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Abstract 

The distributed-Hydrology-Soil-Vegetation model (DHSVM) was applied to the Marmot Creek 

watershed in western Alberta. The purpose of this research was primarily to assess the applicability of the 

model as hydrologic prediction tool for a snow dominated forested watershed. Climate data from July 

2005 to December 2007 were used as forcing data. The model was calibrated and validated for the 

Marmot Creek watershed conditions using both streamflow and snow water equivalent (SWE). DHSVM 

was able to accurately simulate the streamflow and snow water equivalent for the simulated years. 

Because the accuracy of DHSVM simulations was greatly improved through rigorous calibration, this 

research demonstrates the need for model calibration to a watershed of interest, prior to hydrologic 

simulations using different landscape scenarios. 

Next, two scenario were used to measure the effect of digital elevation model (DEM) and land cover 

change on streamflow and snow water equivalent. A hydrologically modified DEM was generated using 

ANUDEM software and was used to assess the sensitivity of DEM source on model simulations. Earth 

Observation for Sustainable Development (EOSD) and United States Geological Survey (USGS) land 

cover maps were also applied to evaluate the influence of land cover source on streamflow and SWE 

results. These sensitivity studies show that differences observed through direct comparisons of 

topographic parameters are reflected in the shape and timing of simulated streamflow and snow water 

equivalent (SWE) results. Results also show that the USGS DEM produced lower peak flows than the 

ANUDEM DEMand USGS land cover underestimate SWE when compared to the EOSD land cover. 

Overall, the significance of the study is that it broadens the knowledge of DEM and land cover change 

effects on hydrological processes in snow dominated mountainous watersheds. It thus provides a 

framework for assessing the vulnerability of watersheds to altered streamflow and SWE regimes 

attributable to changes in DEM and land cover that occur over large geographical areas and long time

frames. 
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Chapter 1 

Introduction 

1.1 Motivation 

Through history, human beings have changed the landscape to meet their various 

needs. In some cases, they have not only changed the condition of the landscape, but 

the rates and processes that formed it. The main causes of landscape change are 

economic and technological factors, demographic factors, institutional factors, cultural 

factors, globalization, agricultural expansion, and agricultural land use intensification. 

This land cover change will certainly influence the local and regional hydrologic 

response, which will in turn affect the environment and human society. Water and land 

management is a topic of great importance, and the impact of these management 

decisions play a direct role in the environmental and economic sustainability of the 

lands on which our lives and livelihoods depend. Informed decision making in the fields 

of water resource management relies on an accurate understanding of basin hydrology, 

as well as the dynamics of snow accumulation and melt. It is crucial to understand the 

hydrology of a snow dominated mountainous watershed and its connection to 

streamflow, and to have robust toolsets to help evaluate the tradeoffs between different 

landscape presentations. A comprehensive set of tools, used to accurately predict the 

impact of land use, is needed in order to make well informed decisions to plan our land 

use strategies. Developments in the acquisition, processing and storage of digital data 
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have greatly increased the availability and reliability of digital elevation models (DEMs). 

The emergence of Geographical Information Systems (GISs) has provided a tool to 

analyze and manipulate spatial information such as DEMs, land use, soil and vegetation 

data. This capability has led hydrologic computer models to evolve towards spatially 

distributed simulations of watershed conditions based on physical processes. 

This study is part of the IP3 (Improved Processes and Parameterization for Prediction) 

research network being funded by the Canadian Foundation for Climate and 

Atmospheric Sciences (CFCAS) for 2006-2010 and strongly supported by partners in 

federal, provincial and territorial governments, communities, and private sector. The 

main goal of IP3 is to undertake fundamental research on processes and 

parameterisations in Canada's cold regions that remain poorly understood but are 

critical for developing a predictive capability for weather and water resources. IP3 is 

devoted to an improved understanding of hydrology and weather systems in cold 

regions, particularly Canada's Rocky Mountains and Western Arctic. Cold regions' 

hydrology and weather are of key importance to applied water management and policy 

development for agriculture, communities, recreation, sustainable industrial 

development, and environment conservation in western and northern Canada. 

The Marmot Creek basin is one of the research basins selected by IP3 for 

understanding the hydrology of the mountainous watershed. Marmot Creek basin was 

selected for this study as full sets of meteorological data specifically precipitation, 

temperature, short and longwave radiation, humidity, wind speed and streamflow are 

available. Marmot Creek feeds the Kananaskis River and the Bow River system from 

the Rocky Mountains of Alberta; particularly it is located at 115°1 O'W longitude and 

50°57'N latitude. 
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This research focuses on the prediction of watershed characteristics, basin hydrology, 

streamflow and snow accumulation. This prediction is important for water management 

and policy development for agriculture, communities, recreation, sustainable industrial 

development, and environmental conservation. 

1.2 Objective 

The broad goal of this investigation is to improve the understanding of the connection 

between spatial scale data sources and hydrologic prediction. The specific objectives of 

this study are as follows: 

)> To evaluate the potential of hydrologically modified topographic data generated 

by ANUDEM. 

)> To assess the model performance using various spatial scale inputs. 

)> To build a continuous simulation model to understand hydrological processes in 

Marmot Creek basin using DHSVM. 

)> To investigate the influence of spatial scale OEM and land cover data on 

resulting predictions of hydrologic response. 

To address these objectives, a hydrologic modeling simulation was carried out over the 

Marmot Creek basin with different spatial elevation and land cover data. Subsequently, 

simulated streamflow and snow water equivalent is compared with observed data. 

9 



------------------------------------------

1.3 Chapter Summary 

The remainder of this thesis is organized as follows: Chapter 2 provides a literature 

review related to this study. The physics of distributed hydrology soil vegetation model 

and its various sub-models are described in chapter 3. The physical hydrology of the 

study region, data preparation, and data pre-processing needed to drive the model are 

described in chapter 4. Hydrologically modified OEM generation is also described in the 

last section of chapter 4. The results of model calibration versus point observations and 

validation of basin discharge and snow water equivalent (SWE) are discussed in 

chapter 5. In chapter 6 the model is applied in the Marmot Creek basin to determine the 

effect of streamflow and snow water equivalent for different source of OEM and land 

covers. Conclusion and recommendations are presented in chapter 7. 
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Chapter 2 

Literature Review 

2.1 Hydrologically Modified OEM 

Digital elevation models (DEMs) are widely used for modelling surface hydrology 

(Moore et al., 1991 ). Analyses include the automatic delineation of catchment areas 

(Martz and De Jong, 1998; O'Callaghan and Mark, 1984 ), development of terrain 

characteristics (Moore et al. , 1991) and drainage networks (Fairfield and Leymarie, 

1991 ), estimation of hydrology and soil moisture (Beven and Kirkby, 1979; English et 

al. , 2004; McKenzie et al. , 2003; O'Loughlin, 1986 ), determination of flow accumulation 

(Peuker and Douglas, 1975) and flow direction and routing (Tarboton, 1997 and 2002), 

and automated extraction of parameters for hydrological and hydraulic modelling 

(Ackerman, 2002; Doan, 2000). 

The accuracy with which a OEM is able to replicate the hydrological reality of a 

catchment is determined by the scale of capture (cell size), the precision (vertical 

accuracy and relative accuracy between adjacent, upstream and downstream cells) and 

strength of the landscape gradient (flatness) (Gallant and Hutchinson, 1997; Gyasi

Agyei et al., 1995; Hutchinson and Dowling, 1994; Quinn et al. , 1991 ; Wolock and Price, 

1994; Zhang and Montgomery, 1994). 
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The minimum resolution and precision of a OEM are important when analysing surface 

hydrology (Quinn et al., 1991; Hutchinson and Dowling, 1994; Wolock and Price, 1994; 

Zhang and Montgomery, 1994; Gyasi-Agyei et al. , 1995; Gallan and Hutchinson, 1997). 

However, the required level of resolution and precision is often not available for many 

areas at the catchment or sub-catchment scale. In these circumstances, methods of 

OEM hydrological correction must be used. 

There are potentially many relatively new data sources from which to generate 

moderate resolution DEMs ranging from ground survey with kinematic GPS to airborne 

photogrammertry, interferometry, and radar or laser altimetry (Hutchison and Gallant, 

2000). Recent developments in light detection and ranging (LIDAR) technology provide 

a new option for generating fine-resolution DEMs (Hill et al., 2000; Liu, 2008; Murphy et 

al., 2008). Algorithms used to present and extract real-world processes from a OEM are 

also significant (Gallant and Dowling, 2003; Jones, 1998; Tarboton, 1997). By far the 

most popular data source is digital topographic data used in an interpolation algorithm 

to generate a OEM. Typically, these data include contours, spot heights, rivers vectors 

and lakes. While the use of such topographic data appears straightforward, results can 

vary greatly as a function of both the quality of the input data and of the processing 

algorithm used. For example, while a OEM can be generated using a Triangular 

Irregular Network (TIN) approach, the resultant OEM will often not be hydrologically 

correct. This can be seen by artificial features being present such as spurious 

triangular-shaped sinks or peaks, resulting in incorrect derived stream networks, 

contributing areas and catchment boundaries calculation. To meet the challenge of 

creating hydrologically correct DEMs from digital topographic data (contours, spot 

heights, rivers and lakes) an application developed by the Australian National University 
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called ANUDEM has evolved over the last two decades ( Hutchinson, 1988; Hutchinson, 

1989; Hutchinson, 2004). 

In this study hydrologically modified OEM are generated from contour and stream 

network by ANUDEM for the analyses. 

2.2 ANUDEM 

Digital elevation models (DEMs) underpin an extensive range of research and 

applications in natural resource analysis and assessment (Hutchinson , 2006). They are 

used to support hydrological applications that depend on accurate representation of 

surface drainage structure. ANUDEM is a program that calculates regular grid digital 

elevation models (DEMs) with sensible shape and drainage structure from arbitrarily 

large topographic data sets. It has been used to develop DEMs ranging from fine scale 

experimental catchments to continental scale (ANUDEM 5.2 manual). 

ANUDEM has many features that are not found in other interpolation programs. These 

are as follows: a) the process is computationally efficient; hence, DEMs with over a 

million points can be easily interpolated using a computer workstation. b) the roughness 

penalty (one of the interpolation parameters) can be modified to allow the fitted OEM to 

follow the sharp changes in terrain associated with ridges and sometimes with streams 

and other land features. c) the program uses a drainage enforcement algorithm that 

attempts to remove all sinks in the fitted OEM which have not been identified by the 

user. d) drainage enforcement is further enhanced by incorporating user-supplied, 

stream line data in the interpolation process. e) the program can recognize and 
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preserve sinks in the landscape. f) the grid spacing of the output OEM is user

controlled. 

The ANUDEM interpolation procedure has been designed to take advantage of the 

types of input data commonly available, and the known characteristics of elevation 

surfaces. It uses an iterative finite difference interpolation technique, optimized to have 

the computational efficiency of 'local' interpolation methods such as inverse distance 

weighted interpolation, without losing the surface continuity of global interpolation 

methods such as kriging and splines. The technique is essentially a discretised thin 

plate spline technique (Wahba, 1990), where the roughness penalty has been modified 

to allow the fitted OEM to follow abrupt changes in terrain, such as streams and ridges. 

ANUOEM (Hutchinson, 1988; Hutchinson, 1989; Hutchinson, 2003; Hutchinson, 2004) 

creates a smooth surface without sinks by imposing a global drainage condition via an 

iterative drainage enforcement algorithm, which is based on input data that can include 

irregularly spaced elevation data points (spot heights), contour lines, streamlines, sink 

points (lakes) and cliff lines. Elevation across the entire OEM can be altered when 

creating a new surface that enforces drainage and eliminates abrupt jumps between the 

stream and non stream cells. Although ANUOEM allows the user a larger range of input 

variables to correct hydrology, for the sake of simplicity and consistency with the other 

source OEM, only the stream network data was used to enforce drainage. ArcGIS 9.3 

was used to prepare all the dataset. The UNGENERATE command was used in 

ARC/INFO to prepare the contour and stream network data for processing in ANUOEM 

v5.2 using default values for roughness penalties and standard errors (Hutchinson, 

2004). 
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In this study ANUDEM 5.2 generated 90-m resolution OEM and USGS 90-m resolution 

OEM is used to analyse hydrologic fluxes over the Marmot Basin. 

2.3 Effect of OEM on Streamflow 

Predicting spatial patterns, rates of runoff generation and many geomorphic processes 

requires both a hydrologic model and characterization of the land surface. Most 

physically based models of hydrologic and geomorphic processes rely on either 

spatially distributed or lumped characterizations of local slope and drainage area per 

unit contour length (Beven and Kirkby, 1979; O'Loughlin, 1986; Vertessy et al., 1990; 

Dietrich et al. , 1993). Digital elevation models (DEMs) , a common format for 

representing topography digitally (Jenson and Domingue, 1988; Chang and Tsai , 1991 ; 

Jenson, 1991 ; Florinsky, 1998; Gao, 1998; Schoorl et al. , 2000; Claessens et al. , 2005; 

Wechsler, 2007; Murphy et al. , 2008) , are used for such characterization in a wide 

variety of scientific, engineering, and planning applications. Although the increasing 

availability of DEMs allows rapid analysis of topographic attributes over even large 

drainage basins, topographic and hydrologic inputs can influence simulation resu lts 

greatly (Renschler and Harbor, 2002). 

Topography is recognized as a significant factor in determining the streamflow response 

of upland, forested watersheds to precipitation (Kirkby and Chorley, 1967; Dunne eta!., 

1975; O'Loughlin, 1981; Beven and Kirkby, 1979; Beven and Wood, 1983). Topography 

defines the effects of gravity on the movement of water in a watershed, and therefore it 

influences many aspects of the hydrologic system. Numerous studies have shown that 

the reliability of the derived topographic and hydrologic attr ibutes depends on the 
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resolution and accuracy of the input digital elevation model (OEM). For example, 

topography has been shown to affect the flow path that precipitation follows before it 

becomes streamflow (Wolock et al., 1990), the spatial distribution of soil moisture within 

a watershed (Burt and Butcher, 1985), and the chemical characteristics of streamflow 

(Wolock et al., 1989 and 1990). Zhang and Montgomery (1994) evaluated the effects of 

4-, 10-, 30-, and 90-m resolution DEMs for two watersheds and found that the simulated 

peak discharge increased and simulated depth to the water table decreased as the grid 

cell size of the OEM increased. Dubin and Lettenmaier, (1999) assessed the influence 

of digital elevation model resolution on hydrologic modeling and reported that the 

simulated peak flows were most sensitive to pixel size for storms. Kenward and 

Lettenmaier (1997) used 5-m resolution OEM derived from automated stereo correlation 

from low altitude aerial photography, standard USGS 30-m resolution OEM and 30-m 

resolution OEM processed by Spaceborne Imaging Radar-C (SIR-C), and found that 

mean annual runoff volumes for simulations that used the USGS and SIR-C DEMs were 

0.3 and 7.0 percent larger, respectively, than simulations produced using the 5-m 

resolution OEM. 

In this study the effects of OEM on hydrology simulation is evaluated at a watershed 

scale using DHSVM with USGS OEM and ANUDEM generated OEM . 
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2.4 Effect of Land Cover Change on Streamflow 

Forest land cover changes influence hydrologic modelling in two ways. First, vegetation 

extent increases evapotranspiration since deeper moisture storages may be tapped by 

roots. Second, more vegetation reduces surface snow pack volumes (Berris and Harr, 

1987; Storck and Lettenmaier, 1999; Kattleman , 1990) and reduces the radiative and 

sensible heat transfers to the surface snow pack by attenuating the wind and short 

wave solar radiation by the canopy (Black, et al., 1991 ; Poemeroy and Dion, 1996). 

These two main effects may lead to secondary hydrologic changes. Decrease in 

evapotranspiration may lead to increase in soil moisture, which consecutively may 

increase the extent of saturation and lead to more runoff during snow melt or heavy 

rainfall events. Additionally, increased snowpack, associated with canopy removal , may 

melt more rapidly through enhanced heat flux into the pack (Wetherbee and 

Lettenmaier, 1996). 

Different field experiments have examined the localized effects of the land cover change 

at the sub-catchment scales (Rothacher, 1965, 1970; Megahan, 1972, 1983; Ziemer, 

1981 ; Harr and McCorison, 1979; Troendle and King, 1985; Berris and Harr, 1987; 

Kattelmann, 1990). Although these investigations have added understanding to the 

physical processes by which landscape disturbance affects local hydrologic response, 

extrapolation to the catchment scale is complicated , because a catchment integrates a 

variety of land use changes. There is also a question as to how changes at the sub

catchment scale are affected by their location within a catchment, which in turn partly 

determines the effect on catchment outlet hydrographs. 
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Approaches to quantify the effects of land cover changes on catchment hydrology can 

be classified into one of three methods (Bates and Henry, 1928). Firstly, paired 

catchment studies, in which one catchment is maintained as control while the other 

nearby catchment receive some treatment. The discharge records before and after the 

treatment are compared, from which the significance of the treatment is deduced; 

secondly, retrospective studies, which are similar in nature to paired catchment studies, 

but use stream and land cover records which are not subject to careful scientific control. 

Statistical methods can be used to extract the signal from the records, which often will 

be smaller than if there were a true control, as changes in land cover occur 

simultaneously in all catchments (Jones and Grant, 1996; Bowling et al., 2000). Finally, 

computer modeling, in which the output from a mathematical model of the natural 

system is compared with the output from an alternative land cover parameterization of 

the model. The difference between the two sets of output is attributed to the change in 

land cover. (Wetherbee and Lettenmaier, 1996, 1997; Bowling and Lettenmaier, 1997; 

Storck and Lettenmaier, 1999; Matheussen, et al., 2000; Storck, 2000; Bowling, et al., 

2000) 

As it is impossible to isolate the variables in the natural system, the ability of the first two 

methods are limited in their determination of cause and effect (Eberhardt and Thomas, 

1991 ). The third method, use of physically-based, spatially distributed hydrological 

model to describe the hydrologic processes that are related to land cover in such a way 

that individual variables can be isolated and modified, allowing direct interpolation of the 

effects. Metheussen et al., (2000) investigated the effects of historical land cover 

change on the hydrology of the Columbia River basin using Variable Infiltration Capacity 
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(VIC) model, a macro scale hydrological model. In this study DHSVM was applied to 

address the effects of land cover changes on streamflow for Marmot Creek basin. 

2.5 Development of Distributed Hydrology Soil Vegetation Model 

Since the mid 1960s there has been a steady growth of development of computer 

applications that model hydrologic response (Ward and Elliot, 1995). With the arrival of 

the personal computer in the early 1980s, and with further advances in computing 

capability and storage space, accuracy and accessibility of spatial data sets, a wide 

variety of increasingly complex hydrologic models have appeared. Twenty-three 

different computer based hydrologic models are described in Mathematical Models of 

Small Watershed Hydrology and Applications (Singh and Frevert, 2002). While this is 

not a comprehensive list, many of the models illustrated represent the most widely used 

and accepted, as well as the most innovative hydrologic models of the day. At this time, 

there exists a daunting array of choices of hydrologic simulation tools available to 

researchers; however, each tool is not appropriate for all objectives, in all scenarios, or 

every landscape. The hydrologist or researcher is reliant on judgment to choose the 

model that is most capable of simulating the landscape processes for the area and 

scale of interest. 

Basically, a hydrologic model can be empirical, stochastic or deterministic in nature 

(Ward and Elliot, 1995). Empirical models are based on observed or experimentally 

derived data and are also called regression, or black-box models. These models utilize 
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basic relationships between the inputs and outputs to model a specific physical process 

(Grayson and Bloschl, 2000). In contrast, stochastic hydrologic models are essentially 

statistical models. These models utilize statistical theory to identify probabilities of 

specific hydrologic events, such as floods or hill slope failures. Some, or all, of the 

inputs into stochastic model are represented by statistical distributions instead of single 

values (Grayson and Bloschl, 2000). Finally, deterministic models, also described as 

physically-based models, tend to be the most complex of the three. These models 

represent the most important physical and chemical processes taking place on the 

landscape by using mathematical equations. Many of the physical landscape processes 

are empirically described within the context of the larger deterministic model. Therefore, 

these models are not truly physically-based, but are instead, theoretical in nature (Ward 

and Elliot, 1995). Until very recently, few spatially distributed deterministic hydrologic 

models were in existence (Yeh et al., 2006). Developments of these types of models 

were necessary to address explicitly the complicated interactions of the atmosphere, 

topography, soil, water, and vegetation at the watershed scale. Non-distributed or 

lumped models, do not explicitly represent the landscape, but instead, employ average 

values of watershed characteristics affecting runoff volumes. In some cases, this 

averaging may be source of significant error. However, the benefits of lumped models 

include low data and computation time requirements, relatively simple algorithms, and 

the resulting ease of use benefit. On the other hand, distributed models tend to be 

highly input-intensive, and the advantages of the spatial and temporal complexity 

provided by these types of models may be lost. This is especially true if high resolution 

data is not used within the distributed model simulations. However, for areas with high 

degrees of spatial and temporal landscape heterogeneity, the lack of complexity in 

lumped models may come at the cost of accuracy in hydrologic simulations. Distributed 
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deterministic models may prove particularly useful in modeling the physical processes 

governing the hydrology of mountainous, forested landscapes in Alberta, Canada, 

because of their ability to capture landscape variability. This assumes that high 

resolution spatial data is available to drive simulations. 

The Distributed Hydrology Soil Vegetation Model (DHSVM) was originally designed for 

Pacific Northwest of US and west coast of British Columbia, Canada (PNW) 

watersheds. It is typically used at a several hundred square kilometre scale and run at 

a sub-daily time interval where it provides detailed information on the spatial pattern and 

specific location of water and energy fluxes. The model has evolved significantly from 

the original version described in Wigmosta et al. (1994). Canopy snow interception and 

release simulation, three dimensional overland flow representation, and a one

dimensional channel flow model have been added. Additionally, a more accurate two

layer ground snowpack representation has replaced the original one-layer 

representation (Wigmosta et al., 2002). In this study DHSVM 2.0.1 was used to simulate 

the hydrologic responses of Marmot Basin. 
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2.6 Applications of DHSVM 

The Distributed Hydrology Soil Vegetation Model (DHSVM) is a physically based 

distributed parameter model that provides an integrated representation of watershed 

processes at the spatial scale described by digital elevation model (OEM) data 

(Wigmosta et al., 1994; Bowling and Lettenmaier, 1997). DHSVM has been utilized in a 

number of research activities involving hydrologic analysis and modeling (Wigmosta et 

al., 1994; Kenward and Lettenmaier, 1997; Wigmosta and Lettenmaier, 1999; Westrick 

et al., 2000). DHSVM was first applied to the Middle Fork Flathead catchment in 

Montana (Wigmosta et al. , 1994). Since then it has been applied to a number of 

catchments with a variety of objectives. Perkins et al., ( 1996) applied it to Carnation 

Creek, British Columbia to test its road network algorithm. As a part of Boreal 

Ecosystem-Atmospheric Study (Boreas), it was applied to the Boreal forest in Canada 

(Haddeland and Lettenmaier, 1995; Nijssen et al., 1997). Bowling and Lettenmaier, 

(1997) used the model to study the effects of forest roads in Hard and Ware Creeks, 

Washington. Strock et al., (1998) used DHSVM to investigate two rain -on-snow floods 

on the North Fork Snoqualmie and on the Little Naches River, Washington to 

investigate spring snow melt. Storck (2000) applied DHSVM to the Snohomish River, 

Washington in a study on snow accumulation and melt. The model has also been used 

to study the interactions between climate and hydrology (Wigmosta et al., 1995; Arola 

and Lettenmaier, 1996) and the potential impacts between climate changes on water 

resources (Leung et al., 1996; Leung and Wigmosta , 1999 and 2000) . There has been 

significant use of DHSVM for basic and applied research concerning forest 

management activities on watershed processes (Storck et al., 1995, Lamarche and 
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Lettenmaier, 1998; Storck et al., 1999, Bowling et al. , 2000; Bowling and Lettenmaier, 

2001; Wigmosta and Perkins, 2001 ). 

There are several recent applications of DHSVM, Cuo et al., (2006) used DHSVM to 

study road effect on hydrological processes. Jost et al., (2009) applied DHSVM to the 

Cotton Creek watershed, south-eastern British Columbia to predict the effect of forest 

clear-cutting. 
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Chapter 3 

Research Methodology 

3.1 Introduction 

Researchers are interested about DHSVM for a number of reasons. The most attractive 

feature of DHSVM, from a research perspective, is that it is a physically-based and fully

distributed model. Its distributed nature captures the spatial variability of landscape 

features and complex meteorological conditions presented by mountainous, forested 

terrain. Additionally, because it is physically-based, there is theoretically little need for 

model calibration. This amplifies the potential research utility of DHSVM to ungaged 

catchments and its use in climate studies. Detail representations of multi-layer canopy, 

soil, wind profile, and snowpack makes DHSVM superior to landscape representations 

used in other hydrologic models. This level of detail should theoretically enhance 

DHSVM's ability to address the actual physical processes driving the hydrologic cycle at 

the watershed scale. The ability of DHSVM to operate at sub-daily time steps is another 

essential feature for watershed scale modeling. DHSVM calculates the full water and 

energy balance for every pixel and for every time step. This level of complexity is 

necessary to capture the highly dynamic processes affecting snow accumulation and 

ablation in a snow-dominated system. 

The model design also lends itself to incorporation of a wide variety of spatial data 

types. While the inputs are extensive, they are also somewhat flexible. The appeal lies 

in the adaptability of the model. The user defines the spatial and temporal resolution of 

DHSVM based on the data available for the particular research application. 
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Finally, DHSVM holds promise as a potential management tool. The preprocessing of 

the spatial inputs required by DHSVM is time consuming. However, once the data are 

collected and formatted for a geographic area, and the model is compiled and running 

on a specific computer system, then the ease of use is relatively high. The extensive list 

of output options has the potential for a wide range of management applications 

involving the simulation of hydrologic processes at a watershed scale. 

This chapter describes Distributed Hydrologic Soil Vegetation Model (DHSVM) which 

was used in this study. A general overview of the model is provided first, followed by a 

more detailed discussion of model's representation of hydrologic variables. 

3.2 Overview of DHSVM model 

The Distributed Hydrology-Soil-Vegetation Model (DHSVM) is a spatially explicit 

hydrologic model that accounts for the physical processes affecting the movement of 

water on and through the landscape with a distributed, deterministic approach. In 

general, the model dynamically represents the spatial distribution of evapotranspiration, 

snow cover, soil moisture, and runoff across a watershed (Wigmosta et al., 2002). A 

OEM provides the foundation for the model structure, and typical spatial resolutions for 

model applications range from 10 to 100 m (VanShaar et al. , 2002). Characterization of 

soil and vegetation at the OEM resolution derives the topographic controls on absorbed 

solar radiation , precipitation, air temperature, and downslope water movement in the 

model (Wigmosta et al., 1994). DHSVM utilizes both a two-layer vegetation 

representation and a multi-layer soil profile representation. For each pixel within the 

watershed boundary, a single vegetation and soil class is assigned. However, the 
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modeler has ultimate control of the parameterization of each soil and vegetation type 

defined. Any combination or number of individual soil and vegetation classes may 

incorporate, thereby enhancing the ability of the modeler to capture landscape 

variability. The model operates at the time step of the meteorological inputs. It functions 

at the sub-daily level up to a 1-hr temporal resolution . Figure 3-1 shows DHSVM inputs 

and outputs, including data processing. 

DHSVM Modeling Inputs and Outputs 

Digital Digital 
Topographic Land Surface 

Data Data 
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Figure 3-1: Schematic representation of DHSVM inputs, preprocessing requirements, outputs and 
interaction with GIS software (Storck, 2000) 
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Once the land surface attributes have been assigned (Figure 3-2), meteorological 

forcings are applied to each grid cell. DHSVM solves full water and energy balance 

equations at the resolution of a digital elevation model (OEM) for multiple vegetation 

and soil layers (Figure 3-3). 

DHSVM incorporates a sophisticated two-layer snow accumulation and ablation model 

(Figure 3-4). Surface and subsurface flow routing algorithms channel water to the 

watershed outlet and allow grid cells to exchange water with adjacent neighbors 

(Wigmosta et al. , 2002) (Figure 3-5). While DHSVM is not directly linked to any 

particular Geographical Information System (GIS), the inputs and outputs are best 

managed within a GIS. 
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Figure 3-2: DHSVM: Model representation (Wigmosta, et al., 1994) 
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Figure 3-3: DHSVM: One-dimensional vertical water balance (Wigmosta, et al., 1994) 
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Figure 3-4: DHSVM: Snow model (Storck, 2000) 
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Figure 3-5: DHSVM: Runoff production (Wigmosta and Perkins, 1997). 

Generally, inputs into DHSVM can be categorized into three separate groups: i) time 

series data, ii) spatial data including raster and vector inputs, and iii) associated text 

files that serve as look-up tables during the modeling process. The time series inputs 

consist of meteorological data at a specified time step for the period that the model is to 

be run. Spatial inputs involving raster data include a digital elevation model, a 

watershed mask, and grids of the vegetation type, soil type, and soil depth, each with 

the same extent and grid cell resolution. The vector data include arc coverages of the 

stream networks. The text file look-up tables provide information about the types of 
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meteorological, soil, and vegetation data used. Different modules of the model warrant 

more discussion than is included in this overview. A more detailed description of the 

individual modules within the main DHSVM is as follows. 

3.3 Evapotranspiration 

DHSVM uses a two-layer vegetation system to represent both the canopy and 

understory. Accurate representation of the vegetation is important with respect to 

evapotranspiration calculations because vegetation presence and structure influence 

the temperature, moisture, wind and radiation regimes of both the air and soil (Campbell 

and Norman, 1989). Evapotranspiration is modeled through step-wise calculations in 

order to ensure that the total evaporation from both vegetation layers does not exceed 

the rate of potential evaporation from the overstory layer. This approach also allows 

DHSVM to account for the presence and percent coverage of a canopy, the existence of 

wet and dry fractions within the overstory, the ability of any wet fraction to dry during a 

time step, and the presence of a ground snowpack and its effects on plant transpiration. 

When a snowpack is present, it is assumed to cover the entire grid cell; therefore, no 

evapotranspiration from the soil surface or understory is calculated while a snowpack 

exists on any grid cell. The partitioning of the vegetative layers into wet and dry fractions 

enables the model to account for interception, storage, and throughfall. DHSVM first 

calculates evaporation from the wet fraction of the vegetation at the potential 

evaporation rate. If the intercepted water remains at the end of the time step, then a 

Penman-Monteith approach models transpiration from dry vegetative surfaces. In the 

absence of an understory, evaporation from the upper soil layer is calculated as a 
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function of the potential evaporation rate, the soil moisture content, soil type, and 

antecedent moisture conditions (Wigmosta et al., 2002). 

Wigmosta et al. (1994) describe the methods used to calculate canopy resistance. 

Values for both the understory and overstory are calculated separately as function of 

stomatal resistance, leaf area index (LAI), a species dependent minimum resistance 

factor, air temperature, vapor pressure deficit, photosynthetically active radiation flux, 

and soil moisture values (Dickinson et al., 1993) 

Storck (2000) describes the specifics of the methods used to model aerodynamic 

resistance through the overstory canopy. Three different wind profiles are calculated . 

These include the profiles above the overstory (from the reference height down to the 

roughness layer just above the canopy top), through the canopy, and through the region 

comprised of the overstory trunk space. Aerodynamic resistance for the understory, soil, 

or snow surface is also calculated according to Storck (2000), and is a function of the 

displacement height of wind measurements and the roughness height of the surface 

over which the measurements are taken. 

DHSVM calculates independent radiation budgets for both shortwave and longwave 

radiation for the overstory, the understory, and the soil surface. The overstory receives 

incident shortwave radiation. The understory below an existing overstory receives 

attenuated shortwave radiation and exposed understory receives direct shortwave 

radiation. The exchange of longwave radiation takes place between the overstory and 

the sky, between the overstory and the understory, and between the understory and the 

ground (Wigmosta et al., 2002). 
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3.4 Two-layer Ground Snowpack Model 

DHSVM models the processes associated with snowpack morphology as described by 

Storck and Lettenmaier (1999; 2000) and Storck (2000) using a two-layer ground 

snowpack representation of snow accumulation and melt. This snowpack model utilizes 

separate energy and mass balance components to represent the various physical 

processes affecting the snowpack. It also accounts for energy exchanges taking place 

between the atmosphere, overstory canopy, and main snowpack. The energy balance 

components of the model address snowmelt, refreezing, and changes in snowpack heat 

content, while the mass-balance equations address the snow accumulation and ablation 

processes, transformations in the snow water equivalent, and snowpack water yield 

(Wigmosta et al, 2002). 

DHSVM represents the two-layer snowpack as a thin surface layer and a main pack 

layer. Albedo of the snow surface affects the radiation budget. An exponential function 

based on the number of days since the last snow accounts for the decay of the snow 

surface albedo (Laramie and Schaake, 1972). Sensible heat flux is calculated for the 

surface snow layer as function of aerodynamic resistance, air temperature, snow 

surface temperature, and snow density. The model uses the bulk Richardson 's number 

to correct aerodynamic resistance for atmospheric stability (Anderson , 1976). The net 

energy exchange for the snow surface layer determines the amount of available energy 

to refreeze water or melt existing snow. If this energy balance is negative, then any 

liquid water present may be refrozen. If it is positive, and the cold content of the 

snowpack has been satisfied, then this excess energy will begin to produce snowmelt 

(Storck and Lettenmaier, 2000). 
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Additional mass is added to the snowpack in both liquid and solid phases, and the 

delivery of this water is affected by the presence of an overstory. Snow delivered to the 

surface layer accumulates until the depth of snow exceeds a defined maximum 

thickness threshold. At that time, excess snow and its associated cold content is 

transferred to the pack layer. Liquid water in excess of the liquid water holding capacity 

of the surface layer drains into the pack layer. Snowpack temperature determines 

whether that volume of water will refreeze or whether it will be routed to the soil as snow 

melt outflow (Wigmosta et al., 2002). 

3.5 Canopy Snow Interception and Release 

DHSVM simulates canopy snow interception and release via a one-layer mass and 

energy balance model (Storck and Lettenmaier, 1999; 2000; Storck, 2000). This 

snowpack model explicitly accounts for the topographic and vegetative influences on 

the energy and mass exchanges taking place on the snow surface (Wigmosta et al., 

2002), specifically the processes governing snow interception, sublimation, mass 

release, and melt from a forest canopy. Precipitation is partitioned into rain and snow 

based on atmospheric temperature per pixel and time step, and according to user 

defined minimum and maximum temperatures for rain and snow occurrence. A step

wise calculation dictates snow interception patterns. The volume of intercepted snow is 

determined by the maximum interception storage value. This is directly correlated to the 

leaf area ratio of each pixel and is based on field observations by Storck (2000). Snow 

in the canopy may subsequently intercept rainfall up to its water holding capacity. Bare 
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branches of deciduous vegetation types may also intercept rain. Excess rainfall 

becomes canopy throughfall. 

Snowmelt from intercepted canopy snow is calculated similarly to ground snowpack 

melt, utilizing a modified energy balance approach for each time step. As the snow in 

the canopy melt, it is converted into liquid canopy water until the water holding capacity 

of the canopy snowpack is met. Snowmelt in excess of this value results in meltwater 

drip. Mass release of canopy snow is linearly related to meltwater drip in DHSVM. If 

sufficient snow is available in the canopy, and sufficient meltwater drip is occurring, then 

mass release of canopy snow occurs for that pixel (Storck, 2000; Wigmosta et al., 2002) 

3.6 Unsaturated Soil Moisture Movement 

Movement of water through an unsaturated multi-layer soil profile is represented 

dynamically in DHSVM, as described by Wigmosta et al. (1994). Water is delivered to 

the soil surface by way of the mechanisms of throughfall, snowmelt, or surface runoff 

from adjacent cells. DHSVM calculates infiltration into the upper soil layer based on the 

maximum infiltration rate defined by the user. Any water in excess of the infiltration 

capacity is then managed by the surface routing components of the model. Water that 

has infiltrated into the unsaturated soil profile percolates through the additional layers 

according to Darcy's Law. A unit hydraulic gradient calculated according to the Brooks

Corey relationship is used to calculate hydraulic conductivity (Brooks and Corey, 1964 ). 

This relationship describes the portion of the water-retention curve only for pressures at 
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which air will enter the soil. The Brooks-Corey hydraulic conductivity equation is: 

K (8) = [(8 - 8r)n] 
Ks (0- 8r) 

Where K (8) is the hydraulic conductivity for a given water content (em/h), Ks is the fully 

saturated hydraulic conductivity (em/h), e is the volumetric water content, er is the 

residual water content, 0 is the total porosity, and n = [3+(2/pore size distribution index)] 

(Maidment, 1993). 

Water may be removed from the unsaturated profile via three pathways. First, 

evapotranspiration may take place from the upper soil layer. Transpiration also occurs 

from within the soil profile according to the total percent of plant roots in a soil layer for 

both vegetation layers. Finally, desorption from the top soil layer may occur and is 

calculated for every time step as a function of the potential evaporation demand at the 

soil surface and soil desorptivity. 

DHSVM first calculates infiltration into the upper layer. Next, the calculations address 

the downward vertical moisture transfer moving from top to bottom through the soil 

profile. The net flux of any lateral flow is added to the bottom layer. The model then 

calculates soil moisture in a step-wise fashion as it moves up through the individual 

layers of the soil profile. If the moisture exceeds the porosity for an individual layer, 

then the moisture is set equal to the porosity. If the calculated soil moisture is less than 

the porosity value, then that available water is added to the overlying layer until the 

uppermost soil layer is reached . 
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3.7 Saturated Subsurface Flow 

DHSVM routes saturated subsurface flow downslope using both a kinematic and a 

diffusion approach. The kinematic method uses slopes to approximate the hydraulic 

gradient for those cells representing steep areas with thin, permeable soils. In contrast, 

the diffusion assumption approximates hydraulic gradients using local water table 

slopes, specifically for areas of low vertical relief (Wigmosta and Lettenmaier, 1999; 

Wigmosta et al., 2002). 

The rate of subsurface flow per time step is calculated for each pixel and in each of 

eight directions. Saturated subsurface water movement is controlled in DHSVM by the 

transmissivity of an individual grid cell, as determined by the lateral saturated hydraulic 

conductivity of the soil profile. This value is assumed to decrease exponentially with 

depth, according to a user-defined exponential decay coefficient. Subsurface water 

moving downslope may be intercepted by a stream segment. Stream interception 

occurs when a stream depth exceeds the depth to the water table. When the water 

table rises above a streambed, that water is intercepted by the channel (Wigmosta et 

al., 2002). 
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3.8 Surface Overland Flow 

DHSVM addresses this physical process on a per pixel basis. Generation of overland 

flow occurs when at least one of three physical conditions is met. First, overland flow 

occurs when the sum of throughfall and snowmelt exceeds the user-defined infiltration 

capacity of the soil. Surface flow may also be generated if throughfall or snowmelt 

occurs for a cell that already represents a fully saturated soil layer. Finally, return flow 

from a water table rising above the soil surface will generate surface water for routing in 

DHSVM (Wigmosta et al., 1994; Wigmosta et al., 2002). Surface water is routed on a 

cell-by-cell basis downslope in a similar fashion to subsurface routing (Wigmosta et al., 

2002). 

3.9 Channel Flow 

DHSVM routes flow through the network of stream channels using a cascade of linear 

channel reservoirs. The stream channel networks comprise of any number of individual 

segments, each of which have its own hydraulic parameters. These constants imply a 

uniform flow velocity per channel segment and time step (Wigmosta et al., 2002). 

Lateral inflow to a channel segment, from the watershed cells through which it passes, 

consists of overland flow and subsurface flow intercepted by channels. Outflow from a 

segment may drain to another segment or exit the watershed . 

A robust linear storage routing algorithm is available for channel routing. Each channel 

reach is treated as a reservoir of constant width with outflow linearly related to storage. 
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The linear storage-discharge relationship implies a constant flow velocity that is 

calculated from Manning's equation using a reference flow depth and corresponding 

hydraulic radius, allows calculate the storage at each time step (Wigmosta and Perkins, 

2001 ). 
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Chapter 4 

Data Acquisition and Model Setup 

Construction of the data sets and choices of model parameters setting for the prediction 

of streamflow, and snow water equivalent by DHSVM is outlined in this chapter. 

Hydrologically modified OEM generation by ANUDEM is also outlined in the last section 

of this chapter. 

4.1 Study Area 

General Overview 

Marmot Creek watershed is located at latitude 50°57'N and longitude 115°1 O'W on the 

West side of the Kananaskis River Valley, about 40 km southeast of Banff, Alberta 

(Figure 4-1 ). The total area of the basin is approximately 9.4 square kilometres. The 

basin ranges in elevation between 1,585 to 2,805 m with a mean elevation of 

approximately 2,112m. There are three identified sub basins namely Cabin Creek, 

Middle Creek and Twin Creek having areas of 2.12, 2.85, and 2.64 km2
, respectively. 

The three major streams flowing from these sub basins combine to form a single larger 

stream (Main Marmot) which drains into the Kananaskis River. Topography is 

moderately to steeply sloping throughout. Slopes vary from about 24 percent in the 

lowest reaches of the basin to over 50 percent above treeline. The average slope for the 

basin as a whole is 39 percent. 
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Figure 4-1: Marmot Creek Basin location on the Canadian map. 

The main types of soil are brunisolic grey-wooded, podzolic, regosolic, local gleysolic 

and organic soils (Telang et al. , 1981 ). The basin is underlain by Mesozoic formations 

consisting mainly of shale and sandstone with lesser amounts of limestone, 

conglomerate, and coal. The stream bed is composed of sands, gravels and boulders, 

and is inhabited by stream microflora including benthic invertebrates, algae, and 

bacteria (Telang et al., 1981 ). Topographic boundaries between sub-basins, while well 

defined in the upper reaches of the basin, tend to be rather indefinite in some parts of 

the lower portions (Jeffrey, 1965). In the Cabin Creek sub-basin limestone appears to 
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be the dominant bedrock, whereas bedrock in the other basins is dominantly clastics 

(T elang et al. 1981 ). 

The Marmot basin is representation of much of the Subalpine and Alpine zone of the 

Bow Valley-Kananaskis region. Forest cover is mainly old spruce-fir with a scatter of 

trembling aspen. The lower tip of the basin is covered with even-aged lodgepole pine. 

Alpine larch occupies a narrow band just below tree line. About 40 % of total basin area 

lies above tree line (Bernier 1986). Rapid elevation changes are responsible for the 

large number of vegetation types, and most of the conifers are capable to hybridization 

where they overlap. The upper regions of the basin consist largely of Englemann 

Spruce and sphagnum moss below the treeline. Willow, Larch, and Fir along with a 

number of grasses and sedges dominate alpine regions above the treeline (Wallis et al. , 

1981 ). 

The climate is characterized by short, cool summers and long, cold winters. Annual 

precipitation averages 900 mm, increasing from 600 mm in the lower basin to over 1140 

mm in the upper reaches of Twin Forks Creek (Storr, 1967) and average annual 

evapotranspiration is about 440 mm. Approximately 75 percent of the precipitation 

occurs as snow, none of which is stored from one year to the next. Snow pack 

accumulation is affected by elevation, aspect, slope and forest density, with total mean 

snow pack increasing at a predictable rate with elevation (Golding, 1969). Rain occurs 

during the June-September period. The average July temperature ranges from 18 to 

2°C; average January temperature ranges from -6 to -18°C (Kirby and Ogilvie, 1969); 

recent observations corroborate these values (DeBeer and Pomeroy, 2010) . 
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- - -- -- - - ----------------------

Minimum stream flow occurs in late March. Spring snowmelt beings at low elevations 

and gradually moves upslope, into heavier snowpack areas. Snowmelt typically starts in 

late April to early May and peaks in early June, continuing into mid-summer from 

sheltered high elevation sites, notably Marmot cirque. Through spring and summer, 

stream flow is derived from snowmelt, rainfall, storm seepage and groundwater storage. 

Flows from late fall through winter were slow but steady. Fifty percent of annual 

precipitation is accounted for as stream flow (Swanson et al. , 1986). 

Storr (1974) correlated groundwater storage to stream flow. Where there was no 

surface flow to the streams, the rate of stream flow was set as an index of the amount of 

groundwater reservoir, the greater the proportion of discharge from groundwater to the 

stream at all points along the channel. 

The coarse glacial deposits usually had minimum infiltration rates higher than maximum 

reported storm intensities (Beke, 1969). Swanson et al. , (1986) concluded that most of 

the Marmot Creek stream flow was fed by transient subsurface flow from glacial 

deposits which had a moderating effect on storm peaks. 

The Marmot Creek basin forms an unconfined groundwater system, where water is 

stored and moves in surficial deposits draped over bedrock. Groundwater that 

discharges from joints in exposed bedrock is fine seepage, suggesting low matrix 

porosity; however localized folding and faulting have the potential to create hydraulically 

significant fracture networks. The bedrock has minimal interaction with the groundwater 

in the overlying drift, although its structure influences stream geometry. Water table 

divides closely approximate topographic divides, and groundwater flow mostly parallels 

the slope of topography. Near the top of the basin where slopes are steep and surficial 

deposits are thin to nonexistent, most precipitation is converted to runoff and shallow 
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lateral flow. Recharge occurs in spring and early summer from snowmelt, spring rains 

and occasional late season storms. For most of the basin, surficial deposits have a high 

infiltration capacity and surface runoff is negligible. The level of the water table rises and 

falls in direct response to precipitation and is close to the land surface. Seepage and 

springs are common in low-lying areas, breaks in slope and in the v-shaped creek 

valleys. Water is continuously removed from the groundwater system by 

evapotranspiration and by baseflow seepage to the creeks. Stream flow is derived 

almost entirely from baseflow and interflow. Fluctuations on most of the groundwater 

hydrographs correspond directly to fluctuations on stream flow (Davis, 1964; Stevenson, 

197 4 ). 
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Figure 4-2: Aerial view of the Marmot Creek Basin (Swanson et al., 1986). 

4.2 Data Preparation 

The research required a progression of stages in order to integrate all of the data set 

required by the DHSVM. The manipulation and analysis of the data along with the 

development of the final data set for the model are all described below. 
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4.2.1 Processing with GIS 

OHSVM spatial inputs were compiled, edited, and formatted using ArcGIS9.3, 

specifically using ArcMap, ArcCatalog, and Arclnfo Workstation interface. A requirement 

of OHSVM requires that the same spatial resolution is used. Land cover maps were 

converted using the reclassify tool of Arclnfo. 

4.2.2 Raster Inputs 

A seamless 90 meter resolution digital elevation model was obtained for the Marmot 

Creek watershed from the USGS shuttle Radar Topography Mission (SRTM). A 

depressionless OEM is required to generate a stream network. The input OEM was 

filled using the spatial analyst tools in Arclnfo in order to produce a depressionless OEM 

for hydrologic simulations. This formatting enforces a linear drainage pattern onto the 

OEM grid. This is completed through two basic processes that includes, i) filling in sinks 

in the drainage area by raising the elevations of those grid cells, and ii) lowering the 

elevations of the cells corresponding with vector drainage network. 
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Elevation 

Value 

High : 2733 

Low : 1460 

N 
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Figure 4-3: Digital Elevation Model of Marmot Creek Watershed from USGS SRTM data. 

As there is no high-resolution soil maps available for the Marmot Creek basin, 

considering small mountainous basin one soil type was applied for the simulation. In 

order to obtain soil raster for DHSVM input, a raster map is generated from ascii file with 

same resolution of OEM in ArcMap 9.3. The soil was generalized with one value 

(Figure 4-4). A soil profile that represents the class in the watershed boundary was used 

to describe the soil properties in the DHSVM input file. 
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Soil Type 
.. Organoc(as loam) 

Figure 4-4: Marmot Creek Soil type. 
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Table 4-1: Soil input parameters for DHSVM 

Parameter Description Unit Value Source 
Lateral Lateral saturated hydraulic m/s 3.5E-04 Guo et al.,2006 
conductivity conductivity Ziegler 2000 
Exponential Exponent for change of Unitless 0.5 Guo et al. ,2006 
decrease lateral conductivity with 

depth 
Maximum Maximum infiltration rate m/s 2.5E-05 Model default 
infiltration 
Surface albedo Albedo of bare soil surface m/s 0.15 Model default 
Number of soil Number of soil layer Unitless 3 Model default 
layers described in soil profile 
Porosity Porosity of each soil layer Unitless 0.59 Model default 
Pore size % of bulk volume of various Unitless 0.19 Model default 
distribution sizes of soil pores for each 

soil layer 
Bubbling pressure Air entry value for each soil M 0.11 Model default 

layer 
Field capacity Water retained at -1500 kPa Unitless 0.29 Model default 

for each soil layer 
Wilting point Water retained at -33kPa for Unitless 0.14 Model default 

each soil layer 
Bulk density Mass dry soil per unit bulk Kg/m:$ 1485 Model default 

volume for each soil layer 
Vertical Vertical saturated hydraulic m/s 0.01 Model default 
conductivity conductivity for each soil 

layer 
Thermal Thermal conductivity of dry W/m0 G 6.923-7.114 Model default 
conductivity soil for each soil layer 
Thermal capacity Thermal capacity of dry soil J/m:$G 1.4E06 Model default 

for each soil layer 

A soil depth grid is also a necessary spatial input. While the depth of the soil profile 

corresponding to specific soil types is generally known, this is not a readily available 

spatial data layer. DHSVM provides AML script that generates a soil depth grid in 

Arclnfo Workstation for input into the model. This raster is created as a function of the 

watershed slope and a range of soil profile depths based on the soil type. 
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Figure 4-5: Marmot Creek Soil depths generated by AML script 

Soil Depth 

Value 
High : 1.05631 

Low : 0.76 

Two vegetation scenarios are used in this study: one vegetation cover data that has a 

spatial resolution of one kilometre was obtained from the USGS Land Cover Institute 

(LCI). To make this input file same spatial resolution of input OEM raster, the vegetation 

grid was reclassified into 90-m resolution using ArcMap (Figure 4-6). Another vegetation 

cover data set was taken from Earth Observation for Sustainable Development (EOSD) 

and has a 25-m resolution. The EOSD vegetation cover was resample onto a 90-m grid 

using ArcMap (Figure 4-7). Table 4-2 and 4-3 represent the physical details of these 

different vegetation types, as well as the percent distribution by class. Table 4-4 outlined 

input parameter settings of land-cover for DHSVM. 
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Table 4-2: Vegetation type descriptions of USGS land cover map. 

Land cover classes 

Evergreen Neddleleaf 
Woodland 

Wooded grassland 

Vegetation Class ID 

1 
6 
7 

Proportion (%) in 
the basin 

0.64 
0.27 
0.09 

90m resolution Marmot Landcover Map from USGS 1 Km Global Land Cover Map 

Figure 4-6: Land Cover classification from USGS. 
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Table 4.3: Land cover classes in Marmot Creek basin used in DHSVM 

Land cover classes 

Broadleaf Dense 
Shrub 

Wetland shrub 
Herb 
Rock 

Exposed land 
Coniferous Open 
Coniferous Dense 

Vegetation Class 10 

4 
8 
9 
10 
12 
13 
17 
18 

LandCover Classification 

- Broadleaf Dense 

- Shrub 

Wetland shrub 

- Herb 

- Rock 

- Exposed land 

- Coniferous Open 

- Coniferous Dense 

Figure 4-7: Land Cover Classification from EOSD. 
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in the basin 

9 
206 

1 
233 
103 

1 
16 
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Table 4-4: Vegetation input parameters used for DHSVM 

Parameter Description Unit Reference 
Fractional coverage The fraction of total area occupied by Unitless Cuo et al. , 2006 

the overstory 
Trunk space Distance from the ground to the start M Cuo et al., 2006 

of the crown 
Aerodynamic attenuation Canopy attenuation coefficient for s/m Cuo et al. , 2006 

the wind profile 
Radiation attenuation Radiation attenuation by the Unitless Wigmosta et al. , 1994 

overstory 
Maximum snow Maximum snow interception capacity m Storck, 2000 
interception capacity for the overstory 
Max release drip ration Ratio of mass release to meltwater M Storck, 2000 

drip from to meltwater drip from 
intercepted snow 

Snow interception Percentage of snowfall intercepted Unitless Storck, 2000 
efficiency until the maximum snow interception 

capacity has been met 
Height Height of each vegetation layer M Cuo et al. , 2006 
Maximum resistance Maximum stomatal resistance for s/m Cuo et al., 2006 

each vegetation layer 
Minimum resistance Minimum stomatal resistance for s/m Cuo et al., 2006 

each vegetation layer 
Moisture threshold Value above which soil moisture Unitless Cuo et al. , 2006 

does not restrict transpiration 
Vapour pressure deficit Vapour pressure deficit threshold Pa Cuo et al., 2006 

above which stomatal closure occurs 
Rpc Fraction of shortwave radiation that W/m" Model default 

is photosynthetically active 
LAI values Monthly LAI values for each Unitless Model default 

vegetation type 
Albedo values Monthly albedo values for each Unitless G. Jost et al. , 2009 

vegetation type 

DHSVM uses a mask of the watershed area (figure 4-8) to select the pixels within the 

watershed of the interest that have values associated with the elevation, soil type, soil 

depth, and vegetation type. This process ensures that the extent of the area of interest 

is the same for every spatial run of the model. This raster is created using ArcMap 

spatial Analyst tools. By working through a series of terrain preprocessing steps, each 

pixel in a OEM is assigned a flow direction. The 'Raster Calculator' of ArcMap can then 

delineate a watershed from any point specified within the raster by selecting all pixels 
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that collectively drain to that point. The Marmot Creek watershed was delineated using 

these ArcMap tools. Finally, this watershed mask raster was used in DHSVM to extract 

the Marmot Creek drainage basin values from the OEM, soil type, soil depth, and 

vegetation type raster inputs. 

MaekArea -0 -1 
Figure 4-8: Watershed mask is used to extract analysis pixels from input grids. 
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4.2.3 Stream Network Input 

A stream network is entered in DHSVM as a coverage clipped to the watershed extent. 

Digital spatial data of stream network was obtained through Natural Resources Canada 

(Geogratis). While these hydrology data provided a digital layer for mapping purposes, 

as well as locations and identity of named stream reaches, they were not used as 

stream coverage for input into DHSVM. Generation of a continuous stream network is a 

necessary preprocessing step for implementation in DHSVM. An AML script was used 

in Arclnfo Workstation to create a stream network with streamflow topology based on 

the reconditioned OEM and the watershed of interest as delineated in ArcMap. Both the 

delineated and Geogratis drainage network for Marmot Creek Basin are displayed 

below. 

Streamnetwork by DHSVM -
Figure 4-9: DHSVM vector coverage input of stream networks. 
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Figure 4-10: DHSVM's AML script generated stream network overlaid by Geogratis stream 
network. 

4.2.4 Climate Forcing Inputs 

DHSVM can be run using meteorological records associated with point weather 

stations. If available, data from multiple stations can also be incorporated into the 

model. In this study one meteorological station data is used for forcing the model. 

DHSVM distributes weather parameters across the watershed of interest, for each 

model time step, using one of three user-selected interpolation methods. The model 

requires the following meteorological variables for every time step and every weather 

station used: temperature (°C), wind speed (m/s), relative humidity (%), incoming 

shortwave radiation (W/m2
), incoming longwave radiation (W/m2

), and precipitation 

(m/time step). A list of meteorological forcing and calibration data are outlined in table 

4-5. 
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Table 4-5: Time-dependent field measurements at field sites in Marmot Creek basin by IP3 
network 

Variable Sensor Location Purpose 
Incoming Long wave CNR1(4-component Upper Clearing Forcing 

radiation radiation sensor) 
Incoming short wave CNR1 (4-component 

Upper Clearing Forcing 
radiation radiation sensor) 

Air temperature HMP35C Upper Clearing Forcing 
Humidity HMP35C Upper Clearing Forcing 

NRG 3-cup 
Wind speed anemometer and Upper Clearing Forcing 

direction vane 
Geonor T2008 

Precipitation accumulating Upper Clearing Forcing 
precipitation gauge 

Snow depth 
SR50 sonic ranging 

Upper Clearing Calibration 
snow depth sensor 

Marmot Creek main 
Stream discharge 1 Recorder Gauge stem Calibration 

Station 10 05BF016 

Seasonal (May to October) stream discharge recorded by Environment Canada. 

Meteorological records associated with Marmot creek particularly temperature, 

precipitation ,wind speed, relative humidity, incoming shortwave and longwave radiation 

were taken from IP3 network website, specifically Upper Clearing (50°57'24"N, 

115°1 0'31 "W) meteorological station located 1844.6 m above sea level. Upper Clearing 

meteorological station is a good representation of the whole basin (Figure 4-11 ). 

Constant temperature lapse rate is applied over the basin. The hourly time series of the 

data is created from the 15-minutes data by using an AWK Unix code. The hourly 

precipitation time series is created from adding up four 15-min data. The hourly 

temperature, humidity, wind speed, short wave radiation and long wave radiation are 

generated from averaging the 15-min data. 

58 



N 

W~E 
s 

Legend 

e Marmot Creek Stream Gauge (Envuonmenl Canada) 

• UpperCiearing Climate Station (IP3) 

.. 
.. 
• 

Figure 4-11: Climate and Stream gauge station site locations. Different colors showing 
elevation difference. 
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Figure 4-12: Monthly hyetograph for the Marmot Creek basin. 
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Figure 4-13: Daily hyetograph and seasonal (May-October) stream flow for the Marmot Creek 
watershed, for the year 2006 to 2007. 
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Figure 4-14: Daily discharge and precipitation for the Marmot Creek watershed, seasonal (May
October) year 2006. 
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Table 4-6 Parameter files used in DHSVM 

File File composition 
Soil class Distributed over user-defined grid 
Land cover class Distributed over user-defined grid 
Soil depth Distributed over user-defined grid , depth 

unit: meter 
Stream class file Channel class ID 

Hydraulic width (m) 
Hydraulic depth (m) 
Manning's number 

Stream network file Channel segment ID 
Segment routing order 
Segment slope (ratio) 
Segment length (m) 
Channel segment ID 
Segment title in stream output file 

Stream map file Cell grid column number 
Cell grid row number 
Channel segment ID 
Straight line length of the channel segment 
lying within the cell (m) 
Cut/bank height (m) 
Stream channel width (m) 
Azimuth of straight line of segment within 
cell (degree) 
Sink identifier 

OEM Distributed over user-define grid, elevation 
unit: meter 

Watershed mask file Distributed over user-define grid 
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4.3 Hydrologically Modified OEM Generation 

The goal of this section is to generate a 90 meter digital elevation model for the Marmot 

Creek watershed based on 1 :50,000 scale digital topographic maps. 

As mentioned in chapter two, the ANUDEM program has been applied in this study to 

generate hydrologically correct digital elevation models (DEMs). ANUOEM has an 

interpolation method specifically designed for the creation of hydrologically correct 

OEMs from comparatively small, but well selected elevation and stream coverages 

(Hutchinson 1988, 1989). 

Water is the primary erosive force determining the general shape of the most 

landscapes. For this reason, most landscapes have many hilltops and few sinks, 

resulting in a connected drainage pattern. ANUOEM uses this knowledge about 

surfaces and imposes constrains on the OEM interpolation process that result in 

connected drainage structure and corrected representation of ridges and streams. This 

imposed drainage condition produces higher accuracy surfaces with less input data. 

The drainage enforcement algorithm attempts to clear spurious sinks by modifying the 

OEM, by inferring drainage line via the lowest saddle point in the drainage area 

surrounding each spurious sink. It does not attempt to clear real sinks that are identified 

as such in the input. Since sink clearance is subject to a defined elevation tolerance, the 

program is conservative when attempting to clear spurious sinks. 
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4.3.1 Creating the ANUDEM Input Data 

Canvec data of 1:50,000 scale was obtained from the Geogratis website. These vector 

data are the digital version of Canada's National Topographic System {NTS) maps. The 

Canvec data contains many entities, however, only contours and hydrograhic lines were 

used as input to the OEM generation process. This section discribes the creation of 

inputs required to run ANUDEM, while next section tests the quality and accuracy of 

ANUDEM generated OEM. 

During the processing of data over the Marmot Creek area, a problem with the source 

datasets were observed and subsequently resolved . Primarily, it was observed that 

some streamlines were flowing in the wrong direction (i.e. , flowing uphill) (Figure 4-15). 

This stream directionality problem caused canyon anomalies in the OEM. Correct 

stream directions were manually identifying based on the elevation of the area, and the 

flip command in Arc Map was used to correct the problem (Figure 4-16). 
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Figure 4-15: Stream flow direction error. Steam segment is flowing in the wrong direction. 
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Figure 4-16: Corrected directions of streamflow. 

4.3.2 OEM Generation 

The default values provided in the ANUOEM 5.2 manual were used for all parameters to 

generate OEM. A thumb rule developed by M.F. Hutchinson is that the output OEM x 

and y resolution is 1 o-3 of the map scale. For example, using contour data at a scale of 

1 :100,000 the output grid resolution should be 1OOm, whereas contour data generated 

from a 1 :250,000 scale map should result in a 250m resolution grid cell. 
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Once vector data are pre-processed, they are used as input into the ANUDEM program 

to generate the OEM. Firstly, ANUDEM reads input elevations, windows the data to the 

specified map limits, and then generates a grid at 90m intervals. Elevation data are 

generalized by accepting a maximum of 4 data points per grid cell and discarding any 

remaining points. Contour and streamline data are generalized by accepting a 

maximum of one line per grid cell. The program then employs a multi-grid method that 

calculates grids at successively finer resolutions until the specified grid resolution is 

achieved. During this process, drainage conditions are imposed to remove sinks where 

possible. Values at grid points not occupied by data points are calculated by Gauss

Seidel iteration with over relaxation subject to an appropriate roughness penalty and 

ordered chain constraints. The ordered chain constraints are obtained from the 

streamline and contour line data and through automatic drainage enforcement as 

calculated by the program. Starting values for the first coarse grid resolution are 

calculated from a least squares plane fit to the data points. Values for each succeeding 

grid are linearly interpolated from the preceding grid. 

The profile curvature, defined as the curvature of the fitted surface in the downslope 

direction (Gallant and Wilson, 2000). The profile curvature, which is locally adaptive 

(Hutchinson, 2000), can be used to partly replace the total curvature. This is controlled 

by the user specifying the 2nd roughness penalty. Values for the 2nd roughness can 

range from 0.0 to 0.9; a value of 0.0 (default) means only total curvature is used, 

whereas a value of 0.9 means that 0.1 of total curvature and 0.9 of profile curvature is 

used. 
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The full set of ANUOEM parameters used to develop the Marmot Creek OEM is give in 

Table 4-7. 

Table 4-7: The following user directives were applied to ANUOEM version 5.2 using the 
contour and stream data from Canvec data set to construct the OEM for the Marmot 
Creek. 

ANUDEM User Directive Value Remarks 
Drainage option 1 Drainage enforced where possible 
Contour data 1 Data mainly consists of contours 
Discretisation error factor 1.0 
Vertical standard error 0.0 
1 s roughness penalty 0.0 Determines how much planar (or contour) curvature is 

used in addition to the default total curvature. Set to 
0.0 for contour data. 

2nu roughness penalty 0.0 Determines how much profile curvature is used in 
addition to the default total curvature. 

Elevation tolerance 10 Half of the contour interval of 20m. 
Maximum number of iterations 20 Number of iteration for final DEM generation 
Elevation units 1 Elevation unit in meter 
Height minimum 0 Data points lower than this value ignored, and fitted 

cells cannot be lower than this. 
Height maximum 5000 Data points higher than this value ignored, and fitted 

cells cannot be higher than this 
Centring option 1 Grid points located at the centre of the pixels. 
Position units 5 Position units in degree decimal 
X lower -115.5 Data points below this value are ignored 
X upper -115.0 Data points above this value are ignored 
Y lower 50.76 Data points below this value are ignored 
Y upper 51 .0 Data points above this value are ignored 
Grid spacing 0.0008 Final grid resolution is 0.0008 degree (90m), 
Grid margin 0.016 This corresponds to twenty 90m (0.0008) resolution 

output grid cells. 

Once final OEM of 90 m resolution is generated for the Marmot Creek basin it used in 

determining hydrologic variable including stream flow and snow water equivalent. 
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4.3.3 OEM Comparison 

USGS and ANUOEM generated OEMs were compared to determine the range and 

nature of their differences. Elevation and elevation-dependent topographic parameters 

were examined numerically and spatially. ARC/INFO program were used for digital 

terrain analysis and to calculate basin topographical parameters. 

4.3.4 Watershed Area and Elevation 

Arc/Info was used to determine the watershed area and elevation of the basin as 

defined by each OEM. For each OEM, drainage area was determined as the 

contributing area upstream of the outlet. Table 4-8 summarise the two OEMs drainage 

contributing area and elevations. 

Table 4-8: Watershed area and elevation 

USGS OEM ANUOEM OEM 

Watershed Area (sq. km) 9.98 9.25 

Elevation Range (m) 1419-2785 1407-2798.32 

Average Elevation (m) 1994.38 1991 .68 

Standard deviation of Elevation 338.295 344.464 

Visual inspection of the OEMs reveals similarity in the USGS OEM (Figure 4-17). Both 

OEMs generated sharp images that clearly defines the valley river network whereas the 

elevation ranges is more scattered ANUOEM generated OEM at the same resolution. 

The watershed boundaries differ considerably between the two images. 
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Figure 4-17: USGS OEM showing the Marmot Creek boundary. 
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Figure 4-18: ANUDEM OEM showing the Marmot Creek boundary 
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Application and result of this approach for Marmot Creek basin are described in this 

chapter and the following chapter. 

5.1 Calibration of Model 

The process of distributed model calibration involves the optimization of parameter 

values to provide the best possible fit between measured and simulated hydrologic 

response (Grayson and Bloschl , 2000). A description of specific steps applied to 

calibrate DHSVM to the Marmot Creek watershed is described below. 

5.1.1 Calibration Process 

In this application, calibration of DHSVM includes both qualitative and quantitative 

assessments of simulated streamflow to observed streamflow. An Environment Canada 

stream gauge is located 50°57' 1 "N, 115°9' 1 O"W, which records seasonal (May-October) 

daily discharge in cubic meter per second. These gage data were obtained through the 

Water Survey of Canada web interface (www.wsc.ec.gc.ca). The model was run with a 

starting date of July 27, 2005 and the initial simulation results were discarded to account 

for the necessary model spin up. The first run generated initial file was used to simulate 

the final streamflow. The daily mean was obtained by averaging one hourly simulated 

streamflow values. These values were then plotted against the daily observed values, 

and the input parameters were adjusted to achieve improved Nash-Sutcliffe efficiency, 

Nash-Sutcliffe efficiency relative and Index of Agreement. Visual assessment of the 

graphed results identified the best simulations, and statistical analysis of these selected 

results quantitatively identified the most accurate simulations. 
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Because DHSVM is physically based, a thorough understanding of how streams are 

routed through a watershed in DHSVM is fundamental factor for successful model 

calibration. Systematic trial and error proved to be the most effective calibration method 

(Stonesifer, 2007). The general strategy involved several model runs dedicated to the 

investigation of the sensitivity of a single input parameter with respect to streamflow at 

the gauge location. All other inputs were held constant while the input of interest was 

adjusted to address the range of referenced values. Any improvement or decline in the 

simulation results was noted. Investigation of the next possible input was selected both 

by suggestions made in the literature of the most sensitive model parameters, and 

visual observation of the general shape of the simulated hydrograph with respect to the 

measured values. This process was repeated until the model simulation could be 

improved no further based on the available input data. 

5.1.2 Statistical Judgment 

As suggested by Krause et al. (2005), three statistical measures were applied for 

quantitative assessment for the goodness of model fit. The statistics used include the 

Nash Sutcliffe efficiency (E), the relative efficiency Erel and Index of Agreement. Root 

mean square errors (RMSEs ), mean and standard deviation of stream flow and snow 

water equivalent were also compared with their measured variables, where: 

RMSE = j~ L~=l (Pi - Oi) 2 

Where N = sample size, Pi = simulated value, and Oi = measured value. 
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This method was used by Wigneron, et al. (1999) to evaluate the Interactions between 

Soil-Biosphere-Atmosphere (ISBA) schemes. Model efficiency (Nash and Sutcliffe, 

1970) indicates a model's ability to explain the variance of observed streamflow and is 

able to describe how well calculated and observed flows compare in both volume and 

shape (Kokkoken and Jakeman, 2001; Beckers and Alila, 2004). Model efficiency is 

defined as one minus the sum of the absolute squared differences between the 

predicted and observed values normalized by the variance of the observed values 

during the period under investigation. It is calculated as below 

E values may range from 1.0 to -a, and higher values indicate a better fit of the 

simulated data. An E value equal to zero indicates that the mean of the observed 

discharge is as good of a predictor of flow as the modeled results. A value below zero 

suggests that the mean value of the observed flows would have been a better indicator 

of flow (Krasue et al., 2005). 

The relative efficiency Erel (Krause et al., 2005) is a modified form of the model efficiency 

E (Nash and Sutcliffe, 1970), measures the goodness of model fit by comparing both 

the volume and shape of the discharge profile. The rationale for using Erel is because E 

calculates the differences between the two time series as squared values. 

Consequently, an over or under estimation of higher values in the time series has 

greater influence than that of lower values (Krause et al., 2005). Erel enhances the 
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lower absolute differences during the low flow period since they are substantial where 

considered relatively. Relative efficiency can be calculated as 

The index of agreement "d" was proposed by Will mot ( 1984) to overcome the 

insensitivity of E and r2 to differences in the observed and predicted means and 

variances (Legates and McCabe, 1999). The index of agreement represents the ratio of 

the mean square root and the potential error (Willmot, 1984) and is defined as 

The potential error in the denominator represents the largest value that the squared 

difference of each pair can attain. With the mean square error in the numerator d is very 

sensitive to peak flows and insensitive for low flow conditions. The range of d is 

between 0 (no correlation) and 1 (perfect fit). 

5.2 Validation of Model 

Testing of modeled simulations using a calibrated model against real data that were not 

a part of the calibration process, generally called as model validation (Grayson and 

Bloschl, 2000). In this research validation of DHSVM was done assessing stream flow 

and snow accumulation in forested, snow dominated watershed of Alberta, Canada. 
77 



This goal was met through the comparison of measured to modeled streamflow and 

snow water equivalent using the calibrated DHSVM in Marmot Creek watershed. 

DHSVM version 2.0.1 was run using a 1-hr time step from July 2005 to Dec 2006. 

Calibrated results of these streamflow simulations were compared to measured 

streamflow data collected for the 2005 to 2006 summer (May-October) seasons. These 

data were obtained from Water Survey of Canada web site. They have dai ly stream 

stage data during the summer months for Marmot Creek basin. Using AWK code 1-hr 

step streamflow converted into daily streamflow (m3/s), which were used to assess the 

performance of the simulated results . After that calibration model is run for the year 

2007 for validation. 
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5.3 Results 

DHSVM performed well with respect to the calibration of the model to the Marmot Creek 

watershed . The results of the simulation with measured streamflow data are shown in 

figure 5-1. Visual assessment of these results suggests that the model performed 

considerably well for the year 2006 and in year 2007 although some peak flows 

simulated are high when compared with the measured data. The 2006 hydrograph is 

shown separately to highlight it as the most accurate during the simulated period. 

Statistical analysis of the simulated data will help to quantify the performance of 

DHSVM. 

25 ,------------------------------------------------------------------. 
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Figure 5-1: Calibrated results for the Marmot Creek basin. Simulated daily streamflow (m 3/s) 
versus measured streamflow. Broken lines are due to measured streamflow only available from 
May to October. 
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Figure 5-2: Precise simulation period for the year 2006. 
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5.3.1 Statistical Analysis 

For both observed and simulated datasets, descriptive statistics were calculated. As 

describe in previous section measures of goodness of fit for hydrologic simulation 

namely Nash-Sutcliffe efficiency, Nash-Sutcliffe efficiency relative and Index of 

agreement were also calculated for the individual years. Descriptive statistics 

calculation includes the sample mean, and standard deviation for each of the observed 

and simulated datasets. Table 5.1 summarizes the individual year statistics by 

presenting the Nash and Sutcliffe efficiency, Nash and Sutcliffe efficiency relative, and 

Index of agreement of simulated and observed data. These measures of range for 

independent datasets provide an idea of how well the distribution of the simulated data 

matches the distribution of the measured data. When compared to the measured data, 

DHSVM simulations generally had a higher mean and standard deviation. These 

statistics illustrate that the DHSVM simulated yearly hydrograph was characterized by a 

more wider distribution with slightly higher peaks, a early runoff, and more steeply 

sloping rising and recession limbs when compared to the distribution of the measured 

flows. These patterns are readily apparent in the figure 5.2, depicting the modeled 

versus measured streamflow for the year 2006. 

During model calibration, simulated total stream discharge was kept as close as 

possible to the measured total, while also minimizing RMSE between simulated and 

measured streamflow. Peak flows are consistently slightly overestimated in the early, 

middle and end of the summer season. Total discharge is simulated very well in the 
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calibration period. RMSE is lower than the measured standard deviation {Table 5.1 ). 

Model efficiency is acceptable at 0.734. 

The streamflow simulation in 2006 is better than in 2007 in general (Figure 5.1 ). RMSE 

is lower than the measured standard deviation in the year 2007 as well {Table 5.2); total 

discharge is over estimated by 2.5% for the summer months (May-Oct); model 

efficiency is 0.621 (Table 5.1 ). In the early summer season, peaks were captured quite 

accurately but in the late summer season one peak was overestimated in 2007. 

However, in the early part of 2007 and at the end of the year, streamflow is simulated 

well by the model (Figure 5.1 ). Index of agreement for both years shows good results 

for the model performance. 

Table 5-1 Statistics of observed and simulated stream discharge during calibration and 
validation periods 

Year RMS Mean Standard deviation Nash- Nash- Index of 
E Sutcliffe Sutcliffe agreement 

Measured Simulated Measured Simulated efficiency efficiency-
relative 

2006 0.088 0.177 0.21 0.171 0.171 0.734 0.426 0.932 
2007 0.171 0.264 0.27 0.278 0.321 0.621 0.798 0.912 

Figure 5-3 shows the scatter plot of daily simulated versus measured stream discharge 

for the study period. The figure clearly shows that the measured and simulated 

streamflow have positive correlation and only few outliers observed. 
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Figure 5-3: Scatter plot of daily average simulated streamflow versus measured data. 

5.3.2 Snow Water Equivalent (SWE) 

Snow water equivalent at Marmot Creek basin in general simulated well for the two 

simulated years (Figure 5-4). Snow water equivalent is simulated very well at the end of 

the both years; but it is underestimated in the beginning of the each year, and there is a 

discrepancy between simulated and measured during the summer season of the year. 

Visual assessment of the simulated SWE indicates snowmelt timing was capture well 

for both years. 
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Figure 5-4: Simulated and measured snow water equivalent for the Marmot Creek basin. 
Measured data started from Jan 01,2006. 
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Figure 5-5: Simulated and measured snow water equivalent for the Marmot Creek basin for the 
year 2007. 

Statistical investigation shows that RMSEs are smaller than measured variability 

represented by mean and standard deviation of the data (Table 5-2). In 2006, SWE has 

a RMSE of 0.029, the highest among the two-year simulations. Simulated and 

measured standard deviation of SWE shows good agreement of peak snow 

accumulation for the year 2007. Model efficiency is 0.736 and 0.874 for the year 2006 

and 2007 respectively, is acceptable. Simulated co-efficient of determination (R2
) are 

0.962 and 0.948 for year 2006 and 2007 respectively. 
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Table 5-2: statistics of snow water equivalent (SWE) simulated and measured at 
Marmot Creek basin in calibration and validation periods. 

Year 1RMSE Mean Standard deviation 2E JR2 

Measured Simulated Measured Simulated 

2006 0.029 0.055 0.034 0.057 0.041 0.736 0.962 

2007 0.023 0.066 0.057 0.066 0.065 0.874 0.948 

1RMSE = Root mean square error; 2E = Nash-Sutcliffe efficiency; 3R2 =Co-efficient of determination 

5.4 Discussion 

In general, the model accurately simulates total stream discharge and SWE. However, 

some of the peak discharge was captured high. Beckers and Alila (2004) applied the 

model in the Pacific North West region and found that the accuracy of either baseflow or 

storm flow estimates could not be improved together. One can be improve with expense 

of other. It became clear in this study as well, during the calibration of streamflow 

simulation. Below is the summary of model efficiency of DHSVM in previous studies. 

Table 5-3: Statistics of streamflow and snow water equivalent simulation in previous studies. 

Studies 

Beckers and Alila (2004) 
Leung et al., (1996) 
Burges and Wigmosta (1998) 
G. Jost et at., (2009) 

Streamflow 
Model Efficiency 
0.57-0.87 
0.41-0.86 
0.89 

Snow water equivalent 
Model Efficiency 

0.49-0.89 

Marmot Creek basin 0.73, 0.62* 0.736, 0.874* 
Note: numbers with asterisks are statistics for 2006 and 2007 respectively for this study. 

While the streamflow simulation is poor for 2007, perhaps due to some input data or 

land cover changes not represented in the model. Model efficiency for the 2006 and 

2007 are comparable to those in other studies like Beckers and Alila (2004) found 
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model efficiency for streamflow 0.57-0.87, Leung et al. , (1996) found 0.41-.086 and 

Burges and Wigmosta (1998) found 0.89. 

Snow water equivalent simulated model efficiency is done recently by G. Jost et al., 

(2009) ranges from 0.49 to 0.89 (using DHSVM 3.0), while in this study its 0.736 and 

0.874 in 2006 and 2007 respectively for the Marmot Creek basin . On this basis, the 

model validation is accepted with caution and model will be used to investigate the 

effects of OEM and land cover change on watershed processes in the following chapter. 
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Chapter 6 

OEM and Land Cover Effects 

Spatial inputs of landscape characteristics into OHSVM version 2.0.1 are static. The 

vegetation cover, soil type, and road and stream network parameters do not change 

over the course of simulation. Because OHSVM is highly adaptable, the model design 

allows the user to manipulate landscape characteristics and run the model for different 

landscape scenarios. This theoretically allows the user to quantitatively assess the 

changes of hydrologic variables of a watershed. Specifically, a OHSVM user should be 

able to manipulate the landscape to reflect the soil and vegetation properties on the 

hydrologic responses. The results of the different simulations are analyzed to assess 

the effects that a particular landscape change may have on the hydrologic regime of a 

catchment. 

The previous chapter 5 describes the OHSVM model application to simulate runoff for 

the Marmot Creek watershed. In this chapter, OHSVM is applied in order to compare 

the effect of different OEM and vegetation classification on streamflow and snow water 

equivalent. All model inputs parameters remained constant with the exception of the 

input OEM and vegetation . The results were compared to assess the effect of OEM and 

vegetation cover for the simulation of streamflow and snow water equivalent. 

88 



6. Results 

The calibrated model for the catchment as described in Chapter 5 was used as the 

basis for an investigation of the hydrologic sensitivities of OEM and vegetation cover 

over the streamflow and snow water equivalent. Model output variables archived 

included time-series of basin averaged snow water equivalent, runoff hydrographs and 

selected spatial images of hydrologic characteristics at pre-specified times. Following 

the initial runs with USGS OEM and EOSO vegetation cover, the simulations were 

repeated using the same initial condition but with hydrologically modified OEM and 

alternative specification of vegetation scenarios. This chapter presents the findings of 

these simulations. 

6.1. OEM Effects 

6.1.1 Streamflow 

The effect of OEM source on simulated hydrologic response was evaluated by applying 

OHSVM to the Marmot Creek catchment using USGS and ANUOEM generated OEM at 

resolution of 90 m. Each of the model runs used the calibrated parameter set developed 

at chapter 5, so it was expected that of the simulated streamflow, those calculated using 

USGS OEM would more closely resemble the observed streamflow time series. Table 

6-1 lists the monthly averaged discharge modeled for each OEM scenario. 
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Table 6-1 Monthly averaged discharges (ems) for each OEM 

Month USGS OEM ANUDEM Observed USGS OEM ANUDEM Observed 

OEM OEM 

2006 2007 

January 0.020 0.028 0.021 0.031 

February 0.012 0.017 0.013 0.020 

March 0.009 0.013 0.070 0.064 

April 0.123 0.104 0.184 0.167 

May 0.261 0.235 0.197 0.366 0.345 0.371 

June 0.471 0.452 0.452 0.837 0.818 0.770 

July 0.171 0.182 0.167 0.306 0.311 0.232 

August 0.068 0.085 0.078 0.062 0.074 0.076 

September 0.164 0.157 0.079 0.033 0.044 0.076 

October 0.132 0.136 0.092 0.029 0.038 0.068 

November 0.118 0.122 0.046 0.050 

December 0.052 0.061 0.029 0.034 

Total 1.601 1.592 1.996 1.966 

Table 6-2 Summary of average summer (May-Oct) flows 

Year Observed ANUOEM OEM USGS OEM 
2006 0.1775 0.2078 0.2111 

2007 0.2655 0.2717 0.2722 

Average 0.2215 0.2398 0.2417 

Simulated streamflow volumes were found to vary between the two DEMs in a 

consistent fashion. Mean runoff volumes were lowest when predicted by the ANUDEM 
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OEM. The ANUOEM OEM and USGS OEM predicted average annual flows that were 

8.2% and 9.11% larger, respectively (Table 6.2). The increase in prediction by the 

USGS OEM is attributable to the higher basin area (Table 4-8) compared with ANUOEM 

OEM. 
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Figure 6-1: Simulated streamflows for the ANUOEM OEM and USGS OEM along with 
measured streamflow from May to October in year 2006 and 2007. 

Time series plots were examined for an individual peak flow events series for 2006. 

These hydrographs showed that the ANUOEM OEM simulated had a higher peak than 

flows simulated with the USGS OEM. The ANUOEM OEM had a smaller watershed 
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area and higher standard deviation of elevation (Table 4-8) than USGS OEM which 

results higher peak flows. 
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Figure6-2: Simulated high flow event, June 2006 
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Figure 6-3: Scatter plot of daily streamflow for USGS vs. ANUDEM simulated. 

------ -----

Scatter plot of ANUOEM OEM simulated streamflow versus USGS simulated streamflow 

does not show much difference (Figure 6-3). Compared with USGS OEM simulation 

ANUOEM OEM simulation has decreased summer season flow for the 2006 and 2007. 

Winter season flow is increased slightly for 2006; the increase is only 3.3%. There is not 

much change in winter season flow for 2007. 

ANUOEM OEM effects on peak flows, the effect is more prominent for the large sized 

peak flows compared to medium and small sized peak flows for the 2006 and 2007 

scenarios (Figure 6-1 and 6-2) 
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In previous studies, Kenward and Lettenmaier (1997) found that the mean annual runoff 

volumes for simulations that used the USGS and SIR-C DEMs were 0.3 and 7.0 percent 

larger, respectively, than simulations produced using the same resolution reference 

OEM. 

6.1.2 Snow Water Equivalent 

OEM effects on basin-averaged snow water equivalent are negligible. Figure 6-4 shows 

daily average values of snow water equivalent for the entire study period, i.e., from July 

2005 to December 2007. In general , ANUDEM OEM slightly decreases monthly SWE 

during some months and slightly increases SWE in other months. However, the overall 

increase is only 0.5% (Figure 6-5). The highest increase (0.0041 m) occurs in June 

2007, and highest decrease (0.0017 m) occurs in November 2007. 
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Figure 6-4: Simulated SWE generated by ANUOEM OEM and USGS OEM. 
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Figure 6-5: DEM-related mean monthly anomalies in snow water equ ivalent (SWE) during 
August 2005 through December 2007. 

The change in spatial distribution of SWE (m) with altered DEMs taken as a snapshot 

on different date can be seen in Figure 6-6 which shows the variation in melt patterns of 

extremes from the top of the mountain and bottom. Patterns of SWE are evident and 

generally are not related to OEM source. 
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Figure 6-6: Spatial distribution of OEM source effect in SWE (m) over the Marmot 
Creek basin. 

The effort to use different OEM source for SWE effect is probably the first among 

OHSVM users, hence, the SWE simulation cannot be compared to other studies. 

However, simulation of SWE is reasonably good as shown in figures 6-4. 
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6.2 Land Cover Effect 

To study the effects of land cover on streamflow and snow water equivalent of the 

experimental scenarios, USGS vegetation classes are compared to those of the control 

EOSD vegetation classes. Use of USGS vegetation classes generate changes in 

streamflow when compared to the control scenarios (Figure 6-7). The experiment 

scenario under estimates stream discharge all over the year. The difference in stream 

discharge between the control and the experimental scenario are largest during periods 

of peak flows throughout the simulation. Snow water equivalent is also under estimated 

for the experimental scenario. 

6.2.1 Streamflow 

Compared to the EOSD land cover scenario, stream discharge is slightly lower for the 

USGS land cover scenario, with 5.8% decrease . A scatter plot of streamflow shows that 

the peak flows decrease for the USGS scenario (Figure6-8). From August to February, 

both scenario shows similar flows. The effect of land cover change on peak flow values 

is in accordance with the findings of Storck et al., (1998) and La Marche and 

Lettenmaier (2001 ). This study has also found that the greatest influence of land cover 

is on streamflow peaks. 
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Figure 6-7: Monthly average stream discharge with EOSD land cover, and USGS land cover 
scenarios. 
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Figure 6-8: Scatter plot of daily average streamflow for the control and experimental scenarios. 

6.2.2 Snow Water Equivalent 

Catchment-average time series plots of snow water equivalent (SWE) show that the 

direction of change is consistent from year to year (Figure 6-9). The timing of SWE 

accumulation and ablation averaged over the basin for each month over the simulation 

period from August 2006 to August 2007 can be seen in Figure 6-10. In considering the 

effects of vegetation change on snow storage within the catchments, trend differences 

are not easily concluded when compared with the USGS coarse land cover map. 

100 



o_zs .-------------------------------------------------------------------------~ 
-USGS_SWE 

- EOSD_SWE 

~ 
0.15 <;; 

.II 
1 . 
~ 

i 
I 
"' 

0 .1 

# # # # # # ~ # # # # # # ~ # # # # # # 
#~#~#~~##~##~~~###~~ 
~ # ~ ~ ~ # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

o.te (mm/dd/yyyy) 

Figure 6-9: Daily SWE (m) time series for EOSD and USGS land cover simulated and 
measured. 
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Figure 6-10: Measured and simulated SWE (m) time-series (month) 

The change in spatial distribution of SWE (m) with altered land cover taken into 

consideration can be seen in Figure 6-11 for a number of dates which shows the 

variation in melt patterns of extremes from the top of the mountain and bottom. While 

patterns of SWE are evident and generally related to vegetation change, use of a 

coarser resolution land cover map is not a reliable predictor of the direction of change in 

SWE. However, it can be seen that the model is sensitive to the resolution of the data 

utilized. 
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SWE with EOSD land cover (Dec 03, 2007) 
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Figure 6-11: Spatial distribution of land cover change effect in SWE (m) over the 
Marmot Creek basin. 

Figure 6-12 shows daily SWE for the EOSD and USGS land cover, the direction of 

change is consistent throughout the year as all the points are below the one to one line. 
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Figure 6-12: Scatter plot of SWE (m) with EOSD land cover versus SWE (m) with USGS land 
cover. 

Change in overstory presence is highly correlated to change in SWE. Densely forested 

areas have lower ablation rates and accumulate less snow (Vanshaar and Lettenmaier, 

2001 ). USGS land cover scenario represent only three type of vegetation classification 

among them 64% evergreen needle leaf which cause covering of overstory and less 

accumulation of snow. Elevation and aspect, which influence temperature and the 

amount of radiation input to a pixel, cloud the catchment-wide patterns related to 

vegetation. Changing some function such as leaf area index (LAI), elevation and aspect 

could predict change in SWE more effectively than changing the land cover map 
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resolution . SWE is clearly related to land cover data, although the effects of land cover 

in conjunction with local topography would be more readily visible. 
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Chapter 7 

Conclusion 

7.1 Summary of the Results 

OHSVM was applied in mountainous watersheds in Western Alberta to study OEM and 

land cover change effects on streamflow and snow water equivalent (SWE). The model 

was calibrated and validated first in Marmot Creek basin . The calibrated model was 

then used to study the OEM and land cover effect in study basin . 

Through model validation, it is found that the model was applicable to Marmot Creek 

basin, a mountainous watershed similar to the region where OHSVM was developed 

and applied. The effects of OEM and land cover change are mainly shown through 

streamflow and snow water equivalent (SWE). When simulating with ANUOEM derived 

OEM, all peak flows simulated by the model are higher than those simulated by USGS 

OEM. The total predicted runoff volume depended on the average elevation and basin 

area of OEM {Table 4-8). This implies that the model simulation is dependent on the 

OEM. The model simulation with ANUOEM does not have any significant effect with 

snow water equivalent. However, the model simulation using the USGS land cover map 

decrease the streamflow and SWE compared to the model simulation with EOSO land 

cover. 
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The results suggest that among variables influence by land cover, streamflow and snow 

water equivalent should not be neglected. Simulations also show that land cover 

influences on peak flow are greater than influences on total storm volume. Land cover 

change to the USGS product causes a greater decrease of the summer peak flow than 

the annual streamflow compared with the EOSO land cover simulation during the two 

year study period. 

7.2 Implication and Recommendation 

OHSVM explicitly depicts the spatial pattern of hydrologic fluxes for the Marmot Basin. 

When combined with a geographic information system (GIS) it makes a good choice for 

the study of the effects of OEM and land cover change. As mention in literature review, 

many previous studies of OEM and land cover change mainly focus on streamflow 

volume and peak flow in the temperate Pacific North-West area. Through the study of 

the streamflow, snow water equivalent and peak flow in mountainous watershed in 

Western Alberta, this dissertation broadens knowledge of the OEM and land cover 

effects in snow dominated mountainous watersheds. The results extend current 

scientific knowledge of the importance of OEM quality and land cover alterations in 

influencing watershed hydrology. The model simulations also give new insights of OEM 

and land cover effects on peak flows. 

The current study confirms the results of most other studies, showing that land cover 

changes have large effects on streamflow and snow water equivalent. The results 

presented here can be used to assist understanding cold region hydrology snow 

accumulation and melt. The comparison of EOSO and USGS land covers, for example, 
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shows that annual streamflow, winter flow, summer flow and peak flows in all size 

categories were lower for the USGS land cover. This is due to the resolution in 

vegetation cover used by USGS map. This suggests a possible reduction in storm 

frequency, but at the expense of lower summer season flows. This result can be used in 

forest management strategy. 

Based on the increased accuracy of simulated streamflow following rigorous model 

calibration, it is evident that calibration is an essential first step to the application of 

DHSVM to a particular watershed. Because the model is extremely sensitive to 

parameters such as saturated hydraulic conductivity, it is imperative that these 

parameters be first adjusted to reflect study area conditions in order to obtain accurate 

hydrologic simulations. A well-calibrated model should have some degree of regional 

translatability, and the calibrated parameters should theoretically be applicable to other 

watersheds of similar area, climatic patterns, vegetative structure, and dominant soil 

types. Because hydrologic models need to calibrated to data in a particular watershed 

are often not available, this research suggests that in order to produce reliable 

simulations, at very last, DHSVM should first be calibrated to a comparable watershed 

with available streamflow data prior to simulating streamflow for the watershed of 

interest. 

Uncertainty of hydrologic prediction with DHSVM could be done in future research work. 

DHSVM predictions with digital elevation data for a different study site could be 

investigated. This would help to determine whether the results of the current study are 

independent of basin size, topography, vegetation, soil type and climate. Additional 

research in this area could further investigate the impact of vertical accuracy of DEMs. 

Standard USGS DEMs of different classifications could be compared to give an 
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indication of improvement related of the newer products. The ANUOEM OEM used in 

this study was developed using default setting of the ANUOEM OEM generation 

parameter. Optimization of ANOUEM parameters, such as the number of iterations and 

amount of profile curvature permitted could also be investigated by comparing to the 

preliminary product. 

Improvements could also be made to the soil map presentation of the Marmot Creek 

basin. Only a single soil type was used in this study. This could be improved on by 

defining more classes through field investigation. 

Because land cover changes along with time, more recent, high resolution land cover 

data could be used to quantify the impact of hydrologic response. 
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