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ABSTRACT 

The borehole gravity technique has been well established in hydrocarbon explo­

ration geophysics since the 1970's. The concept behind borehole gravity is simply to 

measure the variation in the Earth's gravitational field while traveling along a borehole. 

Densities both close to and far from the borehole can be derived from such measure­

ments. However, the borehole gravity technique has not yet been rout inely used for 

mineral exploration because gravimeters that fit in the narrower diameter holes used 

in mineral exploration have not existed. Such gravimeters are now being developed. 

Complementary investigation and development of interpretation procedures for borehole 

gravity data in a mineral exploration context are required. Here, results are presented of 

a study invert ing synthetic borehole gravity data for thre dimensional, mineral explo­

ration relevant Earth models. The forward-modelling on which the inversion is based is a 

finite-difference solution of Poisson's equation. The inversion is performed using a stan­

dard minimum- structure algorithm for mult iple scenarios of varying borehole locations, 

amount of borehole data and varying model parameters. The intention is to demon­

strate what we can expect to determine about the density variation around and between 

boreholes given varying amounts and locations of down-hole and surface data. It is ob­

served that the benefits of borehole gravity data depend on the locations of the boreholes 

rela tive to the anomalous mass. Inversions which produce images of complex subsur­

face density distributions are attainable with the most successful models resulting from 

combined surface and borehole data. Minimum- structure borehole gravity inversion is 

shown to be a beneficial interpretation option which can provide accurate information 

of an anomaly's shape with proper depth resolution and density distribut ion. 
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1.1 Overview 

CHAPTER 1 

Introduction 

The measurement of the vert ical component of gravitational acceleration is a long­

standing geophysical technique t hat has applied to geophysical exploration since the 

early nineteenth century. The Earth 's gravitational field is variant due to density 

distributions in the subsurface, therefore variations in rock densities can be exam­

ined (Reynolds, 2005). 

In explorational practices, gravity is typically surveyed by means of surface and 

air-borne measurements. These measurements do result in successful analysis of the 

subsurface, however density information is focused on materials closer to the surface 

rather than the geology found at greater depths. For mature projects or ones which 

target deep into the subsurface, drilling and exploration is being performed to gr ater 

depths, meaning that surface measurements give a limited scope and are less likely to 

provide useful information where exploration depths reach over one kilometer ( ind 

et al. , 2007) . Due to this, gravity measurement logging along a borehole was introduced 

and has been used in hydrocarbon exploration since the 1970's (see, e.g. , Nabighian 

et al. (2005)). 

Despite its success, the borehole gravity technique has rarely been used in min­

eral exploration. The reason is generally associated with technological issues, as the 

gravimeters developed for hydrocarbon exploration do not fit down the narrower bore­

holes typically drilled in mineral exploration. However, a gravimeter to fit down lim 

holes is currently being developed as part of a Canadian Mining Industry Research Or­

ganization (CAMIRO) research project. Interpretation techniques for the data that will 

be provided by slim- hole gravimeters in a mineral exploration context are therefore re­

quired. A major objective of the study presented here is to demonstrate what one can 

1 



expect to determine about the density variation around and between boreholes given 

varying amounts and locations of down-hole and surface data. Investigations using the 

minimum- structure inversion technique are presented for the interpretation of such data. 

Minimum- structure inversion of surface gravity data is now common-place. How-

ever, existing computer programs mostly cannot handle measurements from within the 

subsurface. This is because the forward-modelling is typically done using the expres­

sion of agy (1966), or similar, for the gravitational attraction of a rectangular prism. 

This expression is not valid for observation locations within the prism. With the in­

troduction of borehole gravimeters to the mineral industry, there is now the need for 

minimum- structure inversion procedures that can handle subsurface data. The inversion 

procedure discussed here uses a new forward-modelling approach that incorporates the 

finite-difference solution to Poisson's equation making it able to invert borehole grav­

ity data. Results are presented for simple, preliminary inversions of synthetic data for 

models in a zero halfspace. Later, inversions of synthetic borehole data from a model of 

Voisey's Bay Nickel Deposit are examined. Multiple trials involving differing scenarios of 

borehole data, locations of boreholes and varying inversion parameters are conducted for 

each starting model. Through exhaustive investigations, the results begin to illustrate 

the issues peculiar to the inversion of downhole gravity data. 

1.2 Gravitational Theory 

ewton proposed the force of gravity between two particles of mass to be directly 

proportional to the product of the masses and inversely proportional to the square of 

the distance between the centers of mass (Blakely, 1996) : 

F 
mmo A 

= ~--r r2 (1) 

Where a mass mat point P2(x, y, z) and a mass m0 at point P1(x' , y' , z' ) are separated 

by a distance r which is equal tor= [(x - x')2 + (y - y')2 + (z- z')2Jl12
. A unit vector, 
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r is directed from m towards m0 , and 1 is the universal gravitational constant , which is 

equal to 6.672 x 10- 8 Nm2 / kg2 in SI units. 

The acceleration due to the force of gravity is derived by the application of ewton's 

second law (F = ma) where acceleration 'a' is noted as gravitational acceleration 'g' 

and 'm' is referred to as 'm0 ' . By combining Newton's Second Law and equation (1), 

the acceleration of gravity for point P1 acting on m is given by, 

g(Pl) = -~ ~r . 
r 

(2) 

It is important to note that the relationship for gravitational acceleration in equation 2 

is only valid for observation points outside of the mass. An expression for observation 

locations inside a massive volume is derived later in the section. 

Because gravity is considered a conservative field (meaning that the work done to 

move a mass in a gravi tational field is independent of the path taken between two points), 

it can be represented as a scalar potential function, known as Newtonian Potential, by 

taken its gradient . 

(3) 

giving, 

(4) 

The Newtonian Potent ial is used to solve for the gravitational attraction for any obser-

vation point outside of a massive anomalous distribut ion of volume V . If the observation 

point is located at a distance r, then using the relationship for density (dm = p(r) dv), 

gravitational potential can be described as, 

(5) 

Applying equation (3) to all space and in cartesian coordinates, the acceleration of 

gravity can be represented as, 

(6) 
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However , since the gravity exploration method simply utilizes the positive vertical down-

ward or z-direction gravitational acceleration, only fJU / 8z is of concern. Applying this 

to the integral representation for potential seen in equation ( 5), an expression for the 

vertical acceleration due to gravity for any point located outside any volume of mass is 

derived as, 

fJU(PI) 1 z- z' gz(Pt) = 
0 

= -"( -
3
-p(P2) dv . 

z v r 
(7) 

Where dv = dxdydz and in SI units, g is in m/s2
, pis in kgjm3 and r is in meters. 

The expression from equation (7) is only applicable to observation points outside of 

a volume of mass. If the observation point P is inside of a volume of mass, the integral of 

equation (5) is singular and improper. The gravitational attraction from inside a volume 

of mass is described by Kellogg (1967) and discussed in further detail in Section 2.3 

1.3 Borehole Gravity 

Because exploration is continually reaching deeper into the surface, a method to 

acquire information about deep geological density features is necessary. This led to the 

concept of measuring the Earth's gravitational field down a borehole. This method pro­

vides density information that relates to a number of important rock properties pertinent 

to the petroleum industry as discussed by Smith (1950) and LaFehr (1983). The first 

borehole gravimeter was developed by LaCoste & Romberg, commercialized in the 1970s 

by Edcon. From these measurements, formation bulk densities can be determined and 

estimates of densit ies from remote sensing tens or hundreds of metres into a formation 

can be made (Hammer, 1950). 

Regardless of this success, the technique is rarely used in the mineral industry. 

This is because the gravimeters developed for petroleum exploration have a limited 

self-leveling range and do not fit down the small diameter boreholes drilled in mineral 

exploration. However, Scintrex (as part of a CAMIRO consort ium research project) is 
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currently developing a gravimeter appropriately sized to travel along these slim holes 

while maintaining the same sensitivity specifications as modern day surface instruments. 

This is being done by implementing Scintrex's well proven quartz element technology 

into the gravity sensor (Nind et al. , 2007). 

The use of borehole gravity data is beneficial in many stages of mining activities 

such as deposit evaluation, mine planning and grade control. Two major information 

assets derived from borehole gravity measurement are remote detection and mean bulk 

density determination. 

1.3.1 Remote Detection 

Remote detection from borehole gravity data provides information about the distri­

bution of the densit ies both close to the borehole and far into the geological formation. 

The application of remote detection procedures allow explorationists to estimate the 

depth and shape of a density anomaly. This is a process done regularly from surface 

gravity measurements alone, however with the additional borehole data, models can be 

created with increased spatial resolut ion and sensit ivities for more deeply buried struc­

tures. 

Borehole gravi ty data is also beneficial when combined with other geophysical detec­

tion methods. For example, when exploring possible massive sulphide deposits at greater 

dept h, typically borehole electromagnetic (EM) logging is used for detection which pro­

vides an apparent location for conductive sulphide lenses, however does not provide a 

reliable measure for the mass of the source. In addit ion, no information is obtained as 

to whether the source is a sulphide body, shear- zone or a non-metallic conductor such 

as graphite. When used in conjunction with EM logging, borehole gravity measurement 

provides the answers to important questions about the unknown excess mass. Also, 

gravity measurements for multiple boreholes can be logged and used in conjunction with 

surface and airborne gravity anomalies for inversions which create three dimensional 
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images of the deposit wit h far greater depth and geometric resolution. Borehole grav­

ity measurement is also helpful in other types of metallic and non- metallic deposits 

where other methods fail, provided that there is a distinguishable difference in densities 

between the deposit and surrounding geology. 

1.3.2 Bulk Density 

The introduction of borehole gravity measurement provides the ability to measure 

in situ bulk density. These density measurements are unaffected by casing, pore hole 

conditions and fluid invasion and in many sit uations will provide mining personnel accef'!S 

to quick information in determining the grade of the ore. Also, a better understanding 

of the grade control for many types of deposits is achieved by knowing the distinct per­

centage cont rasts between rock and mineral, which gravity data provides. This results 

in an accuracy improvement over previous methods used for core analysis, which prove 

to be erroneous if the porosity of the ore is not correctly considered (Nind et al. , 2007). 

Overall, an accurate measure of the in situ bulk density of the rock in mining applica­

tions is pert inent to its quality and can posit ively impact deposit evaluation and fu ture 

planning for the mine. 

1.4 Gravity Measurement 

Gravity measurements are typically done at a fixed location by devices known as 

gravimeters. Modern day gravimeters can record measurements to a sensitivity of the 

order of approximately 0.001 mGals (Telford et al. , 1990) or approximately a few parts 

per billion p,Gals of the normal Earth 's gravitational acceleration (Nind et al. , 2007). 

Gravimeters are essentially an extremely sensitive mechanical balance, whereas the ma­

jority are comprised of a mass hanging on a spring. Measurements are recorded when 

minute changes in the vert ical force of gravity displace the mass against the acting restor­

ing force of the spring. This displacement is proport ionally linked to the gravitational 
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force by Hooke's Law, which states, 

jj.p = -k/j.z, (8) 

where k is the spring constant and /j. z is the vertical displacement of the mass. By 

applying Newton's Second Law, a measurement for the change in gravity, fj.g, can be 

obtained. 

jj.p = m/j.g 

"g _ jj.p _ - k/j. z 
u - - -----. 

m m 
(9) 

Here, m is the value of mass. New age gravimeters employ a 'zero-length' spring that 

has a unique proportionality link between tension and length. This property causes the 

spring length to collapse to zero if all external forces are removed on the system (Telford 

et al. , 1990). The Scintrex designed borehole gravimeter uses quartz ( ind et al., 2007) 

as the material for the zero-length spring (Scintrex, 2009). 

Despite the presence of a density anomaly, it is not possible to determine a unique 

source since, similar to magnetic, radioactivity and resistivity techniques, gravity is a 

potential field source. Gravity measurement along a borehole is not a continuous log. 

Measurements are typically taken at marked depths spaced 10- 50 ft apart and usually 

a gravimeter requires 5- 10 minutes to register a recording (EDCO N, Inc.). 

1.4.1 Corrections to Borehole Gravity Measurement 

With the ability to obtain gravity measurements along a borehole, it is important to 

note the corrections which need to be made to the data before an accurate representation 

of the gravitational differentiation is achieved. The corrections that need to be applied 

to gravity data are as follows (Nind et al. , 2007). 

Free-Air Correction 

It is necessary to account for the vertical gradient of gravity for an observation 

location to account for the change of the force of gravity at elevation. This is known as 
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the free-air correction and is given by the relations (Telford et al. , 1990) , 

9FA = Az (10) 

Me 
A = 2'Y R3 = 0.3086 mGal/m, 

e 
(11) 

where Me and Re are the mass and radius of the Earth respectively and z is ucfiucu 

as the depth of the measurement relative to the mean sea level The free-air correction, 

however, does not consider dense material between the station and mean sea level. 

Bouguer Correction 

The Bouguer correction is needed to account for the dense material that the free-air 

correction did not account for between the observation point and mean sea-level. For 

borehole gravity measurements, the Bouguer correction is equal to, 

9B =Bz (12) 

where, 

B = 47qp. (13) 

Here, pis defined as density. The Bouguer correction is twice the value used for surface 

measurements. This is because the downward attraction of gravity is removed and 

upward attraction is added when passing downward through a dense layer (Hammer, 

1950). 

Depth Correction 

Uncertainties in depth can result in critical errors in borehole gravity readings and 

strongly affect the accuracy of bulk density calculations. Therefore for the increment 

of gravity !::!..g , it is important to log the correct depth, !::!..z, between two stations and 

include the free- air vertical gravity gradient and Bouguer corrections. 

!::!..g = (A- 47r'YP) !::!..z (14) 

8 



If the length of the borehole L is drilled at an inclination angle ¢ then 

b.z = b.L sin ¢ (15) 

Latitude Correction 

Increases in gravity with the angle of latitude are due to t he rotation of the Earth 

and its equatorial bulge. Similar to its surface gravity correction, all borehole gravity 

data must incorporate the latitude (denoted as e) at which they were measured. The 

correction for latitude is performed by application of the following, 

9L = 0.813sin2e - 1.78 x 10- 3 sin48 (16) 

Here, the gravitational latitude correction is given in units of 11Galj m. 

Atmospheric Pressure Correction 

An increase in atmospheric pressure will decrease observed gravity values because 

of an increased mass in the air column above the borehole. To adjust for this factor, the 

following correction is applied 

b.gA = -3.611 Gal/ kPa. (17) 

However , if a pressure gauge is used to measure the depth of the gravimeter, an 

increased pressure occurs and thus, a correction of b.g = - 12.2 11GaljkPa is needed. 

Other Corrections 

Other corrections that need to be considered when recording borehole gravity mea­

surements include accounting for the Earth's tides which involves the time and longitude 

of the readings; surface topography and local mining activity; regional gravity gradient 

modifications, which can be present due to large scale geologic features; and corrections 
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for t he temporal drift of the instrument which may have occurred along the length of 

the borehole. 

With all corrections accounted for, a consistent relation between gravity measure­

ment and density is possible. 

1.5 Gravity Inversion 

With the introduction of borehole gravity measurement to the mineral industry, 

interpretation techniques are required for the data in a mineral exploration context. 

Methods to model and interpret borehole gravity data are currently being conducted 

by the applied geophysics group of Ecole Polytechnique de Mont real by calculating the 

gravity response over arbitrary polyhedrons (Giroux et a.l., 2007). Here, a different ap­

proach using a technique known as minimum- structure inversion is investigated for the 

interpretation of such data. The minimum- structure inversion method is chosen due its 

general reliability and robustness in producing images of the subsurface from potential 

static field data. The procedure has already proven successful in areas of complex geol­

ogy (Constable et al. , 1987; de Groot-Hedlin and Constable, 1990; Smith and Booker, 

1988; Oldenburg and Li, 1994; Li and Oldenburg, 1996, 1998, 2000; Farquharson et al. , 

2008) and the models produced have limited artifacts that arise from noise in the ob­

servations. The borehole gravity inversion procedure presented follows a similar trend 

to the surface gravity minimum- structure inversion program , G RAV3D, created by the 

University of British Columbia Geophysical Inversion Facility (UBC- GIF) (Li and Old­

enburg, 1996, 1998, 2000; GRAV3D, 2007). The thee-dimensional inversion program 

works by minimizing an objective function which includes a model structure function 

and data misfit function. A model is created by distributing parameters in a mesh which 

generate a synthetic dataset that fits the observed data. The inversion continues until 

the synthetic data from the distribut ion of parameters matches the collected data within 

a certain statistical misfit. 
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Despite being a proven method for gravity inversion, the G RAV3D approach is 

unable to incorporate measurements within the subsurface, therefore cannot make use 

of borehole gravity measurements. The inversion procedure shown here implements a 

different forward-modelling approach that is able to handle measurements inside the grid. 

This is performed by application of the finite- difference solution to Poisson's equation. 

1.5.1 Forward Modeling 

The forward modeller is an essential component to the inversion program. It is used 

to simulate data for particular known models to obtain synthetic observed data. Also, it 

is responsible for the minimization of the data misfit portion of the objective function . 

The minimum- structure borehole inversion procedure investigated here implements 

a forward-modelling procedure that evaluates the finite-difference solution to Poisson 's 

equation (Farquharson and Mosher, 2009) seen in equation (18) and is discussed in 

greater detail in Chapter 2. 

(18) 

Poisson's equation represents the gravitational potential in all space, either inside or out­

side of the mass distribution. The forward solver begins by defining the finite-difference 

equations associated with a finite-volume rectangular mesh. From these, a linear system 

of equations that provide an approximate solution to gravitational potential is generated. 

To maintain sparseness, a conjugate-gradient method is used to obtain the solution of the 

gravitational potential. Components of the gravitational acceleration are then computed 

using a finite-difference approximation of the gradient operator. One major advantage 

worth noting is the sparseness of the linear system of equations, because of this the for­

ward solver requires much less virtual memory, therefore is less computationally taxing 

to run. 

The finite-difference method presented here is best suited for programs which utilize 

a conjugate-gradient based inversion. This type of inversion does not directly evaluate 
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the Jacobian, however calculates the matrix-vector products implicitly in a pseudo­

forward problem (Mackie and Madden, 1993; Rodi and Mackie, 2001). The use of the 

pseudo forward problem provides the inversion with the typical Jacobian matrix- vector 

products without actually having to compute the Jacobian . Since the Jacobian can be 

large in most modern inversions, this method ensures greater computational efficiency. 

1.5.2 Minimum- Structure Inversion 

The application of minimum- structure inversion has proven successful in the inter­

pretation of gravity, magnetic, electric, and electromagnetic survey data, especially in 

areas with complex geology. A typical minimum- structure inversion procedure (Li and 

Oldenburg, 1996; Portniguine and Zhadov, 1999; Boulanger and Chouteau, 2001) pa­

rameterizes the Earth's subsurface into cubic cells which each hold a physical property, 

for gravity this is density, creating a right rectangular mesh. Techniques using irregular 

grids with arbitrarily designed polyhedrons have also been studied (Barnett, 1976; Gotze 

and Lahmeyer, 1988; Coggon, 1976; Singh and Guptasarma, 2001). The inversion aims 

to recover the parameters of a model which holds the least spatia l variability. This is 

done by minimizing an objective function which is comprised of two parts. The first 

part deals with the gravity measurements and fits a set of observed data to a density 

model's predicted data. The second part is a model objective function which cont in­

ually distributes density into the mesh until a single model is achieved which is able 

to adequately reproduce the observed data within a desired statist ical misfit. Because 

the minimization is an underdetermined problem, there are a number of different den­

sity models which will fit the observed gravity measurements within a misfit. Due to 

this quality of non- uniqueness, there are often spatially dependent weighting functions 

incorporated into the model objective function to limit the number of possible density 

models 

The issue of non- uniqueness is a common problem amongst all forms of static po-
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tential field geophysical inversions. This is due to the fact that there are an infinite 

number of different density models which will be able to fi t the finite number of density 

distributions. It is typical to see a priori knowledge incorporated into inversions; qualita~ 

tive information already known about the subsurface. Common methods to incorporate 

known density cont rasts, weighting parameters (Chasseriau and Chouteau, 2003) , and 

geological constraints (Ash, 2007) into reference models are all performed to achieve 

a more accurate solution. Each reference model can be weighted accordingly to have 

differing impacts on the inversion. 

Another issue commonly associated with minimum- structure inversion is the lack 

of apparent depth resolution which occurs for all potential field inversions. This is due to 

the fact that surface gravity data decay with depth (Li and Oldenburg, 1998). The result 

is that inversions display an excess distribution of density anomalies near the surface of 

the model grid. To address this problem, a depth weighting function is incorporated into 

the model objective function with the purpose of allocating density anomalies at depth 

by counteracting the natural decay of the kernels. Kernel decay issues also occur with 

borehole gravity inversions, however, instead of a preference for density anomalies to be 

allocated towards cells near the surface, the anomalies tend to appear more frequently 

around and along the length of a borehole. Similar to the depth weighting applied to 

surface inversions, a side or lateral weighting is incorporated in the minimum- structure 

borehole gravity inversion, which is able to relocate density anomalies away from the 

borehole. 

Overall, t he minimum- structure inversion process is generally reliable and robust, 

and produces models in which noise in the observations produce only a limited amount 

of artifacts. However, the models obtained are typically of smeared shapes and do not 

exhibit the sharp interfaces that are usually assumed to separate subsurface geologic 

structures. Techniques for developing sharper interfaces in models have been described 
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by Last and Kubik (1983) , Portniguine and Zhadov (1999) , and Farquharson (2008) . 

1.5.3 Models 

To study the effects of borehole gravity data on minimum- structure inversions, a 

multitude of trials involving a differing amount of borehole data and differing borehole 

locations are conducted. The results for minimum- structure inversions tests are shown 

initially for a block and wedge-in- a- halfspace true models in Chapters 4 and 5. The 

observed data for the studies is of the synthetic brand and is calculated from different 

scenarios of borehole and surface locations. Inversions incorporating a priori informat ion 

and sharper , blocky-style outcomes are also examined. Other investigations include the 

influence of addit ional weighting matrices and reference models. Finally, inversions of 

the main Ovoid model of Voisey's Bay nickel deposit is examined. The results illustrate 

some of the issues peculiar to the inversion of down-hole gravity data. 

1.6 Voisey's Bay Deposit 

The Voisey's Bay mining project is owned by Vale-Inco Ltd. and is a ickel-Copper­

Cobalt deposit located on the northeast coast of Labrador , Canada approximately 35 

km southwest of N ain and 350 km north of Happy Valley-Goose Bay. The location 

on a regional geological map is seen in Figure 1. The site was discovered in 1993 by 

prospectors originally searching for diamonds and is now regarded as one of the most 

significant mineral discoveries in Canada in the past 40 years (Naldrett et al. , 1996). 

Mining of the ore began in August, 2005 and processing began in September, 2005. 

In 2007, it was believed that t he main Ovoid deposit contains approximately 28.9 

million tonnes of proven and probable resources. In addit ion to the proven and probable 

reserves in t he Ovoid, there are an additional 38.5 million tonnes of indicated resource 

and 6.3 million tonnes of inferred resource (VBNC, 2009). 
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Figure 1. Regional geological map of ewfoundland and Labrador , Canada. The location 
of the Voisey's Bay Ni-Cu-Co deposit is indicated by the red star. 

15 



2.1 Overv iew 

CHAPTER 2 

Forward Modeller 

Current thre dimensional minimum- structure inversion programs discretize the 

Earth to represent the subsurface. A right rectangular mesh where each cell contains a 

uniform density is commonly used (Bear et al. , 1995; Li and Oldenburg, 1998; Portnigu­

ine and Zhadov, 1999; Nagihara and Hall, 2001; Chasseriau and Chouteau, 2003). Other 

techniques apply irregular grids with arbit rarily designed polyhedrons to represent the 

subsurface (Gotze and Lahmeyer , 1988; Singh and Guptasarma, 2001; Giroux et al. , 

2007) , however the use of a regular rectangular grid has many advantages. Depending 

on the dimensions of the cells, a mesh has the potential to represent multifarious density 

distributions. Due to the geometric simplicity of a right rectangular mesh, a linearity 

relationship between the data and sought parameters is formed if mesh boundaries are 

fixed and if computation for the gravitational potential algorithms is simple. 

To compute synthetic data for an inversion that uses a fixed mesh it is common 

practice to apply a matrix-vector product: 

d = Gm (19) 

where the vector d is formed of the synthetic values for t he vertical component of the 

gravitational acceleration at each observation point i , the vector m has elements of 

density values that correspond to cells j, and the matrix G includes elements 9iJ that 

contain the gravitational contribution from a particular density in the jth cell for the 

data evaluated at the ith observation point. This matrix G is known as the Jacobian or 

sensitivity matrix and is also required for minimizing the misfit between observed and 

synthetic data in a steepest-descent or Gauss- ewton inversion process. 
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There are mult iple algorithmic variations used to express the gravitational attrac-

tion of a right rectangular prism. The algorithms have been presented in the past and 

a full summary is given by Li and Chouteau (1998). Most surface gravity inversion pro­

grams (Li and Oldenburg, 1998) apply the closed-form expression given by Nagy (1966) , 

however, problems exist within this algorithm as it encounters mathematical fallacies 

when gravitational values a t observation points inside rectangular prism are desired. In 

addition , other computational difficult ies occur with this method when the x- axis is 

crossed (y boundary values have different signs), y- axis is crossed (x boundary values 

have different signs) or both axes are crossed. If either of these cases occur, the integral 

of equation (7) must be evaluated from the lower limit to zero and from zero to the upper 

limit. Specifically, these problems occur due to the use of an arcsin term in the alga-

rithm. Methods that do not exhibit these problems are presented by Soronkin (1951) , 

Haaz (1953) , Jung (1961) , Plouff (1976), and Okabe (1979), Steiner and Zilahi-Sebess 

(1988) and avoid error by ut ilizing an arctan term instead of arcsin. For the purposes 

of this study, the closed form formula by Okabe (1979) and Steiner and Zilahi-Sebess 

(1988) is used. This is given by, 

2 2 2 

[ 
xi+ Yi+ rijk ] 

9ii = - G 8 ~ £; /-lijk x ln(yj + rijk ) + Yi ln(x + rijk) + 2zk arctan zk 

(20) 

where 

The 9ij values calculated by equation (20) comprise the elements of the sensit ivities 

matrix G. 

With a vector of densities m and by using equation (20) to obtain the values of 

G , the vertical gravitational acceleration for any dense right rectangular mesh can be 

calculated at desired observation points through application of equation (19). 
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2.2 Computation 

Although equation (19) works well for computing gravitational values, the vastness 

of the matrix G is of concern. In many Gauss- ewton inversion algorit hms, the com­

putational memory required to compute G and the Hessian matrix GTG , which is also 

used in the inversion process, is substant ial. These computational issues increase in rele­

vance for inversions that contain large data-sets and meshes with finely discretized cells. 

Several methods to resolve computation memory concerns have been well documented 

over the years. 

One method to reduce the computational size of the sensit ivity matrix is presented 

by Oldenburg and Li (1994) who use a more general model objective function by incor­

porating a subspace methodology, which bypasses the full matrix computations normally 

found in Gauss-Newton equations. Another method is the use of conjugate- gradients to 

avoid t he need to solve the Hessian in inversions (Li and Oldenburg, 2000) and to ex­

ploit symmetries (Boulanger and Chouteau, 2001). A method incorporating fast wavelet 

transforms with small wavelet coefficients is presented by Li and Oldenburg (2003) . This 

method creates a sparse representation of the Jacobian matrix and performs fast matrix­

vector multiplications in the wavelet domain for forward modelling. 

The success of the forward modelling for 2-D and 3-D magnetotelluric inversions 

presented by Mackie and Madden (1993) and Rodi and Mackie (2001) provided the in­

spiration to create a similar method to forward model gravity data (Farquharson and 

Mosher , 2009). This method uses a conjugate- gradient procedure that implicitly per­

forms matrix-vector products of the J acobian. This means that the Jacobian is not 

actually formed, but its product with a vector is given by the solution of a pseudo­

forward problem. The pseudo forward problem has the same matrix as equation (19), 

however incorporates the product involving the sensit ivity matrix on the right hand side. 

Due to the sparseness of the calculations, this type of forward modeller is efficient and 
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produces solutions using an iterative method. 

A method to forward model synthetic gravity data by use of the finite- difference 

solut ion to Poisson's equation analogous to t he method of Mackie and Madden (1993) 

and Rodi and Mackie (2001) is presented here. The main advantages of this method are 

to increase computational efficiency with respect to other methods and to introduce a 

method for incorporating borehole gravity data into the minimum- structure inversion 

process. Forward modelling of gravity data for 3-D inversions by way of Poisson's equa-

tion is presented by Zhang et al. (2004), however in this paper, a finite-elements solution 

is used instead of applying a finite-difference procedure. 

The forward modeller program described above was created by Farquharson (Far­

quharson and Mosher, 2009). Testing of the code was performed by Mosher and is 

presented in Section 2.4. 

2.3 Theory 

The following section describes the theoretical derivation of a finite-difference solu­

tion to Poisson 's equation. The steps taken in this method are analogous to the process 

described by Farquharson and Mosher (2009). 

The theory to determine the gravitational potential outside of a distribution of mass 

through the use of equation (7). is presented in Chapter 1. To derive the gravitational 

potential inside a volume of mass, equation (5) is re-examined first. If the observation 

point Pis inside a volume of mass, the integral of equation (5) is singular and improper. 

Despite this , Kellogg (1967) shows that an integral of nature 

U(P) = { .!!_ dv Jv rn 
(21) 

is convergent for any point P inside a volume V and thus is continuous throughout V 

provided that it is bounded, pis piecewise continuous, and n < 3. If the potential U(P) 

and gravity g(P) exist and are continuous both inside and outside of a distribution of 
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mass, it is therefore assumed that g(P) = \lU(P) inside the mass as well. By application 

of the Helmholtz theorem derived from Maxwell 's equations (Blakely, 1996), potential 

and gravity thus relate as, 

U = 2_ j \7 · g dv 
47r r 

(22) 

By rearranging equation (22) and equation (5), an expression referred to as Poisson's 

equation is formed, 

(23) 

Here, Poisson's equation describes the relationship between mass and potent ial through-

out space. If no mass is present, Poisson's equation is simplified to give Laplace's 

equation ("V2 U = 0). A concrete example for the derivation of Poisson 's equation inves-

tigating the gravitational effects on a solid sphere is given by Blakely ( 1996). 

The forward modeller presented here describes gravitational potential through the 

use of a finite-difference solution to Poisson's equation , it is derived through the use 

of two fundamental gravitational relations examined below. To aid in this derivation, 

a rectangular mesh which represents an area of interest wit hin the subsurface is used. 

The center of each rectangular cell in the mesh has indices i, j and k and it is assumed 

that each cell has a uniform density Pijk · A diagram of a section of the mesh is seen 

in Figure 2. In Figure 2, the jth plane normal to t he y- direction is shown for the cell 

centered at point (xi, yj, zk)· To obtain the solution to Poisson's equation, the potential 

at the center of each cell and the gravitational acceleration component values at the 

centers of the six faces for each cell must be accounted for. 

2.3.1 Potential at Cell Centers 

To provide a solution for the gravitational potential at the centres of the cells, 

Gauss ' Law for gravitational acceleration is considered , which states that for a region 

R bounded by a surface S , the total mass M in a region is proportional to the normal 

component of gravitational attraction integrated over the closed boundary of the region 
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Figure 2. A section of the jth x- z plane of the mesh. The centered cell with indices 
( i, j, k) and surrounding cells are shown ( OTE: The index j has been removed from all 
shown potentials and components of the gravitational acceleration). 

(Blakely, 1996) , 

-47rM = 1 g · ftdS =LV' · gdv = L 'V2
U dv 

where g = g(r) is gravity, r is the vector form source point to observation point, ft is 

outward normal unit to the surface. Then, substituting in Poisson's equation (23) yields, 

1 g · ndS = -47f-vp· . kv; · k I 'L,J, 'L ,J, 
S ;, j,k 

(24) 

where Si,j,k is the surface boundary of cell (i,j, k) and Vi,j,k is the volume of the cell. 

Consider the case where the gravitational acceleration of a cell face normal to the 

x- plane between a cell center (i,j, k) and it 's adjacent cell center (i- 1,j, k) is desired 

(see Figure 2). For this case, the integral in equation (24) is denoted as fsi, j ,k 9x dydz. 

To obtain an expression for the value inside this integral, a Taylor series expansion is 

applied about the center of the face, 
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( ) i-1/2 · k Bgx ( ) Bgx ( ) (( 2) (( 2) 9x Xi-1/ 2, y , z = 9x ,], + By y - yj + a z z - Zk + 0 y - yj) + 0 z- zk ) . 

(25) 

By integrating the Taylor series expression over the face between cells (i- 1,j, k) and 

(i, j , k) , the following solution is obtained, 

J
Y;+ !:;.y;/2 1 z;+!:;.z; /2 

9x dydz = g~-lj2,j,k b.yj b.zk 
Y;-/:;.Y;/2 z; - /:;. z; /2 (26) 

Where b.yj and b.zj are the lengths in they- and z-direction of cell (i,j, k). If the same 

procedure is applied to the other five sides of cell (i, j , k), then a complete representation 

for the approximation of Gauss' Law, equation (24), can be presented as, 

{ g. ildS = (g~+1/2,j,k _ g~- 1 /2,j,k ) b.yjb.Zk + (g;,j+1/2,k _ g~j- 1/2,k) b.xib.zk 
J si,j,k 

(27) 

= -47r'Vp· . kv: k + 0 (b. 4 ) . f ~,], 'l.,J, 

Here, the b. term represents the linear extent of the cell in any direction. Next, dividing 

equation (27) by the volume of the cell results in, 

_1_ (gi+1/2,j,k - gi- 1/2,j,k ) + _1_ (gi,j+l / 2,k - g i,j- l / 2,k) + _1_ (gi,j,k+ l / 2 - gi,j,k- 1/2) 
b.Xi X X b.yj y X b.zk Z Z 

= -41r'YPi,j,k + 0 (b.) (28) 

This expression relates the components of gravitational acceleration on cell faces to each 

other and the density in the cell. It is noted that this is a finite-difference approximation 

to Gauss' Law, when the remainder term Ob. in equation (28) is considered insignificant 

and ignored . When this remainder term is ignored, equation (28) can be transformed 
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into a more compact matrix notation: 

(29) 

Here, the matrix D x has dimensions nxnynz by (nx + 1) ny nz and is characterized as a 

sparse matrix which contains 2nxnynz non-zero elements, where n x, ny and n z are the 

numbers of cells in x-, y- and z-directions. Values for the non-zero elements in D x 

are ±1/ b.xi· Matrices D y and D z are created in a similar way, however have dimensions 

n xnynz by n x(ny + 1)nz and nxnynz by nxny(nz + 1) and non-zero element values of 

± 1/ b.yj and ±1/ b.zk respectively. 

The vector gx contains (nx + 1)nynz elements and contains the approximate values 

for t he x- components of the gravitational acceleration at the centers of the cell faces 

that have x-directed normal. Vectors gy and gz contain nx (ny + 1)nz and nxny(nz + 1) 

elements respectively and contain the gravitational acceleration approximations at the 

centres of their faces respective to their normals. Finally, vector r contains the densities 

of each cell and incorporates the constant - 47rf. 

With the components of the gravitational acceleration at the center of each cell face 

calculated, it is now necessary to derive an expression that represents the values of the 

potential at the centers of each cell face to obtain a solution to Poisson 's equation. 

2.3.2 Gravity at Cell Faces 

To obtain an expression relating the potential at cell centres to the components of the 

gravitational acceleration at the center of each cell face, the potential between two points 

is considered. Since gravity is a conservative field, gravitational potential between two 

points P1 and P2 can be expressed as, 

(30) 

Where dl is the incremental length vector along the path between the two points. If 

equation (30) is applied to examine t he potential for the centers of two adjacent cells 
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(i,j, k) and (i- 1, j , k) in the x-direction, 

1
X i 

9x dx = u i,j,k- u i-1,j,k 
Xi - 1 

(31) 

Expanding 9x in a Taylor series about the center of the face separating the center of 

cells (i , j , k) and (i - 1,j,k) in the x-direction gives, 

( ) _ i-1/2,j,k 8gx ( ) 0 (( )2) 9x X, YJ, Zk - 9x + ax X - Xi- 1/2 + X - Xi- 1/2 . (32) 

Substituting the lower order approximation equation (32) into equation (30) gives, 

· 1/2 ·k (.6.xi- 1 .6.xi ) · ·k · 1 · k ( 3 g~- ,] , -
2
- + -

2
- = u•,J, - u·- ,], + o .6. ) (33) 

Thus, 

This expression represents the x- component of the gravitational acceleration at the 

center of the cell in the x- normal face and is used to derive equations for all cell faces 

in the x-direction. Cells at the beginning or ending edge of the mesh, (O , j , k) and 

(nx + 1, j , k) are incorporated as 'ghost' cells and are assigned a potential of zero. Doing 

so is an implicit means of applying homogeneous Dirichlet boundary condit ions on the 

approximate potential. It is assumed that a region of non-zero density surrounding the 

mesh and these boundaries is sufficiently deep that it represents well actual boundary 

conditions of the potential at infinity. A similar method is applied for constructing 

equa tions equivalent to equation (34) in they- and z-directions is applied. 

The remainder from equation (34) is of order .6.2 and is once again ignored . The 

gravitational acceleration components for all x- , y- and z- normal cell faces can be 

expressed in matrix form as, 

(35) 

(36) 
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(37) 

The matrices F x, F y and F z incorporate finite-difference derivatives and have dimensions 

(nx + 1) nynz by n xnynz; n x (ny + 1) nz by nxnynz; and nxny (nz + 1) by n xnynz. Each 

has 2nxnynz non-zero elements. Respectively, the non- zero elements of each matrix are 

± (2/ /:::,.xi-1 + 6.xi), ± (2/ /:::,..yi-1 + 6.yi) and ± (2/ 6.zi_1 + 6..zi). The vector p contains 

the values of the approximate potential at all the cell centres. Equatiou (37) is a finite­

difference approximation for the z- component of equation (3) . 

By re- arranging equation (37) and equation (29), the following expression is ob­

tained, 

(38) 

This expression is the finite-difference approximation to Poisson's equation (23) and 

incorporates the approximation of the homogeneous Dirichlet boundary conditions on 

the potential at infinity. The remainder term associated with equation (38) is of order 

6. and is spawned from the remainder of order 6.2 from equation (34) and the remainder 

of order 6. from equation (28) . 

2.4 Forward Modelling 

To usc the finite-difference approximation to Poisson's equation to create synthetic 

gravity dat a for a specific model, the matrices in equation (38) are constructed in a sparse 

matrix format (compressed sparse row) . A tool kit known as SPARSKIT, specializing 

in sparse matrix operations, performs all the sparse matrix multiplication and addition 

routines necessary on the left hand side of equation (38) . A conjugate-gradient routine 

from SPARSKIT with incomplete LU decomposition preconditioning (Saad, 2003) solves 

the matrix equation. This produces an approximate value for the potential at the centers 

of each individual cell. The potential values calculated are arranged in the vector p and 

are accurate to the order of 6.3 (Farquharson and Mosher, 2009) . 

The approximate vertical component of gravitational acceleration at the z- normal 
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cell faces is then computed using the z- direction product of equation (37) , gz = G zP · 

To obtain the vertical component of gravity at desired observation locations, linear 

interpolation of the two closest z-normal face centers is used. 

2.4.1 Gravity Patterns 

A typical borehole gravity pattern for a massive sulphide body is characterized by 

an increase in gravity above the center of mass of the body and a decrease below it. 

The cross-over point marks the approximate depth of the center of mass and the peak 

to peak distance provides an estimate of the distance to the center of the mass from the 

borehole. In general, the peak to peak distance is at a minimum for boreholes located 

through the center of the mass and increases as the borehole moves away from the center 

of mass. If t he borehole does not travel deep enough to the center of the mass, then 

only positive gravity changes will be observed (Nind et al. , 2007). 

2.4.2 Example 

The example presented here simulates borehole gravity measurement by use of a 

finite-difference approximation to Poisson's equation. Gravity values for a simple dense 

block in a zero halfspacc arc presented for different borehole locations. 

To compute synthetic borehole gravity, values are calculated along the z-axis at 

a fixed (x, y) point. The mesh presented here has dimensions (x, y, z) ::::} (0 : 600,0 : 

600, 150 : -450). The density model used is a 100 x 100 x lOOm cube block located in 

the center of the mesh at (x , y , z) ::::} (250: 350, 250: 350, - 100 : -200). The block cells 

have a density of 2000 kgjm3 , all cells not included in the block have zero density. The 

data for three different borehole locations, that travel the length z ::::} (0 : - 300) are 

examined; one outside the block located at (x, y) = (150, 300); one on the edge of the 

cube located at (x, y) = (250, 300) ; and one through the middle of the cube located at 

(x, y) = (300, 300). The locations of these boreholes and the dense cuboid model are 
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seen in Figure 3. 
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Figure 3. The dense cuboid model in gray the boundaries of the mesh and the three 
borehole locations from a plan and side view. The gray cuboid has a density of 2000 
kgjm3 in a zero density wholespace. 

To demonstrate the errors associated with varying the coarseness of the spatial 

discretization of t he meshes used , four dimensionally identical meshes are examined, 

however each is subdivided with differently sized cubic cells. Cells sizes for the four 

meshes are 50, 25, 10 and 5 meters in each direction. Therefore, the first mesh has 

1, 728 total cells each of size 50 x 50 x 50m; the second has 13,824 total cells of size 

25 x 25 x 25m; the third has 216,000 total cells of size 10 x 10 x 10m; and the fourth 

has 1, 728, 000 total cells of size 5 x 5 x 5m. The values for the vertical component of 

gravitational acceleration are computed from the finite- difference solution to Poisson's 

27 



equation at thirty- nine distinct observation points approximately 7. 7 meters apart along 

the previously mentioned boreholes in each of these meshes for the cuboid density model. 

For comparison purposes, gravity values at ident ical observation points are computed for 

the exact density model using the gravitational attraction of a right rectangular prism 

presented by Okabe - Steiner and Zilahi-Sebess' formula (Li and Chouteau, 1998) seen 

in equation (20). 

0 y = 150m 0 0 y =300m 

100 100 100 

200 200 200 

300 300 300 

-3 0 3 -3 0 3 -3 0 3 

g: (mGal) 8: (mGal) gt (mGal) 

Figure 4. The gravity values calculated from the boreholes and density model seen in 
Figure 3. The red, green, blue and black lines represented the gravity values obtained 
by the finite-difference solution by using the 50, 25, 10 and 5 m meshes respectively. 
The closed form gravity values are in black dots. 

The values for the vertical component of the gravitational acceleration for the three 

boreholes are seen in Figure 4. 

From the graphs, the values computed by the Okabe- Steiner-Zilahi-Sebess' formula 

are indistinguishable from the finite-difference results for the 5 and 10 m meshes. The 25 

and 50 m results follow a similar gravity distribution pattern, however deviations occur 

mostly at the peaks of the gravity values. The values in error for each observation point 

from the four finite-difference meshes is examined against the closed-form equation and 

plotted in Figure 5. 
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Figure 5. The errors in gravity values calculated from the boreholes and density model 
seen in Figure 3. The red, green, blue and black lines represent the errors in gravity 
values for the 50, 25, 10 and 5 m meshes respectively compared to the closed form values 
in black dots. 

To emphasize the increased accuracy of the fini te-difference approximation with 

finely discretized meshes, the cumulative error for the four sized meshes is calculated . 

The cumulative error is obtained by taking the square root of the sum of the squares for 

each mesh , which incorporates the error from t hree borehole locations. The cumulative 

error for the four meshes are shown in Table 1. 

An integral part of the minimum- structure inversion process is employing a capable 

and accurate forward modeller. The forward modelling process presented here incorpo-

rates a finite-difference approximate solution to Poisson's equation. This method is able 

to compute gravity values within and outside of a three--dimensional dense model wit h 

good accuracy, depending on the cell discretization used. The method is efficient in com-

putational memory usage because it avoids the creation of the full J acobian matrix in 

its application. However , the method is generally slower than methods which evaluate 

the full J acobian (Farquharson and Mosher , 2009). Due to the success of the finite-

difference approximation to Poisson's equation for gravity measurement , it is used as 
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~ Cumulative Error (mGal) 
50 0.3350 
25 0.1498 
10 0.0389 
5 0.0335 

Table 1. List of cumulative errors associated with cell sizes ( ~) in the different meshes. 

the forward modelling method for all minimum- structure inversions presented through-

out the following Chapters. 
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CHAPTER 3 

Minimum- Structure Inversion 

The following chapter describes the steps necessary to perform a minimum- structure 

inversion. The mathematical theory is presented as well as methods used to accommo­

date non-uniqueness and the lack of depth resolution - common issues that affect the 

accuracy of the inversion problem. These difficulties are addressed by the inclusion of 

spatial and depth weighting functions and incorporating prior information into the in­

version. The inversion algorithm used is known as g3dfd written by Colin Farquharson. 

The program works analogously to the GRAV3D method created by the University of 

British Columbia's Geophysical Inversion Facility (UBC- GIF) (Li and Oldenburg, 1998; 

GRAV3D, 2007), however is characterized by two main differences. First , the forward 

modeller uses a finite difference approximation to Poisson's equation as discus ed in 

Chapter 2. Second, in addit ion to the typicall2 style, the inversion code is able to per­

form l1 style inversions which produce "blocky" models that exhibit sharper interfaces 

between densities. 

3.1 Inversion Overview 

The use of inversions for gravity data provides the ability to reconstruct density 

contrast models of the subsurface and is now a common practice for interpretation of 

surface and airborne gravity measurements. 

A major issue associated with inversions of gravity data, and all static potential 

fields, is t he non-uniqueness of the problem, meaning that there are an infinite number 

of possible density distributions that will reproduce the observed data (Li and Oldenburg, 

1998). The cause of non- uniqueness can be attributed to a consistent problem associated 

with all static potential fields: a lack of depth resolution. 

Many methods using differing criteria to reduce ambiguity in density distributions 
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have been authored. Pedersen (1979) presents a method that assumes a constant den­

sity cont rast between an anomaly and outer cells, and tries to obtain the position of the 

polygonal or polyhedral anomaly from inversions. Methods that assume t he shape or 

center of an anomaly and proceed to construct a density contrast as a function of spatial 

position have also been authored. For example, Green (1975) employs a weighted min­

imum distance method combined with a procedure which forces single density models. 

Guillen and Menichetti (1984) apply a minimization procedure using the inertia of the 

anomaly with respects to the center of the body or an axis which passes through it. 

A method authored by Li & Oldenburg known as minimum-structure inversion to 

image 3- D magnetic data (Li and Oldenburg, 1996) and gravity data (Li and Oldenburg, 

1998) has proven particularly successful in areas of complex geology. In this method, 

the earth is discretized using a right rectangular mesh. The cells of the mesh stay fixed 

and hold a uniform density, however the density in able to vary throughout the course of 

the inversion. An initial density model is input into the mesh and a forward modelling 

method is used to obtain a predicted gravity data- set. The predicted data- set is then 

matched to the initial observed data-set in hopes that it adequately satisfies a certain 

measure of misfit. If this docs not occur, the inversion adjusts the density distribution 

unt il the predicted data and observed data are in agreement within the measure of 

uncertainty. The process is robust and reliable and does well to produce models which 

have a limited number of artifacts due to noise in the observations. 

Minimum- structure inversions incorporate user controlled constraints into the min­

imization algorithm. The constraints can encompass a number of different physical and 

geological properties previously known about the subsurface. These are included in 

hopes of confining the inversion to a geologically reasonable result. 
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3.2 Theory 

For minimum- structure inversions of a gravity data- set, gravity measurements and 

their associated errors at distinct observation locations are required. The uncertainty 

which accompanies each gravity datum is derived from the collection of gravity data and 

the Bouguer reduction techniques (Ash, 2007). The subsurface of the Earth is discretized 

into a mesh or grid, typically in Cartesian coordinates. Throughout the inversion, the 

mesh stays fixed with each cell holding a density value. The more cells in a mesh, the 

more flexible a representation of the Earth's subsurface is achieved. 

The inversion is complete upon the minimization of an objective function. The 

objective function is comprised of two terms that incorporate measures of the gravity 

data and the density distribution, and is given by the relation, 

(39) 

where c/Jd is the gravity data misfit, ¢m is the measure of model structure, and (3 is a 

trade-off parameter. The value of (3 is of order E [0, oo] and is dependent on the relative 

importance sought between the data misfit and model structure. An ideal (3 value is one 

that produces results which fit the data neither too well (in which case the inversion is 

fitting the noise in t he data) nor too poorly. 

3.2.1 Data Misfit 

The purpose of the data misfit term is to mm1m1ze the difference between the 

observed gravity data- set and a predicted data- set produced from an inversion model. 

It is defined as, 

(40) 

Here, d obs is the observed gravity data vector and d(m) is the predicted data which 

is produced by forward modelling of a density model m . The diagonal matrix W d 

incorporates the error associated with the observed gravity data and is defined as , 
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1 0 0 
C<i 

0 _.!._ 0 
W d= C<i 

0 0 1 
C<N 

where ai is the standard deviation error for the ith gravity value measurement and is 

assumed to be uncorrelated noise. In general, the statistical nature of the data misfit 

function is a x2- distribution , therefore an acceptable result for the inversion misfit is one 

that equals the number of observations. If the value of c/Jd is lower than the number of 

observations, it is assumed statistically that the predicted gravity data-set is fi tting the 

observed data-set too well and therefore fitt ing the error associated with the observed 

data- set . 

3.2.2 Model Structure 

Since there are multiple models that are able to fit the observed gravity data, a 

model objective function is vital to minimize the number of density models that satisfy 

the data misfit constraints. The model objective function incorporates different weight-

ing functions and a reference model m 0 , which can be adjusted depending on a priori 

knowledge aud the nature of the iuversion. The model objective function is defined as, 

¢m =as l Ws {w(z) [m - mo]}2 
dv 

1 { ow(z) [m - mol }
2 

d 
+ax Wx ~ V 

v ux 

1 { ow(z) [m- mol }
2 

d + ay Wy ~ v 
v uy 

( 41) 

1 { ow(z) [m - mol }
2 

d + az Wz ~ V . 
v uz 

Where w(z) is a depth weighting function, m is a density vector and functions W 8 , 

Wx, Wy and W z are spatially dependent weighting functions. The terms a 8 , ax, ay 

and az are coefficients that affect the relative importance of different components in 

the objective function (Li and Oldenburg, 1996) . The models produced by minimum-
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structure inversions are generally smoothed images with little density variation from 

one cell to its adjacent. The ratio between the a terms impacts the smoothness that is 

present in the model. The smoothness increases as the ratio between a x I a 8 , cr.y I a s and 

azl a 8 increases in each axis direction respectively. 

The function W 5 controls how close the final model m is to the reference model 

m 0 . The reference model can include densities that have been estimated from previous 

models or can be a zero model. The weighting functions W x, Wy and W z are designed to 

allow for enhancement or attenuat ion in their respective axes in various regions of the 

model domain. The reference model and four weighting functions are included into the 

minimization to incorporate additional information in hopes that a model is recreated 

that not only fits the data adequately but also more accurately represents the subsurface. 

Additional information that can be included comes from knowledge of density contrast, 

other geophysical surveys, and interpretations of the regional geologic structures and 

their relationship to density. 

3.2.3 Depth Weighting 

In surface gravity inversions, the lack of depth resolut ion is a problem. This applies 

to all static potential field data when trying to minimize a function of nature IIPII 2 = 

J p2dv as is the case for equation 39. This arises on account of the created models 

direct linear combination with the kernel functions. The nature of the kernel function 

amplitudes are to rapidly decay with depth (Li and Oldenburg, 1998). This results in 

model outcomes where density dist ribution is concentrated near the surface of the mesh 

despite the presence of a dense body source at depth. To address this situation , Li 

and Oldenburg (1998) note that the gravitational kernels decay with an inverse distance 

squared relation and int roduce a depth weighting function for surface gravity inversions 

defined as , 
1 

w(z) = (z + zo)f3!2' (42) 
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This function is incorporated into the inversion to counteract the geometric decay of the 

kernels and encourage the inversion to distribute density in cells distant from the surface 

with equal probability. For surface gravity inversions, (3 is usually equal to two and the 

value of zo is dependent on the cell size defined in the mesh and the observation height 

at which the data was recorded. 

Similarly, in borehole gravity inversions, a weight ing function is needed to counteract 

the natural decay of kernels away from the observation locations along a borehole. For 

3- D inversion of borehole magnetic data, Li and Oldenburg (2000) present a method 

to address t his problem by introduction of a distanc based weighting function. Thus, 

a distance weighting is defined by the distance between cells and observation locations 

whether they are recorded at surface or along boreholes. The distance weighting function 

combines the distance characteristics of the original depth weighting for surface data 

(equation (42)) with the generality of root mean squared sensitivities for all cells in all 

directions. The distance weighting function is given by, 

{ 
2 } a~ 

Wj = t [1 dv ~ l j = 1, ... , M. 
i=l LWj (rij + ro) 

(43) 

Here, N is t he number of data points, M is the number of cells in the mesh, 6. Vj is 

the volume of the jth cell and rij is the distance between the ith observation and any 

point within 6. Vj . The parameter r0 is a constant and typically has a value of one- half 

the cell width in the mesh. For magnetic inversions, the parameter CJ is usually a value 

between 0.5 and 1.5 and for gravity inversion is of a constant value CJ = 1. The value of 

[3 above the denominator is typically equal to two. The effects of the value of [3 on 3- D 

minimum- structure gravity inversions is studied in examples to follow. 

3.3 Inversion Procedure: l2 style 

Inversion of a gravity data- set is complete when a density distribution m is found 

that minimizes ¢m and reproduces a data-set that satisfies the misfit ¢d within error 
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boundaries. To begin the inversion, the objective function of equation (39) is discretized 

for the mesh used. This leads to equation ( 41) being presented as, 

¢m = (m - m o)T (W~Ws + w;wx + w;wy + w; wz) (m - mo) 

= (m - mof (W~Wm) (m - mo) (44) 

= II Wm(m - mo) ll; 

Here, m and m 0 are vectors of length M and W m is a diagonal matrix that is constructed 

fron1 the coefficients and weighting functions discussed in Section 3.2.2. 

Optimization is done by use of a proper minimization technique. Since the elements 

in equation (39) exhibit a sum of squares nature, a Gauss-Newton method is favoured. 

The derivative of equation (39), with respect to the coefficients, is taken and set equal 

to zero. The derivatives of the dat a misfit and model structure functions are obtained 

by application of a Taylor series expansion about a parameter vector m n at the nth 

iteration . T he expanded model objective gives, 

(45) 

Applying a similar Taylor series expansion to the data misfit function about the param-

eter vector m n yields, 

(46) 

where J is t he Jacobian sensit ivity matrix. If a Gauss- Newton minimization process 

is used to minimize the objective function, equations ( 45) and ( 46) are rearranged to 

produce the following (Farquharson, 2008), 

[ JTW TW , J + j3 ;;= W f W k l Om 

=Jrwrwd (d abs- d (m n)) 

+ (3 .2::.: wrw k ( m~ef - mo) . 
k 
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By application of equation ( 4 7) , a b"m vector is obtained and is added to the starting 

model to produce a density vector m = b"m+mo that adequately reproduces the observed 

data and minimizes the objective function. This ' l2 ' style of inversion is a linear inverse 

problem and requires only one iteration to complete. 

In typical l2 style minimum- structure inversion algorit hm, the measure of model 

structure is given by four terms in a 3-D model. Usually, the first term incorporates 

a diagonal weighting matrix and a reference model. The three other terms incorporate 

the finite differences in the x- , y- and z- directions. 

The l2 style inversion is advantageous as minimization is preformed using a linear 

system of equations. It is also efficient in fitting the data, as long as the noise follows 

a Gaussian distribution. The smooth, fuzzy image produced by the l2 style inversion 

is directly attributed to squaring the vectors in the model norms. This means that 

large-valued elements differ greatly from t he norm. The minimization procedure forces 

a resulting vector t hat has no large, distinct elements. This is due to the nature of 

the inversion minimization, which rules out single large discrepancies. In the model 

minimization, l2 minimizations spread the changes in density gradually over a number 

of adjacent cells, thus avoiding an abrupt change of density between adjacent cells. 

3.4 Inversion procedure: h style 

Most minimum- structure inversion procedures follow t he method of the l2 style 

inversions presented in the previous section. This inversion style has been proven to 

successfully image the subsurface for potential field geophysical methods and are typ­

ically considered robust and reliable. This method of inversion uses a sum- of- squares 

measure for model structure and thus inversion results generally exhibit a smeared, fuzzy 

and smooth density model. 

However, the actual subsurface is expected to certain sharp, uniform geologic inter­

faces, and so inversions which produce density models displaying these characteristics 
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are desired. In one attempt,Last and Kubik (1983) present a iterative technique that 

imposes a volume constraint on the anomalous body of the model produced. Portnigu-

ine and Zhadov (1999) int roduce a method to produce sharp interfaces in inversions 

based on minimum gradient support functionals , which minimize the area where strong 

model parameter variations and discontinuity occur. However, the most common tech-

nique has typically been done by implementing an iteratively re-weighted least- squares 

algorithm. This method, known as an l1 style inversion (Farqharson and Oldenburg, 

1998; Lake et al. , 2003; Farquharson and Oldenburg, 2003) produces models with sharp 

interfaces while using an analogous method to l2 style minimum- structure inversions. 

Minimization of l 1 style inversions is similar to the methodology used for l2 style 

inversions, however the process is completed over a number of iterations by application 

of a technique known as iteratively re-weighted least squares (IRLS). In this case, the 

objective function is redefined as 

(48) 

where n refers to the number of iterations. More importantly, the model objective 

function is defined as, 

</>m = IIWm(m - mo) ll (49) 

Since equation (49) lacks the squared element seen in equation (44), a sum of squares 

measurement procedure can not be executed for minimization. As in l2 style inversions, 

the objective function of equation ( 48) is differentiated with respect to the coefficients 

and equalled to zero. The derivative of the data misfit remains as seen in equation ( 46) 

and differentiating the model measure for a parameter vector x results in (Farqharson 

and Oldenburg, 1998), 

8~(x) = L j p(xj) 8x1 , 
8omk 1 86mk 

(50) 

where, in a perturbed l p-norm measure of Ekblom (Farqharson and Oldenburg, 1998), p 
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is equal to, 

(51) 

where the constant c is a small number and included to avoid calculatory errors should 

xi = 0. In cases where Xi =f. 0, c is considered negligible. A discreet form of equa-

tion (50)yields, 

8¢(x) - BT 
88m - q , (52) 

where 8¢j88m (8¢j88m1 , . . . ,8¢/ omNf, BiJ 8xi/88mj, and q 

(p' (p1), .. . , p' ( x N)) T. In a discreet notation , a diagonal matrix R is incorporated into 

equation (52) to yield, 

8¢(x) = BTRx 
88m ' 

(53) 

where, 
p(xl) 0 0 

XJ 
p(x2) 0 0 

R = X2 

0 0 p(xN) 

XN 

T he value of pin equation (51) means the elements of R are, 

(54) 

Here p = 2 for l2 style inversions and p = 1 for h style inversions. The minimization 

of equation ( 48) thus involves solving the following linear system of equations at each 

iteration, 

[ JrwrR, w dJ + 13 ~>· wfR, w, ]•m 
=Jr w r R dW d (dobs- d n-1) 

+ ,B L W [ R kW k (m~ef- m n-1
) 

k 
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Here, the matrices R are dependent on the model and recalculated after each iteration. 

The values of the products involving the Jacobian vector or its transpose are calcu-

lated using a pseudo forward modeling process, performed by solving the right- hand 

side of the forward problem (See Chapter 2). The solution of equation (55) is obtained 

iteratively by incomplete LU decomposition preconditioned conjugate gradients (Far­

quharson, 2008). The results provided by the l1 style of minimization exhibit sharp 

interfaces between regions of differing densities and are considered to better represent 

the density distribution in the subsurface due to their block- like nature. 

3.5 Inversion Elements 

To perform minimum- structure inversions of borehole gravity data, the program 

g3dfd written by Farquharson is used. To run, the program requires a number of input 

files that specify the parameters of the subsurface of the area of interest. The code 

is able to generate l2 or h style inversions, incorporate contributions from horizontal, 

vertical and diagonal differences, and it incorporates a forward modeller which solves a 

finite difference approximation to Poisson's equation. The program g3dfd references an 

input file g3df d. in. The contents of an example g3dfd. in file are seen in Figure 6 and a 

description of the entries in the input file are discussed below. 

GRAV3D 1 f ormac o t input and outpuc tile~ . 

borehole 1 Rooc tor filename~ tor oucpuc 
Re~_Bou9uer.grv ! Observations f1le. 
meshlOxlOxS.t.xt ! flesh tile . 
zero~pace_lOxlOx5.mod ! Starc1ng model. 
D[FAULT ! Reference model (D[FAULT mean~ u~e ~tarcing model). 
none ! R~_267.wsExt.ra model ve1ghes tor smallest component. 
DEFAULT ! Topography intorrnat1on (DEFAULT ~an~ flat z•O ~urtace ) . 

DEFAULT ! Active ce l ls information (not used at the moment ). 
D[FAULT ! Di~tance weighting par~ter~ (D[FAULT mea~ beta•2, znot•l/ 4 ~malle~t cell). 
DEFAULT ! Huber parameter (DEFAULT mean~ 1000 . ) 
DEFAULT ! Ekblom parameter~ (DEfULT mean~ 12 ~cutt ) 

DEFAULT 1 Coetticienc~ in the model mea~ure (DEfAULT mean~ 0,1,1,1,0, . . ) 
0.0000035 0.0000035 0.9 ! Starcing and final crade-ott paramecer~. and taccor t o r decrea~e 

l.OE-03 
200 l.OE-2 0 
500 o. 

! ftaximum number ot iterations in the inversion 
! Small number tor inversion convergence tests 

l.OE-20 20 0. 1 Solver paramecer~ tor GN 1nver~ion ~elver 

l . OE- 40 20 0. 1 Solver paramecer~ tor torward/~en~lC1v1cy ~elver 

Figure 6. The g3dfd.in input file. The contents of the file control parameters and refer­
ence elements necessary for executing the g3dfd minimum- structure inversion program. 
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3.5.1 Mesh File 

To discretize the earth in rectangular cells, it is necessary that a mesh file is ere-

ated that provides the boundaries of the subsurface and also defines the dimensions of 

each cell. The file, a generic text file , is referred to on line four in Figure 6 seen as 

mesh10x10x5. txt. This file has the following structure, 

nE nN nV 
Eo No Vo 
b..E1 b..E2 ... b..EnE 
D..N1 D..N1 ... b..NnN 
b..V1 D.. Vi ... fl v;tV 

where nE, nN and nV are the number of cells in the easting, northing and vertical 

directions respectively and E0 , N0 and V0 are the coordinates of the southwest top 

corner of the mesh. The cell widths in the easting direction traveling from west to east 

are given by (E1 : EnE)· Cell widths in the northing direction traveling from south to 

north are given by (N1 : NnN ). Cell widths in the vertical direction traveling from top 

to bottom are given by (Vi : Vnv) . The mesh file configuration is analogous to t hat used 

by the GRAV3D (2007) format . 

Typically, the mesh is designed to represent an area of the subsurface which is 

directly beneath the area of observed data. Cells of different dimensions can be used in 

the mesh to obtain an increased number of cells where there may be particular areas of 

interest or where there is an increased amount of data. A region of larger cells outside 

of a core set of smaller cells is referred to as a 'padding zone' . 

3.5.2 Topography 

Topography is an optional file that is input depending on wether there is informa-

tion about the surface topography of the surveyed area. The topography file is input 

on line eight in Figure 6. If marked as DEFA ULT, this line denotes that the gravity 

measurements were t aken on a fiat surface ( z = 0). The configuration of the topography 
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file is, 

n 
E1 N1 ELEV1 

E2 N2 ELEV2 

En Nn ELEVn 

where n is the number of topographic data points and Ei, Ni and ELE~ provide the 

easting, northing and elevation coordinates for the ith point. The elevation must have 

the same reference height as the values of Vo in the mesh file. The topographic surface 

value above each column of cells is found by direct triangulation interpolation of the 

input topographic data (GRAV3D, 2007) . 

3.5.3 Observation File 

The observation file name is given on line three of the input file. In Figure 6 the 

filename is R es_B ouguer.grv. The file contents include the calculated gravity measure-

ment, its error and coordinates. The observation file has the following structure, 

n 
E1 N1 Vi G1 0"1 
E2 N2 v2 G2 0"2 

En Nn Vn Gn O"n 

where n is t he number of data points. The coordinate for the ith observation is given 

by (Ei, Ni, ~) with the corresponding gravity measurement Gi and its accompanying 

estimated error O"i. The gravity values input into the observation file have been subjected 

to all necessary corrections outlined in Chapter 1. 

3.5.4 Init ial Model 

Another file required for inversion is the starting model read on line five of the input 

file. In Figure 6 this is file zerohspace_l0x 10x5.mod. This file contains m 0 referred to 
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in equation ( 41) . The file is essentially organized as a vector with density elements and 

its length is equal to the number of cells in the mesh. It is organized similar to the 

GRAV3D (2007) format as, 

P1,1,1 

Pl ,l ,nV 

P1.2,1 

Pi,j,k 

PnN,nE,nV 

Here the density Pi,j,k is the starting density for the cell located at coordinate [i, j, k]. 

The first element of the file corresponds to the density in the top-south- west corner 

of the mesh. The vector is arranged in a specific order so that k changes the quickest 

(from 1 to n V) , followed by j (from 1 to nE), then followed by i (from 1 to nN). If the 

inversion incorporates a topography file, any density value above the topographic surface 

is ignored. Other files that arc arranged in a similar vector structure inclurl.c a reference 

model fil e entered on line six of the input file (Figure 6) (note: a DEFAULT in this field 

means the starting model is used as the reference model) and an extra model weighting 

file entered on line four of the input file (Figure 6). The reference model allows the user 

to input specific constraints on the density that force the inversion to allocate certain 

density values to corresponding cells. An extra model weighting file can be added to 

increase or decrease the weighting implications for individual cells. 

3.5.5 Input Parameters 

The g3djd.in input file allows the user to control the type of inversion. Input 

on line twelve implements whether an h or l2 style inversion is performed and the 

number indicated on line fifteen informs the number of iterations performed for an h 

style inversion. 
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Inversion results that utilize either vertical, horizontal or diagonal differences in the 

model st ructure are obtained through customization of fourteen terms to values of either 

0 or 1 on line t hirteen of t he input file (Figure 6) . 

The parameters of the distance weighting function, (3 and R0 seen in equation ( 43) 

are specified on line ten. The starting and final t rade-off parameters, which control 

the limits of the data misfit , arc specified on line fourteen , and various forward solver 

parameters can be set the input file. 

Setting aside the various available opt ions wit h the g3dfd inversion code, the files 

needed to execute the program are: a mesh file, an observation file containing values of 

d abs (see equation (40) ), a reference model which contains values of m 0 (equation (44)) 

and the input file g3dfd.in which references all files and incorporates inversion and 

forward modelling parameters. The code is run by executing the executable g3dfd in a 

unix terminal with a Fortran 95 compiler. 

When complete, t he program produced files include: a model density file, a pre­

dicted data- set file, and a output file. The model density file which has the name 

f ilenam e. mod, where f i lenam e is specified on line 2 of the input file, has the same 

structure as the st arting model file and is able to be viewed with a corresponding mesh 

using UBC- GIF's visualization program MeshTools3D. The predicted data-set file, out­

put as fil ename. prd, has the same format as the observation file with contents that 

include the observation locations and gravity data values obtained by forward solving 

the density model. The program also produces a g3dfd.out file which includes informa­

tion about the data misfit c/Yd, model structure ¢m, t rade-off parameter (3, and overall 

misfit <P for each iteration. 
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CHAPTER 4 

Cube-in- a- halfspace Inversion Examples 

In the following chapter, examples of completed inversions are analyzed. The in-

versions are performed using the forward modelling and minimum- structure inversion 

procedures discussed in Chapters 2 & 3. The results presented are inversions of syn-

thetic data derived from surface and borehole gravity data for a block- in- a- halfspace 

model. Both l2 and h style inversions are executed for scenarios with various locations 

and numbers of borehole and surface gravity data. Only a select few of the multiple 

inversion scenarios executed are presented here, for a full library of results please refer 

to Appendix A. The predicted data and observed data plots are shown only for a select 

few examples due to the redundancy of the plots. For every example examined , the 

predicted data match the observed data within a measure of error. 

To obtain the observed data input into an inversion, synthetic data is calculated 

by forward modelling methods at observation locations around a particular density 

model. The mesh used in the block density model and for all inversions has dimen-
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Figure 7. The mesh and block in a half- space model used for the inversion examples. 
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sions (x, y , z) ----+ (0, 0, 150) : (600, 600, -450) and cell sizes of 10m in each direction. The 

mesh therefore contains 216,000 cells. A cube with a density of 2.0 gjcm3 is located at 

the center of the mesh with coordinates, (x, y, z) ----+ (250, 250, - 100) : (350, 350, - 200). 

The cells outside of the cube have a density of zero. The block density model is shown in 

Figure 7. The contrasting density values of 2.0 g/cm3 and zero are chosen to represent 

the difference in densities between a massive sulphide and surrounding host rocks. A 

similar density cont rast is seen in the main Ovoid of Voisey's Bay Nickel Mine (refer to 

Ash, 2007). 

Using this model and mesh setup, a number of different scenarios of borehole and 

surface data configurations are studied. All observed data-sets are synthetic in nature 

and were produced by the forward modelling method using the finite-difference olution 

to Poisson's equation detailed in Chapter 2. For all borehole data, observation points 

are taken along a borehole which travels from (z) ----+ ( -3.846 : -296.153) m. A total 

of thirty nine observations are taken at evenly spaced intervals along the length of the 

boreholes, therefore approximately every 7.7 m. Random Gaussian noi e of standard 

deviation equal to five percent of the magnitude of the datum is added to all data-sets. 

The inversions are performed using the default l2 norm of model structure and 

x, y and z first-order finite-difference terms with a 1 = 0, a 2 = a 3 = a 4 = 1, and 

a 5 = · · · = a 14 = 0 (Section 3.5.5). The distance weighting parameters are set to 

default with ~ = 2 and z0 = 2.5 m (a quarter of the smallest cell dimension) (Section 

3.2.3). The inversions are performed with a value of (3 that reproduces a data misfit 

value r/Jd that equals the total number of data points within a 10% error margin. The 

inversion results are presented in an x- , y- and z- slice taken from the produced density 

model. The x- slice displays the xz plane at y = 300; the y- slice displays the yz plane 

at x = 300 and the z- slice displays the xy plane taken at z = - 150. The goal of each 

example is for the inversion to reproduce a density model that correlates well with the 
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structure and density distribution of the true cube model in Figure 7. 

4.1 Two Boreholes 

The first scenario examined for the block- in- a- halfspace model is a minimum­

structure inversion of data from two boreholes. With thirty-nine observations measured 

along each borehole, there is a total of 79 data points. The first borehole is located at 

(x, y)---+ (150, 300) and the second is located at (x, y)---+ (450, 300) , both symmetrically 

located at a distance of 150 m along the x-axis. Figure 8 shows the returned density 

distribution from the inversion with the borehole locations seen in white and the outline 

of the original model in black. 
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Figure 8. Inversion results for a block- in- a- halfspace of gravity data from two boreholes. 
left: the x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed 
in white. The true block model is outlined in black. 

The results presented in Figure 8 exemplify a poor inversion result as the structure 

and recovered densities significantly differ from those of the true model. From the two 

sets of borehole data, the inversion is able to produce a density distribution with an 

appropriate depth as it allocates its peak densities to cells at at approximately z ---+ 

( -100 : -200) seen in Figure 8 left. The density model, however, does not possess any 

spatial resolut ion in the x and y plane compared to the true model. The lack of spatial 
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resolution can be attributed to the fact that the boreholes are of ident ical distance from 

the center of mass in the symmetric t rue model and results in two identical gravity data-

sets. Inversion examples using two non- symmetrical borehole datasets are examined 

in Appendix A. With the limited information from two symmetrical data- sets, the 

inversion interprets this as a large plane or sheet of low density which spans the entire 

xy plane of t he mesh at approximately the correct depth as seen in Figure 8 right. Upon 

completion, the inversion parameters are as follows: 

• Pmax 0.0535 

• Pmin 0.0 

• (3 0.25000E - 03 

• c/Jd 82.575 

• c/Jm 0.27860E + 06 

• <I> 152.23 

4 .2 Three Boreholes 

The next situation examined further cont inues the investigation of the previous 

example in hopes of producing a density model which appropriately corresponds to the 

t rue model. A third borehole data- set is included in the inversion t hrough the center of 

the dense block located at (x, y) -t (300, 300). The inversion result is seen in Figure 9. 

By adding an extra borehole data- set through the center of the dense block, the 

density model displays a great ly improved representation of t he true model. T he outcome 

model is a fuzzy and smeared image typical of the l2 style inversion. The role of the 

central borehole provides precise information on the depth of the density boundaries and 

recreates a strong density contrast at depths z = - 100 and z = -200. The data from 

the two outlying boreholes also serves a role by confining the gradual density spread 

away from the center of mass and reproducing a less smeared image. T he influence 

of the two outlying boreholes is seen by comparing the density spread away from the 

central borehole of the inversion slices in Figure 9 left and middle. Figure 9 right 

also demonstrates this as the density decreases in value gradually over the cells in the 
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Figure 9. Inversion results for a block- in- a- halfspace from a line of three boreholes. 
left: the x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed 
in white. The true block model is outlined in black. 

y- direction. The density values diminish more abruptly over cells in the x- direction, 

which is confined by the outer borehole data. 

The predicted and observed data for each borehole are plotted in Figure 10. Here, 

the observed data is represented by circles and the predicted data is plotted in red. 

The observed and predicted data match well, with the largest deviations occurring at 

the peak values. By examining the three plots in Figure 10, it is clear that the outer 

boreholes influence the inversion result by constraining low densities away from the 

central dense block. The magnitude of the gravity data- set in the middle borehole has 

peak density values greater than ten times that of the two outer boreholes. Therefore, in 

the recovered model, high density values surround the middle borehole and are lacking 

in cells which surround the outer boreholes. 

A plot of the difference between the predicted data and the observed data is seen 

in Figure 11. 

The main areas of difference in the borehole located at (x, y) --+ (300, 300) seen in 

Figure 11 middle occur at depths ( z) --+ ( - 100) m and ( z) --+ (-200) m. These large 
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Figure 10. The observed data- s t calculated for the block model shown in circles and 
the predicted data et returned by the inversion plotted in red for varying borehole 
locations. left: (x , y)~(150 , 300); middle (x, y)~(300 , 300) ; right: (x, y)~(450, 300). 
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Figure 11. The errors in the gravity values computed by the inversion of the predicted 
data in red relative to the values of the obs rved data- set for the block model shown in 
circles for varying borehole locations. left: (x, y)~(150, 300) ; middle (x, y)~(300 , 300); 
right: (x , y)~( 450, 300). 
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differences correspond with the minimum and maximum gravity values for the data-

set . The largest magnitude of difference for a single datum between the observed and 

predicted data is a value of 0.313 gjcm3 for a gravity value of 3.16 g/cm3 calculated at 

a depth of z = - 96.15 m. Therefore resulting in a percentage error of 9.9%. 

The data- sets for boreholes (x , y)--+ (150, 300) and (x, y)--+ (450, 300) are identical 

due to the symmetry of the block model. The maximum deviation between observed 

and predicted data- sets is a value of 0.0263 g/cm3 for a gravity value of size 0.201 gjcm3 

occurring at a depth z = -3.846 m. This results in a percentage error of 13.1%. The 

output parameters of the completed inversion are, 

• Pmax 1.84g/cm3 

• Pmin -0.92g/cm3 

• {3 0.10E- 05 

• </Yd 125 

• </Ym 0.944E + 09 

• <I> 1069 

The effects of the outer boreholes on restricting the spreading of the density anomaly 

is also seen in a three borehole simulation aligned in an "L" shape. The density distri-

bution resulting from an inversion of gravity data from boreholes located at coordinates 

(x, y) --+ (150, 300) , (x , y) --+ (300, 300) and (x, y) --+ (300, 150) is seen in Figure 12. 

This example further exemplifies the influence that the additional boreholes bear on 

the inversion result. In Figure 12 right it is seen that without any confining borehole data 

on the top- right of the diagram, the l2 style characteristically produces a fuzzy-smeared 

image where the density change between a cell and neighbouring cells is minimal. The 

output parameters from this inversion are as follows, 

• Pmax 1.73 g/cm3 

• Pmin - 1.06 g/cm3 

• {3 0.10E- 05 

• </Yd 116.8 

• </Ym 0.872E + 09 

• <I> 989 
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Figure 12. Inversion results for a block-in-a-halfspace from an "L" configuration of 
three boreholes. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole 
locations are displayed in white. The true block model is outlined in black. 

4.3 Surface Data 

The next example is the result from a typical inversion performed with only sur-

face gravity data. A total of 1521 data points are taken at the surface (z = 0), from 

(x, y) -t (105.13, 105.13) : (494.87, 494.87) m, meaning measurements are calculated at 

approximately every 10.25 m. The density distribution produced from the inversion is 

seen in Figure 13. The observed data, predicted data and difference between the two 

are plotted in Figure 14. 

The inversion result exemplifies a common problem associated with all surface grav-

ity data inversions: a lack of depth resolution. Since the surface measurements do not 

carry any information regarding the possible depth of an anomaly, the nature of the 

inversion is to distribute density to cells closer to the surface or points of observation. 

This is caused by the natural decay of the kernel functions, for a more detailed expla­

nation refer to Chapter 3. Because the density anomaly is spread out vertically, the 

peak density values in the produced model differ greatly from that of the trne model. 

Also, due to the lack of depth resolution, the highly dense region corresponds poorly 
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Figure 13. Inversion results for a block- in- a- halfspace from surface gravity data. left: 
the x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in 
white. The true block model is outlined in black. 
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Figure 14. The observed surface data- set calculated for the block model the predicted 
surface data- set returned by the inversion , and a plot of the difference. left: the observed 
data- set; m iddle the predicted data- set; right : the difference between the observed and 
predicted data- sets. 
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with the shape of the true model in the x- and y- slices of Figure 13. Despite this, the 

inversion is able to localize the center of density in the z- slice, however the anomaly is 

characterized by a typical smeared-out fuzzy image and lack of resolution typical from l2 

style inversions. Upon completion of the inversion, the output parameters are as follows: 

• Pmax 0.092 g/cm3 

• Pmin - 0.012 gjcm3 

• f3 0.270E - 02 

• cPd 1508 

• cPm 0.671E + 06 

• <I> 3320 

4.4 One Borehole 

In a comparative study, the inversion results from data calculated for one borehole 

traveling directly through the center of the dense cube is examined. Here, the borehole 

is located at (x, y) ---+ (300, 300). The inversion results are seen in Figure 15. 
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Figure 15. Inversion results for a block- in- a- halfspace of gravity data from one borehole 
located at (x, y)---+(300 , 300). left: the x- slice, middle : t he y- slice; right: the z- slice. 
Borehole locations are displayed in white. The true block model is outlined in black. 

Despite the minimal amount of input data, the inversion is able to reproduce a fairly 

accurate representation of t he initial density model. The input of only one borehole is 
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able to accurately allocate high densities to the correct depth of the dense structure, 

however struggles with confining high density within the xy- plane. In the output model, 

the inversion does well to match the peak densit ies inside the anomalous block and for 

the zero density valued cells outside, however, negative densities are present in cells 

located directly above and below the borehole. 

The generally good inversion obtained from the one borehole scenario in Figure 15 

is most likely due to the ideal location of the borehole and the geometric symmetry 

and simplicity of the true model. With measurements being taken directly through the 

center of the anomalous mass, the largest gravity values appear at the top and bottom 

edge of the true model and are large in magnitude compared to gravity values taken 

along the remainder of the borehole. This results in a condensed dist ribut ion of density, 

which happens to fit the t rue model well in the xy plane due to the symmetry of a 

cubed true model and the general smeared image of the l2 style inversion. In an l1 style 

inversion, it is assumed that only the cells adjacent to the borehole between depths of 

-250 and - 350m would exhibit high density in the recovered model (picture of Ll one 

borehole model to come upon completion). The outcome parameters obtained from the 

l2 inversion are, 

• Pmax 1.73 gjcm3 

• Pmin - 1.28 g/cm3 

• (3 0.42000E - 06 

• </Yd 36.469 

• <Pm 0.84904E + 09 

• <I> 393.06 

4.5 Surface Data, One Borehole 

In the final example of this section , an mverswn combining the surface gravity 

measurements from subsections 4.3 and 4.4 is examined. This inversion was performed in 

the hope of being able to recover the confined density resolution in the xy- plane displayed 

by the surface gravity inversion with the accurate depth resolut ion traits presented by 
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the single borehole inversion. The density distribution from the completed inversion is 

seen in Figure 16. 
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Figure 16. Inversion results for a block- in- a- halfspace from surface gravity data and 
data from one borehole. left: the x- slice, middle: they- slice; right: the z-slice. Borehole 
locations are displayed in white. The true block model is outlined in black. 

The inversion of surface and borehole gravity data does well to recreate the structure 

of the true model. The surface data locates the center of density of the t rue model in 

the xy- plane and limits the high density distribution close to the confines of the true 

model cube. The result is produces a less smeared image that falls mostly within the 

distinct boundaries of the true model. The inclusion of the borehole gravity data provides 

the necessary dept h resolution needed in the surface data inversion example. However, 

inclusion of the surface gravity data also contributes in spreading the high density values 

to the edges of the t rue cube and away from the cells adjacent to the borehole present in 

the one borehole scenario. The use of both borehole and surface gravity data enables a 

better representation of the dense cube. In addition , the produced density distribution 

does well to mimic the density distribution outside of the true cube and allocates small 

magnitudes of density to those cells replicating the zero-halfspace background of the true 

model. The density values present in the produced model also correspond nicely with 

57 



the dense region of the true model. The parameters of the output inversion include, 

• Pmax 1.18 gjcm3 

• Pmin - 0.322 gjcm3 

• (J 0.30500E - 04 

• </Jd 1549.9 

• </Jm 0.12090E + 09 

• ci> 5237.3 

4.5.1 Surface Data, One Borehole h inversion 

Having obtained a reasonable result from inverting gravity data from a borehole 

and surface data, an h style inversion was conducted with the same data- sets. The 

inversion ran 20 iterations with default Ekblom parameters of p = 1 and E = 10- 4 . The 

model was produced using only the horizontal and vertical finite-differences creating a 

piecewise constant or blocky model with interfaces only either horizontal or vertical. The 

resulting density model for the 20th iteration from this inversion is seen in Figure 17. 
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Figure 17. An l1 style inversion result for a block- in- a- halfspace from a combined 
surface and one borehole gravity data. left: t he x- slice, middle: the y- slice; right: the 
z- slice. Borehole locations are displayed in white. The t rue block model is outlined in 
black. 

From the results of the l1 inversion, it is examined that the inversion outcome 

model is almost analogous to the true model in location, shape and density contrasts. 
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The output parameters for the 20th iteration are, 

• Pmax 1.92 g/ cm3 

• Pmin - 0.00887 gjcm3 

• (3 0.25000E - 02 

• </Jd 17.270 

• <Pm 0.10612E + 07 

• <I> 2670.3 

4.6 Summary 

Inversions scenarios of gravity data for a block- in- a- halfspace model were presented 

throughout the Chapter and in Appendix A. These examples show that the ability for 

the produced model to recreate the density distribution of the true model depends on 

the locations and number of borehole and surface gravity data used in the inversion. 

Gravity data from boreholes located directly through the dense block produced the 

maximum gravitational peaks and thus, the produced density models display areas of 

high density where the borehole intersects the true block model. This is the case for 

all boreholes intersecting the block model including boreholes located on the edge of 

the model. Scenarios where boreholes were located away from the true block model 

produced , generally, a poorer recreation of the true density distribution. The produced 

models from theses examples displayed a more evenly distributed density profile across 

the domain of the mesh with moderate density peaks occurying at the center of mass at 

depth, however with no spatial resolut ion in the xy- plane. 

Scenarios with boreholes located through the dense block and away from the dense 

block produced better density models. In these cases, the borehole located through 

the block produced an area of high density and t he outer boreholes produced an area 

of lower density in t he model. The boreholes located away from the density anomaly 

confined the high densit ies to the boundaries of the block creating a model which better 

resembled the density distribution of the true model. 

Examples that used surface and borehole data in the inversion were also examined. 
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The inclusion of surface data was able to confine high densities with greater spatial 

resolution. The inclusion of borehole data with surface data was able to produce a 

density model with high densities at the correct depth. The use of borehole data to 

produce a model with correct depth solved a problem common to surface gravity data 

inversion, which is a lack of depth resolution. 

Through the study of the examples, it is observed that the more borehole and 

surface data present in an inversion, the greater the produced model will represent 

the density distribution of the true model. Since an infinite number of data is not an 

option, the examples suggest that a borehole located directly through the center of an 

anomalous mass, plus additional boreholes surrounding the anomaly will produce an 

accurate density distribution. This setup sees that the central borehole will recreate 

an appropriate peak density, while the outer boreholes confine the high densities to the 

edges of the density anomaly. 
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CHAPTER 5 

Wedge- in- a- halfspace Inversion Examples 

In the following chapter, examples of completed inversions are analyzed. The in­

versions are performed using the forward modelling and minimum- structure inversion 

procedures discussed in Chapters 2 & 3. The results presented are inversions of syn­

thetic data derived from surface and borehole gravity dat a for a wedge-in- a- halfspace 

model. Both l2 and h style inversions are executed for scenarios of varying locations 

and numbers of borehole and surface gravity data. Only a select few of the multiple 

inversion scenarios executed are presented here, for more inversion examples please refer 

to Appendix B. The predicted data and observed data plots are shown only for a select 

few examples due to the redundancy of the plots. For every example examined, the 

predicted dat a match the observed data within a measure of error. 

With the previous set of inversions focused on recovering a simple and symmetric 

dense cuboid, the following inversion examples are aimed to recover a model that differs 

in symmetry. The base model from which simulated gravity values are calculated is a 

dense wedge in a halfspace. Similar to the previous block- in- a- halfspace examples, slices 

of the density models are displayed for an x- plane at y = 300, a y- plane at x = 300, 

and a z-plane at z = - 150. The true model of the wedg in- a- half space is shown in 

Figure 18. 

The mesh and cell sizes are defined identically to the block- in- a-halfspace examples 

and the wedge model is essentially designed the same as the block model, however sliced 

in half. The density of the wedge is 2.0g/cm3 and located in the center of the mesh. 

The y- coordinates of the wedge are (y) --t (250 : 350). The x- and z- coordinates of 

the wedge decrease by 10m per cell, the x- and z- coordinate are (x, z)--t(250, - 100) : 

(350, - 110) to (x, z)--t(250, - 100) : (350, - 200). The cells outside of the wedge have a 
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Figure 18. The mesh and wedge-in- a- halfspace model used for the inversion exam­
ples. top: the x- slice, middle: the y- slice; bottom: the z- slice. Borehole locations are 
displayed in white. The true wedge model is outlined in black. 

background density of zero. The goal of each example is for the inversion to reproduce 

a density model that correlates well with t he structure and density distribution of the 

true wedge model in Figure 18. 

Using t his model and mesh setup, a number of different scenarios of borehole and 

surface data configurations are studied. All observed data-sets are calculated synthet-

ically and were produced by a forward modelling method that evaluates the finite-

difference solution to Poisson's equation detailed in Chapter 2. All borehole data are 

calculated along boreholes which t ravel from z --> (0 : -300m) . Thirty nine obser-

vations are taken a t evenly spaced intervals at approximately 7. 7m apart . Random 

Gaussian noise of standard deviation equal to five percent of the magnitude of the da-

tum is added to all data- sets. The density models are produced using the default l2 

norm of model structure and x, y and z first-order finite-difference terms with a 1 = 0, 

a2 = a3 = a 4 = 1, and a 5 = · · · = a 14 = 0 (Section 3.5.5). 
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5.1 Five Boreholes 

The first scenario examined for the wedge-in-a-halfspace model incorporates grav-

ity data- sets from five different borehole locations. The borehole set up includes a central 

borehole traveling directly through the center of density at (x, y) -+ (300, 300) , and four 

boreholes surrounding the model at locations (x , y) -+ (150, 300) , (x, y) -t (450, 300), 

(x, y) -+ (300, 150) , (x , y) -+ (300, 450). The density distribution from the completed 

inversion is seen in Figure 19. The borehole data configuration was chosen in the hope of 
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Figure 19. Inversion results for a wedge- in-a-halfspace of gravity data from five bore­
holes. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole locations are 
displayed in white. The true wedge model is outlined in black. 

obtaining a central density distribut ion with the outlying boreholes constraining the den-

sity to produce a wedge. The observed and predicted borehole data is seen in Figures 20 

and 21 

The resulting density model is poor in comparison with the true model. Despite 

the good representation of peak density values (2.04 compared to 2.0) , structurally 

the resulting model differs greatly from the true model. The inversion model shows a 

concentration of high density around the middle borehole, located at (x, y) -+ (300, 300) , 

between the depths - 100 and - 150 m. The outer boreholes surrounding the dense wedge 
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Figure 20. The observed data- set calculated from a wedge model shown in circles and 
the predicted data- set returned by the inversion plotted in red for varying borehole 
locations. left : (x, y)---+(150, 300); middle (x, y)---+(300, 300) ; right: (x, y)---+(450, 300). 
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Figure 21. The observed data- set calculated from a wedge model shown in circles and 
the predicted data-set returned by the inversion plotted in red for varying borehole 
locations. left: (x, y)---+(300, 150) ; right : (x, y)---+(300, 450). 
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appear to have little influence on reproducing the high density values at the edges of the 

wedge. The output file from the inversion involved the following information. 

• Pmax 2.04 gj cm3 

• Pmin - 0.375 g/cm3 

• {3 0.16500E - 05 

• cPd 192.99 

• cPm 0.61609E + 09 

• <I> 1209.5 

5.2 Five Boreholes Edge 

In an effort to obtain more of a wedge type structure from the inverted model using 

a similar five borehole scenario, the locations of the outer boreholes were moved so that 

they appear at the edge of the anomaly. The four outlying boreholes are relocated to 

(x, y) --t (250, 300) , (x, y) --t (350, 300) , (x, y) --t (300, 250) , and (x, y) --t (300, 350) , 

with the fifth borehole remaining in the center of the mesh at (x, y) --t (300, 300). The 

resulting inverted model slices from this borehole arrangement are seen in Figure 22 
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Figure 22. Inversion results for a wedge-in-a-halfspace of gravity data from five bore­
holes. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole locations are 
displayed in white. The true wedge model is outlined in black. 

By the inclusion of borehole data closer to the dense area, the inversion is able to 

reproduce a bet ter structural representation of the true model. The density at the edges 
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of the wedge is of lesser magnitude than the center , however is still high in comparison 

to the density distribution outside of the wedge. The produced model still exhibits 

a smeared density distribution typical to l2 style inversions, with the majority of the 

density spreading occurring around the borehole located at (x , y) ---+ (350, 300). The 

predicted and observed data for boreholes located at (x, y) ---+ (250, 300) , (300, 300) , 

(350, 300) are plotted in Figure 23. The observed data is represented by circles and the 

predicted data is plotted in red. A plot of the differing values between the predicted 

data with respect to the observed data is seen in Figure 24. 

The correlation between the predicted and observed data in Figure 23 left match 

well with a peak gravity value occurring at a depth of z = -96 m, the last measurement 

location before passing through the dense wedge. The negative density peak occurs at 

a depth of z = - 173 m. This depth, approximately 60 m away from where the borehole 

exited the dense wedge, is where the wedge density has the greatest impact on gravity 

measurement after the initial peak. The curve of the plot reflects the asymmetrical shape 

of the wedge with sudden and sharp increase in gravity values near the upper surface, 

and the more gradual, less abrupt change in gravity values below the lower surface. 

Out of the 39 observations, 15 are positive gravity values and 24 are negative. The 

error between the observed and predicted data is seen in Figure 24 left and the greatest 

difference between observed and predicted data has a value of 0.18 gj cm3 . This error 

accompanies a gravity value of 0.043 g/cm3 and occurs at a depth z = - 111 m. This 

results in a percentage error of 416 %. The large percent error is due to the data being 

close to zero and near a cross-over point, as the next largest percentage error between 

the two data- sets is 13 %. 

The central borehole curve in Figure 23 middle follows a similar trend, however 

the difference in magnitude between the positive and negative peaks is not as large. 

The negative peak occurs at z = -157 m and the surrounding gravity values differ less 

66 



drastically compared to those around the positive peak. Out of the 39 gravi ty values 

measurement, the first 17 are positive and the remaining 22 are negative. The differences 

between data- ets is plotted in Figure 24 middle. The largest deviation has a valu of 

0.315 g/cm3 at a depth of z = -96.2 m and corresponds to a datum equal to 2.38 gjcm 3 . 

The resulting percentage error is 13o/c . 

A plot of the data- set traveling along borehole located at (x, y) ---+ (350, 300) in 

Figure 23 right produces density peaks similar to the data plot seen in Figure 10 middle 

with peaks occurring at dept hs corresponding to the boundaries of the dense wedge in 

the t rue model. The curve, however, exhibits a non- symmetric shape, which is due to 

the non ymmetry of the wedge model. Here 18 of the total gravity values are positives 

and 21 are negative. The error between data- sets is plotted in Figure 24 right. The 

highest magnitude of error has a value of 0.11 gjcm3 for a gravity value of size 1.48 

g/ cm3 and occurs at a depth z = - 104 m. This results in a percentage error of 7%. 

Th data- s ts from the boreholes located at (x , y) ---+ (300, 250) and (300, 350) are 

not shown as they have a similar data trend as Figure 10 middle, however exhibiting 

data with lower overall magnit ude. 

The output file parameters from the inversion arc as follows. 

• Pmax 2.25 g/cm3 

• Pmin - 0.418 g/cm3 

• (J 0.12000E- 05 

• c/>d 214.33 

• cf>m 0. 77041E + 09 

• <I> 1138.8 

5.2.1 Five Boreholes Edge h style 

Since inverting gravity data from five boreholes produce a model with some features 

of a dense wedge, a model which contains less of a smeared density distribution is sought. 

An h style inversion with gravity data- sets from the same boreholes was performed in 

hopes of obtaining a model that exhibits sharp and distinct interfaces between densities. 
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Figure 23. The observed data-set calculated from a wedge model shown in circles and 
the predicted data- set returned by the inversion plotted in red for varying borehole 
locations. left: (x , y)~(250, 300); middle (x, y)~(300, 300); right: (x, y)~(350, 300). 
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Figure 24. The errors in the gravity values computed by the inversion of the predicted 
data in red relative to the values of the observed data- set for the wedge model shown in 
circles for varying borehole locations. left: (x, y)~(250, 300); middle (x, y)~(300, 300) ; 
right : (x , y)~(350, 300). 
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The inversion ran 5 iterations with Elkbom parameters of p = 1 and E = w-4 (Section 

3.4) . The model is produced with only horizontal and vertical finite-differences creating 

a piecewise constant or blocky model with interfaces only either horizontal or ver tical. 

The model results from this inversion are seen in Figure 25. 
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Figure 25. The mesh and block in a half- space model used for the inversion examples. 
left: the x- slice, middle : the y- slice; right: the z- slice. Borehole locations are displayed 
in white. The true block model is out lined in black. 

The l1 style inversion provides a density model that is a reasonable structural match 

to the true model in that it confines the anomalous density within the boundaries of 

the wedge where the inversion of Figure 22 did not. The recovered density model still 

displays peak densities around the central borehole, however, appropriately reproduces 

the true image with sharp interfaces between cells. The h style inversion succeeds in 

eliminating the smeared and fuzzy style image present along the borehole located at 

(x, y) ~ (300, 350) in Figure 22. The output parameters of the 5th iteration are, 

• Pmax 2.33 g/cm3 

• Pmin -0.0519 g/cm3 

• f3 0.20000E - 02 

• cPd 303.83 

• cPm 0.19514E + 07 

• <P 4206.7 
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5.3 Four Boreholes 

In the previous five-borehole-edge scenario, the density model produced by the 

inversion created reasonable results in both the h and l2 style inversions. Despite this, 

however, the recovered models exhibited large density values concentrated around the 

central borehole location at (x, y)---+(300, 300) seen in Figure 19, Figure 22, and Figure 

25. In an attempt to produce a more even density confined within the out line of the 

true wedge, an inversion eliminating the central borehole data- set is performed, leaving 

only the data- sets from the four boreholes located on the edges of the true model to be 

inverted. The boreholes locations are at the exact coordinates seen in subsection 5.2. 

The resulting density model from the completed inversion is seen in Figure 26. 
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Figure 26. Inversion results for a wedge- in- a- halfspace of gravity data from four bore­
holes. left: t he x- slice, middle: the y- slice; right: the z- slice. Borehole locations are 
displayed in white. The true wedge model is out lined in black. 

Without the data from the central borehole, the inversion produces a density model 

which exhibits a consistent density spread within the general confines of the model 

boundaries and structurally does well to reproduce a wedge image. The density distri­

bution between the boreholes in the x- slice represents well the declination of the true 

wedge model. However , large densities are not confined at the boundaries of the wedge 
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and a typical l2 style smeared image is produced. This especially applies to cells posi­

tioned around the borehole located at (x, y) --+ (350, 300) in the x- slice of Figure 26 and 

boreholes ( x, y) --+ ( 300, 250) and ( x, y) --+ ( 300, 350) seen in the y- slice of Figure 26, 

which all exhibit large density smears. In addition, a fault of the reproduced model 

is that the peak densities are significantly smaller than those of the true model (0,68 

compared to 2.0 g/cm3), this can be attributed to the general fuzzy nature of the model. 

The output file for this inversion has the following parameters. 

• Pmax 0.68 g/cm3 

• Pmin -0.315 g/cm3 

• {3 0.2100E- 05 

• ¢d 163.69 

• ¢m 4721.3 

• <I> 234.51 

5.4 Four Boreholes + Surface Data 

To further t he previous inversion, the data from the four boreholes described above 

is inverted with the addition of surface data measurements. The inclusion of this ex-

tra data in the inversion is performed in hopes of obtaining a more centrally confined 

density distribution and a better corresponding density value representation of the true 

model. The surface data contains a total of 1521 data points measured at the surface 

(z = 0) from (x,y) --+ (105. 13, 105.13) : (494.87,494.87)m. A datum is calculated at 

approximately every 10.25m. T he result from the inversion is seen in Figure 27. 

The addit ion of surface data to the four borehole data creates a similar density 

distribution and shape as the four borehole scenario in subsection 5.3 (See Figure 26). 

The inversion model, however , is improved by confining the density to the shape of the 

initial model and providing a better representation of the zero-halfspace background. 

This is attributed to the influence of the surface data in focusing high densities into 

cells at the center of the wedge and away from the outer proximity of the boreholes. 

The result provides a reasonable representation of the initial model with a significant 
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Figure 27. Inversion results for a wedge- in- a- halfspace of gravity data from four bore­
holes and surface measurements. left: the x- slice, middle: the y- slice; right: the z- slice. 
Borehole locations are displayed in white. The true wedge model is outlined in black. 

improvement from the four borehole example exemplified by comparing z-slice profiles 

of Figure 27 and Figure 26. The inversion output parameters are as followed. 

• Pmax 

• Pmin 

• (3 

• cPd 
• cPm 
• ci> 

0.623 g/cm3 

- 0.127 g/cm3 

0.40000E - 04 
1676.3 
0.61559E + 08 
4138.7 

5.4.1 Four Boreholes, + Surface Data l1 style 

Despite the reasonable results of the past two inversions using four boreholes, the 

recovered models still exhibit a fuzzy and generally smeared nature not representative of 

the distinct density contrasts in the true wedge model. To enhance t hese features, an h 

style inversion for each scenario is examined. This is done in hopes to produce distinctive 

density edges between cells which are located alongside the boreholes. Also, a model 

that accurately correlates the density peaks present in the wedge model is desired . The 

l1 style inversions are ran over multiple iterations with the default Elkhorn parameters 

of p = 1 and E = 10- 4 . The 20th iteration model for the four borehole scenario explored 
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in subsection 5.3 is seen in Figure 28. 
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Figure 28. Inversion results for a wedge-in- a- halfspace of gravity data from five bore­
holes. left: the x- slice, middle: the y- slice; right: the z-slice. Borehole locations are 
displayed in white. The true block model is outlined in black. 

The density model created by the 18th iteration for the four borehole and surface 

data scenario discussed in subsection 5.4 is seen in Figure 29. 
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Figure 29. Inversion results for a wedge- in-a-halfspace of gravity data from five bore­
holes. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole locations are 
displayed in white. The true block model is outlined in black. 
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As seen in Figure 28, the data- sets from the four boreholes locations are able to re­

produce the general shape of the wedge in the true model with distinct density interfaces 

between cells. Despite this, however, errors still arise in the density distribution inside 

the wedge. The x-slice of Figure 28 displays a density of 0.5 g/cm3 that occurs only in 

a few cells close to the borehole located at (x, y) --+ (250, 300). In the true model, these 

cells correspond to where the borehole would intersect the thin lOrn cell of 2.0 g/cm3 

density at depth (z) --+ (-150 : - 160) m. The remainder of the wedge is comprised 

of cells which hold a uniform, higher density of approximately 0.74g/cm3. Despite the 

difference in density values to the trne mocl.el, the inversion provides a model which 

generally reproduces the shape and constant density characteristics of the true model. 

The outcome parameters for the 20th iteration are as follows, 

• Pmax 

• Pmin 

• f3 
• </Yd 

• <Pm 
• <I> 

0.736 gjcm3 

- 0.0262 g/cm3 

0.40000E - 02 
195.65 
0.11187E + 07 
4670.4 

The resulting h density model from the four borehole and surface data example is 

seen in Figure 29. The outcome is similar to t he four borehole scenario, however the 

addition of surface data helps in obtaining a more even density distribution within the 

wedge. The region of anomalous density around the borehole at (x, y) --+ (250, 300) 

in Figure 25 is still apparent, however, the addition of surface data helps to focus the 

center of density closer to the confines of the true wedge. The outcome parameters for 

the 18th iteration are. 

• Pmax 

• Pmin 

• f3 
• </Yd 

• <Pm 
• <I> 

0.811 g/cm3 

- 0.00819 gjcm3 

0.90000E - 02 
462.82 
0.89535E + 06 
8521.0 
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5.5 Summary 

Multiple inversions scenarios of gravity data for a wedge- in- a- halfspace model were 

presented throughout this Chapter and in Appendix B. Through study of these exam­

ples, the ability of the inversion to produce a model that recreates the density distribution 

of the true model depends on the locations and number of borehole and surface gravity 

data used in the inversion. 

The ability to recreate the boundaries of the dense wedge were dependent on the 

location of t he boreholes away from the center of mass. In cases where the boreholes 

were too far away from the density anomaly, the produced model did not recreate the 

boundaries of the dense wedge. In examples where the outer boreholes were positioned 

closer to the edges of the anomaly, the inversion was able to produce models which 

showed the sharp, tapered boundaries of t he dense wedge and provided a better repre­

sentation of the density distribution. Accurate density models were also produced with 

four boreholes located on the edge of the true wedge, excluding the central borehole 

gravity data. This is due to the asymmetry of the wedge model about the center of the 

x- axis. 

In similarity with the block- in- a- halfspace model, the accuracy of the produced 

density models is dependent on t he amount of borehole and surface data incorporated 

into the inversion. The examples suggest that ideally, a borehole located directly through 

the center of mass of an anomaly, and borehole data located at the edges of the anomaly 

are able to produce an accurate density distribution and shape of a asymmetric dense 

shape. This setup sees that the central borehole will recreate an appropriate peak 

density, while t he outer boreholes confine the high densities to the edges of the density 

anomaly. 

75 



CHAPTER 6 

Minimum- Structure Inversion of the Voisey's Bay Ovoid 

The following chapter discusses the procedure and analysi for minimum- structure 

inversions performed to recreate the density structure of the main Ovoid of the Voisey's 

Bay mineral depo it described in Section 1.6. Inversions involving differing amounts 

of borehole locations, data- sets, reference models and varying parameters in the g3df d 

inversion algorithm are examined . 

The gravity data- sets used for the inv rsions are synthetically calculated by forward 

modelling at differ nt observation locations for a model representation of the subsurface 

density distribution in the vicinity of the Ovoid. The model was constructed by Ash 

(2007) through use of downhole samples from over 500 existing drill holes. This provided 

an extensive database where assay percentages of iron, sulphur and copper were used to 

create density values. The density equations were derived by u e of regression analy i 

of geochemical data (Ash, 2007). The densities calculated between the troctolite and 

massive sulphide samples provided a general correlation between the amount of sulphides 

and corresponding densities. Mean densit ies below 3.2 gjcm3 correspond to less than 

15% massive sulphides, mean densities between 3.2 to 4.6 g/cm3 ar associated with 40 

to 75% massive sulphides and densities gr ater than 4.6 gjcm3 are indicative of massive 

sulphides. 

The 3D rectangular mesh used in t he model is based on TM grid coordinate 

system and has a top southwest corner of 555297.5 E , 6242847.5 N and at an elevation 

of 172.5 m above sea level (Ash, 2007). There are 87 cells in the easting direction, 61 

cells in the northing direction and 54 cells in the vertical direction meaning that there 

are 286,57 total cells in the mesh. Each cell has dimensions (~x, ~y, ~z) -+ (10, 10, 5) 

m and is considered an appropriate size to enable adequate representation of the variou 
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Figure 30. The mesh and model of the Voisey's Bay main Ovoid used for the inversion 
examples. top: the z- slice, z = 37 m, middle: the y- slice, x = 600 m; bottom: the x­
slice, y = 600 m. Borehole locations are displayed in white. The true massive sulphide 
Ovoid model is outlined in black. 
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rock types and density distribut ions of the Ovoid. The mesh dimensions span 870 

x 640 x 270 m and was chosen to properly accommodate the local topography and 

all drill hold locations. The domain is also large enough to incorporate the Ovoid, 

enveloping troctolite, and the enclosing gneiss count ry rock (Ash, 2007). The den ity 

model was created in Gocad using a Kriging procedure which interpolates the measured 

densit ies of the borehole samples to obtain densit ies between boreholes. The model 

exhibits four distinct regions of the geology: the overburden, enderbitic gneiss, troctolite 

hosting various percentages of disseminated sulphides, and massive sulphide zones. In 

the model, all density values are relative to a 2.67 gjcm3 Bouguer anomaly correction. 

The model is displayed in three seperate slices in Figure 30. T he x- slice displays th 

x z plane at y = 310 m; the y- slice displays the yz plane at x = 600 m; and the 

z- slice displays the xy plane taken at z = 37 m. The goal of each inversion is to 

reproduce a density model that correlates well with the structure and density distribution 

of the t rue Ovoid model at these slices. In each borehole, the observed data- set is a 

total of 79 evenly spaced measurements taken from depths (z) ---+ (85.85 : -93.85) m, 

therefore at approximately every 2.30 m. The observation location were chosen so that 

measurements were calculated from the top of the overburden to the bottom of the 

mesh in hopes to fully study the effects of the Ovoid and varying surrounding densiti s. 

Random Gaussian noise of standard deviation equal to five percent of the magnitude of 

the datum is added to all data- sets. 

Minimum- structure inversions are performed using the defaul t l2 norm of model 

structure and x , y and z first-order fini te-difference terms with 0:1 = 0, 0:2 = 0:3 = 0:4 = 

1, and a 5 = · · · = a 14 = 0 unless otherwise noted (Section 3.2 .2). T he depth weighting 

parameters are init ially set t o default with ffi = 2 and z0 = 1.25 m (a quarter of the 

smallest cell dimension) (Section 3.2.3). The inversions are performed with a value of 

(3 which reproduces a data misfi t value </Jd that equals the total number of data points 
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within a 10% error margin. There is no reference model applied to the inversions unl ss 

otherwise noted. 

6.1 Five Boreholes 

The first inversion executed involves the gravity data calculated along the lengths 

of five boreholes. The boreholes arc located at (x, y) ---+ (450, 310), (x, y) ---+ (610, 310), 

(x, y) ---+ (690, 310) , (x, y) ---+ (610, 170), and (x, y) ---+ (610, 380) and were chosen with 

the shape of the Ovoid in mind. A central borehole is located through the center of 

density and four boreholes outline the Ovoid at its edges. The locations of the boreholes 

and the resulting density model from the completed inversion are seen in Figure 31. The 

predicted and observed gravity data- sets for each borehole are plotted in Figures 32 and 

33 

The produced density model is not a very good representation of the true model. 

The peak density is greater than that of the true model by approximately 1.5 g/ cm3 

and the density distribut ion within the Ovoid is highly variable. High densities are also 

spread outside of the true model around the outer boreholes, which is likely due to the 

general fuzzy nature of l2 inversions. There are, however areas of high density values 

present in between the central and surrounding boreholes, seen particularly in Figure 31 

bottom. One concern present in the resulting model is that, despite borehol s traveling 

directly through the Ovoid, the inversion appears to allocate mainly low density values 

to the cells adjacent to the borehole. The density model suggests that the inversion is 

encouraging the distribution of high densities away from the observation locations. 

The outcome file from the completed inversion displays the following parameters, 

• Pmax 3.67 gjcm3 

• Pmin -3.69 gjcm3 

• (3 0.55E- 06 

• cPd 400. 

• cPm 0.39E + 10 

• <I> 2528 
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Figure 31. Inversion results for the Ovoid model of gravity data from five boreholes. 
top: the z- slice, z =37m, middle: they- slice, x = 600 m; bottom: the x- slice, y = 600 
m. Borehole locations are displayed in white. The true massive sulphide Ovoid model 
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To further study the peculiarities of the density model, specifically the low density 

values in cells adjacent to the boreholes, the weighting function which is applied in 

the inversion and presented in Section 3.2.3 (see equation ( 43)) is examined in further 

detail. The function influences the inversion to allocate densities, with equal probability, 

to cells away from the observed data points. The results of altering the parameter [3 in 

the weighting function are presented throughout the following two sections. 

6.2 F ive Boreholes, {3 = 1 

The next inversion example examines the effects on the produced density model 

- -
when the {3 weighting parameter is changed from the default of {3 = 2 to a value of 

{3 = 1. The observation locations and number of boreholes remain the same as in the 

previous example. The density model produced by the completed inversion is seen in 

Figure 34. 

The impact of [3 on the inversion is clearly presented by comparing the density 

distributions of Figure 31 and Figure 34. In t he initial scenario, with default weight-

ing parameters, the model exhibited high densities away from the borehole locations, 

whereas an opposite scenario occurs with {3 = 1 where high densities are allocated to 

cells directly near the boreholes and spreading of high densities to cells away from the 

boreholes appears to be discouraged. Peak densities are still higher than the true models, 

however are less deviated than the default five borehole inversion example. Also, despite 

the lack of high densities between boreholes, the model coincides more accordingly with 

the shape of the true Ovoid model. This could be because the boreholes are all in the 

Ovoid and the inversion and high densities are constrained to be near the boreholes. 

The output parameters from the completed inversion are as follows. 
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Figure 34. Inversion results for the Ovoid model of gravity data from five boreholes 
applying a weighting parameter of ffi = 1. top : the z- slice, z = 37 m, middle: the 
y- slice, x = 600 m; bottom: the x- slice, y = 600 m. Borehole locations are displayed in 
white. T he true massive sulphide Ovoid model is outlined in black. 
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• Pmax 2.77 g/cm3 

• Pmin - - 1.37 gjcm3 

• {3 0.51£- 06 

• </Jd 382. 

• </Jm 0.692£ + 10 

• <I> 3911 

6.3 Five Boreholes, {3 = 1.5 

The effects of modifying the value of {3 were previously examined with the two 

scenarios providing differing features in the output density models. It is noted that 

when {3 is decreased, the weighting funct ion effects also decreru e causing the model 

to exhibit high densities in cells adjacent to the observation locations and limit the 

spreading out of density anomalies throughout the model. On the other hand, when g 
is increased, the effects of the weighting function are increased causing the inversion to 

allocate densities away from the observation locations, which includes situations where 

boreholes are located directly through areas of high density. In both examples, the 

produced model showed some similarities with the structur and density distribut ion 

of the true model, however it is believed that further adjustment of the value of g will 

provide a b tter representation. 

The following inversion attempts to create a model that better represents the true 

model by applying a weighting function parameter value of g = 1.5. This is conducted in 

hopes of producing a model t hat exhibits high densities both between and adjacent to the 

borehole measurements within the confines of the true Ovoid. The density distribution 

provided by the completed inversion is seen in Figure 35. 

The model produced by this inversion is a more accurate representation of the true 

model with the structure and density distribution correlating within reason. By inverting 

the data with a value of g = 1.5 in the weighting function, the inversion is able to place 

densities in between boreholes a characteristic seen in Figure 31 , and in cells adjacent to 

the length of the boreholes as seen in Figure 34. The output parameters for the inversion 
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Figure 35. Inversion results for the Ovoid model of gravity data from five boreholes 
applying a weighting parameter of /J = 1.5. top: the z- slice, z = 37 m, middle: the 
y- slice, x = 600 m; bottom: the x- slice, y = 600 m. Borehole locations are displayed in 
white. The t rue massive sulphide Ovoid model is outlined in black. 
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are, 

• Pmax 2.38 g/ cm3 

• Pmin - 1.40 gjcm3 

• (3 0.65E- 06 

• </Yd 398 

• <Pm 0.43E + 10 

• <I> 3227 

Since inversion models that feature a ffi = 1.5 value in the depth weighting function 

providing a better overall representation of the true model, all inversion examples will 

now use ffi = 1.5 as a default parameter. 

6.4 Four Boreholes 

The next inversion is conducted with borehole data from four boreholes. The data 

is from boreholes located at (x ,y) -t (450, 300), (x,y) -t (690, 310) , (x,y) -t (610, 170), 

and(x, y) -t (610, 380) . It is the same scenario as the five borehole study with the 

middle borehole data removed from the inversion. The density distribution provided by 

the completed inversion is seen in Figure 36. 

The produced model shows the impact that the central borehole has in reconstruct­

ing the proper shape of the Ovoid. With only four boreholes used in the inversion, the 

uniform density distribution throughout the Ovoid is not recovered . High densities are 

present in cells around the boreholes, however are not found between the boreholes. 

Also, the high densities are present in a constant radius around the boreholes, which 

makes for high densities outside of the Ovoid limits. The output parameters for the 

inversion are, 

• Pmax 

• Pmin 

• (3 

• </Yd 

• <Pm 

• <I> 

2.39 gjcm3 

- 1.40 gjcm3 

0.65E- 06 
308 
0.341E + 10 
2532 

86 



600 

500 

400 -E 300 ......... 
>. 

200 

100 

200 

-E 100 ......... 
.c:. -a. 0 
Q) 

0 

0 200 

-E 100 ......... 
.c:. -a. 0 
Q) 

0 

0 200 

400 

x (m) 

400 

y (m) 

400 

x (m) 

600 800 

600 

600 800 

2 

0 

Density 

g/cm3 

Figure 36. Inversion results for the Ovoid model of gravity data from four boreholes. 
top: the z- slice, z =37 m, middle: they- slice, x = 600 m; bottom: the x- slice, y = 600 
m. Borehole locations are displayed in white. The true massive sulphide Ovoid model 
is outlined in black. 
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6.5 Four Boreholes + Surface Data 

The results from the previous section using four boreholes proved to have inap-

propriately low density values between the boreholes. In an attempt to influence the 

inversion to allocate densities towards the center of the Ovoid, a scenario mimicking 

the four boreholes of the previous example is performed with the addition of 89 sur-

face data measurements. It was measured along lines separated by an average of 200 

m and along each line, the spacing between observation locations ranges from 25 to 50 

m. The surface gravity data- set is supplied by the Voiseys Bay Nickel Company and 

is seen in Figure 37 (see also Ash (2007)). The data was subjected to the typical cor-
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Figure 37. Surface gravity data- set collected over the Voisey's Bay Ovoid 

rections outlined in Chapter 1 and are relative to the standard crustal density value of 

2.67 gjcm3 . The provided data had no accompanying uncertainty estimates, therefore 

uncertainties of 0.05 gjcm3 were assumed in the inversion. The density model produced 
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by the completed inversion is seen in Figure 38. 
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Figure 38. Inversion results for the Ovoid model of gravity data from four boreholes 
and surface measurements. top: the z- slice, z = 37m, middle: they- slice, x = 600 m; 
bottom: the x- slice, y = 600 m. Borehole locations are displayed in white. The true 
massive sulphide Ovoid model is outlined in black. 

With the inclusion of surface data, the density model produced by the inversion 

IS a slight improvement over the four borehole study, the main difference being the 

distribution of negative density values on the outer edges of the domain. The surface 

data moderately influences t he distribution of high density values in between the borehole 
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locations. It is possible that with additional surface gravity values, higher densities would 

be allocated towards the center of the Ovoid. The output parameters of the inversion 

are as follows, 

• Pmax 2.46 g/cm3 

• Pmin -1.57 g/cm3 

• {3 = 0.85E- 06 

• ¢d 418 

• ¢m 0.358E + 10 

• <I> 3462 

6.6 Five Boreholes and overburden model DM05 

The following examples study inversions which incorporate a reference model 

(DM05) of the overburden densities present in the true Ovoid model (Ash, 2007). The 

reference model is comprised of a basic two-layered density distribution which is divided 

by the known position of the overburden-bedrock contact. In the model, cells that are in 

the overburden and above are assigned density values of - 0.75 g/ cm3 and all other cells 

are assigned density values of 0.14 g/cm3 as seen in Figure 39. It is noted that all cells 

above the overburden are given a value of - 0.75 g/ cm3 as well, however these cells are 

considered void by the inversion with the inclusion of the topography file. It is observed 

that in past models, high density values were spreading into the region of the overburden 

creating possible error in the produced model's density distribution. The inclusion of 

the overburden densities is done in hopes of obtaining a more distinct density barrier 

between the top of the Ovoid and overburden encouraging the inversion to allocate a 

consistent density distribut ion to cells within the Ovoid . 

The inversions incorporates the data calculated from the five identical boreholes 

examined in Sections 6.1- 6.3. The resulting density model from the completed inversion 

is seen in Figure 40 

The produced density model displays a boundary between the overburden and the 

remaining areas of the subsurface and provides a superior upper density barrier for the 
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Figure 39. The reference model DM05 that incorporates the overburden densities. top: 
the z- slice, z = 37 m, middle: the y- slice, x = 600 m; bottom: the x- slice, y = 600 
m. Borehole locations are displayed in white. The true massive sulphide Ovoid model 
is out lined in black. 
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Figure 40. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM05. top: the z- slice, z = 37 m, middle: the y- slice, 
x = 600 m; bottom: the x- slice, y = 600 m. Borehole locations are displayed in white. 
The true massive sulphide Ovoid model is outlined in black.. 
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Ovoid in comparison to the density model produced in Figure 35. The sharp interface 

observed between t he overburden and underlying material is a direct result from incor-

porating the DM05 overburden reference model into t he inversion. The densities in the 

overburden above the Ovoid, however, range between large positive and negative val-

ues. The density ranges from approximately 0.6 to - 1.5 g/cm3 and does not correspond 

to the uniform - 0.75 gjcm3 density that was assigned by the reference model. The 

parameters from the completed inversion are as follows, 

• Pmax 2.4 g/cm3 

• Pmin -1.47 g/cm3 

• {3 0.12E- 05 

• </>d 383 

• </>m 0.209E + 10 

• <I> 2901 

6.7 Five Boreholes and overburden model DM05, as= 1 

To allow the reference model to have more of an influence on the final model, the 

value of the spatial weighting coefficient as (or a 1) from equation ( 41) can be altered. 

The value of as has the ability to either increase or decrease the influence of function 

Ws which controls the amount of correlation between the final model and the reference 

model. In all previous inversions, the value of as had a default value of zero, thus 

limit ing the influence of the reference model to the derivative terms in equation (41). 

The appropriate value of as is undefined and relative on the dynamics of the inversion. 

Here a value of as = 1 is chosen and implemented into t he inversion. The resulting 

density model is seen in Figure 41. 

Changing the value of t he term as has a great effect on the inversion. The densities 

throughout the overburden are more constrained and range from approximately - 1.0 

gjcm 3 to 0. The density distribut ion within the Ovoid is more uniform as well. The 

areas in the troctolite region are also in agreement with the initial Ovoid model and 

exhibit a average density of around 0.2 g/cm3 . The model does have areas of error een 
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Figure 41. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM05 and a parameter value of a 8 = 1. top : the z- slice, 
z = 37 m, middle: the y- slice, x = 600 m; bottom: the x- slice, y = 600 m. Borehole 
locations are displayed in white. The true massive sulphide Ovoid model is outlined in 
black. 
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at the bottom of the boreholes at a depth of approximately z = - 100 m, where the 

model exhibit either extreme highs or extreme lows in density. The cause of this is likely 

due to the inversion overcompensating when trying to match the values of all cells with 

that of the reference model. The output parameters of the inversion are, 

• Pmax 2.24 gjcm3 

• Pmin - 4.68 gjcm3 

• {3 0.52E- 08 

• </Jd 392 

• </Jm 0.21E + 13 

• <P = 11115 . 

6.8 Five Boreholes, DM05 as= 1 with weighting 

By encouraging the inversion to assign the reference model densities of the over-

burden to the model, it is assumed that the remaining density distribution inside the 

confines of the Ovoid will correlate better with the true model. This is because the in-

version is given a starting density model to use as a guide to aid in the remaining density 

distribution. To assure that the cells in the overburden are assigned a value of -0.75 

gjcm 3 , an extra weight ing file is included in the inversion procedure. The file contains 

a list of entries, one for each cell in the mesh. Manipulation of the entries can greatly 

encourage the inversion to assign densities from the reference model to the corresponding 

cells of the produced model. The weighting file used iu the following example has entries 

of 100 for cells in the overburden and entries of 1 for every other cell in the mesh. This 

greatly encourages densities of -0.75 g/cm3 to be assigned to cells in the overburden. 

The inversion is executed with identical data from the previous example and with the 

same value of D's = 1, the only difference being the inclusion of the weight ing file. The 

density model produced from the inversion is seen in Figure 42. 

From the inversion result , it is dearly shown that tho extra weighting file limits tho 

overburden densities to - 0.75 gjcm3 . It also appears that the densities of the enveloping 

rocks average around a 0.1 gjcm3 density which is close to their true value of 0.14 gjcm3
. 
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Figure 42. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM05, a parameter value of as = 1 and extra weighting 
for cells in the overburden. top: the z- slice, z = 37m, middle: the y- slice, x = 600 m; 
bottom: the x- slice, y = 600 m. Borehole locations are displayed in white. The true 
massive sulphide Ovoid model is outlined in black. 
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The densities within the Ovoid, however , are not modeled as well as in the past model 

as the densities between boreholes are of lower value. The output parameters from the 

inversion are, 

• Pmax 2.67 gjcm3 

• Pmin -3.81 g/cm3 

• {3 0.50E- 08 

• cPd 373 

• cPm 0.25E + 13 

• <I> 13086 . 

6.9 Five Boreholes and reference model DM09 

The next example is performed to simulate an inversion which incorporates infor-

mation collected from the five boreholes; that is, densities derived by methods such as 

gamma-ray borehole logging or core sample analysis from boreholes. The inversion in-

eludes a reference model that has assigned density values for the cells adjacent to each 

borehole. The reference model is shown in Figure 43. The inversion includes the iden-

tical five borehole data present from past examples and a coefficient value of a8 = 1 is 

used. The resulting inversion density model is seen in Figure 44. 

This density model does create the density pattern implied by the reference model, 

however, the incorporated density values are massively skewed. The high density values 

present around the boreholes limit an even spread of density in between boreholes and 

the result is an overall poor representation of the true model. The parameters produced 

from the inversion are as follows , 

• Pmax = 4.25 gjcm3 

• Pmin -1.87 gjcm3 

• {3 0.85E - 06 

• cPd 393 

• cPm 0.36E + 10 

• <I> 3425 
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Figure 43. The reference model DM09 of density for cells positioned adjacent to the five 
borehole locations. 
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Figure 44. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM09. top: the z- slice, z = 37 m, middle: the y- slice, 
x = 600 m; bottom: the x- slice, y = 600 m. Borehole locations are displayed in white. 
The true massive sulphide Ovoid model is outlined in black. 
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6.10 Five Boreholes, reference model DM09 as= 1 with weighting 

To ensure the reference model densit ies are allocated to the proper cells with the 

appropriate value, t he following inversion uses the borehole reference model and incor-

porates a weighting file. The borehole weight ing file includes entries of 100 for cells that 

are positioned along the lengths of the boreholes and values of 1 for all other cells. In the 

inversion , data is from the same five boreholes as previous inversions and a coefficient 

value of as = 1 is used. The result ing inversion density model is seen in Figure 45. 

By incorporating the weighting file, the produced model differs greatly from the 

one shown in Figure 44. The weighting file does force the density next to the borehole 

to hold its init ial reference model value, however, the density distribut ion throughout 

the rest of the produced model does not correlate and is different in shape and value 

from the true Ovoid model. This could be due to the relatively high coefficient value of 

a 8 = 1, which may have too greatly influenced the inversion to produce a model that 

coincides with the reference model. The parameters produced from the inversion are as 

follows, 

• Pmax 4.46 gjcm3 

• Pmin - 2.69 gjcm3 

• (3 0.425£-08 

• </Jd 367 

• </Jm 0.27E + 13 

• ci> 11746. 
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Figure 45. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM09, a parameter value of a 8 = 1 and extra weighting 
for cells along the boreholes. top: the x- slice, middle: the y- slice; bottom: the z- slice. 
Borehole locations are displayed in white. The true block model is outlined in black. 
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6.11 Five Boreholes, reference model DM09, as= 0.1 with weighting 

For the past example it was suggested that the poor model could have been due to 

the high value of the coefficient a8 = 1 having too large of an influence on the inversion. 

In the next example, the exact same scenario is examined , however the as coefficient 

is changed to a 8 = 0.1. This inversion involves the same data and borehole weight ing 

used in the previous example. The a 8 value is lowered so that the inversion will be less 

inclined to produce a model so similar to the reference model. The resulting density 

distribution from this inversion example is seen in Figure 46. 

As seen in the density distribution, changing the value of a 8 from 1 to 0.1 does 

litt le to produce a model which compares to the true model. In fact, despite a minimal 

improvement in the peak density values, the produced density models shown in Figures 

45 and 46 resemble each other. The parameters produced from the inversion are as 

follows, 

• Pmax 4.24 gjcm3 

• Pmin - 2.4 g/cm3 

• (3 0.40E - 07 

• </Jd 363 

• <Pm 0.28E + 12 

• <I> 11416 . 

6.12 Five Boreholes, reference model DM09 as= 0.0001 increased weighting 

In a final effort to obtain an acceptable density model from an inversion which 

involves the borehole density reference model, the parameters are once again altered. 

The model structure coefficient is changed to a 8 = 0.0001, meaning that the inversion 

has little influence to produce a model which rese1nbles the reference model. Also, the 

borehole weight ing is changed where values for cells along the borehole had been 100 

are switched to 10, 000, the weighting for all other cells in the mesh remains 1. This 

means that, despite the li ttle influence the inversion has to replicate the entire reference 

model, the inversion is strongly encouraged to allocate the densit ies along the boreholes 
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Figure 46. Inversion results for the Ovoid model of gravity data from five boreholes 
applying the reference model DM05, a parameter value of as= 0.1 and extra weight ing 
for cells along the boreholes. top: the z- slice, z = 37 m, middle: the y- slice, x = 600 
m; bottom: the x- slice, y = 600 m. Borehole locations are displayed in white. The true 
massive sulphide Ovoid model is outlined in black. 
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to those cells. Again, the data used in the inversion is from the same five borehole 

locations as previously. The results from the completed inversion are seen in Figure 4 7 

and the parameters produced from the inversion are as follows, 

• Pmax 4.38 gjcm3 

• Pmin -4.54 g/cm3 

• (3 0.38E- 06 

• c/Jd 367 

• c/Jm 0.38E + 11 

• <I> 14350. 
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Borehole locations are displayed in white. The t rue block model is outlined in black. 
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The produced model is another failed attempt to recreate the density distribution 

and shape of the true Ovoid model. In fact , the results from the recent set of inversions 

involving the borehole density reference model demonstrate the issues peculiar and par­

ticular to minimum- structure borehole gravity inversion. It was initially thought that 

the inclusion of the borehole density reference model would provide useful subsurface 

information into the inversion to help produce a model which more accurately correlated 

with the true Ovoid model. This, however , was not the case and all the reproduced den­

sity models were of poorer results than, for example, the simple case shown in Figure 35. 

It is speculated that the appearance of the reference model in all terms in the mea­

sure of model structure (equation ( 41)) is the cause of the disappointing results described 

in these sections. The jump in densities in the reference model between cells down the 

boreholes and then away from the boreholes still strongly influences equation ( 41) irre­

spective of the value of a8 (Section 3.2.2). Unfortunately, it was not possible to test this 

hypothesis because the starting model m0 of equation ( 41) cannot be removed from the 

derivative terms in the program g3dfd in its current form. 

It has been examined that the density models produced by the inversion differ 

depending on the amount of data, the size of mesh and cells, and the density distribu­

tion and shape of the true model. While minimum- structure inversion has significant 

flexibility in that many different parameters can be adjusted and additional reference 

model and weighting files can be incorporated, these adjustmcuts arc done in au ad-hoc 

manor, and may not produce better results; sometimes a simpler approach will produce 

an overall better density model. 
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CHAPTER 7 

Conclusion 

The following final chapter summarizes the studies performed and results obtained 

throughout the previous chapters. This includes the use of a finite-difference approxima­

t ion of Poisson's equation as a forward solving device and the use of borehole gravity data 

in minimum- structure inversions for a block- in- a- halfspace, wedg in- a- halfspace, and 

the main Ovoid of Voisey's Bay Nickel Mine as models. This chapter also discusses the 

impact that borehole gravity measurement inversion will have on the mineral exploration 

industry and concludes with recommendations for future work. 

7.1 Forward Modelling 

One major obstacle for using borehole gravity in minimum- structure inversions was 

that a new method to forward model gravity data was needed. This was due to the fact 

that current day inversion programs arc unable to take measurements within the confines 

of a dense anomaly. To solve this problem, the inversion program designed by Farquhar­

son applies a forward modeller for gravity calculations by means of a finite- difference 

approximation to Poisson's equation. T his method was chosen due to its minimalist 

use of computational memory. An in depth description of the method is presented in 

Chapter 2 and in Farquharson and Mosher (2009). Because the method uses an approx­

imation of Poisson 's equation, testing was necessary to validate the method. Borehole 

gravity data calculated at identical locations for a dense cube were compared between 

the finite- difference approximation method and the algorithm of Okabe - Steiner and 

Zilahi-Sebess presented by Li and Chouteau (1998). In Chapter 2, three borehole loca­

tions at various distances from the cube were observed for four cube meshes each of size 

600m3, but with varying cell sizes. The finite-difference method proved to emulate the 

Li and Chouteau (1998) method in measurement and trend, and less deviation occurred 
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between measurements as cell size in the mesh decreased. A cumulative error measure­

ment was performed for all four mesh sizes. It was determined that the fini te-difference 

approximation to Poisson's equation was a viable method to forward model gravity data 

for a mesh which exhibited cell sizes of 10 x 10 x 10 m or 5 x 5 x 5 m. T he other two 

meshes studied of 50 x 50 x 50 m and 25 x 25 x 25 m cell sizes still adequately fi t the data 

trend , however inaccuracies around the peak gravity values discouraged their use. The 

finite-difference approximation of Poisson's equation was used as the forward modelling 

method in all of the minimum- structure inversions presented in this thesis . 

7.2 Block- in- a- halfspace 

The first series of inversions performed aimed to recover a dense cube in a zero­

halfspace by use of various scenarios of borehole and surface data. The obtained results 

varied with some scenarios producing adequate representations of the true model den­

sity distribution and structure while others lacked any kind of spatial resolution. It is 

observed that inclusion of borehole gravity data is able to provide the inversion with 

correct depth resolution, however a sole borehole lacks spatial resolution in the xy- plane. 

Generally, boreholes located closer to the dense block provided more successful results 

and greater resolution, with the best occurring when borehole data located directly 

through the middle of the dense block is incorporated into the inversion. Cont rarily, 

inversions that involved borehole data far away from the center of density provided the 

poorest results as the borehole data had little influence on creating the density distri­

bution with resolution. The combination of surface data and borehole data directed 

directly through the dense block provided the best results as the model exhibited proper 

depth and spatial resolution with an accurate density representation of the dense block 

and zero- halfspace background. The h style inversions were able to reproduce an image 

of the t rue dense block wit h accurately matching density distribut ion and shape that 

exhibit sharp interfaces between cells. 
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7.3 Wedge- in- a - halfspace 

While t he block- in- a- halfspace provided an initial test of a simple and symmetric 

model, inversions were next studied for a more complex wedge-in- a- halfspace model, 

non- symmetric about the middle of the x- axis. Similar borehole scenarios as the block­

in- a- halfspace example were studied. Once again, the boreholes located far from the 

center of mass proved to be of little use in recreating the boundaries of the dense wedge. 

A borehole located through the center of the wedge proved to over power the influence 

of the boreholes positioned further away. Inversions were then performed for boreholes 

located on the edges of the true model. The use of the outer boreholes on the edge and 

central borehole were able to adequately reproduce the tapering shape of the wedge. 

Favourable results were also obtained without use of the central borehole data. The 

use of surface data with the outer edge borehole data provided the best result as the 

produced model matched the density dist ributions both in and outside of the wedge 

with proper depth resolution correlating with the non- symmetry of the model. The l1 

style inversions were able to reproduce an image of the true dense wedge with accurately 

matching density distribution and shape that exhibit sharp interfaces between cells. 

7.4 Voisey's Bay Ovoid 

The next set of inversions were aimed at reproducing the main ovoid of the Voisey's 

Bay Nickel Mine. The true model used to forward model the gravity data was created 

with data collected from over 500 actual boreholes. The inversions incorporated the data 

from five boreholes , one central borehole located through the center of mass where the 

ovoid extended the furthest in depth, and four other boreholes positioned on the edges 

of the Ovoid. From the produced inversion model, it was noted that the parameters of 

the depth weighting function outlined in Chapter 3 required alteration. In particular, 

the manipulation of iJ, in equation (43), greatly influenced the outcome of the inversion. 

It was concluded that if the value of jj is too large, the produced models exhibited 
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unexpectedly low density values in cells adjacent to the borehole locations with higher 

densities between the boreholes, even in situations where the borehole location passes 

directly through the dense mass. Counterintuitively, if the value of the depth weight 

parameter (3 is too low, the outcome models exhibited high density values limited to cells 

around the borehole, with little to no high density values spread between boreholes. 

Another scenario studied for the Ovoid included the use of four boreholes, elimi­

nating the central borehole data from the inversion. The resulting density model proved 

to be a poor representation as it lacked the proper density distribution throughout the 

center of the Ovoid. The inclusion of the limited surface data improved the model, 

although improvement was minimal for the four borehole example. 

Methods to include a priori knowledge of the Voisey's Bay area were also included 

into inversions for the Ovoid. A reference model of the overburden densities was incor­

porated and the resulting density model limited the spreading of high density values 

outside of the area above the Ovoid in the true model providing an accurate constraint 

at the top of the anomaly and a better density distribution throughout. A reference 

model incorporating the densit ies for cells along the lengths of the boreholes was also 

incorporated into inversions which aimed to simulate the densities recovered through 

logging of the core or through a gamma ray survey. The inversion results from this sce­

nario provided models of little quality and outlined the potential peculiarity of altering 

parameters in minimum- structure inversions. 

7.5 Final Statements 

The scenarios studied from the multiple inversion trials were performed to create 

a basis on the type of information that borehole gravity calculations and inversions are 

able to provide. The inversion of borehole gravity data is able to produce a proper 

density resolution for a dense anomaly, however lacks spatial resolut ion in the xy- plane. 

The more successful inversion results arise from the use of both surface and borehole 
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data. The benefits of borehole gravity data also depend on the location of the borehole 

relative to the anomalous mass. When close enough , inversions which reproduce images 

of more complex density distribution are attainable as seen with the wedge and Ovoid 

models. Borehole data which is located further away from the model constrains the 

outer parts of the domain. Ideally, a borehole oriented through the center of mass is 

preferred, while other boreholes positioned to outline the dense area confine the density 

and reproduce a greater resolution of an anomaly. 

Upon the completion of the borehole gravimeter, the use of minimum- structure 

borehole gravity inversion will be a valuable tool that has the possibility to aid in various 

aspects of mining and, with the appropriate data, can provide accurate information 

regarding an anomaly's shape with proper depth resolution and density distribution. 

7.6 Future Work 

A main area of future work proposed for this study is performing minimum­

structure inversions with data recorded by a functional slimhole gravimeter from an 

actual survey of a mining site. With this, inversion examples can be studied which 

exhibit real life density distribution from data which contains real noise. 
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APPENDIX A 

Block in a halfspace models 

In the following appendix, more inversion results are shown for different scenarios of 

borehole data and locations for a block in a halfspace model. The mesh used in the block 

density model and for results has dimensions (x, y , z) -----+ (0, 0, 150) : (600, 600, -450) 

and cell sizes of 10m in each direction. The mesh therefore contains 216,000 cells. A 

cube with a density of 2.0 g/cm3 is located at the center of the mesh wit h coordinates, 

(x, y,z) -----+ (250,250,-100): (350,350,-200) . The cells outside of the cube have a 

density of zero. The block density model is shown in Figure 7. All borehole data 

observation points are calculated along boreholes which t ravel from (z) -----+ ( -3.846 : 

- 296.153) m. A total of thirty nine observations are taken at evenly spaced intervals 

at approximately every 7.7 m. Random Gaussian noise of standard deviation equal to 

five percent of the magnitude of the datum is added to all data-sets. If surface data is 

included in the example, a total of 1521 data points are taken at the surface (z = 0) 

from (x, y) -----+ (105.13, 105.13) : (494.87, 494.87) m. Thus measurements are calculated 

at approximately every 10.25 m. 
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A.l One + Surface D ata Far 

The resulting density distribut ion and output parameters from an inversion of data 

calculated at the surface and a borehole located at (x, y) ---t (150, 300) . 
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Figure A.l. Inversion results for a block- in- a- halfspace from surface data and a bore­
hole. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole location is 
displayed in white and the surface locations are displayed in white dots. The true block 
model is outlined in black. 

• Pmax 0.0986 gj cm3 

• Pmin - 0.0106 g/ cm3 

• (3 0.27500£ - 02 

• c/Jd 1614.5 

• c/Jm 0.67830£ + 06 

• <I> 3479.8 
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A.2 One + Surface Data Edge 

The result ing density distribut ion and output parameters from an inversion of data 

calculated at the surface and a borehole located at (x, y) --+ (250, 300). 
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Figure A.2. Inversion results for a block- in- a- halfspace from surface data and a bore­
hole. left: the x- slice, middle: the y- slice; right: the z- slice. Borehole location i 
displayed in white and the surface locations are displayed in white dots. The true block 
model is outlined in black. 

• Pmax 0.587 g/cm3 

• Pmin -0.0946 g/cm3 

• (3 0.12000E - 03 

• </>d 1624.7 

• </>m 0.23009E + 08 

• cp 4385.8 
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A.3 Two Edge 

The result ing density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x , y) ---t (250, 300) and (x, y) ---t (350, 300). 
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Figure A.3. Inversion results for a block- in- a- halfspace from two boreholes. left: the 
x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 0.853 gjcm3 

• Pmin - 0.531 gjcm3 

• (3 0.15000£- 05 

• cPd 85.166 

• cPm 0.39079E + 09 

• <P 671.36 
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A.4 Two Edge, One Middle 

The result ing density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) -+ (250, 300) , (x, y) -+ (300, 300) and (x, y) -+ 

(350, 300). 
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Figure A.4. Inversion results for a block- in- a- halfspace from two boreholes. left : the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 2.1 gjcm3 

• Pmin - 0.821 gjcm3 

• (3 0.68000E - 06 

• ¢d 114.98 

• ¢m = 0.10315E + 10 

• <I> 816.37 
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A.5 One Far, One Middle 

The result ing density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x , y) ---> (150, 300) and (x, y) ---> (300, 300). 
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Figure A.5. Inversion results for a block- in- a- halfspace from two boreholes. left : the 
x- slice, middle: the y- slice; right : the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 1.71 gjcm3 

• Pmin -1.16 gjcm3 

• {3 0.80000E - 06 

• ¢d 84.491 

• ¢m 0.84054E + 09 

• ci> 756.92 
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A.6 One Half, One Middle 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---t (200, 300) and (x, y) ---t (300, 300) . 
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Figure A.6. Inversion results for a block- in- a- halfspace from two boreholes. left : the 
x- slice, middle: the y- slice; right: t he z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 1.77 g/cm3 

• Pmin -1.16 gjcm3 

• (3 0. 75000E - 06 

• cPd 77.071 

• cPm 0.85659E + 09 

• <]) 719.51 
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A. 7 One Edge, One Middle 

The resulting density dist ribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (250, 300) and (x, y) ---+ (300, 300). 
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Figure A.7. Inversion results for a block- in- a- halfspace from two boreholes. left : the 
x- slice, middle: the y- slice; right: t he z- slice. Borehole locations are displayed in white. 
The true block model is out lined in black. 

• Pmax 1.73 gjcm3 

• Pmin - 1.18 gjcm3 

• {3 0.73000E - 06 

• </Jd 84.377 

• <Pm 0.85798E + 09 

• <I> 710.70 
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A.8 One Edge, One Half 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ~ (250, 300) and (x, y) ~ (400, 300) 
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Figure A.8. Inversion results for a block- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is out lined in black. 

• Pmax 0.939 gjcm3 

• Pmin - 0.503 gjcm3 

• f3 0.22000E- 05 

• </Jd 77.909 

• </Jm 0.23911E + 09 

• «<> 603.96 
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A.9 One Edge, One Half 2 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ~ (200, 300) and (x, y) ~ (250, 300) 
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Figure A.9. Inversion results for a block- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is out lined in black. 

• Pmax 1.14 gjcm3 

• Pmin - 0.571 gjcm3 

• f3 0.16500£ - 05 

• rPd 82.971 

• rPm 0.34502£ + 09 

• <I> 652.25 
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A.lO One Middle, Two Corner Edge 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---t (300, 300), (x, y) ---t (250, 250) and (x, y) ---t 

(450, 450). 
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Figure A.10. Inversion results for a block- in- a- halfspace from three boreholes. left : the 
x- slice, middle: they- slice; right : the z- slice. Borehole locations are displayed in white. 
The t rue block model is outlined in black. 

• Pmax 2.12 g/cm3 

• Pmin -0.787 gjcm3 

• {3 0.84000E - 06 

• </Yd 123.31 

• <Pm 0.10130E + 10 

• <I> 974.20 
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A.ll Five Boreholes 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (150, 300), (x, y) ---+ (300, 300), (x, y) ---+ 

(450,300), (x,y)---+ (300, 150) and (x,y)---+ (300,450). 
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Figure A.11. Inversion results for a block- in-a-halfspace from five boreholes. left : the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 1.96 gjcm3 

• Pmin -0.732 gjcm3 

• (3 0.13000E- 05 

• </Jd 186.81 

• <Pm 0.99629E + 09 

• <I> 1482.0 
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A.12 Five Boreholes Line 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x , y) -t (200, 300) , (x, y) -t (250, 300) , (x y) -t 

(300, 300), (x, y) -t (350, 300) and (x , y) -t (400 300). 

100 100 

0 0 

I I 
.c a. .c a. 
Q) Q) 

0 0 

0 200 400 600 

x(m) 

0 200 400 600 

y(m) 

Density g/cm3 

500 

400 

I 3oo 

200 

100 

200 400 600 

x(m) 

Figure A.12. Inversion results for a block- iu- a- halfspace from five boreholes. left : the 
x- slice, middle : they- slice; right : the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 

• Pmin 

• f3 
• cPd 
• cPm 
• <I> 

2.03 gjcm3 

- 0.706 gjcm3 

0.11000E - 05 
185.66 
0.10518E + 10 
1342.7 
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A .13 Five Boreholes X 

The result ing density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) --; (150, 150) , (x, y) --; (150, 450), (x, y) --; 

(300, 300), (x, y) --; (450, 450) and (x, y)--; (450, 150). 
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Figure A.13. Inversion results for a block- in- a- halfspace from five boreholes. left : the 
x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The t rue block model is out lined in black. 

• Pmax 1.77 gjcm3 

• Pmin - 0.837 gjcm3 

• (3 0.14000E- 05 

• cPd 203.50 

• cPm 0.93862E + 09 

• <I> 1517.6 
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A.14 Seven Boreholes Line 

The r suiting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ~ (150, 300) , (x, y) ~ (200, 300) , (x, y) ~ 

(250, 300) , (x y) ~ (300 300), (x y) ~ (350, 300) , (x, y) ~ (400 300) and (x, y) ~ 

(450, 300) . 
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Figure A.14. Inversion results for a block- in- a- halfspace from ven boreholes. left: 
the x- slice, middle: the y lice; right: the z- slice. Borehol location are displayed in 
white. The tru block model is outlined in black. 

• Pmax - 2.00 gjcm3 

• Pmin - - 0.683 gjcm3 

• (J - 0.13000E - 05 

• ¢d 251.99 

• ¢m 0.10588E + 10 

• <I> 1628.4 
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A.15 Eight Boreholes 

The resulting density distribution and output parameters from an inversion of 

data calculated from boreholes located at (x, y) -+ (150, 150), (x, y) -+ (150, 300) 

(x, y)-+ (150,450), (x,y)-+ (300, 450), (x,y)-+ (450, 450), (x,y)-+ (450, 300), 

(x, y)-+ (450, 150) and (x , y)-+ (300, 150). 
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Figure A.15. Inversion results for a block- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true block model is outlined in black. 

• Pmax 

• Pmin 

• {3 
• c/Yd 

• ¢m 
• <I> 

0.0436 gjcm3 

- 0.00387 gjcm3 

0.21000E - 02 
344.12 
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A.l6 Eight +Surface Data 

The resulting density distribution and output parameters from an inversion of data 

calculated at the surface and boreholes located at (x, y) --> (150, 150) , (x, y) --> (150, 300) 

(x, y) --> (150, 450), (x, y)--> (300, 450) , (x,y)--> (450,450), (x,y)--> (450,300), 

(x, y) --> (450, 150) and (x , y)--> (300, 150). 
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Figure A.16. Inversion results for a block- in- a- halfspace from surface data and eight 
boreholes. left: the x- slice, m iddle: the y- slice; right : the z- slice. Borehole locations 
are displayed in white and surface locations are shown in white dots. The true block 
model is outlined in black. 
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A.l 7 Eight Diamond 

The resulting density distribution and output parameters from an inversion of data 

calculated at the surface and boreholes located at (x, y) -t (200, 300), (x, y) --+ (300, 200) 

(x, y)--+ (400,300), (x,y)--+ (300,400) , (x,y)--+ (250, 250), (x,y)--+ (350,350), 

(x, y) --+ (350, 250) and (x, y) --+ (250, 350). 
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Figure A.17. Inversion results for a block- in- a- halfspace from eight boreholes. left: the 
x- slice, middle: the y- slice; right: t he z- slice. Borehole locations are displayed in white 
and surface locations are shown in white dots. The true block model is outlined in black. 
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• ¢m 
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0.65000E- 05 
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A.18 Nine 

The resulting density distribution and output parameters from an inversion us-

ing data calculated from boreholes located at (x, y) ---+ (150, 150), (x, y) ---+ (150, 300) 

(x ,y)---+ (150, 450), (x, y)---+ (300,450), (x,y)---+ (450,450), (x,y)---+ (450,300), 

(x, y)---+ (450, 150) (x, y) ---+ (300, 150) and (x , y)---+ (300, 300). 
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Figure A.18. Inversion results for a block- in- a- halfspace from nine boreholes. left : the 
x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The t rue block model is out lined in black. 

• Pmax 

• Pmin 

• f3 
• </>d 
• </>m 
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0.35000E - 05 
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APPENDIX B 

Wedge- in- a- Halfspace- Models 

In the following appendix, more inversion results are shown for different scenar­

ios of borehole data and locations for a wedge- in- a- halfspace model. The mesh used 

is the wedge density model and for results has dimensions (x, y , z) ---t (0, 0, 150) : 

(600, 600, -450) and cell sizes of 10m in each direction. The mesh therefore con­

tain 216,000 cells. A wedge with a density of 2.0 gjcm3 is located at the center of 

the mesh. The y- coordinates of the wedge are (y) ---t (250 : 350). The x- and 

z- coordinates of the wedge decrease by 10m per cell, the x- and z- coordinate are 

(x, z)---t(250, - 100) : (350, - 110) to (x, z)---t(250, - 100) : (350, - 200). The cells outside 

of the wedge have a background density of zero. The wedge density model is shown in 

Figure 18. All borehole data observation points are calculated along boreholes which 

travels from (z) ---t ( -3.846 : - 296.153) m. A total of thirty nine observations are taken 

at evenly spaced intervals at approximately every 7.7 m. Random Gaussian noise of 

standard deviation equal to five percent of the magnitude of the datum is added to all 

data- sets. If surface data is included in the inversion, a total of 1521 data points are 

taken at the surface (z = 0) from (x, y) ---t (105.13, 105.13) : (494.87, 494.87) m. Thus 

measurements are calculated at approximately every 10.25 m. 
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B.l One Borehole + Surface Data 

The result ing density distribution and output parameters from an inversion of data 

calculated at the surface and a borehole located at (x, y) ----+ (300, 300) 
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Figure B.l. Inversion results for a wedge- in- a- halfspace from surface data and a bore­
hole. left: the x- slice, middle: the y- slice; right : the z- slice. Borehole location is 
displayed in white and the surface locations are displayed in white dots. The true wedge 
model is outlined in black. 

• Pmax 1.02 g/cm3 

• Pmin -0.162 g/cm3 

• {3 0.33000E - 04 

• cPd 1554.6 

• cPm 0. 71630£ + 08 

• <I> 3918.4 
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B.2 One Far, One Middle 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (150, 300) and (x, y) ---+ (300, 300). 
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Figure B.2. Inversion results for a wedge-in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 1.96 g/cm3 

• Pmin - 0.608 g/cm3 

• {3 0.90000E - 06 

• cPd 73.857 

• cPm 0.59101E + 09 

• <I> 605.76 
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B.3 One Far, One Middle 2 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) -t (450, 300) and (x , y) -t (300, 300). 
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Figure B.3. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 1.96 gjcm3 

• Pmin - 0.613 gjcm3 

• {3 0.88000E - 06 

• </Yd 71.595 

• <Pm 0.58964E + 09 

• <I? 590.47 
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B.4 One Half, One Middle 

The result ing density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (200, 300) and (x , y) ---+ (300, 300). 
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Figure B.4. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: Lhe z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 2.01 gjcm3 

• Pmin - 0.597 gjcm3 

• {3 0.89000E- 06 

• </Jd 72.063 

• </Jm 0.59912E + 09 

• <I> 605.28 
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B.5 One Half, One Middle 2 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) -t (400, 300) and (x , y) -t (300, 300). 
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Figure B.5. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right : the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 1.99 g/cm3 

• Pmin - 0.604 gjcm3 

• {3 0.88000E - 06 

• c/Jd 70.404 

• c/Jm 0.58510£ + 09 

• <P 585.29 
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B.6 One Edge, One Middle 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---4 (250, 300) and (x, y) ---4 (300, 300) . 

100 100 

0 0 

:§: :§: 
.c: .c: a. a. 
(I) (I) 

0 0 

0 200 400 600 

x(m) 

0 200 400 600 

y(m) 

Density g/cm3 

500 

400 

:§: 300 
>. 

200 

200 400 

x(m) 

600 

Figure B.6. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 2.08 gjcm3 

• Pmin - 0.637 gjcm3 

• (3 0. 78000E - 06 

• cPd 82.101 

• cPm 0.67982E + 09 

• <I> 612.36 
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B.7 One Edge, One Middle 2 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (350, 300) and (x , y) ---+ (300, 300). 
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Figure B. 7. Inversion results for a wedge- in- a- halfspace from two boreholes. left : the 
x- slice, m iddle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The t rue wedge model is outlined in black. 

• Pmax 1.96 gjcm3 

• Pmin - 0.611 g/cm3 

• (3 0.80000E - 06 

• c/Jd 72.546 

• c/Jm 0.63229E + 09 

• ci> 578.38 
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B.8 One Edge, One Half 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---t (250, 300) and (x, y) ---t ( 400, 300). 
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Figure B.8. Inversion results for a wedg in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z-slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 0.692 gjcm3 

• Pmin - 0.13 gjcm3 

• (3 0.33500E- 05 

• cPd 84.861 

• cPm = 0.59420E + 08 

• <I> 283.92 
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B.9 One Edge, One Half 2 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---t (350, 300) and (x, y) ---t (200, 300). 
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Figure B.9. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: the y- slice; right: the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 0.91 gjcm3 

• Pmin - 0.519 gjcm3 

• (J 0.27000E - 05 

• </Jd 84.377 

• </Jm 0.17283E + 09 

• <I> 551.01 
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B.lO One Edge, One Half 3 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x ,y) ----+ (350, 300) and (x ,y) ----+ (400, 300). 
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Figure B.lO. Inversion results for a wedge- in- a- halfspace from two boreholes. left: the 
x- slice, middle: the y- slice; right: t he z- slice. Bor hole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 1.08 gjcm3 

• Pmin - 0.607 gjcm3 

• (3 0.19700E - 05 

• ¢d 82.979 

• ifJm 0. 23458E + 09 

• <I> 545.10 
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B.ll One Edge, One Half 4 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x , y) --. (250, 300) and (x, y) --. (200, 300). 
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Figure B.11. Inversion results for a wedge- in- a- halfspace from two boreholes. left: t he 
x- slice, middle: the y- slice; right: the z-slice. Borehole locations are displayed in white. 
The t rue wedge model is outlined in black. 

• Pmax 0.831 g/cm3 

• Pmin - 0.131 gjcm3 

• fJ 0.26000£ - 05 

• <Pd 79.820 

• <Pm 0.77474£ + 08 

• -I> 281.25 
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B.12 Two Edge 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x, y) --+ (250, 300) and (x , y) --+ (350, 300). 

600 
100 100 

500 
0 0 

400 

I 300 
>-

I I D .s::: .s::: a. a. 
Q) Q) 

0 0 200 

100 

0 
0 200 400 600 0 200 400 600 0 200 400 600 

x(m) y(m) x(m) 

Density g/cm3 

Figure B.12. Inversion results for a wedge-in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: the z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 0.917 g/cm3 

• Pmin - 0.560 g/cm3 

• {3 0.15000E- 05 

• c/Jd 75.059 

• ¢m 0.23916E + 09 

• <I> 433.80 
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B.13 Two Edge, One Middle 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x, y) ---+ (250, 300) , (x, y) ---+ (300, 300) and (x, y) ---+ 

(350, 300) . 
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Figure B.13. Inversion results for a wedge-in- a- halfspace from two boreholes. left: the 
x- slice, middle: they- slice; right: t he z- slice. Borehole locations are displayed in white. 
The true wedge model is outlined in black. 

• Pmax 2.27 g/ cm3 

• Pmin -0.473 gjcm3 

• (3 0.87000E - 06 

• <Pd 123.97 

• <Pm 0.75142E + 09 

• <I> 777.71 
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B.14 One Middle, Two Edge Corner 

The resulting density distribut ion and output parameters from an inversion of data 

calculated from boreholes located at (x y) - (250, 250), (x, y) - (300, 300) and (x, y) -

(350 350). 
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Figure B.14. Inversion results for a wedg in- a- halfspace from three boreholes. left: 
the x- slice, middle: the y- slice; right: the z-slice. Borehole locations are di played in 
white. The true wedge model is outlined in black. 

• Pmax 2.23 gjcm3 

• Pmin - 0.398 g/cm3 

• (3 0. 97000E - 06 

• </Jd 105.98 

• </Jm 0.67452E + 09 

• <I> 760.26 
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B.15 Seven Line 

The resulting density distribution and output parameters from an inversion of data 

calculated from boreholes located at (x , y) --7 (150, 300), (x, y) --7 (200, 300), (x, y) --7 

(250, 300) , (x, y) --7 (300, 300) , (x, y) --7 (350 300) , (x , y) --7 (400, 300) and (x, y) --7 

(450, 300) . 
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Figure B.15. Inversion results for a wedge- in- a- halfspace from three boreholes. left : 
the x- slice middle: the y-slice; right: the z- slice. Borehole location are displayed in 
white. The true wedge model is outlined in black. 

• Pmax 

• Pmin 

• {3 

• cPd 
• cPm 
• <I> 

- 2.19 g/cm3 

- 0.357 gjcm3 

0.15000E - 05 
266.93 
0.75073E + 09 
1393.0 
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B.16 Eight D iamond 

The resulting density distribution and output parameters from an inversion of data 

calculated at the surface and boreholes located at (x, y) --> (200, 300), (x, y) --> (300, 200) 

(x , y) --> (400, 300) , (x, y) --> (300, 400), (x, y) --> (250, 250), (x, y) --> (350, 350), 

(x, y) --> (350, 250) and (x, y) --> (250, 350). 
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Figure B.16. Inversion results for a wedge-in- a- halfspace from three boreholes. left: 
the x- slice, m iddle: the y- slice; right: the z-slice. Borehole locations are displayed in 
white. The t rue wedge model is outlined in black. 

• Pmax 0.535 g/cm3 

• Pmin - 0.117 g/cm3 

• {3 0 .lOOOOE - 04 

• ¢d 295.26 

• ¢m 0.65861E + 08 

• <I> 953.87 
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