend may negatively affect the abundance of 

0. vanhoeffeni, in particular, because this species responds positively to an increase in 

phytoplankton biomass. 

Thus, temporal and vertical distributions of boreal appendicularian species are 

related to temperature, salinity, and chlorophyll concentration, indicating that these 

factors are important to the population dynamics of each species. Niche separation of 

appendicularian species in temperature-salinity space suggests that physiological 

tolerance to temperature and salinity levels may be important in predicting recruitment 

and survivorship of each species. In-depth understanding of interspecific variation in 

appendicularian abundance requires further study of how these physical and biological 

variables affect demographic parameters such as survival, reproduction and growth. 



Table 1.1. Spearman rank correlation coefficients between abundances 
of appendicularian species (ind. m·3) and environmental variables. N = 27, 
p-values are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

Temperature Salinity Chlorophyll a 
Oikopleura vanhoeffeni -0.27 0.01 0.37* 

(0.18) (0.95) (0.06) 

Fritillaria borealis 0.52*** -0.45** 0.01 
(0.005) (0.02) (0.95) 

Oikopleura labradoriensis 0.12 -0.37* 0.30 
(0.57) (0.06) (0.13) 
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Table 1.2. Correlation coefficients between percent total abundances of 
appendicularian species in the surface layer (0-30 m) and environmental variables. 
N = 9, p-values are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. 

Temperature Salinity Chlorophyll a 
Oikopleura vanhoeffeni -0.66** -0.08 0.56 

(0.05) (0.84) (0.12) 

Fritillaria borealis 0.18 -0.54 -0.50 
(0.64) (0.13) (0.17) 

Oikopleura labradoriensis -0.10 -0.66** 0.33 
(0.79) (0.05) (0.38) 
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(c) P TR 
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Fig. 1.1. Illustrations of three appendicularian species in Conception Bay. 
(A) Oikopleura vanhoeffeni, (B) Oikopleura labradoriensis, (C) Fritillaria borealis. 
Drawings are modified from photographs by P.R. Flood and figure by Flood (2003). 
C, coarse filter; E, exit spout; F, fme filter; G, gonad; H, house; P, pharynx; 
TA, tail; TR, trunk. 
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Fig. 1.2 Map of Conception Bay, Newfoundland. Sampling site is 
indicated as 'X.' The dotted line indicates the 100 m isobath. 
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Fig.l.3. Morphology of the endostyles of Oikopleura vanhoeffeni (a, c) and Oikopleura 
labradoriensis (b, d) in ventral view. 
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Note that the endostyle of adult (a) and juvenile (c) 0. vanhoeffeni extends posteriorly to 
the end of the oikoplastic epithelium, while that of adult (b) and juvenile (d) 
0. labradoriensis is located in center of the oikoplastic epithelium. 'an' = anus, 'en' = 
endostyle, 'oe' = oikoplastic epithelium, ' mo'= mouth. Scale bar = 100 J..lm. 
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Fig. 1.8. Time series of relative abundance as a% total abundance ofthree appendicularian 
species in three depth strata of Conception Bay from July 2002 to June 2003. 
(a) Oikopleura vanhoeffeni, (b) Fritillaria borealis and (c) Oikopleura labradoriensis. 
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2.1. Introduction 

Chapter 2 

Statolith diameter as an age indicator in the 
appendicularian tunicate Oikopleura vanhoeffeni 
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Age determination is essential for the study of population dynamics, which 

requires demographic information regarding age-specific fecundity, age-specific 

mortality and generation time (Steams 1992, Vandermeer and Goldberg 2003). For many 

marine invertebrates that lack discrete life-history stages and have continuous growth, 

age is conventionally estimated based on body size. However, body size can be a poor 

indicator of age because size-at-age may vary depending on the rate of growth, which can 

be regulated by temperature or food availability. For example, under severe food 

limitation, soft-bodied animals such as gelatinous zooplankton may experience degrowth 

as a result of using internal energy reserves and the digestion of somatic tissue to 

maintain metabolism (Hamner and Jensen 1974, Kremer 1976, Deason and Smayda 

1982). For these reasons, various chemical and physical characters have been used for 

age estimation, including lipofuscin concentration in neural tissue, and age increments or 

dimensions of permanently calcified structures such as otoliths and statoliths. 

Lipofuscin is a yellow-brown, autofluorescent material that accumulates over time 

in lysosomes of postmitotic cells such as neurons and cardiac myocytes in various 

vertebrates and invertebrates (reviews in Porta 1991, Yin 1996, Terman and Brunk 1998). 

This age pigment forms due to peroxidation of unsaturated lipids by oxygen-free radicals 

and polymerization of oxidized lipid compounds with protein residues (Donato 1981, Yin 

1996, Terman and Brunk 2004). Lipofucinogenesis involves a series of chain reactions. 

Hydrogen peroxide, a byproduct of normal oxygen metabolism in the electron transport 

chain of mitochondria, partially diffuses through lysosomal membranes. Intra- and 

extracellular materials enter lysosomes through autophagy and hetrophagy and the 

materials are decomposed into molecules such as amino acids, fatty acids and simple 

sugars (Dice 2000). In the lysosome, degradation of iron-containing metalloprotein 

produces ferrous iron, which readily reacts with hydrogen peroxide resulting in formation 
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of extremely reactive oxygen derived hydroxyl radicals (Brunk et al. 1992). When the 

hydroxyl radicals attack unsaturated lipids, aldehydes are formed which react with amino 

groups within protein residues (Chio and Tappe I 1969, Dillard and Tappe I 1971 ). The 

end product of cross-linked aldehydes and protein residues is lipofuscin, which cannot be 

degraded by lysosomal hydrolases, nor exocytosed, and thus accumulates with age in 

lysosomes within post-mitotic cells (Brunk and Terman 2002, Terman and Brunk 2004). 

Histochemical characteristics of lipofuscin include resistance to polar and non

polar solvent extraction, basophilia, osmiophilia, and stainability by periodic acid-Schiff 

and Sudan black B (Brunk and Ericsson 1972, Sohal1981 , Porta 1991 ). One of the most 

distinct characteristics of lipofuscin is yellow-orange to off-white autofluorescence 

produced when it is excited with blue or UV light (Porta 1991 , Yin 1996, Bluhm 2001 ). 

The cumulative quantity of autofluorescence in post-mitotic cells has been used for 

determination of age in many organisms for which other methods of ageing are lacking or 

are in some respect unsatisfactory. Lipofuscin concentration has been particularly useful 

for ageing aquatic crustaceans that lack permanent calcified structures with age marks 

(Ettershank 1984, Sheehy and Wickins 1994, Ju et al. 1999, Bluhm and Brey 2001 ). 

Lipofuscin concentration has been determined in two ways. The first method involves 

analysis of pigment granules in histological sections using epifluorescent microscopy 

(O'Donovan and Tully 1996, Sheehy et al. 1996, Wahle et al. 1996, Belchier et al. 1998). 

The second method involves pigment extraction and measurement of bulk fluorescence 

by spectrophotometric analysis (Nicol1987, Nicolet al. 1991, Ju et al. 1999). Using 

these methods, modal analysis of frequency distributions of lipofuscin concentration may 

produce additional age-classes not apparent in conventional size-frequency distributions 

for some organisms (Sheehy et al. 1998, Bluhm and Brey 2001). However, efficiency of 

extraction is variable, as Nicol (1987) found that pre-fixation in formaldehyde resulted in 

increased lipofuscin concentrations in copepods, euphausiids, and squid. Sheehy (1996) 

also noted that soluble autofluorescence intensity in the brain of freshwater crayfish did 

not represent lipofuscin alone but represented a mixture of unknown pigments and did 



not match the concentration of lipofuscin determined by microscopy (Eldred and Katz 

1989, Sheehy 1996). 
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Lipofuscin concentration may be affected by factors other than age. Tully et al. 

(2000) demonstrated that lipofuscin accumulation in the European lobster Homarus 

gammarus oscillated with the simulated seasonal temperature cycle and thus seemed to 

be affected by metabolic rate. Based on this result, the authors suggested that 

geographical and long-term temporal differences in temperature (such as degree days 

available for growth) need to be considered when converting physiological age indices, 

obtained from lipofuscin, to a chronological scale. Castro et al. (2002) reported that 

dietary antioxidants significantly reduce lipofuscin concentration in the shrimp Panaeus 

japonicus and that age estimation using lipofuscin may be biased when wild populations 

from diverse environments are compared. For all of the above reasons, the use and 

interpretation of lipofuscin concentration as an age proxy are difficult. 

Daily and annual incremental rings that form in the otoliths, statoliths, and shells 

of fish, cephalopods, gastropods, and bivalves are commonly used for age and growth 

rate estimates (Sire and Bonnet 1984, Campana and Neilson 1985, Lipinski 1993, Sejr et 

al. 2002, Barroso et al. 2005). Incremental growth of such structures occurs through 

differential deposition of calcium carbonate on a proteinaceous matrix in the form of 

calcite or aragonite (Dunkelberger et al. 1980, Young 1992, Lipinski 1993), depending on 

environmental and physiological variables such as photoperiod, temperature, feeding, 

growth or an endogenous circadian rhythm (Simkiss 1974, Mugiya et al. 1981, Campana 

and Neilson 1985, Jackson 1994). Enumeration of age rings can be achieved using light 

or scanning electron microscopes, depending on the size of the structure, and often 

requires sectioning, polishing, and acid-etching in order to aid in clear visualization of 

surface ultrastructure. 

Dimensions of calcified structures have been found to increase with age, 

particularly in fish. Use of otolith dimensions may provide a time and cost saving 

alternative to conventional counting of age rings for some organisms (McDougall2004). 

Otolith length, width and weight are strongly related to age in several fish species 
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(Fujiwara and Hankin 1988, Secor and Dean 1989, Reznick et al. 1989, Kristoffersen and 

Klemetsen 1991, Newman et al. 1996,2000, Newman 2002, McDougall2004). 

Importantly, otolith size increases in fish at a constant rate even when food is limiting and 

somatic growth rate decreases (Templeman and Squires 1956, Mosegaard et al. 1988, 

Reznick et al. 1989, Secor and Dean 1989, Secor et al. 1989, Campana 1990, Pawson 

1990, Cardinale et al. 2000). Finally, it has been shown in several fish species that the 

use of otolith weight-age relationships results in estimated age-frequency distributions 

that are not significantly different from those determined from otolith increment counts 

(Piling et al. 2003, McDougall 2004). 

The objective of this study was to explore a method for age determination of 

appendicularian, Oikopleura vanhoeffeni, a pelagic tunicate commonly found in high 

concentrations in arctic and boreal waters (Udvardy 1954, Shiga 1993, Ashjian 1997), 

where it is often a dominant suspension feeder (Deibel 1988, Acufia et al. 2002). 

Appendicularians often contribute substantially to biogenic carbon fluxes in the form of 

discarded mucous-filter houses and fecal pellets (Bauerfeind et al. 1997, Alldredge 2005, 

Dagg and Brown 2005). Although the distribution and abundance of this species is 

known, population dynamics have not been studied. To better understand the population 

dynamics of this species, demographic parameters need to be determined, in which age 

determination is a crucial factor. 

The development of method for age determination of appendicularians is in an 

early stage. One method has been developed using the number of endostyle cells as an 

index of age in appendicularian Oikopleura dioica (Troedsson et al. 2007). The 

hypothesis of this study is based on the developmental time model which uses the 

discrete cell cycle steps as a nondimensional biological clock for marine invertebrates 

(Aksnes et al. 2000a, b). In 0. dioica, the number of endostyle cells increases with age, 

however the rate of increase in the cell number is dependent on temperature but 

independent from food concentration (Troedsson et al. 2007). Thus, age of 0. dioica can 

be predicted from the number of endostyle cells and ambient temperature (Troedsson et 

al. 2007). The technique for enumeration of endostyle cells involes staining the 



polyploid endostyle nuclei and counting the nuclei with a confocal microscope. Use of 

this method for analyzing the age structure of field populations has not been tested. 
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In this study, I explored the use of lipofuscin in brain tissue, incremental rings on 

the statolith, and statolith diameter for age determination of the appendicularian, 

Oikopleura vanhoeffeni. The results of this study suggest that statolith diameter can be 

used as an age indicator in appendicularians. Using statolith diameter, length-at-age of 

0. vanhoeffeni in Conception Bay, Newfoundland, was examined over two years in 

relation to variation in food availability, in order to test whether body size is a reliable 

indicator of age in field populations. 

2.2. Materials and Methods 

Sensory organs of Oikopleura vanhoeffeni are located in the anterior-dorsal region 

of the trunk and consist of the brain and a statocyte that contains the statolith (Fig. 2.la, 

b). 

2.2.1. Lipofuscin analysis 

0. vanhoeffeni were collected from Logy Bay, Newfoundland, by SCUBA divers 

and preserved in 4 % buffered formaldehyde at the Ocean Sciences Centre (MUN) 

laboratory. Trunks of the animals were dehydrated in an ascending ethanol series, 

cleared in xylene, and embedded in paraffin. Embedded material was serially sectioned 

at 6-~m intervals. Sections were mounted on a glass slide, dewaxed with xylene, and 

covered with a non-fluorescent mounting medium (Gel Mount aqueous mounting 

medium, Sigma). For identification of lipofuscin, unstained sections of the brain were 

examined for characteristic yellow or off-white, granular autofluorescence under 450-490 

nm (blue) excitation wavelength combined with > 515 nm emission wavelength and 

under 330-380 nm (UV) excitation combined with > 420 nm emission using a Nikon 

Eclipse E600 epifluorescence microscope. 
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2.2.2. Statolith analysis 

Animals were preserved in 95 % ethanol, cleared in 1 % KOH, and then mounted 

in glycerol on glass slides to visualize the statolith. Statolith diameter was measured to 

the nearest 0.5 flm under a Zeiss Axiovert 35 microscope at 1 OOOX magnification. 

To view the statolith using transmission electron microscopy, 0. vanhoeffeni were 

fixed for 1 hr in Kamovsky's fixative (5% glutaraldehyde, 4% paraformaldehyde, 

buffered with 0.2 M sodium cacodylate buffer, pH 7.4), followed by post-fixation for 30 

min in 1% osmium tetroxide buffered in 0.2 M sodium cacodylate, pH 7.4. The animals 

were serially dehydrated in an ethanol series followed by acetone and embedded in epoxy 

resin. Semi-thin (1 f..lm) sections were cut from the tip of the dorsal region of the mouth 

to the tip of the brain with glass knives and ultra-thin (0.5 f..lm) sections were cut through 

the entire brain region with a diamond knife (LKB Ultratome). Sections were placed on 

formvar coated grids, stained with uranyl acetate and lead citrate for examination with a 

Zeiss EM 109 transmission electron microscope. 

For observation of the statolith using scanning electron microscopy, 0. 

vanhoeffeni were preserved in 95 % ethanol and 2 % buffered glutaraldehyde. In order to 

view the entire statolith it was necessary to separate it from the statocyte. Manual 

dissection was difficult because oftheir minute size (ca. 8 to 18 f..1.m), thus an indirect 

approach was taken by dissolving the brain and statocyte in sodium hypochlorite, leaving 

the statolith intact. Statoliths were rinsed with distilled water and stained with alizarin 

red to aid visualization. They were then collected by filtering onto cellulose acetate 

membrane filters, which were mounted on an SEM stub and sputter-coated with gold. 

The samples were viewed at 1500 to 4000 X power with a Hitachi 5570 scanning 

electron microscope. 

2.2.3. Growth of the statolith and trunk in the laboratory 

Fully mature 0. vanhoeffeni were collected from Logy Bay, Newfoundland from 

April to the middle of June 2001. They contained an orange mass of sperm in the sperm 

sac and many oocytes packed in the ovary. Each individual was kept suspended in a 
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glass tank containing 20 L of seawater pre-filtered through 40 ~m mesh. The tank was 

maintained at 0-1 °C during the experiment, and was equipped with a clear, twisted 

plexiglass paddle mounted vertically, which was connected to a 12 V automobile 

windshield wiper motor (Volkswagen Motors AG, J.-L. Acufia, pers. comm.). A rheostat 

was connected to the motor to regulate the speed of rotation. This setup created a gentle, 

rotating current of water which kept the animals in suspension (Fenaux & Gorsky 1985, 

Fig. 2.2). Six mature individuals in the tanks spawned within one or two days of 

collection. The eggs hatched ca. two days after self-fertilization, and the new generation 

of animals inflated the first houses ca. six days after fertilization (Appendix 1 ). Animals 

within houses were moved to new seawater prefiltered through 40-~m mesh, but 

supplemented with 2 X 106 cells rt of JsochrysiS Sp. and 2 X 106 cells rt Of Thafassiosira 

pseudonana. The animals were moved to new seawater with fresh food every two days 

with a wide-bore pipette. The size of the pipette used for transfer of the animals varied 

depending on the size of houses to prevent damage of the house which causes the animals 

to be trapped in the house. The animals outside the houses were not transferred because 

trunks and house rudiments were easily damaged during transfer, preventing the animals 

to successfully build new houses. When a large pipette was used, the bottom end ofthe 

pipette was shut tightly with a plastic cap attached with a handle extension after gently 

suctioning the animal in a pipette, to avoid spilling the content during the transfer. 

Individuals from six families were removed from the experiment randomly at intervals 

from 10 - 60 days after hatching and were preserved in 95 % ethanol. The number of 

individuals collected per family at each sample time ranged from 8 to 77 (Appendix 2). 

It was not possible to sample each family with a high and equal frequency because 

mortality was high and variable in each family throughout the rearing process. Trunk 

lengths, excluding the gonad, were measured to the nearest 25 ~m under a Zeiss 

stereomicroscope at 40X magnification. After the measurements were made, animals 

were cleared in 1 % KOH solution and mounted in glycerol on a glass slide. Statolith 

diameter was measured as described above. In order to determine the growth pattern of 

statolith diameter and trunk length, linear or non-linear regressions were fit to the data. 



2.2.4. Field determination of body size as a function of statolith diameter (i.e. trunk 

length-at-statolith diameter, a proxy for length-at-age) 
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Individuals of 0. vanhoeffeni were collected from June 11 , 2001 to June 25, 2003 

at the same site in Conception Bay as described in Chapter 1. Vertical hauls were made 

from near the bottom (ca. 225 m) to the surface using a ring net with a mesh size of 110 

J..lm. The speed ofretrieval ofthe net was ca. 0.12 m sec-1
• Upon retrieval ofthe net, the 

entire sample was immediately preserved in 95 % ethanol. The frequency of sampling 

was bimonthly except during winter, when harsh weather conditions precluded sampling. 

On each sampling day, in situ relative fluorescence was measured with a Seabird SBE 

25-01 CTD equipped with a SEA TEC fluorometer. Relative fluorescence units (RFU) 

were converted to chlorophyll a concentration (f..lg Chl a r 1
) using the equation Chi a = 

0.398 x RFU + 0.281 (r2 = 0.72, n = 244), which was developed using historical data 

from Conception Bay (Cold Ocean Productivity Experiment, unpublished). Temperature 

and chlorophyll a data were bin-averaged at 1 m depth intervals before statistical analysis 

and plotting. 

Animals were rinsed with 95 % ethanol before measuring trunk length, gonad 

maturity and statolith diameter. Animals from the field samples were not rinsed with 

water since doing so lowered the pH of the sample and completely dissolved the 

statoliths. Trunk lengths were measured to the nearest 25 J..lm under a Zeiss 

stereomicroscope at 40 X magnification, followed by clearing, mounting and the 

measurement of statolith diameter as described above. Trunk length and statolith 

diameter were measured from the individuals collected from a single tow sample at each 

time point of collection. 

To observe the temporal variation in length-at-age, mean trunk lengths were 

calculated at 1-J..lm increments of statolith diameter in the individuals sampled from June 

2001 to June 2003. Mean trunk lengths at statolith diameter from 9 to 16 J..lm were 

analyzed with polynomial regression (Y = a0 + a1 x + a2 x
2 + a3 x3 . .. ). The order of best

fit polynomial function to each data set was determined by fitting the sequential orders of 

polynomials until the sums of squares for error were explained significantly (Christensen 
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1996). Relationships between mean trunk length at each statolith diameter (hereafter 

referred to as 'length-at-age') and temperature and concentration of chlorophyll a were 

explored with a linear regression model. Mean temperature and chlorophyll a in the 

upper 100m of the water column were used in this model, because> 70% of the animals 

were located within this depth stratum (Chapter 1). Trunk lengths were log-transformed 

when residuals were not homogeneous and normally distributed. 

2.3. Results 

2.3.1. Lipofuscin 

Yell ow or off-white fluorescent lipofuscin granules were not detected in the brain 

sections of 0. vanhoeffeni under blue and UV excitation light (Fig. 2.3), indicating either 

the lack of production of lipofuscin or the production of very low levels. Therefore, 

lipofuscin concentration could not be used as an age proxy in this study. 

2.3.2. Statolith 

Viewed under transmitted light, the statolith revealed four conspicuous rings (Fig. 

2.4a), however, daily rings could not be resolved under transmitted light. Thus, I explored 

higher magnification approaches, but found that statoliths needed to be either sectioned 

or polished and etched to view ultrastructural details under TEM and SEM. 

Unfortunately, sections of the statolith could not be obtained for TEM analysis. The 

statoliths may have popped out from the sections because of their hard consistency or the 

brain region was not sectioned at an appropriate angle to include the statolith. 

Controlling the target angle of sectioning was difficult because the statoliths were so 

small in size. Under SEM, statoliths appeared to be composed of discrete layers, which 

may have been deposited at a fixed time interval (Fig. 2.4b ). Statoliths need to be 

polished to the core and etched before viewing under SEM in order to reveal the presence 

of age-related deposition. This could not be done because of handling difficulties 

associated with their minute size. For all of the above reasons, visualization of the 

statolith using EM was not a feasible approach for age determination of appendicularians. 



2.3.3. Relationships between statolith diameter, trunk length and age in laboratory

reared individuals 
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Statolith diameter of 0. vanhoeffeni increased linearly for over 60 days after 

hatching in the laboratory (Fig. 2.5a), suggesting that statolith diameter is linearly related 

to age. This relationship does not appear to be dependent on the genetic origin of 

individuals because the data in Fig. 2.5a come from different parents. Most importantly, 

the coefficient of variation of mean statolith diameter-at-age did not increase with an 

increase in age (Fig. 2.5b ), meaning that statolith diameter is a robust age indicator for 

individuals of all ages. 

Trunk length of the laboratory population increased linearly over time (Fig. 2.6a). 

However, the coefficient of variation of mean trunk length-at-age showed an increasing 

trend with an increase in age (Fig. 2.6b), suggesting that trunk length is a less precise 

indicator of the age of older individuals than of younger individuals. In addition, the 

overall coefficient of variation for mean statolith diameter (6-11 %) was significantly less 

than that for mean trunk length (8-27 %) (t-test, t (20) = -7.08, p < 0.001). Thus, statolith 

diameter is a more precise indicator of age for individuals of all ages than is body size, 

even in laboratory conditions where temperature and food concentration were controlled. 

2.3.4. Temperature and chlorophyll a in Conception Bay 

In Conception Bay, temperature fluctuated seasonally in the upper 10m with an 

increase to a maximum of 15.4-16.6 °C in late August and a decrease to a minimum of 

-1.0 to -0.8 °C in late March to early April (Fig. 2.7a). A thermocline developed within 

the upper 60 m from June to October and retreated as winter mixing occurred to a depth 

of 100 to 150m. Temperature below 150m remained< 0 °C throughout the study. 

Seasonal variation in chlorophyll a concentration occurred mostly within the upper 100 m 

(Fig. 2.7b). The spring bloom began in March and peaked in May with a maximum 

chlorophyll a concentration of5.8 ).lg r 1 in 2002 and 3.5 ).lg r1 in 2003. A minor fall 

bloom occurred in August 2001 (2.4 ).lg r 1
) and a weaker bloom occurred in late July 
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2002 (1.7 ).!g r 1
). The occurrence of the fall bloom was more variable from year to year 

compared to the major spring bloom (Stead and Thompson 2003, Richoux et al. 2004). 

Minimum concentrations of chlorophyll a were found in July 2001 (0.89 ).!g r 1
) and in 

October 2002 (0.98 J.!g r 1
). 

2.3.5. Relationship between trunk length and statolith diameter infield populations 

Using statolith diameter as an age proxy, seasonal variation in length-at-age was 

apparent, particularly in older age groups represented by statolith diameters from 14-16 

J..lm (Fig. 2.8), in which trunk length was < 1000 J..lm from summer to early winter (July to 

December) but> 1000 J..lm in late winter and spring (February to June). Maximum trunk 

length in this age group was greatest during spring (April and May), reaching a maximum 

size > 2000 J..lm. 

To examine this seasonal variation in length-at-age in detail, mean trunk length 

was calculated at 1-)..lm increments of statolith diameter. Mean trunk lengths at statolith 

diameters from 9-16 J..lm were examined because these age groups were present year 

round. Polynomial regression analysis of best-fit orders on the temporal progression of 

mean trunk length over the year 2001 to 2003 revealed no clear seasonal variation in the 

mean trunk length at statolith diameters from 9 to 11 J..lm but a distinct seasonal variation 

at the statolith diameters from 12 to 15 J..lm with a maximum length-at-age in spring and a 

minimum in summer (Fig. 2.9, Table 2.1). This seasonal trend in the older individuals 

repeated in two consecutive years. 

Temporal variability in trunk length-at-age, expressed as the coefficient of 

variation of mean trunk length at each statolith diameter (CV = standard deviation 

expressed as the percentage of grand mean trunk length over 2 years), fluctuated from 8-

10 % at statolith diameters from 9-12 J..lm, but increased linearly up to 31 % at statolith 

diameters from 13-16 J..lm (Fig. 2.1 0), suggesting that temporal variability in length-at

age increased with age. 



2.3.6. Relationships between length-at-age and temperature and chlorophyll a infield 

populations 
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Trunk length at statolith diameters from 9 - 13 j..lm did not vary significantly with 

temperature, whereas mean trunk length at statolith diameters from 14- 16 j..lm increased 

significantly as temperature decreased (Fig. 2.11, Table 2.2). There was no relationship 

between mean trunk length at statolith diameters from 9-11 j..lm and the concentration of 

chlorophyll a, but mean trunk length at statolith diameters from 12-16 j..lm increased with 

an increase in chlorophyll a (Fig. 2.12, Table 2.3). 

2.4. Discussion 

Age determination of appendicularians was explored using four methods: body 

size (mean trunk length), lipofuscin concentration in brain tissue, age rings in statolith, 

and size of statolith. Lipofuscin was not detected in the brain sections of 0. vanhoeffeni. 

Analytical procedures did not differ from those used in other studies for aquatic 

organisms. The wavelength range for excitation of lipofuscin (450-490 nm, blue) used in 

this study included the wavelength used in most other studies of lipofuscin in other 

organisms such as crustaceans and gastropods (O'Donovan and Tully 1996, Sheehy et al. 

1998, Bluhm and Brey 2001). UV light, under which lipofuscin fluoresces in many 

organisms (Porta 1991, Terman and Brunk 1998), did not produce a positive result in the 

brain sections of 0. vanhoeffeni. It is unlikely that the negative result is caused by some 

discrepancy in the histological procedure because the procedure itself was simple without 

requiring staining. In addition, yellow or off-white fluorescent granules were not 

detected in the live brain tissue of 0. vanhoeffeni under UV excitation (personal 

observation). Thus, present results suggest absence or an undetectable level of lipofuscin 

in 0. vanhoeffeni. This negative result is unusual because lipofuscin is present 

throughout the animal kingdom and one of the universal features of the pigment is its 

autofluorescence (Porta and Hartroft 1969, Sohal1981 , Bluhm et al. 2002). However, 

occurrence of resolvable fluorescent lipofuscin granules is taxonomically widespread, but 

not universal. For example, Sheehy (1990) and Bluhm (2001) reported that lipofuscin 



was either absent or inconspicuous in several crustacean species. So far, there are no 

studies that explain the variation in lipofuscin occurrence in these species. 
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Unfortunately, age rings on the statolith in the appendicularian could not be 

resolved because there is no protocol to handle the miniscule statoliths, which are about 

10 times smaller than otoliths and statoliths in larvae offish, squid, and gastropods. 

Thus, this option for determination of absolute age is left open for future studies. 

However, this study did suggest the possibility of using statolith size as a proxy for age in 

appendicularians. Statolith diameter was strongly related to age in 0. vanhoe.ffeni, as has 

also been found in fish, squids and gastropods, in which otolith and statolith dimensions 

are strongly related to age (Morris and Aldrich 1985, Fujiwara and Hankin 1988, Secor 

and Dean 1989, Reznick et al. 1989, Kristoffersen and Klemetsen 1991, Newman et al. 

1996, 2000, McDougall 2004, Chatzinikolaou and Richardson 2007). 

Increase in statolith diameter over time was monotonic with constant variance 

under controlled temperature and food concentrations in the laboratory. This result was 

independent of the genetic origin of the individuals. In contrast, the variance of mean 

body size was not stable over time but increased as the individuals aged, even under fixed 

conditions of temperature and food concentration in the laboratory, suggesting that 

increasing variability in body size with age is an inherent character of 0. vanhoe.ffeni. 

Furthermore, the overall variance of statolith diameter was less than that of body size, 

suggesting that statolith diameter is the more precise indicator of age over all life history 

stages. However, additional laboratory studies are required to examine the dependence of 

statolith diameter on age at various food concentrations and temperatures. 

Trunk length-at-age of 0. vanhoe.ffeni in Conception Bay varied over two years. 

The temporal variability in trunk length-at-age was particularly high in older groups 

represented by statolith diameters from 14- 16 ~m (Fig. 2.8). In these age groups, mean 

length-at-age doubled and tripled from fall to spring (Fig. 2.9), with length-at-age at 

statolith diameters of 14, 15 and 16 ~m ranging from 364 to 707 ~m, from 488 to 939 ~m 

and from 438 to 1695 ~m, respectively. Furthermore, temporal variability in length-at

age increased with age (Fig. 2.1 0). This high and inconsistent variability in length-at-age 
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suggest that body size is not a reliable age indicator in field populations. Therefore, 

using the conventional method of cohort separation based on modal progression analysis 

of length frequency data may lead to inaccurate estimation of age distribution. 

Polynomial regression analysis of the temporal progression of trunk length-at-age 

revealed a distinct seasonal pattern in the trunk length-at-age in the older individuals (12-

15 J.lm statolith diameter) but an absence of seasonal pattern in the younger individuals 

(9-11 J.lm statolith diameter), suggesting age-specific variation in growth. The increase to 

a maximum length-at-age in the older and larger individuals during spring may be 

associated with the ability of larger individuals to ingest large diatoms during the spring 

bloom in Conception Bay (Deibel and Turner 1985, Urban et al. 1992). Absence of 

increase in the length-at-age in the younger and smaller individuals during spring 

indicates that growth of younger individuals may not have been affected by the spring 

bloom because of their inability to ingest large diatoms. Thus, variation in the age

specific growth of appendicularians may be related to the availability of food types that 

are ingestible. Food limitation in the growth of appendicularians in situ has only been 

documented in one study where Oikopleura dioica showed a rapid increase in body size 

after a pi co plankton bloom in summer (Nakamura et al. 1997). The present study, 

however, is the first to suggest that intraspecific variation in age-specific growth of 

appendicularians may result from in situ food concentration. 

Appendicularians are thought to be suspension feeders that are adapted to 

efficient ingestion of small particles (Flood et al. 1992, Deibel and Lee 1992, Acuna et al. 

1996, Fernandez et al. 2004) with their somatic and population growth rates relying on 

the availability ofpico- and nanoplankton (Nakamura et al. 1997, Nakamura 1998, 

Hoover 2006). However, this conclusion is based on studies of small species in 

temperate and tropical regions, and may not apply to large, cold water species such as 0. 

vanhoeffeni. Growth in older and larger 0. vanhoeffeni in Conception Bay is enhanced 

during the spring diatom bloom, and previous studies have shown that large 0. 

vanhoeffeni in Conception Bay and in the Northeast Water Polynya (NE Greenland) are 

capable of ingesting large diatoms (Deibel and Turner 1985, Acuna et al. 1999). 



Increased length-at-age during spring may lead to increased egg production and 

population growth rates (see Chapter 3). 
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In conclusion, this study demonstrated for the first time that statolith diameter is a 

robust indicator of age for the appendicularian 0. vanhoeffeni. I found that; (1) length-at

age of field populations exhibits seasonal variation, indicating temporal variation in 

growth; (2) variation in length-at-age is related to the availability of ingestible particles in 

the field; (3) due to unstable variability in length-at-age both in controlled laboratory 

conditions and in field populations, body size is not a reliable indicator of age. Thus age 

structure in nature may be defined more accurately from the distribution of statolith 

diameter rather than the distribution of body size, a finding that has important 

implications for the study of the population dynamics of appendicularians. 
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Table 2.1. Oikopleura vanhoeffeni. Analysis of variance for the best-fit polynomial models describing 
the temporal trend in the mean trunk length at 1 f.lm increments of statolith diameter. See Fig. 2.9. 

Statolith Best-fit Source df ss MS F p 
diameter polynomial order 

9f.lm 2 Regression 2 2256 1128 10.48 0.001 
Error 15 1614 108 
Total 17 3870 

10 f..lm 4 Regression 4 8191 2048 6.09 0.004 
Error 16 5382 336 
Total 20 13573 

11 f..lm 2 Regression 2 5956 2978 6.73 0.006 
Error 21 9296 443 
Total 23 15252 

12 f..lm 5 Regression 5 12930 2586 4.16 0.012 
Error 17 10570 622 
Total 22 23500 

13 f..lm 5 Regression 5 43046 8609 7.81 0.001 
Error 17 18734 1102 
Total 22 61780 

14J.tm 5 Regression 5 132427 26485 9.85 < 0.001 
Error 16 43003 2688 
Total 21 175429 

15 f..lm 5 Regression 5 401326 80265 12.07 < 0.001 
Error 15 99775 6652 
Total 20 501101 

16 f..lm None significant 



Table 2.2. Oikpleura vanhoeffeni . Regression analysis of the relationship between 

mean trunk length-at-statolith diameter and temperature. The independent variable is 
temperature and the dependent variable is trunk length (log-transformed). 
* p < 0.05, ** p < 0.01. See Fig. 2.11. 

Statolith diameter n 
2 r Coefficients p 

Constant TemEerature 
9J.!m 19 0.009 2.325 0.002 0.702 

10 J..lm 21 < 0.001 2.394 0.0004 0.948 

11 J..lm 22 0.002 2.465 -0.001 0.834 

12 J..lm 21 0.107 2.546 -0.008 0.148 

13 J..lm 22 0.093 2.642 -0.009 0.167 

14 J..lm 22 0.223 2.737 -0.019 0.026* 

15 J..lm 21 0.396 2.877 -0.033 0.002** 

16 J..lm 15 0.545 3.033 -0.070 0.002** 
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Table 2.3. Oikopleura vanhoeffeni. Regression analysis of the relationship between 
mean trunk length-at-statolith diameter and the concentration of chlorophyll a. 
The independent variable is concentration of chlorophyll a and the dependent variable is 

trunk length (log-transformed).* p < 0.05, ** p < 0.01. See Fig. 2.12. 

Statolith diameter n 
2 r Coefficients p 

Constant Chlorophyll a 
9J.!m 19 0.001 2.324 0.003 0.902 

10 J..lm 21 0.017 2.378 0.016 0.573 

11 J..lffi 22 0.049 2.439 0.024 0.325 

12 J..lffi 21 0.194 2.484 0.050 0.046* 

13 J..lffi 22 0.355 2.536 0.091 0.003** 

14 J..lm 22 0.414 2.571 0.137 0.001 ** 

15 J..lffi 21 0.344 2.666 0.164 0.005** 

16 J..lffi 15 0.301 2.740 0.219 0.034* 
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oe. 

br. 

sc. 

mo,····· 
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Fig. 2.1. Oikopleura vanhoeffeni. (a) General morphology oftrunk. ' br' brain, ' sc' 
statocyte, 'mo' mouth, 'bg' buccal gland, ' en' endostyle, ' an' anus, ' sp' spiracle, ' sl' 
stomach lobe, 'gd' gonad, 'oe' oesophagus. (b) SEM view of brain and statocyte. 
Scale bar = 15 J.tm. 
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Fig. 2.2. Diagram oflarvacean culture set-ups. (a) Glass tanks holding 
20 1 of seawater with a twisted plexi glass paddle driven by a windshield 
wiper motor. Gentle rotation of water kept the animals suspended. Tanks 
were kept in a cold room at a temperature 0-1 °C. (b) Rheostat control board 
for controlling the speed of rotation of plexi glass paddles. 



Figure 2.3. Oikopleura vanhoeffeni. (a) Longitudinal and (b) transverse sections 
of brain under blue excitation light showing absence of yellow or white, 
autotluorescent lipofuscin granules. (c) Longitudinal section of brain under 
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UV excitation light showing absence of lipofuscin granules. Scale bars = 10 J.tm. 



Fig. 2.4. Oikopleura vanhoeffeni. (a) Statolith under light microscope. (b) SEM view 
of statolith preserved in glutaraldehyde. Arrow is pointed where layers of accretion are 
shown. Scale bars = 5 j..lm. 
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Fig. 2.5. Oikopleura vanhoeffeni. (a) Statolith diameter vs. time post hatching at 0-1 °C 
in the laboratory. Data symbols represent offspring from different self-fertilized parents. 
The solid line shows the least squares linear regression and the dotted lines indicate 95% 
confidence intervals. r2 = 0.83, F(J ,IO) = 44.3, p < 0.001. (b) The coefficient of variation 
of mean statolith diameter vs. days after hatching. Pearson correlation, r = 0.13, p = 
0.36). 
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Fig. 2.6. Oikopleura vanhoeffeni. (a) Trunk length vs. time post hatching at 0-1 °C in the 
laboratory. Data symbols represent offspring from different self-fertilized parents. The 
solid line shows the least squares linear regression and the dotted lines indicate 95% 
confidence intervals. r = 0.81 , F(I,IO) = 38.2, p < 0.0001. (b) The coefficient of variation 
of mean trunk length vs. days after hatching. Pearson correlation, r = 0.57, p = 0.03. 
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Figure 2.7 a. Vertical profile of temperature in Conception Bay from June 2001 to June 2003. 
Arrows on the bottom x-axis indicate when the CTD casts were taken. 
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Figure 2.7 b. Vertical profile of chlorophyll a concentration in Conception Bay from June 2001 
to June 2003. Arrows on the bottom x-axis indicate the time when CTD casts were taken. 
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Fig. 2.9. Oikopleura vanhoeffeni. Mean trunk length-at-statolith diameter 
vs. time from June 2001 to June 2003. Lines represent polynomial regression 
of best-fit orders. No significant polynomial function was found for the mean 
trunk length-at-16 J..l.m statolith diameter. See Table 2.1. 
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Fig. 2.12. Oikopleura vanhoe.ffeni. Mean trunk length-at-statolith diameter vs. 
the concentration of chlorophyll a from June 2001 to June 2003. Concentration 
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of chlorophyll a (binaveraged at I m intervals) was averaged over the upper 100m 
of the water column. Lines represent least squares linear regression. 



Chapter 3 

Life history and population dynamics of the cold water appendicularians 
Oikopleura vanhoeffeni and 0. labradoriensis 

in Conception Bay, Newfoundland 

3.1. Introduction 

Appendicularians are important secondary producers in marine ecosystems. 
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Although the biomass of these gelatinous zooplankters is generally lower than that of 

copepods, because oftheir high growth potential (Paffenhofer 1976, Fenaux 1976, 

Hopcroft and Roff 1995, Nakamura et at. 1997, Hopcroft et at. 1998), production of 

appendicularians can be 30-1 00 % of copepod production in eutrophic environments 

(Hopcroft and Roff 1995, Nakamura et at. 1997, Hopcroft and Roff 1998). The grazing 

impact of appendicularians on phytoplankton is often significant, because they can 

remove up to 50 - 66 % of daily primary production (Alldredge 1981 , Deibel 1988). In 

addition, appendicularians are important contributors to the vertical flux of organic matter 

by means of their production of fecal pellets (Taguchi 1982, Dagg and Brown 2005). 

Appendicularians continuously secrete mucus houses which they use to collect food 

particles. The daily production of houses may equal or exceed somatic production 

(Clarke & Roff 1990, Hopcroft & Roff 1998, Tomita et at. 1999). Also, discarded houses 

are used by various organisms as a source of food and as a surface habitat (Alldredge 

1972, 1976, Ohtsuka and Kubo 1991 , Ohtsuka et at. 1993, Steinberg et. at. 1994, 

Steinberg 1995, Mochioka and Iwamizu 1996). When houses are not consumed they may 

contribute to the vertical transport of organic matter to deeper layers (Silver & Alldredge 

1981 , Bauerfeind et at. 1997, Alldredge 2005). Using mucus filters, appendicularians 

ingest a large size range of food particles, from large diatoms to submicron particles 

(Deibel and Turner 1985, Urban et at. 1992, Acuiia et at. 1996, Fernandez et at. 2004) 

and colloidal and dissolved organic matter (Flood et at. 1992, Bedo et at. 1993). Because 

they are prey for other invertebrates such as chaetognaths, and larval and adult fish 

(Shelbourne 1962, Kirnmerer 1984, Gadomski and Boehlert 1984, Keats et at. 1987, 

Purcell et at. 2005), appendicularians serve to short-circuit energy flow from the 



microbial loop to higher trophic levels, thereby increasing the transfer efficiency of 

energy in marine food webs. 
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Life history, population dynamics, and production of appendicularians have been 

studied primarily in tropical and temperate regions, and little is known about species 

living in cold environments. Because there are no methods to accurately determine 

either the absolute or relative ages of appendicularians, in situ measurements of age

related life history characters that are important for understanding population dynamics, 

such as generation time, growth rate, age-specific fecundity and age-specific survival, 

remain a challenge. Generation times and growth rates of appendicularians have been 

estimated in the laboratory (Paffenhofer 1976, Fenaux 1976, Gorsky 1980, Sato et al. 

1999) and in mesocosms where artificial cohorts were created and food particle size and 

predation effects controlled (Nakamura et al. 1997, Hopcroft et al. 1998). Estimation of 

production has been based on field biomass data combined with growth rates determined 

in the laboratory at simulated natural temperatures (Uye and !chino 1995, Tomita et al. 

1999). In the present study, life history characters and production of two sympatric cold 

water appendicularians, Oikopleura vanhoeffeni and Oikopleura labradoriensis, were 

determined in situ in order to understand their population dynamics and their role as 

secondary producers in Conception Bay. 

Age structure is an essential component of population dynamics. In aquatic 

organisms, age structure can be defined by separating cohorts based on various age

related characters. For fish and molluscs, age structure of populations can be determined 

from counting age rings on calcareous otoliths and shells (MacDonald and Thomas 1980, 

Lipinski 1986, Campana 2001), whereas in many other invertebrates age structure can be 

determined from frequency distributions of body size or developmental stages (Hygum et 

al. 2000, ref. therein) or from lipofusin concentration in post-mitotic cells (Sheehy et al. 

1994, Bluhm and Brey 2001). I have shown that age rings in statolith and lipofuscin in 

brain tissue cannot be identified and therefore cannot be used to determine the age of 0. 

vanhoeffeni (Chapter 2). However, I have also shown that statolith diameter is a more 

reliable age indicator than trunk length for two main reasons (Chapter 2); (1) variability 
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in statolith diameter-at-age is substantially less than that of trunk length-at-age (i.e., 7.5 

% vs. 19.4%, respectively), and (2) variability in statolith diameter-at-age remains 

constant as statolith diameter increases but variability in trunk length-at-age increases as 

trunk length increases. Therefore, in the present chapter age structure was determined 

from frequency distributions of statolith diameter in order to estimate the generation time 

and growth rates of identifiable cohorts of 0. vanhoeffeni and 0. labradoriensis in 

Conception Bay. An assumption made in this study is that statolith diameter is also a 

reliable age indicator for 0. labradoriensis. 

Generation time and growth rate of appendicularians are influenced by 

temperature and food concentration. Faster growth and shorter generation time have 

been observed at high temperatures (Fenaux 1976, Troedsson et al. 2002, Touratier et al. 

2003, Lopez-Urrutia et al. 2003) and high food concentrations (Paffenhofer 1976, 

Hopcroft et al. 1998, Touratier et al. 2003). Food limitation of growth depends on body 

size and varies ontogenetically. Hopcroft et al. (1998) found that the growth rate of 

larger genera in Jamaican waters is positively related to the concentration of picoplankton 

and nanoplankton, but that growth in smaller species is unrelated to food concentration. 

Lopez-Urrutia et al. (2003) compiled information regarding feeding, metabolic and 

growth rates of tropical and temperate appendicularian species and applied the growth 

model of Huntley & Boyd (1984) to Oikopleura dioica. Their results suggest that 0. 

dioica probably experiences food-limited growth during early developmental stages. In 

Conception Bay, temperature, food concentration, and food type vary seasonally in the 

upper 100 m of the water column (Stead and Thompson 2003, Richoux et al. 2004, 

Chapter 2), where most appendicularians are concentrated (Chapter 1). Thus, seasonal 

variation in generation time and growth may occur in oikopleurid species in Conception 

Bay. 

Age and size-at-maturity are key demographic traits that influence population 

dynamics (Steams and Koella 1986). Early maturation can lead to higher population 

growth rates because the probability of survival to maturity increases if the period spent 

as a juvenile is reduced (Cole 1954, Lewontin 1965). Delayed maturity can also lead to 
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higher population growth if further growth results in a larger size-at-maturity and higher 

fecundity (Tuljapurkar 1990, Stearns 1992). Age and size-at-maturity depend upon 

environmental conditions. In ectotherms, these traits are generally a function of 

temperature (Bergmann 1847, Shaw and Bercaw 1962, Atkinson 1994, Gillooly 2000); 

age- and size-at-maturity increase with a decrease in temperature. Food availability and 

predation pressure may also be important determinants of age- and size-at-maturity 

(Randall et al. 1986, Rasmussen and Giske 1994, Doksaeter and Vijverberg 2001, 

Shertzer and Ellner 2002, Law 1979, Abrams and Rowe 1996, Belk 1998, Chase 1999). 

A positive relationship exists between food availability and size-at-maturity (Rasmussen 

and Giske 1994, Doksaeter and Vijverberg 2001). Size-specific predation leads to 

variation in age- and size-at-maturity in which predation on small and juvenile 

individuals results in an increase in age and size-at-maturity (Reznick 1982, Belk 1995) 

whereas predation on larger and older individuals results in a decrease in age and size-at

maturity (Rodd and Reznick 1997, Hutching 2005). 

In a laboratory study, Troedsson et al (2002) demonstrated that population growth 

rates of Oikopleura dioica can be increased either by a decrease in generation time or by 

an increase in fecundity. The highest intrinsic rate of natural increase was observed when 

generation time decreased and fecundity increased simultaneously under elevated 

temperature and food concentration. However, no field study has considered the effect of 

environmental variability on age- and size-at-maturity and consequential population 

growth rates of appendicularian species. The present study addresses the question 

whether age- and size-at-maturity and fecundity of appendicularians vary with 

temperature and food concentration in Conception Bay and how this potential variability 

affects population growth rates of appendicularians in nature. 

Specific questions addressed in this chapter about life history and population 

dynamics of the boreal appendicularians 0. vanhoeffeni and 0. labradoriensis in 

Conception Bay are: (1) What is the generation time? (2) What is the growth rate? (3) 

What is the annual production? (4) How do age- and size-at-maturity vary under 



seasonally fluctuating temperature and food concentration? (5) How does population 

growth rate change in relation to variation in age- and size-at-maturity? 

3.2. Materials and Methods 

3.2.1. Sample collection 
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Samples were collected from April23, 2001 to June 25, 2003 at a site in 

Conception Bay described in Chapter 1. Vertical hauls from near the bottom (225 m) to 

the surface were made using a WP-2 net with a mesh size of 110 ~m. The speed of 

retrieval was 0.13 m s-1 and the volume ofwater filtered was measured with a mechanical 

flowmeter (Model2030 R6, General Oceanics, Inc.). Upon retrieval ofthe net, samples 

were immediately fixed in 95% ethanol for statolith analysis and in 2% Bouin' s solution 

for histological analysis of the gonad. Triplicate samples were collected biweekly except 

during winter, when harsh weather conditions precluded sampling. An additional tow 

was made on each sampling day using a large ring net (1m mouth diameter) with a 10 L 

cod end to collect mature individuals without damaging their gonads. From June 11 , 

2001 to June 25, 2003, a CTD cast (Seabird, SBE 25-01) was made before each tow to 

measure temperature and in situ relative fluorescence. Relative fluorescence units (RFU) 

were converted to chlorophyll a concentration (~g Chi a r') using the equation Chi a = 

0.398 x RFU + 0.281 (r2 = 0.73, n = 244) which was developed using historical data from 

Conception Bay (Cold Ocean Productivity Experiment, unpublished). The temperature 

and chlorophyll a data were bin-averaged at 1 m depth intervals before contour plotting. 

3 .2.2. Cohort analysis 

Appendicularians were sorted from the samples which had been preserved in 

95% ethanol. It was important to rinse the samples with 95% ethanol instead of water 

before sorting appendicularians because addition of distilled water to the tow samples 

decreases the pH and dissolves the statolith. The cause of this chemical reaction is not 

clear. Trunk lengths of appendicularians were measured from the tip of the mouth to the 

posterior tip of the stomach, excluding gonads, to the nearest 25 ~m under a Zeiss stereo 
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microscope at 40X magnification. After trunk length measurements, the individuals were 

cleared in 1% KOH and mounted in glycerol. The diameters of statoliths were measured 

to the nearest 0.5 J.Lm using a Zeiss Axiovert 35 inverted microscope under transmitted 

light and bright field optics at 1 OOOX magnification. 

Cohorts of 0. vanhoeffeni and 0. labradoriensis were identified using the 

Bhattacharya Method (Bhattacharya 1967) on statolith diameter frequency distributions 

binned at 1J.Lm intervals. The FiSAT II software package (FAO-ICLARM Fish Stock 

Assessment Tools, Version 1.2.0) was used to separate the components of the normal 

distributions of statolith diameter from the total frequency distribution, starting on the 

left-hand side. Component normal distributions were removed iteratively until they could 

no longer be distinguished using the separation index SI = ~Lk I ~cSk, where &k is the 

difference between two successive means of component curves and ~cSk is the difference 

between their estimated standard deviations (Sparre & Venema 1998). The separation of 

cohorts was statistically reliable when the SI value was above 2 (Hasselblad 1966, 

McNew and Summerfelt 1978, Clarke 1981). 

3.2.3. Generation time, growth rate and production 

Generation time of each cohort was estimated as the number of elapsed days 

between its appearance and disappearance. 0. vanhoeffeni and 0. laboradoriensis are 

semelparous and die immediately after spawning. For 0. vanhoeffeni, the elapsed time 

from egg release until the juveniles reach sufficient size to be quantitatively collected in 

the plankton tow at 0-1 °C is approximately 7 d (laboratory observations), which may be 

the maximum underestimation of generation time in this study. Since information on 

embryonic development time and early stage growth rate of 0. labradoriensis is not 

available, error in the estimation of generation time for this species is not known but is 

assumed to be :::; 7 d. 

Trunk lengths of individual 0. vanhoeffeni and 0. labradoriensis within each 

cohort were converted to carbon weight using the equations C (J.Lg) = 4.03 TL(mm)3
·
45 

(Deibell988) and C (J.Lg) = 7.43 TL (mrni-86 (Riehl 1992) respectively. Trunk lengths of 
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individuals fixed in 95% ethanol were corrected for shrinkage by 18.0 ± 3.0% (n = 14, 

Appendix 3) before conversion to weight. 

To test if the somatic growth pattern ofthe cohorts was exponential, the 

relationship between In-transformed weight and time for each cohort was examined for 

linearity. If this linear relationship was statistically significant, instantaneous growth rate 

was estimated by fitting the exponential growth function Wr = Wo egt, where Wo 

represents the initial mean weight, Wr the mean weight of each cohort at time 't' and 'g' 

the instantaneous growth rate (d-1
). If the relationship between in-weight and time was 

not significantly linear, One-Way Anova and post-hoc analysis (Tukey test) were used to 

determine the time periods when significant growth occurred, and the instantaneous 

growth rate within these time periods was estimated using the equation Wr = Wo egt. If 

the growth pattern of the cohort was linear, a linear regression equation was fitted to the 

untransformed data and the growth rate was determined from the slope. All statistical 

analyses were performed with SPSS 9.0.0 (SPSS Inc., Chicago, IL). 

Daily somatic production was computed as Pg = g x B, where g (d-1
) represents 

the instantaneous growth rate and B (mg C m-2
) the biomass in carbon weight at each 

sampling day. Biomass was estimated by converting the trunk length frequency 

distribution into a carbon weight frequency distribution and multiplying the distribution 

by the mean abundance data from triplicate samples. Production of 0. vanhoeffeni from 

2001 to 2002 and 2002 to 2003 was calculated using the instantaneous growth rates of 

cohort 2 and cohort 3 respectively (see Results). For 0. labradoriensis, instantaneous 

growth rates of cohort 1 and 2 were averaged for estimation of production in 2001 /2002 

and those of cohort 3 and 4 were averaged for estimation of production in 2002/2003. 

Daily production was integrated over each year to estimate annual production, assuming 

that each data point remained constant between the sampling intervals. Daily somatic 

production was integrated over each year using the midpoint rule: 

b n 

Pg =fa f(x) dx :::: 2: [Yk+ (Yk+t-Yk)/2] (Xk+t-Xk) 
k=l 
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where the integration of production over time series (a to b) was approximated by 

summing the rectangular area under the time series curve where the area of the rectangle 

is centered at the midpoint between two successive sample points, k and k+ 1. Y and X 

represent daily production in mg C m-2 and sampling time in days, respectively. 

The daily house production (Pe) of 0. vanhoeffeni ranged from< 1 to 6 houses d-1 

with a mean of 1.6 ± 1.0 houses d- 1 at temperatures from -1 to 6 °C (Riehl 1992). Given 

that the carbon content of a clean house is about 23 % of body carbon (Deibel 1986), 0. 

vanhoeffeni produces approximately 37% of its body weight in houses each day (Deibel 

1988). The daily house production and carbon content of houses of 0. labradoriensis are 

not known, but are assumed to be similar to those of 0. vanhoe.ffeni in this study. Thus, 

the daily house production rates of 0. vanhoe.ffeni and 0. labradoriensis were estimated 

as 37 % ofthe somatic weight. Annual house production was integrated between each 

collection interval and summed over each year of the study using the midpoint rule. 

3.2.4. Age- and size-at-maturity and potentia/fecundity 

Mature individuals (with a well-developed gonad expanded and covering the area 

of the entire posterior trunk, Shiga 1976, Shiga 1993) were sorted from the samples 

preserved in ethanol or Bouin' s solution. Mature individuals in ethanol were cleared in 

1% KOH and the statolith diameter measured by light microscopy to the nearest 0.5 f.!m. 

Mean statolith diameter-at-maturity was calculated at each sampling time point whenever 

mature individuals were found and these mean values were considered as a proxy for age

at- maturity. 

Mature individuals in Bouin' s solution were sorted and their trunk lengths 

measured. Mean trunk length-at-maturity was calculated at each sampling time point 

whenever mature individuals were found . Replicate individuals at these mean trunk 

lengths (2-3 individuals) were removed from each sample, dehydrated in a graded 

ethanol/water series and cleared in xylene. They were then embedded in paraffin and 

serially sectioned at 6 f.!m intervals. Sections were stained with hematoxylin and eosin to 

help visualize the oocytes and ovary (thin section micrographs are shown in Appendices 
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4 and 5). The total area occupied by the oocytes and their mean diameter were measured 

at 4 X to 20 X magnifications using ImagePro software (Version 4.0). Potential 

fecundity was calculated as: 

Potential fecundity = Total volume of oocytes I Mean volume of an oocyte; 

Total volume of oocytes =volume of ovary x mean % of ovary area occupied by oocytes. 

Volume of ovary = 2: area of ovary in every consecutive Nth section x N x 6 J.lm, where 

N = 1/10 of total thin sections taken. Mean % of ovary area occupied by oocytes was 

calculated from all thin sections of ovary observed. Mean volume of oocytes = 4/3 n x 

(mean radius of oocytel and the mean volume of an oocyte was calculated from all the 

measured oocytes. The number of oocytes measured for 0. vanhoeffeni ranged from 23 to 

177 oocytes and for 0. labradoriensis from 41 to 207 oocytes. Potential fecundity is 

likely an overestimate of actual fecundity, because not all oocytes reach maturity and 

those that fail to mature are eventually reabsorbed (Last 1972). True fecundity was not 

determined in this study because of the difficulty in obtaining individuals with fully 

mature but unruptured gonads using net tows. However, true fecundity could be 

approximately 50 % of potential fecundity if oogenesis of Oikopleuria species in this 

study is similar to that of 0. dioica, in which nearly 50 %of oocytes are reabsorbed at the 

end of maturation (Last 1972). 

3.2.5. Population growth rate 

For determination of population growth rate, animals from the triplicate net tow 

samples were counted. Population growth rate was calculated using the equation, r = (In 

Nti+t- In Nti)/(ti+l - ti) (Odum 1971), where N represents mean abundance and 't' time in 

days at the ith time point. In order to smooth the data to reduce stochastic variability a 

three-point moving average was applied to the abundance data prior to the calculation of 

population growth rate (Diggle 1990). Throughout the study, it was assumed that the 

individuals sampled in Conception Bay all belonged to a single population, because the 

actual spatial scale of the entire population of both species is not known. It has been 

shown for other marine species inhabiting the large bays of eastern Newfoundland that 
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single populations span the region and that population dynamics are largely synchronized 

over the entire eastern Newfoundland shelf (Leggett et al., 1984). 

3.3. Results 

3.3.1. Temperature and chlorophyll a concentration 

Temperature fluctuated seasonally in the upper mixed layer with an increase to a 

maximum of 15.4-16.6 °C in late August and a decrease to a minimum of 1.0 to -0.8 °C in 

late March to early April (Fig. 2.1 a, Chapter 2). A thermocline was present within the 

upper 60 m from June to December which eroded as winter mixing occurred to a depth of 

100 to 150 m. The temperature below 150 m remained < 0 °C throughout the time series. 

Seasonal variation in chi a concentration occurred mostly within the upper 100 m (Fig. 

2.1 b, Chapter 2). The spring bloom began in March and peaked in May with a maximum 

chi a concentration of 5.8 J..lg L-1 in 2002 and 3.5 J..lg L-1 in 2003. A minor fall bloom 

occurred in August 2001 (2.4~-tg L'1) and a weaker bloom occurred in late July 2002 (1.7 

J..lg L'1). Occurrence of the fall bloom is more variable from year-to-year than is the 

spring bloom (Stead and Thompson 2003, Richoux et al. 2004). Minimum concentration 

of chi a was found in July 2001 (0.9 J..lg L' 1
) and in October 2002 (1.0 J..lg L' 1

). Given that 

most appendicularians live in the upper 100m of the water column year around (Chapter 

1 ), habitat temperature and chi a used for statistical analyses are represented by the mean 

values of 100, 1-m depth bins within the upper 100m of the water column. 

3.3.2. Recruitment and generation time 

Four cohorts of Oikopleura vanhoeffeni were identified between June 2001 and 

June 2003 (Fig. 3.1). Based upon the first appearance of cohort 3 (2002) and cohort 4 

(2003), it appears that the primary annual spawning event began between mid-December 

and mid-February. Because oikopleurid appendicularians are semelparous and die 

immediately after spawning, the final appearance of cohorts 1 (2001), 2 (2002) and 3 

(2003) suggests that the annual spawning event ended between mid-April and mid-June. 

Further evidences of this spawning window are the emergence of individuals with 
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statolith diameter less than 8 1-lm and the annual increase in abundance in May-June (Fig. 

3.2a,b) which took place just after the peak of the spring bloom in April (Fig. 3.2c). 

Some individuals in cohort 2 and 3 became sexually mature early, in the fall of their first 

year at a small statolith diameter (shaded ranges of statolith diameter-at- maturity in Fig. 

3.2a). However, there is no evidence in the cohort analysis or in the time series of 

abundance that successful recruitment occurred in the fall. Based upon all of the 

evidence above, the generation time of 0. vanhoeffeni was essentially one year. 

Five cohorts of Oikopleura labradoriensis were identified between August 2001 

and April2003 (Fig. 3.3). Cohort 2 appeared in September 2001 while cohort 3 appeared 

in March 2002. Both cohorts originated from cohort 1 because cohort 1 alone contained 

mature individuals (shaded ranges of statolith diameter-at-maturity in Fig. 3.4a). Similar 

to reproductive phenology between the year 2001 and 2002, cohort 4 appeared in October 

2002 and cohort 5 in April 2003; both cohorts originated from cohort 3. Strangely, there 

is no indication of maturation and production of progeny by cohort 2 and cohort 4. Thus, 

there were two spawning events in each year, one in the fall and one in the spring. 

Further evidence of these spawning windows is the emergence of individuals with 

statolith diameters less than 7 1-lm and an increase in abundance during fall and spring 

(Fig. 3.4a, b). Although individuals with statolith diameters Jess than 7 1-lm appeared on 

January 25, 2002, their frequency was too small for them to be captured as a new cohort. 

Based upon the time series of abundance (Fig. 3.4b ), a major recruitment occurred during 

fall, when temperature reached its annual maximum (Fig. 3.4c). However, it is not clear 

when these cohorts ended because they were not present in samples between May and 

July, perhaps due to massive mortality or advection out of the bay (Fig. 3.4a). Assuming 

that the earliest time that the cohort could have ended was in April, the generation time of 

cohorts 2 and 4 was at least 8 months and that of cohort 3 was at least one year. 

3.3.3.Jndividual growth, population biomass and production 

Animals from cohort 2 of 0. vanhoeffeni grew exponentially over an entire year 

(Fig. 3.5a, b) with an instantaneous rate of0.017d-1 (Table 3.1). However, animals from 
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cohort 3 did not grow exponentially (Fig. 3.5c), confirmed by a nonlinear relationship 

between In-transformed weight and time (Fig. 3.5d). Cohort 3 animals did not grow 

significantly until April2003 (p < 0.001), therefore growth rate until December 2002 was 

considered to be zero. The instantaneous growth rate of animals from cohort 3 estimated 

from December 2002 to April2003 was 0.043 d-1 (Table 3.1). 

Animals from cohorts 1, 3 and 4 of 0. labradoriensis grew exponentially (Fig. 

3.6), with instantaneous growth rates of 0.007-0.011 d- 1 (Table 3.1). The growth of 

cohort 2 animals was best fit by a linear equation (Fig. 3.6) with an instantaneous growth 

rate of 0.011 d-1
, similar to the growth rates of animals from the other three cohorts 

(Table 3.1). 

The population biomass of 0. vanhoeffeni ranged from 0.01 to 483 mg C m·2 and 

increased during April and May with an annual mean and standard deviation of 66.5 ± 
128 mg C m·2 from June 2001 to June 2002 and 25.0 ± 48.5 mg C m·2 from July 2002 to 

June 2003 (Fig. 3.7a, Table 3.2). The increase in population biomass during spring was 

due to the increase in abundance of large, mature individuals (Fig. 3.2b, Fig. 3.5). Daily 

somatic production of the 0. vanhoeffeni population ranged from < 0.01 to 8.12 mg C m·2 

with maximum production occurring during spring (Fig. 3.7a); annual production was 

343 mg C m·2 y"1 in 2001/2 and 359 mg C m·2 y"1 in 2002/03 (Table 3.2). The annual 

Psomatic/B ratio was 5.2 in 2001/2 and 14.3 in 2002/3 (Table 3.2). Daily house production 

of the 0. vanhoeffeni population ranged from < 0.01 to 179 mg C m·2 with a prominent 

increase in spring (Fig. 3.7a). The annual house production rate was 8.4 g C m·2 y" 1 in 

2001/2 and 3.4 g C m-2 y" 1 in 2002/3 (Table 3.2), giving a P totaJIB ratio (where PtotaJ = 

Psomatic + Phouse) of 130 in 2001/2 and 150 in 2002/3. 

The population biomass of 0. labradoriensis ranged from 0.06 to 22.1 mg C m·2 

and increased consistently during October/November and April with an annual mean of 

6.8 ± 7.1 mg C m·2 from August 2001 to April2002 and 8.5 ± 7.4 mg C m·2 from August 

2002 to April2003. These values are far less than those for 0. vanhoeffeni (Fig. 3.7b, 

Table 3.2). Increase in population biomass during fall was the result of an increase in 

total abundance (Fig. 3.4b) while the large spring biomass was primarily a result of the 
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appearance of large animals (Fig. 3.6). Daily somatic production of the 0. labradoriensis 

population ranged from< 0.01 to 0.24 mg C m·2, increasing during fall and spring (Fig. 

3.7b); annual production was 21.9 mg C m·2 i 1 in 2001/2 and 27.8 mg C m·2 y·1 in 

2002/3 (Table 3.2). The annual PsomatictB ratios were similar in both years with a value of 

3.2 in 2001/2 and 3.3 in 2002/3 (Table 3.2). Daily house production of the 0. 

labradoriensis population ranged from 0.02 to 8.18 mg C m·2 with an increase during fall 

and spring. The annual house production rate was 0.8 g C m·2 y·1 in 200112 and 1.2 g C 

m·2 y·1 in 2002/3 (Table 3.2), resulting in aP101a1/B ratio of 121 in 2001/2 and 144 in 

2002/3. 

3.3.4. Relationship between life history characters and environmental variables 

The statolith diameter-at-maturity of 0. vanhoeffeni and 0. labradoriensis, which 

is a proxy for age-at-maturity, increased during winter and spring (Fig. 3.8) as 

temperature decreased and chlorophyll a concentration increased (Fig. 3.9). The linear, 

inverse relationship with temperature accounted for a greater proportion of the total 

variation in statolith diameter-at-maturity in both species (ca. 70 %) than did the non

linear, positive hyperbolic tangent relationship with chlorophyll a concentration (59%) 

(Fig. 3.9). 

Trunk length-at-maturity in both species increased during winter and spring as 

temperature decreased and chlorophyll a concentration increased (Fig. 3.1 0, Fig. 3.11). 

Trunk length-at-maturity ranged from 0.5 to 3.4 mm (680 %) in 0. vanhoeffeni and from 

0.5 to 1.3 mm (260 %) in 0. labradoriensis over the entire sampling period. The range 

of trunk length-at-maturity was equal in both species (0.5-0.9 mm) from July to 

December but greater in 0. vanhoeffeni (0.7-3.4 mm) than in 0. labradoriensis (0.8-1.3 

mm) from January to June. 0. vanhoeffeni matured at a trunk length about two to three 

times greater than that of 0. labradoriensis during spring (March-May). Stepwise 

multiple regression was used to examine whether temperature and chlorophyll a 

concentration were related to the seasonal variation in trunk length-at-maturity. Because 

the results from analysis of somatic growth (Results 3.3.3) suggest that both species grew 
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continuously, the older individuals that matured at low temperature during winter and 

spring were obviously larger than younger individuals that matured at higher temperature 

during summer and fall. The effect of chlorophyll a on trunk length-at-maturity may be 

less clear because a significant relationship between trunk length-at-maturity and 

chlorophyll a concentration could be a result of the covariation between temperature and 

chlorophyll a concentration. For these reasons, stepwise forward regression was used, 

where temperature was included first in the model and chlorophyll a concentration 

second. Temperature explained 57 % of the variation in trunk length-at-maturity of 0. 

vanhoeffeni and chlorophyll a concentration explained an additional 10 % of the variation 

(F(2, 23) = 21.0, p < 0.001). Similarly, temperature explained 43% of the variation in 

trunk length-at-maturity in 0. labradoriensis and chlorophyll a concentration explained 

an additional 13% of the variation (F(2, 20) = 11.5, p < 0.005). 

Potential fecundity of both species also varied seasonally, increasing during 

winter and spring and decreasing during summer and fall (Fig. 3.10). 0. vanhoeffeni 

showed a greater annual range of potential fecundity (79-4976 oocytes ind-1
) than did 0. 

labradoriensis (90-803 oocytes ind-1
). Potential fecundity of 0. vanhoeffeni was 

negatively correlated with temperature (r = -0.88, p = 0.02, n = 9) and positively 

correlated with chlorophyll a concentration (r = 0.63, p = 0.07, n = 9) at 10 % 

significance level. Potential fecundity of 0. labradoriensis was also negatively 

correlated with temperature (r = -0.59, p = 0.04, n = 12) and positively correlated with 

chlorophyll a concentration (r = 0.91 , p < 0.001 , n = 12). Because potential fecundity of 

both species was a function of trunk length-at-maturity (Fig. 3.12), seasonal variation in 

potential fecundity is most likely related to variation in temperature and chlorophyll a 

concentration, as it is for trunk length-at-maturity. 

3.3.5. Population growth rate in relation to life history characters 

0. vanhoeffeni recruitment occurred primarily in spring, with maximum 

population growth rates of0.08 d-1 at the end of April2001 and 0.18 d-1 in May 2002. 

0. vanhoeffeni suffered high mortality during summer with negative growth rates of -0.15 
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d-1 in August of both years (Fig. 3.13a). There was little or no evidence of overwintering 

mortality. Population growth rate increased as statolith diameter-at-maturity (i.e. age-at

maturity) increased (Fig. 3.13b) and as potential fecundity increased (Fig. 3.13c). 

0. labradoriensis recruitment occurred primarily in the fall, with maximum population 

growth rates of 0.16 d- 1 at the beginning of October 2001 and 0.15 d-1 at the end of 

September 2002. 0. labradoriensis experienced net mortality during summer with 

negative population growth rates of -0.05 to -0.10 d-1 from May to August of all years 

(Fig. 3.14a). Unlike 0. vanhoeffeni, the population growth rate of 0. labradoriensis 

increased as age-at-maturity decreased (Fig. 3.14b) and was unrelated to potential 

fecundity (Fig. 3.14c). Thus, population growth of 0. vanhoeffeni was associated with 

increasing clutch size whereas that of 0. labradoriensis was associated with increasing 

spawning frequency. 

3.4. Discussion 

The boreal appendicularians 0. vanhoeffeni and 0. labradorienis in Conception 

Bay experience subzero temperatures for about six months of the year and their 

generation times range from eight months to a year. These generation times are similar to 

previous estimates of an annual life span for 0. vanhoeffeni in the Foxe Basin, Canadian 

Arctic archipelago (Grainger 1959) and for 0. labradoriensis in the fjords of east 

Greenland (Ussing 1938), based on the observation of seasonal variation in the 

abundance and appearance of small juveniles. Generation times of appendicularians 

living in cold environments are much greater than those of species that live in temperate 

and tropical regions, which range from 1-27 d at 7-29 °C and vary inversely with 

temperature (Lopez-Urrutia et al. 2003 and references therein). 

Thus, the generation time of appendicularians on a global scale shows a negative 

relationship with temperature from -1 to 29 °C, as is generally the case in poikilotherms 

(Shaw and Bercaw 1962, Gillooly 2000). One clearly cannot apply individual and 

population growth and production rates from tropical and temperate species to cold ocean 

species when constructing simulation models of arctic and boreal energy flow. 
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The cohort analysis of 0. labradoriensis showed that a portion of cohort 1 

reproduced in the fall and in the spring of 2001 and 2002 and the repeated event occurred 

when cohort 3 reproduced in the fall and in the spring of 2002 and 2003. These two 

separate major spawning events in each year may have originated from two 

reproductively isolated populations since Conception Bay is not an enclosed region but is 

open to advection from the Arctic via the Labrador Current (Myers et al. 1990, deY oung 

and Sanderson 1995). Alternatively, ifthe assumption made in this study that 

appendicularians in Conception Bay all belonged to a single population is true, then the 

two separate major spawning events of 0. labradoriensis suggest a polymorphism which 

is a presence of multiple phenotypes in a population. The variation in reproductive 

timing may have evolved in 0. labradoriensis thereby spreading the risk of survival in a 

temporally heterogeneous environment. Such strategy is described as bet hedging 

(Slatkin 1974, Siaiah and Perrin 1990, Wilber and Rudolf2006) or spreading of risk in 

time (den Boer 1968). 

Individual growth of the cohorts of the two species was generally exponential, 

except for the discontinued growth of cohort 2 of 0. vanhoe.ffeni. This continuous 

growth demonstrates that individuals obtained sufficient energy to maintain growth 

throughout the year, including over winter. The omnivorous and efficient feeding 

behaviour of these species may explain continuous growth given that appendicularians 

are able to feed on a wide range of food material that includes dissolved organic matter to 

bacteria, flagellates and large diatoms (Deibel and Turner 1985, Flood et al. 1992, Bedo 

et al. 1993, Acuna et al. 1996, Fernandez et al. 2004). Appendicularians in Conception 

Bay are able to ingest most of the seasonally variable prey species, ranging from a large 

proportion of bacteria and flagellates in summer and fall , supplemented by diatoms in 

spring (Urban et al. 1992). Regardless of prey type, the food concentration was adequate 

to support continuous growth in most cases. 

Continuous, exponential somatic growth during sexual development in both 

species indicates that individuals obtained sufficient energy to maintain growth and to 

fuel reproductive maturation, and that energy was not diverted from somatic growth 



during development. However, the field samples collected in this study did not include 

animals that were in the fmal stages of gametogenesis, presumably because fully 

developed, fragile gonads ruptured during net collection. At this final stage in the 

maturation of gametes, secretion of house rudiments ceases and autolysis of oikplastic 

and digestive cells occurs as the autolysed energy is apparently re-invested in gonad 

development (Gorsky 1980, Fenaux and Gorsky 1983, personal observation). 
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0. vanhoeffeni grew faster than 0. labradoriensis averaged over an entire 

generation (Table 3.2, 0. vanhoeffeni 0.017-0.043 d-1
, 0. labradoriensis 0.007-0.011 d- 1

). 

Animals from cohort 2 of 0. vanhoeffeni during 200112 attained up to six times the mean 

weight of animals from cohort 2 of 0. labradoriensis, and animals from cohort 3 of 0. 

vanhoeffeni during 2002/3 attained up to nine times the mean weight of animals from 

cohort 3 of 0. labradoriensis (Fig. 3.5, Fig. 3.6). The interspecific variation in growth 

occurred primarily during spring and was most obvious in trunk length-at-maturity of the 

two species. Both species matured at the same range of trunk length during summer and 

fall (Fig. 3.10) at an age of about 6 to 9 months (Fig. 3.2, Fig. 3.4). However, 0. 

vanhoeffeni matured at a trunk length about two to three times that of 0. labradoriensis 

during spring, when they were about 10 to 12 months old. These results suggest that 0. 

vanhoeffeni grew faster than 0. labradoriensis during spring and that growth of 0. 

vanhoeffeni was more affected by the spring diatom bloom than was that of 0. 

labradoriensis, implying that food quality is an important determinant of interspecific 

variation in growth of appendicularians. 

The weight-specific growth rates of appendicularians in Conception Bay are 

lower than those of other species from temperate and tropical regions (Table 3.2) and also 

lower than the range of 0.26 to 3.31 d-1 obtained from laboratory and field measurements 

at temperatures from 7 to 29 °C (Lopez-Urrutia et al. 2003). The somatic production and 

PIB ratio of appendicularians in Conception Bay are also lower than values for species in 

temperate and tropical regions (Table 3.2), in part because growth rate is lower and 

biomass is higher in Conception Bay than in warm-water systems. This pattern is a 

typical example of the low turnover rate of energy in cold water ecosystems that results 
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from lower growth rate, higher biomass, and longer generation time (Waters 1977, Brey 

and Gerdes 1998). However, because of the high biomass, annual population house 

production rate is high and comparable to warmer systems, even though the daily house 

production rate of individual 0. vanhoeffeni (i.e. 37% of body weight, Deibel 1988) is 

lower than that of warm water species ( 40 to 300 % of body weight, Clarke and Roff 

1990, Hopcroft and Roff 1998, Tomita et al. 1999, Sato et al. 2001). Population house 

production rates far exceed somatic production rates in 0. vanhoeffeni whereas 

population house production by warm-water species is similar to somatic production 

(Table 3.2). Thus, it is essential to include house production in estimates of total carbon 

production by appendicularians, especially in cold water systems. 

Assuming a mean annual primary production for Conception Bay of 131 ± 5 g C 

m·2 y(1 (Tian et al. 2003), the total annual carbon production of 0. vanhoeffeni and 0. 

labradoriensis (somatic + house production) was 7.3 % of primary production in 2001/2 

and 3.8% in 2002/3. These are remarkably high figures, considering that the transfer 

efficiency between primary and secondary producers in marine ecosystems is 

approximately 10 to 13% (Pauly and Christensen 1995, Ware 2000). Based on an 

estimate of mean mesozooplankton production (primarily copepods) of 10.1 g C m·2 y{1 

in Conception Bay (Tian et al. 2003), production of oikopleurids represented 95 % of 

mesozooplankton production in 2001/2 and 49% in 2002/3. This range is similar to 

estimates from studies in other locations. Appendicularian production in Kingston 

Harbour, Jamaica, is at least 50 % of copepod production (Hopcroft and Roff 1998) and 

may exceed copepod production (Hopcroft and Roff 1995). Furthermore, temperate 

epipelagic appendicularians can represent an average of 10 % and up to 40 % of total 

mesozooplankton production in productive environments (L6pez-Urrutia et al. 2003). 

The ranges of statolith diameter of 0. vanhoeffeni and 0. labradoriensis, whose 

generation times ranged up to one year, were similar throughout the year ( 0. vanhoeffeni, 

9-17 f.!m, Fig. 3.2a, 0. labradoriensis, 8-17 f.!m, Fig. 3.4a). However, the ranges of body 

size of these species differed greatly (0. vanhoeffeni 0.6-110 f.lg C, Fig. 3.5, 0. 

labradoriensis, 0.5-13 f.lg C, Fig. 3.6). These results suggest that statolith diameter is a 
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general age indicator in oikopleurid species but that body size does not relate to age in a 

direct and simple way. The fact that rates of increase in statolith diameter are similar in 

both species also suggests that growth of this organ may be decoupled from physiological 

processes. 

Statolith diameter-at-maturity in both species was maximal during spring and 

minimal during late summer and fall. This seasonal variation showed a strong, linear 

inverse relationship with temperature for both species, accounting for ca. 70% of the total 

variation. This pattern indicates slower development during winter and more rapid 

development during summer, in accordance with the general paradigm of the relationship 

between developmental rate ofpoikilotherms and temperature (Allen 1976, Vidal 1980, 

Gillooly 2000). The weaker, positive, non-linear relationship between chlorophyll a 

concentration and statolith diameter-at-maturity is most likely indirect, as a result of the 

non-linear, inverse relationship between temperature and chlorophyll a concentration. 

Stepwise regression analysis showed that trunk length- at-maturity in 0. 

vanhoeffeni and 0. labradoriensis in Conception Bay was negatively correlated with 

temperature and positively correlated with chlorophyll a concentration. Only one other 

field study has described the relationship between environmental variables and trunk 

length-at-maturity of an appendicularian. Trunk length-at-maturity of Oikopleura dioica 

in the Inland Sea of Japan varies seasonally and is inversely related with temperature 

(Uye and !chino 1995). However, laboratory studies have not confirmed this 

relationship. For example, trunk length-at-maturity of 0. dioica in the laboratory 

remained the same at 15 °C and 25 °C (Fenaux 1976) and did not change at different food 

concentrations (Troedsson et al. 2002). This lack of variability in trunk length-at

maturity in the laboratory may be a result of low genetic variation or to a container effect. 

However, this question requires further laboratory research. 

Both species experience negative population growth from June to August. This 

period of high mortality may result from intense competition for food during summer 

when the plankton food web is most active. The abundance of zooplankton in 

Conception Bay e.g. the copepods Calanus finmarchicus, Pseudocalanus spp. and 
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Oithona simi/is, and the appendicularian Fritillaria borealis, increases between June and 

September (Davis 1982). Predation may also contribute to high mortality in oikopleurids 

during summer. Recruitment of the chaetognath Parasagitta elegans, a major predator of 

appendicularians (Feigenbaum 1982, Alvarez-Cadena 1992, Purcell et al. 2005), also 

occurs in the upper water column of Conception Bay during July and August (Davis 

1982, Choe and Deibel2000). Furthermore, the larvae of many fish species increase in 

Conception Bay and in other Newfoundland coastal regions in July and August (Frank 

and Leggett 1981, Davis 1982, Frank and Leggett 1983, Laprise and Pepin 1995). The 

causes of negative population growth of cold ocean appendicularians in late summer 

require further research, but it is noteworthy that population growth rates are lower in late 

summer than in mid-winter. 

In Conception Bay, 0. vanhoeffeni recruits primarily at the coldest time of the 

year, when the water column is well mixed and isothermal, with spawning ending 

following the spring phytoplankton bloom, when phytodetritus is sinking and the 

thermocline is beginning to form in the upper 20m of the water column. During this 

time, age-at-maturity, size-at-maturity and fecundity are at a maximum. Thus, 0. 

vanhoeffeni has a life history strategy that maximizes clutch size. In contrast, 0. 

labradoriensis recruits primarily in the fall, when the upper mixed layer is warmest and 

when age-at-maturity, size-at-maturity and fecundity are at a minimum. Thus, 0. 

labradoriensis has a life history strategy that maximizes spawning stock size and high 

population turnover rates. It appears that a trade-off between the timing of reproduction 

(adult survival) and number of offspring Uuvenile survival) occurred in both species but 

in opposite directions. Life history theory predicts that optimum age-at-maturity can be 

determined by variation in age-specific mortality (Gadgil and Bossert 1970, Charnov and 

Schaffer 1973, Michod 1979). High juvenile mortality but low adult mortality is 

predicted to select for delayed maturation (Gadgil and Bossert 1970, Schaffer 1974, 

Lonsdale 1981 , Belk 1998, Barata et a!. 2001) and high adult mortality is predicted to 

select for early maturation (Schaffer 1974, Hernaman and Munday 2005, Depczynsky 

and Bellwood 2006). If this theory holds true for oikopleurids, adult mortality should be 



lower in 0. vanhoeffeni than in 0. labradoriensis. Further examination of age-specific 

mortality in relation to selective pressures such as predation, food availability, and 

suitability of the physical environment is crucial for an understanding of interspecific 

variation in life history strategies of appendicularians. 
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Table. 3.1. Oikopleura vanhoeffeni and Oikopleura labradoriensis 

Parameters for growth equations. The exponential growth equation, W1 = W0egt, was fitted to 

all cohorts except cohort 2 of 0. labradoriensis, for which linear equation, W1 = gt + W0, was fitted. 

n =number of time points in which the growh rate was determined. Error estimates are standard errors. 

Species Cohort# W0 ± SE g±SE r p n 

Oikopleura vanhoeffeni 2 0.191 ± 0.047 0.017 ± 0.001 0.96 < 0.001 12 
3 0.494 ± 0.044 0.043 ± 0.001 0.99 0.014 3 

Oikopleura labradoriensis 1 0.743 ± 0.132 0.010 ± 0.001 0.86 < 0.001 12 
2 0.628 ± 0.301 0.011 ± 0.003 0.74 0.003 9 
3 0.299 ± 0.085 0.008 ± 0.001 0.82 < 0.001 12 
4 0.557 ± 0.105 0.007 ± 0.002 0.73 0.007 8 

00 w 



Table 3.2. Mean biomass (B), instantaneous growth rate (g), annual somatic production (Pg), annual house production (Pe), 
and Pg/B ratio of appendicularian species. 

Location T B g Pg Pe Pg/B Reference 

tc) (mg C m-2) (d-1
) (g C m-2 yr-1

) -2 (gCm yr-1) 

0. dioica Seto Inland Sea 8.9-28.2 12 0.26-3.0 7.15 596 Uye and Ichino (1 995) 

Appendicularians Off Lime Cay 27-29 5.5 1.56 1.9-4.6 1.2-2.4 346-836 Clarke and Roff (1990) 

Appendicularians Kingston Harbour 27-30 15.5 2.03-2.49 14 7.1 -14.3 903 Hopcroft and Roff (1998) 

0. longicauda Toyama Bay 11.1-23.5 25.6 0.592 4.5 11.3 176 Tomita et al. (1999) 

0. vanhoeffeni Conception Bay -1- 6 * 25-66 0.017-0.043 0.343-0.359 3.4-8.4 5.2-14.3 This study 

0. labradoriensis Conception Bay -1- 6 * 6.8-8.5 0.007-0.011 0.022-0.028 0.8-1.2 3.2-3.3 This study 

* Mean temperature was taken above 100 m where most of the oikopleurids were found. Surface temperature ranged from -1 to 1 'tC. 
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General Discussion 

The main purpose of this thesis was to examine the population dynamics of boreal 

appendicularians in Conception Bay, Newfoundland in relation to variation in life history 

characters under fluctuating environmental conditions. The study required general 

understanding of temporal and vertical distribution of the species and a method that 

allows accurate assessment of age structure of appendicularian populations. The 

following discussion summarizes the main finding of this study and the questions raised. 

Temporal and vertical distribution of appendicularian species in Conception Bay 

is defmed by temperature and salinity. The clear niche separation in temperature-salinity 

space suggests that the level of physiological tolerance to temperature and salinity is 

important in predicting survivorship of each species. Embedded within this strong 

physical niche is evidence of a secondary biotic factor, food quality. The seasonal 

succession in appendicularian species in order of increasing body size, from Fritillaria 

borealis, the smallest species in summer, through the intermediate-sized Oikopleura 

labradoriensis in the fall to the largest Oikopleura vanhoeffeni in the spring, corresponds 

with the seasonal succession of prey species size, from picoplankton in summer through 

nanoplankton in fall to large diatoms in spring (Deibel and Turner 1985, Powell et al. 

1987, Urban et al. 1992, Prasad and Haedrich 1993, Putland 2000). Evaluating the 

significance of food quality in the seasonal succession of appendicularian species 

requires further studies on the diet and relative nutritional contribution of assimilated 

food types to reproduction and growth. For these suspension feeders, in which size of 

ingestible particles is limited by the size of mesh on the house which, in tum, varies with 

body size (Flood and Deibel1998), availability of prey species in a particular size range 

will likely influence population dynamics. 

Evidence from my laboratory and field studies showed that statolith diameter is a 

robust and precise age indicator. In the laboratory, variability in statolith diameter-at-age 

remained low and constant as the individuals aged, whereas variability in trunk length-at

age was generally higher and increased with age. Using statolith diameter as an age 
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indicator for Conception Bay, NL field populations, trunk length-at-age in 0. vanhoeffeni 

displayed clear seasonal variation, demonstrating that body size is not a reliable age 

indicator in field populations and that conventional cohort separation using modal 

progression analysis of length-frequency data may lead to inaccurate estimation of age 

distributions. In light of the fact that this is the first attempt to use statolith size as an age 

indicator for appendicularians, additional studies are necessary to test the general validity 

of this approach, particularly under various conditions of temperature and food quantity 

and quality. 

Throughout the two years of this study, trunk length-at-age of 0. vanhoeffeni 

varied seasonally and as a function of the different age groups. The most noticeable 

pattern was that length-at-age in the older and larger individuals increased in response to 

the spring diatom bloom while length-at-age of the younger individuals did not change, 

suggesting that older individuals with larger body size were able to feed on large diatoms 

and grow faster during spring. These results indicate that the intraspecific variation in 

growth was related to availability of ingestible particles. More importantly, the results 

imply that trunk length-at-age can be used as an index of growth status in 

appendicularians. This conclusion needs to be tested in the laboratory, where the 

absolute age of individuals as a function of variation in food concentration and size of 

food particles is known. In the field, future observations of length-at-age can be 

accompanied by an independent growth index, such as RNA content or RNA/DNA ratio 

(Sutcliff 1970, Bamstedt and Skjoldal 1980, Ikeda 1989, Acharya eta!. 2004). 

0. vanhoeffeni and 0. labradoriensis grew exponentially throughout the year, 

indicating the absence of food limitation. Temperatures below zero during winter and 

spring did not have a negative affect on growth, suggesting that appendicularians may 

achieve temperature compensation in some of their physiological processes. In general, 

temperature compensation in physiological rates may involve two different mechanisms: 

basal metabolism of organisms at low temperatures may decrease, resulting in an increase 

in growth efficiency (Clarke 1987, 1991), or physiological rates are conserved in the 

presence of temperature variation (Hochachka and Somero 1984). The latter mechanism 
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has been observed in marine invertebrates and fishes in which both growth and metabolic 

compensation can be accomplished at lower temperatures (Nicieza and Metcalfe 1997, 

Vetter 1998, Hurst et al. 2005, Portner 2006). Thus, in order to understand how 

appendicularians maintain growth during winter, future studies will need to examine 

physiological energetics in relation to seasonal variation in temperature, which has never 

been done in appendicularians. 

Production of appendicularian species was large in proportion to primary 

production or total copepod production. Thus, appendicularians represent an important 

part of the energy cycle in boreal marine ecosystem. The estimated population house 

production rates of 0. vanhoe.ffeni and 0. labradoriensis were far greater than were 

somatic production rates (Chapter 3, Table 3.2), in that house production represented 89 

to 98 % of total somatic + house production. The annual house production of both 

species was approximately 3.5 to 7.0% of primary production, indicating that a 

substantial portion of primary production may be exported from the euphotic zone to the 

benthos via sinking of appendicularian houses. In addition, the estimation of house 

production did not include adhered food particles and fecal pellets. Discarded houses can 

trap as much as 30 % of filtered particles (Gorsky 1980) and the concentration of 

particulate organic matter in the house is 10 times higher than that in the ambient water 

(Taguchi 1982). However, care should be taken in the interpretation of these data since 

the degradation rate of appendicularian houses during sinking is not known and sinking 

houses represent an important food source and substrate for microbial populations 

(Alldredge and Y oungbluth 1985, Caron et al. 1986, Davoli and Silver 1986, Davoli and 

Youngbluth 1990), copepods (Ohtsuka and Kubo 1991, Ohtsuka et al. 1996) and eel 

larvae (Mochioka and Iwamizu 1996). No studies have yet shown that discarded 

appendicularian houses are a food source for benthic organisms, but this question is 

compelling. 

Oikopleurid species in Conception Bay display different patterns of population 

growth. Population growth of 0. vanhoe.ffeni is associated with an increase in size-at

maturity and fecundity and with a delay in age-at-maturity, whereas population growth of 
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0. labradoriensis is associated with a decrease in age-at-maturity. An important question 

is to determine the selection pressure that shapes variation in the life history pattern of 

these appendicularian species. Life history theory predicts that optimum age-at-maturity 

can be determined by variation in age-specific mortality (Gadgil and Bossert 1970, 

Charnov and Schaffer 1973, Michod 1979) in which external variables such as physical 

conditions, food availability, and predation pressure play important roles (Reznick et al. 

2002). My study suggests that the lowest temperatures in winter and spring provide 

optimal physical conditions for the recruitment and survival of 0. vanhoeffeni and that 

the spring diatom bloom results in an increase in growth rates of larger, older individuals, 

leading to increases in size-at-maturity and fecundity. Furthermore, the lowest salinities 

and highest temperatures in fall provide optimal physical conditions for 0. 

labradoriensis, and the fall bloom may lead to enhanced rates of maturation and 

reproduction at an early age. Hypotheses regarding the causes of negative population 

growth in both species during summer e.g. intense resource competition and predation, 

remain to be tested. Thus, it will be important to study the age-specific mortality of 

appendicularians in order to gain better understanding of population dynamics through 

demographic analysis. 

In conclusion, the temporal niche separation of co-occurring appendicularian 

species in a seasonally variable environment is defined by different optimal ranges of 

temperature and salinity. Within the optimal physical settings, each species displays 

different modes of population growth in which age-at-maturity and fecundity play 

significant roles. Seasonal variation in age-at-maturity, size-at-maturity and fecundity are 

closely related to temperature and food availability, suggesting a tight coupling between 

environmental change and population dynamics. The study also suggests that the effect of 

climate change on temperature and phytoplankton productivity and community structure 

(Richardson and Schoeman 2004, Hays et al. 2005, Hare et al. 2007) may influence the 

life history and demographic traits that regulate the population dynamics and secondary 

production of appendicularian species. 



105 

References 

Abrams PA, RoweL (1996) The effects of predation on the age and size at maturity of 
prey. Evolution 50:1052-1061 

Acharya K, Kyle M, Elser J (2004) Biological stoichiometry of Daphnia growth: An 
ecophysiological test of the growth rate hypothesis. Limnol Oceanogr 49:656-665 

Acuiia JL (1994) Summer vertical distribution of appendicularians in the central 
Cantabrian Sea (Bay of Biscay). J Mar Bioi Ass UK 74:585-601 

Acuiia JL, Anad6n R (1992) Appendicularian assemblages in a shelf area and their 
relationship with temperature. J Plankton Res 14:1233-1250 

Acuiia JL, Deibel D, Morris CC (1996) Particle capture mechanism ofthe pelagic 
tunicate Oikopleura vanhoeffeni. Lirnnol Oceanogr 41:1800-1814 

Acuiia JL, Deibel D, Bochdansky AB and Hatfield E (1999) In situ ingestion rates of 
appendicularian tunicates in the Northeast Water Polynya (NE Greenland). Mar 
Ecol Prog Ecol 186:149-160 

Acuiia JL, Deibel D, Saunders PA, Booth B, Hatfield E, Klein B, Mei ZP, Rivkin R 
(2002) Phytoplankton ingestion by appendicularians in the North Water. Deep
Sea Res II 49:5101-5115 

Aksnes DL, Troedsson C, Thompson EM (2006 a) A model of developmental time 
applied to planktonic embryos. Mar Ecol Prog Ser 318:75-80 

Aksnes DL, Troedsson C, Thompson EM (2006b) Integrating developmental clocking 
and growth in a life-history model for the planktonic chordate, Oikopleura dioica. 
Mar Ecol Prog Ser 318:81-88 

Alden R W ( 1982) A method for the enumeration of zooplankton subsamples. J Exp Mar 
Bioi Ecol 59:185-206 

Alldredge AL (1972) Abandoned larvacean houses: a unique food source in the pelagic 
environment. Science 177:885-887 

Alldredge AL (1976) Discarded appendicularian houses as sources of food, surface 
habitats, and particulate organic matter in the plankton environments. Limnol 
Oceanogr 21:4-23 

Alldredge AL (1977) House morphology and mechanisms of feeding in the 
Oikopleuridae (Tunicata, Appendicularia). J Zoot Lond 181:175-188 



Alldredge AL (1981) The impact of appendicularian grazing on natural food 
concentrations in situ. Lirnnol Oceanogr 26:247-257 

Alldredge AL (1982) Aggregation of spawning appendicularians in surface windrows. 
Bull Mar Sci 32:250-254 

106 

Alldredge AL (2005) The contribution of discarded appendicularian houses to the flux of 
particulate organic carbon from ocean surface waters. In: Gorsky G, Youngbluth 
MJ, Deibel D (eds) Response of marine ecosystems to global change: Ecological 
impact of appendicularians, Contemporary Publishing International, Paris, France, 
p 309-326 

Alldredge AL, Youngbluth MJ (1985) The significance of macroscopic aggregates 
(marine snow) as sites of heterotrophic bacterial production in the mesopelagic 
zone of the subtropical Atlantic. Deep-Sea Res 32:1445-1456 

Allen DJ (1976) Life history patterns in zooplankton. Am Nat 110:165-180 

Alvarez-Cadena JN (1992) Feeding habitats, gonadic stages and size frequency 
distribution of Sagitta setosa J. Mueller to the east of the Isle of Man, North Irish 
Sea. An Inst Cienc del Mary Lirnnol. Univ Nal Auton, Mexico 19:215-222 

Ashjian C, SmithS, Bignami F, Hopkins T, Lane P (1997) Distribution of zooplankton 
in the Northeast Water Polynya during summer 1992. J Mar Syst 10:279-298 

Atkinson D (1994) Temperature and organism size- a biological law for ectotherms? 
Adv Ecol Res 25:1-58 

Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The 
ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257-
263 

Bamstedt U, Skjoldal HR (1980) RNA concentration of zooplankton: Relationship with 
size and growth. Lirnnol Oceanogr 25:304-316 

Bamstedt U, Fyhn HJ, Martinussen MG, Mjaavatten 0 , Grahl-Nielsen 0 (2005) 
Seasonal distribution, diversity and biochemical composition of appendicularians 
in Norwegian fjords. In: Gorsky G, Youngbluth MJ, Deibel D (eds) Response of 
marine ecosystems to global change: Ecological impact of appendicularians, 
Contemporary Publishing International, Paris, France, p 227-254 



107 

Barata C, Baird DJ, Soares AM (2001) Phenotypic plasticity in Daphnia magna Straus: 
variable maturation instar as an adaptive response to predation pressure. 
Oecologia 129:220-227 

Barroso CM, Nunes M, Richardson CA and Moreira MH (2005) The gastropod statolith: 
a tool for determining the age of Nassarus reticulatus. Mar Biol146:1139-1144 

Bauerfeind E, Garrity C, Krumbholz M, Ramseier RO, Voss M (1997) Seasonal 
variability of sediment trap collections in the Northeast Water Polynya. Part 2. 
Biological and microscopic composition of sedimenting matter. J Mar Syst 
10:371-389 

Bedo A W, Acufia JL, Robins D, Harris RP (1993) Grazing in the micronic and 
submicronic particle size range: the case of Oikopleura dioica (Appendicularia). 
Bull Mar Sci 53:2-14 

Behrenfeld MJ, O'Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, 
Milligan AJ, Falkowski PG, Letelier RM, BossES (2006) Climate-trends in 
contemporary ocean productivity. Nature 444:752-755 

Belchier M, Edsman L, Sheehy MRJ, Shelton PMJ (1998) Estimating age and growth in 
long-lived temperate freshwater crayfish using lipofuscin. Freshw Bioi 
39:439-446 

Belk MC (1995) Variation in growth and age at maturity in bluegill sunfish: Genetic or 
environmental effects? J Fish Biol47:237-247 

Belk MC (1998) Predator-indiced delayed maturity in bluegill sunfish (Lepomisma 
macrochiris): variation among populations. Oecologia 113:203-209 

Bergmann C (1847) Ueber die Verhaultnisse der warmeokonomie der thiere zu ihrer 
grosse. Gottinger Studien 3:595-708 

Bhattacharya CG (1967) A simple method of resolution of a distribution into Gaussian 
components. Biometrics 23:115-135 

Bluhm BA (2001) Age determination in polar Crustacea using the autofluorescent 
pigment lipofuscin. Ber Polarforsch Meeresforsch 382:1-127 

Bluhm BA, Beyer K, NiehoffB (2002) Brain structure and histological features of 
lipofuscin in two Antarctic Caridea (Decapoda). Crustacea 75:61-76 



108 

Bluhm BA, Brey T (2001) Age determination in the Antarctic shrimp Notocrangon 
antarcticus (Crustacea: Decapoda), using the autofluorescent pigment lipofuscin. 
Mar Bioi 138:247-257 

Brazeiro A, Defeo 0 (1999) Effects of harvesting and density dependence on the 
demography of sandy beach populations: The yellow clam Mesodesma 
mactroides of Uruguay. Mar Ecol Prog Ser 182:127-135 

Brey T, Gerdes D (1998) High antarctic macrobenthic community production. J Exp Mar 
Bioi Ecol231:191-299 

Brunk UT, Ericsson JLE (1972) Electron microscopical studies of rat brain neurons. 
Localization of acid phosphatase and mode of formation of lipofuscin bodies. J 
Ultrastructure Res 3 8: 1-15 

Brunk UT, Jones CB, Sohal RS (1992) A novel hypothesis of lipofuscinogenesis and 
cellular aging based on interactions between oxidative stress and 
autophagocytosis. Mutat Res 275:395-403 

Brunk UT, Terman A (2002) Lipofuscin: Mechanisms of age-related accumulation and 
influence on cell function. Free Radical Bioi Med 33:611-619 

Buchanan RA, Brown SAM ( 1981) Zooplankton of the Labrador coast and shelf during 
summer 1979. Consultant' s Report for Petro-Canada Explorations Ltd. LGL Ltd, 
St. Johns, Newfoundland 

BUchmann A (1969) Zooplankton: Appendicularia. Counseil International pour 
L'Exploration de Ia Mer 7:1-9 

Campana SE (1990) How reliable are growth back-calculations based on otoliths? Can J 
Fish Aquat Sci 47:2219-2227 

Campana SE (2001) Accuracy, precision and quality control in age determination 
including a review of the use and abuse of age validation methods. J Fish Bioi 
59:197-242 

Campana SE, Neilson JD (1985) Microstructure offish otoliths. Can J Fish Aquat Sci 
42:1014-1032 

Cardinale M, Arrhenius F, Johnsson B (2000) Potential use of otolith weight for the 
determination of age-structure of Baltic cod (Gadus morhua) and plaice 
(Pleuronectes platessa). Fish Res 45:239-252 



109 

Caron DA, Davis PG, Madin LP, Sieburth JMcN (1986) Enrichment of microbial 
populations in macroaggregates (marine snow) from surface waters of the North 
Atlantic. J Mar Res 44:543-565 

Castro M, Encama9ao P, Tully 0 (2002) The effect of dietary antioxidants on lipofuscin 
accumulation in the crustacean brain. J Exp Mar Bioi Ecol 269:53-64 

Caswell H (1989) Matrix population models. Sinauer, Sunderland, Massachusetts 

Caswell H, Hastings A (1980) Fecundity, development time and population growth rate: 
An analytical solution. Theor Popul Bioi 17:71-79 

Chamov EL, Schaffer WM (1973) Life history consequences of natural selection: Cole's 
result revisited. Am Nat 107:791-793 

Chase 1M (1999) To grow or to reproduce? The role of life-history plasticity in food web 
dynamics. Am Nat 154:571-587 

Chatzinikolaou E, Richardson CA (2007) Evaluating growth and age of netted whelk 
Nassarius reticulatus (Gastropoda: Nassariidae) using statolith growth rings. Mar 
Ecol Prog Ser 342:163-176 

Chio KS, Tappe! AL (1969) Synthesis and characterization of the fluorescent products 
derived from malonaldehyde and amino acids. Biochemistry 8:2821-2827 

Choe N, Deibel D (2000) Seasonal vertical distribution and population dynamics of the 
chaetognath Parasagitta elegans in the water column and hyperbenthic zone of 
Conception Bay, Newfoundland. Mar Bioll37:847-856 

Christensen R (1996) Analysis of Variance, Design and Regression: Applied statistical 
methods, Chapman & Hill, London, UK, p 204-222 

Chylek P, Lohmann (2005) Ratio of the Greenland to global temperature change: 
comparison of observations and climate modeling results. Geophys Res Lett 
32:L14705 

Clarke A (1987) The adaptation of aquatic animals to low temperature. In: Grout BWM, 
Morris GJ (eds) The effects of low temperatures on biological systems. Edward 
Arnold, London, p 315-348 

Clarke A (1991) What is cold adaptation and how should we measure it? Am Zool31:81-
92 



110 

Clarke C, Roff JC (1990) Abundance and biomass of herbivorous zooplankton off 
Kingston, Jamaica, with estimates of their annual production. Est Coast Shelf Sci 
31:423-437 

Clarke WG (1981) Restricted least-square estimates of age composition from length 
composition. Can J Fish Aquat Sci 38:297-307 

Colbourne E, deY oung B, Narayanan S, Helbig J (1997) Comparison of hydrography and 
circulation in the Newfoundland shelf during 1990-1993 with the long term mean. 
Can J Fish Aquat Sci Suppl 54:68-80 

Cole LC (1954) The population consequences of life history phenomena. Quart Rev Bioi 
29:103-137 

Colin SP, Dam HG (2004) Testing for resistance of pelagic marine copepods to a toxic 
dinoflagellate. Evol Ecol 18:355-377 

Dagg MJ, Brown SL (2005) The potential contribution of fecal pellets from the larvacean 
Oikopleura dioica to vetical flux of carbon in a river dominated coastal margin. 
In: Gorsky G, Youngbluth MJ, Deibel D (eds) Response of marine ecosystems to 
global change: Ecological impact of appendicularians, Contemporary Publishing 
International, Paris, France, p 293-308 

Davis CC (1982) A preliminary quantitative study of the zooplankton from Conception 
Bay, insular Newfoundland, Canada. Int Rev Gesamten Hydrobiol 67:713-747 

Davoli PJ, Silver MW (1986) Marine snow aggregates: life history sequence and 
microbial community of abandoned larvacean houses from Monterey Bay, 
California. Mar Ecol Prog Ser 33:111-120 

Davoll PJ, Youngbluth MJ (1990) Heterotrophic activity on appendicularian (Tunicata: 
Appendicularia) houses in mesopelagic regions and their potential contribution to 
particle flux. Deep-Sea Res 37:285-294 

Deason EE, Smayda TJ (1982) Experimental evaluation of herbivory in the ctenophore 
Mnemiopsis leidyi relevant to the ctenophore-zooplankton-phytoplankton 
interactions in Narragansett Bay, Rhode Island. J Plankton Res 4:219-236 

Deibel D (1986) Feeding mechanism and house ofthe appendicularian Oikopleura 
vanhoeffeni. Mar Bioi 93:429-436 

Deibel D (1988) Filter feeding by Oikopleura vanhoeffeni: grazing impact on suspended 
particles in cold ocean waters. Mar Biol99:177-186 



111 

Deibel D, Turner JT (1985) Zooplankton feeding ecology: contents of fecal pellets of the 
appendicularian Oikopleura vanhoeffeni. Mar Ecol Prog Ser 27:67-78 

Deibel D, Lee SH (1992) Retention efficiency of submicrometer particles by the 
pharyngeal filter of the pelagic tunicate Oikopleura vanhoeffeni Mar Ecol Prog 
Ser 81:25-30 

Deibel D, Thompson RJ, McKenzie C, Redden A (1992) Initiation and limitations of 
north-temperate spring diatom bloom at sub-zero water temperatures. ASLO 92-
Aquatic Sciences Meeting, Santa Fe, New Mexico (USA), 9-12 February 1992 

den Boer PJ (1968) Spreading of risk and stabilization of animal numbers. Acta Biotheor 
18:165-194 

Depczynski M, Bellwood DR (2006) Extremes, plasticity and invariance in vertebrate life 
history traits: insights from coral reef fishes. Ecology 87:3119-3127 

de Young B, Sanderson B (1995) The circulation and hydrography of Conception Bay, 
Newfoundland. Atmos-Ocean 33:135-162 

Dice JF (2000) Lysosomal pathways of protein degradation. Landes Bioscience, 
Georgetown, Texas 

Diggle PJ (1990) Time series: a biostatistical introduction. Oxford, Clarendon Press, 
p 19-30 

Dillard CJ, Tappe! AL (1971) Fluorescent products of lipid peroxidation of mitochondria 
and microsomes. Lipids 6:715-721 

Doksaeter A, Vijverberg J (2001) The effects of food and temperature regimes on life
history responses to fish kairomones in Daphnia hyalina X galeata. Hydrobiol 
442:207-214 

Donato HJR (1981) Lipid peroxidation, crosslinking reactions and ageing. In: Sohal RS 
(ed) Age pigments. Elsevier/North Holland Biomedical Press, Amsterdam, p 63-
96 

Drinkwater K (1995) Overview of environmental conditions in the Northwest Atlantic in 
1993. Scientific council studies. Northwest Atlantic Fisheries Organization 

Dunkelberger DG, Dean JM, Watabe N (1980) The ultrastructure ofthe otolithic 
membrane and otolith in the juvenile mummichog, Fundulus heteroclitus. J 
Morpho! 163:367-377 



112 

Eldred GE, Katz ML (1989) The autofluorescent product of lipid peroxidation may not be 
lipofuscin-like. Free Radic Bioi Med 7:157-163 

Ettershank G (1984) A new approach to the assessment of longevity in the Antarctic krill 
Euphausia superba. J Crustae Bioi 4:295-305 

Euler L (1760) A general investigation into the mortality and multiplication of the human 
species. Theo Popul Bioi 1:307-314 

Feigenbaum D (1982) Feeding by the chaetognath Sagitta elegans, at low temperatures in 
Vineyard Sound, Massachusetts. Limnol Oceanogr 27:699-706 

Fenaux R (1961) Existence d'un ordre cyclique d'abondance relative maximale chez les 
Appendiculaires de surface (Tuniciers pelagiques). Comptes Rendus 
Hebdomadaires des Seances de l'Academie des Sciences 253:2271-2273 

Fenaux R (1963) Ecologie et biologie des Appendiculaires Mediterraneens (Villefranche
sur-Mer). Vie et Milieu Supp116:1-142 

Fenaux R (1968) Distribution verticale de Ia frequence chez quelques Appendiculaires. 
Rapports et Proces-verbaux des Reunions, Commission Internationale pour 
!'Exploration Scientifique de Ia Mer Mediteranee 19:513-515 

Fenaux R (1976) Cycle vital d'un Appendiculaire: Oikopleura dioica Foi 1872. 
Description et chronologie. Annales de l'Institut Oceanographique, Paris (N.S.) 
52:89-107 

Fenaux R (1998) Anatomy and functional morphology of the Appendicularia. In: Bone 
Q (ed) The biology of pelagic tunicates, Oxford University Press, Oxford, UK, 
p29 

Fenaux R, Bone Q, Deibel D (1998) Appendicularian distribution and zoogeography. In: 
Bone Q (ed) The biology of pelagic tunicates, Oxford University Press, Oxford, 
UK, p 251-264 

Fenaux R, Gorsky G (1983) Cycle vital et croissance de I'Appendiculaire Oikopleura 
longicauda (Vogt), 1854. Annates de l'Institut Oceanographique, Paris (N.S.) 
59:107-116 

Fenaux R, Gorsky G (1985) Nouvelle technique d ' elevage des Appendiculaires. Rapp 
Comm Int Mer Medit 29:291-292 



113 

Fernandez D, Lopez-Urrutia A, Fernandez A, Acuna JL, Harris R (2004) Retention 
efficiency of 0.2 to 6 J..l.ffi particles by the appendicularian Oikopleura dioica and 
Fritillaria borealis. Mar Ecol Prog Ser 266:89-101 

Flood PR (2003) House formation and feeding behaviour of Fritillaria borealis 
(Appendicularia: Tunicata). Mar Biol143:467-474 

Flood PR, Deibel D, Morris CC (1992) Filtration of colloidal melanin from sea water by 
planktonic tunicates. Nature 355:630-632 

Flood PR, Deibel D (1998) The appendicularian house. In: Bone Q (ed) The biology of 
pelagic tunicates. Oxford University Press, Oxford, UK, p 105-124 

Frank KT, Leggett WC (1981) Prediction of egg development and mortality rates in 
caplin (Mallotus villosus) from meteorological, hydrographic, and biological 
factors. Can J Fish Aquat Sci 38:1327-1338 

Frank KT, Leggett WC (1983) Multispecies larval fish associations: Accident or 
adaptation. Can J Fish Aquat Sci 40:754-762 

Frost N, Lindsay ST, Thompson H (1933) Hydrographic and biological investigations. 
Report of the Newfoundland Fishery Research Committee 2:58-74 

Fugiwara S, Hankin DG (1988) Aging discrepancy related to asymmetrical otolith growth 
for sablefishAnoplopomafimbria in Northern California. Nippon Suisan 
Gakkaishi 54:27-31 

Gadgil M, Bossert W (1970) Life historical consequences of natural selection. Am Nat 
104:1-24 

Gadomski DM, Boehlert GW (1984) Feeding ecology of pelagic larvae of English sole 
Parophrys vetulus and butter sole Isopsetta isolepis off the Oregon coast. Mar 
Ecol Prog Ser 20:1-12 

Galt CP (1970) Population composition and annual cycle of larvacean tunicates in Elliot 
Bay, Puget Sound. MS dissertation, University of Washington, Seattle 

Galt CP, Fenaux R (1990) Urochordata, Larvacea. In: Adiyodi KG, Adiyodi RG (eds) 
Reproductive biology of invertebrates, Oxford IBI Publishing, New Delhi, p 471-
500 

Galt CP, Flood PR (1998) Bioluminescence in the Appendicularia. In: Bone Q (ed) The 
biology of pelagic tunicates, Oxford University Press Oxford, UK, p 215-229 



Gillooly JF (2000) Effect of body size and temperature on generation time in 
zooplankton. J Plankton Res 22:241-251 

114 

Gorsky G (1980) Optimisation de cultures d'Appendiculaires. Approche du metabolisme 
de Oikopleura dioica. Thesis 3e cycle, Universite Pierre et Marie Curie, Paris VI, 
Paris 

Gorsky G, Fenaux R (1998) The role of Appendicularia in marine food webs. In: Bone Q 
(ed) The biology of pelagic tunicates. Oxford University Press, Oxford, UK, p 
161-170 

Grainger EH (1959) The annual oceanographic cycle at Igloolik in the Canadian Arctic. I 
The zooplankton and physical and chemical observations. J Fish Res Board Can 
16:453-510 

Grainger EH (1965) Zooplankton from the Arctic Ocean and adjacent Canadian waters. J 
Fish Res Board Can 22:543-564 

Hamner WM, Jensen RM (1974) Growth, degrowth and irreversible cell differentiation in 
Aurelia aurita. Am Zool14:833-849 

Hann BJ (1985) Age influence oftemperature on life-history characteristics oftwo 
sibling species of Eurycercus (Cladocera, Chydoridae). Can J Zool 63:891-898 

Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins 
DA (2007) Consequences of increased temperature and C02 for phytoplankton 
community structure in the Bering Sea. Mar Ecol Pro Ser 352:9-16 

Hasselblad V (1966) Estimation of parameters for a mixture of normal distributions. 
Technometrics 8:431-444 

Haussmann MF, Vleck CM (2002) Telomere length provides a new technique for aging 
animals. Oecologia 130:325-328 

Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. 
Trends Ecol Evol20:337-344 

Hernaman V, Munday PL (2005) Life-history characteristics of coral reef gobies. II. 
Mortality rates, mating system and timing of maturation. Mar Ecol Prog Ser 
290:223-237 

Hochachka PW, Somero GN (1984) Biochemical adaptation. Princeton University Press, 
Princeton, New Jersey 



Hoover RS, Hoover D, Miller M, Landry MR, DeCarlo EH, Mackenzie FT (2006) 
Zooplankton response to storm runoff in a tropical estuary: bottom-up and top
down controls. Mar Ecol Prog Ser 318:187-201 

115 

Hopcroft RR (2005) Diversity in larvaceans: How many species? In: Gorsky G, 
Youngbluth MJ, Deibel D (eds) Response of marine ecocystems to global change: 
Ecological impact of Appendicularians. Contemporary Publishing International, 
Paris, France, p 45-58 

Hopcroft RR, Roff JC (1995) Zooplankton growth rates; extraordinary production by the 
larvacean Oikopleura dioica in tropical waters. J Plankton Res 17:205-220 

Hopcroft RR, Roff J (1998) Production oftropicallarvaceans in Kingston Harbour, 
Jamaica: are we ignoring an important secondary producer? J Plankton Res 
20:557-569 

Hopcroft RR, Roff JC, Bouman HA (1998) Zooplankton growth rates: the larvaceans 
Appendicularia, Fritillaria and Oikopleura in tropical waters. J Plankton Res 
20:539-555 

Houghton RW, Visbeck MH (2002) Quasi-decadal salinity fluctuations in the Labrador 
Sea. J Phys Oceanogr 32:687-701 

Huntley M, Boyd C (1984) Food-limited growth of marine zooplankton. Am Nat 
124:455-478 

Hurst TP, Spencer ML, Sogard SM, Stoner AW (2005) Compensatory growth, energy, 
storage and behavior of juvenile Pacific halibut Hippoglossus stenolepis 
following thermally induced growth reduction. Mar Ecol Prog Ser 293:233-240 

Hutchings J (2005) Life history consequences of overexploitation to population recovery 
in Northwest Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 62:824-832 

Hygum BH, Rey C, Hansen BW, Carlotti F (2000) Rearing cohorts of Calanus 
finmarchicus (Gunnerus) in mesocosm. ICES J Mar Sci 57:1740-1751 

Ikeda T (1989) RNA content of the Antarctic krill (Euphausia superba Dana), an 
estimator of natural growth rate. Proc NIPR Symp Polar Biol2:26-33 

Jackson GD (1994) Application and future potential of statolith increment analysis in 
squids and sepioids. Can J Fish Aquat Sci 51:2612-2625 



116 

Johnson MP (2000) Physical control of plankton population abundance and dynamics in 
intertidal rock pools . Hydrobiologia 440:145-152 

Ju SJ, Secor DH, Harvey R (1999) Use of extractable lipofuscin for age determination of 
blue crab Callinectes sapidus. Mar Ecol Prog Ser 185:171-179 

Keats DW, Steele DH, South GR (1987) Food of winter flounder Pseudopleuronectes 
americanus in a sea urchin dominated community in eastern Newfoundland. Mar 
Ecol 60:13-22 

Kimmerer WJ (1984) Selective predation and its impact on prey of Sagitta enjlata 
(Chaetognatha). Mar Ecol Prog Ser 15:55-62 

King KR (1982) The population biology of the larvacean Oikopleura dioica in enclosed 
water columns. In: Grice GD (ed) Marine mesocosms: Biological and chemical 
research in experimental ecosystems. Springer-Verlag, Berlin, p 341-251 

Kramp PL (1942) Pelagic Tunicata. The Godthaab expedition 1928. Meddeleser om 
Gmnland 80:1-10 

Krebs CJ (1995) Two paradigms of population regulation. Wild! Res 22:1-10 

Krebs CJ (2002) Two complementary paradigms for analysing population dynamics. 
Philos Trans R Soc London SerB 357:1211-1219 

Kremer P (1976) Population dynamics and ecological energetics of a pulsed zooplankton 
predator, the ctenophore Mnemiopsis leidyi. In: Wiley M (ed) Estuarine 
processes. Vol. 1. Academic Press, New York, p 197-215 

Kristoffersen K, Klemetsen A (1991) Age determination of Arctic charr (Salvelinus 
a/pinus) from surface and cross section of otoliths related to otolith growth. Nord 
J Freshw Res 66:98-107 

Laprise R, Pepin P (1995) Factors influencing the spatia-temporal occurrence offish eggs 
and larvae in a northern physically dynamic coastal environment. Mar Ecol Prog 
Ser 122:73-92 

Last JM (1972) Egg development, fecundity and growth of Oikop/eura dioica Fol in the 
North Sea. J Cons Int Explor Mer 34:232-237 

Laughlin R (1965) Capacity for increase: a useful population statistic. J Anim Ecol 
34:77-91 

Law R (1979) Optimal life histories under age-specific predation. Am Nat 114:399-417 



117 

Leggett WC, Frank KT, Carscadden JE (1984) Meteorological and hydrographic 
regulation of year-class strength in cap lin (Mallotus villosus). Can J Fish Aquat 
Sci 41:1193-1201 

Leslie PH (1945) On the use of matrices in certain population mathematics. Biometrika 
35:183-212 

Levinton JS (1982) Marine Ecology. Prentice Hall, New Jersey, p 51-67 

Lewontin RC (1965) Selection for colonizing ability. In:Baker GL, Stebbins GL (eds) 
The genetics of colonizing species. Academic Press, New York, p 79-94 

Lipinski M (1986) Methods for the validation of squid age from statoliths. J Mar Bioi Ass 
UK 66:505-526 

Lipinski MR (1993) The deposition of statoliths: A working hypothesis. In: Okutani T, 
O'Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. 
Takai University Press, Tokyo, p 241-262 

Lohmann H (1895) Ueber die Verbreitung der Appendicularien im Atlantischen Oceane. 
Verhandlungen der Gesellschaft Deutscher N aturforscher und Arzte 67: 113-120 

Lohmann H (1896) Die Appendikulariender Expedition (Zoologische Ergebnisse der 
Groland Expedition). Bibliotheca Zoologica 20:25-44 

Lohmann H, BUchmann A (1926) Die Appendicularien der deutschen Siidpolar 
Expedition 1901-1903. Deutsche Siidpolar-Expedition 1901-1903 18 (Zoologie 
10) 63-231 

Lonsdale DJ (1981) Influence of age-specific mortality on the life history traits of two 
estuarine copepods. Mar Ecol Prog Ser 5:333-340 

Lopez-Urrutia A, Acufia JL, Irigoien X, Harris R (2003) Food limitation and growth in 
temperate epipelagic appendicularians (Tunicata). Mar Ecol Prog Ser 252:143-
157 

L6pez-Urrutia A, Harris RP, Acufia JL, Bamstedt U, Flood PR, J0rgen Fyhn H, Gasser B, 
Gorsky G, Irigoien X, Martinussen MG (2005) A comparison of appendicularian 
seasonal cycles in four distinct European coastal environments. In: Gorsky G, 
Youngbluth MJ, Deibel D (eds) Response of marine ecosystems to global change: 
Ecological impact of appendicularians. Contemporary Publishing International, 
Paris, France, p 255-276 



118 

Lotka AJ (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore, MD 

Ltirling M, van Donk E (1997) Life history consequences for Daphnia pulex feeding on 
nutrient-limited phytoplankton. Freshw Bioi 38:693-709 

Maar M, Nielsen TG, Gooding S, Tonnesson K, Tiselius P, Zervoudaki S, Christou E, 
Sell A, Richardson K (2004) Trophodynamic function of copepods, 
appendicularians and protozooplankton in the late summer zooplankton 
community in Skagerrak. Mar Biol144:917-933 

MacDonald BA, Thomas MLH (1980) Age determination of the soft shell clam Mya 
arenaria using shell internal growth lines. Mar Biol58:105-109 

Mahoney EM (1981) Observations on Oikopleura (Tunicata: Appendicularia) and the 
contribution of discarded larvacean houses to the slub problem in selected 
Newfoundland inshore locations. BS dissertation, Memorial University of 
Newfoundland, St. John's 

Mahoney EM, Buggeln RG (1983) Seasonal variations in the concentration of 
Oikopleura spp. (Tunicata: Appendicularia) in Conception Bay, Newfoundland. 
Can Tech Rep Fish Aquat Sci 1155:1-12 

Malthus TR (1798) An Essay on the Principle of Population. Johnson J, London 

Mangas-Ramirez E, Sarma S, Nandini S (2004) Recovery patterns of Moina macrocopa 
exposed previously to different concentrations of cadmium and methyl parathion: 
Life-table demography and population growth studies. Hydrobiol 526:255-265 

Marmontel M, O'Shea TJ, Kochman HI, Humphrey SR (1996) Age determination in 
manatees using growth-layer-group counts in bone. Mar Mamm Sci 12:54-88 

May RM (1976) Estimating r: a pedagogical note. Am Nat 110:496-499 

McDougall A (2004) Assessing the use of sectioned otoliths and other methods to 
determine the age ofthe centropomid fish, barramundi (Lates calcarifer)(Bioch) 
using known-age fish. Fish Bull67:129-141 

McNew R W, Summerfelt RC (1978) Evaluation of a maximum-likelihood estimator for 
analysis of length-frequency distributions. Trans Am Fish Soc 107:730-736 

Michod RE (1979) Evolution of life histories in response to age-specific mortality 
factors. Am Nat 113:531-550 



119 

Mochioka M, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively 
on larvacean houses and fecal pellets. Mar Biol125:447-452 

Morris CC, Aldrich FA (1985) Statolith length and increment number for age 
determination of Illex illecebrosus (Lesuer, 1821) (Cephalopoda, 
Ommastrephidae). NAFO Sci Coun Studies 9:101-106 

Mosegaard H, Svedang H, Taberman KC (1988) Uncoupling of somatic and otolith 
growth rates in Arctic char (Salvelinus a/pinus) as an effect of differences in 
temperature response. Can J Fish Aquat Sci 45:1514-1524 

Motoda S (1959) Devices of simple plankton apparatus. Mem Fac Fish Hokkaido Univ 
7:73-94 

Mugiya Y, Watanabe N, Yamada J, Dean JM, Dunkenberger DG, Shimizu M (1981) 
Diurnal rhythm in otolith formation in the goldfish Carassius auratus. Comp 
Biochem Physiol 68A:659-662 

Myers RA, Akenhead SA, Drinkwater K (1988) The North Atlantic Oscillation and the 
ocean climate of the Newfoundland shelf. NAFO SCR Doc 88/65 

Myers RA, Akenhead SA, Drinkwater K (1990) The influence of Hudson Bay runoff and 
ice-melt on the salinity of the inner Newfoundland shelf. Atmos-Ocean 28:120-
157 

Myers RA, Mertz G, Fowlow PS (1997) Maximum population growth rates and recovery 
times for Atlantic cod, Gadus morhua. Fish Bull95:762-772 

Nakamura Y (1998) Blooms oftunicates Oikopleura spp. and Dolioletta gegenbauri in 
the Seto Island Sea, Japan during summer. Hydrobiol385:183-192 

Nakamura Y, Suzuki K, Suzuki S, Hiromi J (1997) Production of Oikopleura dioica 
(Appendicularia) following a picoplankton 'bloom' in a eutrophic coastal area. J 
Plankton Res 19:113-124 

Newman SJ (2002) Growth rate, age determination, natural mortality and production 
potential of the scarlet seaperch, Lutjanus malabaricus Schneider 1801, off the 
Pilbane coast of north-western Australia. Fish Res 58:215-225 

Newman SJ, Williams D, Russ GR (1996) Age validation, growth and mortality rates of 
the tropical snappers (Pisces:Lutjanidae) Lutjanus adetii (Castelnan 1873) and L. 
quinquelineatus (Bloch 1790) from the central Great Barrier Reef, Australia. J 
Mar Freshw Res 47:575-584 



120 

Newman SJ, Cappo M, Williams D (2000) Age, growth and mortality of the stripey 
Lutjanus carponotatus (Richardson) and the brown-stripe snapper, L. vitta (Quoy 
and Gaimard) from the central Great Barrier Reef, Australia. Fish Res 48:263-275 

Nicieza AG, Metcalfe NB (1997) Growth compensation in juvenile Atlantic salmon: 
Responses to depressed temperature and food availability. Ecology 78:2385-2400 

NicolS (1987) Some limitations on the use of the lipofuscin ageing techinique. Mar Bioi 
93:609-614 

NicolS, Stolp M, Hosie GW (1991) Accumulations of fluorescent age pigments in a 
laboratory population of Antarctic krill Euphausia superba Dan. J Exp Mar Bioi 
Ecol146:153-161 

O'Donovan V, Tully 0 (1996) Lipofuscin (age pigment) as an index of crustacean age: 
correlation with age, temperature and body size in cultured juvenile Homarus 
gammarus L. J. Exp Mar Bioi Ecol207:1-14 

Odum EP (1971) Fundamentals ofEcology. 3rd ed. Saunders, Philadelphia 

Ohtsuka S, Kubo N (1991) Appendicularians and their houses as important food for some 
pelagic copepods. Proceedings of the 4th international conference on Copepoda. 
Bull Plankton Soc Special Vol 535-551 

Ohtsuka S, Kubo N, Masaki 0, Gushima K (1993) Attachment and feeding of pelagic 
copepods on larvacean houses. J Oceanogr 49:115-120 

Ohtsuka S, Boettger-Schnack R, Okada M, Onbe T (1996) In situ feeding habits of 
Oncaea (Copepoda: Poecilostomatoida) from the upper 250m of the central Red 
Sea, with special reference to consumption of appendicularian houses. Bull 
Plankton Soc Japan 43:89-105 

Paffenhofer GA (1976) On the biology of Appendicularia of the southeastern North Sea. 

Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. 
Nature 374:255-257 

Pawson MG (1990) Using otolith weight to age fish. J Fish Bioi 36:521-531 

Pena TS, Johst K, Grimm V, Arntz W, Tarazona J (2005) Population dynamics of a 
polychaete during three El Nifio events: disentangling biotic and abiotic factors. 
Oikos 111:253-258 



121 

Pilling GM, Grancourt EM, Kirkwood GP (2003) The utility of otolith weight as a 
predictor of age in the emperor Lethrinus mahsena and other tropical fish species. 
Fish Res 60:493-506 

Pistorius PA, Bester MN, Kirkman SP (1999) Survivorship of a declining population of 
southern elephant seals, Mirounga leonina, in relation to age, sex and cohort. 
Oecologia 121:201-211 

Porta EA (1991) Advances in age pigment research. Arch Gerontol Geriatr 12:303-320 

Porta EA, Hartroft WS (1969) Lipid pigments in relation to aging and dietary factors 
(lipofuscins). In: Wolman M (ed) Pigments in Pathology. Academic Press, New 
York, p 191-235 

Portner HO (2006) Climate-dependent evolution of Antarctic ectotherms: An integrative 
analysis. Deep-Sea Res. Part II 53:1071-1104 

Powell JC, Dabinett PE, Gow JA (1987) An annual cycle of abundance and activity of 
heterotrophic bacteria and abundance of hydrocarbonoclastic bacteria in 
Newfoundland coastal water. Can J Microbiol33:377-382 

Prasad KS, Haedrich RL (1993) Satellite observations of phytoplankton variability of the 
Grand Banks ofNewfoundland during a spring bloom. Int J Remote Sens 14:241-
252 

Purcell JE, Sturdvant MV, Galt CP (2005) A review of appendicularians as prey of 
invertebrate and fish predators. In: Gorsky G, Youngbluth MJ, Deibel D (eds) 
Response of marine ecosystems to global change: Ecological impact of 
appendicularians. Contemporary Publishing International, Paris, France, p 359-
435 

Putland JN (2000) Microzooplankton herbivory and bacteriovory in Newfoundland 
coastal waters during spring, summer and winter. J Plankton Res 22:253-277 

Randall RG, Thorpe JE, Gibson RJ, Redden DG (1986) Biological factors affecting age 
at maturity in Atlantic salmon (Salmo salar). Can Spec Pub! Fish Aquat Sci 
89:90-96 

Rasmussen OI, Giske J (1994) Life-history parameters and vertical distribution of 
Maurolicus muelleri in Mastfjorden in summer. Mar Bioi 120:649-664 

Reznick D (1982) The impact of predation on life history evolution in Trinidadian 
guppies: Genetic basis of observed life history patterns. Evolution 36:1236-
1250 



Reznick D, Bryant MJ, Bashey F (2002) r- and K-selection revisited: The role of 
population regulation in life-history evolution. Ecology 83:1509-1520 

122 

Reznick D, Lindbeck E, Bryga H (1989) Slower growth results in larger otoliths: An 
experimental test with guppies (Poecilia reticulata). Can J Fish Aquat Sci 46:108-
112 

Richardson AJ, Schoeman DS (2004) Climate impact on plankton ecosystems in the 
Northeast Atlantic. Science 305:1609-1612 

Richoux NB, Deibel D, Thompson RJ (2004) Population biology ofhyperbenthic 
crustaceans in a cold water environment (Conception Bay, Newfoundland). I. 
Mysis mixta (Mysidacea). Mar Bioi 144:881-894 

Riehl MW (1992) Elemental analyses of oikopleurids and factors affecting house 
production rates of Oikopleura vanhoeffeni (Tunicata, Appendicularia) in coastal 
Newfoundland waters. MS dissertation, Memorial University ofNewfoundland, 
St. John's 

Robison BH, Reisenbichler KR, Sherlock RE (2005) Giant larvacean houses: rapid 
carbon transport to the deep sea floor. Science 308:1609-1611 

Rodd FH, Reznick DN (1997) Variation in the demography of guppy populations: The 
importance of predation and life histories. Ecology 78:405-418 

Sato R, Yu J, Tanaka Y, Ishimaru T (1999) New apparatus for cultivation of 
appendicularians. Plankton Bioi Ecol 46:162-164 

Sato R, Tanaka Y, Ishimary T (2001) House production by Oikopleura dioica (Tunicata, 
Appendicularia) under laboratory conditions. J Plankton Res 23:415-423 

Sato R, Tanaka Y, Ishimaru T (2003) Species-specific house productivity of 
appendicularians. Mar Ecol Prog Ser 259:163-172 

Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 
108:783-790 

Schulz J, Hirche H-J (2007) Living below the halocline: strategies of deep-living species 
in the highly stratified brackish Bornholm Basin (central Baltic Basin). J Plankton 
Res 29:881-894 



123 

Secor DH, Dean 1M (1989) Somatic growth effects on the otolith-fish size relationship in 
young pond-reared striped bass, Morone saxatilis. Can J Fish Aquat Sci 46:113-
121 

Secor DH, Dean JM, Baldevarona RB (1989) Comparison of otolith growth and somatic 
growth in larval and juvenile fishes based on otolith length/fish length 
relationships. ICES Marine Science Symposia, Copenhagen, Denmark 191 :431-
438 

Sejr MK, Jensen KT, Rysgaard S (2002) Annual growth bands in the bivalve Hiatella 
arctica validated by a mark-recapture study in NE Greenland. Polar Biol25:794-
796 

Shaw RF, Bercaw BL (1962) Temperature and life-span in poikilothermous animals. 
Nature 196:454-457 

Sheehy MRJ (1990) Widespread occurrence of fluorescent morphological lipofuscin in 
the crustacean brain. J Crustacean Bioi 10:613-622 

Sheehy MRJ (1996) Quantitative comparison of in situ lipofuscin concentration with 
soluble autofluorescence intensity in the crustacean brain. Exp Gerontol 31:421-
432 

Sheehy MRJ, Greenwood JG, Fielder DR (1994) More accurate chronological age 
determination of crustaceans from field situations using the physiological age 
marker, lipofuscin. Mar Bioi 121:237-245 

Sheehy MRJ, Wickins JF (1994) Lipofuscin age pigment in the brain ofthe European 
lobster Homarus gammarus (L.) Microsc Anal 12:23-25 

Sheehy MRJ, Shelton PMJ, Wickins JF, Belchier M, Gaten E (1996) Ageing the 
european lobster Homarus gammarus by the lipofuscin in its eyestalk ganglia. 
Mar Ecol Prog Ser 143:99-111 

Sheehy M, Caputi N, Chubb C, Belchier M (1998) Use of lipofuscin for resolving cohorts 
of western rock lobster (Panulirus cygnus). Can J Fish Aquat Sci 55:925-936 

Shelbourne JE (1962) A predator-prey size relationship for plaice larvae feeding on 
Oikopleura. J Mar Bioi Ass UK 42:243-252 

Shertzer KW, Ellner SP (2002) State-dependent energy allocation in variable 
environments: Life history evolution of a rotifer. Ecology 83 :2181-2193 



Shiga N (1976) Maturity stages and relative growth of Oikopleura labradoriensis 
(Tunicata, Appendicularia). Bull Plankton Soc Japan 23:81-95 

Shiga N (1985) Seasonal and vertical distributions of Appendicularia in Volcano Bay, 
Hokkaido, Japan. Bull Mar Sci 37:425-439 

Shiga N (1993) First record of the Appendicularian Oikopleura vanhoeffeni in the 
Northern Bering Sea. Bull Plankton Soc Japan 39:107-115 

Shiga N (1993) Regional and vertical distributions of Oikopleura vanhoeffeni on the 
northern Bering Sea shelf in summer. Bull Plankton Soc Japan 39:117-126 

Siaiah H, Perrin N (1990) Autumnal vs spring hatching in the fairy shrimp 
Siphonophanes grubii (Dybowski) (Crustacea, Anostraca): Diversified bet
hedging strategy? Funct Ecol 4:769-775 

124 

Sibly RM and Hone J (2002) Population growth rate and its determinants: an overview. 
Philos Trans R Soc London SerB 357:1153-1170 

Silver MW, Alldredge AL (1981) Bathypelagic marine snow: deep-sea algal and detrital 
community. J Mar Res 39:501-530 

Simkiss K (1974) Calcium metabolism offish in relation to ageing. In: Bagenal TB (ed) 
The ageing offish. Unwin Brothers Ltd, London, p 1-12 

Sinclair ARE (1989) Population regulation in animals. In: Cherrett JM (ed) Ecological 
Concepts. Blackwell Scientific, Oxford, UK, p 197-241 

SireN, Bonnet P (1984) Growth and structure of the calcified operculum of the 
Polynesian gastropod Turbo setosus (Prosobranchia: Turbinidae): Determination 
of individual age. Mar Bioi 79:75-87 

Slatkin M (1974) Hedging one' s evolutionary bets. Nature 250:704-705 

Snover ML, Hohn AA (2004) Validation and interpretation of annual skeletal marks in 
loggerhead (Caretta caretta) and Kemps ridley (Lepidochelys kempiz) sea turtles. 
Fish Bull 102:682-692 

Sohal RS (1981) Metabolic rate, aging and liposfucin accumulation. In: Sohal RS (ed) 
Age pigments. Elsevier/North Holland Biomedical Press, Amsterdam, p 303-316 

Spalding MD, Fox HE, Allen GR, Davidson N, Ferdafia ZA, Finlayson M, Halpern BS, 
Jorge, MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia 



125 

CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of 
coastal and shelf areas. BioSci 57:573-583 

Sparre P, Venema SC (1998) Introduction to tropical fish stock assessment. Part I: 
Manual. FAO Fisheries Technical Paper. No. 306.1, Rev. 2 

Stead RA, Thompson RJ (2003) The effect of the sinking diatom bloom on digestive 
processes of the cold-water proto branch Yoldia hyperborea. Limnol Oceanogr 
48:157-167 

Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford, UK 

Stearns SC, Koella JC (1986) The evolution of phenotypic plasticity in life-history traits: 
Predictions of reaction norms for age- and size-at-maturity. Evolution 40:893-
913 

Steinberg KD ( 1995) Diet of cope pods (Scopalatum vorax) associated with mesopelagic 
detritus (giant larvacean houses) in Monterey Bay, California. Mar Biol122:571-
584 

Steinberg KD, Silver MW, Pilskaln HC, Coale LS, Paduan BJ (1994) Midwater 
communities on pelagic detritus (giant larvacean houses) in Monterey Bay, 
California. Limnol Oceanog 39:1606-1620 

Sutcliffe WH (1970) Relationship between growth rate and ribonucleic acid 
concentration in some invertebrates. J Fish Res Board Can 27:606-609 

Taguchi S (1982) Seasonal study of fecal pellets and discarded houses of 
appendicularians in a subtropical inlet, Kaneohe Bay, Hawaii. Est Coast Shelf Sci 
14:545-555 

Templeman W, Squires HJ (1956) Relationship of otolith length and weights in the 
haddock Meanogrammus aeglefinus (L.) to the rate of the growth of the fish. J 
Fish Res Board Can 13:467-487 

Terman A, Brunk UT (1998) Ceroid/lipofuscin formation in cultured human fibroblasts: 
The role of oxidative stress and lysosomal proteolysis. Mech Ageing Dev 
104:277-291 

Terman A, Brunk UT (2004) Lipofuscin. Int J Biochem Cell B 36:1400-1404 

Tian R, Deibel D, Thompson RJ, Rivkin RB (2003) Modelling of climate forcing on a 
cold-ocean ecosystem, Conception Bay, Newfoundland. Mar Ecol Prog Ser 
262:1-17 



126 

Tomita M, Ikeda T, Shiga N (1999) Production of Oikopleura longicauda 
(Tunicata:Appendicularia) in Toyama Bay, southern Japan Sea. J Plankton Res 
21:2421-2430 

Tomita M, Shiga N, Ikeda T (2003) Seasonal occurrence and vertical distribution of 
appendicularians in Toyama Bay, southern Japan Sea. J Plankton Res 25:579-589 

Touratier F, Carlotti F, Gorsky G (2003) Individual growth model for the appendicularian 
Oikpleura dioica. Mar Ecol Prog Ser 248:141 -163 

Troedsson C, Bouquet JM, Aksnes DL, Thompson EM (2002) Resource allocation 
between somatic growth and reproductive output in the pelagic chordate 
Oikopleura dioica allows opportunistic response to nutritional variation. Mar 
Ecol Prog Ser 243:83-91 

Troedsson C, Ganot P, Bouquet J-M, Aksnes DL, Thompson EM (2007) Endostyle cell 
recruitment as a frame of reference for development and growth in the 
urochordate Oikopleura dioica. Bioi Bull213:325-334 

Tuljapurkar S (1990) Population dynamics in variable environments. Springer, New York 

Tully 0, O'Donovan, Fletcher D (2000) Metabolic rate and lipofuscin accumulation in 
juvenile European lobster (Homarus gammarus) in relation to simulating seasonal 
changes in temperature. Mar Biol137:1031-1040 

Udvardy MDF (1954) Distribution of appendicularians in relation to the Strait of Belle 
Isle. J Fish Res Board Can 11:431-453 

Urban JL, McKenzie CH, Deibel D (1992) Seasonal differences in the content of 
Oikopleura vanhoeffeni and Calanus finmarchicus fecal pellets: illustrations of 
plankton food web shifts in coastal Newfoundland waters. Mar Ecol Prog Ser 
84:255-264 

Urban-Rich J, Fernandez D, Acuna JL (2006) Grazing impact on chromorphic dissolved 
organic matter (CDOM) by the larvacean Oikopleura dioica. Mar Ecol Pro Ser 
317:101-110 

Ussing HH (1938) The biology of some important plankton animals in the fjords of East 
Greenland. Medd Gr~mland 100:1-108 

Uye S, !chinoS (1995) Seasonal variation in abundance, size composition, biomass and 
production rate of Oikopleura dioica (Fol) (Tunicata:Appendicularia) in a 
temperate eutrophic inlet. J Exp Mar Bioi Ecol 189:1-11 



Vandermeer JH, Goldberg DE (2003) Population ecology: First principles. Princeton 
University Press, Princeton, NJ 

Verhulst PF (1838) Notice sur Ia loi que Ia population suit dans son accroissement. 
Corresp Math Phys 10:113-121 

127 

Vetter RAH, Buchholz F (1998) Kinetics of enzymes in cold-stenothermal invertebrates. 
In: Portner HO, Playle RC (eds) Cold ocean physiology. Cambridge University 
Press, Cambridge, UK, p 190-211 

Vidal J (1980) Physioecology of zooplankton. II. Effects ofp1ankton concentration, 
temperature, and body size on the development and molting rates of Calanus 
pacificus and Pseudocalanus sp. Mar Bioi 56:135-146 

Wahle RA, Tully 0 , O'Donovan V (1996) Lipofuscin as an indicator of age in 
crustaceans: analysis of the pigment in the American lobster Homarus 
americanus. Mar Ecol Prog Ser 138:117-123 

Ware DM (2000) Aquatic ecosystems: properties and models. In: Harrison PJ, Parsons 
TR (eds) Fisheries Oceanography: an integrative approach to fisheries ecology 
and management. Fish and Aquatic Resources Series 4:161-206 

Waters TF (1977) Secondary production in inland waters. Adv Ecol Res 10:91-164 

Wilber HM, Rudolf VHW (2006) Life-history evolution in uncertain environments: Bet 
hedging in time. Am Nat 168:398-411 

Wyatt T (1973) The biology of Oikopleura dioica and Fritillaria borealis in the Southern 
Bight. Mar Biol22:137-158 

Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. 
Free Radical Bio Med 21:871-888 

Young PC (1992) Ageing of scallops. In: Hancock DA (ed) The measurement of age and 
growth in fish and shellfish. Canberra ACT, Australia Bureau of Rural Resources, 
No 12:93-95 



A B 

c 

Appendix 1. Early developmental stages of Oikopleura vanhoeffeni from fertilization 
to metamorphosis at 0-1 o C. Scale bars = 100 j..lm. 

A. Day 1 
B. Day 1 
C. Day2 
D. Day 3 

First cleavage of egg. 
Egg division continues. 
Embryo. 
Hatching. Labels 'tr' and 'ta' denote trunk and tail, respectively. 
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Appendix 1. Cont'd. Development of Oikopleura vanhoeffeni from fertilization until 
metamorphosis at 0-1 o C. Scale bars = 100 )..l.m. 

129 

E. Day 4 Beginning of organogenesis. Cerebral ganglion ( cg) develops. Gut lumen (gl) 
and body cavity (be) appear. 

F. Day 5 Mouth (mo) begins to appear. Brain (br), gut (gt) and endostyle (en) are 
well-developed. 

G. Day 6 Organogenesis is completed. Mouth is open. Stomach (st) and esophagus (es) 
are clearly visible. 

H. Day 7 Tail is shifted antero-ventrally. House rudiment (hr) is present. First house is 
built and feeding is initiated. 



Appendix 2. Oikopleura vanhoeffeni. Number of animals sampled for 
measurement of statolith diameter and trunk length during 60 days post hatching. 
Family represents a group of offsprings from a single, hermaphroditic parent. 

Family Days post hatching Number of measured individuals 

1 11 27 
33 45 
60 16 

2 10 17 
37 77 

3 30 8 
56 18 

4 28 9 

5 32 17 

6 14 58 
26 30 
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Appendix 3. Shrinkage of Oikopleura vanhoe.ffeni after fixation in 95 % ethanol 

and 2 % bouin's solution 

Fixative Trunk length (~J.m) Trunk length (~J.rn) %Shrinkage Mean Standard 
before fixin~ after fixin~ deviation 

ETOH 3870 3300 14.7 
ETOH 4050 3300 18.5 
ETOH 3780 3200 15.3 
ETOH 4050 3300 18.5 
ETOH 4800 3875 19.3 
ETOH 4700 3625 22.9 
ETOH 3100 2450 21.0 
ETOH 3300 2750 16.7 
ETOH 3900 3375 13.5 
ETOH 3700 3000 18.9 
ETOH 4300 3750 12.8 
ETOH 6500 5000 23.1 
ETOH 5300 4300 18.9 
ETOH 2900 2375 18.1 18.0 3.0 
Bouin's 4320 3500 19.0 
Bouin's 4860 4000 17.7 
Bouin's 3600 2900 19.4 
Bouin's 4050 3300 18.5 
Bouin's 4140 3100 25.1 
Bouin's 4500 4000 11.1 
Bouin's 4230 3100 26.7 
Bouin's 3870 3600 7.0 
Bouin's 3600 2800 22.2 
Bouin's 3780 3400 10.1 

Bouin's 4800 4250 11.5 
Bouin's 3200 2625 18.0 
Bouin's 4200 3325 20.8 
Bouin's 5200 4250 18.3 
Bouin's 4300 3375 21.5 
Bouin's 3900 3050 21.8 
Bouin's 3500 2750 21.4 
Bouin's 4000 3250 18.8 18.3 5.1 



Appendix 4. Oikopleura vanhoeffeni. A section of maturing ovary stained with 
hematoxylin and eosin. OC, oocyte; AC, accessory cell. 
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Appendix 5. Oikopleura labradoriensis. A section of maturing ovary stained 
with hematoxylin and eosin. OC, oocyte; AC, accessory cell. 
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