

Intermediate Representations For Parallel

Languages on CGRAs

by

(© Dianyong Zhang

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the
requirements for the degree of

Master of Engineering

Faculty of E1 ‘neering And Applied Science

Memorial University of Newfoundland

December 2007

St John's Newfoundland and Labrador

Abstract

Coarse Grained Reconfigurable Arrays (CGRAs) are reconfigurable computing
architectures based on word-width processing elements, in con st to Field Pro-
gratmnable Gate Arravs (FPGAs). which use bit-width processing clements. CGRAs
have faster time-to-market than Application Specific Integrated Cireuits (ASICs) and,
for many applications, faster execution than FPGA. In contrast to traditional sc-
quential language, we aim to develop a parallel object-oriented programming lan-
suage(HARPO/L). that can be compiled to CGRAs configuration files to exccute.
This requires that compiler exploits ¢ parallelisin from language self and target
architecture. This thesis mainly shows a set of intermediate representations (IR) in
the compiler for HARPO/L, which contains all information {from the source program
and is casier to be analvzed and optimized.

Based on the HARPO/L Language features, we use object dependence graphs
(ODGs) to represent the relations among objects. The augmented concurrent control
flow graphs show threads among objects. After the interobject analvsis and optimiza-
tions, an excaitable dataflow graph, the final IR forny, can be produced. The 1R can
then be used as input to the compiler back end.

This rescarch offers a significant advanee on the HARPO/L Compilation approach.
It will benefit to finish advanced HARPO/L programming Language exeeuting in high

diversity CGRA architectures.

Acknowledgments

First of all. T would like to thank my supervisor, Professor Theodore S. Norvell,
for his support and guidance through my graduate carcer in MNer orial University of
Newfoundland., This thesis would not have been as solid without his insight and guid-
ance. I particularly appreciate his introducing me to the field of parallel processing
aud getting me started on compilation techniques for explicitly parallel programs. |
have learned from him how to view the world from many different perspectives and
lhow to make an idea conerete.

I am grateful also to my wife, Jinghua Nie. Ier love and care encourage me to
finish this thesis.

Finally, I dedicate this thesis to my parents. and I appreciate their endless love

and support.

1l

Contents

Abstract ii
Acknowledgments il
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 CGRA Introduction 1

1.2 Compiler Introduction . . .0 00000000 4
1.2.1 Front lind .. . 0000000 5

[.2.2 IR Generation and Optimization o .0 00000 D

1.23 0 Back End .. 000 7

1.3 Introduction to HARPO/L . .. 0000000000000 T
1.3.1 ITARPO/L Specification ... 00000000 8

1.3.2 Example . .0 000000 11

L4 The Outline Of The Thesis . . . 0 0 0 o000 0000000000 13

1.5 Main Contubutions in This Thesis 0 0 0 0 0 00000000000 14

Related Work 16

2.1 The Introduction of Intermediate Representation .o 0 o 0 00 0 0 . 16
2.2 Several Common IRs .~ . 0 0 0 00000000 17
221 Control Flow Graph (CFG) 17
2.2.2 Program Dependence Graph(PDG) . 0000000000 18
2.2.3 Parallel Program Graph(PPG) 22
2.2.4 Single Static Assignment(SSA) .. .00 oo 0L 2.1
2.2.4.1 Traditional Single Static Assignment(SSA) 2.4

2.2.4.2 Concurrent Single Static Assigmment(CSSA) 26

2205 Other [Rs o000 o000 27

2.3 Data Flow Graph and Call graph 0. . 29
Object Dependence Graph 31
3.1 Some Issues on Object Dependence Graph(ODG) 00000000 31
3.2 ODG Specification .. 0000 L Lo 3
3.3 Algonithm for Constructing ODG o o0 00000000 38
Augmented Concurrent Control Flow Graph 42
11 Imtroduction .. o0 12
1.2 Memory Consisteney Models o000 0000000000000 13
1.2.1 The Classes of Parallel Programs . . 0 000 0000000 13
422 NMemory Consisteney Models 00000000 00000000 11
123 Memory Consisteney in HARPO/L o000 000000000 106

L3 Augmented Concurrent Control Flow Graph (ACCFG) .0 00 0 0 17
1.t Concurrent Single Static Assignment (CSSA) 510

VY

by]

1.5

1.0

[Function Placement .

15,1 Placing ¢ Function
4.5.2 0 Placing ¢ Function
4.5.3 Placing 7 Function
450 Placing € FFunction

Sunnnary

InterObject Analysis

H.1
5.2

5.3

Introduction
Interobject Optimzation

Deadlock Analysis and Solution

Optimization In Parallel . rograms

6.1

6.2

Introduction of Optimization .

C'ommon Subexpression Elimination(CSE)
6.2.1 Common Subexpression Elimination
6.2.2 A CSE Example in Sequential Prograns

6.2.3 A CSE Example in Parallel Programs .

6.2.1 A CSE Example in Parallel Programs with Synchronizations

6.2.5 CSE Analysis in Parallel Programs

(W}

Dead Code Elimination .
6.3.1 Decad Code Elimination .
6.3.2 Dead Code Elimination in Sequential Programs

6.3.3 Decad Code Elimimati in Parallel Programs .

<

Vi

6.3.-1 Dead Code Elimination in Parallel Programs with Synchroniza-
tion
6.3.5 L d Code ition Analysis in Parallel 1 s .
6.1 Code Motion
G.1.1 - Code Motion
6.-1.2 Code NMotion i Sequential Programs
6.1.3 Code Motion in Parallel Programs .
G.-1.1 Code Motion in Parallel Programs with Synchror ation
G.1.5 Code Motion Analysis in Parallel Programs
6.5 Loop Fusion and Loop Fission
6.5.1 Loop Fusion and IFission
6.5.2 Loop Fusion and Loop Fission in Sequential Programs
(.53 Loop Fusion and Loop Fission in Parallel Progra
G.5.4 Loop Fusion in Parallel Programs with Synchironization
6.5.5 Loop Fusion and Loop Fission analysis in Parallel Programs
6.6 Atomic Fusion/Fission in Parallel Optimization

0.7 Sununary

7 Conclusions and Future Work

7.1 Conclusion .

7.1.1 Thesis Summary

7.1.2 Thesis Contributions

~1

2 Open Issues for Future Work . .

Bibliography

3

o s
s]

30

36

806

87

90

101

10+

107

108

108

108

110

111

112

List of Table-

1.1 Some CGRA Architectures 2

Vil

List of Figurcs

I

A structure of Function Unit [34]o
A CGRA Mesh Architecture example .00 000000000000
A HARPO/L Source Code « o0 000000000

General Block Diagram . 0 0 0 0000000 o oo

An Example of Control Flow Graph
Data Dependence and Control Dependence example 0000000
An Example of PDG 00 0 0000000000
An Example of PPG 000 000000 o
A Straightforward SSA example .0 0000000000000
A SSA example with joint node 00000000000

An example on Dataflow Grapho 0000000000

asimple ODG example 000 0000000000

The construction of ODG . . . 0 0 0 oL

The Parallel Program Classification of Vivek ©
An Example of ACCFG . .0 0 0000000000

An Example ¢ the 00000000

[
(W]

|

0.

0.6

6.7

6.4

0.

" |

.0

1

o

An Example on the ¢ function .
An Example on the 7 function .
An Example on the € function

('alling Procedure in Pavallel Program

Some Special Cases for Interprocedural Optimization

An Example on Calling Deadlock

Common Subexpression Elimination in sequential prograims .

'S

—_—

< in parallel programs .

C'SE in Parallel Program with Synchronization .

CSE in parallel programs .

Atomic Fusion/Fission Analysis on CSI in paralle]l programs .

The Introduction of Local Variable for The Fission of Atomic Opera-
tion in Parallel Programs (SIS Optinization

Dead Code Elimination .

Dead Code Elimination in parallel programs

Example 1 on Dead Code Elimination in parallel progra s with syn-
chronization

Example 2 on Dead Code Elimination in parallel programs with syn-
chromzation

('ode Motion in Sequential Programs

C'ode Motion in Parallel Programs .

C'ode NMotion in Parallel Programs .

Code NMotion Out of 1+ el Control ow in Pa OIS

e

n

GY

-

14

81

83

33

81

G.15 An Unsuccesstul Code Motion in Parallel Programs [31) 9l
G.16 A\ Successtul Code Motion Example in Parallel Programs [31] 91
6.17 Code Motion With Fusion/Fission Analysis in Parallel Programs . . . 93

6.18 Code Motion of Parallel Control Flow With Fusion/Fissi Analysis
in Parallel Programs o0 oo 9]

6.19 Fusion/Fission Analysis of Code Motion With Synchronization in Par-

allel Programs oD
G.20 Loop Fusion and Loop Fission Example in Sequential Programs .. . 97
6.21 Loop IFusion in Sequential Prograims 00U
(.22 Loop Fusion and Loop Fission in parallel Programs 9Y
.23 Loop Fusion and Loop Fission in Parallel Programs 100

6.21 Loop Ifusion and Loop Fission with a Synchronization Statement in
Parallel Programs (3 10

6.25 Atomic Fusion/Fission Analvsis for Loop Fusion and Loop Fission in
Parallel Programso oo 103

6.26 An Ixample to Use The Theorem For Safe-Fission Indentification .. 107

X1

Chapter 1

Introduction

1.1 CGRA Introduction

Coarse Grained Reconfigurable Arravs are reconfigurable ¢ aputing architec-
tures, which are based on word-width processing clements, in contrast to Field Pro-
srammable Gate Arravs (FPGA). which use bit-width processing elements. The
coarse granularity greatly reduces delay, arca. power consumption and configuration
time, compared with FPGA, at the cost of loss of (lexibility, CGRAs allow faster
time-to-market than Application Specific Integrated Circuits (Af "), and for many
applications, faster execution than microprocessors. CGRA Architectures bridge the
oap between ASICS and microprocessors. Nowadays the rapidly evolving market
of mobile and personal digital devices ercates a higher demand fo reconfigurable
computing technology. Their functionality and adaptability lea to an increasing
consideration of coarse grained reconfigurable architectures.

To present. many such architectures have been proposed [8].

SOUTCes.
These diversified structural features lead to big challenges for compiler designs
hecause flexible available resources and conumunication mply more complicated vep-

resentations for the resources and strategies of mapping. routing and scheduling.

1.2 Compiler Intrc_u_:ion

In this thesis, we mainly discuss a new intermediate representation (IRs) for
compilers. So. it is necessary to introduce some compiler theory at first. A compiler
is a program that translates text written in a computer language (the souree language)
into another computer language (the target language) [33]. Compilers can be one of

these following categories:

o A source-to-source compiler transforms a high level langua to another high

level Tanguage.

e Stage compiler produces lower level language, such as ass ibly language or

configuration files for a reconfigurable hardware platforn.

Most modern compilers have three stages: front end, optimiza o and back end.
Compilers use transtormations of program representation in the front end to cre-
ate intermediate representations for optimization. After optimization, the program

representations are sent to the hack end for scheduling, routing and mapping.

1.2.1 Front End

The front end analyzes source code in text to build an intermec te representation.
Usually, it uses a svinbol table. This is a data structure, mapping cach symbol in the
source code to associated information such as type and scope. The front end often
has several phases. IFirst. the lexical analyzer breaks the source code text into small
atomic language units (tokens). Conditional compilation and mac — substitution may
happen in this stage. Next comes the parsing phase. This phase parses the token
sequence to identify the syntactic structure of the program. Last, semantic analysis

checks the program to ensure it obeys the rules of the language.

1.2.2 IR Generation and Optimization

Usuallv. IRs use graphs which represent the structure of progre s, Compilers use
IRs to do flow analyvsis and optimizations.

Typical analyses include variable define-use (DU) and use-define (UD) chains, and
clsewhere dependence analysis. alias analysis, pointer analysis ete. The call graph and
control flow graph are usually also built during the analysis phase. These two graphs
are also IRs. In addition, a compiler including more than one Intermediate Rep-
resentation is possible. In this thesis, we develope several 1Rs for representing and
optimizing CGRA Language programs. 1Rs can be divided into high-level IRL middle-
level 1R and low-level 1R Thgher level IR has less dependence on target architecture.
Low-level 1R is often constrained by target architectures. For ¢'C A language, tar-
pet architecture diversities make us choose higher 1Rs. IFurthermore, [Rs in diflerent

levels can be transfered among «ch other. The standard for a good IR is to represent

e}

complete source code information and facilitate optimization.

Facilitating optimization is the main goal of IR design. In some cases, source code
transtorming into an IR is only utilized for an efficient optimiz on. The purpose
ol optimizations is improving performance. I computer programiuing, optimization
means to modify code and its compilation settings on a given cor uter architecture
to produce more efficient software, The most common optinization goal is to reduce
the time taken to execute a program. The less consideration goal is to reduce the
amount of memory occupied. or the power consumed by a prograni. [t has been
shown that some code optimization problems are NP-complete.

Usual optimization techniques include the following themes: aeoding redundancy,
crploiting parallelisin, decreasing jumping. inercasing code locality, and avoiding memn-
ory aceesses. Sometines these themes can conflict with one another.

\We canr categorize optimization techniques into loop optimizations. data-flow op-
timizations. SSA-based optimizations. and interprocedural optimizations. The oper-
ating objects of loop optimization are loop statements in source language. The usual
optimizations are loop fission, loop fusion, loop inversion, loop unrolling cte. Data
flow optimizations come from data flow analvsis. They obtain opti - ization effects by
analyzing how data propagate along coutrol edges in the control flc - graph. Common
subexpression elimination, constant folding, and constant propagation are examnples
of data flow optimization. Static Single Assignment (SSA) is a common IR in which
every variable is assigned in only one place. SSA-based optimizations include global
valie numbering and sparse conditional constant propagation. Interprocedural op-
timization works on the entire program. Tvpical interprocedural optin:™ ions are

procedure inlining. interprocedural dead code elimination, interprocedural constant

0

propagation. and procedure reordering. Usually, interprocedural analysis is needed
before actual optimizations, these include interprocedural alias analysis, arrayv access
analysis. and construction of call graph [33. 20].

Traditional programing languages use sequential control flow. When parallel con-
trol How 1s introduced, the original optimization algorithims may produce improper
results. The HARPO/L is a programming language which includes parallel control
flow and multithreads. To compiler HARPO/L we must extend and adapt the se-
quential optimization methods. We will give more intermediate representation and

optimization details in later chapters,

1.2.3 Back End

The back end is the last stage ina compiler. The back end — es the IR to pro-
duce configuration files, which control data execution for the target architectures.
Although some optimizations are finished in optimization stage, I vk end makes fur-
ther optimization. But these optimizations are often associated v h specified target
architectures. C'ompilers must attenmpt to utilize all available hardware resources and
structure features to optimize the code. Back-end tasks include re ing, mapping and

scheduling.

1.3 Introductic to HARPO/"

The HARPO/L was developed by Dr. Theodore S. Norvell at Menmorial Umversity
of Newfoundland in 2006, The aim is to develop a language which can be applied

to most CGRA platforms, as well as CPUs and FPGAs. Progranmmers can use it to

-1

implement various user functions in software. Its compiler will finish hardware design
and implementation. This will decrease the time to market an increase product
flexibility.

In order to adapt to CGRA features, HARPO/L was design to be an object-

oriented language with parallel control low. All following contents refers to [21].

1.3.1 HARPO/L Specification

N — 7 Nonterminal .V can be an 1

(F) Grouping

E* Zero or more

L Zero or more separated by s
E* One or more

£ One or more separated by s
o8 2610 or one

[£] Zero or one

EF ("hoice

Programs in the HARPO/L consist of sets of classes, interfac and objects.

Interfaces, primitive types, arrays, and classes are all types. rimitive types in-
clude hoolean, integer and real. Integer and real types have 8 bits, 16 bits, 32 bits
and G1 bits corresponding to CGRA architecture granularity.

Classes define a user type. Classes may he generice or nongeneric. A generie class

can ave one or more generic paraneters.

ClassDecl — (el Name GParams’ (implements Type*)' (ClassMember)®

[class])

In the above grammer rule. the name s the name of the class. The fypes are
the interfaces, which the class implements. The ClassMembers can be fields, methods
and threads. Specifically, fields are objects that are within objects. Field declarations
define the part-whole hierarchy, We will use the information to i ntify the relation

of objects in HARPO/L programs. Field declarations have the following form:
Ficld — Access obj Name: Type = Initlorp)

It this expression, Access can be private or public. If an object, which is defined
in this ficld declaration, is private. it is onlv accessible in objects, whose tvpe is this
class. I an object is publie, it can be used by other objects of o er classes. Public
property can cause shared-variable-conflict-use problem. although private fields can
still be shared by multiple threads in same object. This will be discussed ina future
chapter.

A method declaration declare o method. but not its implementation. The imple-

mentation body is located within a thread. It has the following form:
Method — Access proc Name((Dwrection [Name =] Type)*)]

[1 this rule, access has same meaning as lor fields. The Direct. + can be i or out.
The "in™ means input paraneter of this procedure and “out”™ means it is an output
paranieter.

A thread declaration defines a thread. Inan object, whose ty i not a prinmtive
tvpe. there may be zero, one, or more than one thread; otherwise, 1 an object. whose

tvpe is primitive type, there are no any threads. For those objects in which there are

more than one threads programmers ensure the threads coordination.

As there is no dvnamic allocation, all objects are created at compile time. We
can correctly conclude programs consist of a munber of simple objects and complex
objects; and we can analyze their relations at compile time.

Fach thread contains a block. A block is a sequence of statements. In HARPO/L,
there are assignment statements, local variahle deelarations, method call statements,
sequential control How, parallel control How, and method implementation.

A method call statement causes a calling of a procedure. s form is:
Statement — Objectld Name (Args) | Name(Args)

The Objectld is the name of object called. The Name is the na o of a procedure.
The Args is the argument list, which is sent to the called proced .

On the other hand. called procedures have the tollowing form:

Statcment — (accept Methodlmyp (| Methodlmp)* [accept])
Methodlmp — Name ((Direction Name : Type)*) [Guard] Blocky | then Block, |

Guard - when Frpression

When a thread reaches an aceept statement, it must wait until there is a call to one
ol the implemented methods and the corresponding guard is true. Once there is one
method calll the aceept can execute: the imput parameters are passed i, and the
Blocky is executed. The output parameters are copied back to the calling thread.
The method call statement and method implementation stateme | are calling and
called relation. They guarantee only one calling thread execute the called procedure
at any tine,

In HARPO/L. sequential control flow has ¢f statement (conditional). while and

10

Jor(loop) as usual. Their definitions are same as the traditional sequential programs.

In HARPO/L, parallel control flow includes two forms.

Statement — (co Block (]| Block)* [co]) (1)
Statement — (co Name : Bounds Block [co]) (-

We observe that expression (1) has the symbol co at its beginn 2 and end, one or
more blocks are seperated by the symbol || This represents that several threads can
exceute at the same time. This is a cobegin-coend structure. In ression (2), all
iterations cai be executed in parallel. This is a parallel do lor . We call it pardo loop.
These parallel control flow and multithreads in objects make HARPO/L programs

explicitly parallel.

1.3.2 Example
We can see a HARPO/L example in the following.

(class FIFO [in capacity : int, type T extends primitiz
public proc deposit(in valr : T)
public proc fetch(out value : T)
private obj a : T(capacity)
private obj front := 0
private obj size := 0
(thread
(wh tm

(accept

11

deposit(in value : T) when size < capacity
a((front + size) % capacity) := value
size := si: + 1

| fetch(out value : T) when size > 0

value := a(front)
front := (front + 1) % capacity
size := size -1
accept)
wh)
thread)
class)

Figure 1.3: A HARPO/L Source Code

In this example. we define a class FIFO. The capacity is its parameter. It represent
the length of FIFO. Type T is the subclass of tvpe primitive. In it, there are two
methods “deposit”™ and “feteh”™. When other objects use objects ¢ FIFO type, values
will be sent through the deposit or feteh procedures. When size is less than capacity,
a value can be deposited at the end. When size is larger than zero, a value can be

fotched from the beginning. This class simulates a procedure of FIFO.

12

1.4 The Outline Of 1 nhe Thesis

In order to satisfy the HARPO/L features, we develop a set ol termediate Rep-
resentations for HARPO/L compiler. Please refer to Figure 1.1, The source code of
HHAROP/ L 15 parsed by the HAROP /L parser. Abtract syntax tree can be produced.
In the object dependence graph, we can obtain the relation of ob ct. For Objects,
we know their control flow relations by augmented concurrent control flow graplh.
After interprocedural analysis, some optimizations can be made. Concurrent data
flow graph can be produced for the backend of compiler. The final configuration files
can he created Tor CGRA hardware platforn.

The rest of this thesis is organized as following:

Chapter 2 introduces other researchers’ related work on CGRA architecture and coni-
piler techniques and approaches.

Chapters 3 to 7 discuss the ITTARPO/L complier intermediate representations.
Chapter 3 defines the Object Dependence Graph specification and algorithms on it
C'hapter 1 explains this Augmented Concurrent Control Flow Gray ceification and
implementation algorithn.

Chapter b discusses interobject analysis.

Chapter 6 gives several optimizations in parallel programs.

Chapter 7 describes data How form.the final intermediate representation forni.

Finally, Chapter 8 contains conclusion and a discussion of future work.

13

for the compiler, which is used for HARPO/L [21].

We define Object Dependence Graphs (ODG). which collect all object infor-
mation in HARPO/L programs, and include relations among these objects.

Related definitions and algorithms will be given.

We extend Concurrent Control Flow Graphs (CCFG) [9] to Augmented CCFGs
(ACCFGs). ACCFGs can represent. control flow relations within objects i

HARPO/L programs.

We explain several optimizations including Common Subexpression Elimina-
tion, Dead Code Elimination, Ioistable Access and Loop Fusion in parallel
programs. and how they differ from the corresponding optin ations i sequen-

tial programns.

hi order to transform ACCFG to executable dataflow form, we provide possible
solutions to convert @, 7 . and € functions, which appear 1 the ACCEFG, to
dataflow form. These functions are used to solve various different multithread
cases in parallel programs. This executable dataflow form is used as input to

the compiler back end.

Chapter 2

rKelated Work

2.1 The Introduction of Intermediate . epresenta-
tion

The compiler design for a new programming language is a complicated engineer-
ing problem. In this procedure, Intermediate Representation (1R} ays an important
role. A good IR can improve program efficiencey and decrease exeer on time of target
conliguration files. The standard for judging a good IR is its abil ; to represent all
information from the source code and to be casily optimized. The optimized 1R will
be sent to the back end for mapping. routing and scheduling.

IR desipgn s Targely an art, not a science. We must consider whether to use an
existing representation. If an existing intermediate language is not used. there are
many decisions to be made in the design of the new one. If an existing one is to
he used. there are considerations to be acknowled d of its appropriateness tfor hoth

the language to be ¢ piled and target architecture. possible resulting costs, and the

10

saving in reuse of an existing design and code. There is also an issue of whether
the intermediate form is appropriate for certain optimization to be performed. Some
optinizations mayv be too hard to do at all on a given intermediate representation,
and some may take niuch longer to do than they would o another representation.
When we design a new 1R, the issues considered should include: what is its level,
organizational structure and expressiveness; whether it is appropriate for many opti-
mizations or a certain particular optimization; whether it is apt for e generation of
configuration file for the tareet architectures. In addition, it is possible to use more
than one IR in one compiler. This requires translation of one I to another i the
compilation process. Each IR may be appropriate for one particular task only.
Researchers have made many efforts on Intermediate Represer ation. Some of the
well-known are CIFG, PDG, PIPG and SSA. We will give brief introductions to cach

of them. This is helpful in order to get sonie ideas and inspirations fronn them.

2.2 Several Common lns

2.2.1 Control Flow Graph (CFG)

Control Flow Graphs (CFG) have been the usual representa m for control flow
relationships of a program, and is widely used for many compiler o timizations and
static analysis tools. In [2] and [12]. the CFG definition was given as follows:
Definition 2.1 A contvol flow graph CFG (N, Ecf. TYPE) is a directed multi-
graph,

- Nisaset of nodes. The CFG Hde | sentsan Oitrary = ential co - Hutation,

17

such as a hasic block, a statement or an operation.

Sl TN x N ox { TOF U }aset of labeled control flow edges. For control edge,
there are conditional (/7 and 7T)and unconditional edges(7).

SIYPE N = { START, STOP, PREDICATE.COMPUTE wanode type map-
ping.

The notation represents all paths that might be traversed thre gh a program dur-
ing its exccution. In CFG, START and STOP are two distinguished nodes: the
START node. along which control enters into CFG. and the ST O/ node, alony
which all control How leaves. START has no incoming edges and one outgoing un-
conditional edge. STO” has no outeoing edges and incoming edgoes.

The PREDIC AT X nodes represent a conditional branch, which has two outgoing
edges “T7 (truce) and “I™ (false) Tabels.

The COMPUTE and ST ART nodes have exactly one outgoing edge with label
“U (unconditional).O

Traditional CFG is a sequential representation of a program without parallel

structure. We can see an example of a CFG in Figure 2.1,

2.2.2 Prc -am cwependence Graph(PDG)

J Ferrabte and 1K.J Ottenstein [12] proposed Program Dependence Grap s (PDG)
i 1987, PDG has two dependence relations: Control Dependence and Data Depen-
denee.

Data dependence was proposed by Ottenstein in 1978 [23]. A data dependence

exists hetween two state - onts, whenever a variable appearing in one statement may

-
start
1 U
a:=0
a=0 . pre :ate
if c>1 ¢>1
a=a+1: T / 2 F
else
a=4,
endif;
print a;
| U
stop
(A) Source Code (B) Its Control Flow Grap

Figure 2.1: An Example of Control Flow Graph
8

have an incorrecet value if these two statements are reversed. A control dependence
exists between a statement and the predicate whose value immediately controls the
execntion of the statement.

Data dependences are only used to represent the relevant data How relationships

A=B'C S1 fia)t 1 81

D=A -1 82 B=C'D S2
Endif

data dependence conhtrol dependence

Figure 2.2: Data Dependence and Control Dependence example

of a program. Control Dependences represent only the essential ¢o trol How relation-

ships of a program. Control dependence graphs arve derived from the usual control

19

flow graphs and dominator trees. These two dependence relations are shown in the
Figure 2.2, In the example of data dependece, if we reverse ST d S2, we will get
a different value of variable D. On the other hand, only when the condition of ST is
satisfied, S2 can be executed. This is a control dependence.

[a PDG, the program is represented as a graph, in which the nodes usually rep-
resent statements and predicate expressions. The edges connecti ;) nodes represent.
both the data values on which the node’s operations depend, and the control condi-
tions on which the execution of the operations depend. The set of all dependences
for a progran may be viewed as inducing a partial ordering on the statements and
predicates i the program that must be followed to preserve the semanties of the
original program.

Definition 2.2 A Program Dependence Graph PDG=(N, E.;. Ejq. TYPE) 1s a di-
rected multigraph in which every node is reachable from the root. [12]

- N is a set of nodes. Nodes usually representing statements and predicates.

- Eaq ©N x N x { T, F, U }.aset of labeled control dependen edges.

An edge (a,0) € E.y identifies a control dependence. Node ¢ must have type
REGION or PREDICATE. it a has type PREDICATE. then (a,b) must be la-
beled “T™ or “F™ and b can only be executed if the predicate evaluates to true, in the
case of T, or false, in the case of F. Il a has type REGION, (a,b) st be labeled
{7 and b can only be executed after a.

By ©N x N x { LI LC}, is a set of data dependence ¢ jes.

An edge (a.b) € F.y identifies a data dependence from node « to node b, which

must be syuchronized. L and LC ¢ be identified as loop-ind — ndent and loop-

carried.

-IYPE N - { START.PREDICATE . COMPUTE.REGION }. a node type
Happing.

START and PREDIC AT I node types are similar to the counterpart ina C'17°¢.
The COMPUT I node has no outgoing control edges in a 2D, The REGTON node
sorves as o summary node for a set of control dependence suceessors ina PDG. O

Data dependence can explain that two statements access or modily the same re-

source, There are three data dependence relations here.

e [low dependence: A statement S2 s flow dependent on STt and only it Sl

modifies a resource that S2 reads, and S1 precedes 32 in execution.

S1 x:= 10

S2y:=x+4+c¢

o Anti-dependence: A statement 82 is anti-dependent on & i and only it 82

modifies a resource that S1 reads, and S1 precedes S2 inexecution.

S1 x:

y + ¢

S2y:=10

e Output dependence: A statement S2 is output dependent on S1if and only if

ST and S2 modify the same resource, and Sl precedes 52 in execution.

S1 x:= 10

S2 x 1= 20

We can see an example of a PDG in Figure 2.3, The state ents (1), (2). and
(1) arc connected the node region. ut statement (3) can happen only when the

21

statement (2) is true. In the statement (1), the value of variable « can come from

(1).(2) and (3). So there are data dependence relations there.

(start)

Gegion

read(a) . (1)
if (a<2) (2)
a=a+l; (3)
endif;
bi=a*2; (4)
—— Control Dependence
--=-= Data Depedence
(A) Source Code (B) Its PDG

Figure 2.3: An Example of PDG

2.2.3 Parallel Program Graph(PPG)

Vivek Sarkar and Barbara Simons proposed Parallel Program Graphs (PPG) in
1993 [32]. PPG is actually a compound of CFG and PDG. The C1°G is a sequen-
tial representation lacking of dependences, and PDG is a parallel representation of
sequential programs. When putting them into one PPG graph. s a parallel rep-
resentation of sequential and parallel program as of parallel control flow edges and
svuchronization edges. PPGs contain control edges that repres t parallel flow of
control, and synchronization edg — tmpose ordering constraints n executing PPG

nodes. MGOTO nodes us to aten t adsof parallel con 1. The PPG

no
o

15 a possible intermediate representation for explicit parallel programs.

Definition 2.3 A Parallel Program Graph PPPG = (N, Feont, Esynce, TY PE) is a
rooted directed multigraph in which every node is reachable from the root using only
control edges.

=N is aset of nodes.

Leont ©N ox Nox { T0F U }ois aset of control edges

Esyne © N x N ox SynchronizationCondition, is a set of synchronization edges.
This edge 1s decided by a synchronization condition.

SIYPE N = { START. PREDICATE . COMPUTE, MGOTO }. a node type
niapping.

The START node and PREDICATE node are similar to th counterpart in a
CFG or a PDG. The COMPUTE node may have outgoing control edge or no one.
The node MGOTO is used as a construct for creating parallel threads of computa-
tion. A new thread is created for cach successor of a M GOTO node. O

PPGs have heen shown to he useful {or solving various proble s, including opti-
mization. vectorization, code generation for VLIW machines. an merging versions
of programs.

We can see an example in Figure 2.1 Since the node MGC O create parallel
thread to compute, after variable a ts read, (3), (1), and () can 1 executed in par-
allel. But they use the same value of variable a. So the synehr ization edges are

nsed.

23

read(a); (1

while p(a) { (2)

b fla) (3)
c:=g(a); (4) —— . Control Edge
d:= hqay, (5)

- == Nchronization Edge

}
printb, ¢, d; (6)

(A) Source Code (B) Its PPG

Figure 2.4 An Example of PPG

2.2.4 Single Static Assignment(SSA)
2.2.4.1 Traditional Single Static Assigniment(SSA)

R.Cvtron. J. Ferrante and B. Rosen. working at 1BA, developed Single Statice
Assignment (SSA) in the 1980s [33].

As its name suggests, SSA only reflects static properties. In SSA| every variable is
assigned only once. Existing variables in the original IR are split into many versions.
These versions typically & created ¢ the original name with subsceript. Every
new assignment is assigned to one of versions of a variable. A wse « a variable with
a particular defimtion means the de finidion and usc have exactly the same name in
the SSA form. This simplifies and makes more effective several kinds of optimizing
transformations, including constant propagation. value nuber go invariant code

motion. strer h reduction, and partial redundaney efimination.

Figure 2.5 shows a simple instance of an SSA. In this example, the left is the
original form and the right is the SSA form. The variable ap uses e definition of ag
i the first statement. The vartable ay has the same value in both statements. This
is an example of straight code for SSA form.

However, there is a problem when we meet a joint point, where two or more

a X ap=0
ar=a+1. a;=ag+1

Iigure 2.5: A Straightforward SSA example

control flow paths merge. Multiple delinitions of a variable mayv reach the joint point.
This will result in a violation of single assignment property. We can see an example
i Figure 2.6.

In this example at control How merge join node. compiler st decide which

a) . a;=0;

if c>1 if Cp” 1
F1: a;magt+t,

else else

a=4: 82=4:
endif; endif;

print a. a, D(a-]‘ag)

print

(a)Sount Cc (b)SS wm

Iigure 2.6: A SSA example with joint node

variable a; or ay can be chosen. In order to achieve this purpose. SSA introduces ¢
function. ay is assigned either ap or ay, depending on control flow., A ¢ function has

one argument for cach incoming control path: the A argmment to a ¢ function is the

incoming value along the A path. The value of ¢ function is one of the arguments
and the sclection depends on the control flow path followed by the program. o
functions arce always inserted at the beginning of a basie block. and are considered
to be execnted simultancously before execution of any other code in the bhlock. The

advantages of SSA are the following:

o [he definition of a variable dominates its wse. Some optimization algorithm
will he more efficient by taking advantage of this property. It also simplifies the

analysis, transformation. and optimization of IR.
e SSA chains are simpler to store and update than use-def chains.

e Since the unrelated uses of the same variable in the origin - program become

different variables in the SSA forni, this eliminates false dependencies.

2.2.4.2 Concurrent Single Static Assigniment(CSSA)

SSA is a good Intermediate Representation. and it had bee widely applied in
many compilers. However, it has a drawback. It cannot solve ualtithread access-
ing shared variable which is an ordinary case in parallel programs (9, 10}, With
silicon technology’s developn . the number of processors in hardware platform is
increased. Parallel programming languages are hecoming popular. Processors may
access a shared variable concurrently without any fixed orderin of accesses. This
leads to data races and nondeterministic hehavior, Classical SSA cannot account for
updates to shared variables in threacls.

A new SSA formm used for parallel programs, Concurrent Single Statie Assign-
ment (CSSA), has been proposed by Lee, Padua and Midkiff in [9. 10].

20

In C'SSA. control flow joins still use ¢ function representation which is the same
as the SSA ¢ function. As multithreads are introduced, CSSA uses ¢ and 7 functions
for multithread confluence cases. ¢ function mainly solves threads in parallel control
flow confluence joint such as coend and enddo. 7 function is for the use of shared
variable with conflict edges in different threads. In this thesis, we make an extension
for ("SSA. so more detail will be given in a later chapter.,

The CSSA form has the following properties [9, 10):

o All uses of a variable are reached by exactly one static assigniment to the vari-

able.

e lor a variable. the definition dominates the wse if they are not arguments of o,

or ¢ or 7 functions.

2.2.5 Other IRs

Besides those above, some 1Rs were also proposed hased on different considera-

tions, We briefly introduce them as follows.

e Dependence Flow Graph
K. Pingali, M. Beck and R, Jolmson in [11] proposed Dependence Flow Graph.
Dependence Flow Graphs are a svathesis of ideas from data dependence graphs
and the datatlow model of computation. Similar to data dependence graph,
the dependence flow graph can bhe viewed as a data structure in whicl edges
represent dependencies between operations. For cach edge in the data depen-

dence graph. there is a corresponding path in the dependence flow graph. The

differences are that dependence flow graph is executable. It is a generalization

of the data driven execution semantics of dataflow graph.

e Svstent Dependence Graph(SDG)
S Horwitz, T .Reps and D.Binkley proposed Svstem Depe lenee Graph [30).
N.Walkinshaw and M. Wood [22] extended it for Java. Svstem Dependence
Graph extends previous dependence representations to incorporate collections
of procedures (with procedure calls), rather than just monolithic programs. It is
a multigraph. It maps control and data dependencies hetween the statements.
Statenments are categorized according to whether they contribute to the strie-
ture of a program. Each category is represented differently ¢ the graph. When
these different graphs are combined. they provide a graph program represent a-
tion. System dependence graph is difficult to visualize in a graph. because it is

composced ol a large number of different tvpes of nodes and edges.

o Multithread Dependence Graph
Zhao has extended system dependence graphs for the multithread case [35].
Besides the traditional dependence relation. the author added synchronization
and communication dependence relations. Synchronization dependence relation
is categorized into two relations. One is wait-notity relation, and the other is
stop-join relation. The previous is suitable to wait() and no {y() or notifvall()
methods. The latter is a thread calling join() method of another thread which
may proceed only after this target thread terminates. In these two cases, their

dependence edges are put into multithread dependence graph.

e Value Dependence Graph(VDGQG)

I
v &

D.Weise and R.IF. Crew proposed Value Dependence Graphs (VDG) [5] in 19941
A VDG is a graph representation that accurately captures dependencies in a
program, without being tied to the original shape of the program. Nodes are
the individual operators in the program, and edges represent how the operands
of one operator are dependent o the outputs of other opere rs. By breaking,
down the statements into single operations, the original statement structure of
the program is lost. By giving up information about the shape of the progran,

the VDG can represent the prograim’s behavior very accurately and concisely.

o Program Dependence Weh(PDW)
Program Dependence Web is an extension of PDG and SSA. [t was proposed
by R.A. Ballance A.B. Maccabe and K.J.Ottenstein in [26] 1990, In PDW,
the source program first is converted imto PDG in SSA form. But the differ-
ence is that the gate function replace ¢ function in PDW. So a PDW mcludes
dependence information between statements and the gate function for control
How join case. The value of the Gate function is decided with ontrol conditions
analvsis, Later, gate functions are added to control the flow values into control
reeions in which those values are used. Finally, the datatle form and target
architecture constraints are separately produced for mapp ¢ and scheduling

stagoes.

2.3 Data Flow Graph and Call graph

In the previous section. we ic 1 7 o data flow aph. It is a graphical rep-

resentation of the flow of data through an information system. It can reflect the

29

execntion order of operations and their data dependencies. With a dataffow graph,
users are able to visualize how the system will operate, what the system will accom-
plish and how the system will be implemented. If we take dat: ow graph as final
IR stage. the workload i mapping and scheduling can be decreased. We can see an
example in Figure 2.7,

Call graph [33] is a directed graph that reflects calling relations among subrou-

t=a*b;
t=11+1t,
t=7+1,

(a) Code Segment (b) Dataflow G ph

Figure 2.7: An example on Dataflow Graph

tines in a program. It shows the control flow of a program and it can be determmed
partially using a static analysis. However, sometimes some subroutines are dectded
or created at run time. Intl o ¢ socall grap static analysis in compile time
cannot reflect call relation Call -aphs ave distinguished between context-insensitive
and context-sensitive kinds, For context-insensitive graphs, cach procedure is repre-
sented as a node. and the arrows are all the possible calls between the nodes. For
context-sensitive graphs, the parameters of the function call are considered. The call

eraph of a program that does not use recursion is a directed acyclic graph.

Chapter 3

Object Dependence Graph

In this chapter. we will introduce a new Intermediate Representation, Object
Dependence Graph (ODG), for the TARPO/L Language Compiler. Fivst, we will ex-
plain its feasibility and necessity. Then we will give the definition ¢ QDG which can
represent relations between objects in - ARPO/L language progr. s, Furthermore,

we will present an algorithm for constructing the ODG.

3.1 Some Issues on Object Dependence xraph(ODG)

I this thesis, the main issue is Intermediate Representation design of compilers for
ITARPO/L language. First, sonie preprocess of source codes is made in front end in-
clading Lering, Parsing and Abstract Syntae Tree analysis. After that. source codes
should be correct and have no spelling, syntax and semantic et s, But they are
probably lTow in efliciencey and need to bhe processed by compiler to remove redundant
and dead codes. This needs choosing or designing of some approp ate intermediate

representation forms to optimize it.

31

In order to achieve this purpose, we proposed object dependence graph (ODG).
In chapter one, we introduced the HARPO/L Language specification. As we know,
the HARPO/L Language is an object-oriented progranuming lang —ge similar to Java
and C+ +. All programt codes in ITARPO/L language consist of sets of interacting
objects, cach of which cant receive messages, process data, and send messages, We
can call sonie of them Complex Object (C'O). and call the other Simple Objeet (S0).
Definition 3.1 Complex Object (CO)
A Compler Object is an instance of class with threads in HARPO/L Lanqguage. Only
e compler object there erist threads. Each compler objects has one or more thireads.
Compler objeet can include other compler objects and simple obj s, O
Definition 3.2 Simple Object (SO)
A Simplc Object is an instance of primitioe type or an instance of class including no
threads in HARDPO/L Language. Primitive typc has Integer, Real and Boolean types.
Simple Object can represent nwmbers, There is no thread in Simple Object. Simple
Object cannot include other compler object. O

The definition of Simple Object in HARPO/L Language is similar to the definition
of variable in conventional sense. Al 7 Hugh there are many SOs it ODGL main sub-
Jeet in parallel programs is CO. ™ tis hecause threads and parallel control flow are
main clements in HARPO/LL programs. In addition, we should — dicate HARPO/L
Language is a kind of “statie’ language. This means all objects in HARPO/L language
are produced in compile time.

In computer science, compile time refers to either the operations performed by a
compiler or the prograimning language requirements that must be met by source code

for it to be successfully compiled. The operations performed at compile tinte usually

32

mclude syntax analysis, various kinds of semantic analvsis and cc - generation [33).

The opposite is runtime. In computer science, runtime describes the operation of
a computer program during its execution [33].

[most. programming languages such as ¢, PASCAL or FOR™ AN, the compile
time and runtime are obviousty distinguished and cannot be interchanged. Gener-
allv, source codes are compiled (either machine code or an IR) st, and then the
compiled code 1s run. No program execution is possible till the whole program is
compiled. Once program execution begins. no more code can he added. In this case,
the user can communicate with the running program system, only when the program
contains a procedure, which reads text typed or mouse action ote. and performs their
actions.

In ITARPO/L Language, we also use this model. All objects used in the program
are produced in compile tiine. And this is important for the construction of ODG,
hecause this makes it possible for static object analysis in compile time and the con-
struction of an object relation graph. Otherwise, if objects are - cated at rantime,
we will not be able to use object dependenee graph as an intermec ite representation
for HARPO/L language.

In addition, practical programs can include a huge number of Hjects and classes.
I we add more analysis procedures and representations, they can cause the IR hard
to be expressed ina single form. Data and control dependence analysis is still diflicult
to visualize into graphs such as in system dependence graphs (SDG) for Java program
(introduced in Chapter 2).

For the similar reason. objeet analysis isn't 1 «d. However, in the HARPO/L lan-

g we can use the object relation based on the following reasons. First, HARPO/L

33

language has fewer types than usual programming languages. T HARPO/L data
tvpe includes Int(8, 16, 32 or 64 bits) Real(8, 16, 32 or G-} bits), Boolean. class types
interface , arravs and Generie types. Second, there are fewer relations among classes.
The HARPO/L includes inheritance relation between classes. But there are no their
polymorphism relations. These make possible to finish the obje relation analysis.
Because the number of objects are finite, we implement program analysis and opti-

mizations i compile time, though it can last a few minutes.

3.2 ODG Specification

Definition 3.3 Object Dependence Graph (ODG)
A Objeet Dependence Graph ODG = (N, E, Type) is a divected graph, im which cach

node is connected to others with relation edges.
I. N is a set of all objeets in the program. Objects include COs and SOs.
2. FE C N x N, isasct of relation between objects. Object can connect to another
object with one relation. These relations are represented i edges.

3. Type: - — { Wnows, Partof }. is edge type. O

I the set. all objeets have their own names. The name consists of two parts: s
location and object name in class declaration. For example, if there are two objects
whose nanies are “object a’. but their host objects are different: one is object b, the
other is ¢. We classifv these two objects with b.a and c¢.a. They are two different

3

objects in prograims.

Arravs is a data structure consisting of a group of elements having a single name
that are accessed by indexing. Each clement in an array has the same data type.
Usually clements in this array occupy contiguous arca of storage. The difference
ol clements hetween single-dimensional or multi-dimensional array is using different
indexes to access elements in arrays. The different elements in arrays are different
objects. We can identify them with array name and their index m - bers such as al0)].
This is an object, whose name is af0)].

We also take care of global objects in programs. We can identify these global
objects since their locations are outside class range. We can also identity them by
their names. These global objects can be used by other objects (other objects have
krrow relation for them): They are not part-of other objects (ot objects have o
part-of relation for them).

There are two types of edges. One is part-of. and the other is Anows. Part-of
relation means an object can be a part. of another object. Tn informal ters, small
object s a part of big object. A C'O can include SOs and C'Os. but SOs cannot
include other COs and SOs. .+ ace bnow relation means one object may use another
object.,

These edpges are directed. The riles on divection are: 11 edge is part-of tvpe. the
cdge direction is from the objeet included hy another object: Tf the edge 1s Anow type,
the edge direction is from object that is using the object.

Actually, for Anow relations we can identifv it by a straightforward way, 1f an
object "AT has Anow relation with another object "B, that means object AT calls a

procedure in object "B Furthermore, if object "JA™ has know relat nowith object 137

they have no part-of relation at that same time.

Besides the above, we can see these following cases in Figure 3.1.:

1. If CO1 has part of relation with CO2, CO2 is a decendent-of COL 1 CO3 15
part of CO2, CO3 is also indirectly a decendent-of COL But we do not need to
conneet a part-of edge with them. We can say port-of relation has transitivity.

But it is not necessary to connect CO1 and CO3 with part F edge.
201 CO2 is a part of COL, it is iinpossible that COL is a part of CO2.
301 CO2 s a part of COL, it is impossible that COT has know relation with CO2.

[COL knows CO2 and CO2 knows COL, this may produce a deadlock. A

special analvsis is necessary, We will discuss this in Chapter 0.

it

If both COL and CO2 know an object CO3, in which there is at least one
procedure. This can be a call procedure. COL and CO2 e for access and
use right of CO3. For calling and called problems, we make a further discuss in

Chapter 4.

G. 1f CO2 is a part of COL, CO3 known by CO2. we cannot conclude the C'O3

known by ('O1.
We conclude some ODG properties as follows:

e ODG can retleet object relation in programs. When we construct CFG, we need
these relations to ensure the connection among different ob cts.
ODC reflects the relations of all objects in programs, but this is only the first

step for HARPO/L IR analysis. For the next step, we will - alyze control flow

30

part-of

T part-of .
(CO{>———{EQ\> (co1) (coz) ,/4<§;;§f>*\
K, e v‘\\‘f@“/ (co1 co2)

part-of P\ part-of part-of) /\r’
(cos
N

Case1 Case?2
L T
(cor coz)
< _Kknow - ‘
(co1) (coz
\\ — know \ ./ know
possible ~__ (CO3)
deadlock | how S -
Cased Case5 Call procedure Caseb

Figure 3.1: a simple ODG example

relation in objects. Obviously, it is realistic that we sepa Lely analyze cach
object aud combine them together. But the connection relation of different
objects makes it hard to connect them together. The ODGs - rovide the help
to implement this procedure. We can find all object items of the ITARPO/L
programs, and conneet them with part-of and know relations. The know rela-
tion comes from calling procedure and shared variables us using in a CFG.
We can analyze these skeleton COs and conneet them with conflict edges and
calling relation edges. Each CO like this can have its own parallel control How.
which can include multiple threads. We can represent and analyze these COs
in Augmented Concurrent Control Flow Graph, which will - introduced in the

next chapter.

o ODG reveals calling relation and global shared vartables.

The traditional interprocedural method uses call graph. In ITARPO/L, call-

37

ing procedures use accepted statements to finish coordinating several calling
requests in different threads. We can find calling relation om ODG. Global

share variable use will also be found from ODG.

o ODG benefit to distinguishe thread relations in objects.
Issentially, there are no obvious differences hetween threads in the same object
in different objects. Both of them can be represented with an edge. How-
ever. we can find the following diflerences among them. For threads in the
same object. programmers often use explicit synchronizat n methods to en-
force execution order such as post-wait, scmaphore or unlo -lock. For threads
in different objects, multiple threads interfere with cach other in the form of

implicit. syuchronization such as calling and called.

o ODG does not take the program statement’s order infornation, and it only
reflects object relations.
Because the construction of the ODG does not come from all instructions in
source code, it does not take instruction order information. We can think that
it is a preprocess procedure. Based on ODG analysis, we ¢ learn information

which is needed 1 next steps.

3.3 Algorithm for Constructing ODG

In ODC. the main clements are all objects in programs. 11 rever, source code
includes many classes besides objeets. We know an object is an instance of a class.

So we can transfer cach class into its corresponding object instances. Tn addition,

33

we know ODG does not contain any program execution order information. These
execution orders are included in threads in objects. We use ACCFG to represent it
in chapter L.

In order to construct ODG, we should collect all object names, types and their
use relations. We can obtain the information from the field declaration of cach class
and class parameters. This is a straightforward method to obtain program ODG from

these two sources. Field declaration has the {ollowing form:
Field — (public | private) obj Name : Type [:= luitlxp

This expression includes object accessibility (public | vate). name, type informa-
tion and field name.

Class parameter is another aspect considered. The classes often include some
parameters. These parameters imply some "knows” relations. This is a happening call
casce. An example can be seen in Figure 1.7,

In order to construet ODG, we use two steps: Colleetion, an Connection.

. Collection
IMirst woe colleet all objects imn HARPO/L programs. For cach class, all instances
will be collected. s uese objee from certain classes, contain objects listed in
the field deelarations. All these objects are a part of the host object. There are
part-of relations here. If some of these objects come from other classes, these

objects can also include objects listed in their class field declaration section.

2. Connection

After colleeting all objeets in prograns, we connect them wi - cach other. There

39

arce two relations here. For host object and objects listed in their field declara-
tion, the relation is part-of /. The direction is from field to host. For object
and object from its class parameters, the relation is ” knows . The direction is

from host object to argument.

We can see an example of ODG construction in Figure 3.2, In s example, we
list class declarations in Figure 3.2(A). There are three classes: A and O All object
procedures start in main class. In Figure 3.2(13), their ODG is shown, We can know
from this ODG. that object a, derived from class AL includes objects al. a2, and a3,
In addition, object a and object b both have knows relation with object ¢, This is a
shared use for object ¢, For this case. we can know that object and object b race
for the use of object ¢,

When several different objects include objects, whose names are sanie, these ob-
jJeets with same names do not represent the same objects. We need to use parentob-
gectname.childobjectname tor representing it. In this way, the ODG is constructed. It
shows the hicrarchy of objects in programs. In this example, we ¢ 1 pick up object a,
b and ¢ as subjeets analyzed in ACCEFG analysis. In other words, these three objects
are progran skeletons,

The rules of identifving skeleton objects are: Firstly, if a ske on object can not
be a part of other object. That means this object has no * pa of ' relation with
others. Secondly, these objects can be used by other objects. The relation of skeleton

object and other object is only ” knows ’.

n inclass
class A[in c:C] classB[inc:C] class C public obj ¢:C
objat:int=0; objb1:int) obj c1:int =0; : , A
obja2:int=0; objb2:int=0; obj c2 int=0; PUPlic objalcl A
objad:int=0; obj b3 int =0; obj d:int=0; public obj bic]: B;

(A) Object Collection

{B) Connect objectto ODG

Figure 3.2: The construction of ODG

41

Chapter 4

Augmented Concurrent Co itrol

Flow Graph

4.1 Introduction

I this chapter. we firstly discuss the principles and relations of memory consis-
teney models and possible strategies in HARPO/ L. Secondly. after briefly introducing
CCFG method in [10], which can represent source code with parallel and sequential
hehaviors, we present its extension. Augmented Concurrent Control Flow (ACCFG),
for HARPO/L. Thirdly, ACCFG is translated into Concirrent Single Static Assign-
ment (CSSA) fornt. Lastly, we will introduce several confluence metions including

vooomoand & and give their placement algorithims.

4.2 Memory Consistency Models

4.2.1 The Classes of Parallel Programs

Parallel programs are different from the sequential programs. since they include
parallel control How, such as Cobegin Coend, and thread synchr ization. The clas-
sification of parallel programs can benefit our comprehension for parallel programs
and consistencey models,

In [27]. Vivek summarized parallel programs into three diffe at categories: de-
terministic parallel programs., nondeterministic data-race-free parallel programs and
nondeterministic parallel programs with data races.

In deterministic parallel programs, the same input through m - siple paths always
produces the same output. In these parallel programs, there are no data races be-
tween different threads. In nondeterministic data-race-free parallel programns, the
same input through multiple different paths can produce ditferent outputs. These
parallel programs include deterministic parallel programs and some synchronizations
suel as acquire-release. The shared variable accesses are controlled by control flow or
data synchronization. In these programs, programimers can guard pre - ams to free
from data races. The nondeterministic paral programs with data races are most
complicated. Tts output is nondeterministic and data races are allowed in it So the
programumiers cannot determine the program belhaviors in advance. Concurrent data
accesses are not protected by synchronization.

In Figure 4.1, we can see the examples of these three classes. 1 the class 1, there
are no data race. In the class 2, the synchronization enforce con Ol execution order.

I the class 3. there exist data race. the variable a in the statement b= a4 1| can

13

use the definition of @ := 1 or @ ;= 2. This cannot be decided in advanced.,

obj a: int =0; obj a: int=0; obj a: int=0;
obj b: int =0; obj b: int=0: obj b:int I
obj c:int =0; (co (co
(Co =1 a=1;
a=1; post(s). Il
I Il a=2;
b =2 wait(s); b=a+1;
c 3 a=2; co)
co) b=a+1;
co)
(A} Class 1 (B) Class 2 (C)Class 3

Figure 4.1: The Parallel Program Classification of Vivek

4.2.2 Memory Consistency Models

In distributed shared memory system, there are many possible data consistency
models. The systenm supports a given model if operations on memory follow spe-
citic rules. A data consistencey model specifies a contract hetween programmers and
svstems. I programmers follow certain model rules, the system keeps memory consis-
tent and the results of memory operations will be predictable. T mory consistency
models melude strict consisteney, sequential consistency, causal consistency. release
consistency, eventual consistency, delta consistency, atomicity consistency, and weak
consisteney [33]. The following consistencey models are listed from the strong to the
weak.

e Strict Consistency

Strict consisteney is most stringent for memory coherence. This consistency
obevs this prineiple [33]: Any read to a memory location X will get the value,
which is the most recent write to Xo Based on this rule, all write operations

4

and values will be instantly visible to all processes. After o writes are done,
all subsequent reads will see the value imediately. Furthermore, a read can
get the current value immediately, no matter how fast the next write is done.
However, this leads to inefficiency since there are more data movenient and

synchronization requirements than those programs really need.

Sequential Consistency

Sequential consisteney is a slightly weaker model than strict consistency. It was
defined by Lamport “the result of any execution is the same as if the reads aud
writes ocenrred i some order, and the operations of cach individual processor

appear in this sequence in the order specified by its progre " [16]

Weak Consistency

In weak consistency model, synchronization variable acces s are sequentially
consistent. The weak cinsistency model obeys this rule: Only after all previous
write operations are {inislied, a synchronization variable accesses can be allowed.
And after all previous synchronization variable access are finished, the following
read and write operations can be allowed. In this model, i access operations
to svehronization variables are seen by all processes in the same order. 1t niust
make sure after all writes are completed, new read and write operations can be

proceed.

Release Consistency
Release consisteney includes two operations (acquire and release). Before a data
write to a memory object, a node must acquire the object by acquire operation,

and later release it. Within acquire and release operation, tl - operation consists

of the critical section. The system s said to provide relea consisteney, if all
write operations by a certain node are seen by the other no s after the former

releases the object and hefore the latter acquires it[33].

o Entry Counsistency
[ntry consisteney also uses critical sections. In this model, acquire and release
accesses are also at the start and end of cach critical section. Furthermore,
Intry Consisteney requires cach shared variable to be associated with some
svnchronization variable such as a lock or barrier. If elements of an array
require to be accessed independently in parallel, all these elements must use

different locks [33].

4.2.3 Memory Consistency in HARPO/L

In the HARPO/L, programmers can use synchronization methods to control data
access for shared variables. In some cases, the HHARPO/L program includes some
data races, which cannot be decided in advance. This is class 31 vallel programs.

When we use striet memory consistency, programs are executed in the order of
the statements. We can be illegal to insert a write between two consecutive read
accesses. In this memory consistencey, programs will lose the flexibility of optimization.
In weaker memory consistency model. we have to guarantee the seperation of the
svnchronization variables and write/read operations. In the HARPO/L. we use the
sequential consisteney model, because of its simplicity and the availability of proof

methods for it.

10

4.3 Augmented Concurrent Control »low Graph

(ACCFG)

Jacjin Lee [9] introduced Concurrent Controt Flow Graph C G). This is a
rather good intermediate repre atation for explicitly parallel pre rams, It has some
similarity to parallel program graphs [32]. control How graphs [2] and parallel de-
pendence graphs [12].0 1t containg conflict edges for shared variable, synehironization
edge for explicit synchronization statement and control flow edges. CCEFG can reflect
hasic parallel language features in HARPO/L. but some extra elements { with aceept
statement in HARPO/L) urge us to extend it to adapt to HAT O/L. We call this
new IR Augmented Concurrent Control IFlow Graph (ACCEG).

Object-oriented languages such as Java allow multiple threads, and compilers
analylze and coordinate the muliple threads® relations. In HARPO/L. we obtain the
relation of threads by object dependence graph analysis. These € s can be analyzed
with ACCEG analysis. These COs can be connected with shared variable and call
procedure,

The definition of ACCFG:
Definition 4.1 At nented Concurrent Control Flow Gr: h
An Augmented Concurrent Control Flow Graph (ACCEFG) is a directed graph ¢ =

(~\’ . [L . ‘\IWH‘* [3!!1111‘)'
1. NV is the set of nodes in 0 Each node is a program basic 1 ock.

2. [is the set of edges in G There are four types of edge. Iy o B, Epand [y

Iy is the set of control flow e s,

A7

1.

£, 1s the set of synchronization edges, which show the order enforced by syn-
chronization operations. Here synchronizations include parallel loop end nodes,
and ordinary synchronization statenments such as post wa unlock-lock and
scmaphore.

E.; ts the set of conflict edges. Conflict means two memo — references in dif-
ferent threads refer to the same memory location and at least one is a write.
So, conflict edges mean a shared variable used between diff nt threads in the
sane object or different. objects.

£24 s the set of calling edges. Accept statements aceept ¢ ing reguests from

other threads. These calling threads use calling edges to re h accept node.

Niype I8 a function which tells the types of nodes. The node types include Start,
Erit, Cobegin, Coend, DoallBegin, DoallEnd, Compute, Calling, AcceptStart,
Return, and Header.
Ey e 15 a function which tells the types of edges in the graj .0

The Start and Exit nodes are special nod v h have i+ vely no predeces-

sors and no suecessors in a CCFG. Several threads are ereated at a Cobegin node.
These threads are merged at a Coend node. DoallBegin and Doa nd are similar to
C'Obegin and COend, and this kind of loop can run in parallel when no data depen-
dences exist between any two iterations with different index valu

A Branch node is the same as one in the sequential program. If it is a loop header,
it is called header node. Both b wh nodes and header nodes contain conditions for

branching. Compute nodes contain a sequence of assignnient statements.

18

The direction of a svnchronization edge is from the node which contains a trig
cvent variable signal to the node which has a wait for the same event variable. Con-
fhet edges are bidirectional edges in ACCEFG, which join two hasic blocks. in different
threads, that refer the same shared variable.

The accept statement is a special operation in HARPO/L. 1t is a called node,
and several calling threads may race for access for it. Following the node is a critical
seetion, i which there are some computation procedures. From these threads send-
g calling reguests, calling edges are used to connect calling noo 5 and acceptStart
nodes. The calling nodes locate in the place the called procedure is used. There is
a refurn node corresponding to cach accept statement. The result computed will be
sent back to that calling thread.

In the Figure -1.20 we can see object ¢ call the procedure procl. The value is sent
to aceept node, and go through the computation y = sin(1 4 «). The result is sent
hack to calling node.

In explicit parallel programs, there may be many parallel loop control flow struc-
tures. such as co loops i HALL O/L or pdo. Multiple threads run in parallel in these
parallel Toop strnctures. At their loop end nodes(coend and pdoend). these threads
meet and will be svnchronized. But these svnchronization hehaviors are not explicity,
and limited within this loop end node. There are no synchronization edges for it. An

example of ACCEFG 1s shown 1.2,
|

19

Wll —-u,;
obj a: int =0; obj b: in

obj b: int =0: b &L

obj c: C;

(Co control edge
a=1. accept proct(in x:int) m """" EESQLCLESEE :-‘..--:-:
posts) yi=sin(1+x); caling edge _ .
a=a+tl returny; .

“ ‘
”
’

b=a+2

wait (s) @ Semrmm,
S | ' =

co)
c.proci(by.
M
RS
{A) HARPO/L Codes (B) ACCFG

Figure 1.2: An Example of ACCIG

4.4 Concurrent Sir le Static Assi n—=2 % (CSSA)

After we finish analysis on Complex Objects with ACCEFG. we transform them
into CSSA. We can also use functions ¢ . ¢ and 7, which are sinar to those in the
C'SSA Form in [9]. But we add a new function € for the coufluence function in calling
nodes. These node tvpes are defined as followed:

Definition 4.2 (¢ function)

Ao function of the form vy, ey 0n) is placed ab a node (except for a coend node
or cudpdo node) where control flow edges join. n is the number — incoming conlrol
flow cdges at the node. The value of d(vy,vs....0y) s one of the vis wvalues and the

selection depends on control flow path followed by the program. [10]

Z

In chapter 2, we introduced the ¢ function in SSA form. In the parallel programs,
there are no difference from the sequential programs on the definition of ¢ function.
Here we use the same example in Figure 4.3, In this example, t value of ¢(ay,ay)
comes from a; or as. The selection depends on whether the control condition ¢y 1s

groater than 1.

obj a:int=0; objayint=0:

(if c=1 (f co=1
= H1: a; =a,+1;
else else
a:=4; ay=4
))
print a: a3:=<,'(al.ag')
print as:
(A} (B

Figure 4.3: An Example on the ¢ function

Definition 4.3(v function)
A function for a shared variable © has the form (v ca ey,)0 where noas the nuwm-
ber of threads merging at a coend node or an endpdo node where the @ function 1s
placed. The value of w{vy,va.. v,) is one of the v's values and the selection depends
on the interleaving of statements in the threads merging al the node. [10]

In the Figure 4.4 (a). function is located at the end of the co loop. The argu-
ments of the ¢ function come from the definitions in different th ds of CO parallel
loop. The selection of values does not depend on the control flow, but the interleaving

of statements in different threads.

obj a: int =0; obj ayint=0:

co

co - a,=1;

a b I
I a1

B co

a.=4 a,=¥Y"(a,.a,)
co -

(A) (B)

Figure -1.4: An Example on the ¢+ function

Definition 4.4(7 function)
Ao function of the form m(vy.vy..0,) for a shared variable ¢ is placed where there
s a use of the shared variable with t possible definitions. n is the number of reaching
definiitions to the use of v throwgh the incoming control flow cdges and incoming con-
Jlict 8" edyes, The value of wloy.0y.. 0,) s one of the vs. The selection depends on
the interleaving of statements in the threads computing the vs. [10]

In the Figure 1.5, an example of 7 function is shown. The statement b 1= « is a
use of variable. But variable is a shared variable between two different threads. The
delinitions «) := 1 and a, := 4 reach the use through the conflict edge. The value of

7 [unction 13 1 or 4. The selection depends on the interleaving.

[a
o

obj a:int J; objaglint=0:
obj b:int=0; objbgy int=0;

coO cO

a:=1: a,;:=1,
I I

a=4: 82:-_-4:

b:=a: b,]:=Tr(a1,a2)
co Cco

{A) (B)

Figure 1.5: An Example on the 7 function

Definition 4.5(¢ function)

A E function of form E(vy vy 0,) s placed in called node (accept node). where calling
cdges merge. The nois the number of call merging al this node where the § function
is placed through calling edge. v, is the paramcter value passed from the nth calling
thread. The value of E(vy.vs..0y) is one of the vs. The value selected s sent to the
critical section following & function. The selection depends on the rder of calls.

A € function example is showed in the Figure 4.6, Accept sti ment acts as an
accept node. which can accept calling edges. The calling edges come from different
objects. which use the procedure of the same object. In this examy . both objects
b oand ¢ use the proe of object a. But they use different parame s, The different
parameters are sent to the proce of object. We use £ function vy = (a.02) to solve
this case. Only one value can be chosen to compute in next statc ont oy o= @y + 1.

The sclection of value depends on the calling threads and accept node.

jal
[

obj biint = O; obj b:int = O;

xX:=1; X, =1
{a.proc(x):} {a.proc(x,):;}
obj c:int = 0 obj ciint = 0:
X 2 X5 =2

{a.proc(x):;} {a.proc(x,):}

obj asint O obj aiint = 0O

. . accept
accept proc(int xiin) e
X x+1; x3::§(x1,>.<2}
| turn x Xa: =X+ 1
return x,
(A) {B)

Figure -1.6: An Example on the & function

The ¢, ¢ and 7 functions in this thesis are the same as in [9]. The € function
handles accept nodes in HARPO/L. In addition, the accept statement has sonie
synchironization behaviors. Several calling threads merge i this - ode. and only one
can obtain the access v it After that, the called node will refuse other calling
threads. Computation happens in the eritical section following called node. After
finishing the critical section, the result of the computation will T sent back to that

calling thread. The called node will he available again and can accept other requests.

4.5 Function Placement

In order to transform ACCEG into CSSA| these functions must be placed on their

correct places. We will introduce these placement methods as follows.

4.5.1 Placing ¢ Function

Because o function is also used in traditional SSA for sequential program, mch
research has been made on it. But thev obev these rules: there is more than one path
to join nodes; cach path is not an empty path: all paths are not equal to each other;
The output node is only selected from one of the paths at the s time.

Cytron and Ferrante in [2:4] present an efficient algorithmm for generating SSA
form from an arbitrary control flow graph and its dominator tree. This process first
figures out at which join points to insert o functions. then it ins s o function. In
these functions. the number of arguments are equal to the number — control flow pre-
decessors of the join point. which includes some definitions of the variable reached,
and renamed definitions and uses of variables,

This method uses the dominance frontiers and domimator trees. The dominator
tree is computed using the Lengauer-Tarjan algorithm and path-compression. In [24],
Cviron gives the two-pass algorithm on the dominauce frontier. U g the dominance
fronticrs, we can decide the locations of ecach ¢ function for cach variable in the orig-
inal program and add the o function for cach variable at the dominance frontier of
every node. The variables are renamed by placing a subseript to an original variable.
All variables renamed will be checked by traversing the dominator tree in order to
cnsure cach of these variables is delined exactly once. This is the most efficient al-
gorithm currently known for a general flow graph, but it requires several passes over
the instructions of the graph. About Cytron’s placement ¢ function algorithm, more
details can be found in [24].

fu [18). Brandis and Mssenbek give a simpler algorithm. 1t is a method to gen-

(e
b

crate SSA form in a single pass directly from the source text ¢ a program. But
this method must, be lmited to a structured program. The structured program only
imcludes assignments and structured statements such as 1F, CASE, WHILE or FOR
and no GOTO statements. In a structured program. if compiler meets the join nodes.
the o function will be inserted in the places, and even this procedure can be finished
1 parsing.

The HARPO/L in our project include usual 1F-ENDIF, FOR. WHILE, Parallel
Loop. but no GOTO statements. So, we can think of it as a structured programmung
language. We can use this algorithnm in [18]. Otherwise. we should pay more atten-
tion to the difference because of parallel loop control in HARPO/L. The Cobegin-
Coend and Pardo loops bring control join nodes, If we treat them also as condition
statements, like 117 statenent, this will generate an incorreet ¢ furion at this node.
Multithread join points are parallelly executed. and ditferent from the sequential case.
These nodes should use ¢@ function for them. So, it is a more accurate definition. ¢
functions for a variable should be placed at points in the parallel program where two
or more definitions of the variable reach through control flow pa s i the program

that do not execute in parallel.

4.5.2 Placing v Function

When more than one thread updates the same variable, more than one SSA name
of the variable may reach this use after parallel blocks. These names must be merged
to preserve the SSA properties. However, this merge does not con” rom control flow

branchine. ¢ function is used for it. A parallel merge means that a variable will he
le}

updated in more than one parallel thread, and the updated value must be used in
codes following the parallel block, regardless of which section finishing the update,
The algorithm to place ¢ functions given in [24, 7] is also used to place ¢ functions.
lHowever, this algorithm can introduce many spurious ¢ functio These are casily
identified, since they will have only a single reaching modified SSA name at the

parallel merge. After identifying them, we can remove theni.

4.5.3 Placing m Function

o and ¢ functions cannot represent all confluences of values because the definition
of a shared variable may reach a “use” from different threads. In [9], Jacjin Lee used
7 function to represent it.

Since HARPO/L is a parallel progranuning language, some objects in different
threads can act as the shared variables. This causes the data race. The 7 function is
used to solve this problen.

When some syvuchronization statements are introduced in HARPO/L programs. we
must know some paths cannot be reached because of the order enforced by some
svichronization statements. These paths must be found and removed.

We can usce the same method as [9] on 7 function placement., In addition, data
races in different threads can come {from called procedure, where several threads call.

We use € function to solve it.

-1

(1]

4.5.4 Placing £ Function

o . cand 7 functions can basically solve common parallel program issues. How-
ever, for HARPO/L. a new challenge must be faced. In sequential programs, calling
procedures are regarded as parts of sequential programs. We o copy the called
procedure codes to the calling nodes. The usual method is to use call graphs to rep-
resent calling relations. In HAPRO/L programs. called nodes will face the control
race {ronn different threads. I we can know the calling order of se al calling threads
i advance, then the called procedure can run with values passed from calling nodes
one by one in order, and return the corresponding result, Howev the order cannot
be provided in advance. So the & function is introduced to solve the data race of
multiple calling threads.

In HARPO/L. calling procedures are finished by several calling procedures in
multithreads racing for the called procedure. This is a thread confluence and control
racing issue. Each thread passes its parameter values to the called procedure. The
computation is finished in the ceritical section of the called proce ire and the result
is sent back to the calling thread. I<ach time the called procedu only accepts one
requuest. Other requests will be refused and will wait for the ner chance when the
procedure finishes.

This is a complicated process. However in ITARPO/L, all ol ¢ts are produced
in compile time. We can know all threads before the program 1 s, When several
threads call a called procedure, aceept node will coordinate and schedule these threads
execution orders and keep only one thread running cach time. After the computation

15 done. the result value 1s sent back to the caller.

When only one calling thread in program sends a request for a called procedure,

this provides a chance for optimizations. Since aceept statemc s do not need to
coordinate all calling requests from different threads at this time, accept statement
can be removed. But the computation part in the called procedure is still useful to
calling procedure. We can copy computation procedures to the calling procedure in
calling nodes. Of course, the return node corresponding to the accept statement is
also removed.

We can see an example in Figure 1.7, In subgraph{a), object ~a™ and object *b"
all use the same procedure, but the procedure belongs to different objects. Object
“a” uses the procedure of object “al™, and object “b™ uses the one of object “bl1”

.

This cannot cause the race situation. In subgraph(h), object “a” and ~b™ both use
the procedure of object ¢, The threads in objects “a™ and "b™ will race for the
right to access the procedure in object “¢™. The computation result will return to

“

object “a” or object "h7.

obj a; obj b:
objct:c obj c2:c
obj at:int =1 obj b1:int=2

al:= at+ct.proct{l}: bi:= b1+c2.proci{2):

print al; print b1;

obj c:int =0:

accept proci{in x:int)
yi=2
YiSy+X:

returny:

Ainotaf case

;J

a1+c proc

y
print a1

Called Ne "‘
x2=ExC

obja:{inc}:
obj at:int =1 obj b1:int =2

at:= at+c.proci(1): b1:=bi+c.proct(2|
print at; print b1;

obj b: {in c):

obj c: int =0:

accept proct{in x:int}
y:=2:
Y=y

return y:

(B)a{ case

b1=b1+c proc(2)
A

print b1

return

—

(C}{ CCSA

Iigure -1.7: Calling Procedure in Parallel Program

In this sense. the behavior in this node s similar to 7 function, because the

e Path from definition of variable in calling threads to use «

thread is a calling ©

60

definition of the values of passing parameters in different calling procedures will race

[or a use in the called procedure. But we must know the following differences in this

variable in called

~not a conflict edge as in 7 function.

e The number of the inputing arguments of this node func o ix equal to the
number of calling edges, hut not the number of conflict edges. For cach calling

edge, only one parameter can be passed.

o After the called node accepts a calling request, other calling requests will not
be discarded, but will wait for the next available chance to he processed. In 7

function. ouly one definition can be chosen, the other will I discarded.

o Calling node only accept one request at a time, and the value will he sent to
the critical section following the called node. Computation will be finished in
this section. After that, the result will he sent back to the lling thread, and
the called node will be available to accept other calling threads. Whereas 7

function has no computation section and retuwm step.

o The choice of calling threads are decided not only by the Tatest access thread
order. but also by the called guard node state. For 7 i ction. the output
value 18 decided by the multithread mterleaving, or we can say, the latest aceess

thread can obtain the use right.

For & function placing. we must find calling nodes, called nodes, and their return
nodes and make some possible optimizations as above. Since called nodes represent
accept statements in HARPO/L, we can trivially pick them up. = e return nodes are
located i the tatl of method implementation. For calling niethods. we can know their
places from ODG and control flow analysis in ACCFG. There are calling relations
among objects in ODG. In ACCLEG, calling nodes are located in t 0 place where they

arc 1 the form of “the name of called object . its method name™. Calling edges

61

connect caller and callee. If calling edge is the only one, that means accept node does
not need to coordinate multiple threads. Then the computation can be moved to
calling thread. This decreases comnunication overhead. the optimization mentioned
above is processed. We give pscudo codes for placing € function as follows:

Placing a called node in an aceept statement.

Placing a return node at the end of method implenentation(m. <ed for the end of
computation)

The arzuments of the € function comes from calling procedures through calling edges.

4.6 Summary

In this chapter. we firstly discuss various menory consistencey nodel and related
strategies in HARPO/L. Secondly, we made Concurrent Control I ow Graph (CCEFG)
extension as Augumented Concurrent Control Flow Graph (ACCEG) for HARPO/L.
Thirdly. we introduced Concurrent Single Static Assignient (CSSA) which is the fol-
lowing transformation of ACCI'G. Lastly, we analvzed and discussed the confluence

function i CSSA and related placement algorithm.

Chapter 5

InterObject Analysis

In this chapter, the main issues are interobject problems. First, we will introduce
some hasic topics on interobject analysis. Then we will discuss some interobject
optimizations. Lastly, we will analyze interobject procedure call deadlock problem

and give its possible solutions.

5.1 Introductic—

In HARPO/L language, oue object can contain more than e thread, so there
is also interprocedural problem in different threads in the same object. In the other
case. different objects can have their own threads, and between these threads there
can exist intertliread relations. However, in compiler’s view there are no obvious
differences botween these two cases. When we separate several — reads in the same
object into diflerent objects which have only one thread, they will become similar.
So here, we can think of interobject relations similar to interthread relations. Their

analysis methods and algorithms can be replaced from cach other.

6.3

Compilers use interobject analyvsis (interproedural analysis) to optimize inter-
mediate representations i global view. This differs from intraprocedural analysis
hecause many of the benetits of interprocedural analysis derive from improving the
effectiveness and applicability of optimizations within individual procedures, rather
than transforming the relationships among procedures.

The interprocedural analysis can include several aspects 1R4:

e [nterprocedural control flow analvsis, which comes from the construction of a
program’s control flow graph.
e Interprocedural data flow analvsis, which includes both flow-sensitive and flow-

insensitive side-eflect analyvsis and constant propagation.

e Interprocedural alias analysis.

Interprocedural optimizatiorn.

Interprocedural register allocation.
o

Interprocedural alias analysis determines whether two pointers ina progrann may
refer to the same object or whether array references refer to the same object such
as a(/) and a(j). In the HARPO/L language. the object name refers to a unique
memory address. We need not consider this.

Interprocedural optimization mainly relies on the analysis of how functions and
variables are used throughout a program, and sceks to reduce or eliminate dupli-
cate identical caleulations and inefficient wse of memory, and simplify iterative
seguences such as loops. Iuterprocedural optimization cane o e ove dead code. In-

terprocedural optimization is an important compiler behavior in compile time. Usual

0l

imterprocedural optimizations can be achieved hy automatic reco, ition of standard
libraries, localization of statically bound variables and procedures, partitioning and
lavout of procedures from their calling relationships, and global alias analysis.

In compiler optimization, register allocation is the process of multiplexing a large
nunber of target program variables onto a small number of CPU registers. The goal
is to keep as many operands as possible in registers to maximise the execution speed
of software programs. Register allocation can happen over a basic block (local register
allocation) or a whole function/procedure (global register allocation) [33]. In current
compilers. the usual register allocation method is register spilling.

Interprocedural register allocation handles interprocedural registers and minimize
excettion time, given the register requirements of individual procedures ina program.
The usual methods are to use interprocedural register allocator. These allocators re-
lied on heuristic. Steven and Charles presented a save-free interprocedural register
allocator and an interprocedural register allocator that spills re; ters as necessary

across calls in [15].

5.2 Interobject Optimization

In HARPO/L. Language. we use object dependence graph (ODG) and Angimented
Concurrent Control Flow Graph (ACCFG) as the intermediate representations of its
compiler. Calling refations can be obtained from the ODG and ACCEG of prograns
instead of call graph used in traditional mnethods. The ODG reflects calling relations
bhetween objects; The ACCEFG provi s the information of calling sites. because a

calling procedure uses the explicit statements in HARPO/L Language. We can say

6D

ACCEG represents program in a global view. All threads and objects can be included
in it. Its control flow analysis can be regarded as interproce ral control ffow analy-
sis. This ACCEG will be transformed into dataflow graph as our 1l form of IRs.
In HARPO/L programs, procedure call is achieved with accept statements. Sev-
cral calling procedures in different threads race the access right of this accept. state-

ment. But we should consider these special cases:

L. if these calling procedures pass the same constant values to the called node, we
can duplicate a copy of the intermediate form of called procedure in cacly place

and remove the calling edge.

2. if there is only one calling procedure for the called procedure, we can duplicate
a copy of the intermediate form for the called procedure in calling procedwre

and remove the calling edge from IR.

These two special cases are showed in Figure 5.1, In the Figure 5.1 (A), two proce-
dures pass the same paranieter to aceept nodes. Under the normal cases, two calling
threads will race the “using’ right. But we duplicate the compu tion procedure in
accopt node to the calling place and remove the calling edge. In the Figure 5.1 (),
Onlv one calling procedure stays in the programs. We can cop the computation

procedure to calling node and remove the calling edge.

66

obj a:int=0: objb:int=0: obja:int ' objb:int=0: obj a objc obj b

c.proct{1} c.proci{l} sin(1+1) sin{1+1) 4
[snt1+n)] [Called sn(1+1)
obj c: int =0: obj c: int =0:
accept proc1(in x:int) accept proct(in x:int) E @
y:=sin(1+x): y:=sin{1+Xx]: ¢
return y: return y: [E
unoptimized optimized CSSA

(A) Special Case 1

obj a: int =0: obj azint obj a ot ¢

.c..'proc1(1): sin{1+1}):)
Wl\ [1)1 Called

-o.l'aj c:int =0: objc:int=0:
accept proci(in x:int) Accept proci(in x:int)

y:=sin{1+x):

i=sin{1+x):
return))l/: {1+ return y:
unoptimized optimized CSSA

(B) Special Case 2

Figure 5.1: Some Special Cases for Interprocedural Opt iization

The elimination of unnecessary bounds checking within procedures is another
interprocedural optimization. NMany source codes are written to create and nanipu-
late arrays of arbitrary size, but the size of arrays used in prograims is only determied
in the main program. According to the analysis of this infornx on, we can resize
and tailor array size o result in nontrivial speedup. However, @ bound checking
in a hardware implementation such as in CGRA is too expensive and in HARPO/L
arrav. size is fixed after expansion of generics. So we didn’t apply this technique in

HARPO/L compiler.

Beside the above, the interprocedureal optimizations in HARPO/L can inelude in-
terprocedural dead code elimination, loop invariant code motion, common subexpres-
sion elimination. Since these interprocedural optimizations have their intraprocedural

counterparts, we will introduce both aspects of them in Chapter 6.

5.3 Deadlock Analysis and Solution

A deadlock is a situation referring to a specific condition, when two or more pro-
cosses are waiting for resources in a circular chain, Deadlock 1s & common problem
in multiprocessing.

For deadlock problems. we can divide them into two classes: deadlock resulting
from programs containing syvuchronization. The other is from the calling procedure.
Therefore, we can also consider deadlock problems arising from i er procedures. In
the following section, we will discuss both these aspects.

In HARPO/ L programs, there are synchronization. control flow. data race. Among
its intermediate representations. we use ACCFG. In an ACCFG, nodes are the pro-
gram statements, and the edges include conflict edge. synchront — tion edge, control
How edge and calling edge. These edges are directed. The s chronization edge
represents execution orders imposed by synchronization. The etion is from the
statement trigging an event variable to the statement of waiting this variable. For
example, for a post-wait synchronization the direction of synely ization edge walk
from “post™ to Twait™ on the event variable,

The introduction of synchronization edges makes deadlock possible. Deadlock oc-

curs if there is a evelic wait, so that every node in the cycle is waiting for one of the

48

other nodes in the eyele to proceed. Here deadlock implies that there is infinite loop.

On the other hand, deadlock derived from calling procedures. When ecach of two
or more calling procedures in different threads act as caller and callee cach other, this
can cause a calling deadlock. We can find this deadlock relation from the ACCFG of

programs. We can see an example i Figure 5.2

obj a: A =0: Obj a Obj b

accept proct{in h:Bj
b.procz():
return:

obj b: B =0:
accept proc2{in a:A}
a.proc1t:

return:
(A) Code Segmented (B)Its ACC. 5

Figure 5.2: An Example on Clalling Deadlock

In order to avoid a deadlock. the most conservative solution is to prohibit syn-
chronization introduction. But the svnchronization is the basic clement in parallel
programs. Vivek and Babara give some analysis in [28]. More methods are demon-
strated 6.1, 250 3], OfF course, detecting the possibility of a deadlock betore it
oceurs is a real challenge. We only use these methods to detect possible deadlock in
cortain specific conditions. In general cases, it is iimpossible to develop a universal
algorithin for all possible deadlocks in advance.

In order to avoid a deadlock, me possible methods can be pplied. First. we

69

can remove all mutual exclusion conditions; this means that no process may have
exclusive access to a resource. This is an extreme method, however it mayv still not
completely prevent a deadlock. Secondly, post-wait conditions may be removed by
requiring processes to request all the resources they will need before starting. Or we
ask processes to release all of their resources before requesting all the resources they
will need. These two methods are inefficient. Thirdly, since a p1ress must be able
to have a resource for a certain amount of time, we have to use a hierarchical sys-
tenm and set certain priorities to for retaining a resource. A priority algorithm allows
preeniption including lock-free and wait-free algorithms and optimistic concurrency

control.

70

Chapter 6

Optimization In Parallel Z'rrgrams

In this chapter, we will discuss optimization techniques in pillel programs.
First some basic introduction will be given. Then we will discuss and analyze the
optimizations in parallel programs, including Conmmon Subexpression limination,
Dead Code Elimination, Hoistable Code, and Loop Fusion. And we will introduce
[ussion/fission methodology for keeping the optimization safe. Lastlyv, we will give a

theorem and give its proof.

6.1 Introduction of Optimization

Optimization is an important part of a compiler. In some ase, itermediate
representations are designed to obtain better optimization performance.
Optimization is the process of modifving a svstem to make sc - aspects of work

more cfficiently or use fewer resources [33]. Optimizations can include many aspects:

tradeoff and bottleneck are two essential issues. U ally, optin ati reduce read-
ability 1o improve performance. This ma prog Li ler to maintain and debug,.

In addition, optimizations often make use of special cases of so e codes. such as
loop. constant and redundant variable ete. Corresponding to these cases there also
exist loop unroll, loop fusion, comumon subexpression elimination, « 1 dead code elim-
ination cte [33].

In this chapter. we will concentrate on optimization techniques in parallel pro-
grams. Although we desire that the same optimizations applied in sequential pro-
grams can also be applied to programs written in parallel languages, those methods
are not alwavs feasible. Parallel control flow interleaving causes the optimized pro-
prams to produce nondeterminate results, which causes us cither to use no parallel
optimization or restrict sharing of data used in parallel programs. Both of them are
not what we want. So a general analysis can give us a better comprehension of when
an optimization may be safely applied in parallel programs.

J.Lee in [17] and L.Lamport in [10] separately showed: if all executions ol a trans-
formed program are sequentially consistent, the transformation will be safe. This
means that the optimized programs produce only results that could have heen pro-
duced by the original programn. The original and optimized programs need not be
identical.

We will explain optimization techniques in parallel prograr by using several
examples. For parallel structure, we mainly use CObegin-Coend | rallel control How,

since other parallel control flow structures are similar to it

6.2 Common Subexpression Eliminati_1(CSE)

6.2.1 Common Subexpression Elimination

Common Subexpression Elimination is a common optimizatic technique. 1t s a
transforniation that removes repeated computations of commnion subexpressions and
replaces them with uses of the saved values, Computation repeated may be compli-
cated function or a simple expression operation. They can be sav [only by the cost

of using a variable.
6.2.2 A CSE Example in Sequential Programs

obj a: int =0; r init “‘

obj b:int=1: 1
obj c:int =0: E »+1
obj d:int =0; b |
a =sin(b+1). FN
RN
c =2'b; < fC o——
If (a=c) S l
d =sin(b+1) l d.=c
else C W o
d =c:
1ddif;
(A) (B) (C)

Figure 6.1; Common Subexpression Elimination in sequen 1 programs

A sequential program example of CSE can be seen in Fignre 6.1 (A). (B) s
its control flow graph. This is a sequential source code segment ccause it contains

the sequential control How. The repeated part is sin(b+ 1), The Sin function 1s an

73

expensive computation function. Variable a and d have the same lue, sin(b41). In
this way. twice computations of Sin function must be executed. In order to decrease
the computation workload. we can use variable # to store the value of sin(b+ 1), and
variable o only load the value of variable £ in which stores the value of sin(b + 1).
This procedure is shown in (C'). This saves the repeated comput. on on sin(b + 1),
So this means it incereases the eflicieney of programs. The second same sin(b + 1)

factor is removed from its original progran.

6.2.3 A CSE Example in Parallel Programs

C'SE in parallel programs is not so casy as in sequential progr s, An example of
a parallel program CSE can be seen in Figure 6.2

In Figure 6.2 (A) are similar codes to the sequential one, but it includes a

obj a:int =0; obj a: int =0:
obj b:rint =1; obj b:int =1;
obj c: int =0: obj c:int D
obj d: int =0: obj d: int =0;
(co (co
T1: T1:
S1: a=sin(b+1); S1: t:=sin(b+1);
S2: c:=b*2; S1': t:
S3: d:=sin(b+1): S2: ci=b*2;
1 S3: d:=t
T2: I
S4a: b:=2; T2:
co) S4: b:=2;
cCO)
(A) (B)

I are 6.2: CSIS in parallel programs

Tl

parallel control How co structure. In Figure 6.2 (B), we dircetly use the sequential
C'SE method. If thread T2 can be ignored, this transformation is correct, since the
value of b is unchanged from statenmient S1 to statement S3. But if the execution
sequence is S1, 817, 52, 54, S3, the result of the program cannot be equal to any
result from the original prograin. Therefore, when the sequential CSE method is

directly used in parallel prograius, this can lead to incorreet results. 1 order to avord

the errors. we must gnarantee the execution order of statement & before S1°.

6.2.4 A CSE Example in Parallel Programs with Synchro-
nizations

In parallel programs, there are more than one thread in them. These threads can
communicate and coordinate with various synchronization methods, In HARPO/L,
all synchronizations are via accept and atomic, but we also can discuss other syn-
chronization methods for parallel programs such as post/wait. semapliores, barriers,
or monitors. These svnchronization methods can be implemented with efomic. For

example, nonfair semaphores can be implemented as

P(s) : obj x := false
(wh (not x) do

(atomic (if s > 0 then s:=s-1 x:=true))

V(s) : (atomic s:=s+1)

An atomic operation in co Hut science refers to a set of operations that can

he combined so that they appear to the rest of the system to be a single operation

)

with only two possible outcomes: suceess or failure. To accomplish this. two conditions

must be met:[33].

[. Until the entire set of operations completes. no other process can know about

the changes being made (indivisibility):

2. If any of the operations fail then the entirve set of operations fails, and the state
ol the svstem is restored to the state it was in before any of the operations

hegan.

In Figure 6.3, we illustrate two examples with post-wait syvnel mization method.
The codes it Figure 6.3 (A) and (C) are similar to the one in Figure 6.2, The difference
hetween Figure 6.3 (A) and (C) are only the place of Post-Wait. When we use CSIS
in Figure 6.3 (A). The transformation is not correct. The value of o in (1B) is changed
by this CSE. In (A). hecause of post-wait svnchronization, a precined order can be
obtained. In d = sin(b + 1), the value of b is equate to 2. The CSE transformation
set b to 1ind = t. We cannot make CSE optimization in (A). However, though the
example in Figure 6.3(C) has certain predefined order, the CSIE anstormation is a
safe one. Since the post-wait synchronization is introduced. st. ments in threadl

can exeente as in sequential pro ams. We can make a CSE optiniization in (C).

6.2.5 CSE Analysis in Parallel Programs

CSE is a common optimization in sequential programs. We think a CSE is
sale in sequential programs, since all instructions execute in sequential order. But
in parallel programs, parallel control flow and multhread synchre ization complicate

~
Rl

the CSE analvsis. How to guard a CSE optimization in parallel ograms is correct”

70

obj a: int =0; obj a: int =0;

obj a: int =0: obj b int=1. °Rjaiint=0: objb:int=1;
obj b int =1; obj c:int=0; ORIbiINt=10"" opjciint =0:
obj c:int =0; obj d: int =0: obj clint=0; obj d: int =0;
obj d: int =0:; obj d:int =0:
(co (co
{co (co .)
‘ t:= sin(b+1); L _ t= sin(b+1y
a:=sin(b+1): a=sin(b+1)y;
a=t; c=p*o- a
chi= c=b*2: - c=b"2:
wail(s). d:=sin(b+1);
i was). wait(s).
d:=sin(b+1); - . wa s)
Il I I
b=o- I post(s};
e b:=2: | stis)
post(s) br=2 b=
post(s); e
co) co)
CcO) CcoO)
(A) (B) (C) (D)

Figure 6.3: CSE in Parallel Program with Syn ronization

('SE optimization uses a variable to store the result of complicated computation,
and replaces the same complicated computation with this variable. In Figure 6.2, a
CSE optimization will he safe it it has no thread?2. This is because ere are only uses
of variable & in the lett thread. The b := 2 in thread 2 1s o defir 1on of variable b.
The complicated computation replaced with a variable ¢ includes the use of variable
b. The nse of variable & in the original complicated computation can come fron the
different definitions of variable 6. If we only siiply use a variable to replace all
complicated computation, this removes certain constrains on the use-def chains of

the variable 6. This CSE optimization is unsafe.

-1
-1

obj a: int =0: obj a: int =0:
obj b:int =1; Ob!b:!|1t='|'
obj c: int =0:; obj_ c: |_nt =0;
obj d: int =0; ob! d: !nt =0.
obj int =2; obj e: int = 2;
(co (co
T1: T1:
S1: a=sin 1) S1: t sin(e+1);
S2: c:=b"2; S1': a:=t
S3: di=sin(e+1):; S2: ci=bh*2;
1 s3 d ot
T2: I
S4: b=2: T2:
CcO) S4: b=
co)
(A) (B)

Figure 6.4: CSE in parallel programs

In Figure 6.4, in the complicated computation sin{c +1) - statement S and
S3, both uses of variable ¢ come from the same definition of varvial +¢. The definition
of variable b in thread 2 cannot affect the sin(c 4+ 1), This CSE optimization is safe.

We will nake a further analysis on the valid CSE in parallel program in IFigure 6.5.
[11 this Figure, the codes are similar to Figure 6.2, In order to ¢la v the problem. we
introduce two terms: fusion and fission. These two concepts come from the atomie
operations in computer sclence.

IFirst. in the Figure 6.5 (A) the transformation {rom (1) to (2) changes the state-
ments « = sin(b4 1) and d = sin(b+ 1) into atomic operation < a := sin(b+ 1)d :=
sin(b+ 1) >. This is an example of fusion. Actually, in step 1 variable b can use the
different definition. but iu step 2 the vartable b uses the same definiton. The valnes

of variable b i « = sin(b+ 1) and d sin(b+ 1) will be always same because of

atomic operation. This decreases the possiblity of choosing value of variable b, so
this reduces the nondeterminism of the results. Reducing the none terminism will be
always reasonable. This transformation is called as fusion. [t means several possible
sclections fuse into one.

Then, between (2) and (3). optimization can happen safely since the same defini-
tion of variable b reaches both uses. This CSE optimization in p. el is safe in the
range of atomice operations.

Last hetween (3) and (4). the atomic operation is split. This will increase the
possible selections of variable b from different definition. This procedure is called
Sfission. This means the uses of variables. whom orginally come from the one defini-
ton. can come from the different definitons. This increases the nondeterminism of
the results. This creates hazards that can produce the incorrect results. But in this
Figure (), we can know there is onlv one use for the variable b, Provided no other
definitions of variable a can reach o ;= «, so this lission is safe.

In the Figure 6.5 (I3). we use the similar methods for these codes. The proce-
dures are different from the codes in the (A) since ¢ = b * 2 is inserted between
a:— sin(b+ 1) and d .= sin(b+ 1). Since the fusion is alwayvs co ety we can trans-
forn (1) to (2) and get < a = sin(b+ V)ie = bx2ud i= sin(b+ 1); > In the range
of these atomic operations, because the value of the saime variable are same, we can
make CSE optimization in the atomic operations. But when we make a fission to
remove the atomice operations. the use of vartable b i a := sin(b+ 1) and ¢ := b 2
will change the possibility from the same definitions to the diflerent definitions. This
increases the nondetermin . o of the results. So the fission can cause the imcorrect

result. The CSIS optimization not fe.

79

a:= sin(h+1); < a:= sinh+1), < a:=sin(b+1); <a: nbh+1y>
d:=sintb+1), =» d:=sinh+1)>=$ d=a; > - <d = a>
c=h*2 c=hb"*2: c=h*2 ci= "2
(1) (2) (3) 1
(A)
a:= sintb+1y; < a:=sin(b+1); <a:= sin(b+1); <a = sin(b+1)>
c=b"2; — c=h*2 —> d=a - <d=a >
d:= sintb+1y; d:=sintb+1)> c¢c=h"2> <c:=h*2>
(1 (2) (3) (4)
(B)

Figure 6.5: Atomic Fusion/Fission Analysis on CSE in parallel prograns

This problem can be solved with the introduction of local variables. Here,
local variables mean these variables can’t he written by other thr s, I we can keep

local variables same in the thread, which includes atomic operations. The fission for

the atomic operation will he safe. This procedure can be seen in e Figure 6.6.

a:= sinib+1); < a:= sin{b+1); < a:=sit >»+1)
c=b "2 — c. 2*2 - d:= a;
d:= sin(b+1); d:=sinib +1)> c.=bh*2:>
(1) (= (3)
< obj b local = b; obj b local = b;
a:= sin (bloc +1); a:= sin (bloc +1);
» d=a; > d:=a;
c:= 2 *bloc» c. 2 *bloc:
(4) (S}

Figure 6.6: The Introduction of Local Variable for The Fission of Atomic Operation

in Parallel Programs CSIE Optimization

The synchronization can cause some enforced execution o er. In Ifigure 6.3,
the complicated computation sin(b + 1) locates in threadl, and a new definiton of
variable b locates thread 2. This seems to cause CSE optimization incorvect. How-
ever, the synchronization operations post aud wait cause o := sin - +1) before b= 2.
The two use of variable b in both sin(t 1) still come from the o defimtion. So
this CSIE optimization is still safe.

Until now, identifying whether the CSE optimizations are safe become the gues-
tion. which is about whether a fission is safe? This question will be addressed in

section 6.6.

oC
—

6.3 Dead Code Elimination

6.3.1 Dead Code Elimination

Dead code is code which cannot be reached in any exccution of the program,
or produces 1o change in memory that affects later statements. It can be removed
from the programs. Dead code includes code that can never be executed (unreachabte
code), and codes that only affect dead variables, which are variablc hat arc irrelevant

to the program [33].

6.3.2 Decad Code Elimination in Sequential P1 grams

Although programmers do not intentionally produce dead codes in programs, some
optimizations such as copy propagation can introduce dead codes.

In sequential programs, the usual dead code elimination method is to check the
use-def chain of tlie variables used in essential instructions in j ograms. It an in-
struction is in the use-def chain, it is not a dead code, otherwise it its only use is
in a definition of itself. it is a dead code. These essential instructions specify those
instructions which can affect programs. such as input/output, function call and con-
trol flow, If this instruction is a dead code, it can be removed an will not affect the
results of the programs.

In Figure 6.7, code execution is linear hecause of sequential progran. Variable
~a” cannot be 0. and the condition a! = 0 cannot be satified. T statement b = 2

cannot be executed and is dead code. It can he safely removed.

obj a: int=0;
obj b:int=0;
b:=a
if (al=0)
{b:=2}
a=1

Figure 6.7: Dead Code Elimination

6.3.3 Dead Code waimination in Parallel Programs

Generally, the dead code elimination in parallel programs is similar to the one
in sequential programs. However, hecause there are parallel control structures and
multithreads synchronization in parallel programs, dead code nination is more
complicated than in sequential programs.

We can see an example in Figure 6.8, This example uses similar codes to the
one in Figure 6.7 If these codes execute in sequential order or there no thread 2, the
b o -2 will be dead code. We can remove themn as in sequential programs. But since
the parallel control flow is in this example, the definition of va ble a in thread 2
can be used in 7 f(a! = 0)b = 2. This segment codes are not dead code. It cannot be
removed,

obj a:int =0;
obj b:int O
co

b:=a

if(a

{b:=21}
[l
=1
co

cagure 6.8 Dead Code 7 mination in parallel programs

83

6.3.4 Dead Code Elimination in Parallel Progr ms with Syn-

chronization

When we consider the synchnization on dead code elimination, the situation is
more complicated. We can see an example in Figure 6.9. In this Figure (A), S1 can be
removed sinee it is a blank operation, if we obey the definition of dead code. In Figure
6.8(13), the program optimized produces different results from the one of programs
unoptimized. The reason lor causing this problen is that this blank operation is the
svichronization condition of multithread synchronizations. We cannot remove the
svnchronzation condition.

We can see another example on DCE in parallel programs with synchronization in

obj a: int =0; obj a: int =0;
obj b: int =0: obj b int =0;
co co
T1: T1:
S1: while (al=0){ } $1:. b:=a:
S2: b:=a; Il
Il T2:
T2: S2: a=1;
S3 =1 co
co

, (B)

Fignre 6.9: Example 1 on Dead Code Elimination in parallel programs with synchro-

nization

Figure 6.10. Beside similar codes to the one in Figure 6.9, synchronization operations
post-wait are added. The synchronization post-wait cause the enforced execution

order. The a = | can not be executed. That is the definition of variable a can not

8-

be used by the while(a! = 0). It can be removed safe.

obj a: int =0,
obj b:int

co
T1:

S1:whi (al=0){ }
S22 bh=a;

S3: wait(s):

[l

T2:

S4: post(s).

s . a=1

co

Figure 6.10: Example 2 on Dead Code Elimination in parallel | ograms with svn-

chronization

6.3.5 Dead Codc Elimination Analysis in Parallel Programs

Dead code elimination for parallel programs is essentially the same as the sequen-
tial programs. But we must consider the affects on synchronization operation and
the interactions of shared variables among threads.

The basic principle is still to analyze the use-def chains. The synchronization can
cause some enforeed execution orders. These execution orders m be considered in
use-def chain analysis. This example was showed in Figure 6.10.

Dead code is often produeed since the condition statement in control {low cannot
he satisficd. In parallel programs, if the condition statements « control How have
shared variable in different threads. we must make further analvsis on it. 1 in other
threads, there are only the use of this shared variable, the dead ¢ le can he removed
salelv. That is because there are not new definition, which can change the value of

35

this shared variable in the condition statements. Or, the new definition of shared
variable in other threads probablly cause the original condition not to be satisfied.
This will be indetified again. If the condition is satistied, these codes are not dead
codes. Otherwise, they are dead code and can be removed.

FFussion and Fission methods are not fit for dead code elimination. From above,
the dead code elimination can come from the analysis of use-d I cortain codes
is 1ot reachable by control flow, we can accurately identify whether a segmient of

prograim code is dead code.

6.4 Code Motion

6.4.1 Code Motion

Code Motion (also called Code Hoisting) is another useful optimization in sequen-
tial programs. Hs operating subject is the loop invariant. In s uential programs,
if we find invariants in loops and remove them to before loops, or after the loop. it
does not affect the semantics and results of the programs. This ansformation can
store constant into registers and not having to caleulate the ad ss and access the
memory /cache line at cach iteration [33]. . .uis decreases its computation workload m

loops and makes programs more efticient. These operations are called a code motion.

6.4.2 Code Motion in Sequential Programs

I sequential programs. there are two conditions whicl make it possible: Firstly,

all variables in these operati have the same value in the new location as in the

80

original location. Secondlyv. no read ol 1e computed variable receives a different value
than in the original program.

I11 most cases, the loop invariant is moved to before the loop. But in some cases
they are moved to after loop. Here, we will only give examples which move the loop
invariant to before the loop.

In Figure 6.11 (A), the computation sin(4)*¢+1 is invariant in loop. We can use
a variable b to replace it. Once we finish the computation before the loop and store
the value into variable b This decercases the iteration computation workload with

the value of variable b,

obja:int 1; obj a: int_=1;

while (a<10) obj b= sin(4);

{ ' while (a<10)
a:=a+sin(4); {

} a:=a+h;

}

Figure 6.11: Code Motion in Sequential Prograns

6.4.3 Code Motion in Parallel Programs

I this section. we give the examples of Code Motion, which includes no synchro-

nization in parallel programs. In Figure 6.12 (A), in threadl a wl e loop is included.
The a 4 sin(4) is an wvariant. It can be moved outside. The d = a 4 sin(d) use a
('S optimization. In thread 2, there is no shared variableswhich is used in threadl

and synchronization operation. So there is a sequential order in ¢ threadl. The

definition of a := 2 kills the definition of ¢ := 1. This code motion is safe. The result

87

is showed In Figure 6.12 (B).

obj a:int 1;
objb:int O
obj c:int J;
obj d: int =0;
obj int =0;

(co
a.=2;
while (b<=5)
{
c.=a+sin(4);
b:=b+1;
}
d.=a+1:
Il
e=et+1,;
CO}
(A)

obja:int=1;
objb:int=0
obj c: int =0;
obj d: int =0;
obj e int =0;
(co

a.=2;
x:= a+sin(4);

while (b<5)
{

c. <

b o>+1;
}

cd=a+1;
[

e=e+1;
CcO)

{(—}

Figure 6.12: Code Motion in Parallel Progran

In Figure 6.13, similar codes are showed. The slight di rence is that the

definition of variable a is moved to thread 2. In this case, the ¢ = a + sin(-1) is not

loop invariani and cannot be moved out of while loop. That is because the definition

of variable a in thread 2 can be used in the while loop in thread 1. We cannot

suarantee ¢ = a + sim(4) is loop invariable. So the code motion is mcorrect.

obj a:int=1;
obj b:int=0
obj c:int J;
obj d: int =0;
obj int =0;

(co
while (b<5)
{
c.=at+sin(4g).
b:=b+1:
h
d a+1;
I
a J;
e=et+1;
CO)
(A)

obj a:int =1;
obj b int =0

obj c:int =0:;
obj d: int =0;
obj e int J:
{co

X = a+sin{4);
while (b<5)

{
c X
b=b+1;
¥
d.=a+1;
[
a=0;
e=e+1;
co)

(B)

Figure 6.13: Code Motion in Parallel Programs

In addition. in the parallel program code. motion can he >t only move out

the while or for loop in a thread. but also move out from the parallel control flow.

We can see an example in Figure 6144

c= sin X:
(co (co
a.=sin x; a.=c;
I Il
b:=sin X; b:=c;
co) CO)
(A) (B)

c= sin X:
(co (co
5in x; a=c;
I I
x x:=1;
b sinx; b=c;
co) Cco)
(C) (D)

FFigure 6.14: Code Motion Out of Parallel Control Flow in Pe allel Programs

In Figure 6.1.1 (B) ne

| out of tl ads i rallel control strue-

ture C'O. They are replaced with ¢ because of ¢ = sine. Howe 0 in the (D) this
kind of tranformation is not successful, because the variable x in codes moved has a
different definition. In b = sine, the value of variable x comes from o = 1. When
we replace sine with ¢, the value of variable x in b = ¢ = sine c¢ e from 0= 0. So

this 1s a incorrect code motion.

6.4.4 Code Motion in Parallel Programs with Synchroniza-
tion

When we added the synchronization into programs. the code motion analysis
hecome more complicated.

\We can see an example in Figure 6.15. In Figure 6.15 (13), we remove S3 and S5
out of the loop. as in sequential programs. The result of the segments is diflerent
from Figure 6.15 (A). That means the transformation is incorrect.

However, the case in Figure 6.16 is different. from the one in Figure 6.15. In the
Figure 6.16, though the codes are similar, the results of both Figi » 6.16 (13) and (A)

are the same. This is a successful optimization.

90

obj a:int 0
obj b:int =0;
obj t: bool =trL
(ofe)}
S1:0f(...)
S22 wait(t):
S3:. a=b;
els
S4:. wait(t);
S5 a=b;
endif;
[l
S6: bi=1,
S7. postt),
coO
(A)

obj a: int =0;:

obj b: int =0;

obj t: bool =tru

co

S1. a=b;

S2:0f(...)

S3: wait(ty;
else

S4: wait(t);
endif;

Il

So.

S6:

co

b:=1;
post(t)

(B)

Figure 6.15: An Unsuccesstul Code Motion in Parallel Programs [31]

obj a: int =0 obj a:int I
obj b:rint=c, obj b:rint J;
obj t. bool =true; obj t. bool =tr.
co co
S1:0f(...) S1: a:=b;
S22 wait(t): S2:0f(...)
S3: a:=b: S3: wait(t),
else else
S4: wait(t) S4: wait(t);
S5 a=b: endif;
endif; [l
I S5 ci=b;
S6:. c=b: S6:. postty
S7. pc ity co
co
(A) {7
Figure 6.16: A Successful Code Motion Example in Parallel Programs [31]

91

What is the success key for a code motion optimization? 1 Figure 6.15. the
statelment S6 s a new definition of the variable “b” and the statements S3 and S5
are the use for variable “b". The original definition of variable ~“b™ is in the initial
part of the segments, and its value is 0. When we use a code motion optimization,
we change the execution order of the prograni. In Figure 6.15. t compiler decides
which definition the use of variable “h™ comes from. But when we remove S3 and 55
out of the loop. the program cannot decide which is the correct definition of variable
“1y". So this leads the transformation to be incorrect. In Figure 6.16, the statement
SG is a use of variable “h”. The trausformation in the (B) still keeps these use-def

pair relations, so the transformation is correct.

6.4.5 Code Motion Analysis in Parallel Progr ns

In the code motion optimization of parallel program, if we can keep all variables in
a statement of a loop movable, this statement can be moved outside the loop without
changing the program’s meaning. In other words, we cannot vio ate the sequential
consisteney to complete a hoistable access optimization.

When we discuss the CSE optimization in parallel programs. we introduce Fus-
sion/Fission method for the CSE analysis. This method is also fit to code motion
analysis in parallel prograni.

First, we can see the examples in the Figure 6.12 and Figure .13, Both of them
have similar codes. The analvsis with Fusion/Fission methods cain be seen in Figure

G.17.

obj arint =1 obja:int =1; obja:int=1; obj a:int=1;
obj b:int=0 objb:int =0 objb:int=0 obj b: int =0
obj ¢ int =0; obj ¢ int =0; objc:int=0; obj ¢! int =0;
obj d: int =0 obj d: int =0; obj d: int=0; obj d:int=0;
obj e: int =0: obj e: int =0; obje:int=0; obj e:int =0:
(CcO (co (co >
a=2 a=2 while (b<5) x:= a+sin(4);
while (h<5) X:= a+sin(4). { lle (b<5)
{ while (b<5) <¢:=a+sin(4y; {
<c=a+sin(4) — A Eo+1> e <C=X>
b=b+1> <CEX > } <b:=b+1;>
} <h:=b+1:> d:i=a+1; }
d=a+1; } I d=a+1;
I d=a+1; a:=0;
e=e+1; I e=e+1 a=0:
co) e=e+1; co) g=e+1;
co) co)
(A) (B) (C) (D)

Figure 6.17: Code Motion With Fusion/Fission Analysis in Parallel Programs

In the Figure 6.17 (A), ¢ = a + sin(4) and b := b+ 1 arc ut into an atomic
operation. This is a fussion and is safe. In the (1B), we split this atomic operation
into two atomic operation. This is a fission. I we can know the fission safe, we can
conclude the code motion is safe. Since this fission procedure don't introduce a new
definiton of variable a. we can think this fission safe. However, although the fusion
in the (C) is similar to the one in the (A). the fission introduces a new definition of
variable a in other thread and increases the nondeterminisim of result in the (D). This
fission is unsafe.

We cant see another example on code motion in parallel con 1 How in the 17ig-
ure 6.18. In the Figure 6.18 (A) and (C'), they are both fusion. The only difference

is a definition of variable x in one of thread in the (C). In the (13), the fission can

93

introduce any new definition for variable x and is safe. But in the (D), the fission
mtroduce a new definiton x:=0 for ¢ = sine. This changes the result and increase

the nondeterminism. This fission is unsafe.

c= sin X; o c= sin X
(CO (co ! < a:=sin x teo
< a=sin x; <a=c> ' sa.=cs
b:=sin x; > <br=ci> —ai ==
co) o) COb =sin x; > b=c>
) CO)
(A) (B) (C) (D)

Figure 6.18: Code Notion of Parallel Control Flow With Fusion/Fission Analysis in

Parallel Programs

We also can use the same method to analvze code motion vl svnchronization
in parallel progranm. The fu on/fission analysis of examples in the Figure 6.15 and
6.16 are showed in the Figure 6.19. When there are synchronization operation in par-
allel program, we must make analysis on the enforeed order from synchronization. In
the Figure 6.19(13). the fission introduce a definition on variable b := 0. This change

the value of variable b 1 in the fussion. The fission is unsafe.

94

o obja:int=0;
ob! a !nt =0; o ‘ objbrint=0; ¢ a:int=0;
obj b: int =0; obj int % objt: bool =true; ¢ b:int=0:
Obj t. bool =true; Ob! brint =0 ¢t bool =true:
obj t: bool =true; (co (
(co S1<if(...) S1. a=b;
ST <if(...) o $2: waitct); ¢ <)
S20 waitity; St a=h S3: a=b; S3: waitity;
S3: a=h: S2:<ff....) else else
else S3: waitity S4: waitit) e S4 waitity
S4: waitity, = else S5 a=h: endif:>
$5. a=b s4: wait(ty endif. I |
endif; endif.> I ¢ <c=b;
I | S6: ci=h; ¢ post(t‘):>
S6: hi=1; S5 <bi=1. S7. postit); > co}
S7: postit); > S6. post(t)> co)
co) co) |
(B) (C) (D

(A)

Figure 6.19: Fusion/Fission Analysis of Code Motion With Synchronization in Par-

allel Programs

From above. we can change the problem from whether the Code NMotion

optimizations are safe to whether a fission is safe? This question will he also addressed

in section 6.6. We can read some other code motion algorithm in [1, 1, 13].

6.5 Loop Fusic- and Loop Fission

6.5.1 Loop Fusion and Fission

Loop optimizations are most important parts in computer programming and
I 1 1 prog 8
compiling. They can improve cache performance and provide more effective use of

parallel processers.

Loop fusion is a transformation that merges multiple loops 1o a single loop.
However, in some cases one single loop cannot provide better performance than two
loops, because of data locality increased within cach loop. In these cases. a single
loop should he transformed into two loops. This is called loop fission. Loop fission
breaks a loop into multiple loops over the same mdex range but cach taking only a
part of the loop’s body. This can achieve better utilization of locality of reference

13:3].

6.5.2 Loop Fusion and Loop Fission in Sequer al Programs

For loop fusion, we fuse the same or close spaced loop toget - This decreases
loop overhead. increases computational density, henefits to the improvement in soft-
ware pipelining, and increases the efficience of cache locality, For loop fission, we
split the loop into multiple loops. This reduces register pressure. seperates loop with
condition into condition-free 1 condition-containing loop to is »dependencies,
and benefits to loop interchange.

In the Figure 6.20, we give two simple examples for loop fissic — and loop fussion.
We also can find these two procedures are reverse from this figure. In the Figure 6.20)
(\) two loops have the same munber of loop bound. So the statements ST and S2
were merged into one loop. And in (13). the two statements i loop are splitted into
two loops.

The optimization of Loop Fusion and loop fission are safe in sequential programs,
when variable def-use chain dependences within the two loops occur in the same order

hefore and after loop fusion and fission.

96

obj ar int =0; obja:int=0;

obj b: int =0; obj b:int=0;
for (i:=0,10,) for (i:=0,10){
S1: {a:=a+1;} a=a+1;

for (j:=0,10) b:=b+1;
S2. (b >+13} }

(A} Loop Fusion

obj a: int =0; obj a: int =0;
obj b:int J; obj b:int=0;

for (i:=0,10K for (:=0,10,)
a=a+1; S1:. {a=at+1}
b:=b+1; for (j J.10)
} S2: {b:=b+1}

(B)' >op Fission

Iigure 6.20: Loop Fusion and Loop Fission Example in Sequential Programs

We must keep both loop bodies have no reference to cach othe. . data betore loop
fusion. Otherwise loop fusion can be unsuccessful. We can see an example in the

Figure 6.21. We will avoid this case in the following section.

97

obja:int=0, opi a:int =0;

obj brint =00 ohj p: int =0;

obj c1iNt=0; opj ¢: int=0;

for (i:=0.10.) for (i:=0,10.)
{b:=a+h:} {b a+h

for (j:=0,10) c:=b+c:}
{c:=b+c}

(A) (B)

Figure 6.21: Loop Fusion in Sequential Programs

6.5.3 Loop Fusion and Loop Fission in Parallc Programs

In the parallel programs, the situations become more complic. d because of par-
atlel control structure. We still use the CO parallel structure. In the Figure 6.22 (A)
the thread 2 has no shared variable and data, so the loop fusion is safe. And (B) the

fission 1s safe because of the same reason.

95

obj a: int =0; obj int=g; Objamt=0. obj int=0;
obj b:int=0; obj b: int =0; Ob! b:]nt =0; ob! 'mt =0;
obj ¢ int=0; obj ¢ int =0; obj ¢: int =0; obj —int=0;

(co (CO (CO (co

for (i=010) for (i=0,10) for(i:=0.10) " (i:20.10)
S1: {a=a+1} { { $1: {a=a+1}
= a=atl] a=atl s
for (j:=0,10) b=b+1: bi=b+1. for (j;=0.10)
$2: {hi=b+1}) } ||) ﬁZ: {b:=b+1)
lﬁ:l’3: c=2 | C: c=2, S3: ¢c=2,
o) co) co) co)

i
L

(A)Loop Fusion (B) Loop Fission

Figure 6.22: Loop Fusion and Loop Fission in parallel Programs

However, when there are shared variables in different threads, the situations
hecome ditferent. The Figure 6.23(A) shows an example on loop ssion. The thread
2 has the shared variable within the loops in the thread 1. The state ent ST must be
execnted before S2, but 82 can be executed before ST in its prog m code optimized
in sequential program rule. In the same reason, the loop fission example in the Figure
6.23 (B) S2 can be executed before ST and after St but the | ogram transformed
reduce it to only S1 before S2. These optintizations violate the se tial consistency.

They are all unsafe.

99

obj a: int =0;

obj a: int=0;
obj b int=0;

obj a; int =0;
obj b int=0;

“int =0:
“int =0;

ob)
ob)

obj b int =0;
[CO

for (i:=0,10)
S1. {a=0;
S h=1} -
I S2:
$3: a=1: I $3 a=1
S4: b:=0; a=1, S4: bh=0:
Co) S4; b:=0; co)

(€0 (co (€O
for (1:=0.10) for (1:=0,10)

St: {a=0} st fa=0. St
for (:=0.10) S2. b
=1} I

for (i:=0,10)
{a=a+1}
for {j:=0,10

2 (h=h+1)

a:
S4: b=
Co)

|
S¥ a=1;

(A} Loop Fusion (B) Loop Fission

Figure 6.23: Loop Fusion and Loop Fission in Parallel ograms

6.5.4 Loop Fusion in Parallel Programs wit .Sy chronization

We use an example to illustrate parallel programs with synchronization in Figure
6.21. In Figure 6.24 (A). the first loop includes two statements, . | the second loop

includes one statement. Their structures are similar to cach other. We can merge
them together. However, we find that the result of program optimized is different
from the original one.

That is because the statements ST and S5 are the synchronization conditions,
which keep the execution order that $2 must be executed before 830 The merging of
the two loops makes it possible, 83 exccutes before 520 For the similar reason, the
T s also not safe sinee it violates the program

loop fission example in Figure 677 77

sequential consistency.

100

obja:int=0; obja:int=0; obja:int=0; ob! a
objb:int=0; objb:int=0; objb:int=0: obj b:
co co co co .
for (i:==0,10) for (i:=0.10) for (i 2.10) for(i:=0,10)
S1: {wait(t); S1: {waitit), S1: {wait(t); S1: {wait(t);
S$2: a=h+1;} S2: a=h+1; S2: a=b+1: S2: a=b+1}

for (;=0.10) S3: a 3} S3: ai=b;} for (j:=0,10)
$3: {a=by || I S3: {a:=b}
I for (k:=0,10) for (k:=0,10)l

for (k'=0,1084: {b:=1; S4: {b:=1; for (k:=0.10)
S4: {b:=1; S5: postit)} S5: postityy S4: {P=1
§5: postt)} co co S5 st}
co Cco

(A) Loop Fusion (B)Loop Fis on

Figure 6.24: Loop Fusion and Loop Fission with a Svnchronization Statement in

Parallel Programs [31]
6.5.5 Loop Fusion and Loop Fission analysis in Parallel Pro-
grams

In parallel progrant, if some optimizations on loop fusion and loop fission vio-
late the sequential consistency, these optimizations are unsuccer ul. Usually these
optiniization transformations change the execution order of stores and fetches in the
original program. In the sequential programs, all data dependences and control fows
guarantee the transformation not to violate the sequential consistency. So these op-
timizations are safe in sequential programs. But in parallel progr ns, il there are no
shared variables between different threads. the loop optimization is also safe, because

this is similar to the sequential programs. Otherwise. we have to make more analyvsis

to ensure the sequential consistency in the parallel progran.

In [29] D.Shasha and M.Snir proposed their method. In this method, for parallel
program they used an instance level conflict graph. The nodes are statement instances
connected by directed ares representing the execution order of statement instances
and undirected edges representing conflicts between statement instances. A mixed
evele is a evele that contains hoth conflict edges and program ares. A minimal mixed
cvele is a mixed evele €, who has no other mixed cvele €7 The a hors stmmarized
two conditions, which ensure sequential consistencey:

-C'onservative condition:

If the execution order represented by the program ares contained v all mived cycles
is crforced then the execution of the program is sequentially cons — ent.

-AMinimal condition:

Any set of program arcs whose cnforcement ensures sequential consistency (s a super-
set of the program arcs contained in minimal mized cycles.

If an optimization shows that one or more program arcs involved i a minimal
mixed cvele is not being enforeed after the transformation is performed. the opti-
mization can cnsure sequential consistency and is not safe. In addition. in [31, 19]
S.PALidkif and DA Padua also introduce some useful methods.

We also use Fusion/fission methods for the analysis. We use an example in the
Fipure 6.25. which is similar to the one in the Figure 6.23. In > Figure 6.25 (A)
a fusion was made in (1), Naturally in the range of this atomic operation, it is sale
to combine two loop body. But in the (3) we split a atomic operation into two. this
{ission is ussafe, since S3 I S1 can mtroduce new definition of variable a and b.

This fission isn't safe and this loop fusion isn't safe. In the (13). loop fission is dis-

102

plaved. A fusion is in (1). In the range of atomic operation. a looy:

in the (3). 83 and S in other thread

ssion 1s sate. But

troduce new definitions of variable a and b.

This fission is unsafe and the loop fission is unsafe. Until now, we used fusion/fission

method to identify the loop fusion and loop fission. The keyv problem is to how to

keep the fusion/fission safe. This will be discussed in next Section.

co

S2
J

S3:
S4:

co

co

S1

S2:

S3:
S4:

co

Figure

<for (i.=0,10)
S1: {c:=a+ cC}}
for (j:=0.10)

{d:=b +d }>
a=1:
b=1;
(1)

for (i:=0,10)
t{<ci=a+c

d

a=
b

0.20:

1

b +d >}

1

Atomic Fusion/Fission Analysis for Loop Fusion

Parallel Programs

co

for (i:=0,10}
S1: {<ci=a +cC
S$2: di=b +d >}
I
S3: a=1;
S4:. b=1.
co

(2)

{A) Lo« Fusion

co
<for (i 1J.10)
S1: {c=a+c}
for (j:=0,10)
S2: {d=b +d }»
gl
S3: a I
S4: b=1;
co

(2)

(B) Loop Fission

-

=

co

for (i:=0,10)
S1: {~c=a +c>
S2: <di=b +d }>

Il
S3: a=1;
S4: =1
co

(3)
co

< r{i:=0,10)
S1: {c=a+c}>
(j:=0,10)
S2: {d:=b +d:}>

83 =1;
S4: h:=1;
co

(3)

1 Loop Fission in

6.6 Atomic Fusion/Fission in Parallel Optimiza-
tion

As shown in the preceeding sections, the atomic fusion/fissi « method can be
used for identifving safe optimization in parallel programs. As far as we know this is
original. In this section, we will discuss rules for safe atomice fusion/fission.

First, we need to know atomic fussion is always safe. We can regard cach state-
ment as an atomic operation in programs. When we make a fusion to these atomic
operations, variable values in atomic operations mergeed must be and alwayvs be one
of values of variables in original programs. So results of programs will be one of pos-
sible results in programs unchanged. This fusion only decrease t nondeterministic
of programs. We can call this is safe. However, atomic fission is different. It can be
safe or unsale. An unsafe fission can introduce errors.

Li order to identify safe fission. we need a rule to check it. We need to find

conditions under which
Cl<c FG>|| P = Cl<F><G>]|| P

In this formula. <> represents atomic operation. £ and ¢ mean statements, which
are splitted. 2 represents all other threads. ' represents a cor xt. This formula
represents a normal atomie fission in parallel programs. If we ¢ prove the sides of
this formula are equivalent, this atomic fission is safe.

We can define 12 C Q as each trace of Q i equivalent to a e of PP and then

P=Q as I?CQand P 2 Q. We can show that

Cl< FG>| | P 2 Cl< F><G3) | P

10:4

ISach trace represents a sequence of operations, which can be inserted by other threads.
The operations appear in the trace including read global memory, write global mem-
ory and local operations. Let T be soute trace of < F' > and let Ti; be a trace of
< (G >. Tp represents the operations inserted by other threads into between 7 and
Te;. For cquivalence, logically equivalent statements have the se e logical content.
Semantically equivalent have the same truth value in every moc . [33]. We define
equivalent for traces as these traces can produce same results in s model.

We have this lemma:

Any trace T is equivalent to a trace UVTE

where U involves only local operations reads of global variables from a set A,V in-
volves only local operations and writes to variables from a set 3, and 117 involves only

local operations and reads from variables ina set (" C 3

Theorem:

Assumne that for cach variable x

e il ¢/ reads x then there is no parallel write of x that reaches the statement (1°G)

and
o il £ writes x then that write ro hes uses only in /7 and in
We have:
Cl<c FG>]|| P 2 C(Cl<F><G>]| P

Proof:

Lot 15 1 1y T Ty be atrace of C'[(F) (GY]]2 in which Ty and T, are traces

105

ol < 1> and < (¢ > respectively, we need to show that there is an equivalent trace

of CFCH] 1.

Tw Ty T

So for any Tp, where Tp = U{A}y V{B} W A{C}and "' C B.

=T, U{A} V{B} W{C} 1y,
When we have condition RGN B = 0. RG means variables read by T¢,. RGN B =
) means all variables read by Ty can not be written.

=U{A} T V{B} WA{C} Ty,
When we have condition W M A = 0, W means variables written by 150 1WE N
A — 0 means variables written by T can not he read.

=U{A} Tp Te VA{B} WA{C}

In the Figure 6.26 (A). the Gisa:=b+ 1, and Fisb:= 1. I G variable b can
get value from 83 iy the other thread. This doesn’t satify the condition “there is no
parallel write of x that reaches the statement”™. We can’t get a se -fission. However,
in (B) the write in F oonly is Hmited in I and G. There are any variable written in

other threads. We can get a safe-fission.

(co (CO

S1; bi=1 S1: <h'=1:
S2: a=b+1- = S2: “a=b +1>
I 1]
S3: b=2: S3: bh:=2;
CO) [le)]

(A)
(co (co
S1: <b.=1 S1: <b:=1>
S2: a=b+1;> =+ ¢ <a=Db +1;>
I]
83: c¢c=2; 83 ci=2
co) co)

(B)

Figure 6.26: An Example to Use The Theoren For Safe-Fission Indentification

6.7 Summary

In this chapter. we first introduce program optimization and some differences
hetween sequential and parallel programs. Then we used examples to introduce and
explain differences of CSE, DCE, Code Motion and Loop Fusion an - Loop Fission i
parallel programs from in sequential programs. And we used a new method: atomice
Fusion/Fission to check safe parallel optimizations. Lastly. we gave a rule to identify

safe atomice Fusion/Fission and a proof for this rule.

107

Chapter 7

Conclusions and Future Work

7.1 Conclusion

7.1.1 Thesis Summary

In this thesis. main issues are the IR design on the compiler [a new program-
ming language HARPO/ L, which can be executed in the CGRA hardware platforn,
We developed a sequence of procedures to transfer the program Hurce code in the
HARPO/L language into the appropriate data fow graph, which acts as the input
of backend. The structure of the thesis is:

Firstly, we provided the fundamental introduction on CGRA architectures, Com-
piler theory and [ARPO/L Language Specification.

The CGRA includes several different architectures, where ¢ nections, conimu-
nication means, fabries and components can be different. But we can think of them
as consisting of many function units connected i various wavs., hese architectures

can be categorized into lincar-array, mesh and crosshar.

108

Then we introduced compiler theory. Nodern compilers nsually have three stages
(front end, optimization and back end). In front end, the compil — performs parsing
and lexical analysis and produces an abstract syutax tree (AST). After this front end,
source codes have no more syntax and lexical errors. After that, the compiler can
nake optintizations. In the back end. the compiler produces the configuration files of
target architectures from the IR Back end activities include mapping, routing and
scheduling.

In order to design the IR of the compiler of the HARPO/L Language, we de-
veloped a new methodology for it Firstlv, we started this process from analyzing
relations between objects in the HARPO/L language programs. We developed the
object dependence graph for this purpose. Sccondly, we made control flow analy-
sis with angmented conenrrent control flow graph for cach skeleton complex objects,
which can be obtained from an ODG. Thirdly, the ACCFGs we transformed into
C'SSA forn. The CSSA form includes @, . 7 and € functions to represent varions
cases of data flow confluence. We sepately itroduced various § - ction node place-
nent methods. Fourthly, we considered the interprocedural relations among objects.
Interprocedural analysis is a global view analysis and can be used for some opti-
mizations. Traditional interprocedu analysis use the call graph . 1 inline calli
but we used the information from ODG to make optiniizations and prevent a call
deadlock. Fifthly, we discussed the optimization hehaviors in pa lel prograns. We
individually discussed Common Subexpression Elimination(CSE) 0 ad Code Elini-
nation (DCE), Code Motion, and Loop Fusion and Fission. The traditional sequential
optimization algorithms cannot be directly used in parallel pro. uns. Some modi-

lications must be made. We developed Atomie Fusion/Fission ethod to identify

109

various safe optimizations in parallel programs.

7.1.2 Thesis Contributions

HARPO/L is a programming language, which executes on various hardware

platforms. including CGRAs and microprocessors. The purpose « is thesis was to

develop the 1Rs for the compiler of the HARPO/L language. T 1Rs can be used

i various optimizations and as input to the compiler back end.

I

In this thesis. the main contributions were the following:

We proposed Object Dependence Graph (ODG). The ODG is used for repre-
senting the relations among objects in HARPO/L language programs. These
objects can be divided into two categories. One is the simple objeet, and the
other is the complex object. The relations wclude part-of and knows. We can

find skeleton objeets of the HARPO/LL programs from it.

We extended Lee’s CCFG 9] to Augmented Conarrent: Control Flow Graph
(ACCFQG). The ACCFG is also a kind of control flow grap but it adds more
cdges and more node types. The programs in ACCFG form are translated into
the CSSA form. The CSSA is an extended form of Single Static Assignment
(SSA). which is often used in the traditional sequential pr rams. In the SSA
o, only the ¢ function is used for representing the control flow condition
merging. But in the CSSA. Lee proposed two new functic ¢ and 7 for rep-
resenting the confluence of threads. We added a new fi tion & for calling
procedures in the HARPO/L lar age. The placenment of this function was

provided.

110

3. We made some interprocedural analyses and optimizations for the /[ARPO/L
language. For some usual optimization techniques, such as dead code elimina-
tion, common subexpression climination, and hoistable acces: etection, we gave
their behaviors in parallel programs with instances. We developed the Atomic
Fusion/Fission niethod to identify various safe optimization in the HARPO/L
language. In addition. we discussed possible deadlock, which can come from

parallel programs and calling procedure, and the solutions were provided.

7.2 Open Issues for Future Work

Although we provided a comprehensive study on the interniec te representation
for the compiler of IHLARPQO/L. there are still some aspects that can be improved in
the future.

The Parallel Optimizations

In the Atomie Fusion/Fission method for optimization in the IIARPO/L, we use
atomic operations for current method. But we will extend it to further cases, such as
senmi-atomic operation.

The inte | "ocedural optimizatio

In this thesis. we diset ed the two interprocedural optimiz ions on the clim-
ination of unnecessary bounds checking and the simplifving of > same procedure
calling. We hope to develop more interprocedural optimization techniques to improve
the compilter’s efficiency. Test and compare

Although we made extension and proposed new methods, we need to know the

improvement. from these IRs and methods. Some expernmences need to he done.

11!

Bibliography

1] K. Y. Arvind Krishunamurthy, Optimizing parallel programs with explicit syn-
chronization. SIGPLAN Conference on Programming Language Design and -

plementation. pages 196 204, 1995,

2] AV Aho. R.Sethi. and J. Ullman. Compilers:Principle. Technigues and Tools.
Addison Wesley, 1986.

3] J. C. Corbett. Evaluating deadlock detection methods for concurrent software.
[EEE Trans. Softw. Eng., 22(3):161 180, 1996.

[1] F. D, Deadlock detection without wait-for graphs. — Parallel Computing.
17(1): 1377 1383, 1991,

[5] M. E. Daniel Weise, Roger F. Crew and B. Steensgaard. Value dependence

graphs: representation without taxation. ACAM, pages Page:297 310, 199,

(6] W. Haque. Coneurrent deadlock detection in parallel progra - s. fut. J. Comput.

Appl, 28(1):19 25, 2000

7]

9]

110]

(1]

[12]

I13]

M. W. Harini Srinivasan, James Hook. Static single assign ont for explicitly
o .
parallel programs., Annwual Symposivm on Principles of Programmning Lanqguages,

pages Page 260 272, 1993,

R. Hartenstein. A decade of reconfigurable computing: a visionary retrospective.
Int’l Conference on Design Automation and Testing in Europe. pages 642 619,

2001.

P AL Jacjin Lee and D. Padua. Concurrent statie single assignment form and
constant propagation for explicitly parallel prograuns. In Proccedings of The 10th
International Workshop on Languages and Compilers for Parallel Computing,

pages 114130, Aug 1997.

P. N Jaejin Lee and D. Padua. Basic compiler algoritinns for parallel programs.

Pronciples Practice of Parallel Programming, pages L 120 April 1999.

J. V. Jens Knoop., Bernhard Steffen. Optimal code motion for parallel programs.
KNnoop, J.. Steffen, B., and Vollmer, J. Optimal code motion for parallel pro-

grams. To appear in Proccedings of the 12 th Workshop on Alternative Konzepte

Sfur Sprachen and Rechner, . cysikzentrum Bad Honnef. Germany, 2(4), Nay

1995.

J. Ferrante and K.Ottenstein. The program dependence graph and its use in opti-
mization. ACM Transactions on Programming Languages ar. System. 9(3):319
3190 July 1987,

J. Knoop and B. Stetfen. Code motion for exphicitly parallel programs. In PPol’P
99: Proceedings of the scoenth ACM SIGE™ AN symposiwm on Principles and

113

.

]

[15)

[16]

[19]

120]

practice of parallel prograrmming, pages 13 24, New York, NY. USA, 1999. ACN]

Press.

M. B. K.Pingali and R.Johnson. Dependence flow graphs: ar gebraic approach
to program dependencies. Annual Symposiue on Principles of Programning

Languages, pages 67 73, Jan 1991.

S. M. Kurlander and C. N, Fischer. Minimum cost interprocedural register allo-
cation. POPL "96: Proceedings of the 23rd ACM SIGPLAN-& TACT symposium

on Principles of programmiing languages, pages 230 241, 194

L. Lamport. How to make a multiprocessor conputer that correctly executes

multiprocess programs. TEEE Trans, pages Page 690 691, Sep 1979

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. [EEE Transactions on Computers, 28:Page 690 691,

1979.

H. AL Mare M. Brandis. Single-pass generation of static sin, - assignment form
for structnred langnages. ACM Transactions on Programming Languages and

Systems, 16(0):Page 1681 1698, 1991,

S. . Midkiff, D. A, Padua, and R. Cytron. Compiling programs with usecr
parallelisim. Selected papers of the second workshop on Languages and compelers

Jor parallel computing. pages 402 422, 1990,

S. 8. Muchnick. Adean Compiler Design hnplementation. organ Kaufmann,

1997.

111

[21]

[22]

(23

21

-

[2¥

T. S. Norvell. The egra Laguage specification, 2000.

M. N.Walkinshaw and M. Wood. The java system dependence graph, Third [EEE
International Workshop on Source Code Analysis and Manipulation, page 55,

Sept 2003,

X. J. OTTENSTEIN. Data-tlow graphs as an intermediate program form. Ph.D.

dissertation, Aug 1978.

J. R.Cytron. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programmeng Languages and Systeins,

13(:1):Page 451 490, 1991.

AL CL Rinard. Analysis of multithreaded programs. Proceedimgs of the Sth Statie

Analysis Symposium. 2001.

A. B. M. Robert A, Ballance and K. J. Ottenstein. The p o gram dependence
web: A representation supporting controldata, and deman-driven interpretation

of imperative languages. ACA, pages Page:257 271, 1990,

V. Sarkar. Analysis and optimization of explicitly parallel programs using the
parallel program graph represemtation. Proc. of the 10th Internationel Workshop
on Languages and Compilers for Parallel Computing, LNv " Springer-Verlag,

pages 94 113, 1997.

V. Sarkar and B. Simons. Parallel program graphs and their classification. pages

(:33 655, 1994

[29] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that

share memory. ACM Trans. Program. Lang. Syst., 10(2):282 312, 19388.

[30] T. S.Horwitz and D.Binkley. Interprocedural slicing using dependence graphs.
ACM Transactions on programming Languages and System, Vol.12:Page 26 60,

January 1990.

[31] D. P. S.I°. Midkiff. Issues in the compile-time optimization of parallel programs.

International Confercnee on Parallel Processing. 1990.

[32] 1B.S. Vivek Sarkar. Parallel program graphs and their classifi Hon. Seeth Work-
shop on Languages and Compilers for Parallel Computing. | zes 633 655, Aug

1993.
[33] www.wikipedia.org. The free encyclopedia www.wikipedia.o

[3:1] G. 0o AL S, Yuanging Guo. Mapping applications to a coarse grain reconfigurable

svstem. Lecture Notes an Computer Science, 2823/2003:221 235, 2003.

[35) J. Zhao. Multithreaded dependence graphs for concurrent java programs. 2ro-
ceedings of the International Symposiwm on Software Engc ering for Parallel

and Distributed Systems, 1999.

110

