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Abstract 

In this project, ultrasonic measurements have been used in order to observe the 

influence of uniaxial stress on the elastic properties of the ferroelastic compound 

Rb4 LiH3 (S04)4. The experimental results are compared to predictions derived from 

a Landau model. In the experiment, uniaxial stresses either along [100] or [010] 

direction have been applied using two piezo-actuators mounted on opposite faces of 

the crystal. The temperature and pressure ranges for this investigation are 100- 150K 

and 0- 0.27 kbar, respectively. Throughout the investigation, it has been observed 

that in the absence of stress, the sound velocity along the x and z-axes shows a 

distinct step-like variation in the vicinity of the transition temperature, Tc = 134 K. 

The amplitude of the step-like variation is found to decrease with the application of 

a uniaxial stress. We believe that this is principally due to a reconfiguration of the 

domain distribution into the ferroelastic phase. This is supported by our Landau 

model which predicts no large variation over this pressure range. 
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Chapter 1 

Introduction 

1.1 Introduction! 

Over the past decades a large number of publications have been realized on single 

crystals with the chemical formula A4LiH3 (B04) 4 , where A= Rb, K, NH4 and B04 

= 804 , Se04 [1, 2, 3, 4, 5, 6, 8]. Among this family of compounds, the best known 

ferroelastic is Rb4LiH3 (S04) 4 [2, 4, 6, 8], hereafter abbrebiated as RLHS. This com­

pound, which has a tetragonal symmetry (group 4) at room temperature, undergoes 

a structural phase transition at 134 K. The symmetry at low temperatures has been 

identified and it belongs to the monoclinic group 2. A crystal is said to be ferroelastic 

if structural domains are observed at low temperatures. The ferroelastic character of 

RLHS has been reported by the direct observation of a 90° domain structure [5] . The 

domain walls, observed in the plane (001), make an angle of 45° with the a and b axes 

parallel to the natural crystal edges [5]. The wall orientation in a ferroelastic phase is 

consistent with a 4--+2 ferroelastic phase t ransition. The ferroelastic phase transition 

in RLHS has been also confirmed by optical, pyroelctric studies [5, 9], Brillouin scat­

tering [7], and ultrasonic measurements [10]. According to the Brillouin scattering [7] 

1 



CHAPTER 1. INTRODUCTION 2 

measurements, it has been reported that RLHS undergoes a second-order ferroelastic 

phase transition of 4-+2 type at approximately Tc = 115 K. In their study, it was 

considered that the order parameter has two components, primary order parameter 

( e1 - e2) and secondary order parameter e6 , where e1, e2 and e6 are the spontaneous 

strains associated with a 4-+ 2 transition (using Voigt notation). They also obtained 

that the effective elastic constant ~ (ell - cl2)' associated with the primary compo­

nent of the order parameter, shows incomplete softening while the elastic constant 

C66 associated with the secondary order parameter exhibits very little temperature 

dependence. 

Over the years, there has been some controversy regarding the true nature of 

the ferroelastic transition in RLHS. The investigation of the elastic properties, using 

ultrasonic technique [9, 10], Brillouin scattering technique [8, 11], and the series im­

pedence method [4] have reported that the spontaneous strain is the order parameter, 

which means that the transition in RLHS is essentially proper ferroleastic. Study of 

Mroz et al. [7] also reported that the phase transition is governed by the combination 

of the strains es = a 1 (e1 - e2 ) + a6 e6 . However, the detailed ultrasonic study of 

Quirion et al. [12] as a function of temperature and pressure rather indicates that 

the phase transition should be regarded as pseudoproper. The observed pressure and 

temperature dependence of the elastic constants has been found to agree well with 

predictions obtained from a pseudoproper ferroelastic Landau model. Throughout 

their work Quirion et al. [12] also proposed that a Raman B mode could be the 

primary order parameter. More recently, the pseudoproper character of the phase 

transition has been comfirmed by Raman scattering measurements [13] which clearly 

show that the order parameter is indeed associated with a B symmetry soft optic 

mode. Details about the proper and pseudoproper ferroelastic phase transition is 

given in Chapter 2 of section 2.3 and in Conclusion of the thesis as well. 



CHAPTER 1. INTRODUCTION 3 

Detailed analysis of the temperature and pressure dependence of the elastic prop­

erties of RLHS has been reported using ultrasonic measurements [12, 14] . Results 

obtained by their experimental work have been compared with the predictions of 

two phenomenological Landau models associated with a 4 ---+ 2 ferroelastic transition. 

Within the framework of their analysis it has been reported that the proposed pseu­

doproper Landau model shows a good agreement with the temperature and pressure 

dependence of the elastic constants of RLHS in tetragonal phase. This fact has been 

put forward as a strong argument for the validity the proposed model. However, the 

quantitative agreement between the experimental data and the numerical predictions 

is not so good in the monoclinic phase. As pointed out, this discrepancy at low tem­

peratures might be due to the existence of two ferroelastic domains perpendicular to 

each other [4] . This is supported by ultrasonic measurements [14] which show that 

the temperature dependence of the velocity of sound waves propagating along x and 

y-directions are equivalent in the monoclinic phase, which reflects the fact that the 

distribution of both domains is roughly half and half. As domains exist in the ferroe­

lastic phase of RLHS, the ultrasonic velocity measurements cannot be used to test 

the model. 

To get accurate values of elastic constants in monoclinic phase, measurements on 

single domain sample are required. According to Wolejko et al. [4], the application of 

a normal stress along [100] or [010] directions could be used to obtain a monodomain 

sample below Tc. Thus, the objective of this work is to study the influence of a uniaxial 

pressure on the sound velocity of RLHS. These experimental data are also compared 

to analytical predictions derived using a pseudoproper Landau model. The models 

used for the analysis are an extension of the Landau model which accounts very well 

for the temperature dependence of the spontaneous strains [12], the temperature and 

pressure dependence of the elastic constants [12, 14], the temperature dependence of 
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the soft optic mode [13], and the pressure dependence of the transition temperature. 

The thesis has been organized in the following way, the objectives of the present 

work and a review of some earlier work are presented in Chapter 1. Chapter 2 in­

cludes general descriptions and applications of the ferroelastic materials. The physical 

properties of RLHS single crystals are given in Chapter 3. Details about the elastic 

properties of crystals are given in Chapter 4. Experimental techniques regarding ul­

trasonic velocity measurements on RLHS single crystals are described in Chapter 5. 

Chapter 6 contains the general description of Landau theory. In Chapter 7 we present 

the Landau analysis of the pressure dependence of the elastic properties of RLHS. 

The sample preparation technique for the experimental measurements and the results 

and discussions of our investigations are presented in Chapter 8. The summary of 

the experimental results and analytical predictions is presented in Chapter 9. 



Chapter 2 

Ferroelastic Materials 

2.1 Ferroic Materials 

Generally, a crystal is defined as ferroic (ferromagnetic, ferroelectric, or ferroelastic) 

if it has two or more possible orientational states (OS) in the absence of an external 

field such as magnetic, electric field or an external mechanical stress. These orien­

tational states can then be switched from one to another by external fields. Thus, 

the equivalent states in ferromagnetic, ferroelastic, and ferroelectric materials can 

be switched by applying a magnetic field , a mechanical stress, and an electric field, 

respectively. 

For example, let us consider ferromagnetic materials. The characteristic of fer­

romagnetic materials is the ease with which their magnetisation can be modified. 

The source of their magnetism is due to the magnetic moment possessed by certain 

electrons, which is the same as that in paramagnetic materials. The significant dif­

ference between ferromagnetism and paramagnetism is that the magnetic moments 

are randomly oriented in a paramagnetic state. So, in the absence of an external field 

no magnetization is observed on a macroscopic scale [15]. On the other hand, in fer-

5 
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No Magnetic Field 

Figure 2.1: A possible ferromagnetic domain configuration in the absence of an ex­

ternal magnetic field. The arrows represent the magnetic moments. 
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Figure 2.2: Ferromagnetic domains under the application of an external magnetic 

field. 
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Figure 2.3: Under the action of a strong external magnetic field all the ferromag-

netic domains are aligned along the field direction and the ferromagnetic material is 

converted to a monodomain state. 



CHAPTER 2. FERRO ELASTIC MATERIALS 9 

romagnetic substances, a remarkable degree of alignment is observed in the absence 

of any field. In 1907 Weiss [15] has given a satisfactory explanation by stating that 

there are forces between the elementary magnetic moments tending to make each one 

parallel to its neighbors. These forces cause the moments to be aligned in the same 

direction at absolute zero temperature. When the temperature is raised, deviation 

from perfect alignment increases until a critical temperature is reached, above that 

temperature the moments become randomly oriented, as in paramagnetic materials 

[15] . Thus, Weiss's theory successfully accounts for the fact that ferromagnetic mate­

rials are spontaneously magnetized even in the absence of an external magnetic field . 

However, the majority of the ferromagnetic materials are not strongly magnetized. In 

another theory Weiss overcome this difficulty by introducing the fact that the forces 

only maintained the parallel alignment over fairly small regions, called domains [15]. 

According to the Weiss hypothesis, a ferromagnetic material possesses a large number 

of domains with the magnetization held constant in magnitude and direction by the 

interactions within each domain, but varying in direction from one domain to the 

another. Domains are small regions in ferromagnetic substances within which all the 

magnetic moments are aligned parallel to each other [16] . Domains are usually too 

small to be observed by the naked eye [16]. At the domain boundaries the directions 

of the magnetic moments change and poles are formed at the surface of the mate­

rial. Exchange energy of the electrons spin provides a strong driving force to align 

the magnetic moments parallel to each other and thus giving rise the formation of 

ferromagnetic domains. The formation of domains allows a ferromagnetic material to 

minimize its total energy [16] . 

Let us now discuss what happens to the ferromagnetic domains under the action 

of an external magnetic field . Fig. 2.1 represents the equilibrium state of a typical 

ferromagnetic material in the absence of an external magnetic field. When an exter-
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nal magnetic field is applied , it results in a force which tends to align the moments 

along the direction of the applied field, moving the domain walls across the crystal 

[15] . The application of an external field rearranges the domains so as to increase 

the magnetization in the field direction. Eventually, as the strength of the field is 

increased, all domains align with the direction of the magnetic field (see Fig. 2.2). 

Whenever, the field becomes suffciently strong the material reaches the monodomain 

state characterized by a saturation in magnetization [15] (see Fig. 2.3). By anal­

ogy, the ferroelastic domains (stress domains) can by aligned by an external field 

corresponding to an external stress. 

2.2 Applications of Ferroelastics 

Ferroelastic materials have been extensively studied by different investigators (17, 18, 

19] and they find application in the design of acoustic delay lines, modulators, trans­

ducers, shape memory devices, optical shutters, and superconducting squid devices. 

Another reason for the upsurge in research on ferroelasticity is that many natural 

minerals on our planet are ferroelastic materials and their interaction with biologi­

cal activities, their corrosion, and geological behavior is largely determined by their 

ferroelastic or coelastic micro-structures [20, 21, 22]. on-magnetic materials (fer­

roelastics and ferroelectrics) play an important role in a wide variety of technological 

applications. Some of the applications deal with dynamic domain processes such as 

electron emitters, thin-film memories while the others are concerned with the static 

distribution domains [23]. Research on ferro elastic materials has accelerated during 

the last decade for several other reasons [24]. Ferroelastics are potentially useful ma­

terials for nanotechnological applications, which is concerned with the production of 

man-made structures on a nano-meter length scale [24] . Hierarchal ferroelastic twin 
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patterns occur exactly on this length and ferroelastic crystal may hold the key for 

templating electronic nanostructures [24]. 

2.3 Ferroelastic Phase Transitions 

The mechanism of ferroelastic phase transitions is understood better by comparing 

the phenomenological and microscopical models. Ferroelastic phase transitions are 

generally classified into two categories namely, proper ferroelastic transition, which 

considers order parameter as the spontaneous strains [5 , 7, 9] and the pseudoproper 

ferroelastic phase transition in which the primary order parameter is generally an 

optical mode [7, 10, 25]. In pseudoproper ferroelastic phase transitions, a soft acoustic 

and a soft optical modes result from a coupling of the spontaneous strains with the 

actual order parameter. Thus, in pseudoproper ferroelastics, the spontaneous strain 

is a secondary order parameter while it is the primary order parameter for a proper 

ferroelastic phase transition [25]. 

If the proper ferroelastic phase transition is driven by a lattice-dynamical soft 

mode, the soft mode is a zone-centre (k = 0) acoustic phonon. Whenever an optical 

phonon softens, its frequency approaches zero. But at k = 0, the frequency of an 

acoustic mode is equal to zero as well. The difference between these two modes is 

that the softening of an optical mode means that its group velocity ( ~~) tends to 

zero at the transition [26, 27]. Most of the transitions in ferroelastic materials are 

pseudoproper in nature, rather than proper. In the former, the order parameter 

arises at the transition and has the same symmetry as the strain. In many cases, 

the order parameter is an optical soft mode and spontaneous strain arises because of 

its coupling with the order parameter. Now-a-days there are lots of different crystals 

showing pseudoproper ferroelastic phase transitions. Some important pseudoproper 
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crystals are LaP50 14 [28, 29, 30], BiV04 [31, 32], LaNb04 [33], Na5AhF14 [32]. In 

these compounds ferroelastic softening of an optical phonon mode provides the order 

parameter and the spontaneous strain comes into play due to its bilinear coupling 

with the optical mode. 



Chapter 3 

Physical Properties of 

Rb4LiH3(S04)4 

3.1 Structure of Rb4LiH3(S04 ) 4 Single Crystals 

The single crystals of Rb4 LiH3 (S04 ) 4 used in this investigation were grown at the 

crystal Physics Laboratory of Adam Mickiewicz University [7, 34] using an acid aque­

ous solution (PH j 1) containing stoichiometric amounts of Rb2S04 and Li2S04 at 

310 K. Beakers containing the solution (5 ml) were tightly corked to slow down the 

evaporation rate at this temperature. The crystals obtained using this process are 

transparent, colorless, and show sharp optical extinction. For ultrasonic velocity 

measurements samples were cut in the form of cubes with 3 mm edges and opposite 

surfaces optically polished. The samples were placed in a holder which allowed the 

measurements of ultrasonic velocities in the temperature range from 100 to 300 K. 

The chemical composition of RLHS was determined by atomic spectroscopy (Li+, 

Rb+) and chemical analysis (804 -
2) [10]. The structure consists of tetrahedral sul­

phate groups arranged together with Rb atoms on layers stacked perpendicularly to 

13 
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the c-tetragonal axis. The four Rb atoms and S04 groups are distributed on two con­

secutive layers. The Li atoms are intercalated every two layers and are surrounded 

by tetrahedra of 0 atoms [35] . Morphological features of the synthesized crystals 

showed the tetragonal symmetry at room temperature. The crystals obtained were 

twinned and the twinning planes were found to be perpendicular to the tetragonal 

z-axis. The unit cell contains four layers of RLHS molecules, as shown in Fig. 3.1. 

The composition of the single crystals of RLHS was confirmed by the prelim­

inary powder x-ray diffraction (XRD) method as well as energy dispersive x-ray 

spectroscopy (EDAX) measurements [34] . A variable temperature powder XRD data 

[34] in the range 298 to 100 K confirmed the phase t ransition of RLHS. The diffrac­

tion intensities were measured with monochromatic molybdenum Ka radiation (>.= 

0.7107 A). The lattice parameters and detailed crystallographic data of RLHS deter­

mined by XRD [34] measurements are given in Table 3.1. In their study authors [34] 

have done the XRD measurements at temperatures 293 and 90 K respectively. 

In ferroelastic materials , the various domain states have the same crystal structure 

but differ in their relative orientation. Thus, a domain state of a ferroelastic material 

is defined as a homogeneous portion of a given structure. Moreover, the domain wall 

orienta tion is closely related to the symmetry of the prototype phase. The orientations 

of domain walls can be found from crystallographic considerations such as symmetry 

of the prototype phase and symmetry of the ferroelastic phase. 

Fig. 3.2 shows the goo domain structure observed in the ferroelastic phase of 

RLHS at 110 K [5]. As reported in Ref. [5], the ferroelastic domain walls observed 

in the crystallographic plane (001) make an angle 45° with the natural crystal edges. 
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Figure 3.1: Symmetry of RLHS at room temperature. The horizontal bars repre­

sent the RLHS molecules while the vertical line representing the screw axes and the 

parallelogram indicates the unit cell of RLHS. 
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Table 3.1: Crystallographic data of RLHS measured by XRD technique [34]. 

Empirical formula Rb4Li(HS04)J(S04) Rb4Li(HS04)J(S04 ) 

Crystal habit Block Block 

Crystal color Colorless Colorless 

Crystal system Tetragonal Monoclinic 

Space group P43 P21 

Lattice parameters a= 7.629 A a= 7.583 A 

- c = 29.497 A b = 29.230 A 

- - c = 7.536 A 

Unit cell volume 1715.81 A3 1670.74 A3 

Formula weight 736. 1 736.1 

Density 2.85 g/cm3 2.93 g/cm3 

However, study of ferroelastic order parameter and domain walls in RLHS by Mr6z 

et al. [36] indicates that the domain pattern consists of two mutually perpendicular 

walls rotated about z-axis by about 35° (see Fig. 3.3) away from the x-axis. Their 

study also reported that these walls do not rotate on cooling down to 100 K. 

Ferroelastic domains exist due to the reduction in symmetry between the high 

and low temperature phases [37, 38]. The loss of symmetry elements in the tetrag­

onal phase results in a very complicated domain structure in the monoclinic phase. 

Generally, domains form in ferroelastic materials to minimize the internal elastic en­

ergies. In the absence of external stress formation of domains in ferroelastic materials 

are entirely due to the generation of the strain during a co-elastic phase transition 

[39]. Their geometrical and physical properties follow the temperature evolution of 

the spontaneous strain. The shape of the domain walls is entirely dominated by the 
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elastic properties of the surrounding lattice and not by the local structural properties. 

By applying an appropriate stress the domain structure can be reoriented. In RLHS, 

as the domain walls lie in (001) plane making an angle 45° with the natural crystal 

edges, normal stress applied along [100] or [010] directions can be used to obtain a 

monodomain state [4, 5]. 



.---------------------------------------------------------~--- -

[010) 

! 
I 

c~iT-- noo1 

18 

Figure 3.2: Ferroelastic domain structure observed in RLHS at 110 K. The orientation 

of the crystallographic axes are indicated with respect to the natural edges of the 

crystal. Here DW means the domain walls and CE stands for natural crystal edges. 

This picture is extracted from Ref. [5]. 
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Figure 3.3: Schematic diagram of theW' domain wall orientation just below Tc· This 

picture is extracted from Ref. [36]. 



Chapter 4 

Elastic Properties of Crystals 

4.1 Deformations and Strain 

A crystal is said to be deformed if the mean positions of its atoms are changed. 

The deformations could change the sample's shape and volume. In a homogeneous 

continuum, the position of any point can be defined by a vector r with components 

(x1 , x2 , x3 ) relative to some reference frame [40]. Under the action of external forces, 

the crystal gets deformed and the position vector changes tor' with components (x~, 

x;, x;). Thus, the displacement is simply given by 

( 4.1) 

where ui represents the components of the displacement vector. 

As a result of deformation, the distance d l between two points is changed to dl'. 

If we consider two very close points, separated by components dxi along the direction 

i, after deformations dx~ = dxi+dui. Adopting the Einstein notation, where repeated 

indices represent a sum over that index [40], 

(4.2) 

20 
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For infinitesimal deformations, using that dui = ~dxk, we obtain 
UXk 

(4.3) 

Interchanging the dummy suffices i with l, we can write 

(4.4) 

where the tensor elements eik are given by 

(4.5) 

As indicated by Eq. 4.5, the strain tensor associated with deformations is necessarily 

symmetric, i.e., 

(4.6) 

Thus, for small deformations, the strain tensor reduces to 

(4.7) 

In the case of a three dimensional material the deformations introduced by external 

forces can be represented by a 3 x 3 strain tensor whose elements are given below 

(4.8) 

where i, j extends from 1 to 3. The diagonal elements represent the variations in 

length along the crystallographic axes, while the non-diagonal components define 

shear deformations. Considering the symmetry properties described in Eq. 4.6, the 

number of independent elements in the strain tensor is 6. 
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4.2 Stress 

The stress is defined as the force acting per unit area in a material. The internal 

stresses arise due to the interaction between molecules in a crystal. We can assume 

that for any part of a substance the resultant internal stress is given by the following 

integral [40] 

(4.9) 

where fi is the force acting on the volume element dV. According to the vector analysis, 

fi must be the divergence of a tensor of rank two. Therefore the above integration 

can be expressed as [40] 

(4.10) 

where dak are the force components acting on the surface element da and CJik is the 

stress tensor. Thus CJik dak is the i-th component of the force acting on the surface 

element of da. In the Cartesian coordinate system, the component CJi k of the stress 

tensor is produced by the i-th component of a force acting on unit area normal to the 

xk-axis. There are nine components of the stress tensor CJik, where i, j = 1, 2, 3. Like 

the strain tensor, the stress tensor is symmetric. Based on the following symmetry 

consideration the number of independent elements of the stress tensor is reduced to 

six [40], 

(4.11) 

4.3 Hooke 's Law 

A medium is said to be elastic if it returns back to its initial state after external forces 

are removed. This is due to the internal stress, which act to restore the system into 

its initial state. This simple principle is expressed by the Hooke's law which gives the 
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fundamental relationship between the applied force and the amount of deformations 

experienced by a material. If the deformations are sufficiently small, the induced 

stresses can be written as a Taylor series expansion 

(4.12) 

As CJi j (0) = 0, the dominant term of Eq. 4.12 [41] reduces to 

( 4.13) 

where 

(
8CJij ) 

cijkl = 8e . . 
kl ekl=O 

(4.14) 

Eq. 4.13 is the explicit form of the Hooke's law which states that within the elastic 

limit the strain is directly proportional to the applied stress. The coefficients C i jkl 

represent elements of a fourth rank elastic stiffness tensor which describes the re­

lationship between the stress and strain in the crystal. Since the tensors CJ and e 

are both symmetric, the elastic constants defined by Eq. 4.14 must remain invariant 

under the permutation of i and j or k and l, i.e., 

(4.15) 

Th stress exerted on a material can also be expressed in terms of the variation in 

the internal energy with respect to the strain 

( 4.16) 

Thus, the elastic constant Cijkl defined in Eq. 4.14 can also be written as 

( 4.17) 
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4.4 Elastic Properties of Crystals 

The Hooke's law, governing the relation between stress CJij and strain ek1, is given by 

Eq. 4.13, where C ijkl are the components of a fourth-rank tensor called elastic stiffness 

tensor. This elastic stiffness tensor Cijkl has 81 entries. Since both the stress and 

strain tensors are symmetric, the number of independent elastic constants is reduced 

to 36. Taking advantage of symmetry properties, the independent elastic constants 

can be label using two indices. According to the Voight notation, the indices ar 

written in the following way: 

(11) f-t 1, (22) f-t 2, (33) f-t 3 
( 4.18) 

(23) = (32) f-t 4, (31) = (13) f-t 5, (12) = (21) f-t 6 0 

Therefor , the 36 independent elastic constants are represent d by a 6 x 6 matrix, 

with 

( 4.19) 

where, a B (ij), f3 B (kl) and a, f3 = 1, 2, 3, .. 6. This notation can also be used to 

represent the stress and strain tensors. In terms of Voight notation, Eq. 4.17 leads to 

the condition 

(4.20) 

reducing the number of independent elastic constants to a maximum of 21 [41]. 

Cu c12 C13 C14 C15 C16 

c12 c22 C23 C24 c25 C26 

C = 
C13 c23 c33 c34 c35 c36 

(4.21) 

C14 C24 c34 c44 c45 c46 

C15 c25 c35 c45 c55 c56 

C16 C26 c36 c46 c56 c66 
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This elastic constant tensor is used to represent the elastic properties of crystals 

with triclinic structure. In the case of crystals with higher symmetry, the number of 

independent elastic constants is reduced further by imposing symmetry constraints. 

Under the application of the symmetry operations , as the crystal remains invari­

ant, any tensors describing the properties of that crystal must also remain unchanged. 

Generally, the change of reference is defined by the coefficients a/ of the relations 

giving the new basis vectors x~, x;, x; in terms of the old ones x 1 , x2, X3, according 

to 

(4.22) 

Here a/ are elements of the transformation matrix associated with some symmetry 

operation. In matrix form Eq. 4.22 is given as 

x' 1 all a1
2 

a1
3 

xl 

x' 2 a2
1 a22 a23 X2 (4.23) 

x' 3 a3
1 a32 a33 X3 

If we consider a second-rank tensor 0', the transformation rule can be written as 

( 4.24) 

Likewise, for the elastic stiffness tensor, the element Cpqrs (a fourth-rank tensor) 

transforms as 

(4.25) 

If the transformation corresponds to a symmetry operation, the invariance condition 

requires that 

( 4. 26) 

i.e., 

(4.27) 
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This states that elastic constants are non zero only if a.iia.jj a.k ko} = 1. Comparing to 

the t riclinic crystals, the low symmetry monoclinic phase of point group 2 possesses 

an additional symmetry. That is, RLHS is invariant under a 180° rotation around 

the z-axis. In this case, the a.-matrix is defined as 

a.=± 

-1 0 0 

0 -1 0 

0 0 1 

(4.28) 

This states that all coefficients with an odd number of index 3 (for which a.i ia.j j a.k ka.1
1 = 

- 1) must vanish. Therefore, for a monoclinic structure the number of independent 

elastic constants reduces to 13, 

Cu c12 C13 0 0 C16 

c12 c22 c23 0 0 C26 

Cmano = 
C13 c23 c33 0 0 c36 

( 4.29) 
0 0 0 c 44 c45 0 

0 0 0 c45 c55 0 

C16 C26 c36 0 0 c66 

In the high symmetry phase, RLHS belongs to the tetragonal point group 4 [42]. 

Thus, the elastic tensor must be invariant relative to a 90° rotation about the Z-axis. 

Under the symmetry operation C4
1 , the coordinates transform as 

X chnages to Y; 

Y changes to -X and 

Z remains as Z 

Therefore, the elastic constants transforms as 

(4. 30) 
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(755 == (71313 --7 (72323 == (744 
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(4.31) 

( 4.32) 

(4.33) 

(4.34) 

Thus, in the high symmetry (tetragonal) phase the total number of independent 

elastic constants reduces to 7 and the corresponding tensor is 

C7n (712 (713 0 0 (716 

(712 C7u (713 0 0 -C716 

(713 (713 (733 0 0 0 
Ctetra == ( 4.35) 

0 0 0 (744 0 0 

0 0 0 0 (744 0 

(716 -C716 0 0 0 (766 

4.5 Elastic Energy 

A crystal gains elastic energy if the atoms equilibrium positions are changed by the 

application of external stress. In the case of small deformations , elastic energy is 

expressed as 
1 

Fez == 2C7afieae{3 ( 4.36) 

where Ca/3 are elements of the elastic stiffness tensor expressed in terms of the Voigt 

notation with a and fJ ranging from 1 to 6. This elastic potential energy Fez is the 

change in internal energy of the material per unit volume. With the help of Eq. 4.36, 

the elastic energy of RLHS in the paraelastic (tetragonal) phase is given by, 

1 2 2) 1 2 2 1 2 
Fez == 2C7u(e1 + e2 + 2C744(e4 + e5 ) + 2C733e3 

+~C766e62 + c12e1e2 + C713(el + e2)e3 + C716(el - e2)e6 . 

( 4.37) 
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4.6 Propagation of E lastic Waves in Crystals 

In general, for anisotropic media three different kinds of waves can propagate in a 

given direction. In principle, for a given direction, one observes the following three 

waves: a quasi-longitudinal wave, a fast quasi-transverse wave and a slow quasi-

transverse wave. These three waves have different velocities and their polarizations 

are always mutually orthogonal. 

In order to obtain the equations of motion in an elastic medium [41 , 40] we must 

solve Newton's second law of motion, 

( 4.38) 

Inserting the Hooke's law stated in Eq. 4.13 in Eq. 4.38, we obtain 

( 4.39) 

If we consider a monochromatic elastic wave of frequency w propagating along the 

direction given by the wave vector k, we might seek for plane wave type solutions of 

the form, 

U· = U ·ei(k.r-wt) i = 1 2 3 t Ot , , , ( 4.40) 

where uoi represents the atomic displacement amplitude along the i-direction. That 

direction also corresponds to the wave polarization vector. Inserting Eq. 4.40 into 

Eq. 4.39 and putting Uoi = Oiluol, we find 

(4.41) 

Dividing Eq. 4.41 by k2 , we get 

( 4.42) 
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This is a set of three homogeneous equations of the first degree for the unknowns 

Ux, uy, Uz· The above equation is the well-known Christoffel equation, where v = ~ 

represents the phase velocity of the acoustic wave. Here, nJ, nk are the cosine direction 

of the k with respect to the axes of x, y, and z, respectively. Such equations have 

non-zero solutions only if the determinant 

(4.43) 

with 

( 4.44) 

where ril is a second-rank tensor. Eq. 4.43 is the well-known secular equation, which 

gives solutions for the velocities. The propagation tensor, r has the eigenvalue pv2 . 

Since ril contains the elastic constants, the wave velocities are thus related to the 

independent elastic constants of the crystal. Generally, there are three possible rela­

tions between w and k for any direction in the crystal and hence there will be three 

different velocities corresponding to the three elastic waves. If we consider the prop­

agation tensor r along z-direction (nl = n2 = 0, n3 = 1) then ril can be written as 

f i1= Ci33t, or, explicitly as 

c55 c45 c35 

r = c45 c44 c34 ( 4.45) 

c35 c34 c33 

In the high symmetry (tetragonal) phase of RLHS, we know that C35= C34 = C45=0 

and that C44 =C55 . Therefore, for waves propagating along the z -direction, the 

propagation tensor r now becomes 

f = ( 4.46) 
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The eigenvalues of r are given by )q = C33 and >.2 = >.3 = C44 , where >.1 = >.2 = A3 

= pv2 . Therefore, the velocities for the three waves propagating along the z-direction 

direction can be calculated in terms of the elastic constants as 

V1 = f[!i!j, V2 = V3 = f(!i5 (4.47) 

The corresponding eigenvectors are 

U1 = (0, 0, 1) , U2 = (0, 1, 0), U3 = (1, 0, 0) ( 4.48) 

All the eigenvectors are normalized which are representing the polarizations of the 

corresponding waves. The polarization of the first wave is parallel to the z-direction 

and therefore belongs to the longitudinal mode, whereas the polarizations of the other 

two waves are perpendicular to the first wave and consequently belong to transverse 

modes. Likewise, the velocities and modes of the sound waves propagating along 

[100], [010] and [110] for both the low symmetry (monoclinic) phase and high sym­

metry (tetragonal) phase of RLHS can be calculated. The results of the calculations 

are presented in Table 4.1. Here L and T are used to represent longitudinal and 

transverse modes respectively. The subscripts represent the direction of polarization 

for a direction of propagation given in the square bracket. 



Table 4.1: Expressions of pv2 as a function of elastic constants in high symmetry (tetragonal) and low symmetry (mon-

oclinic) phases, where L and Ti stand for the longitudinal and transverse wave polarized along i-direction respectively. 

Direction Mode High Symmetry Phase 

[100] L ~ ( Cu + C66 + yf( Cu - C55) 2 + 4Cl62) 

Ty ~ ( Cu + C66- yf(Cu- C66) 2 + 4CI62) 

Tz C44 

[010] L ~ ( Cu + C66 + yf( Cn - C66)2 + 4CI62) 

Tx ~ ( Cu + C66- yf(Cu- C55)2 + 4CI62) 

[001] L 

[no] L ~ ( Cu + c66 + yi( C12 + c66)2 + 4Cl62) 

T[no] ~ ( Cn + C66 - yf(C12 + C66) 2 + 4Cl62) 

Low Symmetry Phase 

~ ( Cu + C66 + yf(Cu- C66) 2 + 4Cl62) 

~ ( Cn + C66- yf(Cn- C55) 2 + 4CI62) 

c55 

~ ( c22 + c66 - yf(C22 - c66) 2 + 4C262) 

~ ( c22 + c66 + yi(C22 - c66) 2 + 4C262) 

c44 

~ ( c44 + c55 + yi(C44- c55)2 + 4C452) 

~ ( c44 + c55- yi(c44- c55) 2 + 4C452) 



Chapter 5 

Experimental Techniques 

The goal of this project is to investigate the effect of uniaxial stress on the elastic 

properties of RLHS single crystals and to compare the experimental results to analyt­

ical predictions obtained using a Landau model. For that purpose a high-resolution 

acoustic interferometer device has been used for ultrasonic velocity measurements as 

a function of temperature on single crystal under uniaxial pressure. In this chapter 

we describe how the ultrasonic velocity can be measured using the standard pulse 

echo method. For high resolution measurements this technique is used in conjunction 

with an acoustic interferometer also presented in this chapter. 

5.1 Sound Velocity Measurements 

Usually, ultrasonic velocity measurement is done at a maximum frequency of 10 MHz. 

However, in many applications of ultrasonics a very high frequency up to 5 GHz range 

is used as well. In our measurement, the sound velocity measurement is done with a 

standard pulse-echo method with a frequency around 30 MHz. The schematic diagram 

is shown in Fig. 5.1. A transducer, consisting of a small piezoelectric crystal and two 

32 
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electrodes, is mounted on the top surface of the sample. An rf signal is applied to the 

electrodes of the transducer it order to generate mechanical vibrations. Due to the 

piezoelectric effect, the transducer vibrates with the same frequency as that of the 

oscillating applied field. The generated mechanical vibrations produce a sound wave 

which propagates back and forth between the extremities of the crystal. Each time the 

sound wave returns back to the transducer, a small fraction of the mechanical energy 

is converted into electrical signal (inverse piezo-electric effect). As the sound wave 

propagates back and forth between the extremities of the crystal, due to reflection 

at the boundaries, a multi-echo pattern can be observed on an oscilloscope. In the 

reflection configuration, the absolute sound velocity can be determined using the 

following relation 
2L 

v = -
b.t 

(5.1) 

where L is the sample's length while b.t corresponds to the time of flight for one 

round trip. If the uncertainties are taken into account, the typical uncertainty in the 

absolute velocity measurement is a few percent. For that reason, the standard pulse­

method is not always sensitive enough to detect variations at a phase transition. To 

achieve higher resolution, an acoustic interferometer device can be used. 

5.2 Acoustic Interferometer 

The acoustic interferometer device measures the relative change in velocity ~v instead 

of the absolute velocity. The basic idea of this method is to measure the phase 

difference between a reference signal generated by a synthesizer with that of an echo 

signal coming out of the sample. The schematic of the interferometer is illustrated in 

Fig. 5.2. As shown in the diagram, a continuous rf signal is produced by a synthesizer 

(6061A Synthesized RF Generator). This rf signal is divided into two parts by the 
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Figure 5. 1: Schematic diagram of the propagation of sound waves through RLHS in 

the reflection configuration. 
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Figure 5.2: Schematic diagram of the acoustic interferometer device. 
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1 st echo 

2 nd echo 
3 rd echo 4 th echo 

Llt Time of flight for a round trip 

Figure 5.3: A typical multi-echo system observed on the oscilloscope. 
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power splitter. The first portion of the signal is used as the reference, while the 

second portion is sent to gate 1 which generates a series of short pulses (smaller than 

p,s) at a rate of about 1 kHz. As the rf pulse reaches the transducer, the signal is 

converted into an acoustic wave which propagates through the sample. This acoustic 

wave travels between the extremities of the sample. Each time the wave reaches the 

transducer, a small fraction of the acoustic energy is converted back into a rf signal. 

The multi-echo pattern enters the circulator at position 2 and comes out at position 

3. To prevent saturation of the low noise rf amplifier, a gate (gate 2) is used to 

cut off the initial pulse from the echo pattern. A phase comparator is then used to 

measure the phase difference between the reference signal and the reflected signal. A 

typical multi-echo pattern observed on an oscilloscope is shown in Fig. 5.3. During 

the experiment, a boxcar is used to measure the phase of one of specific echo. For 

the nth echo, considering that the time of flight is D..tn = 2~£ for a rf signal of period 

T, the phase difference cPn is given by 

(5.2) 

Thus, the relative phase variation of the nth echo is 

D..¢n D..f D..L D..v - = -+---
cPn J L V 

(5.3) 

During the measurement, the phase difference is kept to zero by adjusting the fre­

quency of the rf signal. Thus, the relative change in the sound velocity is equal 

to 
D..v D..f D..L -=-+-. 
v f L 

(5.4) 

In general, as the relative change in the crystal's length t:.LL is an order magnitude 

smaller than that of ~v , Eq. 5.5 constitutes a good approximation, 

(5.5) 
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This last relation shows that the relative change in velocity, due to external pa­

rameters, can be directly measured from the relative change in frequency used to 

maintained the phase difference to zero. 

5.3 Uniaxial Pressure Device 

The main focus of this project is to study the effect of uniaxial pressure on the 

elastic properties of RLHS. For that purpose, we designed a sample holder where 

a uniaxial pressure is produced by means of a piezo-actuator (Physik Instrumente) 

which generate a blocking force of 800 N for an applied voltage of+ 120 V. According 

to the study of Wu et al. [14] it has been reported that Landau model quantitatively 

describes both the temperature and pressure dependence of the elastic properties 

of RLHS in the tetragonal phase. However, due to the existence of the ferroelastic 

domains in the monoclinic phase of RLHS deviations from the model predictions are 

observed [14]. In the monoclinic phase of RLHS there are two ferroelastic domains 

perpendicular to each other. Since domains are present, the ultrasonic velocity data 

cannot be used to get the accurate values of the elastic constants in that phase. 

For an accurate determination of the elastic constants in monoclinic phase we have 

to do the ultrasonic measurements with a monodomain sample. In RLHS, domains 

lie in planes (100) and (010). Hence an application of normal stress along [100] or 

[010] should convert the sample into monodomain. Therefore, in this project we 

performed the ultrasonic measurements using sample under stress. We applied stress 

along [100] or [010] and measuremed the velocity along the [001] direction. We also 

realized velocity measurements along [001] without the stress for comparison. We also 

did velocity measurements along [010] with the stress along [100]. To produce the 

uniaxial stress the sample was mounted between ~wo piezo-actuators. Measurements 
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without stress were done by leaving a clear gap between the actuators and the sample. 

The schematic diagram of the sample actuator assembly is shown in Fig. 5.4. 
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Figure 5.4: Schematic diagram of the sample actuator assembly in order to generate 

a uniaxial stress. 
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Landau Model 

Landau model can effectively be used to explain the major features associated with 

continuous phase transitions (second order). The thermodynamic state of any physi­

cal system is normally defined in terms of a Gibbs free energy which can be an explicit 

function of temperature T, pressure P, and volume V. A thermodynamic state is sta­

ble or metastable when the Gibbs free energy corresponds to a local minimum value. 

Thus, whenever pressure, temperature, stress or any other external physical parame­

ter is changed, deviation in the Gibbs free energy can lead to a phase transformation 

[43]. The Gibbs free energy is defined as 

G= U -TS+PV. (6.1) 

where U is the internal energy of the system, Tis the absolute temperature, S is the 

entropy, P is the pressure, and V is the volume. Using the differential form of the 

internal energy given by 

dU = TdS- PdV, 

the total derivative of Gibbs free energy can be expressed as 

dG = -SdT+ VdP. 

41 

(6.2) 

(6.3) 
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Thus, according to this result, the volume and entropy of the system can be obtained 

from the first partial derivatives of the Gibbs free energy, 

V = (fJG) 
f)P T 

S =- (fJG) 
aT P 

(6.4) 

Thus, during a phase transformations if a discontinuous variation in volume or en-

tropy is found; the phase transition is labelled as first order or discontinuous [45] . 

Therefore, phase transitions from solid to liquid, gas to solid or liquid to gas are 

typical examples of first order phase transition, where a discontinuous volume change 

is observed at the critical point. In the case of second order or continuous phase 

transitions, the derivatives of the thermodynamic potentials are continuous, while 

the second derivative of the Gibbs free energy are discontinuous [45]. 

Taking the second derivative of the Gibbs free energy, we can define two physical 

parameters: the heat capacity at constant pressure Cp, and the compressibility at 

constant temperature a, where 

Cp = T ( ~:) P = - T ( ~;) P 

a=-~ (~~)T = -~ (~;)T 

(6.5) 

(6.6) 

In light of the heat capacity at constant pressure or the compressibility at constant 

temperature, a phase transition will be second order if there is discontinuity in any 

of the second derivatives of the free energy [43]. These different thermodynamic 

behaviours can be demonstrated experimentally by studying physical quantities in 

the vicinity of the transition. 

6.1 Landau Theory 

As the nature of the phase transition in RLHS is continuous, our discussion about 

the Landau model will be limited to continuous phase transitions. Landau theory 
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is a simple phenomenological thermodynamic model that is widely used to elucidate 

phase transitions. During a continuous phase transition a change in the symmetry of 

the material generally takes place, where the low symmetry phase is a subgroup of 

the high symmetry phase. 

Basically, Landau theory is based on the concept that the free energy can be 

expanded as a function of a parameter called the order parameter. ow let us discuss 

briefly about the Landau order parameter first. This order parameter is a physical 

quantity which is used to distinguish the high symmetry phase from the low symmetry 

phase. Thus, this order parameter is zero in the high symmetry phase, while it must 

change continuously in the low symmetry phase. Thus, th excess Gibbs free energy, 

G is expressed as an infinite power series of the order parameter Q such that 

(6.7) 

Considering that, for a second order phase transition, odd power terms in Q are not 

allowed [39, 43, 44] the expansion of the excess Gibbs free energy reduces to 

(6.8) 

where higher power terms are neglected. A state will be stable only when the excess 

Gibbs free energy corresponds to a local minimum, i.e. , the first derivative with 

respect to the order parameter Q must be zero, while the second derivative must be 

larger than zero 

8G 3 f)Q = a2Q + a4Q = 0, (6.9) 

f)2Q 
oQ2 = a2 + 3a4 Q2 > 0 . (6.10) 

Since the value of order parameter Q is zero in the high symmetry phase, Eq. 6.10 

indicates that a 2 must be positive in the high temperature phase. How ver, in the 
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low symmetry phase we find (see Eq. 5.10) that a 2 is negative as we must impose 

that a4 > 0. Thus, at the transition temperature Tc we note that a 2 changes sign. 

For that reason, Landau postulates that the temperature dependence of a 2 is simply 

(6.11) 

where the coefficient a is a positive constant. Hence, the excess Gibbs free energy can 

be expressed as 

(6.12) 

Taking the first derivative of Eq. 6.12 with respect to Q and setting it equal to zero, 

we find that 

Q = 0, T > Tc (6.13) 

Q = /.!!_(Tc- T), T < Tc V a4 
(6.14) 

Fig. 5.1 shows the temperature dependence of the order parameter. We see that 

the order parameter vanishes above the transition temperature. The order parameter 

appears at T = Tc and increases continuously as (T - Tc) ~ below Tc. 
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Q 

T 

Figure 6.1: Schematic plot of order parameter, Q as a function of temperature. Q 
1 

vanishes in the high symmetry phase and increases continuously as (T - Tc) 2 in the 

low symmetry phase. 



Chapter 7 

Landau Analysis 

In a Landau model, the excess Gibbs free energy is used to differentiate the low 

symmetry phase from the high symmetry phase in terms of an order parameter. In 

the high symmetry phase the order parameter is zero while it is non-zero in the low 

symmetry phase. This free energy can also be expanded, by adding coupling terms 

between the order parameter and strains in order to obtain analytical solutions of the 

elastic properties. Thus, in this chapter we present different Landau models which 

should account for the pressure dependence of the elastic properties of Rb4LiH3 (S04 )4. 

In particular, we consider three distinct cases: hydrostatic pressure, uniaxial pressure 

applied along the z-axis, and a uniform pressure applied in the xy-plane. 

In the absence of an external pressure, the Landau free energy expansion is given 

by 

(7.1) 

The first term FL is the Landau expansion of the Gibbs free energy that depends on 

the Landau order parameter Q, 

(7.2) 

46 
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where A is a temperature dependent Landau coefficient [46] defined as 

A= a(T- To) . (7.3) 

The second contribution Fe1 is the elastic energy associated with the elastic deforma-

tions defined in terms of the strain components ec:n 

1 2 21 2 21 2 
Fet = 2Cn(el + e2 ) + 2C44(e4 + e5 ) + 2C33e3 

+~C66e62 + C12e1e2 + C13(e1 + e2)e3 + C16(e1 - e2)e6 

(7.4) 

where the elastic constants are those of the paraelastic phase (tetragonal 4 point 

group, Eq. 4.35). Finally, the third term Fe considers the coupling energy between 

the strain components ea and the order parameter Q. The allowed coupling terms 

can be easily identified based of symmetry considerations. The lowest order coupling 

terms considered here are 

where (J , "/, 8, A. , ( and 'Tl are the coupling coefficients to be calculated later [14]. 

In the high symmetry phase RLHS belongs to the point group symmetry 4 [42] . 

Thus, all terms in the free energy must remain invariant under the symmetry opera­

tion C4 
1

, corresponding to a rotation of 90° of the crystal. Since the order parameter 

has the same symmetry as the spontaneous strains (e1 - e2 ) and e6 , bilinear coupling 

terms fJQ( e1 - e2 ) and "/Qe6 are allowed. Table 7.1 represents how the strain compo­

nents transform under the symmetry operation C4
1 . Using the transformations listed 

in Table 7.1 it is easy to verify that all terms considered in Eq. 7.4-7.5 are indeed 

invariant. 
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Table 7.1: 'Ifansformations of the strain components under the symmetry operation 

C4
1 in the high symmetry phase of RLHS. 

Strain components e1 e2 e3 e4 e5 e6 

Symmetry operation, C4
1 e2 e1 e3 -e5 e4 -e6 

7.1 Calculations for a Hydrostatic Pressure 

In the present case, we consider a hydrostatic pressure where the energy due to 

pressure is given by 

(7.6) 

Let point out that this pressure energy is also invariant under the symmetry operation. 

Combining all contributions, the total free energy expansion is 

1 2 1 4 1 2 2 1 ( 2 2) 
Ft = 2AQ + 4BQ + 2Cn(et + e2) + 

2
c44 e4 + e5 

+~C33el + C12e1e2 + Ct3(et + e2)e3 + Ct6(et - e2)e6 

+f3Q(el- e2) + 1Qe6 + 6Q2e3 + >.Q2(et + e2) + (e4e5Q 

+17(el - e52)Q + P(et + e2 + e3) . 

(7.7) 

This expression can be used to calculate the strains, the order parameter, the pressure 

dependence of the transition temperature, and the elastic constants. 

The equilibrium condition for the free energy is given by 

(7.8) 

where a extends from 1 to 6. Using Eq. 7.8, we obtain six equations which can be 

solved to obtain the strain components ea as a function of P and Q. The strain 

components correspond to 

(7.9) 
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(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

where Ca, Cd and C9 are defined by 

(7.15) 

(7.16) 

(7.17) 

According to Eq. 7.9 and Eq. 7.14, it is clear that (e1 - e2) and e6 have the same 

symmetry properties as the order parameter, Q. 

Minimizing the free energy Eq. 7. 7 with respect to the order parameter Q, we get 

a~ 3 ) BQ = Q (T- To) a+ Q A4 + /3 (e1 - e2 

(7.18) 

+2Q). (e1 + e2) + 2Q8e3 + (e4e5 + TJ (e42 - e52) + -ye6 = 0 

Making use of the expressions for e0 in Eq. 7.18 and solving for the order parameter 

Q, we obtain the solution for Q as a function of P and T. The expression for the 

order parameter is given by Eq. 7.19, which is similar to the mean field dependence 

derived in Chapter 6, Eq. 6.14. 

Q(T, P) = 
aCa (Tc + ftP- T) 

!:::. 
(7.19) 

(7.20) 



CHAPTER 7. L ANDAU ANALYSIS 50 

dTc = 2 Cc 
dP aCa ' 

(7.21) 

where 

(7.22) 

(7.23) 

(7.24) 

At zero pressure the expression for the critical temperature is given as 

In the case of hydrostatic pressure, the expression for the pressure dependence of the 

transition temperature is given by 

dTc 
dP 

2 (oCn + oC12- 20C13- 2>.Cl3 + 2>.C33 
a (2C132 - ( Cn + C12) C33) 

(7.26) 

7. 2 Calculations for a Uniform Pressure Acting in 

the xy-plane 

In this section we assume a uniform pressure acting in the xy-plane. In that case, the 

energy due to a pressure is given by 

(7.27) 

This pressure energy is also invariant under the symmetry operation in the high 

temperature phase. Combining all contributions, the overall expression for the free 
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energy is given by 

1 2 1 4 1 ( 2 2 1 2 2) 
F2 = 2AQ + 4BQ + 2cn e1 + e2 ) + 2c44(e4 + e5 

+~C33e32 
+ C12e1e2 + C13(e1 + e2)e3 + C16(e1- e2)e6 

+f3Q(el - e2) + "(Qe6 + 6Q2e3 + >.Q2(el + e2) + (e4esQ 

+77(e42 - es2)Q + P(e1 + e2) . 

(7.28) 

Using the minimization condition (given in Eq. 7.8) with the free energy F2 (Eq. 7.28), 

we obtain 

el - e2 = 2 ('YC16- f3C66) Q (7.29) 
( Cn - C12) C66 - 2C16

2 

el + e2 = -2 ( -Q26Cl3 + (P + Q2 >.) C33) (7.30) 
( Cu + C12) C33 - 2C132 

e
3 

= 2PC13 _ Q2 (b"Cn + bC12- 2>.Cl3) (7.31) 
( Cu + C12) C33 - 2C132 ( C11 + C12) c33 - 2C132 

e4 = 0 (7.32) 

e5 = 0 (7.33) 

e
6 

= _ 'Y (Cu- C12)- 2/3Cl6 Q (7.34) 
( C11 - C12) c66 - 2C162 

Investigating Eq. 7.29 and Eq. 7.34, we observe that (e1 - e2) and e6 have the same 

symmetry as that of the order parameter Q. 

Again using the minimization of the free energy F2 with respect to Q, we obtain 

~2 = Q (T- To) a+ Q3 A4 + f3 (e1 - e2) + 2Q>. (e1 + e2) 
(7.35) 

Plugging in the expressions of ea in Eq. 7.35, we obtain the solution for the order 

parameter Q as a function of T and P. In this case the expression of the order 

parameter is given by 

Q(T,P) = 
aCa (Tc + ¥ftP - T) 

!::,. 
(7.36) 
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with same 6. and Ca as before. where 

dTc = 
4 

Ce 
dP aCa ' 

(7.37) 

(7.38) 

The pressure dependence of the transition temperature for a uniform pressure acting 

in the xy-plane of the crystal is given by 

(7.39) 

7.3 Calculations for a U niaxial P ressure A pplied 

Along the z-direction 

The energy due to a uniaxial pressure applied along the z-direction is written as 

(7.40) 

which is invariant under the symmetry operation. Therefore, the overall free energy 

lS 

121 4 1 2 21 2 2 
F3 = 2AQ + 4BQ + 2cu (e1 + e2 ) + 2c44(e4 + e5 ) 

1 2 
+2C33e3 + C12e1e2 + C13(e1 + e2)e3 + C16(e1 - e2)e6 

+(3Q(et- e2) + "'/Qe6 + 8Q2e3 + AQ2(e1 + e2) + (e4e5Q 

+77(el- e52)Q + P e3 . 

(7.41) 

As previously the solutions for the spontaneous strains are found by minimizing the 

free energy F3 with respect to e0 

(7.42) 
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Solving Eq. 7.42, we obtain the six components of the spontaneous strains which 

correspond to 

e
1 

_ e
2 

= 2 ( -yC16 - f3C66) Q 
( Cn - C12) C66 - 2C152 

2 ((P + Q2o) C13- Q2 >.C33) 
el + e2 = - 2 

( Cn + C12) 033 - 2013 

P (On+ 012) Q2 (oCn + o012 - 2>.c13) 
e3=----~------~---

( On + 012) 033 - 20132 (On + 012) C33 - 2C132 

e4 = 0 

e5 = 0 

e
6 

= _ 'Y (On - 012) - 2/3016 Q 
(On- 012) 066- 20162 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

The solution for the order parameter can be calculated from the minimization of the 

free energy with respect to Q, 

~2 = Q (T- To) a+ Q3 A4 + /3 (e1 - e2) + 2Q>. (e1 + e2) 
(7.49) 

+2Qoe3 + (e4e5 + rt (e42 - es2) + -ye5 = 0 . 

Using the expressions for e0 in Eq. 7.49, we find the expression of the order parameter. 

In this case, the expression of Q can be also written as the above two expressions 

of the Q given in Eq. 7.19 and Eq. 7.36, with a difference only in their pressure 

dependence of Tc. 

where 

Q(T,P) = 
aOa (Tc + ¥ftP- T) 

6. 

dTc = 
2 

Of 
dP aOa ' 

o1 = 2(o(013 + C12)- 2>.013) 

(7.50) 

(7.51) 

(7.52) 

In the case of a uniaxial pressure acting along the z-direction the transition temper-

ature varies according to the following relation 

dTc 
dP 

2( oOn + o012 - 2>-0n) 
a (20132 

- (On + 012) 033) 
(7.53) 
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7.4 Calculations of the Coupling Parameters 

Elastic properties of RLHS have been measured by ultrasonic velocity measurements 

[10] and Brillouin scattering experiments [7] and the results have already been ana­

lyzed. Thus , in this project we use the published elastic constants. Table 7.2 shows 

the values of the bare elastic constants for RLHS in the paraelastic phase. Using 

Table 7.2: The values of the bare elastic constants for RLHS in the paraelastic phase. 

Elastic Constants X 1010 / m2 

Cu0 4.95 

c12° 1.77 

c13° 2.00 

cl6o -0.15 

c33° 5.14 

c44° 0.74 

Css0 1.10 

Raman scattering measurements in RLHS, Oktay et al. [48] were also able to esti­

mat e the coupling strength between the soft acoustic and optical mode, which has 

been found to be Tc - T0 = 900 K. Thus, to calculate the coupling coefficients, we 

also use the pressure dependence of the transition temperature and the temperature 

dependence of the spontaneous strains [1 2] which must satisfy 

cb 
Tc - To = -

0 
= 900 K , 

a d 

dTc Cc / 
dP = 2 o:Ca = 191 K GPa, 

e1 - e2 2 ('YC16 - f3C66 ) = 
3 

e6 r ( Cu - C12) - 2/3CI6 ' 

(7.54) 

(7.55) 

(7.56) 
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(7.57) 

(7.58) 

(7.59) 

Setting the standard value of a = 1.07 x 109 and solving this set of relations, we 

obtain the following values of the coupling parameters listed in Table 7.3. In order 

to reproduce the experimental values of the elastic constants c44 and c45, we set the 

values of the last two coupling parameters 'fl and ( accordingly. 

Table 7.3: Coupling parameters of RLHS in the high symmetry (tetragonal) phase. 

Coupling parameters Values 

a 1.07x 109 

A4 4.86x 1015 

(3 8.17x 1010 

I -1.15 x 1010 

). 2.70x 1012 

0 3.75x 1012 

'fl - l.OO x 1010 

( 2.00 x 1010 

7. 5 Pressure Dependence of the Transition Tern-

perature 

Plugging in the values of coupling parameters given in Table 7.3, the values of bare 

elastic constants of RLHS listed in Table 7.2, and the value of T0 , we obtain the 
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pressure dependence of the transition temperature for each cases, 

Tc (P(Hydro)) = 134+ 1.91 X w-7P ) 

Tc (P(XY)) = 134 + 0.90 X w-7 p ) 

Tc (P(z)) = 134 + 1.01 X w-7 p . 

56 

(7.60) 

(7.61) 

(7.62) 

We observe that the transition temperature of RLHS increases linearly with the ap­

plication of stress. Furthermore, we also notice that, for the same amount of applied 

pressure the increase in transition temperature is the largest for the hydrostatic pres­

sure and the lowest for a pressure applied along the xy-plane. 

7.6 Temperature Depedence of the Order Param­

eter at Various Stresses 

In 1950, the term order parameter was introduced by Ginzburg and Landau in their 

phenomenological theory to discuss the ordering phenomena around a phase transi­

tion [4 7]. In the high symmetry phase the order parameter is zero and in the low 

symmetry phase the order parameter has a non-zero value. Here we present the tem­

perature dependence of the order parameter of RLHS for a hydrostatic pressure, a 

uniform pressure acting in the xy plane and a uniaxial pressure along the z-direction. 

Fig. 7.1 shows the temperature dependence of order parameter at zero and 8 kbar 

(800 MPa). In the low symmetry phase, the magnitude of the order parameter in­

creases significantly with the application of pressure, principally due to an increase 

in the critical temperature. The order parameter at T = 0 K has its maximum value 

for the hydrostatic pressure and minimum value for a pressure applied into the xy 

plane. 
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Figure 7.1: Temperature dependence of the order parameter at various pressures. 
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7. 7 Temperature D ependence of the Strain Com­

ponents at Various Pressures 

Fig. 7.2 and Fig. 7.3 show the effect of a hydrostatic pressure, xy pressure, and 

a uniaxial pressure on the strain components e1 , e2 , and e3 below and above the 

transition temperature. At zero pressure the strain components e2 , and e3 decrease 

monotonically with cooling below Tc , while e1 increases. 

Whenever a hydrostatic pressure of 8 kbar (800 MPa) is applied along the three 

perpendicular axes of the sample, the magnitude of strain components e1 , e2 and e3 

decreases with pressure. This is because with the application of a hydrostatic pressure 

the sample gets deformed and is contracted along x, y and z-directions. Meanwhile, 

if the pressure is applied into the xy-plane, the x and y-directions contract while the 

the z-direction expands (e3 > 0). Similar behaviour is observed whenever a uniaxial 

pressure of 8 kbar (800 MPa) is applied along the z-direction. In that case the sample 

expands along the x and y-directions while it contracts along the z-direction ( e3 < 0). 

Let us now examine the pressure dependence of the spontaneous strain e6 pre­

sented in Fig. 7.4. Since the order parameter is zero in the high symmetry phase, and 

considering that e6 is proportional to the order parameter, e6 is always zero above 

the transition temperature, regardless of the pressure. Thus, the strain component 

e6 increases continuously as the temperature decreases below Tc. Moreover, we find 

that e6 is larger for a hydrostatic pressure and lower for the xy pressure. 
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Figure 7.2: Temperature dependence of strain components e1 and e2 at various applied 

stresses. 
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Figure 7.3: Temperature dependence of strain component e3 at various applied 

stresses. 
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Figure 7.4: Temperature dependence of strain component e6 at various applied 

stresses. 
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7.8 Pressure Dependence of Strain Components 

above Tc 

It is well known that at zero pressure all strain components are zero above the transi­

tion temperature. As all numerical values of the bare elastic constants and coupling 

parameters are known, we can compare the effect of hydrostatic, xy, and uniaxial 

pressure on the strain components above the transition temperature. Fig. 7.5 and 

Fig. 7.6 show the pressure dependence of e1 , e2 , and e3 at 300 K. From Fig. 7.5 and 

Fig. 7.6 we observe that the critical pressure of RLHS is 8 kbar (800 MPa) for a 

hydrostatic pressure. Moreover, below the critical pressure, e1 , e2 , and e3 decrease 

continuously with pressure. At the critical pressure e1 shows a sharp positive jump 

while e2 exhibits a sharp negative jump. 

Whenever we apply a xy pressure the strain components e1 and e2 display a 

behaviour similar to that described for a hydrostatic pressure, at a higher critical 

pressure of 18.4 kbar (1.84 GPa). However, in this case the strain component e3 

increases with pressure, indicating that the sample expands along the z-direction. 

Finally, for a uniaxial pressure along the z-direction we observe that e1 and e2 

increase linearly below the critical pressure. In this case the value of critical pressure 

for RLHS is 16 kbar (1.6 GPa). Around the critical pressure e1 exhibits a clean pos­

itive jump while e2 shows a small negative jump. On the other hand, the magnitude 

of e3 decreases linearly. 

As mentioned previously, the strain component e6 possesses the same symmetry 

as the order parameter and thus, as shown in Fig. 7.7, it behaves like the order 

parameter as a function of pressure. For that reason, below the critical pressure the 

value of e6 is zero. 
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Figure 7.5: Pressure dependence of strain components e1 and e2 above Tc. 
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Figure 7.6: Pressure dependence of strain component e3 above Tc. 
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Figure 7. 7: Pressure dependence of strain component e6 above Tc. 
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7. 9 Calculations of the Elastic Constants of RLHS 

Using Landau Model 

In this section we describe the calculations of the elastic constants of RLHS in the 

light of the Landau model. Using the Landau model free energy (F1 , F2 , and F3 ) the 

elastic constants of RLHS can be obtained using the relation [42] 

(7.63) 

The expressions of the 13 independent elastic constants for all pressure scenarios can 

conveniently be written as 

Cn = Cn°- (,8 + 2.-\Q) 
2 

(7 64) 
a (To+ T) + 3A4Q2 + 2.-\ (e1 + e2) + 2<5e3 · 

c -co (-.B+ 2AQ)
2 

(7.65) 22 
- 11 

- a (To+ T) + 3A4Q2 + 2A (e1 + e2) + 2<5e3 

4Q2<52 
c33 = c33o- (7 66) 

a (To+ T) + 3A4Q2 + 2A (e1 + e2 ) + 2<5e3 · 

c44 = c44o + 2rtQ (7.67) 

c55 = c44o- 2rtQ (7.68) 

"(2 
c66 = c66o - (7 69) 

a (To+ T) + 3A4Q2 + 2A (e1 + e2) + 2<5e3 · 

C12 = c12°- (,B + 2AQ) (2AQ- ,B) 
a (To+ T) + 3A4Q2 + 2A (e1 + e2) + 2<5e3 (

7
·
70

) 

C13 = c13°- 26Q (,B + 2AQ) 
a (To+ T) + 3A4Q2 + 2A (e1 + e2 ) + 2&3 (

7
·
71

) 

C - C o 'Y (,8 + 2AQ) ( ) 16 - 16 - a (To+ T) + 3A4Q2 + 2A (e1 + e2 ) + 2<5e3 
7

"
72 

C23 = C13 o - 26Q (2AQ - ,B) ) 
a (To+ T) + 3A4Q2 + 2.-\ (e1 + e2) + 2<5e3 (

7
. 
73 

C26 = - C16° - 'Y (2AQ - ,B) (7 74) 
a (To+ T) + 3A4Q2 + 2A (e1 + e2) + 2<5e3 · 
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(7. 75) 

(7. 76) 

where Caf3° are the elastic constants listed in Table 7.2. To obtain the corresponding 

expression in the tetragonal phase, we simply set the order parameter Q to zero. The 

specific temperature and pressure dependence are obtained by using the solutions of 

Q and ea associated with a hydrostastic, xy , and uniaxial pressure. 

7.10 Discussions on the Elastic Constants 

In this section, we present the temperature dependence of the elastic constants of 

RLHS at zero and 8 kbar (800 MPa) for a hydrostatic pressure, a biaxial xy pressure 

and a uniaxial pressure along the z-direction. Our calculations has been performed 

in the temperature range of 0 to 300 K. Fig. 7.8 shows the temperature dependence 

of C11 and C22 at zero pressure and at 8 kbar (800 MPa) pressure. In the ferroelastic 

phase, C11 increases by 32% in t he vicinity of the transition temperature whereas 

C22 decreases by about 5.4% with cooling. However in paraelastic phase, both elastic 

constants deer ase continuously with cooling. 

Fig. 7.9 shows that the elastic constant C33 remains constant in the paraelastic 

phase. The same type of behaviour has been presented by authors in Ref. [10]. How­

ever , in the ferroelastic (monoclinic) phase c33 decreases by 5 % as the temperature 

decreases below Tc. Study of Wu [14] shows that the elastic constant C33 does change 

by 3% in the vicinity of the phase transition. According to the study of Wu [14], it has 

also been reported that C33 keeps increasing with further cooling in the monoclinic 

phase down to 25 K, which is a consequence of normal thermal behaviour of the cor-

responding acoustic phonons. Therefore, our calculations of the elastic constant show 
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Figure 7.8: Temperature dependence of elastic constants C11 and C22 at various 

applied pressures. 
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a good agreement with the data presented by the authors in Ref. [10]. Ultrasonic 

study of RLHS by Breczewski et al. [10] shows that, in the temperature range 140 to 

298K, the elastic constants C33 , C44 , C66 , C13 , and C16 are almost constant while C11 

decreases with cooling. Thus, in agreement with our calculation the elastic constant 

C11 shows softening in the vicinity of the transition temperature. 

According to the study of Wu [14] it has been pointed out that the variations in 

the elastic constants C44 and C66 are remarkably small with cooling. At the transition 

temperature c66 shows a very small change while c44 shows a slight change in slope. 

According to our calculation presented in Fig. 7.10, it has been observed that in the 

high temperature phase C44 is constant regardless of the pressure applied. However, 

in the ferroelastic phase C44 decreases by 1.6% below Tc. Contrary to C44 and C55 , 

C66 is pressure dependent in the tetragonal phase as shown in Fig. 7.12. Moreover, 

C66 exhibits the same phenomenological behaviour as C11 , with the application of any 

kind of stresses. 

In our calculation, the elastic constant C12 increases by 31% between 0 K and 

the critical temperature. However, in the paraelastic phase it decreases with further 

increase in temperature. Wu [14] measured C12 in the tetragonal phase and reported 

that it decreases with temperature, consistent with our calculation. Fig. 7.14 displays 

the temperature dependence of the elastic constant C13 at various pressures. In 

our calculations, in tetragonal phase indicate that the elastic constant C13 remains 

constant regardless of the pressure. In the monoclinic phase the value of C13 decreases 

by 12% below Tc. 

The measurement of C16 by Breczewski et al. [10] shows that it is constant. This 

is not reflected in our calculation presented in Fig. 7.15. Our calculation shows that 

C16 decreases with temperature up to Tc then it increases with further increase in 

temperature. 
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Figure 7.9: Temperature dependence of elastic constant C33 at various applied pres-

sures. 
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Figure 7.10: Temperature dependence of elastic constant C44 at various applied pres-

sures. 
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Figure 7.11: Temperature dependence of elastic constant C55 at various applied pres-

sures. 
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Figure 7. 12: Temperature dependence of elastic constant C66 at various applied pres-

sures. 
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Figure 7.13: Temperature dependence of elastic constant C12 at various applied pres-

sures. 
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Figure 7.14: Temperature dependence of elastic constant C13 at various applied pres-

sures. 
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The results presented in Fig. 7.18 show that the elastic constant C36 does not 

show any remarkable change with the application of any kind of pressure at 0 K. 

As the temperature increases it decreases continuously and at the phase transition 

temperature it shows a quick fall and vanishes in the tetragonal phase. In the light 

of Landau model, let us discuss about the elastic constant C45 which is displayed in 

Fig. 7.19. Like C36 , this elastic constant is zero in the tetragonal phase. However , 

in the ferroelastic phase it exhibits exactly the same type of characteristics with the 

application of different kinds of stresses as is observed in Cn, C22 , C55 , C66 , and C16 . 
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Figure 7.15: Temperature dependence of elastic constant C16 at various applied pres-

sures. 
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Figure 7.16: Temperature dependence of elastic constant C23 at various applied pres-

sures. 
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Figure 7.17: Temperature dependence of elastic constant C26 at various applied pres-

sures. 



CHAPTER 7. LANDAU ANALYSIS 

7.00E+08 
P (Hydro) = 8 kbar -+-P = 0 kbar 

6.00E+08 

5.00E+08 

4.00E+08 

"' E ..._ 
z 

CD 

"' () 

3.00E+08 

2.00E+08 

1.00E+08 

O.OOE+OO 

0 50 

-e- P(Hydro) = 8 kbar 
......... P(Z) = 8 kbar 

--P(XY) = 8 kbar 

l 

\ 

\ 
\ 
t 
~ 
l 

t 
I 

100 150 200 250 300 

Temperature (K) 

80 

Figure 7.18: Temperature dependence of elastic constant C36 at various applied pres-

sures. 
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Chapter 8 

Results and Discussion 

8.1 Sample Preparation 

The Rb4LiH3 (S04 ) 4 single crystal was grown by slow evaporation method from an acid 

aqueous solution (PH < 1) in the Crystal Physics Laboratory of Adam Mickiewicz 

University, Poznan, Poland [7, 34]. To perform the ultrasonic measurements two 

samples with parallel faces perpendicular to the crystallographic axes were prepared. 

The samples were cut from large colorless and transparent single crystals. To get a 

good signal, the opposite faces of the sample were polished using aluminum oxide 

until they were smooth and parallel to each other. The sample dimensions were 

1.42 mm x 1.63 mm x 5.56 mm and 1.95 mm x 3.21 mm x 3.13 mm. The samples 

orientations were also checked with polarized light. RLHS single crystals possess an 

optic axis along the c-axis so that the polarization of the light beam is modified after 

passing through the crystal. Thus, the sample orientation can be rapidly verified by 

putting the sample between polarizers with their transmission axes rotated by 90° 

with respect to each other. As the sample is rotated about its z-axis, we observe no 

change in the intensity of the light transmitted through the sample. Whenever the 
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sample is rotated about either x- or y-axis, the intensity is reduced significantly. 

In this chapter we present sound velocity measurements, obtained on RLHS as a 

function of temperature without and with stress. Consequently, we also discuss the 

validity of the proposed Landau model in the ferroelastic phase. 

8.2 Sound Velocity Measurements 

The absolute velocity of longitudinal waves propagating along [001] and perpendicular 

to this direction have been performed using the transmission configuration. If flt 

is the time of flight for a sample of length L, then the absolute sound velocity is 

calculated using, 

L 
v=-

flt 
(8.1) 

To obtain a better estimate of the absolute sound velocity we have considered the 

first four echoes. The corresponding time of flights have been measured from an 

oscilloscope. As shown in Fig. 8.1, the distance travelled as a function of the time of 

flight is essentially a straight line. The slope gives an average value of the absolute 

sound velocity. Our measurement of the velocity of longitudinal waves propagating 

along [001], v3 = 3430 ± 30 m/s, agrees well with that reported by Wu [14] and 

Breczewski et al. [10]. 

8.3 Comparison of the Model and Experimental 

Data 

The elastic constants of any material can be determined using sound velocity mea-

surements. As long as the crystal structure is known, the relationship between the 



CHAPTER 8. RESULTS AND DISCUSSION 

8 .-----------------------------------------~ 

E" 
E 

7 

6 

5 

3 

2 

0 5 10 15 

Time of Flight (in IJS} 

Slope = 3430 +I· 30 m/s 

20 25 

84 

Figure 8.1: Absolute sound velocity of longitudinal waves propagating along [001] 

direction in RLHS. 
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sound velocity and the elastic constants for any particular acoustic mode can be cal­

culated using Christoffel's equation (See Eq. 4.43). Generally, the sound velocity and 

the elastic constants are related via the relation 

(8.2) 

The experimental results are then compared to predictions derived from the Landau 

free energy. The goal of this project is to test the validity of the Landau model in the 

monoclinic phase. In earlier measurements, it was reported [14] that the theoretical 

model agrees well with results obtained in the tetragonal phase, while the agreement 

with data obtained in the monoclinic phase is not so good. It has been suggested 

that this is due to the fact that there are structural domains in the monoclinic phase. 

In order to remove these domains, we applied a uniaxial stress along [100] or [010] 

while we measure the sound velocity of longitudinal waves propagating along the [001 J 

direction. 

In this section, we analyze the data obtained using longitudinal waves propagating 

along the [001] direction. From these measurements, we obtain v3 related to the 

elastic constant C33 via the relation v3 = ff· Tylczynski et al. [49] studied the 

influence of uniaxial stress on v3 in the ferroelastic compound NH4LiH3 (S04 )4. As 

this compound shows a 4 -+ 2 ferroelastic transition identical to that observed in 

RLHS, results obtained on this isomorphic compound can be used for comparison. 

According to their measurements, in the absence of stress, v3 undergoes a typical step­

like change of about 1% around the critical temperature (see Fig. 8.2) . Afterwards, as 

the stress is applied along the xy-plane the step amplitude decreases with increasing 

stress, until it disappears completely above the coercive stress. The authors attribute 

this variation to a typical pressure dependence. However, we rather believe that this 

is due to the fact that the stress gradually transforms the sample into a single domain. 
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Figure 8.2: Velocity of the longitudinal wave propagating in NH4LiH3(S04) 4 along 

[001] direction for different stress applied (in MPa). Data extract d from Tylczynski 

et a!. [49]. 
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Figure 8.3: Longitudinal waves propagating in Rb4LiH3 (S04 ) 4 along [001] direction 

with and without stress applied (in kbar) . 
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Our experimental data and model for the longitudinal waves propagating along 

[001], with and without stress are presented in Fig. 8.3. Here the stress is applied 

either along [100] or [010]. According to the experimental data presented in Fig. 8.3, 

the sound velocity v3 changes by 1.5 % while this change is reduced to 0.5 % with a 

uniaxial stress of 0.27 kbar (27 MPa). The general trend with increasing pressure is 

similar to the one shown in Fig. 8.2 in the case of NH4LiH3 (S04)4. 

The comparison between the experimental data and pseudoproper model is also 

shown in Fig. 8.3. Experimental results are presented by the symbols while solid 

line with cross marks represents the prediction of the model. If we compare the 

experimental data of v3 without stress with that of the model , it is found that the 

model does not agree well with the experimental data in the tetragonal phase. In 

order to make the model consistent with the experimental data in the tetragonal 

phase [12] we have added a linear function in the tetragonal phase of the model. The 

difference between the experimental data and the model prediction below the phase 

transition might be associated with the presence of ferroelastic domains [12]. This is 

somehow surprising as the domains are oriented normal to the z-direction. However, 

the experimental data as a function of pressure also show that ferroelastic domains 

have a large effect on the velocity of acoustic waves propagating along the z-direction. 

With a small pressure of 0.27 kbar we observe a decrease of 60 % in the velocity 

variation at Tc. This variation can be compared to the model prediction shown in 

Fig. 8.4. In all cases, the predictions show an increase of about 10 % for a pressure of 

0.27 kbar. The model also predicts a change in Tc from 134 K to 137 K with a pressure 

of 0.27 kbar (27 MPa) applied in the xy-plane. However, no significant variation in 

the value of Tc has been observed experimentally. This might be attributed to the 

fact that the actual pressures are much smaller than those estimated. As domains 

are ignored in the theoretical model, we thus believe that the observed variation in 
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the step amplitude is due a change into the domain configuration. 

8.4 Stress Applied Along [100] or [010]-direction 

In this section we present the experimental data of ultrasonic measurements realized 

on RLHS using longitudinal waves propagating along [100] with and without a stress 

applied along the [010] direction. All measurements were done in the temperature 

range of 100 to 150 K. Fig. 8.5 shows the experimental data and model for the 

sound velocity v2 with and without stress. The broken lines with squares and circles 

represent the experimental data while the solid line with cross marks represents the 

prediction of the theoretical model. The maximum stress applied was 0.13 kbar (13 

MPa) . Measurements without stress has been done by keeping a clear gap between the 

actuator and the sample. According to the experimental data presented in Fig. 8.5, 

without the application a stress, t he sound velocity v2 shows a step-like variation of 

3.3 % at the phase transition. This compares well with ultrasonic study realized by 

Quirion et al. [12]. Comparing the experimental data without stress with the model 

without stress, we find that our pseudoproper model agrees well with experiment 

around the phase transition. Below the phase transition until 123 K, the trend of 

the model and experiment is of similar type. However, with fur ther cooling below 

123 K the experimental data of v2 increases linearly with further cooling while the 

model shows a continuous decrease with further cooling. As we apply a stress of 0.13 

kbar (13 MPa) along the [100] direction, the phase transition is barely noticeable. 

After removing the stress, the signal did not improve. This might be attributed 

to a serious degradation of the mechanical bonding between the sample and the 

transducers. Thus, for that mode no reliable data under pressure has been obtained. 

Fig. 8.6 presents the numerical predictions of our theoretical model. As the pres-



.--------------------------------------------------------------------~-----~~. 

CHAPTER 8. RESULTS AND DISCUSSION 91 

sure is applied in the tetragonal phase, the sound velocity v2 decreases with pressure. 

In the tetragonal phase, we also find the sound velocity v2 decreases linearly with 

cooling. However, below the phase transition, v2 shows a change of about 0.5 % down 

to 105 K and below. Below 105 K, all curves with or without stress overlap indicat­

ing that no large variation in the sound velocity v2 should be observed as a function 

of temperature in the monoclinic phase with stress. Unfortunately, as mentioned 

previously, we were unable to obtain experimental data for that mode. 
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Figure 8.5: Ultrasonic data of RLHS with and without stress. Stress is applied 

along [100] or [010] direction and measurements are performed perpendicular to that 

direction. The amount of stress applied is 0.13 kbar (13 MPa). 
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Conclusions 

Even though the elastic properties of RLHS have been studied by different authors 

[10, 12, 14], still there are controversy regarding the driving mechanism of the phase 

t ransition. As the point groups satisfy the group-subgroup relation , a Landau model 

has been used to explain the observed phase transition. As mentioned in Chapter 2, a 

number of Landau models have been proposed by various groups [5, 7, 9, 10, 12, 13, 14, 

50] . Among them, one group considers that the driving mechanism for the transition is 

the spontaneous strain. This type of transition is called a proper ferroelastic transition 

[5, 7, 9]. Other groups assume tha t the order parameter is a physical quantity other 

than the strains; the transition is referred as pseudoproper ferroelastic [10, 12, 13, 14]. 

Recent ultrasonic study by Quirion et al. [12] and Raman scattering investigation by 

Oktay et al. [48] confirmed that the phase transition observed at Tc = 134 Kin RLHS 

is a pseudoproper transition driven by the softening of a B symmetry optic mode. 

Therefore, in our study the experimental data of elastic constants of RLHS have been 

analyzed within the framework of t he pseudoproper Landau model. The proposed 

models have been also used to determine the temperature dependence of the order 

parameter at different pressures, the pressure dependence of the spontaneous strains, 
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and the pressure dependence of the transition temperature. According to the Landau 

analysis for various stresses we obtained that the transition temperature shows the 

largest increase for a hydrostatic pressure of 8 kbar while the smallest variation is 

produced by a uniform pressure applied in the xy-plane. This is consistent with the 

study of pressure dependence of the strains at 300 K which shows that the critical 

pressure of RLHS is 18.4 kbar (1.84 GPa) for a pressure applied in xy-plane, whereas 

the critical pressure Pc is 8 kbar (800 MPa) for a hydrostatic pressure. 

In this work, the effect of a uniaxial pressure on the elastic properties of RLHS 

has been performed using a high resolution acoustic interferometer device. Moreover, 

the data have been analysed using a phenomenological Landau model. In our exper­

imental work, the ranges of temperature and pressure are 100 to 150 K and 0 to 0.27 

kbar (27 MPa) , respectively. However, for the theoretical calculations the temper­

ature and pressure ranges have been extended to 0 to 300 K and 0 to 8 kbar (800 

MPa) , respectively. Ultrasonic measurements show that at ambient pressure RLHS 

undergoes a structural phase transition at Tc = 134 K, showing no thermal hysteresis 

on successive heating and cooling processes. This confirms that the phase transition 

is second order. Using the transmission configuration, the absolute sound velocity of 

RLHS has been measured. Our results agree with the ultrasonic data obtained by 

other groups [12, 14]. 

The low and high temperature phases of RLHS are monoclinic and tetragonal, 

respectively. Our ultrasonic measurements as a function of temperature reveal that 

the the variation in the sound velocity v3 around Tc is significantly reduced with the 

application of a uniaxial pressure applied along the x-axis. With a uniaxial stress of 

0.27 kbar (27 MPa) along [100] or [010], direction the change in v3 is reduced to 0.5 % 

at the phase transition. In this case, the measurements have been done along [001] 

direction of the crystal. This might indicate that domains in the monoclinic phase of 
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RLHS disappear with the application of a uniaxial stress along [100] direction. This 

change in the domain configuration leads to a reduction in the sound velocity v3 at 

the vicinity of the phase transition. 

The temperature dependences of the 13 independent elastic constants of RLHS 

have been analyzed in the light of the pseudoproper Landau model at zero and 8 

kbar pressure. According to our analytical predictions of the propsed model, the 

magnitudes of the elastic constants C11 , C22 , C55 , C66 , C16 , and C45 increase with 

the application of stresses. However, the magnitudes of the elastic constants C33 , 

C44, C12, C13, C23 and C26 decrease with the application of stresses at 0 K. The 

temperature behaviour of the elastic constant C11 was found to agree well with the 

study by Wu [14] in both phases while C33 shows a good agreement with Ref. [10]. 

The study of Wu [14] reported that in tetragonal phase C12 increases linearly with 

cooling, consistent with our analysis. Due to the lack of data for the elastic constants 

Css, C23, Cz6, C36, and C45 we could not present comparison with our numerical 

predictions. 

It has been clearly demonstrated by earlier studies [14] that a pseudoproper Lan­

dau model quantitatively describes the temperature and pressure dependence of the 

elastic constants in the tetragonal phase of RLHS. Deviations in the monoclinic phase 

was attributed to ferroelastic domains which appear in that phase. This is supported 

by our measurements under a uniaxial stress applied along [100]. The observed varia­

tion at Tc is ten times larger than our numerical predictions which ignore the presence 

of domains. In our experiments, uniaxial pressures were applied either along [100] 

or [010]-direction and measurements were done along [001] and [010]-directions. Un­

fortunately, we were not able to solve the Landau free energy in this case. However , 

we were able to manage the Landau free energy for three other stresses (hydrostatic 

stress, biaxial stress along xy-plane and a uniaxial stress along z-direction) . Thus, 
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we belive that the solution for a uniaxial stress along [100] or [010] similar to results 

presented in Fig. 8.4 and Fig. 8.6. According to the Fig. 8.4, with the application of 

hydrostatic, biaxial or a uniaxial stress, the sound velocity v3 shows an increase in 

the amplitude of the variation at Tc while the experiment shows the opposite trend 

(see Fig. 8.3). 
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