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"ative Error (mGal)

ouU v.3350
25 0.1498
10 0.0389
5 0.0335
Table 1. List of cumulative errors associa 1 with cell sizes *~* in the different meshes.

the forward modelling method for all min wm structure inversions preserted through-

out the following Chapters.
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boundaries. To begin the inversion, the objective function of equation (39) is discretized
for the mesh used. This leads to equation (41) being presented as,
dm = (M — my)T (WZWq +WIw, + ijy + WTWZ) (m — my)
= (m — my)” (Wz;lwm) (m — my) (44)
= [[Win(m — mo)|3
Here, m and my are vectors of length M and W, is a diagonal matrix that is constructed
from the coefficients and weighting functions discussed in Section 3.2.2.

Optimization is done by use of a proper minimization technique. Since the elements
in equation (39) exhibit a sum of squ  es nature, a Gauss-Newton method is favoured.
The derivative of cquation (39), with respect to the coeflicients, is taken and set equal
to zero. The derivatives of the data mis! and model structure functions are obtained
by application of a Taylor series expansion about a parameter vector m" at the nth

iteration. The expanded model objective _ ves,
¢ (M™ + 6m) = W,,0m+ W, (m" — mg)|* (45)

Applying a similar Taylor series expansion to the data misfit function about the param-
eter vector m" yields,

I, (46)

ga(m™+. ,=||W [6m+ Wy(d - d*)

where J is the Jacobian sensitivity matrix. If a Gauss Newton minimization process

is used to minimize the objective functic | equations (45) and (46) are rearranged to

produce the following (Farquharson, 2008),

[JT' TWaI+ 3 W,{Wk] fm
k

:J" . Nd (dobs - d(mn))
(47)
+ Y“WZ"W;C (mff - mo) .

K
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is equal to,

plx) = (:):2 + Ez)p/z , (51)

where the constant ¢ is a small number and included to avoid calculatory errors should

x; = 0. In cases where x; # 0, ¢ is considered negligible. A discreet form of equa-

tion (50)yields,

Ao (x) T

—~—B 52

98 q, (5 )
where 0¢/dém (Ad)/0dm,, . .. ,(’?qb/('?mN)T, Bij = 0x;/0dm;, and q =

(P’ (0), ..., P xx))". In a discreet notation, a diagonal matrix R is incorporated into

equation (52) to yield,

d¢(x) ‘
Som = B"Rx, (53)
where,
[ o
1 S|
R = . D .
\ 0 O P(ier)

The value of p in equation (51) means the elements of R are,
Ru =p (1‘72 + E‘Z)p/?-l . (54)

Here p 2 for [ style inv ¢« and p = 1 for [; style inversions. The minimization
of equation (48) thus invols  solving t.  following lincar system of equations at each

iteration,

JWIR,W,J + jakW{Rkw,‘} Sm

K
:JTW?;RdW(I (dobs o dn—l)

+ L W[Rka (m;ef — m"_l>

k
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he inclusion of surface data was able to confine high densities with greater spatial
resolution. The inclusion of borehole di  with surface data was able to produce a
density model with high densities at the correct depth. The use of borehole data to
produce a model with correct depth solved a problem common to surface gravity data
inversion, which is a lack of depth resolution.

Through the study of the e: uples, it is observed that the more horehole and
surface data present in an inversion, the greater the produced model will represent
the density distribution of the true model. Since an infinite number of data is not an
option, the examples suggest tI . borehole located directly t ough the center of an
anomalous mass, plus additior  boreholes surrounding the anomaly will produce an
accurate density distribution. h seti sees that the central borehiole will recreate
an appropriate peak density, v :the ou - boreholes confine the high densities to the

edges of the density anomaly.




































































































































to those cells. Again, the data used in the inversion is from the same five borehole
locations as previously. The results from the completed iversion are seen in Figure 47

and the parameters produced from the inversion are as f ows,

o P = 4.38¢g/cm?
o pnin = —454 ‘cm?
e 3 = 038E—06
o oy = 367

o b 0.38E + 11
o O = 14350.

104





















data. The benefits of borehole gravity data also depend on the location of the borehole
relative to the anomalous mass. When ¢l enough, inversions which reproduce images
of more complex density distribution are attainable as seen with the wedge and Ovoid
models. Borehole data which is located 1rther away from the model constrains the
outer parts of the domain. Ideally, a borehole oriented through the center of mass is
preferred, while other borcholes positioned to outline the dense area confine the density
and reproduce a greater resolution of an anomaly.
Upon the completion of the borehole gravimeter, the use of minimum structure
orehole gravity inversion will | valuable tool that has the possib ty ) aid in various
aspects of mining and, with the approp ite data, can provide accurate infor ation

regarding an anomaly’s shape v h proper depth resolution and density distribution.

7.6 Future Work

A main area of future w: propo 1 for this study is performing minimum
structure inversions with data orded by a functional slimhole gravimeter from an
actual survey of a mining site. With this, inversion examples can be studied which

exhibit real life density distribution from ta which contains real noise.
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APF DIX A

Block 1al] fspace models

In the following appendix, more inversion results are shown for different scenarios of
borehole data and locations for a block in a halfspace model. The mesh used in the block
density model and for results has dimensions (x,y,z) — (0,0,150) : (600,600, —450)
and cell sizes of 10m in each direction. The mesh therefore contains 216,000 cells. A
cube with a density of 2.0 g/cm® is located at the center of the mesh with coordinates,
(r,y,z) — (250,250, —100) : (350,350, —-200). The cells outside of the cube have a
density of zero. The block density mo« is shown in Figure 7. All borehole data
observation points are calculated along 1 -eholes which travel from (z) — (- 846 :
—296.153) m. A total of thirty n > observations are taken at eveunly spaced intervals
at approximately every 7.7 m. R lom Gaussian noise of standard deviation equal to
five percent of the magnitude of the datum is added to all data-scts. If surface ita is
included in the example, a tot. of 1521 _.ita points are taken at the surface (z = 0)

om (z,y) — (105.13,105.13) : (494.87,494 ') m. Thus measurements e cal lated

at approximately every 10.25 m.
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