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Abstract

Using the Landau-Lifshitz-C  be  cquations, we model magnetic ficld vs temperature
phase transitions in several frustrated stacked triangular antiferromagnets. We find
this method to ' " covemel from previously used effective field niethods.

The algorith ed to1 metoclectric HoMnOs. A variety of novel interac-
tion terms are proposed to « Hlain the stability of the numerous spin states observed

in this and related compoun
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Chapter 1

Overview of the mag etic phases

in RMnO3 compot..ds

In recent years there has been a revived inter . in magnetoelectrie phenomnena,
in particular in the class of compounds RMnQOj, where R is a rare carth element like
Ho, Er, Yb or Y (sce Fig. 1.1). Magnetoclectric materials are rather interesting since
an applied magnetie field can induce an clectrie polarizat i()u(F x 17) and an applied
electric field can induce a magnetic moment in the material (1\7 x F ). This behaviour
is known as the magnetoclectric effect and occurs in most of these materials at a
rather high temperature, on the order of 900K. These materials also exhibit magnetic
ordering at a much lower temperature, around 100K for most [1][2][3][4].

This newfound interest in th  » materials is brought about mostly by academic
curiosity but also due to potential applications in industry such as creating a new
class of highly accurate sensors, as well as the possibility that these materials will be
uscful for electronic data storage.

Of particular mterest to us in this family is HoMnQO3; which has a complicated

low temperature phase diagram, first explored by Fiebig et al. in 2002 using second
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that the two layers are stacked in an AB fashion). The lighter colored circles represent
the Mn atoms in one layer, while the darker ones represent the second layer m the
unit. cell. The spins of each phase are cither aligned along the basal plane axes as in
HT2 and LT2, or the spins are perpendicular to tl - basal plane axes as in HT1 and
LT1. In HT1 and HT2, adjacent layers are ferromagnetically aligned while in LT1

and LT2, the two layers are antiferromagnetically aligned.

P6',cm’ M 6'5¢’'m  HT2

1ogv e [ S

Mn = Layer 1
Mn - Layer 2

Figure 1.3: In-planc projections «  the Mn spins of the HoMnOj3 phase diagram. The
dark and light blue circles represent. atoms on separate layers. In the HT2 phase all
spins are aligned along a basal plane axis and adjacent layers are ferromagnetically
aligned. For HT1, all spins are rotated by 90 degrees to become aligned perpendic-
ular to the basal plane axes. LT1 and LT2 are similar to their high temperature
counterparts except that the layers are antiferromagnetically aligned.

A few years later Yen ct al.[3] found a slightly different phase diagram in which
there is an intermediate (INT) phase between HT?2 and the zero field line at zero

temperature, reducing the LT1 phase to a sinaller region at higher ficld. This phase
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They propose that the Ho spins order will change depending on temperature. At
high temperature there is a phase where therce is no magnetization associated with Ho
spius, in termns of the described HoMnOj phases this corresponds to the disordered
phase and most of the HT'1 phase. As the temperature is lowered Ho; will begin to
order along the ¢ axis and Ho, will still have no associated ordering, this includes all
of the HT2 phase some of HT'1. Lowering the temperature further, the Ho spins all
order along the ¢-axis, and depending on the strength of an externally applied field,
will have Ho; and Ho, either anti-parallel to one another at low field strength (LT'1),
or parallel at high field strengths, (LT2) .

While our main interest lies in HoMnQOs, much of what is studied here may be
applied to many of the RMnQj; family by modifying some of the interactions. With a
further understanding of this class of materials we might be able to predict and explain
many of the diverse phase diagrams. As an example of how the phase diagrams for
these materials can differ we have included results for TinMnOj in Fig. 1.6. We sce
that for TmuMnQO; there are only a few ordered magnetic phases, in contrast with
HoMuOj.

Within the family of RMnOj it important to explore all magnetic interactionus
that might influence the spin structure in order to begin to understand the com-
plexity of their phase diagrams. With this knowledge we might better understand
what interactions are important in these materials and how their magnetic structures

influence their electrical response.

1.1 Our focus

The goal of a project like this is to completely model the phase diagram of the

material of focus and to possibly use the model to understand the phasc diagrams






of similar materials. If we understand HoMnQOj; and are able to reproduce its phase
diagram, we may be able to predict. magnetic behavior of many in the RMnQOjy family
and explore what is possible for similar materials just by changing the parameters in
our model. These are very complex materials and e number and subtlety of can be
quite nunerous, as we shall see.

The remainder of this thesis 1s organized as £ ows. In Chapter 2, we illustrate
the origin of a magnetic Hamiltonian for the Mn atoms only, as well as the compu-
tational background of our study. We implement and compare two methods with
which one can study magnetic systems: the ¢ cetive field method and the Landau-
Lifshitz-Gilbert cquations. In Chapter 3, we explore two triangular stacked systems of
maguetic spins using the Hamiltonian and methods presented in Chapter 2, and give
several simulated phase diagrams. Additional termns to the Hamiltonian are explored
and their cffects are explained. Cl Hter 4 is a disscusion of the effects of adding
the Ho atom interactions to our model, and a simple Landau mod  free energy is
examained. In Chapter 5, a summary of results and some couclusions drawn from
this study are presented.

This is the first time LLG cquations are used to study the magnetic structures
of frustrated antiferromagnets, let alone HoMnQOj.  As such this thesis only lays
the ground work that will be needed to reproduce the full experimental /7-7T phase

diagram.
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The lattice in our model system is not square in the xy plane but triangular.
Assuming the spins are Ising-li  (that is, confined to lic along the vertical y-axis),
we can sce the effects of J;; > 0 and J;; < 0 in Figs. 2.1C and 2.1D, respectively.
The case of interest is the antiferromagnetic configuration on the triangular lattice
as two of the spin pairs can encrgetically satisfy the anti-parallel alignment while the
third spin cannot. Whether it is up or (loer makes no difference to the energy of the

systein, making the spin frustrated.

/N 2N

NN N
N /

C D

Figure 2.1: Examples of the effect of the exchange interaction sign on cquilibrium
configurations on a square and triangular lattice for an Ising-like system. For the
square lattice examples, (A) has J > 0 (ferromagnetic in-plane) so the lowest energy
configuration is where all the spins are all spins are parallel, while (B) has J < 0
(anti-ferromagnetic in) where iustead the lowest cnergy counfiguration has all spins
are anti-parallel. Triangular lattices are a bit different. Example (C) has J > 0 and
like the square example all the spins are parallel. However (D) shows a system with
J < 0 where two spins are anti-parallel, the third spin can be cither up or down and
still have the lowest energy configuration leading to geometrical frustration.
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spins to align with this axis, or align perpendicular to it. If D is positive the spins
will tend to line up with the hexagonal ¢ axis, making the system Ising-like (provided
that other factors like an extern  magnetic ficld do not drive it away from the casy
axis). When D is negative, the energy due to D is minimized when the spins lie in
the xy plane.

The last term in our Hamniltonian is the so-called Zeeman interaction. 1 is simply
an external magnetic field applic  to the system. This term in the Hamiltonian makes
the magnctic spins align with this exernal field. In our calculations, we only consider
an applied ficld aligned with the ¢ axis of our hexagonal lattice. This will cause the

spins to lift out of the plar  when D < 0.

2.2 Computational methods

The computational methoc use determince the equilibrium structures of a sys-
tem of spins depending on the ttice, the exchange, anisotropy, and the external
applied field. We will deseri two such methods, the Effective Field method (EFM)
and Landau-Lifshitz-Gilbert (LLG) equations, but there are many others. For exain-
ple, there are finite temperature methods that use Monte Carlo algorithins, and other

methods that directly minii ¢ ¢ interaction Hamiltonian.

2.2.1 Effective Fiell M thod (EFM)

The EFM is a simple algorithm to minimize the energy of a system of magnetic

spins at zero temperature [9]. For each spin, an effective fickd is calculated by evalu-
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ating the negative gradient of the energy (or interaction Hamiltonian as in 2.1):

- 5F . .
He = e STS 42Dy SE+ 0 (2.9)
[94) _] i

This effective field represents the local field acting on a spin i, due to the spins
around it, the anisotropy, and external applied magnetic field. The local spin energy
is minimized if the spin aligns i If with the direction of this effective field. Aligning
this spin, S; with its local effective field changes the local field of nearby spins, which
m their turn will need to be aligned to this new field to minimize their local energy.
Doing this iteratively, the energy of e entire system can be minimized.

The EFM is simple and very quick computationally. First, cach spin on the lattice
is given a random orientation. © lattice of spins is traversed, examining cach spin
individually, aligning cach with i respective local effective field. This process is
iterated a number of times, generally less than one hundred steps, where cach pass
through the lattice, hopefully brings the systemn closer to equilibrium.

Unfortunately, with this method it is possible to get stuck in local energy minima,
meaning that the equilibrium configuration found ight not be the true lowest global
energy for those parameters.

To address this issue, the above de yedd method is run tens of thousands of
times, cach with new randomly generated spin orientations. At the end of each run,
the cnergy of the system is compared to the lowest energy yet achieved; if it is lower,
then it is stored as the new mininmin energy configuration. After all these runs are
complete, hopefully we have the configuration with the true lowest global energy.
However, we can never be sure if it is the absolute minimurn.

Figures 2.4 and 2.5 illustrate that this method can reproduce the theoretical energy

per spin. For cach we considered a cubic lattice of antiferromagnetic (J, = J. = —1)

24



spins with D = —1 (casy plane) and DD = | (casy axis) respectively. We applied a
magnetic field Il parallel to ¢. Theoretically we can find the energy per spin as a

function of these parameters. Doing this we find:

E  —Jcos(20) — 2Dcos*(9) — 21 .cos(f) (2.10)

where 6 is the average angle  tween the spins and the o axis in the @z plane (similarly
shown in figure 2.2). This average is over all spin angles in the lattice. Minimization

of the above gives:

|77l
0 = £ Arccos (— ) (2.11)
21+ 0J)

for |I1.] < 2(D +6.J). For ficlds outside this range the energy increases lincarly with
the field. For 1) < 0 there is a phase transition where the field finally overcomes the
effect of 1) and the spins lift out of the plane. There is no analogous phase transition
for I > 0: The spins begin anti-parallel, slowly rotating as 1. is increased until they
are all aligned along the = axis. As shown in Figs. 2.4 and 2.5, the numerical method

is very accurate in this simple case.

2.2.2 Landau-Lifshitz-Gilbert metl d (LLG)

Another method to determine the equilibrium spin structures makes use of the
spin cquations of motion and their steady-state solution. This method has been
proven to work well for complicated maguetic structures involving long-range dipolar
interactions. Consider first how a spin precesses in a field in terms of its angular
momentum and how it changes wi  time. From first year physies we know that

dL

classically < o 7, where L is the angular momentum and 7 = 7 x I is the torque.













term to the field in 2.14:

—

- - dS
H— - 2.17
dt ( )
Substituting this into equation 2.14 and setting a = Ay gives:
dS v o2 = ay = -
= — Sx Il - —=Sx{(SxI] 2.18
dt 1+ a? L+ a? ( ) ( )

Equation 2.18 is called the Landau-Lifshitz-Gilbert equation [14], as Gilbert first
suggested a damping term as in Eq. 2.17. For a single spin, Il represents the external
magnetic ficld, in a lattice of m - spins it will become the effective field defined in
Eq. 2.9.

Here, o is called the damping coefficient, which dictates how quickly the spin
aligns with the effective i I Figure 2.6, 2.. and 2.8 show the cffects of a on the
damping of a spin along the z-axis with a magnetic field along 2. When « = 0.0 the
spin precesses around the z-axis indi nitely as there is no damping. For o = 0.1, the
spin slowly spirals until it aligns wi  the field. When a = 1.0 the spin aligns with
the effective field much quicker and achieves energy minimization.

To implement this process in ¢ program we use a simple Euler integrator to

Sty _ Se+an S
= At

. . . ) .
evaluate cach time step. 1 at is, we approximate = and substitute

this into the left side of equation 2.18 to get:

Alr

S(t+an =50 - [§ % Tlur + a8 x (S x 7] (2.19)
with Al being an impor pa eter to adjust in order to optimize the program.

Using the Euler integrator, the  -or in S_“(I + Al) is proportional to At. Also, the
larger At is the faster the g fm  Hrun.

Figures 2.9 and 2.10 show the results of the calculated energy per spin of the same



Figure 2.6: Path of a single spin that starts along the r-axis under the LLG equation
with o = 0.0 and field ar el to the negative z-axis. The spin will rotate in the
axy-plane indefinently.
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and should be a good test for the accuracy of — ese methods. The form of \? we use

Is:

-

s (G =T
V=) G -1y (2.20)

o L
where the sum is over all calculated instances, (7 is the caleulated energy per spin,
and 7T} is theoretical value. Smaller \2 mean  the closer the numerical result is
relative to the theoretical calculation. A reasonable value for \2 for cither of these
algorithms is ou the order of 0.01.

The program is run until it e hes a predefined \? threshold and the time is then
recorded. Accuracy and computational time are increased by performing more runs
for the EFM, or by increasing the total equilibration time in the LLG method.

For our tests we used the san coretical results as i Figs. 2.4 and 2.9 (D) = -1,
N=12 J,=J.= -1, and with I{, ing from 0 to 14 in steps of 0.5). Each line on
Fig. 2.11 shows the total computational time for a  fferent number of passes through
the lattice for the EFM while cach line on Fig. 2.12 corresponds to a different At for
the LLG method.

As can be seen from Figs. 2.11 and 2.12, the LLG method is much slower than the
EFM in this test. As an example, it takes the LLG method 221 seconds to achieve
¥? 0.1 while the EFM rc ir  only 7 secconds. Morcover, the LLG method was
unable to converge to the theoretical value for \2 = (.03, which is considered to be
insufficient. This problem is addressed by the adaptive time step deseribed in the

next seetion.

2.2.4 Adaptive tir step for LLG

Even though the LLG method seeins slower than the EFM with convergence of

energy, we can improve run tiny  using the  call — adaptive time step. Simply put









the adaptive time step is a way to change the size of the time step used in the LLG
cquation to larger steps when the system is slowly changing and to smaller steps when
the system is changing quickly.

This check is a simple energy convergence test. A new spin configuration is gen-
crated with a full time step (¢ + At) with cnergy F) as well one with a half time
step(t + %) From the half time step system another system is generated with the

half time step (1+ (55 +4!)) that has energy E. If |y — F,| is within some threshold,

typically 1072, the step is accepted and the time step is doubled. If not, the step is
rejected, the time step is halved, and the convergence test is done again generating a
new spin configuration.

The speed up is substantial using the adaptive time step as can be scen from
Fig. 2.13, which is with At 10~*. The LLG method without the adaptive time step
was only able to converge to x? = 0.1, with  is particular time step (At) there is
over a 1500 times speed up  x? = 0.1, as well as achicving greater accuracy.

Now for x? = 0.1, the LLG method with adaptive time step takes only 10 scconds
to converge which is on the same order of EFM's 7 seconds. For more complicated
spin systems (such as those with long-range dipolar interactions), LLG is expected
to be more reliable and faster. Greater accuracy can also be acheived by using a

different integrator than Eu  such as the mid-point method where

dS  S(t+ At - St — A1)

— = At? 2.2
dl 9AL +O(Ar) (2:21)

However, the Euler method is considered to be the most straightforward to iinplement
when finite temperature «  ts are added through a stochastic field term [13] as

described below.
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transitions between phases oceur. We can achieve an automated 'inspection’ through
thermally averaged order parameters which are tuned to the structures we expect to

SCC.

3.1.1 Thermal averages within the LG formalism

An important question to ask now is even if the LLG equations are derived from
fundamental considerations, do the dynamies they describe behave according to the
laws of thermodynamics? rtunately this is fairly simple to verify. As it is well
known, any infinite physic  thermodynamic system must exhibit, over a large a set
of randomly sampled states, a «+  uply peaked energy distribution, centered around
the average energy of the system over those states. As this is not an infinite system,
we can expect that if LLG can indeed simulate proper thermal averages we will get
a broadened but still peaked distribution.

To verify this in our model, we performed «  ulations on a simple hexagonal
stacked lattice with 6x6x6 Hins. For this simulation, the parameters for g, 2.1
arc .J, = —1.0 (antiferromagnetic in-plane), J. = 1.0 (ferromagnetic between planes),
and D = —1.0 (planar anisotropyv). With these parameters, we expect the system
to cquilibrate to the planar 120° structure. At random time steps after the system
cquilibrates (which takes about 100t o steps), we calculate the energy of the system
and record this using a binning s1 em. Each of the bins contain the counts of svstem
encrgy within the bin size of (Eyar — Fmin) /Nbins. For our simulation, we use a total
of 20 bins. These are ploted on a energy bin versus count graphs, using the middle
value of the energy bin as e index. We did this at a temperature of 7' = 0.4 and
plotted the results in Fig. 3.1. As can be en, this shows the expected behaviour for

a thermodynamic svstem. While not shown here, we tested that this occurs for either















after the quantity in question is oscillating steadily around a mean value, as this
indicates that the system is now in thermal equilibrium. Take Fig. 3.2 as an example;
we could begin taking our average after 100 time units, and continue ad infinitum, the
more points we take the better the average. If we ¢ ply this to a system with the 120
degree structure and take more of these S/N averages at several temperature points
at a constant applied field, can determine the transition temperature when our order
parameters S heads to zero. This is illustrated in Fig. 3.4, where we take tlie example
of a simple hexagonal systenn 1 zero field. We take the transition temperature as the
inflection point of the curve as it heads to zero, as 1s common practice for finite size
systems.

It is convenient to define two additional order parameters, Al and W. The objec-
tive of these order parameters is to determine whether the spins are aligned along the
basal plane axes or perpendicular to themn. Consider Fig. 3.5, the figure on the left
las spins aligned along the basal plane axes while the spins of the figure on the left

are perpendicular, as in Fig. 1.3, Consider as an example the following equations:

52
m=y 2 (3.5)
A [ r
52 -
w=>y_ G2 (3.6)

A Py

where the sum is over a triangle of three spins, and S, is the ath component of the
spin in the ry plane. Looking at Fig. 3.5 at the second figure, we see that Eq. 3.5
will yield infinity as the upper most spin will have S, = 0, while Eq. 3.6 there is no
such division by zero and e sum over the triangle will yield 6. This is a very useful

relationship that doo exactly wl v want. Hov er, it is not cfficient to calculate



















































Chapter 4

Discussion _.1 tne effects of

magnetic I  10.1s

While this work does not fully explain the the phase diagram of HoNMnOyg, it
demonstrates some progress tc d understanding the important magnetic imterac-
tions in this material. We are able to simulate and generate every experimmentally
observed configuration through - a few interaction terms. While we do see a tran-
sition between the ordered phase that is defined by our model parameters and a
disordered phase, transitions between ordered phe s do not occur.

We have also shown that LLG can be used to find not only zero temnperature
steady state configurations but ¢ o spin configurations in frustrated triangular auti-
ferroinagnets at a finite temperature. These configurations show real thermodynainic
properties, which can be used to define the aforementioned phase traunsitions.

The trigonal A" term is next to be explored and looks very promising. In section
4.1, a simple Landau free ¢ zv is presented and a brief example is given on what
18 to be expected when this term is added to a model such as ours. In section 4.2,

a discussion on other possible Mu-Mn, Ho-Ho and Mn-Ho exchange mteractions is




given.

4.1 Simple Landau free energy

An analysis of a simple Landau free energy which includes Mn-Ho coupling through
the trigonal A term, can show us roughly the types of transitions that are possible
between different phases. It is based on the exchange energy terms as in our Hamilto-
nian, however we also have two different spin entities S = gyﬂ,, L éand §(, = §”0 | ¢
which couple through the trigonal term. Eq. 4.1 is the zero field Landau free energy
with isotropic terms to sixth order and anisotropy terms as discussed above can be

written as [21]:
2 2 1 4 1 \z! 32 (2 1 Tl o @3 . ] >
F=AS"+A,S+ 5135 + 330‘50 + 3,55+ ;5(» S°+ KS,S cos3p+  S'cosbd (4.1)

where ¢ is the angle S makes with the a axis, A = a(T' —Ty), Ao = a(T = T,), and
the other constants are fr parameters.

Assuming reasonable parameter values, we can numerically minimize the free en-
ergy. Witha=1,T,=1,Ty =1, B=18,=03, B, =3 C=1FE =02,
K = 0.2, results show a tot  of 3 transitions. Referring to Fig. 4.1, below T = 0.45
we see a phase with P65 manetry, that has ¢ between 0 and 5. At 7" = 0.45, a
transition to the HT1 phi : (¢ = %) is realized while at and at 7" = 0.65 we see a
transition to the HT2 phase (¢ 0) is reproduced, as in Fig. 1.3.

While this analysis depends heavily on the initial parameters, it shows that it is
possible to generate more  an one trausition with the trigonal term as a consequence

of Mn-Ho coupling.
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Interaction In plane or Between | NN distance (A) | Nnmber in Fig 4.3
Ho; - Mn Between 3.5049 1
Mn - Mn In plane 3.5334 2
Ho, - Hoy In planc 3.5334 3
Ho, - Ho, 1 planc 6.1200 4
Ho; - Mn Between 3 49 )
Ho; - Hoq Between 6.7063 6
Ho, - Hoy In plane 3.5334 7
Mn - Mn Between 3.5049 3
Ho( 2) - Ho(1 Between 5.700 9

Table 4.1: A number of the possible dominant interactions in HoMnQy, sce Fig. 4.3
for an example.

model the F/-T magnetic phase diagram. However, there are a host of other possible
exchange interactions as listed in Table 4.1 and illv  rated in Fig. 4.3.

There is a possibility of 9 dominaut interactions between spins in HoMnOj, how-
ever, so far this work has only examined the effect of exchange between Mn-Mn
in-plane and out of planc. While this is eniough to describe all phases mentioned
in various papers, it is not enough to account for a transition between any ordered
phases. This is attributed to the fact that we asume a perfect triangular lattice on
cach planc. If we must take into account the irregularity described in Fig. 4.2, this
will change a number of distances between atomic i ns and will require even more
exchange or anisotropy tern

To complete the phase diagram the of Hol 103, Ho spins must be added to the
model, as explained in Section 3.5. In addition to the exchange term in Eq. 3.13, we
must bring two new atomic spins into our LLG equations (Hoy; and Hog). One way to
accomplish this is to have separate exchange and anisotropy terms in our hamiltonian
for cach Mn, Ho,, and Ho,. The difficulty will be to estimate which of the additional

interactions in Table 4.1 are imports
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