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Abstract 

Using the Landau-Lifshitz-Gilbert equations, we model magnetic field vs temperature 

phase transitions in several frustrated stacked triangular antiferromagnets. We find 

this method to b~n improvem nt from previously used effective field methods. 

The algorithm ~lied to magnetoelectric HoMn03 . A variety of novel interac-

tion terms are proposed to explain the stability of the numerous spin states observed 

in this and related compounds. 
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Chapter 1 

Overview of the magnetic phases 

in RMn03 compounds 

In r cent year there has been a revived interest in magnetoel ctric phenomena, 

in particular in the class of compounds RMn03, where R is a rare earth lement lik 

Ho, Er, Yb or Y (see Fig. 1.1). Magnetoelectric materials are rather interesting sine 

an applied magnetic field can induce an electric polarization(? ex: II) and an applied 

electric field can induce a magn tic moment in the material (M ex: E). This behaviour 

is known as the magnetoelectric effect and occurs in most of th s mat rials at a 

rather high temperature, on the order of 900K. These materials also exhibit magnetic 

ordering at a much lower temperature, around lOOK for most [1][2][3][4]. 

This newfound interest in th s materials is brought about mostly by academic 

curiosity but also due to potential applications in industry such as creating a new 

class of highly accurate sensors, as well as the possibility that thes materials will b 

useful for electronic data storage. 

Of particular interest to us in this family is HoMn03 which has a complicated 

low temperatur phase diagram, first explored by Fiebig et al. in 2002 using s cond 
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0 

Figure 1.1: Diagram of the unit cell of RMn03 . The blue atoms represent the two 
layers of Mn which make an AB stacked triangular lattice of magnetic spins. The 
green atoms are the rare earth atoms R which are also on triangular lattices but ar 
AA stacked. [5] 
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harmonic generation [4]. This diagram depicts a possibility of four low temperatur 

magnetic phases named for their location in the phase diagram. HTl and HT2 are 

the so called high temperature phases, occurring between the Neel temperature 75.87 

K and roughly 5 K, phases LTl and LT2 occur at lower t mperature. 
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Figure 1.2: Magnetic phase diagram after Fiebig et al. in 2002 [4] using second 
harmonic generation. There is a switch from a paramagnetic phase to order d an­
tiferromagnet at TN = 75.87K to what is known as the high temperature 1 pha e 
(HTl) . At lower temperatures starting around 32.5K, depending on xternally ap­
plied magnetic fields, HoMn03 can take on 3 other antiferromagn tic phase HT2, or 
low temperature phases LTl , and LT2. 

Fig. 1.3 shows the configuration of th Mn spins in each of the four propos d 

phases by projecting the spins into the plane perpendicular to the c axis (rememb r 
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that th two lay rs are stacked in an AB fashion) . The lighter color d circl s represent 

the Mn atoms in one layer, while the dark r ones repr ent the s cond layer in th 

unit cell. The spins of each phas are ith r aligned along the basal plane axes as in 

HT2 and LT2, or the spins are perpendicular to the basal plane axes as in HTl and 

LTl. In HTl and HT2, adjacent lay r are ferromagnetically aligned while in LTl 

and LT2, th two layers are antiferromagnetically aligned. 

HT2 

0 Mn - Layer1 

• Mn - Layer2 

Figure 1.3: In-plan projections of the Mn spins of the HoMn03 phase diagram. The 
dark and light blue circles represent atoms on eparate layers. In th HT2 phase all 
spins are aligned along a basal plane axis and adjacent layer ar ferromagnetically 
aligned. For HTl , all spins are rotated by 90 degrees to be orne aligned perpendic­
ular to the basal plane axes. LTl and LT2 are similar to their high temperatur 
counterparts except that the layers are antiferromagnetically align d. 

A few years lat r Yen et al. [3] found a slightly different phas diagram in which 

there is an intermediate (INT) phase b tween HT2 and th z ro field line at zero 

temperatur , reducing the LTl phase to a smaller region at higher field. This phas 
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diagram is shown in Fig. 1.4. 

Early in 2008, Brown and Chatterji [6] used neutron diffraction and proposed a 

very different view of the phase diagram. They see only one transition at 4.5K and 

find that the magnetic structure is not affected at all by an external magnetic field. 

They used a two phase model that defines the magnetic structure at a particular 

temperature and field as a percentage of the amount of one phase or another are 

present. In particular, they claim that HT2 and LT2 coexist in the intermediate 

phase and that their relative proportion depends on H and T . 
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Figure 1.4: Phase diagram of HoMn03 reported by Yen et. al.[3], as a part of a study 
of several members of the RMn03 family. The new incommensurate intermediate 
phase adds to the already rich phase diagram of this mat rial. The other transition 
temperatures are reported as the same as in previous studies. 
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However, the Mn are not the only magnetic ions in HoMn03 . There is evidence 

that the Ho ions can also order with spins pointing along the c-axis. The ordering of 

the Ho spins affects, in some way, the ord ring of the Mn spins. There are a number 

of propo als as to exactly how they order, and how the two unlik spins interact. A 

recent paper by Nandi et al. [7] summarizes the work of several experimental group 

regarding the ordering of Ho over a range of fields and temperatures. Th ir neutron 

diffraction study finds that the Ho spins ar strictly aligned along the c-axis and have 

2 chemically different subsets, referred to as Ho1 and Ho2 , which ar r spectively whit 

and black in Fig. 1.5. Each of these spins will interact with each other differently du 

to the arrangement of oxygen atoms around the Ho atoms. 

r 
\.J 

Figure 1.5: The unit cell of HoMn03 with Ho1 as the black atoms and Ho2 as the white 
atoms. Even though they are the same atomically, they are in chemically different 
environments which leads to different magnetic moments and exchange parameters. 
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They propose that the Ho spins order will change depending on temperature. At 

high temperature there is a phase where there is no magnetization associat d with Ho 

spins, in terms of the described HoMn03 phases this corresponds to the disordered 

phase and most of the HTl phase. As the temperature is lowered Ho1 will b gin to 

order along the c axis and Ho2 will still have no associated ordering, this includes all 

of the HT2 phase some of HTl. Lowering the temperature further, the Ho spins all 

order along the c-axis, and depending on the strength of an externally applied fi ld, 

will have Ho1 and Ho2 either anti-parallel to one another at low field strength (LTl), 

or parallel at high field strengths, (LT2) . 

While our main interest lies in HoMn03 , much of what is studied here may be 

applied to many of the RMn03 family by modifying some of the interactions. With a 

further understanding of this class of materials we might be able to predict and explain 

many of the diverse phase diagrams. As an example of how the phase diagrams for 

these materials can differ we have included results for TmMn03 in Fig. 1.6. We see 

that for TmMn03 there are only a few ordered magnetic phases, in contrast with 

HoMn03 . 

Within the family of RMn03 it is important to explore all magnetic interactions 

that might influence the spin structure in order to begin to understand the com­

plexity of their phase diagrams. With this knowledge we might better understand 

what interactions are important in these materials and how their magnetic structures 

influence their electrical response. 

1.1 Our focus 

The goal of a project like thi is to completely model the phase diagram of the 

material of focus and to possibly use the model to understand the phase diagrams 
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Figure 1.6: TmMn03 has fewer phas transitions than HoMn03 . Th y hare on 
magnetic structure, HT2, which is her in the domain clo t to zero temperature [3]. 
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of similar materials. If we understand HoMn03 and ar able to r produce its ph 

diagram, w may be able to predict magn tic behavior of many in the RMn03 family 

and explore what i possible for similar materials just by changing the parameters in 

our model. Th se are very complex materials and the number and subtlety of can b 

quite numerou , as we shall see. 

Th remainder of this thesis is organized as follows. In Chapter 2, we illustrat 

the origin of a magnetic Hamiltonian for the Mn atoms only, as well as the compu­

tational background of our study. We implement and compare two methods with 

which on an study magnetic system : the effective field m thod and the Landau­

Lifshitz-Gilbert equations. In Chapt r 3, we explore two triangular tack d systems of 

magnetic pin using the Hamiltonian and methods present d in Chapter 2, and giv 

several simulat d phas diagrams. Additional terms to the Hamiltonian are explor d 

and their effects ar explained. Chapt r 4 is a disscusion of the effects of adding 

the Ho atom inter tions to our model, and a simple Landau model fr nergy IS 

examained. In Chapter 5, a summary of r sults and some conclusions drawn from 

this study are presented. 

This is the first time LLG equations are us d to study th magn tic structur 

of frustrated antiferromagnets, let alone HoMn03 . As uch this thesis only lays 

the ground work that will be needed to r produce the full xperim ntal H-T phas 

diagram. 
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Chapter 2 

Computational Methods for the 

Determination of Equilibrium Spin 

Structures 

The systems described in chapter 1 are complicated, large 3-dimensional hexagonal 

lattices with many spins per unit cell. To determine the equilibrium spin structures 

analytically would be virtually impossible. Computer simulations are a faster, easier 

and hopefully more accurate approach to investigate complicated systems. This chap­

ter describes the methods used to determine spin structures and the phase diagrams 

of these interesting materials. 

2.1 Hamiltonian 

A Hamiltonian describes how a system's energy changes with a change of the 

system's spin configuration. In our case we have a system of unit-length atomic spins 

on a predefined hexagonal lattice. The goal is to determine the orientation of the spin 
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vector on each lattice site, Si· Our starting Hamiltonian is defined in equation (2.1). 

There are three main terms: the first describes the exchange interaction between 

nearest neighbors, the second is the single-ion anisotropy, and th third is the effect 

of an external magnetic field. 

£ = - I: Jij si · sj - D I: Sf2 
- I: ff . si (2.1) 

<i,j> 

In the exchange term, Jij finds its origins with the splitting of the degeneracy of th 

singlet-triplet ground state of the two electron system [8]. We label it as th eff ctive 

exchange between two neighboring antisyrnmetric atomic wave functions that are 

close enough to overlap. The splitting is caused by the electrostatic energy of the two 

electrons, as well as the Pauli exclusion principle. These effects cause the degeneracy 

of the ground state to split into a singlet and triplet state. Jij is due to the energy 

differenc between the two split spin states, Es- Et. 

In the mod 1 spin Hamiltonians Jij is an effective interaction betw en two mag­

netic ions depending on the distance between them, so the total energy due to this 

parameter could be calculated over all ion-spin pairs. However, it drops off quickly, 

(typically as e-=) so usually only nearest-neighbor ( N) interaction are taken into 

account, as in our Hamiltonian. Next-nearest-neighbor (NNN) and third-neighbor 

interactions are ometimes includ d depending on the specific material of inter t. 

The sign of Jij dictates how the spins tend to line up as they interact. For example 

if Jij is po itive, with spins on a square lattice, the spins might line up as in Fig. 2.1A; 

this is a ferromagnetic configuration. Even though Jij causes the n ighboring spins 

to line up in the arne direction, it is th other terms of the interaction Hamiltonian 

that determine the direction of Si relative to the lattice. If Jij i negative on the same 

square lattice you will get an antiferromagnetic configuration, as in Fig. 2.1B. 
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The lattice in our model system is not square in the xy plane but triangular. 

Assuming the spins are Ising-like (that is, confined to lie along the vertical y-axi ) , 

we can see the effects of Jij > 0 and Jij < 0 in Figs. 2.1C and 2.1D, respectively. 

The case of interest is the antiferromagnetic configuration on the triangular lattice 

as two of the spin pairs can energetically satisfy the anti-parallel alignment while the 

third spin cannot. Whether it is up or down makes no difference to the energy of the 

system, making the spin frustrated. 

tt 
tt 

A 

t 
t t 

c 

t 
t t 

D 
Figure 2.1: Examples of the effect of the exchange interaction sign on equilibrium 
configurations on a square and triangular lattice for an Ising-like system. For the 
square lattice examples, (A) has J > 0 (ferromagnetic in-plane) so the lowest energy 
configuration is where all the spins are all spins are parallel, while (B) has J < 0 
(anti-ferromagnetic in) where instead the lowest energy configuration has all spins 
are anti-parallel. Triangular lattices are a bit different. Example (C) has J > 0 and 
like the square example all the spins are parallel. However (D) shows a system with 
J < 0 where two spins are anti-parallel, the third spin can be either up or down and 
still have the lowest energy configuration leading to geometrical frustration. 
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It is much more interesting when we allow the spins to rotate in the plane. This 

is called the XY model of magnetic spins. For the exchange interaction we have 

Si · Sj = SiSjcos( f)i - f)j), where f)i is the angle Si makes with the x axis as shown 

in Fig. 2.2. Due to the symmetry of the hexagonal lattice, we only need to include 

three spins in a triangle for NN interactions, which we label SA, Sa and Sc . As the 

spins are all near st neighbors, we take the same J for all spin pairs. We have 

y 

X 

Figure 2.2: Simply to illustrate what fJ is. 

H (2.2) 
<i,j> 

-J [cos(fJA- fJa) + cos(fJA- fJc ) + cos(fJa- fJc)] (2.3) 

where < i, j > denotes nearest-neighbour pairs only. Now to see what the minimum 

energy configuration is, we must minimize this interaction Hamiltonian with respect 

to each of the angles. We get 

-J [-sin(fJA- fJa)- sin(fJA- fJc)] 

sin(fJA- fJa) + sin(fJA - fJc) 

fJc+fJa 

21 
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and from the other two derivatives: 

2Bc 

eA +Be (2.7) 

(2.8) 

There are two possible solutions, ei = 0 and a solution where all 3 angles are evenly 

spaced on the unit circle, that is, ei - ej = 120° as in Fig. 2.3. There are two 

possible orientations shown, also known as the chirality of the spins. For ei = 0, 

E0 = -3J and for the 120° spin structure we get E120 = ~J. Therefore the 120° 

spin structure minimizes the exchange energy for J < 0. For our model systems on 

stacked triangular lattices we use two different Jij, one for the interaction betwe n the 

nearest neighbor spins in-plane, which we called la, while for the interaction b tw en 

nearest neighbor planes along the c axis we denote Jc. 

t 

A B 
Figure 2.3: Two examples of the 1200 structure that are the minimum energy config­
uration on a hexagonal lattice with J < 0 which differ by their chirality. 

The single ion anisotropy D comes from spin-orbit coupling. Such a term in the 

energy is allowed by symmetry for hexagonal crystals. Generally, this creates what 

is known as the easy axis anisotropy. Depending on the sign of D, this will cause th 
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spins to align with this axis, or align perpendicular to it. If D is positive the spins 

will tend to line up with the hexagonal c axis, making the system Ising-like (provided 

that other factors like an external magnetic field do not drive it away from the easy 

axis). When D is negative, the energy due to D is minimized when the spins lie in 

the xy plane. 

The last term in our Hamiltonian is the so-called Zeeman interaction. H is simply 

an external magnetic field applied to the system. This term in the Hamiltonian mak s 

the magnetic spins align with this exernal field . In our calculations, we only consider 

an applied field aligned with the c axis of our hexagonal lattice. This will cause th 

spins to lift out of the plane when D < 0. 

2.2 Computational methods 

The computational methods we use determine the equilibrium structures of a sys­

tem of spins depending on the lattice, the exchange, anisotropy, and the external 

applied field. We will describe two such m thods, the Effective Field method (EFM) 

and Landau-Lifshitz-Gilbert (LLG) equations, but there are many others. For exam­

ple, there are finite temperature methods that use Monte Carlo algorithms, and other 

methods that directly minimize the interaction Hamiltonian. 

2.2.1 Effective Field Method (EFM) 

The EFM is a simple algorithm to minimize the energy of a system of magnetic 

spins at zero temperature [9]. For each spin, an effective field is calculated by evalu-
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ating th negative gradient of the energy (or interaction Hamiltonian as in 2.1): 

(2.9) 

This effective fi ld represents the local field acting on a spin i, du to the pins 

around it, the anisotropy, and external applied magnetic field. The local spin energy 

is minimized if the spin aligns itself with the direction of this effective field. Aligning 

this spin, §i with its local effective field change the local field of nearby pins, which 

in their turn will need to b aligned to this new field to minimize their local energy. 

Doing this iterativ ly, the energy of the entire system can be minimized. 

The EFM is simple and very quick computationally. First , each spin on the lattice 

is given a random orientation. The lattice of pins is trav rsed, examining each spin 

individually, aligning each with its respective local effective field. This proc ss is 

iterated a number of times, generally less than one hundr d steps, wh r ach pas 

through the lattice, hopefully brings the system closer to quilibrium. 

Unfortunately, with this method it is possible to get stuck in local energy minima, 

meaning that the equilibrium configuration found might not be the true lowest global 

energy for those parameters. 

To address this issue, the above described method is run tens of thousands of 

times, each with new randomly g nerated spin orientations. At the end of ach run, 

the energy of the system is compared to the low st energy yet achieved; if it is lower, 

then it is stored as the new minimum energy configuration. After all th se runs are 

complete, hopefully we have the configuration with the true lowe t global energy. 

However, we can never be sure if it is the absolute minimum. 

Figures 2.4 and 2.5 illustrate that this method can reproduce the theor tical en rgy 

per spin. For each we considered a cubic lattice of anti£ rromagnetic ( la = l c = - 1) 
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spins with D = -1 (easy plane) and D = 1 (easy axis) respectiv ly. W applied a 

magn tic fi ld ii parallel to c. Theoretically we can find the energy p r spin as a 

function of these parameters. Doing this we find: 

E = -Jcos(28) - 2Dcos2(8)- 2Hzco (8) (2.10) 

where e is the average angle betwe n the spins and the x axis in the xz plan (similarly 

shown in figure 2.2). This average is ov r all spin angles in th latti e. Minimization 

of the abov gives: 

( 
IHzl ) e =±Arccos 2(D + 6J) (2.11) 

for IHzl ::; 2(D + 6J). For fields outside this range the energy increas s linearly with 

the field. For D < 0 there is a phas transition where th fi ld finally overcomes the 

effect of D and the spins lift out of the plane. There is no analogou phase transition 

for D > 0: The spins begin anti-parallel, slowly rotating as Hz is increased until they 

are all aligned along the z axis. A hown in Figs. 2.4 and 2.5, the num rical method 

is very accurate in this simple case. 

2.2.2 Landau-Lifshitz-Gilbert method (LLG) 

Another method to determine the equilibrium spin structur makes use of th 

spin equation of motion and their steady-state solution. This m thod has b en 

proven to work well for complicat d magnetic structures involving long-range dipolar 

interactions. Consid r first how a spin precesses in a fi ld in t rms of its angular 

momentum and how it chang with time. From first year physics we know that 

classically ~f ex f where L is the angular momentum and f = f x F i th torqu . 
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Figure 2.4: Comparison of EFM results to theoretical calculations for energy per spin 
as a function of applied field Hz using D = -1 (easy plane), N = 12, l a = l c = - 1 
on a cubic lattice. Note that there is a phase transition here at H z = 4.0 where the 
field is great enough to lift the spins out of the plane. 
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Figure 2.5: Comparison of EFM results to theoretical calculations for energy per spin 
as a function of applied field H z using D = 1 (easy axis), N = 12, la = Jc = -1 on 
a cubic lattice. 
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The torqu on an electron due to a magnetic field is f = [1 x H wh re [1 = J.LBS is th 

magnetic moment of the electron, J.LB is th Bohr magn ton, and H is an externally 

applied magnetic field. The angular mom ntum is relat d to th magnetic moment 

by L = 1f1, 1 being the gyromagnetic ratio [10]. With this we can onstruct what are 

known as the undamped Landau-Lifshitz equation [11]: 

-dL 
{1 X fj (2.12) 

dt 
-

djl 
-,[1 X H (2.13) 

dt 
dS 

-1SxH (2.14) 
dt 

-

Alternatively we can look at the quantum mechanical spin equation of motion [12]: 

dS = if [s .YtfJ 
dt 1i ) 

(2.15) 

where .Ytf i the quantum Heisenberg Hamiltonian. If we now take this into th 

classical realm (where the commuatator b comes a cross product) thi becomes: 

dS - -- = - 1s x H 
dt 

(2.16) 

which is the am as Eq. 2.14, the undamped Landau-Lifshitz quation. 

According to this equation, a spin in a magnetic field would pr c s endles ly 

around the the dir ction of H without a m chanism to achieve en rgy minimization 

( Sll H). In reality, the spins tend to align with the field so we ne d another term to 

drive the precession toward the dir ction of ii. This is achieved by adding a damping 

2 
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term to th fi ld in 2.14: 

- - d§ H---+ H- >.­
di 

Substituting thi into equation 2.14 and etting a= A"( gives: 

dS 1 - - a"( - - -- = - s X H - s X ( s X H) 
dt 1 + a 2 1 + a 2 

(2.17) 

(2.1 ) 

Equation 2.18 is called the Landau-Lifshitz-Gilbert equation [14], as Gilbert first 

suggested a damping t rm as in Eq. 2.17. For a single spin, }J repr nts the ext rnal 

magnetic fi ld, in a lattice of many pins it will become the effi tive field defined in 

Eq. 2.9. 

Her , a is call d the damping co fficient, which dictates how quickly the spin 

aligns with th ff ctive field. Figure 2.6, 2. 7 and 2.8 show th eff cts of a on the 

damping of a spin along the x-axis with a magnetic field along z. When a = 0.0 th 

spin precesses around the z-axis indefinitely as there is no damping. For a= 0.1 , the 

spin slowly piral until it aligns with the field. When a = 1.0 th pin aligns with 

the effectiv fi ld much quicker and achieves energy minimization. 

To impl ment this process in our program we use a simple Euler int grator to 

evaluate ach time step. That is, we approximate d~lt) = S(t+t:.~~-S(t) and substitut 

this into the left side of equation 2.18 to get: 

S(t + !1t) = S(t)- f1tr 
2 

[§ x Heff +aS x (S x II rr)] 
l+a 

(2.19) 

with !1t being an important param ter to adjust in order to optimize th program. 

Using the Euler integrator, the error in S(t + !1t) is proportional to !1t. Also, the 

larger !1t i the faster the algorithm will run. 

Figur s 2.9 and 2.10 show the results of the calculated energy p r spin of the same 
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1.5 

Figure 2.6: Path of a single spin that starts along the x-axis under the LLG equation 
with a = 0.0 and field parallel to the negative z-axis. The spin will rotate in the 
xy-plane indefinently. 
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Figure 2. 7: Path of a single spin that starts along the x-axis under the LLG equation 
with a = 0.1 and field parallel to the negative z-axis. The spin will slowly spiral 
down until until the spin aligns with the field. 
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Figure 2.8: Path of a single spin that starts along the x-axis under the LLG equation 
with a = 1.0 and field parallel to the negative z-axis. The spin will quickly align with 
the field. 
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system considered for the EFM (Fig. 2.4 and Fig. 2.5). Again the numerical r suits 

agrees very well with the theoretical values. 

-3 .-------,--------.--------.-------,--------.--------r-----~ 
LLG Results + 

Theory -------

-12 ~------~-------L--------L-------~-------L--------L-------~ 
0 2 4 6 8 10 12 14 

Figure 2.9: Comparison of LLG results to theoretical calculations for energy per spin 
as a function of applied field Hz using D = -1 (easy-plane), N = 12, Ja = Jc = -1 
on a cubic lattice (same as in Fig. 2.4). 

2.2.3 Comparison of EFM and LLG 

To make a simple comparison between both methods, for accuracy and speed, we 

used a modified x2 test, commonly employed test null hypotheses in statistics. In 

our calculation, we are testing the difference between the energy per spin between 

the numerical and theoretical calculation. This includes rounding error, algorithmic 

error , and error due to the relaxation time. The total of these errors goe like v'X_'1, 
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Figure 2.10: Comparison of LLG results to theoretical calculations for energy p er 
spin as a function of applied field Hz using D = 1 (easy-axis), N = 12, la = l c = - 1 
on a cubic lattice (same as in Fig. 2.5) . 
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and should b a good test for the accuracy of these methods. Th form of x2 we u 

IS: 

(2.20) 

where the urn i over all calculated instanc , Ci is the calculat d energy per pin , 

and ~ is th or tical value. Smaller x2 meanst , the closer th numerical result 

relative to th th oretical calculation. A reasonable value for x2 for eith r of th 

algorithms is on the order of 0.01. 

The program is run until it reach a pr defined x2 threshold and the time is th n 

recorded. Accuracy and computational tim are increased by performing more run 

for the EFM, or by increasing the total quilibration time in the LLG method. 

For our te ts we used the same theor tical re ul ts as in Fig . 2.4 and 2. 9 ( D = - 1, 

N = 12, la. = Jc = -1, and with Hz going from 0 to 14 in steps of 0.5). Each line on 

Fig. 2.11 hows the total computational time for a different numb r of passes through 

the lattice for the EFM while each lin on Fig. 2.12 correspond to a different !:lt for 

the LLG m thod. 

As can be en from Figs. 2.11 and 2.12, th LLG method i much slower than th 

EFM in this test. As an exampl , it takes th LLG method 221 s conds to achieve 

x2 = 0.1 while the EFM requires only 7 seconds. Moreover, th LLG m thod was 

unabl to converge to the theoretical value for x2 = 0.03, which i on idered to b 

insufficient. This problem is addres ed by the adaptiv time step described in the 

next section. 

2.2.4 Adaptive time st ep for LLG 

Even though the LLG method seems lower than the EFM with convergenc of 

energy, we can improve run time u ing the o called adaptive tim tep. Simply put 
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Figure 2.11: Total computational time for convergence of computed energy per spin 
to the theoretical value for 30-70 passes through the lattice with the EFM. At 60 
passes through the lattice the computer energy per spin converges the quickest. 
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Figure 2.12: Total computational time (note the vertical scale is different than in 
Fig. 2.11) for the LLG method to converge computed energy per spin to the theoretical 
value for time step D..t = 0.001, 0.01, 0.1 , 1.0. The case of D..t = 1.0 is almost parallel 
to the x-axis. 
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the adaptive time step is a way to change the size of the time step used in the LLG 

equation to larger steps when the system is slowly changing and to smaller steps when 

the system is changing quickly. 

This check is a simple energy convergence test. A new spin configuration is gen-

erated with a full time step (t + ,6.t) with energy E1 as well one with a half time 

step(t + ~t). From the half time step system another system is generated with the 

half time step ( t + ( ~t + ~t)) that has energy E2 . If I E1 - E2 1 is within some threshold, 

typically 10- 2 , the step is accepted and the time step is doubled. If not, the step is 

rejected, the time step is halved, and the convergence test is done again generating a 

new spin configuration. 

The speed up is substantial using the adaptive time step as can be seen from 

Fig. 2.13, which is with ,6.t = 10-4 . The LLG method without the adaptive time step 

was only able to converge to x2 = 0.1, with this particular time step (,6.t) there is 

over a 1500 times speed up at x2 = 0.1, as well as achieving greater accuracy. 

Now for x2 = 0.1, the LLG method with adaptive time step takes only 10 seconds 

to converge which is on the same order of EFM's 7 seconds. For more complicated 

spin systems (such as those with long-range dipolar interactions), LLG is expected 

to be more reliable and faster. Greater accuracy can also be acheived by using a 

different integrator than Euler such as the mid-point method where 

dS -t s(t + ,6.t)- s(t- ,6.t) 0(,6. 2) 
dt 2,6.t + t (2.21) 

However, the Euler method is considered to be the most straightforward to implement 

when finite temperature effects are added through a stochastic field term [13] as 

described below. 
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Figure 2.13: Total computational t ime for convergence of computed energy per spin 
to the theoretical value for D.t = 10-4 for LLG with and without adaptive time 
step(ATS). 
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2.2.5 Addition of temperature to LLG 

To study the phase diagram of th RMn03 class of materials, we ne d to look 

at how temp rature affects the y tern. Adding temperature to the computational 

calculations i where the EFM and LLG equations diverge in their usefulness. To 

simulate temperature a new term is added to the damped LLG quation which r p-

resents a small random torque. This new term, explained in Appendix A, and when 

added to Eq. 2.19 we get: 

(2.22) 

where fi is a stocastic field that is due to thermal fluctuation . 

The EFM completely fails when a random vector term is add d. Th EFM fails to 

represent any sort of dynamic variable , such as temperature, as it i just an energy 

minimization technique. 

To test the LLG method with temperature added we u d a 2 dim nsional square 

lattice of spin of various sizes with J = 1, Hz = 0 and D = 1. Thus, we hav an 

Ising-like system where the average ab olute magnetization is measured with r pect 

to the z-axis is measured. There should be a transition to z ro magnetization at a 

critical temp rature which we can se in Fig. 2.14. Her < I Mz I > represents the 

thermal average of the magnetization along the z-axis and is d fin d by 

N 

< IMzl >=I{;; s:l (2.23) 

The transition temperature found here, Tc ~ 0.8J / k8 is in good agreement with 

previou LLG calculations [13]. A complete di cussion of thermal av raging within 

the LLG formalism is deferred to the n xt chapter. 
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Figure 2.14: Average absolute magnetization as a function of temperatur for a LxL 
square system of spins. There is a transit ion to zero magnetization at about ksT / J = 
0.8. 

41 



----- ---~-~----

Chapter 3 

H-T magnetic phase diagrams: 

Impact of additional energy terms 

Now that we have the ground work completed and the basic LLG model tested, 

we can begin to examine systems with different geometries of magnetic spins and try 

to build a model appropriate to explain key features of the magnetic phase diagram 

of HoMn03 . 

3.1 Identifying phases and transitions 

One of t he more difficult problems is to identify, computationally, which of the 

phases our system is in, given a particular temperature and externally applied mag­

netic field. We must be able to determine numerically whether or not the system is 

in the 120° structure in-plane or in some other spin configurations. 

While it would be possible to visually inspect all spin configurations individually, 

this would be completely unmanageable for any practical applications. Any fine 

changes in structure may be lost, moreover it would be difficult to decide where the 
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transitions between phases occur. We can achieve an automat d 'insp ction' through 

thermally av rag d order parameters which ar tuned to the structure we expect to 

see. 

3.1.1 Thermal averages within the LLG formalism 

An important qu stion to ask now is even if the LLG equation are d riv d from 

fundamental considerations do the dynamics they describe behave according to the 

laws of thermodynamics? Fortunately this is fairly simple to verify. As it is well 

known, any infinite physical thermodynamic system must exhibit, over a large a set 

of randomly sampled states, a sharply peaked energy distribution, c ntered around 

the averag energy of the system over those states. As this is not an infinite sy tern, 

we can xpect that if LLG can indeed simulate proper thermal average we will g t 

a broadened but still peaked distribution. 

To verify this in our model, we performed simulation on a simple hexagonal 

stacked lattice with 6x6x6 spins. For this imulation, the param ters for Eq. 2.1 

are la = -1.0 (antiferromagnetic in-plane), lc = 1.0 (ferromagn tic b twe n plane ), 

and D = -1.0 (planar anisotropy). With these parameter , we expect the system 

to equilibrate to the planar 120° structure. At random tim steps after the sy t m 

equilibrates (which takes about 100 time steps), we calculate the energy of th system 

and record this using a binning system. Each of the bins contain the counts of sy tern 

energy within the bin size of (Emax- Emin) /Nbins· For our simulation, w use a total 

of 20 bins. These are ploted on a energy bin versus count graphs, using the middle 

value of the energy bin as the index. We did this at a temperature of T = 0.4 and 

plotted the results in Fig. 3.1. As can be seen, this shows the expected behaviour for 

a thermodynamic system. While not shown here, we tested that this occurs for either 
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a uniform or gaussian number generator in the algorithm to incorporate the thermal 

nOise. 
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Figure 3.1: An energy distribution curve made using an energy binning method for a 
simple ferromagnetically stacked system of antiferromagnetic triangular layers from 
LLG method, using a system size of 6x6x6. Note how this curve is peaked at a 
particular point, but is not sharply peaked. This is due to the finite size of the 
system, yet it still is able to capture most of the energy states around this point. 

We now consider taking thermal averag s following a similar scheme: run a s1mu-

lation for a long time and randomly sample the system at various times and take an 

average of some quantity over this time period. The quantities we wish to consider 

are the order parameters. 

The first of the order parameters has been well studied in frustrated triangular 

antiferromagnets with the 120° degree structure [15]. We simply call this order pa-
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rameter S (different from S refering to the vector that represents a spin) and is related 

to the wave vector, Q, that describes the direction of the spin at any given !attic 

point, R. That is: 

S(R) = §Q [exp(iQ · R) + exp( -iQ · R)) 

It can be shown that the wave vectors that can describe the 120° structure are: 

or equivalently 

Q
- 211" ~ 11" ~ 

2 = -x±-y 
3a b 

(3.1) 

(3.2) 

where a is the distance between sites in the :i; direction and b is the distance between 

sites in the fJ direction. The different values are for the two chiralities which are 

depicted in Fig. 2.3. Eq. 3.1 can be rearranged and expanded to: 

This is related to our order parameter S, where: 

N 

S/N = L SQ(~) 0 SQ(~) (3.4) 
i=l 

This will take on a value approaching unity at zero temperature when the system is 

fully ordered in the 120° structure, and approach zero at the transition to paramag-

netism due to thermal fluctuations. Figs. 3.2 and 3.3 show how the value of S evolves 
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as a function of time at a temperature less than and greater than a critical temper-

ature Tc. For this simulation, a simple hexagonal stacked system with la = -1.0, 

Jc = 1.0 and D = 1.0 was used. The simulation results shown in Fig. 3.2 were taken 

at T = 0.2, with a random starting configuration. As can be seen, it starts at a small 

value and quickly rises to a constant value of about 0.63, wh re it eventually levels 

out. We take our thermal averages along this level area of the S / N vs time graph. 

Above the critical temperature, as shown in Fig. 3.3, the value of S/ N hov rs around 

zero. 
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Figure 3.2: S/N versus simulation time, where N = 6x6x6, using a simple hexagonal 
system at a temperature (T = 0.2) below the critical temperature. In this cas th 
value of the order parameter quickly levels off and oscilates around a single value. 

We take our order parameter measurement as an average over many time steps 
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Figure 3.3: S/ N versus simulation time, using a simple hexagonal system at a tem­
perature (T = 1.4)above the critical temperature. Unlike Fig. 3.2 the order param ter 
here does not rise and level off to a particular value, but rather stays near zero varying 
rather wildly. 
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after the quantity in question is oscillating steadily around a mean value, as this 

indicates that th system is now in thermal equilibrium. Take Fig. 3.2 as an exampl ; 

we could begin taking our average after 100 time units, and continue ad infinitum, the 

more points we take the better the average. If we apply this to a system with the 120 

degree structure and take more of these S/ N averages at several temperature points 

at a constant appli d field , can det rmine the transition temperature when our order 

parameters S heads to zero. This is illustrated in Fig. 3.4, where we tak the exampl 

of a simple hexagonal system in zero field. We take the transition temperature as the 

inflection point of the curve as it heads to zero, as is common practice for finite size 

systems. 

It is convenient to define two additional order parameter , M and W . The objec-

tive of these order parameters is to determine whether th spins are aligned along th 

basal plane axes or perpendicular to them. Consider Fig. 3.5, the figure on the left 

has spins aligned along the basal plane axes while the spins of the figure on the left 

are perpendicular, as in Fig. 1.3. Consider as an example the following equations: 

(3.5) 

(3.6) 

where the sum is over a triangle of three spins, and Sa is the ath component of the 

spin in the xy plane. Looking at Fig. 3.5 at the second figure, we se that Eq. 3.5 

will yield infinity as the upper most spin will have Sx = 0 , while Eq. 3.6 there is no 

such division by zero and the sum ov r th triangle will yield 6. This is a very useful 

relationship that does exactly what we want. However, it is not efficient to calculat 
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Figure 3.4: An example of how the thermal averaged order parameter S / N behaves as 
the temperature changes. We define our critical temperature as the point of inflection 
of the curve before and after the swift drop. In this case the transition temperature 
would be approximately 1.1. 
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Figure 3.5: The triangle of spins on the left represents spins that are aligned along 
the basal plane axes, as they are parallel to one of the vectors that joins the centers 
of two adjacent atoms. On the right is an example of spins aligned perpendicular to 
those axes. See Fig. 1.3 

49 



r------------------------------------------------------------------ ------

Along Basal* Perp. to Basal* 
w ~1 ~3 ~3 

M :::::3 ~~ 

Table 3.1: Possible empirical values for the order parameters W and M found by 
applying W and M to systems with spins aligned perpendicular and parallel to the 
basal plane axes. (* - Basal plane axes). 

in this manner. As this involves components of a spin, we should be able to relate 

these quantities to terms that we calculate for our SQ1 , the order paramater. We can 

empirically find that Eq. 3.5 and Eq. 3.6 can be expressed as: 

w Im(SQ) 2 

~ Re(SQ) 2 
(3.7) 

Re(S~)2 

(3.8) - ~ Im(S~)2 
M 

Re(SQ)2 

~ Im(SQ) 2 
(3.9) 

Im(S~)2 

~ Re(S~)2 (3.10) 

Table 3.1 shows the possible values of M and W found numerically. 

Using these three order parameters, we are able to begin explaining the dif­

ferent phases and H-T magnetic phase diagrams of complicated triangular anti-

ferromagnets. 

3.2 Simple hexagonal systems 

Now that we have the tools in place, we can now look at field versus temperature 

phase diagrams for various spin configurations and signs of Ja and Jc. To begin, we 

consider at the simplest system that has the 120 degree ordered structure, the simple 
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hexagonal antiferromagnet. Fig. 3.6 shows an example of such a system, where th 

spins are arranged in triangular planes stacked directly one over ach oth r. With 

lc = -Ja = 1, this is the simplest triangular antiferromagnet we can examine and 

simulate. According to theoretical models, we should get only two phases, an ordered 

phase with an in-plane 120 degre structure and ferromagnetic ord r b tween plane , 

or a disordered phase. The phase diagram should roughly r mble th sketch in 

Fig. 3.7. 

Figure 3.6: Thi is an example of a simple h xagonal or AA tacked lattice. It consists 
of triangular plan of spins that are stacked directly on one another. 

In theory, the region of order hould contain only the 120 degree structure de-

scribed previously. Because of this, the only order parameter of use is S which will be 

non-zero when the system is ordered below the transition line and zero above the line. 

To reproduce the phase diagram illustrated in Fig. 3.9 we must make temperatur 

swe ps at various values of Hz. This yields the results shown in Fig. 3.8. 

Taking the point-of-inflection as the transition temperatur at different field val-

ues, we can create a phase diagram, shown in Fig. 3.9. From this we can see that th 

zero field transition temperature Tc is approximately 1.1. 
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Figure 3. 7: Sketch of the anticipated phase diagram for the simple hexagonal antifer­
romagnet 
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Figure 3.8: Change of the order parameter S / N with varying temperature, at different 
field values. There is a transition in each curve that represents where th re is a 
phase change from order to disorder. The inflection point of each curve indicates the 
transition point. 
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Figure 3.9: Result of taking the tran ition temperatures from Fig. 3. and plotting 
them against field. We get a phas diagram that is very similar to what was expected 
from theory (Fig. 3.7). There is a critical temperature of~ 1.1 wh n the appli d field 
is zero. Thi diagram was generated with la = -1.0, lc = 1.0 and D = -1.0 in our 
Hamiltonian de cribed in Chapter 2. 
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3.3 AB stacked system with ferromagnetic and anti-

ferromagnetic inter-layer coupling 

Another interesting case to con ider in th next step toward under tanding HoMn03 

is to mod 1 a cry tal structure similar to the principal magnetic pin in HoMn03 . 

As discu ed in Chapter 1, these Mn ions are arranged on triangular layer stacked in 

a AB aternating fashion, the Mn ions align with the 'holes' created by th triangular 

structur of adjacent layers, as shown in Fig. 3.10. 

Figure 3.10: Hexagonal AB stack d system where one layer is stack d offs t from th 
first. 

This will allow us to get an idea of how well our model mimics the physics of the 

exchange interactions between Mn atoms in HoMn03 (see Fig. 1.3). First let u 

examine what tructures can be simulat d by considering two examples with the 

inter-layer exchanger parameter, Jc, being either negative or po itiv at z ro magn tic 

field. 

With Jc > 0 (Jc = 0.01, la = -1.0, D = - 1.0, T = 0.4) as in Fig. 3.11 we s 

that the in-plane structure corresponds to the 120 degree configuration as expected, 
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Figure 3.11: A 6x6x2 system with lc = 0.01, la = -1.0, D = -1.0 T = 0.4. Light 
and dark circles denote AB stacked layers. Notice that while the spin are mo tly 
in the 120° structure, some are off by several degrees and there is no particular 
orientation of the spins relative to the crystal axis. 

with some variation due to finite temperature. However, note that the orientation of 

the moments in-plane are not ti d to the crystallographic axes as in Fig. 1.3. Thi 

is what is seen over several simulations and reflects the lack of in-plan anisotropy in 

our model. The spins between adjacent planes do not line up exactly, as in Fig. 1.3, 

but can differ by a great angle between planes, or more depending on the size of lc, 

presumably due to thermal fluctuations. In this case, the arne phenom non is s en 

in Fig. 3.12, where lc < 0 (Jc = -0.01, la = -1.0, D = -1.0). Th spins betw en 

planes are not quite antialigned due to the competition betw en the la and lc energy 

terms and thermal fluctuations. 

The H-T phase diagram of this AB stacked system was mapped out in a fa hion 

similar to the simple hexagonal case. Fig. 3.13 corresponds to the case where lc > 0, 

and Fig. 3.14 is for lc < 0, both being nearly identical. The transition temperature 

for both is roughly 0.43. The lower transition temperature, as compared to the simpl 
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Figure 3.12: A 6x6x2 system with Jc = -0.01 , la = -1.0, D = -1.0, T = 0.4, as 
in Fig. 3.11. The 120° structure is again dominant. This time however, the spins are 
mostly anti-aligned between planes but once again there are some that don't at all 
due to thermal fluctuations. 
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hexagonal case (1.1), can be attributed to a weaker interaction between planes. In the 

simple AA stacked case a single spin 5 has two interplane neighbors, both of which 

can be parallel with 5. In the AB stacked case there are six inter-plane neighbors. 5 

can only be parallel with two of these spins, one on each plane, if the 120° structure i 

maintained. Assuming that the planes above and below 5 are the same, the exchang 

energy term looks like 2Jc5 ·(51 + 52 + 53 ). It is easy to see that there is no way that 

all three spins can be parallel if each plane is in the 120 degree structure. 

8 

6 

... 
:r: 

4 

2 

OL----L----~--~----~----L----L----~-+_J 

0.05 0.1 0.15 0.2 0.25 0 .3 0.35 0.4 0.45 

Temperature 

Figure 3.13: AB stacked system with ferromagnetic inter-plane exchange. Using a 
similar procedure that generated the phase diagram for AA stacking (Fig. 3.9). The 
critical temperature is around 0.43, less than half the AA stacked case. 
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Figure 3.14: For the AB stacked case with antiferromagnetic inter-plane coupling we 
get the exact same phase diagram as Fig. 3.13. The sign of Jc does not seem to affect 
the transition temperature of the system and, like the Jc > ~- case the transition 
temperature is approximately 0.43. ) 
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..------------------------------~------

3.4 Effect of in-plane anisotropy 

While the interaction terms described in Chapter 2 capture the main features of 

the HoMn03 phase diagram, they are still not enough to completely define each phase. 

In Fig. 1.3, we see that the spins are either orientated along the basal plane axes or 

perpendicular. However, with the terms considered so far, we can only reproduce the 

in-plane 120 degree structure. We need a new term in our Hamiltonian, that will 

cause the spins to pick out a particular direction with respect to the crystal axes. 

Hexagonal symmetry allows an anisotropy term of the form [17]: 

(3.11) 

We can express this in terms of the angle that S makes with the x-axis, fJ (Fig. 2.2) 

as 

(3.12) 

In this form it is easy to see that, depending on the sign of E, that the spins will now 

want to align either along one of the basal plane axes or perpendicular to them. We 

see that if: 

E > 0 then 
1f 

f)= (2n + 1)6" 

E < 0 then 
1f 

f)= (2n)6 

where n is an integer. In other words, when E > 0 the spins will tend to align 

perpendicular to the basal plane axes, while for E < 0 they will align parallel. Both 

configurations are shown in Fig. 3.15. 
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0 

0 0 

0 0 
Figure 3.15: Each of the circles represent an atom in the lattice. The dark arrows 
represent a spin in the xy-plane where E > 0 and the spin is aligned with the basal 
plane axes, wher the lighter arrows represent a simlar spin where E < 0. 

With this addition to the Hamiltonian we should able to account for any of the four 

magnetic structures described in Fig. 1.3. This is accomplished by changing the signs 

of the in-plane anisotropy E and the interplane exchange Jc, neith r of which change 

the transition temperature, TN. We now look at a couple examples where this term 

is present. The result of adding this term to the Hamiltonian in our LLG simulations 

are shown in Figs. 3.16 and 3.17 for systems with E > 0 and E < 0, r spectiv ly. 

Note that the variation of angles between adjacent layers, described in ection 3.3, has 

disappeared. While our model can now generate any of the four observed magnetic 

structures seen in HoMn03 with our model (see Fig. 1.3) depending on the sign of 

the model parameters, there is still only one transition as th re is no m chanism 

which can induce a transition between those magnetic phases. Consequ ntly, a model 

with Jij , D, and E, involving only Mn ions, is not adequate to explain the complex 

magnetic phase diagram of HoMn03 . 
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Figure 3.16: With the added E > 0 term the spins are now trictly in the 120° 
structure, with spins aligned parallel to the basal plane axes as Fig. 1.3. This exampl 
has ferromagnetic exchange between planes and, as can be seen, the pins are align d 
between planes as is expected. This particular structure matches the HT2 phas in 
HoMn03. H re lc = 0.01, la = -1.0, D = -1.0, E = 0.01 and T = 0.4. 

3.5 Introducing Mn-Ho coupling 

It has been suggested that the richn s of the HoMn03 diagram com from the 

interaction b tw n Ho and Mn spin [7]. While the interaction betw n like atomic 

spins is well understood, there does not s m to be a universal mod l of how unlike 

spins interact, if they do at all. 

The int r ting thing about HoMn03 is that we cannot describ th interaction as 

a straight exchange term between the Ho and Mn, since they are strictly perpendicular 

to one another, so any S~o · S~n term will be zero. So there mu t be another way to 

explain their apparent interaction. 

There is an unusual anisotropy term as ociated with som systems having trian-

gular symmetry such as HoMn03, with pace group P63cm. Call d the trigonal term, 

this interaction may explain the apparent interaction betw n unlik atoms such as 
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Figure 3.17: An example system with E < 0 and lc < 0. Each plane has the 120° 
symmetry that we would expect, however with E < 0 the spin should be aligned 
perpendicular to the basal plane axes, though the difference between most spins and 
these axes is slight (it is exaggerated in this diagram as it is otherwise hard to discern 
with the naked eye). This corresponds to the LT1 phase shown in Fig. 1.3. The 
spins between planes are anti-ferromagnetically aligned as we expect with negative 
lc. Here lc = -0.01, la = -1.0, D = -1.0, E = -0.01 and T = 0.4. 
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Ho and Mn. However, it is only allowed by the magnetic symmetry if either the 

Mn spins or the Ho spins are antiferromagnetically aligned between layers, but not 

both, or the term will be zero. This term has had previous applications to other 

materials [17] in various forms, but for our purposes it could be of the form: 

K L { SHoSfAn [3 (SMn)
2

- (SfAn)
2
]} (3.13) 

Mn,Ho 

Explicit Mn-Ho coupling has not been included in our LLG simulations. However, 

we consider a simple Landau free energy model with this term included in the following 

chapter. 
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Chapter 4 

Discussion on the effects of 

magnetic Ho ions 

While this work does not fully explain the the phase diagram of HoMn03, it 

demonstrates some progress toward understanding the important magnetic interac­

tions in this material. We are able to simulate and generate every experimentally 

observed configuration through just a few interaction terms. While we do see a tran­

sition between the ordered phase that is defined by our model parameters and a 

disordered phase, transitions between ordered phases do not occur. 

We have also shown that LLG can be used to find not only zero temperatur 

steady state configurations but also spin configurations in frustrated triangular anti­

ferromagnets at a finite temperature. These configurations show real thermodynamic 

properties, which can be used to define the aforementioned phase transitions. 

The trigonal K term is next to be explored and looks very promising. In section 

4.1, a simple Landau free energy is presented and a brief example is given on what 

is to be expected when this term is added to a model such as ours. In section 4.2, 

a discussion on other possible Mn-Mn, Ho-Ho and Mn-Ho exchange interactions is 
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given. 

4.1 Simple Landau free energy 

An analysis of a simple Landau free energy which includes Mn-Ho coupling through 

the trigonal K term, can show us roughly the types of transitions that are possible 

between different phases. It is based on the exchange energy terms as in our Hamilto­

nian, however we also have two different spin entities S = SMn _l C. and S0 = SHo II C. 

which couple through the trigonal term. Eq. 4.1 is the zero field Landau free energy 

with isotropic terms to sixth ord r and anisotropy terms as discussed above can b 

written as [21]: 

where <Pis the angle§ makes with the a axis, A= a(T- TN), Ao = a(T- To), and 

the other constants are free parameters. 

Assuming reasonable parameter values, we can numerically minimize the free en­

ergy. With a= 1, T0 = 1, TN = 1, B = 1, Bo = 0.3, B1 = ~, C = 1, E = 0.2, 

K = 0.2, results show a total of 3 transitions. Referring to Fig. 4.1, b low T = 0.45 

we see a phase with P6; symmetry, that has <P between 0 and ~- At T = 0.45, a 

transition to the HT1 phase (¢ = ~) is realized while at and at T = 0.65 we se a 

transition to the HT2 phase (¢ = 0) is reproduced, as in Fig. 1.3. 

While this analysis depends heavily on the initial parameters, it shows that it is 

possible to generate more than one transition with the trigonal term as a consequence 

of Mn-Ho coupling. 
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T = 0.00 T=0.45 T = 0.65 T = 1.00 

P6'3 HT2 HT1 Disorder 

Figure 4.1: Landau theory results at H = 0 

4.2 More interactions in HoMn03 

The mod 1 we have developed thus far for HoMn03 assumes a perfect triangular 

lattice. This is in fact an approximation, as the structure HoMn03 , particularly the 

Mn spins, is composed of slightly distorted triangles [16] . These distortions will lead 

to two or more unequal in-plane exchange terms depending on how the lattice differs 

from that ofthe perfect triangular lattice (an example of which is in Fig. 4.2). 

Figure 4.2: The triangular lattice in the structure of HoMn03 is in reality, a slightly 
distorted triangular lattice 

Wh n putting HoMn03 under close inspection, we notice that there are many 

types of interactions that are relevant , some of them being the ex hange between 

magnetic spins. In Chapter 3, we touched on a few possible interactions in order to 
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- - -- ----------------------------

Interaction In plane or Between NN distance (A) Number in Fig 4.3 
Ho2 - Mn Between 3.5049 1 
Mn- Mn In plane 3.5334 2 
Ho1 - Ho2 In plane 3.5334 3 
Ho1 - Ho1 In plane 6.1200 4 
Ho1 - Mn Between 3.5049 5 
Ho1- Ho2 Between 6.7063 6 
Ho2- Ho2 In plane 3.5334 7 
Mn-Mn Between 3.5049 8 

Ho{l ,2) - Ho(1,2) Between 5.700 9 

Table 4.1: A number of the possible dominant interactions in HoMn03 , see Fig. 4.3 
for an example. 

model the H-T magnetic phase diagram. However, there are a host of other possibl 

exchange interactions as listed in Table 4.1 and illustrated in Fig. 4.3. 

There is a possibility of 9 dominant interactions between spins in HoMn03 , how-

ever, so far this work has only examined the effect of exchange between Mn-Mn 

in-plane and out of plane. While this is enough to describe all phases m ntioned 

in various papers, it is not enough to account for a transition between any ordered 

phases. This is attributed to the fact that we asume a perfect triangular lattice on 

each plane. If we must take into account the irregularity describ d in Fig. 4.2, this 

will change a number of distances between atomic spins and will require even more 

exchange or anisotropy terms. 

To complete the phase diagram the of HoMn03 , Ho spins must be added to th 

model, as explained in Section 3.5. In addition to the exchange term in Eq. 3.13, we 

must bring two new atomic spins into our LLG equations (Ho1 and Ho2). One way to 

accomplish this is to have separate exchange and anisotropy terms in our hamiltonian 

for each Mn, Hob and Ho2. The difficulty will be to estimate which of the additional 

interactions in Table 4.1 are important. 
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Figure 4.3: A diagram showing all interactions explained in Tabl 4.1. Lab Is r fer 
to the right hand column of the same table. 
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Chapter 5 

Summary and Conclusions 

One of th most important conclu ions we can draw from results pr sented in 

this thesis is th fact that we can accurat ly model geometri ally frustrat d antiferro­

magnets with the Landau-Lifshitz-Gilbert equations, as long as we hav an accurate 

Hamiltonian. In Chapter 2, using a typical cubic antiferromagn tic lattice we were 

able to reproduce the energy behavior versus field , which was u ed to compare the 

speed and accuracy between the EFM and LLG methods. In our tudi of hexago­

nal fru trated anti-ferromagnets, w obtain the 120 degre stru tur ommon to th 

systems, whenever the spins are restri t d to the plane. 

Using the LLG method, we were able to model phase transitions due to temp r­

ature and applied magnetic field in s veral stacked triangular antif rromagnets. In 

these systems th re was only one ord red phase with a singl tran ition to a di or­

dered state. The ordered phase dep nds on how the hexagonal plane ar stacked, as 

well as, the signs of the inter-plane exchange and the in-plane anisotropy terms. Th 

in-plane anisotropy term is needed to explain all of the HoMn03 structures, but it is 

not enough to account for all transitions in the HoMn03 H-T phas diagram. 

Our model considers the Mn spins as the only contributor to the spin structure. 
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The next important step toward understanding and modeling the entire phase dia­

gram of HoMn03 is to include interactions between Ho spins, as well as with Mn spins. 

Using a simple Landau model, we were able to show that the trigonal term could ac­

count for different phase transitions at zero field and shows that the same structures, 

described in experimental work on HoMn03 , come out of energy minimization. 

Another idea for future work is to deepen the understanding of the AB hexagonally 

stacked system, particularly when in-plane anisotropy has been added to the system. 

It is easy to see empircally that large exchange between planes (that on the order 

of the in-plane exchange) is in competition with the effects of in-plane anisotropy, 

and large in-plane anisotropy negates the effects of the in-plane exchange. While 

this has not been explored at all in this work, it would help with the understanding 

of what reasonable values for the in-plane anisotropy and the inter-plane exchange 

terms, which in turn will help the understanding of the interactions of HoMn03 and 

others in the RMn03 family which all have the same crystal structures. 
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Appendix: Addition of 

Temperature to LLG 

A quantity (X) that propagates with a time step b.t in a random (stochastic) 

fashion is called a Markov proc s [18]. Thus, the change in X can be defined by: 

X(t + b.t) = X(t) + F[X(t), b.t] (5.1) 

where is F is som normal random propagator called the Markov propagator. Th 

Weiner process describes a continuous stochastic change over a time b.t which can be 

described in term of a Markov propagator [19]: 

F[X(t) , b.t] = 8~Nt.t(O, 1) (5.2) 

where 8 is a variable that defines the ize of the propagation over b.t , and Nt.t(O , 1) 

is a normal random number centered around 0 with deviation 1. This type of de­

scription is also r sponsible for Langevin dynaimcs. The factor of 8-Jt;:i comes from 

the normalization of the assumed Gau sian distribution of the probability density of 

a stochastic variable X at time t in: 
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p (X ) 1 [ (X - X o) 
2

] 
' t .J2rr82t xp - 282t 

(5.3) 

This also satisfies the classical diffusion equation with the diffusion constant being 

~82 . We can now look at a change of X with respect to time: 

dX = X(t + t::.t)- X(t) = _ 8_N (O 1) 
dt t::. t .JlSJ; D. t , 

(5.4) 

Taking this back to the problem of adding temperature to th LLG equation, we 

want to change the spin so the change is proportional to the t mperature. We can 

model this using a small random torque, 7, in a similar way to how the torque due 

to effective field affects the spin: 

T = -S X ij 

ij = TJ [Nx(O, 1), Ny(O, 1), Nz(O, 1)] 

(5.5) 

(5.6) 

(5.7) 

where Ni(O , 1) ar all statistically independent. The TJ is a constant that is pro-

portional to the temperature, th propotionality is determin d from equipartition 

theorem and fluctuation-disapation theorem [20]: 

(5.8) 

(5.9) 

Now looking at the change of§ with respect to time, and making use of Eq. 5.4, we 
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now have: 

S(t + t::.t) - S(t) 
!::.t 

s(t + t::.t)- s(t) 

With this, the damped LLG equation (Eq. 2.19) becomes: 

(5.10) 

(5.11) 

(5.12) 

So, to impliment this into a computer code, we need three independent random 

numbers. As long as a good pseudo random number generator, with a long enough 

repatition length, is used any three generated numbers should be independent. These 

will be multiplied by the ry corresponding to the temperature of interest (Eq. 5.8) 

and stored in a vector. In the interest of using an adaptive time step, this new 

temperature term must be subtracted at the end of each step rather than being a 

part of the adaptive time step. This is because we generate a new random vector with 

each configuration so achieving convergence with a random term is highly unlikely. 
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