

Intermediate Representations For Parallel

Languages on CGRAs

St. J ohn 's

by

© Dianyong Zhang

A thesis s ubmitted to the

School of Graduate Studies

in partial fu lfilment of the

requirements for the degree of

Master of Engine ring

Faculty of Engineering And Applied Science

Memorial University of Newfoundland

December 2007

Newfoundland and Labrador

- ------ ------------- -------------------------

Abstract

Coarse Grained Reconfigura ble Arrays (CGRAs) a re reconfigurable computing

architecture based on word-width processing elements, in contrast to Field Pro­

grammable Gat Arrays (FPGAs), which use bit-width processing clements. CGRAs

have faster time-to-market than Application Spe ific Integrated Circuit (ASICs) and ,

for many applications, faster xecution than FPGA. In contrast to traditional se­

quential language, we aim to d evelop a para llel object-oriented programming la n­

guage(HARPO/ L), that can be compiled to GRAs configuration fi les to execute.

This requires t ha t compiler exploi ts the parallelism from language itself and target

a rchi tecture. This t hesis mainly shows a set of in termediate representations (IR) in

the compi ler [or HARPO/ L, which contains a ll information from the source progra m

and is easier to be a nalyzed and optimized.

Based on the HARPO/ L la nguage features, we use object dependence graphs

(ODGs) to represent t he rela tions among objects. T he a ugmented con urrent control

fi ow graphs show threads among objects. After the interobject ana lysis and optimiza­

tions, an executable dataflow graph, the fin al IR fo rm , can be produced . The IR can

t hen be us d as in1 ut to the compiler back end.

Thi re earch offers a significant adva nce on the HARPO / L Compilation approach.

It will benefi t to fini h advanced HARPO/ L programming Language ex cut ing in high

di versity CGRA archi tectures.

11

Acknowledgments

Fi rst of a ll , I wou ld like to thank my supervisor , Professor Theodore S. Norvell,

for his support a.nd guida nce through my graduate career in Memorial University of

Newfoundla nd. This thesis vvould not have been as solid without his insight and guid­

ance. I particularly appreciate his introducing me to the field of parallel processing

a nd getting me started on compilation techniques for explicitly pa rallel programs. I

have learned from him how to view the world from many different perspectives a nd

how to make an idea concrete.

I am gra teful also to my wife, Jinghua Nie. Her love and care encourage me to

finish this thesis.

Final ly, I dedicate this thesis to my parents, and I appreciate their endless love

and support.

Ill

Contents

Abstract

A cknowledgm ents

List of Tables

List of Figures

1 Introduction

1. 1 CGRA Introduction .

1.2 Compiler Introduct ion

1. 2.1 Front End . . .

1.2.2 IR Generation and Optimization

1.2.3 Back End

1.3 Introd uction to HARPO / 1 .

1.3.1 HARPO / 1 Specification

1.3.2 Example

1.4 T he Outli ne Of T he Thesis .

1.5 Main Contributions in This Thesis

IV

ll

Ill

V Ill

IX

1

1

4

5

5

7

7

8

11

13

14

2 Related Work

2.1 The Introduction of Int rmediate Representation

2.2 Several Common IRs

2.2.1 Control Flow Graph (CFG)

2.2.2 Program Dependence Graph(PDG)

2.2.3 Parallel Program Graph (PPG) .

2.2.4 Single Static Assignment(SSA)

2.2 .4. 1 Traditional Single Static Assignment(SSA) .

2.2.4.2 Concurrent Single Static Assignment(CSSA)

2.2.5 Other IRs

2.3 Data Flow Graph and Call graph

3 Object Dependence Graph

3. 1 Some Issues on Object Dependence Graph(ODG)

3.2 ODG Specification

3.3 Algori t hm for Constructing ODG

4 Augmented Concurrent Control Flow Graph

4.1 Introduction

4.2 Memory Consistency Models .

4.2 .1 The C lasses of Parallel Programs

4.2.2 1\ [emory Consistency Models ...

4.2.3 Memory Consistency in HARPO/ L

4.3 Augmented Concurrent Cont rol F low G raph (ACCFG)

4.4 Concurrent Single Static Assignment (CSSA) .

v

16

16

17

17

18

22

24

24

26

27

29

31

31

34

38

42

42

43

43

44

46

47

50

4.5 Function P lacement .

4.5 .1 P lacing ¢ Funct ion

4.5.2 P lacing '1/J Function

4.5 .3 P lacing 1r Funct ion

4.5.4 P lacing ~ Function

4.6 Summary

5 InterObject Analys is

5. 1 Int roduction

5.2 lnterobject Optimization

5.3 Deadlock Analysis and Solution

6 Opt imization In P aralle l Program s

6.1 Int roduction of Optimization

6.2 Common Subexpression E li minat ion(CSE)

54

55

56

57

58

62

63

63

65

68

71

71

73

6.2.1 Common Subexpression Eli mination 73

6.2.2 A CSE Example in Sequent ial Programs 73

6.2.3 A CSE Example in Parallel Programs . . 74

6. 2.4 A CSE Example in Parallel Programs with Synchronizations 75

6.2.5 CSE Analysis in Parallel Progra ms 76

6.3 Dead Code E limina t ion

6.3. 1 Dead Code Eliminat ion .

6.3 .2 Dead Code Elimination in Sequential Programs

6.3.3 Dead Code E li mination in Parallel Programs ..

VI

82

82

82

83

6.4

6.3.4 Dead Code Elimination in P ara llel Program wit h yn hron iza-

Lion

6.3.5 Dead Code Elimination Ana lysis in P ara llel I rogram · .

4

5

6

6.4 .1 Code Motion 6

6.4.2 Code lotion in Sequentia l Programs 6

6.4 .3 ode Motion in P ara llel Programs . . 7

6.4 .4 ode !lotion in P ara llel P rograms with Synchronization 90

6.4 .5 Code l'vlotion Analy is in P arallel Program

6.5 Loop Fusion and Loop Fi ion .

92

95

6.5. 1 Loop Fusion and Fission 95

6.5.2 Loop Fusion and Loop Fission in Sequential Programs 96

6.5.3 Loop Fusion and Lo p Fission in P arallel P rograms . . 9

6.5.4 Loop Fusion in P a rall I Programs with Synchronization 100

6.5.5 Loop Fu ion and Loop Fi ion ana lysis in Parallel Program 101

6.6 Atomic Fusion/ Fission in P ara llel Optimization

6. 7 Summary

7 Conclusions and Future Work

7. 1 on lu ion ..

7. 1.1 T hesi · ummary

7.1.2 T h sis ontributions

7.2 Open Issues for Fut ure vVork .

Bibliography

Vll

104

107

10

10

10

110

111

112

List of Tables

1.1 Some GRA Architectur s . 2

Vlll

List of Figures

1.1 A structme of Function Uni t [34] . .

1. 2 A CGRA Mesh Archi tecture example

1.3 A HARPO / L Source Code

1.4 General Block Diagram . .

2.1 An Example of Control Flow Graph

2.2 Data Dependence and Control Dependence example

2.3 An Example of PDG

2 . ..J An Example of PPG

2.5 A Straightforward SSA example

2.6 A SSA example with joint node

2. 7 An example on Dataflow Graph

3.1 a simple ODG example ..

3.2 The construction of ODG

4.1 The Parallel Program Classification of Vivek

4.2 An Example of ACCFG

4.3 An Example on the¢ function .

LX

3

3

12

14

19

19

22

24

25

25

30

37

41

44

50

51

4.4

4.5

4.6

4.7

5.1

r: ')
d.~

G. l

6.2

6.3

6.4

An Example on the ·if; function .

An Example on the 1r function

An Example on the~ function

ailing Procedure in Parallel Program

ome Spc ial Cases for lnterpro edural Optimization

An Exampl on Calling DC:'ad lock

Common Subexpression Elimination in sequential programs.

SE in parallel programs ...

E in Parallel Program with ynchronization .

SE in parallel programs . . .

G.5 Atomic Fusion/ Fission Analysi ·on SE in parallel programs

6.6 The Introduction of Local Variable for The F is ion of ALomi

t ion in Parallel Programs CSE Optimization

G.7 D a.d ode Elimination

G. D ad Code Elimination in parallel programs

Opera-

G.9 xampl 1 on Dead Code Eli mination in parallel program · vviLh syn-

ch ron iza Lion

G. l 0 Exan1plc 2 on Dead Code Elimination in parall I program· with syn-

chronizHtion

6.11 Code ot ion in Sequential Programs

6. 12 o lc Motion in Parallel Programs .

6.14 Code fotion Out of Parallel ontrol Flow in Par8llcl Progrmns

X

52

53

54

GO

67

G9

73

74

77

7

0

1

3

3

4

5

7

9

9

6.15 An nsucccssful Code Motion in Para llel Program [31] . 91

6.16 s fu l Code Motion Example in P arallel Program [31] . 91

6. 17 Co le lotion With Fusion/Fission Analysis in P arallel Program 93

6. 1 Code !lotion of Para llel Control Flow \ it h Fusion/Fi ion Analysis

in Parallel Programs 94

6. 19 Fusion/ Fi-. ion Analysis of Code Motion With Synchronization in Par-

a llel l rograms . 95

6.20 Loop Fu ·ion and LooJ Fi ion Example in Sequ ntia.l I rograms 97

6.21 Loop Fusion in equentia.l Programs

6.22 Loop Fusion and Loop Fission in parallel Program

6.23 Loop Fusion and Loop Fission in Parallel Programs

6.24 Loop Fusion and Loop Fission with a Synchronization Stat ment in

Pa ra.ll I Programs [31]

6.25 Atomic Fu ion/ Fission Analy:si for Loop Fusion a.n I Loop Fis ·ion in

Parallel Programs

9

99

100

101

103

6.26 An Example to Use The Them·em For afe-Fission lndentifica.tion 107

XI

Chapter 1

Introduction

1.1 CGRA Introduction

CoA rse Grain d Reconfigura.blc Arrays a rc reconfigm able computing arch itec­

tures, which arc ba ·cd on word-width processing clements, in ontra ' t to Field Pro­

gralllmablc Gate rray (FPC), which use I it-width processing clements. The

coai"'e granul arity greatly red uces d lay, area, power con ·umption and configuration

time, compared with FPGA, at t he cost of loss of flexibili ty. GRAs a llow faste r

time-to-market than Application Sp ific Integrated Cir uits (ASIC), and for many

applications, fast r execution than mi roprocessors. CGRA r hit ctures bridge t he

gap betw en ASICs and mi roproce or . owadays the rapidly evolving market

of mobile and p rsonal digital d vi reates a high r demand [or reconfigura.bl

computing te hnology. Their funcLion a li ty and adaptability lead to an increasing

consideration of oa rse grained reconfigurable architectures.

To present , many such architectu res hav' been proposed [].

1

In Ta ble 1.1 , we can find numerous difFerences in fabri architecture, granularity,

Table 1 1· Some CGRA Archi tectures '
Structu re Archi tecture G ranularity Fabrics

DP-FPGA 2- D Array 1 and 4 bit multigranula r ro11 t ing channels

I(rcssA rray 2- D Mesh select able path Multi ple NN Bus segments

Colt 2-D Array 1 and 16 bit sophisticated

Matrix 2-D ~ l esh bit mult igranula r 8 I ugth4 global liue ·

llAVl 2- D IVIesh 8 bit rnu ltigranula r 8 NN switched conucctions

Garp 2-D Mesh 2 bit Global semi g lobal lines

H l~MAHC 2-D 1\ lesh 16 bit NN full length buses

lorp hosy 2-D Mesh 16 bi t NN , length global li nes

C II ESS llexagon Mesh 4 bit nJul t igranular 8 NN and Bus

DReAM 2-D Array 8 and 16 bit NN, egmented buses

CS2000 2-D Array 16 and 32 bit inhomogenous Array

MECA 2-D Array multigranular uot disclosed

CA LJSTO 2- D Array 16 bit multigranular not d isclo eel

F' IPSOC 2-D Array <I bit mul t igranular not disclosed

RA PID 1-D Array 16 bi t segmented buses

P ipeRench 1-D Array 128 bi t not disclosed

PADD1 Crossbar 16 bit Centra l Crossbar

PADDI-2 Crossbar 16 bit m ul tiple Crossbar

P leiades Mesh/Crossba r rnultigra nular Mult iple Segment d Crossbar

t apology a nd ma pping methods. F urLhermore, most of t he archi tectures a.re only Ia b-

oratory research products, and only few are commercia l prod ucts such as Lhe eX t rem

Processing Platform (XPP). Commonly, CGRA consist of an a rray of function uni ts

(F U) or processor clements (PE). Each FU includes a. certa in number of Ari thmcti

Logica l Uni ts (ALUs) and regi t crs.

Connection methods between FUs differ. Based on t he d ifferences, t hey ca n

categorized as linear a rray, mesh and crossbar.

2

100

- • I J

-
l_()l ~ MO~ I M!IJ

' ~ ! . - :
: .. :

: .. : : ..
' ; ... - .. -.. - -

Figure 1.1: A structure of Function Unit [34]

Linear array architectures a rrange FUs in on or several linear arrays, typically

wi th nearest neighbor(NN) connection, with the aim of mapping pipeline onto it .

Mesh-based architectures arrange their FUs in a rectangular way with horizontal

and vert ical connections. Figure 1.2 shows the Chess archi tect ure, which is one kind

of' mesh-based architecture.

Crossbar-based architectures connect their FUs with a full crossbar switch. This

Embedded

RAM

Embedded

-

-

RAM -

Figur 1.2: A CGRA Mesh Architecture example

JS a most powerful communication network and provides more communication re-

3

sources.

These d iver ified s truct ura l features lead to big challenges for compiler designs

because Aexibl ava ila ble resources and communication imply more complica ted rep­

resentat ions for t he resources and strategies of mapping, routing and scheduling.

1.2 Compiler Introduction

In t his thesis, we mainly di cu a new intermediate representation (IRs) for

compi lers. So, it is necessary to introduce some compiler theory a t first . A compiler

is a program that transla tes text written in a computer language (the source language)

in to another computer language (the target la nguage) [33]. Compilers can be one of

these foll owing categories:

• A source- to-source compi ler transforms a high level language to another high

level language.

• Stage compi ler produces lower level language, such as assembly language or

configurat ion fi les for a reconfigura blc hard ware platform.

!\ lost modern compilers have three stage·: front end , opt imizat ion a nd back end .

Compilers usc tnmsformations of p rogram representation in the front end to cre­

ate intermediate representations for op t imization. After opt imization, t he program

representation a re sent to the back end for scheduling, routing and mapping.

1. 2.1 Front End

Th front end analyzes source code in text to build an int rmediate repre entation.

U ua lly, it uses a symbol table. This i a data structure, mapping each symbol in t h

source code to associated information such as type and cope. The front end often

has several phase . First , the l xical analyzer breaks the ource code t xt into mall

atomi language unit (tokens) . Conditional compi lation and macro sub t itution may

happ n in this stage. ext comes the parsing phase. This phas parses the token

sequence to ident ify t he syntactic structure of t he program. Last, semant i analysis

checks t he program to ensure it obeys t he rules of the language.

1.2.2 IR Generation and Optimization

Usually, IRs u e graphs which represent the "tructure of programs. Compi lers usc

IRs to do Row analysis and optimizations.

Typical ana lyses include variable d fine-usc (DU) and use-define (UD) hains, and

elsewhere dependen e analysis , a li as a na lysis pointer analysis etc. The call graph and

cont rol flow graph arc usually a lso built during the analysis phase. These two graphs

arc C'l lso IRs. In C'ldcl it ion, a. compiler incl uding more t han one Intermediate Rep­

resentation is possible. In this thcsi , we develope several IRs for rcprc cnting and

opt imizing GTIA Language programs. IH_:· can be clivid d into high-level IR, midd l -

level IH and low-level IR. Higher l vel IR has less dependence on target a rchi te tme.

Low- level TR is often constrain d by target architectures. For CGRA language, tar­

get architc t ure diversities make us choose higher IRs. Furthermore, IRs in different

levels can be tra nsferecl among each other. The standard for a good IRis to represent

5

complete source code information and faci litate optimization.

Facilitat ing optimization i the main goa l of IR design. In some cases, source cod

transforming into a n IR is only utilize I for an efficient optimization. The purpo e

of optimizations i improving performan e. In computer programming, optimization

means to modify ode and its compilat ion settings on a given omputer architecture

to prod u c mor efficient software. The most common optimization goal is to reduce

the t im taken to execute a program. The less consideration goal is to reduce t he

amount of m mory o cupied, or Lh power con umed by a p rogram. It has b e11

shown t hat some code optimization problems are NP-complcte.

sua! optimization techniques includ the following t hemes: avoiding r·edundancy,

e:rploit-ing pamll l'isrn, decreasing jumping, increasing code locality, and avoiding rnem-

07Y accesses. Som times thes them s ca n confli ct with one another.

'vVc can ategorize optimization te lmiques into loop op timization , data-flow op­

timizations, SSA-ba ed optimizations, and intcrprocedural optimization . The oper­

ating obje ts of loop optimization are loop tatements in ourcc language. The u ual

optimizations are loop fission, loop [u, ion , loop inversion, loop unrolling etc. Data

flow optimizations come from da ta flow analysis. They obtain optimization eff cts by

analyzing how data propagate a long control edges in the control flow graph. Common

subcxprcs ion limination constant folding, and con tant propagation are example

of data flow optimization. Static Sing! . A· ·ignment (S A) is a common IR in which

every variable is cssigned in on ly one pia . SA-based optimizat ions include global

ve1 luC' numbering and sparse condi Liomll ' nstant propagation. In terprocC'd ural op­

timization works on the entire program. T pica! intcrproccdura l optimizations arc

proceclur inlining, intcrprocedural dead code elimination , int rpr edural constant

6

p ropagRtion , and procedure reordering. Usually, interproceclural analysis is needed

before acLua l optimizations , t hese include interprocedural alias analysis , a rray accc,· ·

a nRiysis , and construction of call graph [33 , 20].

Traditiona l programing languages use sequential control flow. Wh n pRrallel con­

trol flow is introduced , the original optimization a lgorithms may produce improper

resul ts. The HARPO / L i a programming language which include para llel con trol

fi ow and mu lt ithreads. To compiler HARPO/ L we must extend and ada pt the

quent ia l optimization methods. 'vVc will give more intermediate representation and

opt i m iza.tion deta ils in later cha pter .

1.2.3 Back End

The back end is the last stage iu a compiler. The back end uses the IR to pro­

duce configurat ion fi les, which control data execut ion for th target architectures.

Alt ho ttgh some optimizations ar c finished in optimization stage, back end makes fur­

t her optimization. But these op timizations a re often a sociated with specified target

archi tectures. Compilers must attempt to ut ilize all availab le ha rdware rc ources and

s tructure features to optimize the code. Back-end tasks include rout ing mapping and

scheduling.

1.3 Introduction to HARPO/L

The HARPO/ L was develope l by Dr. Theodore S. orvell a t Memorial Univer ity

of ewfoundla.nd in 2006. Th a im is to deve lop a language which can be applied

Lo most GI A platfo rms, as well as CPUs and FPGAs. ProgrammC'rs can usc it to

7

implement variou us r functions in software. Its compiler will finish hardware de ign

and implementat ion. This will decrease the time to market and increas product

flexibility.

In order to adapt to CGRA features, HARPO / L was designed to be an objc t­

ori en ted language with par all l control flow. All following contents refers to [21].

1.3.1 HARPO /L Specification

N - E ontermina I N can be an E

(E) Grouping

E* Zero or more

E*F Zero or more separated by F s

E+ One or more

E+F One or more separated by Fs

E 7 Zero or one

lEl Zero or one

E IF Choice

Programs in t he HARPO/ L consist of sets of classes, interfaces and objects.

I nLcrf<t cs, primi tive ty1 es, ar ray , and Ia ses arc all types. Primitive Lypes in­

clude boolean, in teger and real. Integer and rea l types have bits , 16 bit , 32 bits

and 64 bi ts corresponding to CGRA archi tecture granulari ty.

lasses define a user type. C lasses may be generic or nongeneri . A generic cla~s

can have one or more generic para meters.

ClassDecl - (class Name GPamms7 (implem ents Type*f (ClassMem ber)*

[class])

In t h above grammer rule, the name is the name of the class. The types a re

th interfaces, which the class implements. The ClassMembers can b fi Ids, methods

<illd th reads. Specifically, fi elds are objects that are within objects. Field declarations

define the part-whole hiera rchy. We wi ll use the information to identify the relation

of obj 'cts in HARPO/ L programs . Field declarations have the following form:

Field ~ Access obj Name: Type [:= Jn·itE.xp]

In t his expression, Access can be private or public. If an object, which is defined

in this fi eld declaration , is private, it is only accessible in objects, who e type is th is

class. If an obj ct i. public , it can be used by other objects of other clas es. Public

property can cause shared-variable-conflict-use problem , although private fields an

still be shared by mul t iple thread in same object. This will be eli us eel in a future

cha.pll'r .

A method decimation declares a. method, but not its implementation. The imple­

mentation body is located within a. thread. It has the following form:

Method~ Access proc Name((Dir-ection [Name :] Type)*)]

In t his rule, access has sam e meaning as for fields. The Dir·ection can be in or out.

The " in" means inpu t parameter of t his procedure and "out" means it is an outpu t

pa rc1mctcr .

A t hrcad declaration defi nes a t hread. In a n object , whose type is not a primitive

type, there may be zero, one, or more than one thread; otherwis , in an object whose

type is primit ive typ , there arc no any threads. For those objects in which there a re

9

more than one thr ads programmer ensure the threads coordination.

As t here is no dyna mic allocation, all objects are created at compi le time. We

CEl n correctly concluclc progn'l ms onsist of a number of simple objects and complex

obj<'ct.s; a nd we can anEt lyze their rela tions a t compile time.

Each thread contains a block. A block is a sequence of statements. In H RPO / 1 ,

Lhcrc a rc assignment statements, local varia ble declarations, method ca ll tatcm nts ,

sequent ial control flow , parallel control flow , and method implementation.

A method call s tatement cau a calling of a procedure. Its form is:

Statement -f Objectfd.Name (Ar:gs) I Nam c(Ar:gs)

The Obj ctfd is the name of object called. The Name is th name of a procedure.

The Ar:gs is the argument list , which is sent to the called procedure.

On Lite other hand , called procedures have the following form:

Statement -f (accept Methodfmp (I Methodfmp)* [accept])

Met!todlmp -f Name ((Direction Name : Type)*) [Guard] Block0 [then Block1]

Cua'rd -f when Expre ion

vVhen a thread reaches an accept statement, it must wait un til t here is a call to one

of the implemented method and the corresponding guard is t rue. On e there is one

meLhod call , the accept can execute; the inpuL param tcrs are passed in , and the

Bloc/.:0 is executed . The output parameters a re copied back to the alling thread.

The method call statement and method impl mentation statement arc calling and

called relation. They guarantee only one calling thread execute the called procedure

a.L any time.

In HA RPO / 1 , sequential control flow has ~f statement (conditional) , while and

10

for(loop) as usual. Their definitions are same as t he t raditional sequent ial programs.

In HARPO / L, para llel control flow includes two forms.

Statement --> (co Block (II Block)* [co]) (1)

Statement --> (co Name : Bounds Block [co]) (2)

\11/c observe t ha t expre sion (1) has the symbol co at its beginning and end , one or

more blocks a rc scpcratcd by the symbol II· This represents that several threads can

cxccu tr at the same time. This is a cobegin-coend structure. In expression (2) , all

iterations can be executed in parallel. This is a parallel do loop. We call it pardo loop.

These parallel control flow and multi threads in objects make HARPO / L programs

explicitly para llel.

1.3.2 Example

We can sec a HARPO / L example in the following.

(class FIFO [in capacity : int, type T extends primitive]

public proc deposit(in value : T)

public proc fetch(out value : T)

private obj a : T(capacity)

private obj front := 0

private obj size := 0

(thread

(wh true

(accept

11

deposit(in value : T) when size < capacity

a((front + size) % capacity) := value

size := size + 1

fetch(out value T) when size > 0

value

front

size

a(front)

(front + 1) % capacity

size - 1

accept)

wh)

thread)

class)

Figure 1.3: A HARP0/ 1 Source Code

In this example, we define a class FIFO. The capacity is its parameter. It represent

the length of FIFO. Type T is t he subclass of type primitive. In it , there are two

mcLhods "depo ·it" and "fetch" . When other objects use objects of FIFO type, value

will be sent through the deposit or fetch procedures. When size is less than capacity,

a va lue can be deposited at the end. When size is larger than zero, a value can be

fd clwd frorn t he beginning. This class simulates a procedure of FIFO.

12

1.4 The Outline Of The Thesis

In order to satisfy the HARPO / L featmes, we develop a s t of Intermediat e Rep­

rC'senta tions for HARPO/ L compiler. PI ase refer to Figure 1.4. The som ce code of

HAROP / L is 1 arsed by the HAROP /1 parser . Abt ract yuta.x t r e can be produced.

In the object depend nee graph , we can obtain t he relation f object. l~or O bjects,

we know their cont rol flow rela tions by augmented concurrent cont rol flow graph.

After intcrproced ural ana.ly is, some optimizations can be made. oncurrent data

ftovv graph can be produced for the backend of compiler. T he final configuration files

can be created for CGRA hardware platform.

The rest of th is thesis is organized as following:

Chapter 2 introduces other researchers' related work on CGRA ar hite t ure and com­

piler t0chniques and a pproaches.

CIHlptcrs 3 to 7 discuss the HARPO/ L complier intermediate representations.

Chapter 3 ci C'fi ne t he Object Dependence Graph specification a nd algori t hm on it.

Chapter -J explain · t his Augmented Concurrent Control F low Graph specification and

implementat ion algori thm.

Chapter 5 di cu e interobject analy is.

hapter 6 gives severa l optimizations in parallel programs.

hapter 7 describes da ta flow form,the final intermediate representation form.

Finally, hapter contains con lusion and a liscussion of fu turo work.

13

Source Code

Pm·sf'r

Abstract Syntax Tree

Object Dependence Graph

Augmented Concurrent Control Flow Graph

Intf'rObjf'ct Anal~rsis Optimization

Concurrent Data Flow Graph

Back end

Configuration data

Figure 1.4: General Block Diagram

1.5 Main Contributions in This Thesis

This thesis concentra tes on control and data flow analysis, program repre entation,

a nd parallel and sequential optimizations for a compiler for a new programming lan­

guage, HARPO / L (Hardware Parallel Objects Language), targetted to the Coar e

C rain Reconfigurable Array(CGRA) archi tectures.

The main contributions are given as follows:

• We develop a set of Intermediate Representa tions and corresponding algorithms

14

for the compiler , which is used for HARPO/ L [21].

• \Vc define Object Dependence Graphs (ODG), which collect all objed info r­

mation in HARPO/ L programs, and include relations among these objects.

Relat d definitions and a lgorithms will be given.

• We extend Concurrent Control Flow Graphs (CCFG) [9] to Augmented CCFGs

(ACCFGs). ACCFGs can represent control How relat ions within objects in

HARPO /1 programs.

• We explain several optimizations including Common Subexpression Eli mina­

tion, Dead Code Elimination , Hoistable Access and Loop Fusion in para llel

programs, and how t hey d iffer from the corresponding optimizations in sequen­

tial programs.

• In order to transform ACCFG to executable datafiow form , we provide possible

solu tions to convert ¢ , 1r ,'l/J and ~ functions, which appear in the ACCFG , to

clatafiow form. These functions are used to solve various different mul tithread

cases in para llel programs. T his executable datafiow form is used as inpu t to

the compiler back end.

15

Chapter 2

Related Work

2.1 The Introduction of Intermediate R epresenta­

tion

Th0 compiler design for a new programm ing langttag is a complicaLccl engineer­

ing problem. In this procedure, In termediate R epresentation (IR) plays an important

ro le. \ good IR can improve program effici ncy and de rease execut ion t ime of ta rgeL

configuration fi les. T ile standa rd for judging a good IRis its ab il ity to represent a ll

information from the source code and to be easily optimized. The optimiz d IR will

be sent to the back end for mapping, rout ing and cheduling .

IH des ign is largely an a rt, not a science. 'vVe must cons ider whether to use an

exist ing repr sen tation. If an exist ing in termediate language i not used , there ar

many decisions to be made in the d sign of the n w one. If an existing one is to

be used , t here are considerations to be acknowledged of its appropriateness fo r both

t he la nguage to be compiled and target archi tect ure , poss ible resulting costs, and the

16

saving in reus of an existing de ign and code. Th re i a l ·o an is ue of wh thcr

the intermed iate form is appropriate for certain optimization to be performed. Some

optimizations may b too ha rd to do a t all on a given intermediate represen tation ,

and some may take much longer to do than th y would on another representation.

When we design a new IR , the i ues considered should include: what is its level,

orga nizational structure and ex1 ressiveness; whether it is appropriate for many opti­

mizations or a certain particula r optimization; whether it is apt for the generation of

connguration nle for the target archi tectures. In addi tion, it is pos ible to usc more

tha.11 one IR in one compiler. This requires translation of one IR to another in the

compilation proce s. Each IR m ay be appropriate for one part icular ta k only.

Researchers have made many effort on Inte rmediate Representation. ome of th

well-known are CFG , PDG , PPG and SSA. We will give brief intra luctions to each

of them. This is helpful in order to get some ideas and inspirations from them.

2 .2 Several Common IRs

2.2.1 Control Flow Graph (CFG)

Control Flow Graphs (CFG) have been the u ·ual repre entation for control flow

rela tionships of a program, and is widely used for many compiler optim ization. and

static analysis tool . In [2] and [12], the CFG defini tion wa given a follows:

D efinit ion 2.1 A control flow graph CFG=(N. Ecf, TYPE) is a dir ctcd mul ti­

gra ph.

i ·a. set of nodes. The CFG node represents an arbitrary sequentia l computation

17

such as a basic block, a statement or an op ration.

- Ecf ~ N x N x { T, F, U } , a set of labeled ontrol Aow edges. For control edge,

there arc conditional (F and T)and unconditional edges(U).

-TYPE: N --t { START, STOP, PREDICATE, COMPUTE}, a node type map-

pmg.

The notation repres nts all paths that might be traversed through a program dur­

ing its execution. In CFG, START and STOP are two distinguished nodes: the

START node, a long which control enters into CFG, and the STOP node, a long

wh ich a ll control flow le~wes. START has no incoming edges and one outgoing t ll l­

conclitional edge. STOP has no outgoing edges aud incoming edges.

The 1 REDIC ATE nodes represent a condit ional branch , which has two ou tgoing

edges "T " (tT1Le) and "F" (false) labels.

The COMPUTE and START nodes have exactly one outgoing edge with label

"U" ('Uncond·itional) .D

Trad it iona l CFG is a sequential repre entation of a program without parallel

structure . We can sec an example of a CFG in Figure 2.1.

2.2.2 Program Dependence Graph(PDG)

J .Fcrrabte and KJ Ottenstcin [12] proposed Program Dependence Graphs (PDG)

in 19 7. PDG has two dependence relat ions: Control Dependence and Data Depen­

dence.

Dn.ta clcpcndcncc was proposC'cl by Ottcnstein in 197 [23]. A dat a cl pcndcncc

exists between two statements, vvhcnever a variable appearing in one statement may

18

a:=O;
if c> 1

a:=a+1 ;
else

a:=4;
end if;

print a;

(A) Source Code

predicate

T

(B) Its Control Flow Graph

Figure 2.1: An Example of Control F low Gra ph

have an incorrect value if t hese two statements arc reversed. A control dependence

C'xists between a statement and the predicate whose value immediately cont rols the

<'xecution of the sta tement.

Data dependences are only used to rep resent the relevant d ata Aow relationships

A= B'C S1

D=A*E+1 S2

data dependence

lf (A) then S1

B=C*D S2

End if

control dependence

Figure 2.2: Data D pcndence and ont rol Dependence example

of a program. Control Dependence· represent only the essentia l control fiow relation-

ships of a program. Control dependence graphs are derived from the usua l cont rol

19

Aow graphs and dominator t rees. These two dependence relations a rc shown in the

Figure 2.2. In the example of data dependece, if we reverse 81 and 82, we will get

a different value of variable D. On the other hand , only when the condition of 81 i

satisfied , 82 can be executed. This is a control dependence.

In a PDG , the program is repre en ted as a graph , in which the nodes usually r p­

resrnt statements and predicate expressions. The edges connecting nodes represent

both the data va lues on which the node's operations depend , and the control condi­

tions on which t he execu t ion of t he operations depend. The set of a ll dependcnc s

for a pr gram may be viewed as inducing a partia l ordering on the statements and

pred icates in the program that must be followed to preserve the semantics of the

origina l program.

D efinit ion 2.2 A Program Dependence Graph P DG=(, EccL, Ec~c~ , TYPE) is a. di­

rected mu ltigra.ph in which every node is reachable from th root. [12]

- N is a set of nodes. Nodes usua lly represent ing statements and predicates.

- E cd s:;; N x N x { T, F, U } , a set of labeled control dependence edges.

An edge (a , b) E Ecd identifies a control dependence. Node a mu t have type

REGI ON or PREDI CATE , if a has type PREDICATE , t hen (a , b) must b la­

beled "T" or "F" and b can only be executed if t he predicate evaluates to true, in th

case of T , or false, in Lhc case of F. If a has Lypc REG I 0 N , (a , b) must be labeled

U , and b can only be executed after a.

- Edd s:;; N x N x { L! , L C}, is a set of data dependence edges.

An edge (a , b) E E cd identifies a data dependence from node a to node b, which

must be synchronized. LJ and LC can be identified as loop-independent and loop­

carr-ied.

20

- TYPE : N-> { START,PRE DJCATE,COMPUTE,REGJON } , a node type

mapping.

START and P REDI C ATE node types are similar to t he counterpar t in a CFG.

The COMPUTE node has no outgoing control edges in a PDG. The REGI ON node

:-;erves as a summary node for a set of control dependence u es or in a P DG. 0

Data dependence can explain t hat two statements access or modify the same re­

sour c. There arc three da ta d pcndence relations here.

• Flow dep ndence: A statement S2 is flow dependent on Sl if and only if Sl

modi ries a resource t hat S2 reads , and S 1 precedes S2 in exccu t ion.

S1 X := 10

S2 y := X+ c

• Anti-dependence: A statement S2 is ant i-dependent on Sl if a nd only if S2

modifies a resource that Sl reads, and Sl precedes S2 in execution.

S1 X:= y + c

S2 y := 10

• Output dependence: A statement S2 is output dependent on Sl if and only if

Sl a nd S2 modify the same resource, and Sl precedes S2 in execut ion .

S1 X := 10

S2 X := 20

We can s e an example of a PDG in Figm e 2.3. The statements (1), (2), and

(4) a r anne ted t he node region. But statement (3) an happen only when t he

21

~ta tement (2) is true. In the statement (4) , the value of variable a can come from

(1),(2) and (3). So t here are data dependence relations there.

read(a) :
if (a<2)

a:= a+1:
end if:

b:=a*2:

(1)
(2)
(3)

(4)
--+ Control Dependence

-----+ Data Depedence

(A) Source Code (B) Its PDG

F igure 2.3: An Example of PDG

2.2.3 Parallel Program Graph(PPG)

Vivek Sarkar and Ba rbara Simons proposed Parallel Program Graphs (PPG) in

1993 [32]. PPG is actually a compound of CFG and PDG. The CFG is a sequen-

tial representation lacking of dependences, and PDG is a parallel representation of

sequenti al programs. When putting them into one PPG graph , it is a parallel rep-

resentation of sequential and parallel program as of parallel control flow edges and

synchronization edges. PPGs contain control edges that represent parall 1 flow of

control, and synchronization edges impose ordering con t raints on executing PPG

nodes. MGOTO nodes are u eel to create new t hreads of parallel control. The PPG

22

is a possible intermediate representation for explicit parallel programs.

D efinition 2.3 A Pa ra llel Program Graph P PC = (N, Econt, Esync, TYPE) i. a.

rooted directed multigra.ph in which every node is reachable from the root using only

control edges.

-N is a set of nodes.

-Em11 f ~ N x N x { T, F, U } , is a. et of cont rol edges

-Esync ~ N x N x S ynchr-on:izationCondition, is a. set of synchronization edges.

This edge is decided by a synchronization cond ition.

-TYPE: N--. { START,PREDICATE,COMPUTE, MGOTO }, a. node typ

rua.ppmg.

T he START node and P REDIC ATE nod a re imila.r to their counterpart itt a

CFG or a. PDG . The CO 111 PUT E node may hRve outgoing control edge or no one.

The node MGOTO i · used as a. construct for creating pa.rall 1 t hreads of computa.­

Lion. A new thread is created for each successor of a MGOTO node. 0

PPGs have been shown to be useful for solving various problems, including pti­

ntizat ion , vectoriza.tion , code generation for VLIVV machines, and merging versions

of programs.

We can sec an example in F igure 2.4. Since the node liJGOTO create parallel

LhrcRd to comp ute, after variable a. is read, (3), (4), and (5) can be executed in par­

fl llel. But they use the same value of variable a . So the synchron ization edges a rc

used.

23

read(a):
wllile p(a) {

b:= f(a):
c:= g(a):
d:= h(a):

}
print b. c. d;

(1)
(2)
(3)
(4)
(5)

(6)

(A) Source Code (B) Its PPG

Control Edge

____ .,. Synchronization Edge

Figure 2.4: An Example of PPG

2.2.4 Single Static Assignment(SSA)

2.2.4.1 Traditional Single Static Assignment(SSA)

R.. ytron, J. Ferrante and B. Rosen , working at IBM, dev loped Single Static

A~sign ment(SS) in the 1980s [33].

As its name suggests SSA on ly refl ects static properties. InS A, every variable is

assigned only once. Existing variables in the original IR are spli t into many versions.

Thc~c versions typically arc created by the original name with a subscript. Every

new a~s ignmcnL is assigned to one of versions of a variable. A u e of a variable with

a particula r definition means th defin ·ition and use have cxa tly the same name in

Lhc SSA form . This simplifies and makes more effective several kinds of optimizing

transformations , including constant propagation , value numbering , invariant code

moLion, strength red uction, and partial red undancy eliminat ion .

24

Figure 2.5 hows a simple instance of an SSA. In thi. exampl , the left is t he

original form and the right is t he SSA form. The varia ble a 1 uses t he definition of a0

in the first statement. The variable a0 has the same value in both stat ments. This

is an example of straight code for SSA form.

However , t here is a. problem when we meet a. joint point , where two or more

a:=O:
a:=a+1 :

F igm e 2.5: A Straightforward SSA exampl

control flow paths merge. fultipl e definitions of a variable may reach the joint point.

This will resu lt in a violation of single a.· ignment property. We can see a.n example

in Figure 2.6.

In this xample a.t cont rol Aow merge join node, compi ler must decide which

a:=O:
if c>1

a=a+ 1:
e lse

a=4;
end if:

print a:

(a) Source Code

a0:=0;
if co> 1

a1=a0+1 :
e lse

a2=4;
endif ;
a3= <t> (a1.a2)
print a3:

(b) SSA Form

Figure 2.6: A SSA example with joint node

variable a 1 or a2 can be chosen . In order to achieve this purpose, SSA int roduces ¢

function. a:3 is assigned either a 1 or a 2 , depen ling on control flow . A ¢ function has

one argument for each incom ing control pa th ; the k 1h argument Loa. ¢ function is the

25

incoming va lue along t he k 1
h path . The value of ¢ funct ion i one of the arguments

an I the selection depends on the control Aow path followed by the 1 rogram. ¢

function are always inser ted at t he beginning of a basic block, and are considered

to be executed simultan eously before execution of any other code in the block. Th

adva ntages of SSA are the following:

• Th def'inition of a variable dominates its use. Some optimization algorithm

will be more efficient by taking advantage of this property. It a lso simplifies t he

analysis, transformation, a nd ptimization of IR.

• SSA chains are simpler to store and update than use-clef chain

• Since the unrelated uses of the same vari able in the original program becom

different variables in the SSA form, this eliminates false dependencies.

2.2.4 .2 Concurrent Single Static Assignment(CSSA)

A is a good Intermediate Representation , and it had been widely applied in

many compilers. However , it ha a drawback. It ca nnot solve mul tithread access­

ing shared variable which is an ordinary case in parallel programs [9 , 10]. With

s ilicon technology's development , the numb r of processor in hardware platform i

increased . Parallel programming languages me becoming popular. Proc ssors may

access a shared variable concurrently wi thout any fixed ordering of acce ses. Thi

leads to data races and nondetermin istic behavior. Classical SSA cannot a count for

update to shared variables in t hreads.

A new SSA form used for parallel programs, Concurr nt Single Stati Assign­

ment(CSSA), has been proposed by Lee, Pad ua a nd Midk iff in [9 , 10].

26

In CSSA , cont rol flow joins still use ¢ function repre entation which is the am

as the SSA ¢ function . As multithreads are introduced , CSSA uses 'lj; and 1r functions

for multithread confluence cases. 'lj; function mainly solves threads in parallel cont rol

flow confluence joint such as cocnd and enddo. 1r function i for the use of shar d

varia ble with conflict edges in different threads. In this t hesis we make an exten ion

for CSSA, so more detail will be given in a la ter chapter.

The CSSA form has the following properties [9, 10] :

• All uses of a variable arc reached by exa tly one sta t ic assignment to the vari­

able.

• For a variable, the definition dominates the u e if t hey ar not arguments of ¢,

or ·tf; or 1r funct ions.

2.2.5 Other IRs

Besides tho e a bove, some IRs were also proposed based on cliff rent considera­

t ions. We briefl y introduce them as follows.

• Dependence F low Graph

KPingali , /f. Beck and R. Johnson in [1 4] propose l Dependen c Flow Graph.

Dependence F low Graphs arc a synthcsi. of ideas from data dcp ndcncc graphs

Hncl the datafl ow model or compu ta tion . Similar to data dep nclence graph ,

the dependence flow graph can be viewed as a data stru tur in which edg s

represent dependencies bctwc n operation . For each edge in the data depen­

dence graph , there is a corresponding path in the dependen e fl ow graph. T h

27

difference are that dependence fl ow graph is executable. It is a generalization

of" the data driven execution semantics of data.Aow graph.

• System Dependence Graph (SDG)

S.Horwitz, T .Reps and D.Binkley proposed System Dependence Graph [30] .

. Walkinshaw and M. Wood [22] extend d it for J ava. System Dependenc

Graph extends previous d pendence representations to incorporate collection

of procedures (with procedure calls) , rather than j ust monoli thic programs. It is

a multigraph. It maps control and data dependencies betwe n the tatcmeuts.

Statements arc categorized according to whether they cont ribute to the stru -

Lu re of a program. Each category is repre nted differently on the graph. When

Lhcs different graphs are combine I, they provide a graph program representa­

tion. System dependence graph is difficul t Lo visualize in a graph, bccau c it is

composed of a la rge number of lifferenl types of nod e!::> ·tncl edges.

• J\lu! Lit hreacl Dependence Graph

Zhao has cxten led system dependence graphs for the multithread case [35].

Gcsi les the trad i tiona] dependence rela tion , the au thor added synchronization

and communication dependence relations. Synchronization dependence relation

is categorized into two relations. One is wa it-not ify r •latiou , and the other is

sLop-join relation. The pr -vious is suitable Lo wait() and noti fy() or notifyal l()

methods. The lat ter is a t hread calling join () method of another threa l which

may proceed only after this target th read terminates. In these two cases, t heir

dependence cdg s a re put in to multithread dependence graph.

• Value Dcpcndcucc Graph (VDG)

2

D.Wcise and RF. Crew proposed Value Dependence Graphs (VDG) [5] in 1994.

A VDG is a graph reprcs nta.tion tha t accura tely captures dependencies in a.

program, without being t ied to the original shape of the program. odes a rc

the individual operators in the program, and edges represent how the op erands

of one operator arc dependent on t he output of other opera tors. By breaking

down t he statements into single operations , the origina l tatcmcnt t ructu rc of

the program is lost. By giving up informRtion a bout th shape of Lhe program ,

the VDG can represent the program 's b havior v ry accurately a n I oncisely.

• Program D pcndence Web(PDW)

P rogram Dependence Web is au ex tension of PDG a nd SSA. It was propo eel

by R.A. Balia n e,A.B. Maccabe and K.J.Ot tenstein in [26] in 1990. In PDW,

the ource program first is converted into PDG in SSA form. But the differ­

ence is tha t the gate funct ion replace ¢ function in PDW. So a PDW in ludes

dependence information between statements and t he gat e fun ction fo r cont rol

fl ow join case. The value of t he Ga te function is decided with cont rol conditions

nnalys is. La ter , gaLe fun ction arc added to ontrol the fl ow values inLo cont rol

regions in vvhich Lhose va lues a re used . Finally, the dataflow form and target

a rchitecture con 'traints a rc ·eparately produced for ma pping and sched uling

stages.

2.3 Data Flow Graph and Call graph

In the previous section, we mentioned the data. flow graph. It is a graphical rep­

resentation of the flow of da ta through an information system. It can reflect the

29

~--

execut ion order of operations and their da ta dependencies. With a dataflow graph ,

users are a ble to visualize how t he system will operate, what t he system will accom­

p lish and how the system will be implemented . If we take dataflow graph as fina l

IR stage, the workload in mapping and scheduling can be decreased. We can see an

example in Figure 2.7.

Call graph [33] is a directed graph that reflects calling relations among subrou-

t1= a * b;

t2= 11 + t1

t3= 7+ t2

t4 = sqrt (t3);

(a) Code Segment

a b

t4

(b) Dataflow Graph

Figure 2.7: An example on Dataflow Graph

tines in a program. It shows the control flow of a program and it can be determined

part ially using a static analysis. However , sometimes some su brout ines are d ecided

or created at run t ime. In these cases, caJI graphs from tatic ana lysis in compile t ime

cannot reflect call relations. Call graphs are eli t ingui heel between context- insensit ive

Hnd context-sensit ive kinds. For context-insensitive graphs, each procedure is repre­

sented 8' a nod , and the arrows are all t he possible calls between the nodes. For

c:onLext-sensit ive gra phs, t he parameters of t he fu nction call are considered. The call

graph of a program that does not use recursion is a directed acyclic graph.

30

Chapter 3

Object Dependence Graph

In this chapter, we wi ll introduce a new Intermediate Representation , Obj ct

Dependence Graph (ODG) , for the HARP0/ 1 Language Compiler. First we wi ll ex­

p la in its feasibility a nd necessity. Then we wi ll give the defini t ion of ODG , wh ich can

represent relations between objects in HARPO/ L language programs. Furthermore,

we wi ll present an a lgori thm for constructing the ODG .

3.1 Some Issues on Object Dependence Graph(ODG)

In Lhis thesis, t he main issue is Intermediate Representation design of ompilers for

HARPO / 1 language. First , some preprocess of source codes is made in front end in­

cluding Lex·ing, Parsing and Ab tmct Syntax Tree analy is. After that, source codes

s hould b correct and have no spelling, syntax and semantic error . But they a rc

proba bly low in efficiency and need to be processed by compiler to remov redundant

a ncl dead codes. This needs choosing or d signing of som appropriate intermediate

representat ion fo rms to optimize it.

31

In order to achi ve thi p urpose, we proposed obj ct dependence graph (ODG).

In chapter one, we introduced the HARPOI L Language specification. As we know,

the HARPOI L Language is an object-oriented programming language similar to J ava

a nd C+ . All progra m codes in HARPO I L language on ist of sets of interacting

objects, each of wh i h can receive messages, process data, and send messages. 'vY,

can ca ll some of them Complex Object (CO), and call the other Simp! Object (SO).

D efini t ion 3.1 Complex Object (CO)

A Cornpler ObjecL is an instance of class with threads in H A RPO I L Language. Only

in com plex object there exist threads. Each complex obj ects has one or more threads.

Compte:~: object can include other complex objects and simple objects. 0

D efini t ion 3.2 Simple Objec t (SO)

A Simple Object is an instan ce of primitive type or an instance of class including no

thread in H ARPO I L Language. Primitive type has Int eger·, Real and Boolean types.

Simple Object can represent num bers. There is no thread in Simple Object. Simple

Object cannot 'include other complex object. 0

The defin it ion of Simple Obje t in HAl POl L Language i ·similar Lo Lhe defini t ion

or vRria blc in conventional sense. Al t hough there are many SOs in ODG , main sub­

ject in parallel programs is CO. That is becau c t hreads and pa rallel ontrol fl ow a re

main clements in HARPOI L programs. In addition , we should indicate HARPOI L

Language is a kind of 'static' language. This means all objects in HARPO I L language

a rc produced in compile t ime.

In ·oin pu ter science, compile t ime refers to either the operation· performed by a

compi ler or t he programming language requ irements that must be met by ourcc code

for it to be ·ucccssfu lly compil d . The operations performed at compi le t ime usually

32

include syntax a nalysis, various kinds of semantic analysi and cod generation [33] .

T he opposite is runtime. In computer science, runt ime describes the operation of

a computer program during its cxe ution [33].

In most programming languages such as C, PASCAL or FORTR , the compile

time and runtime ar obviously distinguished and cannot be interchanged. Gener­

ally, source codes arc compiled (either mach ine code or an IR) fir t, and t hen the

campi! d code is run . o program execution is possible till the whole program is

compiled. Once program execut ion begins , no more code can be added. In t his case,

the user can communicate wit h the running program system , only when the program

conta ins a procedure, which reads t xt typed or mouse action etc, and performs t heir

act ions.

In HARPO/ L Language, we also use this model. All objects used in the program

are produced in compile time. And this is important for the constru t ion of ODG ,

because t his ma kes it possible for static object analysis in com pile t ime and the on­

struction of an object relation graph. Ot herwise, if objects arc created at runtime,

vve wi ll not be able to usc object lependence graph as an intermediate representation

for HARPO / L language.

In addition , practical programs can include a huge number of objects and classc .

If we add more analysis procedures and representations, they can ca.u e the IR hard

to be expressed in a single form. Data. and control clependenc analysis is sti ll diffi ul t

to visua li z into graphs such a.s in system dependence graphs (SDG) for Java program

(introd uce I in Chapter 2) .

For t he similar reason , object analysis isn 't used. How ver , in the HARPO/ L lan­

guage we can use the object relation based on the following reasons. Fir t , HARPO / L

33

language has fewer types than usual programming languages. The HARPO / 1 data

type includes Int(8, 16, 32 or 64 bits),Real(8, 16, 32 or 64 bits), Boolean, class types,

interface , a rrays and Generic types. Second, there are fewer relations among c lasses.

The HARPO /1 includes inheri tance rela tion between classes. But there arc no their

polymorphism relations. These make possible to finish the object relation analysis.

Because the number of objects are finite, we implement program analysis and opti­

mizations in compile time , though it can last a few minutes.

3.2 ODG Specification

Definition 3.3 Object Dependence Graph (ODG)

A Object Dependence Graph ODG = (N, E , Type) is a directed graph , in which ea.ch

node is connected to others with relat ion edges.

1. N is a set of all objects in the program. Objects include CO and SOs.

2. E ~ N x N, is a set of relat ion between objects. Object can connect to another

object with one relation. These relat ions a re r presented in edges.

3. Type : E ___. { K nows, Par·tof }, is edge type. D

In the set , a ll objects have their own nam es. The name consists of two parts: its

location and object name in class declaration . For example, if there are two objects

whose names a re 'object a', but their host objects are different: one is object b, the

other is c. vVe classify these two objects with b.a and c.a. They Rrc two diHerent

34

objects in progra ms.

Arrays i a. da ta. structure consisting of a. group of elements having a single name

that a rc a.ccc sed by indexing. Each element in an array has the same data. type.

Usually elements in this a rray occupy contiguous area. of storage. The difference

of clements between single-dimensional or mult i-dimensional a rray is using different

indexes to access elements in a n ays. T he d ifferent elements in arrays are different

objects. We can identify them with array name and th ir index numbers such as a.[O].

This is an objc t , whose name is a[O].

We a lso take care of global objects m programs. We can identify these global

objects since t heir locations a rc outside class range. We can also identify them by

their na mes. T hese global objects can be used by other object· (other object have

know re lation for them); They are not part-of other objects (other objects have no

pa·rt-of relation for them).

Th re arc two type of edges. One is part-a}; and the other is knows. Part-of

relation mean. an object can be a part of another object . In informal terms , small

object is a pR rt of big object. A CO can in Jude SOs and COs, but Os cannot

iiicllldc other COs and SOs. The know relat ion means one object may us a uother

objec t.

T hese edges a rc directed. The rules on dir ction are: If edge is part-of type, t he

('dgr direction is from the object included by another object; If the edge is know type,

t he c'dge d irection is from object that i u ·ing the object.

Actual ly, for know r lations we can identify it by a straight forward way. If an

object 'A' has know relation with another object 'B ', that means object 'A ' calls a

proceclmc in object 'B'. Furthermore, if object 'A ' has know relation with object 'B ',

35

they have no part-of relat ion at that same time.

Besides the above, we can see these following cases in Figure 3.1.:

1. If COl has part of relat ion with C02, C02 is a. decendent-of COl. If C03 i · a

pa rt of C02, C03 i also indirectly a decendent-of COl. But we do not need to

connect a part-of edge with them. We can say part-of rela tion has transit ivi ty.

I3ut it is not necessary to connect COl and C03 wit h par·t-of edge.

2. H C02 is a part of COl , it is impossible that COl is a part of C0 2.

3. If C02 is a part of COl , it is impossible that COl has know relation wi t h C02.

4. If COl knows C02 aud C02 knows COl , this may produce a. deadlock. A

special ana lysis is neces ·a ry. We wi ll discu s t his in Chapter 5.

5. If both COl and C02 know an object C03, in which there is at least one

procedure. This can be a call procedure. COl and C02 race for access and

use right of C03. For calling and called problems, we make a. further discuss in

Chapter 4.

6. If C0 2 is a part of COl , C03 known by C02, we cannot conclude the C03

known by COl.

\;\'(' conclude some ODG propert ies as follows:

• ODG can refl ect object rela tion in programs. When we construct CFG , we need

t hese relations to ensure t he connection among different objects.

ODG reflects the relations of all objects in programs, but this is only t he first

step for HARPO/ L IR analysis . For the next step, we will analyze control flow

36

,-------------------------- - -

possib le
deadlock

part-of

part-of part-of

Case1

know

Case4

Case2

Case5 Call procedure

Figure 3.1: a s imple ODG example

Case6

relation in objects. Obviously, it is realis tic t ha t we separately analyze each

object and combine them together. But the connection r lation of different

objects makes it hard to connect them together. The ODGs provide t he help

to implement this procedure. We can find a ll object items of the HARPO/ L

programs, and connect them with part-of and know rela tions. The know rela-

tion comes from calling procedme and shared variables used using in a CFG.

We can analyze these skel ton COs and connect them with conflict edges and

ca lli ng rela tion edges. Each CO like this can have its own parallel control flow,

which can include multiple t hreads. We can represent and analyze these COs

in Augmented Concurrent Control Flow Graph, which will be introduced in the

next chapter.

• ODG reveals calling relation and global shared varia bles.

The t raditional interproccdura l method u es call graph . In HARPO/ L , call-

37

mg procedures use accep ted sta tements to finish coordina ting several calling

requests in different threads . We can find calling relation from ODG. Global

share variable use will also be found from ODG .

• ODG benefit to distinguishe thread rela tion in objects.

Essentia lly, there are no obvious differences between thread in the same object

in difrerent obj cts. Both of them can be represented with an edge. How­

ever , we can find the following differences among them. For threads in the

same object , programmers often use explicit synchronization methods to en­

force execution order such as post -wait, semaphore or unlock-lock. For threads

in different objects, mult iple threads interfere wi th each other in the form of

implicit synchronization such as calling and called.

• ODG does not take the program statement 's order informa tion , and it only

reflects object relations.

Because the construction of the ODG does not come from all instructions in

source code, it docs not take instruction order information. We can Lhink that

iL is a preprocess procedure. Based on ODG analysis, we can lea rn information

which is needed in next st eps .

3.3 Algorithm for Constructing ODG

In ODG , t he main elements a re all obj cts in programs. However, source code

includes many classes besides objects. We know an object i · an ins tance of a class.

So we can transfer each class into its corresponding object instances. In a.cldition ,

38

---- ------------- --

we know ODG does not conta in any program execution order information. These

execution orders are included in threads in objects. We use ACCFG to represent it

in chapter 4.

In order to construct ODG , we should collect a ll object names, types and t heir

usc relations. Vve can obtain the information from the field declaration of each class

and class parameters. This is a straightforward method to obtain program ODG from

these two sources. Field declaration has the following form:

Field ---> (public I priva.te) obj a me : Type [:= Ini tEx p]

This expression includes object accessibili ty (public or priva te), name, type informa­

tion H.nd fi eld na me.

Class param eter is another aspect considered . The classes often include some

pa ra meters. These parameters imply some 'knows' rela tions. T his is a. happening call

case. An example can be seen in Figure 4.7.

In order Lo construct ODG , we use two steps: Collection, and Connection .

1. Collection

First we collect all objects in HARP0/ 1 programs. For each class, all instances

will be collected. These objects from certain classes, contain objects listed in

t he fi eld declara tions. All these objects a re a. part of the host object. There are

part-of rela tions here. If some of t hese objects come from oth r classes, t hese

objects can also include objects listed in their class field declaration section .

2. Connection

After collecting all objects in programs, we connect them wi th each otheL Ther

39

are two rela tions here. For ho t object a nd objects listed in t heir field declara­

tion , the relation is 1 part-of 1
. The direction is from field to ho t. For object

c1nd object from its class parameters, t he relation is 1 knows 1
. The d irection is

from host object to argument.

We can sec an example of ODG construction in Figure 3.2. In this example , w

list C'iass declarations in Figure 3.2(A). There arc thr c classes: A, B and C. All obje t

procedures start in main class. In Figure 3.2(8), t heir ODG is shovvn. We can know

from th is ODG , that object a, derived from class A , includes object al, a2, and a3.

In addition , object a and object b both have knows relation with object c. This is a

shared usc for object c. For this ca e, we can know that object a and object b race

for t he usc of object c.

When several diA.crent objects include obje ts , whose names arc same, these ob­

jects with sam e names do not represent the sam objects. We need to usc parentob­

jec/:name. childobjectname for representing it. In this way, the ODG is onst ructed. It

shows Lhc hierarchy of objects in programs. In this example, we can pick up object a,

b a nd cas subjects analyzed in ACCFG ana lysis. In other words, these three objects

a rc program skeletons.

The rules of identifying skeleton objects arc: Firstly, if a skeleton object can not

be a part of other object . That means t his object has no 1 part-of 1 relat ion with

other . Secondly, these objects can be used by other objects. The relation of skeleton

obj t a nd other object is only 1 knows l

40

class A [in c:C]
obj a1: int =0:
obj a2: int =0:
obj a3: int =0:

class B [in c:C]
obj b1: int =O:
obj b2: int =0:
obj b3: int =0:

(A) Object Collection

(B) Connect object to ODG

main class

class C public obj c:C
obj c1 : int =0: . .
obj c2: int =O; public obJ a[c]: A:

obj d: int =0: public obj b[c]: B:

Figure 3.2: The construction of ODG

41

Chapter 4

Augmented Concurrent Control

Flow Graph

4 .1 Introduction

In t his chapter , we first ly discuss the principles and relations of memory consis­

tency models and possible strategies in HARP0/ 1. S condly, after briefly introducing

CCFG method in [10], which can represent source code with parallel and sequential

behaviors , we present its extension, Augmented Concurrent Control F low (ACCFG),

for HARP0/ 1. Thirdly, ACCFG is t ranslated into Concurrent Single Static Assign­

nlent (CSSA) form. Lastly, we will int roduce several confluence functions including

v. ¢ . 1r and ~ and give their placement a lgorithms.

42

4.2 Memory Consistency Models

4 .2.1 The Classes of Paralle l Programs

P arallel programs arc different from the sequent ial p rograms, since t hey include

parallel control flow , such as Cobegin Coend, and thread synchronization. The clas­

sification of para llel programs ca.n benefit our comprehension for pa rallel programs

and consistency models.

In [27], Vivek summarized parallel program s into t hree different categories: de­

terministic parallel programs, nondeterministic data- race-free parallel programs and

nondeterministic parallel programs with data races.

In deterministic parallel progra ms , the same input through multiple paths always

prod ures the same output. In these parallel programs, there arc no cia ta. races bc­

twecn cl ifferen t threads. In nonclcterrn i nistic data-race-free para llel programs, the

same input through multiple clifl'ercnt paths can produce different outputs. Thcs

pa ra llel programs include deterministic parallel programs and some synchronizations

such as acquire-release. The shared variable accesses are contro lled by control flow or

data synchronization. In these programs, programmers can guard programs to free

from data rae s. The nondeterministic parallel programs with data races arc most

complicated . Its output is nondeterministic and data races are allowed in it . So the

programmers cannot determine the program behaviors in advance. Concurrent data

accesses are not protected by synchronization.

ln Figure 4. 1, vve can sec the examples of these three classes. In the class 1, t here

arc no data race. In the class 2, the synchronization enforce control execution order .

In the class 3, there exist data race, the variable a in the statement b := a+ 1 can

43

usc t h definition of a := 1 or a := 2. Thi · cannot be decided in advanced.

obj a: int =0:
obj b: int =0:
obj c : int =0 :
(CO

a := 1 :

II
b:=2:
c:= 3 :

CO)

(A) C lass 1

obj a : int=O:
obj b : int=O:
(co

II

a:= 1:
p ost(s):

wait(s):
a := 2:
b :=a+1 :

c o)

(B)Ciass2

obj a: int=O:
obj b : int=O:
(co

a := 1:

II
a:= 2:
b:=a+ 1:

co)

(C) C lass 3

Figure 4.1: The P arallel Program Classification of Vivek

4 .2.2 M emory Consistency Mod Is

In distribu ted shared memory system there are many possible data consistency

models. The system supports a given model if operations on memory follow spc-

cific rules. A data consistency model specifies a contract between programmers and

system.·. If programmers follow certain model ru le. , the system kc ps memory cons is-

tent a nd the results of memory operations will be predictable. Memory consi. tcncy

models include strict consistency, sequentia l consistency, causal consistency, release

con istency, ev-nt ual consistency, delta consistency, atomicity consistency, and w ak

consi tency [33]. The following consistency models arc listed from the strong to th

weak.

• Strict Consistency

trict consi tency is most stringent for memory coherence. This on i tcncy

beys this principle [33]: Any read to a memory location X will get t he value,

which i t he most recent write to X. Based on this rule, a ll write operations

44

and values will be instantly visible to all processes. After the writes are clone,

all subsequent reads will see the value immediately. Furthermore, a read can

get the current value immediately, no matter how fast the next write is clone.

However , t his leads to inefficiency since there are more data movement and

synchronization requirements than tho e programs really need.

• Sequential Consistency

Sequential consistency is a. slightly weaker model than strict consistency. It was

defined by Lamport "the result of any execution is the same as if the rca.cls and

writes occurred in some order, and the operations of each iucliviclual processor

appear in th is sequence in the order specified by its program" [16]

• Weak Consistency

In weak consistency model, synchronization variable accesses are sequentially

consistent. The weak cinsistency model obeys this rule: Only after a ll previous

write operations are finished, a synchronization variable acces es can be a llowed.

And after a ll previous synchronization variable access are finished, the following

read and write operations can be allowed. In this model, all acces operations

to sychronization variables are seen by a ll processes in the same order. I t must

make sure after all writes are completed , new read and wri te operations can be

proceed.

• Release Consistency

Release consistency includes two operations (acq uire and release). Before a data

write to a. memory object, a node must acquire the object by acquire operation,

and later release it. W ithin acquire and release operation, the operation consists

45

of the cri t ical se tion. The system is said to provide release consistency, if cdl

write operations by a certa in node are seen by the oth r nodes after the former

rc'lcases the object and before t he latter acquires it[33] .

• Entry Consistency

Entry consistcn y a lso uses crit ical sections. In this model, acquire and release

accesses a re a lso at t he start and end of each cri t ical s ction. Furthermore,

Entry Consistency requires each shared va.riabl to be associated with some

synchronization variable such as a lock or barri r. If element of an array

require to be accessed independently in parallel, a ll these clements must us

different locks [33].

4.2.3 Memory Consist ncy in HARPO /L

In the 1-IARPO/ L, programmers can usc synch ronization methods to control data

acccs · for shared variables. In some cases, the 1-IARPO/ L program includes some

dat8 rae s, which cannot be decided in 8dvance. This is cl8ss 3 parallel programs.

When we usc strict memory consistency, programs arc xecutcd in the order of

t he statements. VIe an be illegal to in crt a write between two cons cutive read

accesses. In t his memory consistency, programs will lo e the flexibility of optimization.

In weaker memory consistency m del, we have to guarantee the s pcration of the

synch ronization variab les and write/read operations. In the I--IARP0/ 1 , we use th

sequential consistency model, because of its simplicity and t he availabi li ty of pro f

ntct.l!ods for it.

46

4.3 Augmented Concurrent Control Flow Graph

(ACCFG)

J a.ej in Lee [9] in t roduced Concurrent Control Flow Graph (CCFG). This is a

rathrr good intermediate representation for explicit ly parallel programs. It has ome

si mil arity to parallel program graphs [32], control flow graphs [2] and parallel de­

pendence graphs [12]. It contains conflict edge for sha r cl variable, synchronization

edg for explicit synchron ization statement an l control flow edges. CCFG can reflect

ba i para llel language feature in HARP0/ 1 , but some extra element · (wit h ac epL

sta tement in HARPO/ L) urge us to extend it to adapt to HARP0/ 1 . We call this

new m Augmented Concurrent Control Flow Graph (ACCFG).

Object-oriented languages su h as J ava allow multiple th reads, and compilers

anal rlze and coordinate the muliple threads' relations. In HARPO / 1 , we obtain t he

relation of threads by object dependence graph analysis. These COs can be analyzed

with A CFG analy is . These COs can b connected with shared variable a nd call

procedure.

The definition of ACCFG :

Definition 4.1 Augmented Concurrent Control F low Graph

An Augmented Concurrent Control F low Gra ph (ACCFG) is a directed graph G =

(N , E , Ntupe , Etupe)·

1. N is the set of node in G. Each node is a program basic block.

2. E i the set of edges in G. There are four types of edge. Ect , Esy , Ecf and Eel .

Ect is the set of control fl ow edges.

47

Esu is the set of synchronization edges, which show the order enforced by syn­

chronization operations. Here synchronizations inc! ude parallel loop end nodes,

and ordinary synchronization statements such as post wait, unlock-Jock and

semaphore.

E cf is the set of conflict edges. Conflict means two memory references in dif­

ferent threads refer to the same memory location and at least one is a. write.

So, conflic t edges mean a shared variable used between diff'erent threads in the

same object or different objects.

Ec1 is the set of calling edges. Accept statements accept calling requests from

other threads. These calling threads use calling edges to reach accept node.

3. Ntype is a. funct ion which tel ls the types of nodes. The node types include Start,

Exit, Cobegin, Coend, DoallBegin, DoallEnd, Compute, Calling, AcceptStart,

Return, and Header.

4. E 1ype is a function which tells the types of edges in the gra.ph. D

T he StaTL and Exit nodes a re specia l nodes which have respectively no predeces­

sors and no successors in a. ACCFG. Severa l threads a re crea.t d a t a. Cobegin node.

These threads arc merged at a Coend node. DoallBegin and DoallEnd are simila.r to

CObegin and COend, and this kind of loop can run in parallel when no d ·;:tta depen­

dences exist between any two iterations with different index values.

A Bmnch node is t he same a one in the sequential program. If it is a loop header ,

it is called header node. Both branch nodes and header nodes contain conditions for

branching. Compute nodes contain a sequence of assignment statements.

48

The direction of a synchronization edge is from the node which contains a t rig

event variable signa l to t he node which has a wait for the same event v·tria,ble. Con­

Aict edges arc bid irectional edges in ACCFG, which join two basic block , in different

threads , that refer t he same sha red variable.

Th accept s tatement is a special operation in HARP0/ 1 . It i a ailed node,

and scv raJ calling threads may race for access for it. Following the node is a critical

section , in which ther are some computat ion procedure . From the c threads scud­

ing ca lling requests, calling edges are used to connect calling nodes and accept tart

nodes. The calling nodes locate in the place the called procedure is used. There is

a return node corre paneling to each accept tatement. The result omputcd will be

sent back to that calling thread.

In the Figure 4.2, we can see object c call the procedure procl . The value is sent

t o <lccept node, a nd go t hrough the computation y := s-in(l + x). There ·ul t is sent

bnck to ca lli ng node.

ln explicit parallel programs, there may be many parallel loop control Aow struc­

tures, such as co loops in HARP0/ 1 or pdo. Mult ip le threads nm in parallel in t hese

pa rall 1 loop structures. At thei r loop end nodes(coend and pdoend), these thread

meet and will be synchronized. But these synchronization behaviors a rc not explicity,

and limited within t his loop end node. T here a rc no ynchronization edges for it. An

exam ple of A CFG is shown in 4.2.

49

obj a: int =0:
obj b: int =0:
obj c: C:
(co

II

a:=1:
post(s)
a:=a+1

b:=a+2
wait (S)

co)
c.proc 1 (b):

accept proc1 (in x:int) a:=1

y: =sin(1 +x):
return y:

obj a: int =0;
obj b: lnt =0;

obj c: C;

'· '

(A) HAR PO/L Codes (8) ACCFG

Figure 4.2: An Example of ACCFG

control eoge
confh ct edge

sync eoge
calling eoge

-----+
··-··-··-··-··•
-·- ·-·-...

4.4 Concurrent Single Static Assignment (CSSA)

After we finish analysis on Complex Objects with ACCFG , we t ransform t hem

into CSSA. We ca n a lso usc funct ions ¢ , ·t/J a nd n, wh ich are similar to t hose in t he

CSSA Form in [9]. But we add a. new function (for the confiuence function in calling

nodes. These node types arc de fined as fo llowed :

D efinition 4.2 (¢ function)

A ¢ function of the for·m ¢(v1 ,v2 ... ,vn) is placed at a node (except f or- a coend node

o·r endpdo node) wher-e contml flow edges join. n is the number- of ·incoming contml

flow edg es at the node. Th e value of ¢(v1 ,v2 .. . ,vn) is one of the v~ values and the

selection depends on contml flow path f ollowed by the pr-ogmm. [10]

50

In chapter 2, we int roduced t he¢ function in SSA form. In the parallel programs,

there are no d ifference from the sequential programs on the definition of¢ function.

Here we use the same example in Figure 4.3. In this example, the value of ¢(a 1 ,a2)

comes from a 1 or a2 . The selection depends on whether th control condition Co is

greater t ha n 1.

obj a: int =0:
(if c> 1

a := a+1 :
e lse

a :=4:

print a:

(A)

obj a 0 :int=O:
(if c0> 1

a 1:=a0+1 :
e lse

a 2 :=4:

a 3:= (> (a 1.a2)

print a 3 :

(B }

Figure 4.3: An Example on the ¢ funct ion

D efinition 4.3(1j; function)

A 'lj; function for a shaTed var·iable v has the form 1j; (v1 ,v2 ... ,vn), where n is the num-

beT of thTeads merging at a coend node or an endpdo node where the 1j; function is

placed. The value of1j;(v1 ,v2 ... ,v11) is one of the v's values and the selection depends

on the inter-leaving of statements in the thTeads merging at the node. [10]

In the Figure 4.4 (a) ,'lj; function is located at the end of the co loop. Th argu-

mcnLs of the 1j; function come from t he definitions in difFerent threads of CO parallel

loop. The selection of values does not depend on t he control flow, but the interleaving

of statements in different threads.

51

obj a: int =0: obj a 0:int=O:

co
a:= 1 :

II
a :=4:

co

{A)

II

co
a 3=1f/(a1.a2)

(B)

Figure 4.4: An Example on the 'ljJ function

Definit ion 4.4(7r fu nction)

A 7r function of the form 7r(v 1,v2 ... ,v11) for a shaTed variable v ·is placed wher-e there

is a ·use of the shaTed variable with t possible definitions. n is the number of r-eaching

definitions to the use of v thmugh the ·incoming contr-ol flow edges and incoming con-

flicl 61 edges. The value of 7r(v 1 ,v2 ... ,v11) is one of the vs. The selection depends on

the i11teTleav'ing of state·ments in the threads computing the us . [10]

ln the Figure 4.5, an exa mple of 7r function is shown. The statement b := a is a

u ·c of variable. But variable is a sha red varia ble between two different thr -a Is. T he

lefi ni t ions a1 := 1 and a 2 := 4 reach the use through the conflict edge. The value of

7r function is 1 or 4. The . election depends on the interleaving.

52

obj a: int =0;
obj b: int =0;
co

II

co

a :=1 ;

a :=4:
b :=a :

(A)

obj a 0:int=O;
obj b 0: int =0;
co

II

co

a 1 := 1;

a 2 :=4:
b 1:=n(a 1.a 2)

(B)

Figure 4.5 : An Example on the 1r function

D efinition 4.5(~ function)

A ~ fv.nct'ion of for"rn ~ (v1, v2 .. . ,'Un) is placed in called node (acce pt node), wheTe calling

edg es m erge. The n is the numbeT of call meTging at this node wheTe the ~ function

is placed through calling edge. Vn is the parameteT value passed fmm the nth calling

thTead. The val-ue of Uv t ,V2 ... ,vn) is one of the vs. The val1£e selected is sent to the

cTitical section following ~ f unction. The selection depends on the or-der· of calls.

A ~ fun ction example is showed in the F igure 4.6. Accept statement acts as an

H.cccpt node, wh ich can accept calling edges. The calli ng edges come from different

objects, wh ich usc the procedure of the same object . In this example, both obj cts

b and c usc the proc of object a.. But t !tey usc different pa ra meters . The different

pa ra meters are sent to the proc of object. We use ~ function X3 := ~ (x 1 , x2) to olve

t his cEtsc. Only one value can be chosen to compute in next st a.tcm nt x,1 := x3 + 1.

The scle Lion of va lue depend · on the calling threads and accept node.

53

obj b :int = O:
x:= 1:
{a .proc(x) :}

obj c :int = O:
x :=2:
{a.proc(x): }

obj a :int = O:
accept proc(int x :in)

x:= x +1 :
return x

(A)

obj b :int = O:
x 1 := 1 :
{a .proc(x1): }

obj c :int = O:
x 2 := 2 :
{a .proc(x 2) ;}

obj a :int = O:
accept
x3:=~(x1.x 2)
x ·= x +1 · 4· 3 .
return x4

(B)

Figure 4.6: An Example on the~ function

The¢, 'l/J a nd 1r funct ions in this thesis are the same as in [9]. The~ function

handles ac ept nodes in HARP0/ 1. In addi t ion , the accept statement has om

synchronization behaviors. Several calling t hread merge in t his node, c nd only on

can obtain the ace ss r ight. After that, the called node wi ll refuse other call ing

th reads. Computation happens in t he crit ical section following called node. After

finishing the critical section, the result of the computation will be sent back to that

ca lling Lhread. The called node will be available again and can accepL other request .

4.5 Function Placement

In or ler to transform ACCFG into CS A , these function rnusL be p laced on t heir

correct places. VIe will introduce these placement methods as follows.

54

4 .5.1 Placing ¢ Function

Because ¢ fun tion is a lso used in t raditiona l SSA for sequential program , much

resea rch has been made on it . But they obey t hese rules: there is more than one path

to join nodes; each path is not an empty path ; all pa ths arc not equal to each other;

The out put node is on ly selected from one of the paths a t the arne t ime.

Cytron and Ferra nte in [24] present an efficient algorithm for generating SSA

form from a n a rbitra ry cont rol flow graph cmd its dominator t ree. This process fit"'L

figures out a t which join point to insert ¢ functions, then it inserts ¢ function. In

these functions, the number of a rgumen ts a rc equal to the number of cont rol flow pre­

decessors of the join point , which includes some definitions of the variable reached ,

and rena mcd definitions and uses of va riables.

This method usc the dominance fronti rs and dominator t rees. T he dominator

t ree is computed using the Lengauer-Tarj an algori thm and path-compression . In [24],

Cyt ron gives the two-pass a lgorithm on the dominance frontier. Using the dominance

front iers, we can decide the location of each ¢ function for each variable in the orig­

ina l program and add the ¢ fun ction for each variable at the dominance frontier of

every node. The va ria bles arc renamed by placing a. subscript to a n origina l variable.

All variables renamed wi ll be checked by t raversing the domina tor t ree in order to

ensure each of these varia bles is defined exactly once. This is the most effi cient a l­

gorithm current ly known for a general flow gra ph , but it requires several passes over

t he instructions of t he graph. About Cytron 's placement¢ function algori t hm, mor

dc.'1Hils ca n be found in [24].

In [18]. Bra ndis a nd 1\lssenhck give a s im1 ler algori t hm. lt is R metltocl to gcn-

55

crate SSA form in a single pass directly from the source text of a program. But

this method must be limited to a structured program. The 'tructur d program only

includes assignments and structured statements such as IF , CASE, WHILE or FOR

and no GOTO s tatements. In a structured program, if compiler meets the join nodes,

the ¢ fun ction will be inserted in the places , and even this procedure can be fini shed

in parsing.

The HARPO/ L in om project include usual IF-ENDIF , FOR, WI-IILE, P arallel

Loop , but no GOTO tat ments. So, we can think of it as a. structured programming

language. We can use this a lgorithm in [18] . Otherwise, we should pay more atten­

ti on to t he difference because of parallel loop control in HARPO / L. 1 he Cobegin­

Coend and Pardo loop · bring cont rol join nodes. If we t reat them a lso as condit ion

statements, like IF statement, t his will gen rate an incorrect ¢ function at t his node.

Nlul tit hrea.d join points are para llelly executed , and different from t he sequentia l case.

These nodes should use ·tjJ function for them. So, it is a more accurate defini t ion , c/J

fun ctions for a variable should be placed at points in t he parallel program where two

or more defini t ions of the varia ble reach through control flow path in the program

that do not execute in parallel.

4 .5.2 Placing 1/; Function

When more than one t hread updates the same variable, more than one SSA name

of the va ria ble may reach this use after para llel blocks. These names must be merged

to preserve the SSA properties. However, this merge does not come from control flow

branching, 1/J fun ction is used for it . A parallel merge means t hat a variable will be

56

updated in more than one parallel thread, and the updated value must b used in

codes following t he parallel block, regardless of which section finishing the update.

The algorithm to place 4> functions given in [24, 7] is also used to place 'lj; functions.

However , this algori thm can introduce many spurious 4> funct ions. These are easily

identified, since they will have only a single reaching modified SSA name at the

pa rallel merge. After identifying t hem, we can remove them.

4 .5.3 Placing 1r Function

4> and 'lj; functions cannot represent a ll confluences of values because the definition

of a shared variable may reach a. "use" from different threads. In [9], J aejin Lee used

n function to represent it.

Since HARPO/ L is a. pa rallel programming language, orne objects in different

t hreads can act as the shared variables. This cau es the data. race. The n function is

used to solve t his problem.

When some synchronization statements are introduced in HARP0/ 1 programs, we

must know some paths cannot be reached because of the order enforced by some

synchronization statements. These paths must be found and removed.

We can use the same method as [9] on 1r function placement. In addit ion , data.

races in different threads can come from called procedure, where several threads call .

We use ~ funct ion to solve it.

57

4 .5.4 Placing ~ Function

¢ , ~~ and 1r functions ca n basically solve common para!! I program i sues. How­

ever. for H RPO/ L, a new cha llenge must be faced. In equent ial programs, calling

pro cdures a re regarded a.s parts of sequential programs. We can copy the called

procedure codes to the call ing nodes. The usual method is to use call graph to rep­

resent all ing relat ions. In HAPRO / L programs, called nodes will face the cont rol

race from different threads. If we can know the call ing order of several calling threads

in adva nc , then the ca lled procedure can run with values pas eel from a iling nodes

one by one in order , and return the corresponding resul t . However, t he order cannot

bC' provid d in advance. So the ~ fun ction is in t roduced to . olve the data race of

multiple calling threads.

In HARPO/ L, calling procC'dures a rc finished by several calling procedures in

nntlti threads racing for t he ca lled procedure. This is a thread confluence and cont r l

racing issue. Each thread passes its parameter values to the called procedure. The

computation is finished in the critical section of the called procedure and t he resul t

is sent back to the calli ng thread. Each t ime the called procedure on ly ac cpts one

request. Other req uests will be refused a nd wi ll wait for t he next chance when t h

procedure fin ishes.

Th is is a complicated proces ·. However in HARPO/ L, all objects ar prod uced

in compi le time. We can know all threads before the program runs. When s vera]

t hreads call a called procedure, accept node will coordinate and chedule these threads

execut ion orders and keep only one thr ad running each ti me. After the comptt tation

is done , t he result value is sent back to the caller .

5

When only one calling thread in program sends a request for a called pro edure,

this provides a hance for optimizations. Since accept statements do not need to

coordinate all calling requests from different threads at this time, accept statement

can be removed . But t he computation part in the called procedure is still useful to

ccliling proccdm c. We can copy computat ion procedmes to the alling procedure in

calli ng nodes . Of course, the return node corresponding to the accept statement is

also removed.

We can see an example in Figure 4.7. In subgraph(a), object "a" and obj ct "b"

all usc the same procedure, but the procedure belongs to different objects. Object

"a" uses the procedure of object "al ", and object "b" us s the one of object "bl" .

This cannot cause t he race situation. In subgraph(b) , object "a" and "b" both use

t he procedure of object "c" . The threads in objects "a" and "b" will race for the

right to access the procedure in object "c". The computation result will return to

object "a" or object "b" .

59

obj a:
obj c1: c

obj b:
obj c2:c

obj a1 :int =1 obj b1 :int =2
a1 := a1+c1.proc1111:
print a1;

obj c: int =0:

b1 := b1+c2.proc1121:
print b1 ;

accept proc1jin x:intl
y := 2:
y:=y+x:

return y:

(A) not a~ case

obj a: jin c 1:
obj a1 :int =1
a1:= a1+c.proc1j11:
print a1 ;

obj b: jin ct:
obj b1 :int =2
b1 := b1+c.proc1j2J
print b1;

obj c: int =0:
accept proc1jin x:intl

y := 2:
y:=y+x:

return y:

(B) a~ case

(C)~ CCSA

Figure 4 . 7: Ca lling Procedure in P arallel I rogram

In this sense, t he behavior in this node is s imilar to 1r function , because the

dcfir1iti on of t he values of passing parameters in difl'erent calling procedures will race

[or c-1 use in the called procedure. But we must know the following differences in t his

node:

• Pa th from definition of variable in calling threads to use of va riable in called

thread is a calling edge, not a onflict edge as in 1r function .

60

• The number of the inpu t ing a rguments of this node fun ction is equal to t he

number of calling edges, bu t not the numb r of conflict edges. For each calling

edge, only one parameter can be passed .

• After the called node accepts a calling req uest , other calling requests will not

be discarded , bu t will wait for the next available chance to be pro cs eel . In 1r

function, only one definition can be chosen , t he other will be discarded .

• Calling node only accept one request at a t ime, and the val ue wi ll be sent to

t he criti a l section following t he called node. Computation will be fini heel in

this section. After that , th resul t will be sent back to the ca lling thread, and

t he ca ll cl node will be available to accept other calling threads. Whereas 1r

function has no compu tation s ction a nd r t urn step .

• The choi of calling t hreads a rc decided not only by the h Lest accc s thread

order, but also by t he called guard node s tate. For 1r function , the output

va lue is decided by the multi thread interleaving, or we can say, the latest accc s

t hread can obtain the usc right.

For f. function p lacing we must fin d call ing nodes, called nodes, and thei r retu rn

no lcs a nd make some possible op t imizations as a bove. Since called node represent

accept statement in HARPO/ L, we can t rivially pick them up. The return nodes a rc

located in the tail of m t hod implementation . For calling methods , we can know their

places from ODG a nd control flow ana lysis in ACCFG . There a rc calling rela tions

mnong objects in ODG. In ACCFG , c8 lli ng nodes a rc located in t he place where they

nrc in t he form of 't he name o f' ca llc I object . its met hod name". alling e lgcs

61

connect caller and allee. If call ing edge is the only one, that means accept node does

not need to coordinate multiple threads. Then the computa tion can be moved to

ca lli ng thread . This decreases communication overhead. the optimization mentioned

abovC' is processed. We give pseudo cod es for placing ~ function as follows:

Placing ·~ called node in an accept statement.

PIC~c ing <l return node at the end of method irnplcmentation (marked for the end of

computation)

The arguments of the~ function comes from calling procedures through calling edges.

4.6 Summary

In t hi - chapter , we firstly discuss various memory consistency model and related

strategiC's in HARP0/ 1 . Secondly, we made Concurrent Control Flow Graph (CCFG)

extension as Augumented Concurrent Control F low Graph (ACCFG) for HARP0/ 1 .

Third ly, we introduced Concurrent Single Static Assignment(CSSA) ,wbich is the fol­

lowing t ransformation of ACCFG. Lastly, we analyzed and discussed the confluence

function in CSSA and related placement algori thm.

62

--- ---- --·------·----------------------------

Chapter 5

lnterObject Analysis

In this chapter, t he main issues are interobj ect problems. First, we wi ll introduce

some basic topics on interobject analysis . Then vve will discuss some interobject

optimizations. Lastly, we will analyze interobject procedure call deadlock problem

and give its possible solutions.

5.1 Introduction

In HARPO / 1 language, one object can contain more than one thread , so there

is also interprocedural problem in different threads in the same object. In the other

cRse, different objects can have their own threads, and between these threads there

can ex ist interthread relations. However , in compiler 's view there are no obvious

differences between these two case . When we separate several threads in the same

object into different objects which have only one thread, they will become similar.

So here, we can think of interobject r -lations imilar to interthread relations. Their

analysis methods and algorithms can be replaced from each other.

63

Compilers us in terobject analysis (in terprocdural ana lysis) to optimize inter­

mediate representations in global view. This differs from in traproced ura l a na lysis

bece~use many of the benefits of interproced ural analy is derive from improving Lh

effectiveness and applicability of opt imizations wit hin individual procedures, rather

thau t ransforming t he relationships among pro edures.

Th interprocedural analysis can include evera l aspc t IR4:

• Interprocedural control fl ow analysis, which comes from the construction of a

program 's control flow gra ph.

• Interprocedural data flow analysis , which includ s both flow-sensit ive and flow­

insensitive sid -effe t analysis and con tanL propagation.

• Intcrprocedura l a lias ane~lysi s.

• InLerproccd ura l optimization.

• Interprocedura l register a llocation.

lnterprocedural alias analys is determines whet her two pointers in a program may

refer to the ·ame object or wh t h r array references refer to the sa.me bject such

as a('i) and a(j). In the HARPO/ L languag , the object name refers to a unique

memory address. We need not consider t his.

lnterprocedural optimization mainly relies on t he analysi of how functions and

va riables a re used t hroughout a program , and seeks to rc luce or eliminate dupli­

cate idenLica.J calculat ions and in t'ffic ient use of memory, and to s impli fy iLer'tt ivc

seq uences such as loops. Intcrproccdural optimization can also remove dead code. In­

tcrproccclu ra.J optilll izat ion is an important compiler behavior in compile Lime. Usual

64

interprocedural optimiza tions can be achieved by a utomatic recogni tion of st andard

li braries, localizat ion of statically bound varia bles and procedures, pa rt it ioning and

layout of proce lures from their calling rela tionship , and globa l a lias analysis.

In compi ler optimization , register allocat ion is the pro ess of mul t ipl xing a la rge

llll mbcr of ta rget program va ri c-1bles onto a small number of CPU registers. The goal

is to keep as ma ny opera nds as possible in register.· to maximise the execut ion sp cd

of ·ofLware programs. Register a llocation can ha ppen over a basic block (local register

allo ation) or a whole function / J rocedure (globa l register allocation) [33]. In curr nt

compi lers, the usual register allocation method is register spilling.

ln terproced uraJ register a llocation handles intcrprocedural registers and minimize

execution time, given the register requirements of individua l procedure in a program.

The usual methods are to usc interproccdural register a llo a tor. These alloca tor rc'­

liec! on heuristic. Steven and harles presented a save- free in tcrprocedura.l register

allocator and an intcrprocedural regi ter alloca tor that spi ll registers a· nece ary

across ca lls in [15] .

5.2 Interobject Optimization

In HARPO/ L Language, we use object dependence graph (ODG) and Augm nted

Concurrent Control Flow Gra ph (ACCFG) as t he intenn diate representat ions of its

compi ler. Calling relat ions can be obtained from the ODG and AC FG of program s

instead of all graph used in t raditional methods. The ODG refle ts calling rela tions

between objects; The ACCFG provides t he information of calling sites , becau c a

ca lling procedure uses the explicit statements in HARPO/ L La nguage. We can 'ay

65

ACCFG represents program in a global view. All threads and objects can b included

in it. Its control Aow analysis can be regarded as interprocedural control A.ow ana.ly­

sis. This ACCFG will be transformed into datafl ow graph a · our fi nal form of IRs.

In HARPO / 1 programs, procedure call is achieved with accept statements. Sev­

eral calling procedures in different threads race the acce ·s right of this accept stat -

ment. But we should consider t hese special cases:

l. if t hrsc cR iling procedures pass t he same onstant value to t he called node, we

C<l ll duplicate a. copy of t he intermediate form of called procedure in rach place

and remove t he calling edge.

2. if t here is only one calling procedure for t he called procedure, we can duplicate

a copy of the intermedia te form for the called procedure in calling procedure

and remove the calling edge from IR.

These two specia l cases are showed in Figure 5. 1. In the F igure 5.1 (A), two proc -

clures pass the same parameter to accep t nodes. Under t h normal cases, two calling

t hreads will race the 'using' right. But we duplicate t he computation procedure in

a.ccept node to the calling place and remove t he calling edge. In the Figure 5. 1 (B),

Only one calling procedure st ays in the programs. We can copy the computation

procedure to calling node and remove t he calling edge.

66

obj a: int =0: obj b: int =0: obj a: int =0: obj b: int =0: obj a

c.proc1 {11 c.proc1{11

obj c: int =0:
accept proc1{in x:intl

y:=sin{1 +x):
return y.

unoptimized

obj a: int =0:

c.proc1(11:

obj c: int =0:
accept proc1 {in x:intl

y:=sin{1 +xl:
return y:

unoptimized

sin{1 +11 sin{1 +11

obj c: int =0:
accept proc1{in x:int)

y:=sin{1 +x):
return y:

optimized

(A) Special Case 1

obj a: int =0:

sin{1+1);

I sin(1 +1) I

obj a obj c

lsin(1+1) I
obj c: int =0:
accept proc1 (in x:intl

y:=sin(1 +xl:
return y:

optimized

(B) Special Case 2

CSSA

obj c

CSSA

F igure 5.1 : Some Specia l Cases for Interprocedura l Optimization

obj b

l sln(1+1) I

The elimination of unnecessary b ounds checking wi th in procedures i a nother

interprocedural optimizat ion. Many source codes a re written to create and m auipu-

!aLe a rrays of a rb it ra ry size, but the s ize of a rrays u. eel in p rogra ms is only determined

in the main program. According to t he analysis of this information , we can resize

a nd ta ilor array size to result in nontrivia l sp eedup . However , the bound checking

in a ha rdware implementa t ion such as in C GRA is too expensive and in HARP0/ 1

a rray. ize is fixed a fter expa ns ion of generics. So we d idn 't apply this technique in

HAHPO/ L compiler .

67

Beside the above, the interproced ureal optimizations in HARPO / 1 can include in­

terprocedural dead code elimina tion , loop invariant code mot ion , common subexpres­

sion elimination. Since these interprocedural optimizations have their int raprocedural

ouutcrparts, we will introduce both aspects of them in Chapter 6.

5.3 Deadlock Analysis and Solution

A deadlock is a situation referring to a specific condi t ion , when two or more p ro­

cesses a rc waiting for resources in a circular chain. Deadlock is a common problem

in tnul t iprocessing.

For deadlock problems, we can divide them into two classes: deadlock resulting

from programs containing synchronization . The other is from t he calling procedure.

Therefore, w- can also consider deadlock problems arising from inter procedures. In

t he following section , we will discuss both these aspects.

In HARPO / 1 programs, t here are synchronization, cont rol flow, data race. Among

its i11 termediate representat ion ·, we use ACCFG. In an ACCFG , nodes are the pro­

gram statements , and the edges include confiict edge, synchronization edge, control

flow C'clge and calling edge. These edges are directed. The synchronization edge

represents execution orders imposed by synchronization. The di rection is from the

statement trigging an event va ria ble to the st atement of wait ing this variable. For

example, for a post-wait synchronization the direction of synchronization edge walk

from " ' post"' to "'wait"' on the event varia ble.

The int roduction of synchronization edges makes deadlock possible. Dead lock o -

curs if there is a cyclic wait , so that every node in the cycle is wait ing for one of the

68

other nodes in the cycle to proceed. Here deadlock implies that there is infinite loop.

On the other hand , deadlock derived from calling procedures. When each of two

or more calling procedures in different t hreads act as caller and callee each other , this

can ca use a calling deadlock. Vve can find this deadlock rela tion from the ACCFG of

programs. We can see an example in Figure 5.2.

obj a : A =0:
accept proc1 (in b:B~

b.proc20:
return:

obj b: B =0:
accept proc2(in a:A~

a.proc1:
return;

obj a obj b

(A) Code Segm ented (B) Its ACCFG

Figure 5.2: An Example on Calling Deadlock

In order to avoid a deadlock, the most conservative solution is to prohibi t syn-

chronization introduction. But the synchronization is the basic clement in para llel

programs. Vivek and Ba bara give some analysis in [28]. More methods are demon-

strRtcd in [6, 4, 25, 3]. Of cour ·e, detecting the possibili ty of a deadlock before it

occurs is a real challenge. We only use t hese methods to det ct possible deadlock in

certa in specific conditions. In genera l cases, it is impossible to develop a uni versal

algori thm for all possible deadlocks in advance.

In order to avoid a deadlock, some possible methods can be applied. Fir t, we

69

cnn r<'movc a ll mu t ua l exclusion conditions; t his means that no process may have

exclusive access to a resource. This is an extreme method , however it may still not

completely prevent a deadlock. Secondly, post-wait condit ions may be removed by

req uiring processes to request a ll the resources they will ne d before starting. Or we

ask processes to release all of their resources before requesting all the resources they

will need. These two methods arc inefficient. Thirdly, since a process must be able

Lo have a resource for a certain amount of time, we have to use a hierarchical sys­

tem and set certain priorities to for retaining a resource. A priority algorithm allows

preemption including lock-free and wait-free a lgorithms and opt imistic concurrency

control.

70

Chapter 6

Optimization In Parallel Programs

In this chapter , we will discus optimization techniques in parallel programs.

First some basic introd uction will be given. T hen we will discuss and analyze the

optimizations in pa rallel programs, including Common Subexpres ion Elimination ,

Dead Code Elimina tion , Hoistabl Code, and Loop Fusion. And we will introduce

f'ussion/ fi ssion methodology for keeping the optimization safe. La.s Liy, we wil l give a

t heorem and give it pmof.

6.1 Introduction of Optimization

Opt imizat ion is an important part of a compiler. In some sense, intermc liate

reprcsenLRt ions a rc designed to obta in better optimization performance.

Optimization is the process of modify ing a system to make som aspe ts of work

more efficiently or use fewer resources [33] . Optimizations can include many aspects:

Lradcof!' and bottleneck are two essenti al issue~ . Usua.lly, optimizations red uce read­

abi li ty to improve performance. This makes program harder to maintain and d bug.

71

In addi t ion , opt imization often ma k u e of pecia l ca s of sour odes s uch as

loop , consta nt a nd redundant varia b le etc. orrcsponding to these cas s t here a lso

exist loop umo ll , loop fusion , common s ubexpres ion elimination , and dead cod e elim­

ination etc [33].

In t his ha p ter , we will concen trate 011 op t imization t chniques in para llel pro­

grams. A lth ugh we desire tha t the a me optimization applied in quentia l pro­

gra ms eR n Rlso b a pplied to progmms written in pa ra llel la ng uages, t hose method

a rc not cd ways f asi blc. ParR lie! <"O nt ro l flow i nterlcavi ng ra u ('S the optimized pro­

gra ms to produrc noncie te rminatc resul t:, which cause · u e ither to usc no para llel

optimization or restrict sha ring of da ta. used in pRrallel pr g ra ms. Both of th m a rc

not what we wa nt. So a general a naly i can give us a bet ter o m preh n ·ion of when

a n optimization may be safely a pplied in pa ra llel progra ms.

J .Lee in [17] a nd L.Lamport in [10] pa rately showed: if a ll cxc ut ion of a trans­

formed progra m a r seq uent ia lly consistent , t he t ransformation will be safe. T h is

mea ns Lhat t he opt imized programs prod u c only resul ts t hat o uld have been pro­

duceci by t he origin al progra m . The o rigina l and op t imiz d progrRms need not be

iclc nt ica I.

\\'c will expla in op t imizatio11 tech11iq ucs in paralle l progra m by usi ng several

exa mples. For pa ra lle l t ructure . vvc ma inly u ·e O begin-Coend 1 a ral l I control flow ,

sincc otlH' r para llel cont rol fl ow structure · a rc simila r to i t.

72

6.2 Common Subexpression Elimination(CSE)

6.2.1 Common Subexpression Elimination

Common Subexpression Eli mination is a common optimization technique. It is a

t ransformation t hat removes repeated compu tat ions of common subexpressions and

repl aces them with uses of the saved valu ·. Computat ion repeated may be compli-

cated function or a simple expression operation. T hey can be saved only by the cost

of using a variable.

6.2.2 A CSE Example In Sequential Programs

obj a: int =0:

obj b: int = 1 :

obj c : int =0:

obj d : int =0:

a :=sin(b+1):

c :=2*b :

If (a< c)

d :=sin(b+1)

e lse

d :=c :

e nd if:

(A) (B) (C)

Figure 6.1: Common Subexpression Elimination in sequential programs

A sequenti a l program example of CSE can be seen in Figure 6. 1 (A). (B) is

its control flow graph. This is a sequential source code segment because it contains

the sequential control flow . The repeated part is s·in(b + 1) . The S'in funct ion is an

73

--

expen iv c mputation function. Variable a and d have the same value, sin(b+ 1). In

this way, twice computations of S ·in function must be executed. In order to decrease

the compu tation workload , we can u e variable t to store the value of s·in(b+ 1), and

va ri able d on ly load the value of variable t , in wh ich stores the value of sin(b + 1).

T his procedure is shown in (C). This saves t he repeated computation on in(b + 1).

So t his means it increases t he effi ciency of programs. The second same s'in(b + 1)

factor is remov d from it original program.

6.2.3 A C SE Example in Par a lle l Programs

CSE in parallel programs i not so ea. y a in ~equential programs. An example of

a parallel program CSE can be seen in Figure 6.2.

In Figure 6.2 (A) are similar codes to the sequenbal n , but it includes a

obj a : int =0:
obj b : int = 1 :
obj c: int = 0:
obj d : int = 0 :

(co

T1:

S1:

S2:

S3:

T 2:

S4:

a : = s in (b + 1) :

c:=b *2:

d :=sin (b + 1) :

II

b :=2:

co)

(A)

obj a: int =0:
obj b : int = 1 :
obj c : int = 0:
obj d : in t = 0 :

(co

T1 :

S1:

S1 ' :

S2:

S3:

T 2 :

S4:

t := s in (b+1):

a:= t :

c:=b*2:

d : = t :

II

b ·=? · . ~.

CO)

(B)

Figure 6.2: CSE in parallel programs

74

pa ra.llcl control fiow co structure. In Figure 6.2 (B), we directly use the sequentia l

CSE method. If thread T2 can be ignored , this transforma tion is correct , since the

value of b is unchanged from statement S1 to sta tement S3. But if the execution

sequence is 51, 5 1' , 52 , 54, 53, the result of the program cannot be equal to any

resul t from the original program. Therefore, when the sequential CSE method is

directly used in parallel programs, this can lead to incorrect resul ts. In order to avoid

the errors. we must guarantee the execution order of st atement S4 before S1 ' .

6.2.4 A CSE Example 1n Paralle l Programs with Synchro­

nizations

In parallel programs, there are more than one thread in them. These threads can

communica te and coordinate with various synchronization methods. In HARPO/ L ,

a II synchronizations are via ace pt and atomic, but we also can discuss other syn­

chronization methods for parallel programs such as post/wait, semaphores, ba rriers,

or moni tors . These synchroniza tion method · can be implemented wi t h atomic. For

exampl , nonfair semaphores can be implemented as

P(s) : obj x := false

(wh (not x) do

(atomic (if s > 0 then s:=s- 1 x:=true))

V(s) (atomic s:=s+1)

An a tomic opera tion in computer science refers to a set of operations that can

be combined so tha t they appear to the re t of the system to be a single opera tion

75

with only two possible outcomes: u ss or fa ilure. To accompli 'h this, two conditions

must be IneL:[33].

l. nLil the enti re et of operati ns completes, no other pro ess ca n know about

t he change· being made (indivi ·ibili ty);

2. If any of t he operations fa il t hen t h entire set of operation.· fails, and t h stat

of the system is restor d Lo t h tate it was in befor any of the operations

began.

In Figu re 6.3, we illustrate two example with post-wait syn hronizat ion method.

The codes in Figur 6.3 (A) and () a rc simila r Lo the one in F igure 6.2. The difference

between F'igurc G.3 (A) and (C) a rc on ly t he plac of Post-Wait. When we use C E

in Figure' 6.3 (A). The transformation is noL correct . The value of din (B) is changed

by th is C E. In () , because of post-wait synchronizat ion , a 1 r clcfinccl order ca n be

obtained. In d := in(b + 1), th value of b i quate to 2. Th E transformation

set b t 1 in d := t. We cannot make C E optimization in (A). However t hough t he

example in Figure 6.3(C) has certain predefined order , the t ra nsformation is a

sHfc one. incc th post-wait synchronization is introduced , statement · in t hreadl

can execute as in sequentia l programs. We ca n make a C E optimization in (C).

6.2.5 CSE Analysis in Parall 1 Programs

SE i · a common optimization in sequenti al programs. We an think a CSE is

safe in seq ucnLia l programs , s ince a ll instru Lions execute in sequentia l o rder. But

in parallel programs, parallel cont rol How and multhreacl n hronization complicate

the E ana lysis. How to guard a C E optimization in parallel programs is corrc t?

76

obj a : int =0:
obj b : int =1:
obj c : int =0:
obj d : int =0:

CO)

(CO

a:=sin(b+1):

c:=b "2:

wait(s):

d :=sin(b+1):

II
b :=2:

post(s):

(A)

obj a: int =0:
obj b : int = 1 :
obj c: int = O:
obj d : int =0:

(CO

co)

t := sin(b+1):

a:=t:

c :=b *2:

wait(s):

d :=t:

II
b :=2:

post(s) :

(B)

obj a : int =0:
obj b : int =1:
obj c : int =0:
obj d : int =0:

(co

a :=sin(b+1):

d :=sin(b+1):

wait(s) :

II
post(s) :

b :=2:

CO)

(C)

obj a : int =0:
obj f): int = 1:
obj c : int =0:
obj d : int =0:

(CO

t := s in(b+1):

a:=t:

c:=b *2:

d :=t:

wa it(s):

II
post(s):

b :=2:

CO)

(D)

Figure 6.3: CSE in P ara llel Progra m with Synchronization

CSE optimization u e a variable to store the result of complicated computation ,

and replaces Lhe same complicated computation with this variable. In Figure 6.2, a

CSE opLimiza.tion will be safe i[it has no t hrcad2. This is because there arc only uses

of va.ria.blc b in t he left thread . The b := 2 in thread 2 is a. definition of variable b.

T hr complicated computation replaced with a. variable t includes the usc of variable

b. The use of variable b in the original complicated computation can come from the

li fl'erent defin itions of varia ble b. If we only sim ply usc a variable t to repla c all

complicated amputation , this removes certain constrain on th ' use-d [chains of

t he vnr ia.ble b. This CSE optimization is unsaf .

77

obj a : int =0:
obj b: int = 1 :
obj c: int =0:
obj d : int =0:
obj e: int = 2:

(co

T1:

51:

52:

53:

T2:

54:

a:=sin(e+1):

c :=b *2:

d :=sin(e+ 1):

II

b:=2:

CO)

(A)

obj a : int =0:
obj b : int = 1:
obj c: int =0:
obj d : int =0:
obj e : int = 2:

(co

T1:

51:

s1·:

52:

53:

T2:

54:

t :=sin(e+1):

a:= t:

c:=b * 2:

d:= t :

II

b :=2:

co)
(B)

Figure 6.4: CSE in parallel programs

In Figure 6.4, in the complicated computation sin(e + 1) of statement S1 and

S3, both uses of variable e come from the same definition of variable e. The definiLion

of varia ble b in thread 2 cannot affect the sin(e + 1) . This CSE optimization is safe.

We will make a further analysis on the valid CSE in parallel program in Figure 6.5 .

In this Figure, t he codes are similar to Figure 6.2 . In order to larify the problem, we

introduce two terms: fusion and fission. These two concepts com from the atomic

operation in computer science.

First , in the Figure 6.5 (A) the transformation from (1) to (2) changes t he stat --

ments a:= s·in(b+ 1) and d := sin(b+ 1) into a tomic operation< a:= sin(b+ 1)d :=

sin(b + 1) >. This is an example of fusion . Actually, in step 1 variable b can use the

cliffcreut definibon , but in step 2 the vari able b uses the same definiton. The value

of variable b in a := sin(b + 1) and d := sin(b + 1) will be always same because of

78

a tomic op 'ra tion . This decrea ·es the possiblity of choosing va lue of variable b , so

this reduces the nondeterminism of the resul ts . Reducing t he nondeterminism will be

a lways r asonable. This transformation is called as fusion. It mean sev ra l possible

selections fu e into one.

Then , betvveen (2) and (3), opt imization can happen saf ly since the same defini­

tion of va ria ble b reaches both uses. This CSE optimization in parallel is safe in the

range of a tomic operations .

Last between (3) and (4), t he atomic operation is pli t. This will increa e t he

possible selections of vari able b from different defini tion. Thi procedure is called

fi ssion . This mea ns the uses of vari ables, who m orgina lly come from t he one clefi ni­

ton, can come from t he eli fferent defi ni tons. This increases t he nonclctermi n ism of

the resul ts . This creates hazards that can prod uce the incorrect resul ts. But in this

Figure (A), we can know there is only one use for t he vari able b. P rovided no other

definitions of variab le a can reach d :=a, so this fission is safe.

In the Figure 6.5 (B), we use the similar methods for t hese codes. The proce­

dures a rc di fferent from the code in the (A) . incc c := b * 2 is inserted between

a := sin(b + 1) and d := sin(b + 1). Since the fusion is alway corre t, we can trans­

form (1) to (2) and get <a := ·in(b + 1); c := b * 2; d := sin(b + 1); >. In t he range

of these atomic operations, because the value of the same variable a re sam e, we can

ma ke CSE opt imiza tion in the atomic operat ions. Bu t when we mak a fis ion to

remove the atomi operations, t he usc of varia ble b in a := sin(b + 1) and c := b * 2

wi I I cha nge the possi bi li ty from the same clefi 11 i t ions to t he di fferent clcfi ni t ions . This

iiJ C' l'('Cl:-iC's the nondeterminism o f the results. So the fission can cause t he incorrect

result . The CSE optimi1mt.iou i::; not safe.

79

a:= sin(b+1);
d:= sin{b+1): -+
c:= b * 2:

(1)

a:= sin(b+ 1):
c:= b ·• 2:
d:= sin(b+1):

(1)

< a:= sin(b+1): < a:= sin{b+1): <a :=sin(b+1):>
d:= sin(b+1):> -+ d:= a: > -+ <d := a:>
c := b * 2: c := b * 2: c := b * 2:

(2) (3) (4)

(A)

< a:= sin(b+1): < a:= sin(b+1): <a := sin(b+1):>
c:=b * 2 d:= a; * <d := a: >
d := sin(b +1):> c := b * 2:> <c := b * 2:>

(2) (3) (4)

(8)

Figure 6.5: Atomic Fusion/Fission Analysis on CSE in pa ra llel programs

This problem can be solved wi t h the intro luction of locaJ vari ables. Here,

local variables mean these variables can 't be writ ten by other t hreads. If we can keep

loca l vc-lri Rbles same in the thread , which includes atomic operations. The fission for

t he atomic operation will be safe. Thi procedure can be seen in t he Figur 6.6.

0

a : = si n (b + 1) : < a := sin(b+1): < a:= sin(b+1):
c:= b ., 2:
d : = si n (b + 1) :

{ 1)

< obj b local := b:
a:= sin (bloc +1):

....,.. d:= a:
c: = 2 * bloc:>

(4)

c:=b * 2,. d:= a :
d := sin(b +1):> c := b ·" 2: >

(2) (3)

obj b local := b:
a:= sin {bloc +1):

d:= a:
c:= 2 .,. bloc:

(5)

Figm c 6.6: T he InLroduction of Local Variable for The F ission of ALomic Operat ion

in Para ll el Programs CSE Optimization

The synchronization can cause some enforced execution order. In Figure 6.3 ,

the complicated computa tion sin(b + 1) locates in thread1 , and a new defini ton of

variable b locat es thread 2. This seems to cause CSE optimization incorrect. How-

ever , the synchronization operations post and wait cause d := sin(b+ 1) before b := 2.

The two use of variable b in both sin(b + 1) s till come from the amc clefini t ion. So

this CSE opt imization is still safe.

Unt il now, ident ifying whether the CSE opt imizations are safe become the ques-

tion, which is a bout whether a fission is safe? This question will be aclclrcssecl in

section 6.6.

81

6.3 Dead Code Elimination

6. 3.1 D ead Code Elimination

Dead code is code which cannot be reached m any execution of the program,

or produces no change in memory that afi'ects la ter statements . It can be removed

from the programs. Dead code includes code that can never be executed (unreachal le

code), and codes that only affect dead variables, which a re variables that are irrelevant

to the program [33].

6.3.2 D ead Code Elimination in Sequential Programs

AILhough progra mmers do not intentionally produce dead codes in programs, some

optimizations such a.s copy propagation can int roduce dead codes.

In sequential programs, the usual dead code elimination method is to check the

usc-clef chain of the varia bles used in essential instructions in programs. If an in­

struction is in the usc-clef chain , it is not a dead code, otherwise if its only use is

in a defi nit ion of itself, it is a dead code. These essentia l instructions specify t hose

instructions which can aHect programs, such as input/output, function call and con­

trol flow. If this instruct ion is a dead code, it can be removed and wi ll not afi·ect the

results of t he programs.

In F igm e 6. 7, code execution is linear because of sequential program. Variable

"a" ca nnot be 0 , and the condition a' = 0 cannot be sa.tified . The statement b := 2

<'Hll ll Ot bC' execu ted and is dead code. It can be safely removed .

82

obj a: int =0;
obj b : int =0;
b :=a

if (a !=0)
{b:=2 }

a:=1

Figure 6. 7: Dead Code Elimination

6.3.3 D ead Code Elimination in Parallel Programs

General ly, the dead code elimination in parallel programs is simila r to the one

in sequent ial program . However , because there arc para llel control structures and

multithreads synchronization in para llel programs, dead code elimination is more

complicated than in sequential programs.

We can see an example in Figure 6.8. This example uses simila r codes to the

one in Figure 6. 7. If these codes execute in sequent ia l order or t here no thread 2, the

b := 2 wi ll be dead code. We can remove t hem as in sequentia l programs. But since

the parallel control flow is in this example, the defini t ion of variable a in thread 2

can be used in 'i f (a! = O)b := 2. This 'egment codes a re not dead code. It cannot be

ren1ovecl .

obj a : int =O;
obj b : int =O;
co

II

b:=a
if (a !=0)

{b :=2 }

a:=1
co

Figure 6.8: Dead Code Elimina tion in parallel programs

3

6.3.4 Dead Code Elimination in Paralle l Programs with Sy n-

chronization

When we consider the synchniza.tion on dead code elimination, the situation is

more complicated. We can see a n example in Figure 6.9. In this Figure (A), Sl can be

removed since it is a. blank operation, if we obey the definition of dead code. In Figure

6.8(B), the program optimized produces different results from the one of programs

unopLimized . The reason for causing this problem is t hat this blank operat ion is the

::;ynchronizat ion condi t ion of multithread synchronizations. We cannot remove Lhe

::;ynch ronization condit ion .

We can see another example on DCE in parallel programs with synchronization in

obj a: int =0:
obj b: int =0:
co
T1 :
S 1: while (a !=0) {
S2: b:=a :

II
T2:
S3: a:=1
co

(A)

obj a: int =0:
obj b: int =0:

co
T1:

} S1: b:=a:

II
T2:
S2: a= 1:
co

(B)

Figure 6.9: Example 1 on Dead Code Elimina tion in para llel programs with synchro-

n iza.tion

Figure 6. 10. Beside simila r codes to the one in Figure 6.9, synchronization oper ations

post-wait a rc added. The synchronization post-wa it cause the enforce l execu t ion

order . The a := 1 can not be executed. That is the definition of variable a can not

84

be used by the while(a! = 0). It can be r moved safe.

obj a : int =O:
obj b : int =0:
co
T1:
S 1 : whi le (a !=0) { }
S2: b:=a:
S3: wait(s):

II
T 2 :
S4: post(s):
S5: a:=1
co

Figure 6.10: Example 2 on Dead Code Elimina tion in paralle l programs with syn-

chronization

6.3.5 Dead Code Elimination Analysis in Paralle l Programs

Dead code elimination for parallel programs is essentia lly the same as the sequen-

t ial programs. But we must consider the affects on synchronization operation and

t he interactions of shared varia bles among t hreads.

The basic principle is still to analy:;.-;e the use-clef chains. The synchronization can

cau ·e some enforced execution orders . These execution orders must be considered in

usc-clef chain analysis. This example was showed in Figure 6.10.

Dead code is often produced since the condi t ion sta tement in control fi ow cannot

be satisfied . In parallel program ·, if the condi t ion statements of control fiow have

shared variable in diff'erent threads, we must make fur ther analysis on it . If in other

t hreads, there are only the use of t his bar ed variable, t he dead code can be removed

sa fely. T hat is b cause there a re not new defini t ion, which can change the value of

85

t his shared variable in the condition statements. Or , the new definition of shar d

variable in other threads proba blly cause the original condition not to be satisfied.

This will be indetified again . If the condition is satisfied, these codes are not dead

codes. Otherwise, they are dead code a nd can be removed .

Fussion and Fission methods are not fit for dead code elimination. From above,

t he dead code elimination can come from the analysis of use-def. If certain codes

is not reachable by control flow , we can accurately identify whether a segment of

program code is dead code.

6.4 Code Motion

6 .4 .1 Code Motion

Code IVIotion (also called Code Hoisting) is another usefu l optimization in sequen­

tia l programs. Its operating subject is the loop invariant. In sequentia l programs,

if we find invari ants in loops a nd remove them to before loops, or a fter the loop, it

docs not affect the semantics a nd results of the programs. This t ransformation can

store constant into registers and not having to calculat the address and access the

memory/ cache line at each itera tion [33]. This decreases its computation workload in

loops and makes programs more efficient. These operations are called a code motion .

6.4 .2 Code Motion in Sequential P rogram s

In sequential programs, there are two conditions which make it possible: Fir tly,

a ll variables in these opera tion have the same value in the new location as in the

86

original locat ion . Secondly, no read of the computed variable receives a different va lue

than in the original program .

In most cases, the loop invariant is moved to before th loop. But in some ca es

they are moved to after loop. Here, we will only give examples which move the loop

invariant to before the loop.

In F igure 6.11 (A) , the computation sin(4) *¢+1 is invariant in loop. We can u e

a va riable b to replace it. Once we finish the computation befo re the loop and store

thr value into va riable b. This decreases t he itera tion computa tion workload wi t h

the value of varia ble b.

obja:int=1:
while (a<10)
{

a:=a+sin(4):
}

obj a: int =1 :
obj b := sin(4):
while (a<10)
{

a:=a+b:
}

Figure 6.11 : Code Motion in Sequential Programs

6.4.3 Code Motion in Parallel Progran1s

In t his section, we give t he examples of Co I ' Motion, which includ s no synchro-

nizat ion in pa rallel programs. In Figure 6.12 (A), in threa.dl a while loop is included .

The n + sin (4) is an invariant. It can be moved outside. The d = a + sin (4) use a

CSE opt imization. In thread 2, there is no shared variableswhich is used in threadl

and synchronizat ion operation. So there is a sequential order in the threadl. The

definiti on of n := 2 kills the definition of a: = 1. This code motion is safe. The result

87

is showed in Figure 6.12 (B) .

obj a : int = 1;
obj b: int =0
obj c: int =0;
obj d: int =0;
obj e: int =0;

(co
a:=2:

II

while (b< 5)
{

}

c:=a+sin(4):
b:=b+1:

d:=a+1:

e:=e+1:
co)

(A)

obj a : int =1;
obj b: int =0
obj c: int =0:
obj d : int =0:
obj e: int =0:

(co
a :=2:

II

x: = a +sin (4):
while (b< 5)
{

}

c:=x:
b:=b+1 :

d:=a+1:

e:=e+1:
co)

(B)

Figure 6.12: Code Motion in Parallel Programs

In Figure 6.13 , similar codes arc showed. The slight difference is that the

clefiui tion of variable a is moved to thread 2. In this case, the c := a+ sin(4) is not

loop invari ant a.nd cannot be moved out of while loop. That is because the defini t ion

of vari a ble a. in thread 2 ca.n be used in the wh ile loop in thread 1. W cannot

guarantee c := a+ sin(4) is loop invariable. So the code motion is incorrect.

88

obj a : int = 1 :
obj b : int =0
obj c: int =0:
obj d: int =0:
obj e: int =0:
(co
while (b< 5)

{

II

}

c :=a+sin (4): ~
b:=b+1:

d :=a+1 :

a:=O:
e:=e+1:

co)

(A)

obj a: int =1:
obj b : int =0
obj c: int =0:
obj d : int = 0 :
obj e: int = O:
(co
x := a+sin(4):

w hile (b< 5)

II

{

}

c:=x:
b :=b+1 :

d :=a+1:

a :=O:
e:=e+1:

co)

(B)

F igure 6.13: Code Motion in Parallel Programs

In a. ldit ion, in the parallel program code, motion can be not only move out

Lhc while or for loop in a thread , but also move out from t he parallel control flow.

We can sec an example in F igure 6.14.

c= sin x: c= sin x:

(co (co (co (co

a:=sin x: a :=c: a:=sin x: a:=c:

II II II
b := c : x:= 1: x:= 1:

II
b:=sin x:

CO) CO) b := sin x: b := c:
co) CO)

(A) (B) (C) (0)

F igure 6. 14: Code Motion Out of Parallel Control Flow in P ara llel Programs

ln F igure 6. 14 (B) s·inx are moved out of two threads in parallel cont rol struc-

89

ture CO. They are replaced with c because of c = sinx. However , in the (D) this

kind of t ranformation is not successful, because the variable x in codes moved has a

different definition. In b = sinx, the value of va riable x comes from x := 1. When

we replace sinx with c, the value of variable x in b = c = sinx come from x := 0. So

this is a incorrect code motion.

6.4.4 Code Motion 1n Parallel Programs with Synchroniza­

tion

'vVhen we added the synchroniza.tion into programs, the code motion ana lysis

become more complicated.

'vVe can see an example in Figure 6.15. In Figure 6.15 (B), we remove S3 and S5

out of the loop, as in sequential programs. The result of the egments is different

from Figure 6.15 (A). T hat means the transformation is incorrect.

However , the case in Figure 6. 16 is d ifFerent from the one in Figme 6. 15. In the

Figure 6.16, though the codes a rc similar, the results of bot h F igure 6.16 (B) and (A)

arc the same. This is a. successful optimization.

90

obj a: int =0; obj a: int =0;
obj b: int =0; obj b : int =0;
obj t: bool =true; obj t: bool =true;
co
s 1: if(...)
S2: wait(t);
S3· a·=b· . . ,

else
S4: wait(t);
ss· a ·=b· . . ,

end if:

II
S6: b:=1;
S7: post(t);
co

(A)

co
S1 : a:=b:
S2: if(...)
S3: w ait(t):

else
S4: wait(t):

end if:

II
S5: b:=1;
S6: post(t);
co

(B)

Figure 6. 15: An Unsuccessful Code l\1otion in Parallel Prognuns [31]

obj a: int =0:
obj b : int =0:
obj t: bool =true:
co
S1 : if(.. .)
S2: wait(t):
S3: a:=b:

else
S4: wait(t):
S5: a :=b :

end if:
II
S6: c :=b :
S7: post(t):
co

(A)

o b j a: int =0:
obj b: int =0:
obj t: bool =true:
co
S 1 : a :=b:
S2: if(...)
S3: wait(t):

else
S4: wait(t):

end if:
II
S5: c:=b:
S6: post(t):
co

(B)

Figure 6.16: A Successful Code Motion Example in Parallel Programs [31]

91

What is the success key for a code mot ion optimization? In Figure 6. 15, the

sta tement S6 is a new definition of the varia ble "b" and the st a tements S3 a nd S5

are the use for variable "b" . The original definition of varia ble ·'b" is in the ini tial

p8rt of the segments, and its value is 0. When we use a code motion optimization ,

we change the execution order of t he program . In Figure 6.15, the compiler decides

which definiti on the use of va ria ble "b" comes from. But when we remove S3 and S5

out of the loop, the program cannot decide which is the correct defini t ion of variable

"b". So this leads t he transforma tion to be incorrect. In Figure 6.16 , the stat mcnt

S6 is 8 use of variable "b". The t ransformation in the (B) still keeps these usc-clef

pa ir rela tions , so the transformation is correct.

6.4.5 Code Motion Analysis in Parallel Progran~s

In the code motion opt imization of parallel program, if we can keep a.! I vari ables in

H stCitcmr nt of 8 loop movable, t his sta tement cR n be moved outside t he loop wi t hout

changing t he program's meaning. In other wor Is, we cannot violate the sequential

co11sistency to complete a hoist able access optimization.

When we discuss the CSE optimization in parallel programs, we int roduce Fus­

sion/ Fission method for the CSE analysis . This method is also fit to code motion

analysis in pa rallel program.

First , we can see the examples in the Figure 6.12 and Figure 6.13. Both of t hem

have similar codes. The analysis with Fusion/ Fission methods can be seen in Figure

6.17.

92

obj a: int =1:
obj b: int =0
obj c: int =0:
obj d: int =0:
obj e: int =0:

(co
a:=2:

while (b<5)
{

<c:=a+sin(4):
b:=b+1 :>

}
cl :=a+1 :

II
e:=e+1 :

CO)

(A)

==+

obj a: int =1 :
obj b: int =0
obj c: int =0:
obj d: int =0:
obj e: int =0:

(co
a:=2:
x:= a+sin(4):

while (b<5)
{
< c:=x: >
<b:=b+1 :>

}
d:=a+1 :

II
e :=e+1:

CO)

(B)

obj a: int = 1: obj a: int =1:
obj b: int =0 obj b: int =0
obj c: int =O: obj c: int =0:
obj d : int =0: obj d: int =0:
obj e: int =0: obj e: int =0:

(co (co
w hile (b<5) x:= a+si n(4):

{ whil e (b<5)
<c:=a+sin(4): {

b:=b+1 :> • <c:=x:>
} <b:=b+1 :>
d:=a+1: }

II d :=a+1 :
a:=O: II
e:=e+1: a:=O:

CO) e:=e+1:
CO)

(C) (D)

Figure 6.17: Code Motion With Fusion/Fission Analysis in Parallel Programs

In the Figure 6.17 (A), c = a+ sin(4) and b := b + 1 a re put into an atomic

operat ion. This is a fussion and is safe. In the (B), we split this atomic operation

in to two atomic operation. This is a fission. If we can know t he fission safe, we can

conclude the code motion is safe. Since this fission procedure don 't int roduce a new

ddiniton of var iable a., we can think this fission safe. However , a lthough the fusion

in t he (C) is simila r to t he one in the (A), the fission introduces a. new definition of

vH riHble a in other thread and increases the nondeterminism of re ult in the (D) . This

fi ssion is unsafe.

'vVe can see another example on code motion in parallel control Aow in the Fig-

ure G. 1 . In t he Figure 6.1 (A) and (C), they arc both fusion. The only difference

is a definition of variable x in one of thread in the (C). In the (B), the fi ssion can

93

introduce any new defin ition for variable x a nd is safe. But iu the (D), the fission

introd uce a nc'w clcfiniton x: = O for c = s'in.!;. This change the result and increa.·c

the nondeterminism. This fission i un af .

(C O

< a:=sin x:
II

b:=sin x: >
CO)

(A)

c= sin x:
(co
<a :=c :>

~ 11
<b :=c:>

co)

(B)

(co
< a :=sin x:

II
x:= 1:
b:=sin x: >

co)

(C)

c= sin x:
(co

~ I I
<a:=c: >

< x:= 1:
b:=c:>

co)

(0)

Figm c 6. 1 : ode lotion of Para llel onLrol Flow Wi t h Fu ion/Fi ~s i on nalysis in

Pa rtd lcl Programs

'v\ c a lso can usc the same method to analyze code motion with synchronization

in parallel program. The fu sion/ fi ion a na.lysi ·of example in the Figure 6. 15 a nd

6. 16 a rc ·hawed in the Figure 6.19. When there are synchronization op ration in par-

a llcl program, we mu t make analysis on the enforced order from synchronization . In

the Figure 6.19(8), the fi ssion introd uce a defini t ion on variabl b := 0. This change

t he wduc of va riabl b := 1 in the fu ·sion. The fission is unsafe.

94

obj a: int =0:
obj b: int =O:
obj t: bool =true:

(CO

s 1: < if(...)
S2: wait(t):
S3: a:=b:

else
S4: wait(t):
S5: a:=b:

end if:

II
S6: b:= 1:
S7: post(t): >
CO)

(A)

obj a: int =0:
obj b: int =0:
obj t: bool =true:

(co
S1: a:=b:
S2: <if(... l
S3: wait(t):

else
S4: wait(t):

endif:>

II
S5: <b:= 1:
S6: post(t):>
CO)

(B)

obj a: int =0:
obj b: int =0:
obj t: bool =true:

(co
S1: <if(.. .)
S2: wait(t):
S3: a:=b:

else
S4: wait(t): _.
S5: a:=b:

end if:

II
S6: c:=b:
S7: post(t): >
co)

(C)

obj a: int =0:
obj b: int =0:
obj t: bool =true:
(co
S1: a:=b:
S2: <if(...)
S3: wait(t):

else
S4: wait(t):

end if:>

II
S5: <c:=b:
S6: post(t):>
co)

(D)

F igure 6. 19: Fusion/ Fission Analysis of Code Motion Wi th Synchronization in Par-

a.llel Programs

From above, we can chnnge t he problem from whether the Code Motion

opl imizations are safe to whether n fi ·sion is safe? T his question will be also addressed

in section 6.6. W can read some other code motion algori thm in [1, 11 , 13].

6.5 Loop Fusion and Loop Fission

6.5 .1 Loop Fusion and Fission

Loop optimizations are most importnnt parts in computer programming and

compiling. They can improve cache performance and provide more effective use of

pa rallel proces ers.

95

Loop fusion is a t ransformation that merges mul t iple loops into a ingle loop.

However, in some cases one single loop cannot provide bett r performance than two

loops , because of data locali ty increased within each loop. In these ca es, a single

loop should be transformed into two loops. This is called loop fission. Loop fission

breaks a loop into mult iple loop over th ame index rang but ea h taking only a

pa rt of t he loop's body. T his can ach ieve better utilizat ion of locality of reference

[33].

6.5.2 Loop Fusion and Loop Fission in Sequential Programs

For loop fusion , we fuse the same or close spaced loop together. This clccrea s

loop overhead , increases compu tational density, benefit to the improvement in oft­

wa re pipclining, and increase the cffi cience of cache local ity. For loop fission, we

spli t the loop into multiple loop . This red uces register pressure, sepcrate loop with

condition into condition-free and condition-containing loop to isolate dependencic ,

and benefits to loop interchange.

In t he Figur 6.20, we give two imple examples for loop fi ·sian and loop fussion.

\\'c <1lso can find t hese two procedure· a rc reverse from this figure. In th Figure 6.20

(A) two loops have the sam number of loop bound . So th statements Sl and S2

were 1nerged into one loop. And in (B), the two statements in loop arc splitted into

two loops.

T he opt imization of Loop F\t ion and loop fission are safe in sequentia l programs,

when va riable def-u e hain dependences wit hin t h two loops occur in the same order

before rmd after loop fusion R nd fission.

96

obj a: int =0:
obj b: int =0:

for (i:=0.10.)
51: {a:=a+1 :}

for (j:=0.10)
52: {b :=b+1 :}

obj a: int =0:
obj b: int =0:
for (i :=0.10){

a:=a+1 :
b:=b+1 :

}

(A) Loop Fusion

obj a: int =0:
obj b: int =0:
for (i:=0.10){

}

a:=a+1 :
b:=b+1 :

obj a: int =0:
obj b : int =0:

for (i:=0.10.)
51: {a :=a+1 :}

for (j:=0.10)
52: {b:=b+1 :}

(8) Loop Fission

Figure 6.20: Loop Fusion and Loop Fission Example in Sequentia l Programs

We must keep both loop bodies have no reference to each other 's data. before loop

fusion. Otherwise loop fusion can be unsuccessful. We can see an example in the

F igure 6.21. We will avoid this case in the following section.

97

obj a : int =0:
obj b: int =0:
obj c: int=O:
for (i:=O, 10,)

{b :=a+b;}
for (j :=O, 10)

{c :=b+c:}

(A)

obj a : int = 0 :
obj b : int =0:
obj c: int=O:
for (i:=O, 10,}

{b :=a+b:
c:=b+c:}

(B)

F igure 6.21: Loop Fusion in Sequential P rograms

6 .5.3 Loop Fusion and Loop Fission in P arallel P ro grams

In th - parallel programs, the sit uations become more complicated because of par-

a llel control structure. We still use the CO parallel structm e. In the Figure 6.22 (A)

the thread 2 has no shared vari able and data, so the loop fusion is safe. And (B) the

fiss ion is safe because of the same reason.

98

obj a: int =0:
obj b: int =0:
obj c: int=O:
(co

for (i:=0,10)
S1 : {a:=a+1 :}

for (j:=0,10)
S2: {b :=b+1 :}

obj a: int =0:
obj b: int =0:
obj c: int =0:
(co

-+

for (i:=0,10)
{

}

a:=a+1;
b:=b+1:

II II
S3: c:=2:
CO) co)

(A) Loop Fusion

c:= 2:

obj a: int =0:
obj b: int =0:
obj c: int =0;
(co

II

for (i:=O, 10)
{

}

a:=a+1: *
b:=b+1 :

c:=2:
CO)

obj a: int =0:
obj b: int =0:
obj c: int=O:
(co

for (i: = 0, 1 0)
S1: {a:=a+1;}

for (j:=O, 1 0)
S2: {b:=b+1 :}

II
S3: c:=2:
CO)

(B) Loop Fission

F igure 6.22: Loop Fusion and Loop F ission in para llel Programs

However, when there are shared variable in different t hreads, the sit uations

become d ifferent . T he F igure 6.23(A) shows an example on loop fussion. T he thread

2 has t he sha red variable wit hin the loops in the t hread 1. T he statement Sl must be

executed before S2 , bu t S2 can be executed before Sl in its program code optimized

in sequent ia l program rule. In t he same reason, t he loop fi s ion example in the F igure

6.23 (B) S2 can be executed before Sl and after Sl , but the program transformed

reduce it to only Sl before S2. These op timizations violate the sequential consistency.

T hey are a ll unsafe.

99

obj a: int =0:
obj b: int =0:
(co

for (i:=O. 10)
51: {a:=O:
52: b: =1:}

II
53: a:=1:
54: b:=O:
co)

obj a: int =0:
obj b: int =0:
(co

for (i:=0.10)
51: {a:=O:}

• for (j:=0.10)
52: {b:= 1 :}

II
53:
54:
co)

a:= 1:
b:=O:

(A) Loop Fusion

obj a: int =0:
obj b: int =0:
(co

for (i:=O. 10)
51 : {a:=O:
52: b:=1:} •

II
53: a:= 1:
54: b:=O:

co)

(B) Loop Fission

obj a: int =0:
obj b: int =0:
(co

for (i:=O. 10)
51: {a:=a+1 :}

for (j:=O. 10)
52: {b:=b+1 :}

II
53: a:=1:
54: b:=O:
co)

F igure 6.23: Loop Fusion and Loop Fission in Parallel Programs

6.5.4 Loop Fusion in Parallel Programs with Synchronization

We usc an example to illustrate para llel programs with synchronization in Figure

6.24. In Figure 6.24 (A) , the first loop includes two statements , and the econd loop

includes one statement. Their structures arc similar to each other. We can merge

them together. However , we find that the resul t of program optimize 1 is different

from t he original one.

Tha.t is because the statements 81 and 85 are the synchronization condi tions,

which keep the execution order that 82 must be executed before 83. Th merging of

the two loops makes it possibl , 83 executes before 82. For t he similar reason, the

loop fission example in Figure 6.24 (B) is a lso not safe since it violates the program

sequenti al consistency.

100

obj a: int =0:
obj b: int =0:
co

for (i:=0.10)
51: {wait(t):
52: a:=b+1 :}

for (j :=0. 1 0)
53: {a :=b:}

II

obj a: int =0:
obj b: int =0:

obj a: int =0:
obj b: int =0:

obj a: int =O:
obj b: int =0:

co co co
for (i:=0.10) for (i :=0.10) for (i:=0,10)

51: {wait(t): 51: {wait(t); 51: {wait(t):
52: a:=b+1: 52: a:=b+1: 52: a:=b+1:}
53: a:=b:} 53: a:=b:} for (j:=O. 10)
II II 53: {a :=b:}

for (k:=O. 10) for (k:=O. 10) II
for (k:=O. 1 0~4: {b := 1: 54: {b:= 1: for (k:=O. 10)

54: {b :=1: 54: {b := 1: 55: post(t):} 55: post(t):}
55: post(t):} co co
co

55: post(t):}
co

(A) Loop Fusion (B) Loop Fission

Figure 6.24: Loop Fusion and Loop Fission wi th a Synchronization Statement in

Parallel Programs [31]

6.5.5 Loop Fusion and Loop Fission analysis in Parallel Pro-

grams

ln parallel program, if some optimizat ions on loop fusion and loop fission vio-

late t he sequent ial consistency, these optimizat ions arc unsucce . ful. Usually these

optimization t ransformations change the execution order of stores and fetches in the

original program. In the sequential programs, all da ta dependences and control flows

guarantee the transformation not to violate the sequential consistency. So these op-

timizations are safe in sequentia l programs. But in parallel programs, if there are no

shared va riables between different thread , the loop optimization is also safe, because

Lhis is similar to the sequential prograrns. Otherwise, we have to make more ana lysis

101

to ensure the sequential consistency in the parallel program.

In [29] D.8h asha and M.8nir proposed their method. In this method, for parallel

program they used an instance level conflict graph. The nodes a re statement instances

connected by directed arcs representing the execution order of statement instances

and undirected edges representing conflicts between statement instance . A mix d

cyc le is a cycle that contains both conflict edges and program a rcs. A minimal mixed

cyc le is a mixed cycle C, who has no other mixed cycle C ' . The authors summarized

two con li t ions , which ensure sequential consistency:

-Conservat ive condit ion:

Tf the execution order r-epr-esented by the pr-ogmm ar·cs contained in all mixed cycle

·is enfor-ced then the execution of the pmgmm is sequentially consistent.

-1\finim a l condition:

Any set of pmgmm arcs whose enf'or·cement ensures seq·uential consistency is a super­

set of the progmm ar-cs contained in minimal mixed cycles.

If an optimization shows that one or more program arcs involved in a minimal

m ixcd cycle is not being enforced after the transformation is performed , the opti­

mization can ensure sequent ial consistency a nd is not safe. In addition , in [31 , 19]

8. P.l\ fidkif and D .A.Pad ua. also introduce some useful methods.

We a lso usc Fusion/ fission methods for the ana.lysi. . We use an xamplc in the

Figure 6.25, which is s imila r to the one in t he Figm e 6.23. In the Figure 6.25 (A)

a fusion was made in (1). Natu ra lly in the range of this atomic 01 eration, it is safe

to combine two loop body. But in the (3) we split a atomic operation into two , this

fission is ussafe , since 83 and 84 can introduce new definition of variable a and b.

This fission isn 't safe and this loop fusion isn 't safe. In the (B), a loop fission is dis-

102

pl~yect. A fusion is in (1). In t he range of aLomic operation, a loop fi s ian is safe. But

in the (3), 3 a nd 84 in other thread introduce new definitions of variable a and b.

This fission i · unsaf a nd the loop fission is un afe. Until now, w used fusion/fission

method to identify the loop fu ion and loop fi ion. The k y problem i to how to

keep th fusion/fis ion afe. Thi will I e eli ·cussed in next e Lion .

co
<f or (i:=0. 10)

51: {c:=a + c:}
for (j:=0. 10)

52: { d := b +d :}>

II
53: a:=1:
54: b := 1:
co

(1)

co
for (i:=0.1 0)

51: {< c :=a + c
52: d := b +d : >}

II
53: a:= 1:
54: b := 1:
co

(1)

co co
for (i :=0. 10) for (i := 0.10)

51: {< c :=a + c 51: {< c :=a + c>
52: d:= b +d :> } 52: < d:= b +d :}>
II ~II
53: a:=1: 53: a:=1:
54: b: = 1 : 54: b: = 1 :
co

(2)

(A) LooP Fusion

co
<for (i :=0. 1 0)

51: {c:=a + c:}
for (j :=0.10)

52: {d := b +d :}>
~II

53: a :=1:
54: b:= 1:
co

(2)

(B) Loop F issio n

co

(3)

co
<for (i :=0.10)

51: {c :=a + c:}>
<for (j :=0. 10)

52: {d :=b + d:}>

II
53: a:=1:
54: b:= 1:
co

(3)

Figure 6.25: ALomic Fusion/ Fission Analysis fo r Loop Fusion and Loop Fission in

Par~llcl Programs

103

6.6 Atomic Fusion/Fission in Parallel Optimiza­

tion

As shown in the preceeding ecLions, t he atomic fusion/ fi ion m thod can b

used for identifying safe optimization in parallel programs. As far a we know this i

o rigina l. In t his section , we will dis uss rules for safe atomic fusi n/ fission.

F ir t , we ne d to know atom i fussion is always safe. We can r gard each state­

ment. a an atomi operation in progra ms. vVhen we mak a fu ·ion to these atomic

operat ions, va riable values in atomic operations mergeed must be and always be one

of va lues of varia bl s in original programs. o re ul ts of programs will be one of pos­

sible results in programs unchanged . This fusion only decrease the nondeterministi

of programs. vVe ca n call this is safe. However , atomic fission is different. It can b

sa fe or unsa fe. An unsafe fission ca n int roduce er rors .

In order to i lent ify safe fi s ·ion , we nc'ecl a rule to check iL. W need to fi nd

conditions under which

C[< FG >]II P C[< F >< G >] II p

In this formula, <> represents atomic operation. F and G mean statem nts, whi h

are splitt -d . P repre ents all other threads. C repre ent a cont xL. This formula

represents a norma l atomic fission in parallel programs. If we can prov the sides of

this formul a a rc equiva lent , this atomi fi ssion is safe.

We can defin e P s:;; Q a.s each t ra of Q i equiva.lenL to a trace of P and then

P = Q as P s:;; Q aud P :2 Q. Vve can how that

C[< FG >] II p ::) C[< F >< G >] II p

104

Each tra e represents a sequence of operations, which can be inser ted by other t hreads.

The operations appear in the trace including read global memory, write global mem­

ory a nd local operations. Let Tp be some trace of < F > a nd let Tc be a trace of

< G >. Tp represents the operations inser ted by other threads into between Tp and

T0 . For equivalence, logically equiva lent statem ents have the same logical content .

Sema ntically equiva lent have the same truth value in every model [33] . We define

equivalent for traces as these traces can produce same results in this model.

We have t his lemma :

Any trace T is equiva lent to a tra e UVW

where U involves only local operations reads of global variables from a set A, V m­

volves only local operations and writes to variables from a set B , and W involves only

local operations and reads from variables in a set C ~ B

Theorem:

Assume that for each variable x

• if G reads x then there is no parallel wri te of x that reaches the statement (FG)

a nd

• ifF writes x then that write reaches uses on ly in F and in G.

\;\le have :

C[< FG >] II p :J C[< F > < G >] II p

Proof:

Let T0 Tr Tp Tc T1 be a t r ace of C [(F) (C)JIIP in which TF and Tc a rc traces

105

of < F > a nd < G > respectively, we need to show that there is a n equivalent trace

of C [(FG)]IIP .

So for any Tp, where Tp = U {A} V {B} W { C } and C ~ B.

= TF' U {A} V { B} W {C} Tc

When we have condition RG n B = 0, RG m ans variables read by Tc. RG n B =

0 means a ll variables read by Tc can not be written.

=U{A} TF' V{B} W{C} Tc

When we have condition W F n A = 0, W F means variables written by TF". W F n

A = 0 means variab les written by TF' can not be read.

= U{A} TF' Tc V{B} W{C}

In the Figure 6.26 (A) , the G is a:= b + 1, and F is b := 1. For G, variable b can

get value from S3 in the other thread. This doesn't satify the condit ion "there is no

pa ra llel write of x that reaches t he statement". We can 't get a safe-fission. However ,

in (B) the write in F only is limi ted in F and G. There are any variable written in

other threads. We can get a safe-fission.

106

(co (co
51: < b := 1 51 : < b := 1>
52: a := b + 1 ;>

_,..
52: < a := b + 1 ;>

II II
53: b :=2: 53: b :=2:
CO) CO)

(A)

(co (co
51 : < b :=1 51 : < b := 1>
52: a := b + 1 ;> - 52: < a := b +1 ;>

II II
53: c :=2; 53: c :=2;
c o) co)

(B)

F igure 6.26: An Example to Use The Theorem For Safe-Fi sion Inclentifi ation

6.7 Summary

In this chapter , we first introduce program optimization and some differences

between sequentia l and para llel programs. Then we used examples to introd uce and

expla in differences of CSE, DCE, Code Motion and Loop Fusion and Loop Fission in

pam llel programs from in sequential programs. And we u eel a new method : atomic

Fusion/ Fission to check safe parall I optimizations. Lastly, we gave a rule to identify

safe atomic Fusion/ Fission and a proof for this rule.

107

Chapter 7

Conclusions and Future Work

7.1 Conclusion

7.1.1 Thesis Summary

In this thesis, main issues a re the IR design on the compi ler of a new program­

ming language H ARPO I L , which can be executed in the CG RA hardware platform.

We developed a sequence of procedures to transfer the program source code in the

H ARPO I L language into the a ppropriate data Aow graph, which acts as the input

of backend . The structm e of the thesis is:

Firstly, we provided the fund amental int roduction on CG RA archi tecture , Com­

piler t heory a nd H ARPO I L La nguage Specification.

T he CGRA includes several different architectures, wher connections, ommu­

nication means, fa brics and components can be different. But we can think of them

as consisting of many fun ction units connected in various ways. These architectm es

can be cat gorized into linear-array, mesh and crossba.r.

108

Then w introduced compiler t heory. Modern compilers u ually have t hree stage

(front end , ptimization and back en 1). In front end , the compiler performs parsing

and lexical a nalysi and produces a n abstract syntax t ree (ST) . Aft r this front end ,

source code · have no more syntax and lexical errors . After t hat , t he compiler can

ma ke optimization . In the back end , t he ompiler pro luces t he configuration fil es of

t a rget archite tme from the IR. Back end activities include ma pping, rout ing and

scheduling.

In order to design t he IR of the ompiler of t he H ARPO / L language, we de­

veloped a new m ethodology for it. Firstly, we started this process from analyzing

relations between objects in t he If R PO/ L IRnguage programs. \ ll.'c developed t he

object dependence graph for this purpose. Secondly, we made cont rol flow analy­

sis with a ugmented concurrent control flow graph for each skeleton complex objects ,

which can be obta in cl from an ODG . Thirdly, t he ACCFGs w re tra ns formed into

C SA fo rm . The SA form include ¢, '1./J 1r and ~ functions to repre ent va riou

ca es of data fl ow confluence. "VI e separat ly in t roduced various function node plac -

ment methods . Fourthly, we considered the interprocedura.l relat ions among object ·.

Interprocedura l analysis is a global vi ew ana lysis and can be u 'CCI for some opti­

miza tion.· . Tra litiona l interproce !mal analysi use t he call gra ph and inline calling,

but we u eel t he information from ODG to make op timizations and prev nt a ca ll

dradlock. F ifthly, we discussed the optintization behavior · in pa r< llel programs. \t\ c

individua lly cl iscussed Common Su bexprcssion E limination (E), De' ad ode Eli mi­

naLion (OCE), ode l\.1otion, and Loop Fusion a nd Fission. The t raditiona l sequent ial

opt imiza tion a lgori thms cannot be directly used in parallel programs. Some modi­

fi ca Lion · must be made. We developed tomic Fusion / Fission method to identify

109

various safe optimizations in parallel programs.

7.1.2 Thesis Contributions

H ARPO I L is a programming language, which execute on various hardware

p latforms, including CGRAs and microprocessors. The purpose of th is th sis was to

develop t he IRs for the compiler of the H ARPO I L language. The IRs can be used

in various opt imizations and a.s input to the compiler back end.

In this thesis , the main cont ributions were the following:

1. We proposed Object Dependence Graph (ODG). The ODG is used for repre­

senting the relations among objects in HARPO I L language programs. These

objects can be divided into two categor ies. One is the simple object, and the

other is the complex object. The relations include part-of and knows. We can

find skeleton objects of the HAR.POI L programs from it.

2. We extended Lee's CCFG [9] to Augmented Concurrent Control Flow Graph

(ACCFG). The ACCFG is also a kind of cont rol flow graph , bu t it adds more

edges and more node types. The programs in ACCFG form arc translated into

the CSSA form. The CSSA is an extended form of Single Static As ignm nt

(SSA), which is often used in the traditional sequential programs. In the SSA

form , only the ¢ function is used for representing the control flow condition

merging. But in the CSSA, Lee proposed two new functions '1/J and 1r for rep­

resent ing the confluence of t hreads. We added a new function ~ for call ing

procedures in the H ARPO I L language. The placement of this function was

provided.

110

3. We made some interprocedural analyses and optimizations for the H ARPO/ L

language. For some usual optimization techniques, such as dead code elimina­

tion, common subexpression elimination, and hoist able access detection , we gave

their behaviors in parallel programs with instances. We developed the Atomic

Fusion/ Fission method to identify various saf optimization in the H ARPO / L

language. In addition , we discussed possible deadlock, wh ich can come from

pa rallel programs and calling procedure, and the solu tions were provided.

7.2 Open Issues for Future Work

Although we provided a comprehensive study on the intermediate representation

for t he compiler of H ARPO / L , there a re still some aspects that can be improved in

the future.

The Parallel Optimizations

In the Atomic Fusion/ Fission method for optimization in the H ARPO / L , we use

atomic operations for current method. But we will extend it to further cases, such a.s

semi-atomic operation.

The interprocedural optimizations

In this thesis , we discussed the two interprocedural optimizations on the elim­

ination of unnecessary bounds checking and the simplifying of the same procedme

calling. vVe hope to develop more interprocedural optimization techniques to improve

the compiler 's efficiency. Test and compare

Although we made extension and proposed new methods, we need to know the

improvement from these IRs and methods. Some experimences need to be done.

111

,--------------------------------- ~---~-~--

Bibliography

[1] K. Y. Arvind Krishnamurthy. Optimizing parallel programs with explicit syn­

chronization . SI GPLAN Conference on Programming Language Design and Im­

plementation, pages 196- 204, 1995.

[2] A.V.Aho, R.Sethi , and J. Ullman. Compilers:Principle, Techniq'ues and Tools.

Addison Wesley, 1986.

[3] J. C. Corbett. Evaluating deadlock detection methods for concurrent software.

IEEE Trans . Softw. Eng., 22(3):161- 180, 1996.

[<J] P. D. D<'acllock detection without wait-for graphs. Pamllel Computing,

17(1) :1377 1383, 1991.

[5] !VI. E. Daniel Weise, Roger F. Crew and B. Steensgaard . Value dependence

graphs: representation without taxation. A CM, pages P age:297 310, 1994.

[6] W. Haque. Concurrent deadlock detection in parallel programs. Int. J. Comput.

Appl., 28(1): 19- 25 , 2006.

112

,--------------------------------

[7] M. W . Harini Srinivasan , James Hook. Static single assignment for explicit ly

parallel programs. Annual Symposium on Principles of Pmgmmrning Languages,

pages Page 260- 272, 1993.

[J R. Ha rtenstein. A decade of reconfigura.ble comput ing: a visionary retrospective.

!nt 'l ConfeTence on Design Automation and Testing in EuTope, pages 642 - 649,

2001 .

[9] P. f. J a.ejin Lee and D. P adua. Concurrent static single ass ignment form and

constant propagation for explicitly parallel programs. In PToceedings of The 1Oth

International WoTkshop on Languages and CompileTs joT Pamllel Computing,

pages 114- 130, Aug 1997.

[10] P. M. J aejin Lee and D. P adua.. Basic compiler algorit hms for parallel programs.

PT"incip les P ractice of Pamllel Pmgmmrning, pages 1- 12, April 1999.

[11] J. V. J ens Knoop , Bernhard Steffen. Optimal code motion for para llel programs.

Knoop, J.
1

Steff'en, B .
1

and VollmeT, J. Optimal code motion jo1· pamllel pm­

gmms. To appeaT 'in PToceedings of the 12 th W oTkshop on Alternative Konzepte

}1tT Spmchen und R echner1 Phy ikzentTum Bad Honnef1 GeTmany1 2(4), May

1995.

[12] J .Ferrante a nd K.Ottenstein . The program dependence gra ph and its use in opti­

mization. ACM T-ransactions on PTogmmming Languages and System, 9(3):319-

349, July 1987.

[13] J . Knoop and B . Steffen. Code motion for explicitly parallel progra ms. In PPoPP

'99: Pmceedings of the seventh A CM SIGPLAN symposium on PTinciples and

113

practice of parallel programming, pages 13- 24, New York , NY, USA, 1999. ACM

Press.

[14] II. B . K.Pingali and R.Johnson. Dependence flow graphs: a n algebraic approach

to program dependencies. Annual Symposium on Principles of Progr-amming

Languages, pages 67- 78, J an 1991.

[F] S. 'I. Kurla nder and C. N. Fischer. Minim um cost interprocedura l register a llo­

cation . POPL '96: Proceedings of the 23rd A CM SI GPLAN-S!GA CT symposi'um

on Pr-incipLes of programming languages, pages 230- 241 , 1996.

[16] L. Lamport. How to make a multiprocessor computer that correctly executes

multiproce s programs. IEEE Tmns, pages Page 690- 691 , cp 1979.

[17] L. Lamport. How to make a multiprocessor compu ter that correctly execu tes

multiprocess programs. IEEE Transactions on Compute'ts, 28:Page 690- 691,

1979.

[18] I-1. II.. Marc M. Brandis. Single-pass generation of static single assignment form

for structured languages. A CM Transaction on Pr-ogramm'ing Languages and

Systems, 16(6): P age 1684- 1698, 1994.

[19] S. P. Midkiff, D. A. Padua, and R Cytron. Compiling programs with user

pe~ ra llelism . Selected papers of the econd wo'rkshop on Language and compilers

for· par-allel computing, pages 402- 422 , 1990.

[20] S. S . Muchnick. Advanced Compiler Design Implementation. Morgan Kaufmann,

1997.

114

[2 1] T. S. Norv II . The cgra language specifi cation , 2006.

[22] M. · .Walkinshaw and M . Wood. The java system dependence graph. Third IEEE

International Workshop on Source Code Analysis and Manipulation, page 55,

Sept 2003.

[23] I<. J. OTTENSTEI . Data-flow graphs as an intermediate program form. Ph.D.

disseTtation , Aug 1978.

[24] J. R.Cytron. Efficiently computing static single assignment form and t he control

dependence graph. ACM Transactions on Programming Languages and Systems,

13(4) :Page 451- 490, 1991.

[25] M. C. Rinard. Analysis of multithreaded programs. Proceedings of the 8th Static

Analysis Symposium, 2001.

[26] A. B. M. Robert A. Ballance and K. J. Ottenstein. The program dependence

web: A representation support ing control ,data, and deman-driven interpretation

of imperative languages. ACM, pages Page:257- 271 , 1990.

[27] V. Sarkar. Analysis and optimization of explicitly parallel programs using th

parallel program graph representation. Fmc. of the 1Oth International WoTk hop

on Langv.a.ges and CompileTs for· Parallel Computing, LNCS Spr·ingeT- VeT'lag,

pages 94- 113, 199 7.

[2 J V. Sarkar and B. Simons. Parallel program graphs and their classification. pages

633 655 , 1994.

115

[29] D. Shasha a nd M. Snir. Efficient and correct execut ion of para llel programs that

hare memory. A CM Trans. Progmm. Lang. Syst. , 10(2):282- 312, 19 8.

[30] T. S.Horwitz and D.Binkley. Interprocedural slicing using dependence graphs.

A CM Transactions on progmmming Lang·uages and System, Vol.12:Page 26- 60,

J anuary 1990.

[31] D. P. S.P. Midkiff. Issues in the compile-time optimization of parallel programs.

InteTnational ConjeTence on Parallel PTocessing, 1990.

[32] B. S. Vivek Sarkar. PRrallel program graphs and their classification. Sixth Work­

shop on Languages and Compilers for Parallel Computing, pages 633- 655, Aug

1993.

[33] www. wikipedia.org. The free encyclopedia www. wikipedia.org.

[34] G. J. M.S. Yuanqing Guo. Ma pping applica tions to a coarse grain reconfigurable

system. Lectur·e Notes in Computer Science, 2823/2003:221- 235, 2003.

[35] J . Zhao. M ul t ithreaded dependence graphs for con unent java programs. P ro­

ceedings of the International Symposium on Softwar-e Engineer-ing fo ·r P arallel

and Dist·ributed Systems, 1999.

116

