INVERSE ELECTRON DEMAND DIELS-ALDER
REACTIONS OF COUMARIN-FUSED ELECTRON
DEFICIENT DIENES

AMIT A. KUDALE
INVERSE ELECTRON DEMAND
DIELS-ALDER REACTIONS OF
COUMARIN-FUSED ELECTRON
DEFICIENT DIENES

by

© Amit A. Kudale

A thesis submitted to the
School of Graduate Studies
in partial fulfillments of the
requirements for the degree of
Doctor of Philosophy
Memorial University
January 2009

St. John’s Newfoundland
To my parents
Abstract

The Diels-Alder reaction is one of most powerful reactions for the construction of six-membered rings. As compared with the normal Diels-Alder reaction \((\text{HOMO}_{\text{dienophile}}-\text{LUMO}_{\text{diene}})\), the inverse electron demand Diels-Alder (IEDDA) reaction \((\text{HOMO}_{\text{dienophile}}-\text{LUMO}_{\text{diene}})\) has been explored to a far lesser extent. The synthesis of electron deficient dienes for IEDDA reactions is one of the major challenges in the development of IEDDA reactions. This thesis deals mainly with the exploration and applications of electron deficient coumarin-fused dienes in the IEDDA reactions.

For the study of electron deficient coumarin-fused 2-azadienes, various 3-aminocoumarins were desired. In Chapter 1, a convenient synthesis of 3-aminocoumarins is described. A few azadienes were synthesized by the condensation of some of the 3-aminocoumarins and salicylaldehyde derivatives. These dienes were used in a study of proton-coupled electron transfer process in collaboration with Dr. D. W. Thompson.

A multicomponent synthesis of 1,2,3,4-tetrahydropyrido[2,3-c]coumarins, which involves an IEDDA reaction, was developed. Various \textit{in situ}-generated coumarin-fused 2-azadienes react with electron rich dienophiles in the presence of \(\text{Yb(OTf)}_3\) to afford, after IEDDA reaction and tautomerization of the initial adduct, 1,2,3,4-tetrahydropyrido[2,3-c]coumarins. Some aspects of the chemistry of these products were investigated. This discussion is covered in Chapter 2.
Chapter 3 includes details of an exploratory study of intramolecular IEDDA reaction of the coumarin-fused 2-azadienes and its application to diversity-oriented synthesis of complex pentacyclic heterocycles. This reaction generally proceeds with very high diastereoselectivity in favor of the diastereomer arising from an *exo* transition state.

Efforts toward the synthesis of a structurally interesting naphtho-fused [7]helicene are discussed in Chapter 4. A synthetic route to some key intermediates for this target has been established.

In Chapter 5, an iterative strategy for the synthesis of a coum[5]isophenacene, a novel structural motif, is described. Some groundwork for future studies has been accomplished during these efforts.
Acknowledgements

I am thankful to my Ph.D. supervisor, Prof. Graham J. Bodwell, who not only made chemistry enjoyable but also brought me up to a level that I am writing this thesis. His guidance, encouragement and patience throughout my academic program have been a great driving force. His passion, dedication and determination towards research will always inspire me to do better. I feel honored to have worked under the guidance of Prof. Bodwell during the most important phase of my career.

I was fortunate to have an opportunity to work with Dr. Ivo Starý and Dr. Irena Stará at the Academy of Sciences of the Czech Republic in Prague, Czech Republic. The support and friendly environment in their laboratory was overwhelming. I also owe many thanks to the members of my supervisory committee, Dr. John Bridson, Dr. Karen Hattenhauer and Dr. Yuming Zhao for valuable suggestions during the research work and writing of this thesis.

During the period of this research program, I have made many friends in and out of the laboratory. I would like to take this opportunity to thank all of them including the alumni and current members of the Bodwell group and Starý group. I appreciate the scientific discussions with fellow graduate students from the department and also the faculty members for their discussions and suggestions during departmental group meetings, which lent to a great learning experience.

Technical support provided by the members of C-CART was crucial for making progress in the research. I would like to specially thank Ms. Linda Winsor for prompt work on HRMS spectra for most of the compounds reported in this thesis. I am very
much thankful to all the funding sources which contributed to this project and also supported my stay in Canada. These include The Department of Chemistry, The School of Graduate Studies, NSERC and AnorMED.

Last, I would like to thank the most important people in my life, my parents Mr. Ashok and Mrs. Shila Kudale and my brothers Mr. Atish and Mr. Ajay Kudale for the infinite love they have given me. This accomplishment would not have been possible without their sacrifice and support over the years. I am truly indebted to them and I owe everything in my life to them.

Amit A. Kudale
Table of Contents

Dedication ... ii
Abstract .. iii
Acknowledgements .. v
Table of Contents .. vii
List of Tables .. xii
List of Figures .. xiv
List of Schemes ... xv
List of Abbreviations .. xviii
Chapter 1. Hydrolysis-free Synthesis of 3-Aminocoumarins and Synthesis of Coumarin-fused 2-Azadienes .. 1

1.1 Introduction .. 1
1.2 Results and Discussion .. 2
 1.2.1 Synthesis of the Parent 3-Aminocoumarin 2
 1.2.2 Optimization for the Condensation of Salicylaldehyde with N-Acetylglucine .. 3
 1.2.3 Synthesis of Various 3-Aminocoumarin Derivatives 5
 1.2.4 Synthesis of Coumarin-fused 2-Azadienes 10
1.3 Conclusion .. 12
1.4 Experimental .. 13
 1.4.1 General Methods .. 13
 1.4.2 Representative Procedures 14
Chapter 2. Povarov Reactions Involving 3-Aminocoumarins: a Synthesis of 1,2,3,4-Tetrahydropyrido[2,3-c]coumarins and Pyrido[2,3-c]coumarins

2.1 Introduction .. 77
2.2 Results and Discussion .. 82
 2.2.1 Optimization Study for the One-pot Povarov Reaction 83
 2.2.2 Scope of the One-pot Povarov Reaction 88
 2.2.3 Study of the Effect of Various Parameters on the One-pot Povarov Reaction .. 95
 2.2.4 Chemistry of Povarov Adducts ... 98
2.3 Conclusion ... 103
2.4 Experimental Section .. 105

5.1 Introduction ... 335

5.2 Retrosynthetic Analysis .. 339

5.2.1 Retrosynthetic Plan 1 .. 339

5.2.2 Retrosynthetic Plan 2 .. 341

5.3 Results and Discussion .. 342

5.3.1 Synthesis of 7-t-butyl-2-formyl-1-hydroxypyrene (29) 342

5.3.2 Approach 1 ... 346

5.3.2.1 Attempted Synthesis of Bromide (21) 346

5.3.3 Approach 2 ... 347

5.3.3.1 Attempted Synthesis of Triyne (23) 347

5.3.3.2 Synthesis of Enediyne 40 .. 350

5.3.3.3 Reaction of 40 Under [2+2+2] Cycloisomerization Conditions 351

5.4 Conclusion ... 353

5.5 Experimental ... 354

5.5.1 General Methods ... 354

5.5.2 Synthesis and Characterization 356

5.6 References .. 376

5.7 Appendix .. 380

xi
List of Tables

TABLE 1.1 Optimization for the Synthesis of 3-Acetamidocoumarin4
TABLE 1.2 Condensation of Salicylaldehydes with N-Acetylglycine6
TABLE 1.3 Conversion of 3-Acetamidocoumarins (5) into Boc-protected 3-Aminocoumarins (6) ...7
TABLE 1.4 Removal of the Boc Group ..8
TABLE 1.5 Synthesis of 2-Azadienes 9b-9d ...11
TABLE 1.6 Synthesis of 2-Azadienes 10a-10d12
TABLE 2.1 Effect of the Catalyst and Solvent on the Povarov Reaction of 17 with 23 and 21 ..87
TABLE 2.2 Three-Component Synthesis of Pyrido[2,3-c]coumarins91
TABLE 2.3 Effect of Catalyst Loading, Concentration of 17 and Ratio of Dienophile on the Yield ...96
TABLE 2.4 Bond lengths (Å) ..201
TABLE 2.5 Bond angles (°) ..203
TABLE 3.1 Intramolecular Povarov Reactions between 59 and 45226
TABLE 3.2 Intramolecular Povarov Reactions between 59 and 68229
TABLE 3.3 Synthesis of 78 ...230
TABLE 3.4 Bond lengths (Å) ...303
TABLE 3.5 Bond angles (°) ..304
TABLE 4.1 IEDDA Driven Domino Reaction for the Synthesis of Benzocoumarin

28..316

TABLE 5.1 Attempted Synthesis of Bromide 21...348
List of Figures

FIGURE 1.1 Natural Antibiotics Containing 3-Aminocoumarin ..1
FIGURE 2.1 ORTEP Representation of X-ray Crystal Structure of 24b.................................98
FIGURE 2.2 A possible sideproduct 51 from conversion of 32a,b to 49 using DDQ..102
FIGURE 2.3 nOe studies on Povarov adducts...191
FIGURE 3.1 Pov-ray Representation of 58...225
FIGURE 3.2 Side product 62 from Intramolecular Povarov Reaction between 59 (R = 6-
OMe) and 45...227
FIGURE 4.1 Pentacene 1..307
FIGURE 4.2 Heptathienoacene 4 and Silicon-based Heteroacene 5..........................308
FIGURE 4.4 [9]Phenacene (14) and [9]Isophenacene (15)..310
FIGURE 4.5 Coum[5]Isophenacene 36...314
FIGURE 5.2 Helicenes With Wider Aromatic Backbones..338
FIGURE 5.3 A Functionalized Pyrene Derivative 16 and Naphtho-fused [7]Helicene
17..339
FIGURE 5.4 Interesting Target for Future Work...352
List of Schemes

SCHEME 1.1 General Synthesis of 3-Aminocoumarins ..3
SCHEME 1.2 Formation of 3-Trifluoroacetamidocoumarin 8.................................9
SCHEME 1.3 Synthesis of 9a and 10a ...10
SCHEME 2.1 The Povarov Reaction ...78
SCHEME 2.2 Total Synthesis of (+)-Martinelline acid (8) and (+)-Martinelline (9)....79
SCHEME 2.3 Formal Total Synthesis of Camptothecin (14)80
SCHEME 2.4 Synthesis of Luotonin A (16) ..80
SCHEME 2.5 The Povarov Reaction Involving 3-Aminocoumarin81
SCHEME 2.6 Povarov Reaction between a Coumarin-fused 2-Azadiene 20 and DHP (21). ...82
SCHEME 2.7 One-pot Povarov Reaction ..83
SCHEME 2.8 One-pot Povarov Reaction between 3-Aminocoumarin (17), 2-Naphthaldehyde (23) and DHP (21) ...84
SCHEME 2.9 Reactions of Povarov Adducts 35a and 28b99
SCHEME 2.10 Synthesis of a Terphenyl-type Compound 47100
SCHEME 2.11 Aromatization of Povarov Adducts ..101
SCHEME 2.12 Synthesis of 53 by Oxidation/syn Elimination/Dehydrogenation103
SCHEME 3.1 Synthesis of Polycyclic Structures via the IMDA Reaction209
SCHEME 3.2 The First IMDA Reaction ...210
SCHEME 3.3 Attempted Synthesis of Longifolene (9) by Breitger210
SCHEME 3.4 Total Synthesis of rac-γ-Apopicropodophyllin (8) by Klemm et al. 211
SCHEME 3.5 Total Synthesis of dl-Chelidonine (9) by Oppolzer et al. 211
SCHEME 3.6 Type 1 and Type 2 IMDA Reactions 212
SCHEME 3.7 Povarov Reaction between 3-Aminocoumarin (25) and Aldehyde 26
Having a Pendant Dienophile 213
SCHEME 3.8 Reaction of 3-Aminocoumarin (25) with 2-(Allyloxy)benzaldehyde (29) 214
SCHEME 3.9 Intramolecular Povarov Reaction between 25 and 34 216
SCHEME 3.10 Intramolecular Povarov Reaction between 42 and 25 217
SCHEME 3.11 Povarov Reaction between 45 and 25 218
SCHEME 3.12 Attempted Intramolecular Povarov Reaction between 48 and 25 220
SCHEME 3.13 Attempted Intramolecular Povarov Reaction between 51 and 25 221
SCHEME 3.14 Synthesis of 2-(Cinnamyl)benzaldehydes 55 and 56 222
SCHEME 3.15 Intramolecular Povarov Reaction between 25 and 55 223
SCHEME 3.16 Intramolecular Povarov Reaction between 25 and 56 224
SCHEME 3.17 Synthesis of 70 and 71 228
SCHEME 3.18 Povarov Reaction between 25 and 78 231
SCHEME 4.1 Synthesis of a Functionalized Heptacene Derivative 3 308
SCHEME 4.2 Synthesis of Xanthones by IEDDA Methodology 309
SCHEME 4.4 Synthesis of 18 311
SCHEME 4.5 Synthesis of 22...312
SCHEME 4.6 Synthesis of Benzocoumarins by IEDDA-Driven Domino Reactions...313
SCHEME 4.8 Synthesis of Coumarin-fused Diene 38..................................315
SCHEME 4.9 Synthesis of Triol 44..317
SCHEME 4.10 Synthesis of Aldehyde 47..319
SCHEME 5.1 Drawbacks in the Photocyclization of Stilbene Derivatives..............337
SCHEME 5.2 [2+2+2] Cycloisomerization for the Synthesis of Helical Backbone....338
SCHEME 5.3 Retrosynthetic Plan 1..340
SCHEME 5.4 Retrosynthetic Plan 2..341
SCHEME 5.5 Synthesis of 28..343
SCHEME 5.6 Attempted Formylation of 28..343
SCHEME 5.7 Anionic ortho-Fries Rearrangement of 30..................................344
SCHEME 5.8 Synthesis of 33 Using O-MOM as a Directing Group..................345
SCHEME 5.9 Synthesis of 29..345
SCHEME 5.10 Attempted Synthesis of Bromide 21..346
SCHEME 5.11 Attempted Synthesis of 29..349
SCHEME 5.12 Attempted Synthesis of 38..349
SCHEME 5.13 Synthesis of Enediyne 40..350
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs</td>
<td>Absolute</td>
</tr>
<tr>
<td>APCI</td>
<td>Atmospheric pressure chemical ionization</td>
</tr>
<tr>
<td>calcd</td>
<td>Calculated</td>
</tr>
<tr>
<td>CAN</td>
<td>Ceric (IV) ammonium nitrate</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlation spectroscopy</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyanobenzoquinone</td>
</tr>
<tr>
<td>DHF</td>
<td>2,3-Dihydrofuran</td>
</tr>
<tr>
<td>DHP</td>
<td>3,4-Dihydro-$2H$-pyran</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(Dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-Dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DoM</td>
<td>Directed ortho metallation</td>
</tr>
<tr>
<td>dr</td>
<td>Diastereomeric ratio</td>
</tr>
<tr>
<td>eq</td>
<td>Equation</td>
</tr>
<tr>
<td>equiv</td>
<td>Equivalents</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron withdrawing group</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gas chromatography/mass spectrometry</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear multiple bond coherence</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear single quantum coherence</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>IEDDA</td>
<td>Inverse electron demand Diels-Alder</td>
</tr>
<tr>
<td>IMDA</td>
<td>Intramolecular Diels-Alder</td>
</tr>
<tr>
<td>IR</td>
<td>Infra red</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure And Applied Chemistry</td>
</tr>
<tr>
<td>LC/MS</td>
<td>Liquid chromatography/mass Spectrometry</td>
</tr>
<tr>
<td>Lit</td>
<td>Literature</td>
</tr>
<tr>
<td>MCR</td>
<td>Multicomponent reaction</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PCC</td>
<td>Pyridinium chlorochromate</td>
</tr>
<tr>
<td>PCET</td>
<td>Proton-coupled electron transfer</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>tlc</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>N,N,N',N'-Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>TMSCI</td>
<td>Chlorotrimethylsilane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
</tbody>
</table>
Chapter 1. Hydrolysis-free Synthesis of 3-Aminocoumarins and Synthesis of Coumarin-fused 2-Azadienes

1.1 Introduction

The coumarin system is present in a very broad range of natural and non-natural products of biological interest. The 3-aminocoumarin motif, while considerably less prevalent, can nonetheless be found in a number of naturally occurring antibiotics, such as

![Chemical structures of novobiocin 1, chlorobioicin 2, and coumermycin A1 3.](image)

FIGURE 1.1 Natural Antibiotics Containing 3-Aminocoumarin
as novobiocin (1), clorobiocin (2) and coumermycin A₁ (3) (Fig. 1.1).

Derivatives of 3-aminocoumarins have been found to possess biological activity, including CNS depressant, antibacterial, antiallergic and insect-growth-regulatory. Moreover, 3-aminocoumarin and its derivatives are also known to exhibit interesting photochemical behavior and have found application as fluorescent markers.

Although various methods have been reported for the synthesis of 3-aminocoumarins or related compounds, reproducibility has sometimes been a problem, as experienced by us and others. The final step of these syntheses is typically the hydrolysis of a 3-acetamidocoumarin, which can result in the formation of a 3-hydroxycoumarin, both under acidic and basic conditions.

1.2 Results and Discussion

1.2.1 Synthesis of the Parent 3-Aminocoumarin

For the parent 3-aminocoumarin (7a), the synthesis commenced with the conversion of commercially available (or easily prepared from salicylaldehyde and N-acetylglycine) 3-acetamidocoumarin (5a) to Boc-protected 3-aminocoumarin (6a) using the method of Burk and Allen in 94% yield. This one-pot procedure, which was originally developed for amino acids, involves an acylation-deacylation sequence in which an N-acetyl compound is reacted with di-tert-butyl dicarbonate in the presence of DMAP to give an imide, followed by reaction with hydrazine hydrate to remove the acetyl group. The resulting tert-butyl carbamate (6a) could then be easily converted to 3-aminocoumarin (7a) in high yield (99%) under anhydrous conditions through the action
of 15% TFA/CHCl₃ (Scheme 1.1). In our hands, this method has proved to be very reproducible and we have prepared up to 15 g of 3-aminocoumarin in a single run.

SCHEME 1.1 General Synthesis of 3-Aminocoumarins

1.2.2 Optimization for the Condensation of Salicylaldehyde with N-Acetylglycine

For the synthesis of substituted 3-aminocoumarins, suitably substituted 3-acetamidocoumarins (5) were required. Being commercially unavailable, it was envisaged that these compounds could be prepared from the corresponding salicylaldehyde and N-acetylglycine.¹³ Since the yield for parent 3-acetamidocoumarin (5a) is low (27%) using this method, efforts were made to optimize the reaction conditions for the conversion of salicylaldehyde (4a) into 5a. After varying reaction time, temperature, number of equivalents of N-acetylglycine and sodium acetate, it was found that the use of 4.0 equivalents of sodium acetate and 1.0 equivalent of N-acetylglycine at 110-120 °C for 3.5 hours gave the best yield (46%) for the parent 3-acetamidocoumarin (5a) (Entry 6, Table 1.1).
TABLE 1.1 Optimization for the Synthesis of 3-Acetamidocoumarin

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ratio of reactants</th>
<th>Temperature (°C)</th>
<th>Time (h)</th>
<th>Yield* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 : 1.0 : 1.0</td>
<td>110-120</td>
<td>3.5</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>1.0 : 1.5 : 1.0</td>
<td>110-120</td>
<td>3.5</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>1.0 : 3.0 : 1.0</td>
<td>110-120</td>
<td>3.5</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>1.0 : 1.0 : 2.0</td>
<td>110-120</td>
<td>3.5</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>1.0 : 1.0 : 3.0</td>
<td>110-120</td>
<td>3.5</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>1.0 : 1.0 : 4.0</td>
<td>110-120</td>
<td>3.5</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>1.0 : 1.0 : 5.0</td>
<td>110-120</td>
<td>3.5</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>1.0 : 1.0 : 7.5</td>
<td>110-120</td>
<td>3.5</td>
<td>39</td>
</tr>
<tr>
<td>9</td>
<td>1.0 : 2.0 : 4.0</td>
<td>110-120</td>
<td>3.5</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>1.0 : 1.0 : 4.0</td>
<td>70-80</td>
<td>3.5</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>1.0 : 1.0 : 4.0</td>
<td>110-120</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>12</td>
<td>1.0 : 1.0 : 4.0</td>
<td>110-120</td>
<td>2</td>
<td>34</td>
</tr>
</tbody>
</table>

* Isolated yields
1.2.3 Synthesis of Various 3-Aminocoumarin Derivatives

Employing the optimized reaction conditions (Table 1.1, Entry 6) for a series of substituted salicylaldehydes (commercially available or easily prepared by known formylation protocols15) afforded the corresponding 3-acetamidocoumarins (5b-i) (Table 1.2). The yields for these reactions were variable. Poor yields were obtained when an electron-donating group was situated para to the aldehyde function of the starting salicylaldehyde (Table 1.2, Entries 6 and 8). Otherwise, the yields ranged from 40-69\%.

When the starting material was 4-hydroxysalicylaldehyde (Table 1.2, Entry 8), O-acylation also took place, giving 7-acetoxy-3-acetamidocoumarin (5h) as the product.

The next step involved conversion of the acetamide to a t-butyl carbamate. Burk and Allen's one-pot protocol was then employed to afford the Boc-protected 3-aminocoumarins (6b-i) (Table 1.3). Under these conditions, the acetoxy group in 5h was converted back to a hydroxy group (Table 1.3, Entry 8). For the most part, the yields were high. As above, the yields of the products with donor groups at the 7-position (Table 1.3, Entries 6 and 8) were anomalously low.
TABLE 1.2 Condensation of Salicylaldehydes with N-Acetylglycine

\[
\text{\begin{align*}
\text{RCHO} & \quad \text{\(N\)-Acetylglycine} & \quad \text{\(\text{R}\text{NHAc}\)} \\
\text{\(\text{4}\)} & \quad \text{\(\text{\(\text{NaOAc, \text{Ac}_2\text{O}\)}\)} & \quad \text{\(\text{\(110-120 \, ^\circ\text{C}\)}\)} & \quad \text{\(\text{5}\)}
\end{align*}}
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>5a</td>
<td>46</td>
</tr>
<tr>
<td>2</td>
<td>6-Br</td>
<td>5b</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>6-Me</td>
<td>5c</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>6-NO(_2)</td>
<td>5d</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>6-OMe</td>
<td>5e</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>7-OMe</td>
<td>5f</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>8-OMe</td>
<td>5g</td>
<td>69</td>
</tr>
<tr>
<td>8</td>
<td>7-OAc</td>
<td>5h</td>
<td>21(^b)</td>
</tr>
<tr>
<td>9</td>
<td>5,6-benzo</td>
<td>5i</td>
<td>63</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yields, \(^b\) 4-HOC\(_2\)HCHO was the starting material in this reaction. The OH group undergoes acetylation under the reaction conditions.
TABLE 1.3 Conversion of 3-Acetamidocoumarins (5) into Boc-protected 3-Aminocoumarins (6)

\[\text{R} \quad \text{NHAc} \quad \xrightarrow{1. \text{Boc}_2\text{O}, \text{DMAP}, \text{THF}} \quad \text{R} \quad \text{NHBOC} \]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>6a</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>6-Br</td>
<td>6b</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>6-Me</td>
<td>6c</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>6-NO(_2)</td>
<td>6d</td>
<td>93</td>
</tr>
<tr>
<td>5</td>
<td>6-OMe</td>
<td>6e</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>7-OMe</td>
<td>6f</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>8-OMe</td>
<td>6g</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>7-OH</td>
<td>6h</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>5,6-benzo</td>
<td>6i</td>
<td>95</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yields
Removal of the Boc-group using 15% TFA/CHCl$_3$ then afforded the 3-aminocoumarins (7b-i) in generally very good yields (58-96%) (Table 1.4). In no case

TABLE 1.4 Removal of the Boc Group

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>7a</td>
<td>99</td>
</tr>
<tr>
<td>2</td>
<td>6-Br</td>
<td>7b</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>6-Me</td>
<td>7c</td>
<td>95</td>
</tr>
<tr>
<td>4</td>
<td>6-NO$_2$</td>
<td>7d</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>6-OMe</td>
<td>7e</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>7-OMe</td>
<td>7f</td>
<td>58b</td>
</tr>
<tr>
<td>7</td>
<td>8-OMe</td>
<td>7g</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>7-OH</td>
<td>7h</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>5,6-benzo</td>
<td>7i</td>
<td>65</td>
</tr>
</tbody>
</table>

a Isolated yields, b 37% 6f recovered after 3 h.
was any 3-hydroxycoumarin detected. Clearly, the use of Boc as a protecting group is crucial because it can be removed under anhydrous conditions. The optimal reaction times for preparing the desired 3-aminocoumarins were found to be generally between 3 and 4.5 hours at room temperature. Longer reaction times resulted in a decrease in the yields of desired 3-aminocoumarins and the formation of the corresponding 3-trifluoroacetamidocoumarin (8) (Scheme 1.2).

For the parent system, 3-trifluoroacetamidocoumarin (8a) was isolated in 14% yield after a reaction time of 31 hours. Evidently, the 3-aminocoumarin, once formed, is acylated by the solvent. Indeed, stirring pure 3-aminocoumarin (7a) in 15% TFA/CHCl₃ at room temperature resulted in the slow formation of 8a (tlc analysis). After stirring for 7 days, roughly equivalent amounts of 7a and 8a were present in solution (tlc analysis) and, after a further day’s reaction at reflux, trifluoroacetamidocoumarin (8a) was isolated in 68% yield.

SCHEME 1.2 Formation of 3-Trifluoroacetamidocoumarin 8

![Scheme 1.2 Formation of 3-Trifluoroacetamidocoumarin 8](image-url)
1.2.4 Synthesis of Coumarin-fused 2-Azadienes

In connection with our involvement in the study of inverse electron demand Diels-Alder (IEDDA) reactions, electron deficient dienes 9a and 10a were prepared previously (Scheme 1.3).11a Although these dienes did not participate in IEDDA reaction with electron rich dienophiles such as an enamine, they contained an interesting chromophore for proton-coupled electron transfer (PCET) process. In collaboration with Dr. David Thompson’s research group, photophysical studies of 9a and 10a were performed. Based on the initial results, some derivatives of these dienes were desired that would help in understanding of the PCET process in these dienes.

SCHEME 1.3 Synthesis of 9a and 10a
The following derivatives of the coumarin-fused 2-azadienes were prepared by reacting suitable 3-aminocoumarin derivative with salicylaldehyde (4a) (Table 1.5) or 2-hydroxynaphthaldehyde (4i) (Table 1.6) in acceptable yields. The details regarding the photophysical studies of these molecules are outside the scope of this thesis. These results will be published in collaboration with Dr. David Thompson’s research group in the future.

TABLE 1.5 Synthesis of 2-Azadienes 9b-9d

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-OMe</td>
<td>9b</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>6-NO₂</td>
<td>9c</td>
<td>71</td>
</tr>
<tr>
<td>3</td>
<td>5,6-Benzo</td>
<td>9d</td>
<td>57</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yields
TABLE 1.6 Synthesis of 2-Azadienes 10a-10d

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>10a</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>6-OMe</td>
<td>10b</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>6-NO₂</td>
<td>10c</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>5,6-Benzo</td>
<td>10d</td>
<td>70</td>
</tr>
</tbody>
</table>

\(^a\) Isolated yields

1.3 Conclusion

In conclusion, a hydrolysis-free method for the synthesis of 3-aminocoumarins has been developed. It can be used to prepare multigram quantities of various 3-aminocoumarins and does not result in the formation of any 3-hydroxycoumarins. Coumarin-fused 2-azadienes have also been prepared for collaborative studies with Dr. David Thompson’s research group.
1.4 Experimental

1.4.1 General Methods

All reactions were carried out in oven-dried glassware without inert gas protection. THF was dried and distilled over sodium/benzophenone. ACS grade chloroform was used for deprotection reactions. Distilled methanol was used in procedure B. All other chemicals, including solvents, were used as received, without further purification. Thin layer chromatography (tlc) was performed on MN PolyGram precoated silica gel plates using 254 nm UV visualization. Melting points were recorded on Fisher-Johns apparatus and are uncorrected. All new compounds were characterized by 1H NMR, 13C NMR, IR and HRMS techniques. 1H and 13C NMR spectra were recorded on Bruker AVANCE spectrometer at 500.133 MHz and 125.770 MHz, respectively. Peaks reported are relative to internal standards: TMS ($\delta = 0.00$) for 1H and CDCl$_3$ ($\delta = 77.23$) or DMSO-$_d_6$ ($\delta = 39.51$) for 13C spectra. Reported multiplicities are apparent. Infrared spectra were obtained on Bruker Tensor 27 instrument using neat samples. Low-resolution mass spectra were obtained using HP5970 GC/MSD or Agilent 1100 series LC/MS chromatographic system and high-resolution mass spectra were obtained using Waters GCT Permier Micromass mass spectrometer. All known compounds were characterized by 1H NMR, 13C NMR spectroscopy and reported melting point(s).
1.4.2 Representative Procedures

1.4.2.1 Representative Procedure A: 3-Acetamido-2H-chromen-2-one (5a)

A mixture of salicylaldehyde 4a (6.10 g, 50.0 mmol), N-acetylglycine (5.85 g, 50.0 mmol), anhydrous sodium acetate (16.40 g, 200.0 mmol) and acetic anhydride (25.0 mL) was heated at 110-120 °C for 3.5 h. The resulting brown solution was allowed to cool to room temperature and it solidified completely. Ice-cold water was added to the brown solid and the mass was broken up with a spatula. The resulting mixture was suction filtered and the solids were washed 2-3 times with cold water. The resulting solid was air dried, triturated with ethyl acetate, suction filtered and air dried again to afford 3-acetamidocoumarin 5a as a pale yellow solid (4.21 g, 42%). The filtrate was then concentrated and purified by column chromatography on silica gel (30% ethyl acetate/hexanes) to afford 3-acetamidocoumarin 5a (0.38 g, 4%). Combined Yield: 4.59 g, (46%). mp = 195-196 °C (ethanol) (Lit.10c 201.5 °C, Lit.10a 206 °C); δ_{H}(CDCl$_3$) = 8.68 (s, 1H), 8.06 (s, 1H), 7.52 (d, J = 7.5 Hz, 1H), 7.47-7.43 (m, 1H), 7.34-7.29 (m, 2H), 2.25 (s, 3H) ppm; δ_{C}(CDCl$_3$) = 169.6, 158.9, 150.1, 129.8, 128.0, 125.3, 124.2, 123.4, 120.0, 116.5, 24.9 ppm.
Note: For practical purposes, filtrates from different reactions can be combined and chromatographed together when a sufficient amount has been collected.

1.4.2.2 Representative Procedure B: (2-Oxo-2H-chromen-3-yl)carbamic acid tert-butyl ester (6a)

\[
\begin{align*}
\text{To a mixture of 3-acetamidocoumarin } & 5a \ (5.00 \text{ g, } 24.6 \text{ mmol}) \text{ and DMAP (0.60 g, 4.9 mmol) in THF (125 mL), di-tert-butyl dicarbonate was added and the mixture was} \\
& \text{magnetically stirred at room temperature. The initial yellow suspension became a clear} \\
& \text{brown solution after 20 min. Hydrazine hydrate (3.83 mL, 123 mmol) was then added to} \\
& \text{the reaction mixture, followed by the addition of methanol (100 mL). The reaction} \\
& \text{mixture was stirred for a further 20 min, during which time it became orange. The} \\
& \text{solvents were removed under reduced pressure. The resulting sticky yellow mass was} \\
& \text{dissolved in dichloromethane and washed with 1 M aqueous HCl solution, 1 M aqueous} \\
& \text{CuSO₄ solution and saturated aqueous NaHCO₃ solution. Finally, the organic layer was} \\
& \text{washed with brine, dried over anhydrous sodium sulfate, concentrated under reduced} \\
& \text{pressure and chromatographed on silica gel (15% ethyl acetate/hexanes) to yield 6a as a} \\
& \text{white solid (5.26 g, 94%). } mp = 85-86 \degree C \text{ (chloroform/hexanes) (Lit.}^{10} \text{ 85-86 }\degree C);} \\
& \delta_H(\text{CDCl₃}) = 8.28 \text{ (s, 1H), 7.46 (d, } J = 7.7 \text{ Hz, 1H), 7.41-7.39 (m, 2H), 7.32-7.28 (m, 2H),}
\end{align*}
\]
1.54 (s, 9H) ppm; δ_C(CDCl₃) = 158.8, 152.7, 149.7, 129.2, 127.5, 125.3, 124.8, 120.6, 120.3, 116.5, 81.9, 28.4 ppm.

1.4.2.3 Representative Procedure C: 3-Amino-2H-chromen-2-one (7a)

A solution of 6a (25.0 g, 96.0 mmol) in 15% TFA/chloroform (1.17 L) was stirred at room temperature for 3 h. The reaction mixture was concentrated under reduced pressure and the residue was chromatographed on silica gel (30% ethyl acetate/hexanes) to yield 3-aminocoumarin 7a as an off-white solid (15.25 g, 99%). mp = 135-136 °C (chloroform/hexanes) (Lit.¹⁰a 132-135 °C); δ_H(CDCl₃) = 7.31-7.26 (m, 3H), 7.24-7.19 (m, 1H), 6.71 (s, 1H), 4.15 (s, 2H) ppm; δ_C(CDCl₃) = 159.6, 149.2, 132.2, 126.8, 125.3, 124.8, 121.4, 116.3, 111.1 ppm.
1.4.2.4 Representative Procedure D: 3-((2-Hydroxynaphthalen-1-yl)methyleneamino)-2H-chromen-2-one (10a)

A mixture of 7a (1.61 g, 10.0 mmol), 4i (1.81 g, 10.5 mmol), 4 Å molecular sieves (~10 g) and glacial acetic acid (4 drops) in absolute ethanol (100 mL) was heated at reflux for 18 h. The reaction mixture turned from clear orange solution to a red suspension over the course of the reaction. It was allowed to cool to room temperature and the precipitate (along with molecular sieves) was filtered under suction to afford a red residue. It was washed with cold absolute ethanol. The red residue was separated from the molecular sieves by dissolving in dichloromethane. The solvent was removed under reduced pressure and the product was recrystallized from chloroform to afford 10a as a red solid (1.32 g, 42%). mp = 227-228 °C (CHCl₃) (Lit.¹¹a 224-226 °C); δₜ(H(DCl₃)) = 10.23 (s, 1H), 8.20 (d, J = 9.1 Hz, 1H), 7.86 (d, J = 9.1 Hz, 1H), 7.76-7.73 (m, 2H), 7.59-7.53 (m, 3H), 7.42-7.33 (m, 3H), 7.14 (d, J = 9.3 Hz, 1H) ppm; δc(DCl₃) = 168.0, 159.6, 158.1, 152.1, 137.1, 133.4, 131.4, 131.3, 130.9, 129.5, 128.6, 128.0, 127.9, 125.2, 124.2, 121.2, 119.9, 119.8, 119.7, 116.7, 110.0 ppm.
1.4.3 Synthesis and Characterization for Individual Compounds

3-Acetamido-6-bromo-2H-chromen-2-one (5b)

![Structure of 5b]

According to representative procedure A, 5-bromosalicylaldehyde (5.03 g, 25.0 mmol), N-acetylglycine (2.92 g, 25.0 mmol), anhydrous sodium acetate (8.20 g, 100 mmol) and acetic anhydride (12.8 mL) afforded 5b as an off-white solid (4.84 g, 69%). mp = 262-263 °C (ethyl acetate/hexanes) (Lit.11b 261-262 °C); δ_{H}(CDCl$_3$) = 8.60 (s, 1H), 8.07 (s, 1H), 7.65 (d, $J = 2.0$ Hz, 1H), 7.53 (dd, $J = 8.4, 2.5$ Hz, 1H), 7.21 (d, $J = 9.0$ Hz, 1H), 2.25 (s, 3H) ppm; δ_{C}(CDCl$_3$) = 169.6, 158.4, 148.9, 132.6, 130.2, 125.0, 121.8 (2C), 118.3, 118.2, 25.0 ppm.

3-Acetamido-6-methyl-2H-chromen-2-one (5c)

![Structure of 5c]
According to representative procedure A, 5-methylsalicylaldehyde (5.00 g, 36.7 mmol), N-acetylglycine (4.30 g, 36.7 mmol), anhydrous sodium acetate (12.05 g, 146.8 mmol) and acetic anhydride (25.0 mL) afforded 5c as a white solid (3.38 g, 42%). mp = 209-212 °C (ethyl acetate/hexanes) (Lit.10d 214 °C); δ_H(CDCl$_3$) = 8.62 (s, 1H), 8.05 (s, 1H), 7.30 (s, 1H), 7.24-7.21 (m, 2H), 2.41 (s, 3H), 2.24 (s, 3H) ppm; δ_C(CDCl$_3$) = 169.7, 159.3, 148.5, 135.3, 131.1, 128.0, 124.3, 123.7, 120.0, 116.5, 25.1, 21.3 ppm.

3-Acetamido-6-nitro-2H-chromen-2-one (5d)

According to representative procedure A, 5-nitrosalicylaldehyde (1.85 g, 11.0 mmol), N-acetylglycine (1.30 g, 11.0 mmol), anhydrous sodium acetate (3.63 g, 44.0 mmol) and acetic anhydride (5.20 mL) afforded 5d as a light brown solid (1.90 g, 69%). mp = 274-277 °C (ethyl acetate/hexanes) (Lit.11b 278 °C); δ_H(CDCl$_3$) = 8.76 (s, 1H), 8.44 (d, $J = 2.4$ Hz, 1H), 8.30 (dd, $J = 9.2$, 2.9 Hz, 1H), 8.10 (s, 1H), 7.46 (d, $J = 9.1$ Hz, 1H), 2.28 (s, 3H) ppm; δ_C(CDCl$_3$) = 169.7, 157.8, 153.2, 145.1, 125.8, 124.5, 123.6, 121.5, 120.6, 117.7, 25.0 ppm.
3-Acetamido-6-methoxy-2H-chromen-2-one (5e)

According to representative procedure A, 5-methoxysalicylaldehyde (7.60 g, 50.0 mmol), N-acetylglycine (5.85 g, 50.0 mmol), anhydrous sodium acetate (16.4 g, 200 mmol) and acetic anhydride (25.0 mL) afforded 5e as an off-white solid (5.88 g, 40%). mp = 218-220 °C (ethyl acetate/hexanes) (Lit. 16 212-214 °C); δ_H(CDCl₃) = 8.63 (s, 1H), 8.09 (s, 1H), 7.25 (d, J = 9.6 Hz, 1H), 7.01 (dd, J = 9.2, 2.6 Hz, 1H), 6.95 (d, J = 3.0 Hz, 1H), 3.85 (s, 3H), 2.25 (s, 3H) ppm; δ_C(CDCl₃) = 169.6, 159.0, 156.9, 144.5, 124.5, 123.3, 120.5, 117.7, 117.5, 109.9, 56.0, 24.9 ppm.

3-Acetamido-7-methoxy-2H-chromen-2-one (5f)

According to representative procedure A, 4-methoxysalicylaldehyde (2.00 g, 13.1 mmol), N-acetylglycine (1.54 g, 13.1 mmol), anhydrous sodium acetate (4.31 g, 52.5 mmol) and acetic anhydride (6.20 mL) afforded 5f as a pale yellow solid (0.61 g, 20%).
mp = 234-235 °C (ethyl acetate/hexanes) (Lit.10d 230°C, Lit.16 235-237 °C); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.64 (s, 1H), 7.95 (s, 1H), 7.41 (d, \(J = 7.8\) Hz, 1H), 6.89 (dd, \(J = 8.3, 2.5\) Hz, 1H), 6.83 (d, \(J = 2.9\) Hz, 1H), 3.87 (s, 3H), 2.23 (s, 3H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 169.4, 161.5, 159.3, 151.6, 128.9, 124.3, 121.8, 113.4, 113.3, 101.0, 56.0, 24.9 ppm.

3-Acetamido-8-methoxy-2\textit{H}-chromen-2-one (5g)

According to representative procedure A, 3-methoxysalicylaldehyde (7.60 g, 50.0 mmol), \(N\)-acetylglycine (5.85 g, 50.0 mmol), anhydrous sodium acetate (16.4 g, 200 mmol) and acetic anhydride (25.0 mL) afforded 5g as an off-white solid (8.09 g, 69%).

mp = 237-238 °C (ethyl acetate/hexanes) (Lit.16 237-239 °C); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.65 (s, 1H), 8.09 (s, 1H), 7.25-7.21 (m, 1H), 7.09 (d, \(J = 7.7\) Hz, 1H), 7.01 (d, \(J = 7.9\) Hz, 1H), 3.97 (s, 3H), 2.24 (s, 3H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 169.6, 158.6, 147.2, 139.6, 125.3, 124.4, 123.6, 120.8, 119.6, 112.0, 56.4, 24.9 ppm.
3-Acetamido-7-acetoxy-2H-chromen-2-one (5h)

According to representative procedure A, 4-hydroxysalicylaldehyde (6.91 g, 50.0 mmol), N-acetylglycine (5.85 g, 50.0 mmol), anhydrous sodium acetate (16.40 g, 200.0 mmol) and acetic anhydride (25.0 mL) afforded 5h as a light brown solid (2.73 g, 21%). mp = 234-236 °C (ethyl acetate/hexanes) (Lit.16 231 °C); δH(CDCl3) = 8.67 (s, 1H), 8.02 (s, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.13 (s, 1H), 7.07 (dd, J = 8.8, 2.0 Hz, 1H), 2.34 (s, 3H), 2.24 (s, 3H) ppm; δc(CDCl3) = 169.6, 169.1, 158.7, 151.6, 150.4, 128.6, 123.8, 123.0, 119.3, 117.9, 110.3, 24.9, 21.3 ppm; IR ν = 3341 (s), 1759 (s), 1720 (s), 1681 (s), 1611 (m), 1536 (m), 1431 (b), 1354 (m), 1284 (s), 1251 (s), 1206 (s), 1156 (s), 1118 (s), 1023 (m) cm⁻¹; MS m/z (relative intensity) = 261 (9, M⁺), 219 (31), 177 (100), 149 (21), 65 (6) . HRMS [M⁺] calcd for C₁₃H₁₁NO₅ 261.0637, found 261.0617.

3-Acetamido-5,6-benzo-2H-chromen-2-one (5i)
According to representative procedure A, 2-hydroxy-1-naphthaldehyde (1.72 g, 10.0 mmol), N-acetylglycine (1.17 g, 10.0 mmol), anhydrous sodium acetate (3.28 g, 40.0 mmol) and acetic anhydride (4.70 mL) afforded 51 as an off-white solid (1.60 g, 63%). mp = 247-250 °C (dichloromethane/hexanes) (Lit.10d 247 °C); \(\delta_{\text{H}(\text{CDCl}_3)} = 9.53 \) (s, 1H), 8.33 (d, \(J = 7.7 \) Hz, 1H), 8.15 (s, 1H), 7.92-7.90 (m, 2H), 7.71-7.68 (m, 1H), 7.60-7.57 (m, 1H), 7.46 (d, \(J = 9.1 \) Hz, 1H), 2.30 (s, 3H) ppm; \(\delta_{\text{C}(\text{CDCl}_3)} = 169.7, 159.0, 149.0, 131.1, 131.0, 129.4, 129.0, 128.1, 126.5, 124.3, 122.6, 119.7, 116.6, 114.5, 25.0 \) ppm.

\((6\text{-Bromo-2-oxo-2H-chromen-3-yl})\text{carbamic acid t-butyl ester (6b)}\)

\begin{align*}
\text{Br} & \quad \text{NHBOc} \\
\text{6b}
\end{align*}

According to representative procedure B, 5b (2.83 g, 10.0 mmol), DMAP (0.24 g, 2.0 mmol), di-t-butyl dicarbonate (9.12 g, 41.8 mmol) and hydrazine hydrate (2.43 mL, 50.0 mmol) afforded 6b as a white solid (5.66 g, 87%). mp = 105-107 °C (ethyl acetate/hexanes) (Lit.10i 104-105 °C); \(\delta_{\text{H}(\text{CDCl}_3)} = 8.19 \) (s, 1H), 7.58 (d, \(J = 1.7 \) Hz, 1H), 7.49 (dd, \(J = 8.6, 2.4 \) Hz, 1H), 7.41 (s, 1H), 7.19 (d, \(J = 9.5 \) Hz, 1H), 1.53 (s, 9H) ppm; \(\delta_{\text{C}(\text{CDCl}_3)} = 158.2, 152.5, 148.5, 131.9, 129.7, 125.7, 122.0, 118.9, 118.1, 118.0, 82.2, 28.4 \) ppm.
(6-Methyl-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6c)

According to representative procedure B, 5c (3.57 g, 16.5 mmol), DMAP (0.40 g, 3.3 mmol), di-t-butyl dicarbonate (15.02 g, 68.80 mmol) and hydrazine hydrate (4.00 mL, 82.3 mmol) afforded 6c as a white solid (4.07 g, 90%). mp = 133-134 °C; δH(CDCl3) = 8.22 (s, 1H), 7.40 (s, 1H), 7.24 (m, 1H), 7.20 (m, 2H), 2.39 (s, 3H), 1.53 (s, 9H) ppm; δC(CDCl3) = 159.0, 152.7, 147.9, 134.9, 130.2, 127.4, 124.7, 120.6, 120.0, 116.2, 81.8, 28.4, 21.1 ppm; IR ν = 3407(m), 1717(m), 1707(m), 1632(s), 1616(s), 1581(s), 1510(m), 1485(s), 1427(s), 1392(s), 1366(s), 1326(s), 1290(s), 1268(s), 1250(s), 1234(s), 1147(b), 1126(m), 1045(s), 1004(m) cm⁻¹; MS m/z (relative intensity) = 175 (100, M⁺), 147 (57), 120 (28), 107 (7), 91 (8), 65 (18), 51 (15). HRMS [M⁺] calcd for C₁₅H₁₇NO₄ 275.1158, found 275.1149.

(6-Nitro-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6d)

(6-Methyl-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6c)

According to representative procedure B, 5c (3.57 g, 16.5 mmol), DMAP (0.40 g, 3.3 mmol), di-t-butyl dicarbonate (15.02 g, 68.80 mmol) and hydrazine hydrate (4.00 mL, 82.3 mmol) afforded 6c as a white solid (4.07 g, 90%). mp = 133-134 °C; δH(CDCl3) = 8.22 (s, 1H), 7.40 (s, 1H), 7.24 (m, 1H), 7.20 (m, 2H), 2.39 (s, 3H), 1.53 (s, 9H) ppm; δC(CDCl3) = 159.0, 152.7, 147.9, 134.9, 130.2, 127.4, 124.7, 120.6, 120.0, 116.2, 81.8, 28.4, 21.1 ppm; IR ν = 3407(m), 1717(m), 1707(m), 1632(s), 1616(s), 1581(s), 1510(m), 1485(s), 1427(s), 1392(s), 1366(s), 1326(s), 1290(s), 1268(s), 1250(s), 1234(s), 1147(b), 1126(m), 1045(s), 1004(m) cm⁻¹; MS m/z (relative intensity) = 175 (100, M⁺), 147 (57), 120 (28), 107 (7), 91 (8), 65 (18), 51 (15). HRMS [M⁺] calcd for C₁₅H₁₇NO₄ 275.1158, found 275.1149.

(6-Nitro-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6d)
According to representative procedure B, 5d (20.0 g, 92.5 mmol), DMAP (2.26 g, 18.5 mmol), di-\textit{t}-butyl dicarbonate (84.39 g, 386.7 mmol) and hydrazine hydrate (22.5 mL, 463 mmol) afforded 6d as a pale yellow solid (24.97 g, 93\%). mp = 117-118 °C (ethyl acetate/hexanes) (Lit.10i 132-134 °C); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.42 (d, J = 2.7 Hz, 1H), 8.39 (s, 1H), 8.29 (dd, J = 9.4, 2.9 Hz, 1H), 7.48-7.47 (m, 2H), 1.58 (s, 9H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 157.5, 152.8, 152.3, 145.0, 126.5, 123.8, 123.0, 120.8, 118.6, 117.6, 82.7, 28.3 ppm.

(6-Methoxy-2-oxo-2H-chromen-3-yl)carbamic acid \textit{t}-butyl ester (6e)

![6e](image)

According to representative procedure B, 5e (2.79 g, 12.0 mmol), DMAP (0.29 g, 2.4 mmol), di-\textit{t}-butyl dicarbonate (10.96 g, 50.16 mmol) and hydrazine hydrate (2.92 mL, 60.0 mmol) afforded 6e as a white solid (3.26 g, 93\%). mp = 164-165 °C (ethyl acetate/hexanes); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.24 (s, 1H), 7.42 (s, 1H), 7.23 (d, J = 9.0 Hz, 1H), 6.97 (dd, J = 9.2, 2.6 Hz, 1H), 6.90 (d, J = 2.7 Hz, 1H), 3.83 (s, 3H), 1.54 (s, 9H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 158.9, 156.8, 152.7, 144.2, 125.2, 120.8, 120.4, 117.5, 116.8, 109.8, 82.0, 56.0, 28.4 ppm; IR ν = 3416 (m), 1729 (s), 1693 (b), 1583 (s), 1488 (m), 1464 (s), 1396 (s), 1362 (m), 1342 (s), 1288 (s), 1230 (b), 1151 (b), 1026 (b), 1011 (b) cm-1; MS m/z
(7-Methoxy-2-oxo-2H-chromen-3-yl)carbamic acid t-buty1 ester (6f)

According to representative procedure B, 5f (0.59 g, 2.6 mmol), DMAP (0.06 g, 0.5 mmol), di-t-butyl dicarbonate (2.29 g, 10.5 mmol) and hydrazine hydrate (0.61 mL, 13 mmol) afforded 6f as a white solid (0.43 g, 58%). mp = 117-118 °C (ethyl acetate/hexanes); \[^{1}H\text{(CDCl}_3\text{)} = 8.23 \,(s, \, 1H), \, 7.35 \,(d, \, J = 8.7 \,Hz, \, 1H), \, 7.29 \,(s, \, 1H), \, 6.86 \,(dd, \, J = 8.6, \, 2.6 \,Hz, \, 1H), \, 6.81 \,(d, \, J = 1.8 \,Hz, \, 1H), \, 3.85 \,(s, \, 3H), \, 1.53 \,(s, \, 9H) \text{ ppm};

\[^{13}C\text{(CDCl}_3\text{)} = 161.0, \, 159.1, \, 152.8, \, 151.2, \, 128.3, \, 122.4, \, 121.4, \, 113.5, \, 113.2, \, 100.9, \, 81.7, \, 55.9, \, 28.4 \text{ ppm}; \text{ IR } v = 3318 \,(m), \, 1726 \,(m), \, 1699 \,(s), \, 1631 \,(m), \, 1613 \,(s), \, 1575 \,(m), \, 1524 \,(s), \, 1454 \,(s), \, 1364 \,(s), \, 1329 \,(s), \, 1295 \,(s), \, 1279 \,(s), \, 1250 \,(m), \, 1226 \,(s), \, 1203 \,(s), \, 1183 \,(b), \, 1152 \,(s), \, 1133 \,(b), \, 1033 \,(s), \, 1013 \,(s) \text{ cm}^{-1}; \text{ MS } m/z \text{ (relative intensity) } = M^+ \text{ not observed, } 191 \,(100), \, 148 \,(21), \, 130 \,(7), \, 77 \,(3). \text{ HRMS } [M^+] \text{ calcd for } C_{15}H_{17}NO_5 \, 291.1107, \text{ found } 291.1099.
(8-Methoxy-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6g)

According to representative procedure B, 5g (4.45 g, 19.1 mmol), DMAP (0.47 g, 3.8 mmol), di-t-butyl dicarbonate (17.41 g, 79.75 mmol) and hydrazine hydrate (4.64 mL, 95.4 mmol) afforded 6g as a white solid (5.10 g, 92%). mp = 97-99 °C (ethyl acetate/hexanes); $\delta_{\text{H}}(\text{CDCl}_3) =$ 8.25 (s, 1H), 7.43 (s, 1H), 7.22-7.19 (m, 1H), 7.04 (d, $J =$ 7.0 Hz, 1H), 6.97 (d, $J =$ 8.1 Hz, 1H), 3.96 (s, 3H), 1.53 (s, 9H) ppm; $\delta_{\text{C}}(\text{CDCl}_3) =$ 158.3, 152.7, 147.2, 139.2, 125.1, 125.1, 121.0, 120.6, 119.1, 111.3, 81.9, 56.4, 28.4 ppm; IR $\nu =$ 3318 (m), 1729 (s), 1703 (s), 1580 (m), 1532 (m), 1477 (m), 1395 (s), 1362 (s), 1276 (s), 1239 (s), 1186 (m), 1156 (m), 1112 (s), 1077 (m), 1040 (m), 1013 (m) cm$^{-1}$; MS m/z (relative intensity) = M$^+$ not observed, 191 (100), 163 (31), 136 (22), 120 (30), 106 (16), 93 (35), 76 (20), 65 (56), 51 (16). HRMS [M$^+$] calcd for C$_{15}$H$_{17}$NO$_5$ 291.1107, found 291.1110.
According to representative procedure B, 5h (2.83 g, 10.8 mmol), DMAP (0.26 g, 2.2 mmol), di-tert-butyl dicarbonate (10.56 g, 45.27 mmol) and hydrazine hydrate (5.26 mL, 108 mmol) afforded 6h as a white solid (1.61 g, 50%). mp = 177-178 °C (dichloromethane/hexanes); \(\delta_H(\text{CDCl}_3) = 8.24 \, (s, \, 1H) \), 7.32 (d, \(J = 7.8 \, \text{Hz}, \, 1H \)), 7.27 (s, 1H), 6.88 (d, \(J = 1.5 \, \text{Hz}, \, 1H \)), 6.83 (dd, \(J = 8.2, \, 2.6 \, \text{Hz}, \, 1H \)), 6.42 (s, 1H), 1.53 (s, 9H) ppm; \(\delta_C(\text{CDCl}_3) = 159.6, \, 157.8, \, 152.9, \, 151.1, \, 128.7, \, 122.4, \, 122.0, \, 114.3, \, 113.4, \, 103.2, \, 82.0, \, 28.4 \, \text{ppm}; \) IR \(\nu = 3317 \, (m), \, 1703 \, (s), \, 1681 \, (s), \, 1633 \, (s), \, 1608 \, (s), \, 1535 \, (s), \, 1512 \, (s), \, 1453 \, (b), \, 1393 \, (s), \, 1367 \, (s), \, 1288 \, (m), \, 1268 \, (s), \, 1244 \, (s), \, 1199 \, (m), \, 1160 \, (s), \, 1124 \, (b), \, 1045 \, (m), \, 1020 \, (s) \, \text{cm}^{-1}; \) MS \(m/z \) (relative intensity) = M\(^+\) not observed, 249 (10), 207 (31), 177 (100), 149 (56), 122 (21), 79 (18), 66 (19). HRMS [M\(^+\)] calcd for \(\text{C}_{14}\text{H}_{15}\text{NO}_5 \) 277.0950, found 277.0951.
(5,6-Benz-2-oxo-2H-chromen-3-yl)carbamic acid t-butyl ester (6i)

According to representative procedure B, 5i (0.40 g, 1.6 mmol), DMAP (0.04 g, 0.3 mmol), di-t-butyl dicarbonate (1.37 g, 6.27 mmol) and hydrazine hydrate (0.40 mL, 7.5 mmol) afforded 6i as a pale yellow solid (0.47 g, 95%). mp = 192-194 °C (ethyl acetate/hexanes); \(\delta_H(\text{CDCl}_3) = 9.10 \, (s, \, 1H), \, 8.35 \, (d, \, J = 7.8 \, Hz, \, 1H), \, 7.90-7.85 \, (m, \, 2H), \, 7.65-7.64 \, (m, \, 1H), \, 7.58-7.55 \, (m, \, 1H), \, 7.49 \, (s, \, 1H), \, 7.44 \, (d, \, J = 9.4 \, Hz, \, 1H), \, 1.59 \, (s, \, 9H) \) ppm; \(\delta_C(\text{CDCl}_3) = 158.8, \, 152.8, \, 148.3, \, 130.9, \, 130.3, \, 129.2, \, 129.0, \, 127.8, \, 126.3, \, 124.8, \, 122.6, \, 116.8, \, 116.6, \, 114.6, \, 82.0, \, 28.5; \) IR \(\nu = 3316 \, (m), \, 1701 \, (s), \, 1575 \, (s), \, 1522 \, (s), \, 1461 \, (m), \, 1408 \, (m), \, 1392 \, (m), \, 1367 \, (m), \, 1341 \, (m), \, 1242 \, (s), \, 1153 \, (s), \, 1045 \, (m), \, 1015 \, (m) \) cm\(^{-1}\); MS \(m/z \) (relative intensity) = M\(^+\) not observed, 211 (100), 183 (73), 154 (26), 128 (65), 102 (8), 91 (14), 77 (22), 63 (16). HRMS [M\(^+\)] calcd for C\(_{18}\)H\(_{17}\)NO\(_3\) 311.1158, found 311.1149.

3-Amino-6-bromo-2H-chromen-2-one (7b)
According to representative procedure C, 6b (1.25 g, 3.65 mmol) afforded 7b as an off-white solid (0.58 g, 67%). mp = 205-206 °C (ethyl acetate/hexanes) (Lit.10d 204-205 °C); $\delta_{H}(\text{CDCl}_3) = 7.42$ (d, $J = 1.7$ Hz, 1H), 7.34 (dd, $J = 8.7, 2.0$ Hz, 1H), 7.15 (d, $J = 9.0$ Hz, 1H), 6.58 (s, 1H), 4.36 (s, 2H) ppm; $\delta_{C}(\text{CDCl}_3) = 159.0, 148.0, 133.0, 129.4, 127.5, 123.3, 118.0, 117.6, 109.0$ ppm.

3-Amino-6-methyl-2H-chromen-2-one (7c)

![Image of 3-Amino-6-methyl-2H-chromen-2-one (7c)]

According to representative procedure C, 6c (3.58 g, 13.0 mmol) afforded 7c as a brown solid (2.18 g, 96%). mp = 157-159 °C (ethyl acetate/hexanes) (Lit.10d 160 °C); $\delta_{H}(\text{CDCl}_3) = 7.17$ (d, $J = 9.2$ Hz, 1H), 7.08-7.07 (m, 2H), 6.65 (s, 1H), 4.20 (s, 2H), 2.37 (s, 3H) ppm; $\delta_{C}(\text{CDCl}_3) = 159.8, 147.4, 134.4, 132.2, 127.8, 125.2, 121.1, 116.1, 111.2, 21.1$ ppm.
3-Amino-6-nitro-2H-chromen-2-one (7d)

According to representative procedure C, 6d (0.145 g, 0.500 mmol) afforded 7d as a yellow solid (0.0892 g, 89%). mp = 200-201 °C (ethyl acetate/hexanes) (Lit.10 201-202 °C, Lit.10 209 °C); \(\delta_{\text{H(CDCl}_3} = 8.21 \text{ (d, } J = 2.8 \text{ Hz, 1H), 8.12 \text{ (dd, } J = 9.0, 2.7 \text{ Hz, 1H), 7.39-7.38 \text{ (m, 1H), 6.71 \text{ (s, 1H), 4.51 \text{ (s, 2H) ppm; } \delta_{\text{C(CDCl}_3} = 158.3, 152.3, 144.8, 133.6, 122.1, 121.5, 120.8, 117.3, 108.4 \text{ ppm.}}

3-Amino-6-methoxy-2H-chromen-2-one (7e)

According to representative procedure C, 6e (0.80 g, 2.8 mmol) afforded 7e as a pale yellow solid (0.53 g, 95%). mp = 119-121 °C (ethyl acetate/hexanes) (Lit.16 120-123 °C); \(\delta_{\text{H(CDCl}_3} = 7.20 \text{ (d, } J = 8.8 \text{ Hz, 1H), 6.84 \text{ (dd, } J = 8.8, 3.0 \text{ Hz, 1H), 6.74 \text{ (d, } J = 2.5 \text{ Hz, 1H), 6.64 \text{ (s, 1H), 4.26 \text{ (s, 2H), 3.82 \text{ (s, 3H) ppm; } \delta_{\text{C(CDCl}_3} = 159.6, 156.6, 143.7, 132.6, 122.0, 117.2, 114.0, 110.8, 108.1, 55.9 \text{ ppm.}}

31
3-Amino-7-methoxy-2H-chromen-2-one (7f)

According to representative procedure C, 6f (0.55 g, 1.9 mmol) afforded 7f as an off-white solid (0.21 g, 58%) (starting material 3f (0.20 g, 37%) was recovered). mp = 137-139 °C (ethyl acetate/hexanes) (Lit.10 140-141 °C, Lit.10d 154 °C); \(\delta_H(\text{CDCl}_3) = 7.20 \) (d, \(J = 9.4 \) Hz, 1H), 6.82-6.81 (m, 2H), 6.70 (s, 1H), 4.05 (s, 2H), 3.84 (s, 3H) ppm; \(\delta_C(\text{CDCl}_3) = 159.9, 159.2, 150.5, 129.9, 126.0, 114.6, 112.7, 112.4, 100.9, 55.8 \) ppm.

3-Amino-8-methoxy-2H-chromen-2-one (7g)

According to representative procedure C, 6g (0.29 g, 1.0 mmol) afforded 7g as a brown solid (0.15 g, 80%). mp = 124-125 °C (ethyl acetate/hexanes) (Lit.10 124 °C -126 °C); \(\delta_H(\text{CDCl}_3) = 7.13 \) (s, 1H), 6.87-6.86 (m, 2H), 6.68 (s, 1H), 4.27 (s, 2H), 3.95 (s, 3H)
ppm; $\delta_{C}(\text{CDCl}_3) = 159.1, 147.2, 138.7, 132.5, 124.7, 122.2, 117.2, 111.1, 109.3, 56.4$ ppm.

3-Amino-7-hydroxy-2H-chromen-2-one (7h)

According to representative procedure C, 6h (0.53 g, 1.9 mmol) afforded 7h as a light brown solid (0.33 g, 96%). mp = 237-238°C (ethyl acetate/hexanes) (Lit.6a 250°C); $\delta_{H}(\text{DMSO}-d_6) = 9.82$ (s, 1H), 7.24 (d, $J = 8.5$ Hz, 1H), 6.72-6.66 (m, 3H), 3.69 (s, 2H) ppm; $\delta_{C}(\text{DMSO}-d_6) = 159.3, 156.4, 149.6, 130.3, 126.1, 113.7, 113.3, 110.5, 102.1$ ppm; IR $\nu = 3348$ (m), 1726 (m), 1681 (s), 1614 (b), 1561 (s), 1509 (s), 1458 (m), 1417 (s), 1360 (m), 1288 (s), 1259 (s), 1242 (m), 1198 (m), 1166 (s), 1153 (s), 1128 (s) cm$^{-1}$; MS m/z (relative intensity) = 177 (100), 149 (53), 122 (7), 94 (26), 51 (13). HRMS [M$^+$] calcd for C$_9$H$_7$NO$_3$ 177.0426, found 177.0434.

3-Amino-5,6-benzo-2H-chromen-2-one (7i)
According to representative procedure C, 6i (5.20 g, 20.5 mmol) afforded 7i as a brown solid (4.14 g, 65%). mp = 150-152 °C (ethyl acetate/hexanes) (Lit.10l 156-158 °C, Lit.10d 159 °C); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.16 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 4.5 Hz, 1H), 7.75 (d, J = 9.5 Hz, 1H), 7.64-7.60 (m, 1H), 7.56-7.53 (m, 1H), 7.50 (s, 1H), 7.45 (d, J = 9.5 Hz, 1H), 4.41 (s, 2H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 159.5, 147.3, 132.2, 130.9, 129.0, 128.3, 127.6, 127.1, 125.8, 122.0, 116.7, 115.6, 107.6 ppm.

3-Trifluoroacetamido-2H-chromen-2-one (8a)

Method 1: According to representative procedure C, 6a (5.60 g, 21.43 mmol) afforded 8a as a light brown solid (0.75 g, 14%) after 31 h.

Method 2: A solution of 7a (0.081 g, 0.50 mmol) in 15% TFA/CHCl\textsubscript{3} was stirred at room temperature for 8 d. Then it was refluxed for 24 h. The solvents were removed under reduced pressure and the residue was then chromatographed on silica gel (10% ethyl acetate/hexanes) to afford 8a as a light brown solid (0.088 g, 68%). mp = 132-133 °C (ethyl acetate/hexanes); δ\textsubscript{H}(CDCl\textsubscript{3}) = 8.81 (s, 1H), 8.70 (s, 1H), 7.59-7.54 (m, 2H), 7.40-7.36 (m, 2H) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 158.1, 155.7 (q, J\textsubscript{CF} = 39.1 Hz), 150.7, 131.3,
128.5, 126.5, 125.8, 122.2, 119.0, 116.9, 115.3 (q, J_C,F = 288.4 Hz) ppm; IR ν = 3298 (m), 1735 (m), 1694 (s), 1626 (b), 1607 (s), 1555 (s), 1490 (m), 1458 (s), 1381 (m), 1330 (s), 1311 (s), 1189 (m), 1160 (m), 1146 (s), 1090 (s) cm⁻¹; HRMS [M⁺] calcd for C₁₁H₈F₃NO₃ 257.0300, found 257.0298.

3-(2-Hydroxybenzylideneamino)-6-methoxy-2H-chromen-2-one (9b)

According to representative procedure D, 7e (0.095 g, 0.50 mmol) and 4a (0.065 g, 0.53 mmol) afforded 9b as a bright yellow solid (0.106 g, 72%). mp = 161-163 °C (CHCl₃). δ_H(CDC₁₃) = 12.95 (s, 1H, OH), 9.45 (s, 1H), 7.66 (s, 1H), 7.44 (dd, J = 8.1, 2.2 Hz, 1H), 7.40 (m, 1H), 7.31 (d, J = 9.1 Hz, 1H), 7.20 (dd, J = 9.1, 2.4 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 2.4 Hz, 1H), 6.95 (d, J = 8.0 Hz, 1H), 3.87 (s, 3H, OCH₃) ppm; δ_C(CDC₁₃) = 167.7, 161.9, 158.4, 156.9, 147.1, 134.6, 134.4, 132.4, 120.4, 119.84, 119.78, 119.7, 117.9, 117.8, 110.2, 56.3 (OCH₃) ppm (one carbon signal fewer than expected, presumably due to accidental degeneracy); IR: 3450 (w), 1703 (s), 1627 (w), 1592 (w), 1573 (w), 1558 (w), 1495 (m), 1454 (w), 1431 (w), 1400 (w), 1351 (w), 1329 (w), 1313 (w), 1277 (s), 1240 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 297
According to representative procedure D, 7d (0.103 g, 0.50 mmol) and 4a (0.065 g, 0.53 mmol) afforded 9c as a yellow solid (0.11 g, 71%). mp = 218-219 °C; \[\delta_{\text{H}}(\text{CDCl}_3) = 12.57 \text{ (s, 1H, OH), 9.37 \text{ (s, 1H), 8.49 \text{ (s, 1H), 8.39 \text{ (d, J = 7.2 Hz, 1H), 7.72 \text{ (s, 1H), 7.51 \text{ (d, J = 9.0 Hz, 1H), 7.47-7.45 \text{ (m, 2H), 7.05 \text{ (d, J = 7.4 Hz, 1H), 6.99 \text{ (t, J = 7.4 Hz, 1H) ppm; } Due to very low solubility of this compound, } ^{13}\text{C NMR could not be obtained in any solvent. IR: 1729 (s), 1642 (w), 1608 (w), 1582 (m), 1540 (w), 1517 (w), 1484 (w), 1441 (w), 1406 (w), 1358 (w), 1310 (m), 1240 (w), 1085 (s) cm}^{-1}; MS (APCI) \text{ } m/z (\text{relative intensity}) = 312 (M^+ + 2, 20), 311 (M^+ + 1, 100); HRMS [M^+] \text{ calcd for } C_{16}H_{10}N_2O_5 310.0590, \text{ found } 310.0584.\]
3-(2-Hydroxybenzylideneamino)-5,6-benzo-2H-chromen-2-one (9d)

![Chemical Structure](image.png)

According to representative procedure D, 7i (0.106 g, 0.50 mmol) and 4a (0.065 g, 0.53 mmol) afforded 9d as an orange solid (0.090 g, 57%). mp = 192-193 °C (CHCl₃). δ_H(CDCl₃) = 13.08 (s, 1H, OH), 9.61 (s, 1H), 8.50 (s, 1H), 8.28 (d, J = 7.4 Hz, 1H), 8.01 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 8.21 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 7.2 Hz, 1H), 7.51-7.49 (m, 2H), 7.41-7.40 (m, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.99 (d, J = 7.5 Hz, 1H) ppm; δ_C(CDCl₃) = 167.3, 161.7, 158.0, 152.0, 134.1, 133.6, 133.2, 131.7, 130.9, 130.7, 129.4, 128.7, 126.6, 122.01, 121.95, 119.6, 117.6, 116.7, 114.2 ppm (one carbon signal fewer than expected, presumably due to accidental degeneracy); IR: 1717 (s), 1683 (w), 1653 (w), 1608 (w), 1575 (m), 1558 (w), 1519 (w), 1508 (w), 1490 (w), 1457 (w), 1437 (w), 1361 (w), 1342 (w), 1278 (m), 1207 (m), 1092 (m), 1063 (s) cm⁻¹; MS (APCI) m/z (relative intensity) = 317 (M⁺+2, 23), 316 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₀H₁₅NO₃ 315.0895, found 315.0894.
3-((2-Hydroxynaphthalen-1-yl)methyleneamino)-6-methoxy-2H-chromen-2-one
(10b)

According to representative procedure D, 7e (0.095 g, 0.50 mmol) and 4i (0.091 g, 0.53 mmol) afforded 10b as an orange solid (0.111 g, 64%). mp = 229-230 °C (CHCl₃); δ_H(CDCl₃) = 15.14 (s, 1H, OH), 10.19 (s, 1H), 8.17 (br s, 1H), 7.82 (d, J = 9.3 Hz, 1H), 7.72 (d, J = 7.6 Hz, 1H), 7.64 (br s, 1H), 7.55 (br s, 1H), 7.38-7.36 (m, 2H), 7.31 (d, J = 9.6 Hz, 1H), 7.00 (d, J = 6.5 Hz, 1H), 6.97 (s, 1H), 3.87 (s, 3H, OCH₃) ppm; δ_C(CDCl₃) = 168.1, 159.5, 158.2, 156.7, 146.6, 137.2, 133.4, 131.3, 131.1, 129.5, 128.5, 127.9, 124.2, 121.3, 120.3, 120.2, 119.9, 117.7, 110.0, 109.9, 56.1 (OCH₃) ppm; IR: 1710 (s), 1620 (w), 1576 (m), 1543 (m), 1489 (m), 1476 (w), 1460 (w), 1423 (w), 1392 (w), 1328 (m), 1278 (m), 1262 (m), 1231 (w), 1206 (w), 1189 (m), 1168 (w), 1077 (m), 1032 (s) cm⁻¹; MS (APCI) m/z (relative intensity) = 347 (M⁺+2, 23), 345 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₁H₁₅NO₄ 345.1001, found 345.1005.
3-((2-Hydroxynaphthalen-1-yl)methyleneamino)-6-nitro-2H-chromen-2-one (10c)

![Chemical structure of 10c](image)

According to representative procedure D, 7i (0.106 g, 0.50 mmol) and 4i (0.091 g, 0.53 mmol) afforded 10c as an orange solid (0.124 g, 68%). mp = 243-245 °C. Due to very low solubility of this compound, NMR spectra could not be obtained in any solvent. IR: 1729 (s), 1642 (w), 1608 (w), 1582 (m), 1540 (w), 1517 (w), 1484 (w), 1441 (w), 1406 (w), 1358 (w), 1310 (m), 1240 (w), 1085 (s) cm⁻¹ MS (APCI) m/z (relative intensity) = 362 (M⁺+2, 22), 361 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₀H₁₂N₂O₅ 360.0746, found 360.0742.

3-((2-Hydroxynaphthalen-1-yl)methyleneamino)-5,6-benzo-2H-chromen-2-one (10d)

![Chemical structure of 10d](image)
According to representative procedure D, 7i (0.106 g, 0.50 mmol) and 4i (0.091 g, 0.53 mmol) afforded 10d as an orange solid (0.127 g, 70%). mp = 238-240 °C (CHCl₃).

δ_H(CDCl₃) = 15.52 (s, 1H, OH), 10.46 (s, 1H), 8.49 (s, 1H), 8.32 (d, J = 8.6 Hz, 1H), 8.25 (d, J = 8.1 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.94 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.76-7.73 (m, 2H), 7.63-7.57 (m, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 9.1 Hz, 1H) ppm; δ_C(CDCl₃) = 166.8, 160.5, 158.1, 151.7, 149.8, 136.9, 133.5, 132.8, 130.8, 129.5, 129.4, 129.3, 128.6, 128.0, 126.59, 126.57, 124.2, 122.0, 121.9, 121.0, 120.2, 116.7, 114.3, 110.7 ppm; IR: 1722 (s), 1616 (w), 1600 (w), 1574 (m), 1535 (w), 1508 (w), 1470 (w), 1441 (w), 1377 (w), 1325 (m), 1284 (m), 1246 (w), 1211 (w), 1175 (m), 1160 (w), 1142 (w), 1090 (w), 1057 (s), 1032 (m) cm⁻¹; MS (APCI) m/z (relative intensity) = 367 (M⁺+2, 20), 366 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₄H₁₅NO₃ 365.1052, found 365.1049.
1.5 References

1.6 Appendix

![Chemical Structure](image)

![NMR Spectrum](image)
Chapter 2. Povarov Reactions Involving 3-Aminocoumarins: a Synthesis of 1,2,3,4-Tetrahydropyrido[2,3-c]coumarins and Pyrido[2,3-c]coumarins

2.1 Introduction

Multicomponent reactions (MCRs) continue to attract attention as they can result in a substantial increase in molecular complexity and provide opportunities for high levels of convergence in synthesis.\(^1\) The use of MCRs has therefore been frequently adopted by the pharmaceutical industry for the development of combinatorial libraries and the identification of lead compounds.\(^2\) MCRs have also been utilized in the total synthesis of natural products.\(^3\)

The inherent reactivity of carbonyl compounds with amines is often exploited in the development of MCRs.\(^4\) The one-pot version of the Povarov reaction is such an example. In its original form, however, the Povarov reaction was not an MCR. Povarov initially described the participation of aldimines derived from aniline and aromatic aldehydes in a formal [4+2] cycloaddition with electron rich alkenes (rendering it a formal inverse electron demand Diels-Alder reaction) in the presence of a Lewis acid catalyst and the subsequent tautomerization of the initial adduct to give 1,2,3,4-tetrahydroquinoline derivatives (Eq. 1, Scheme 2.1).\(^5\) It was only much later that this
reaction was developed into a one-pot operation (MCR), in which the aldimine was
generated in situ.\(^6\) In fact, this development triggered an ongoing period of considerable
interest in the Povarov reaction,\(^7\) which followed nearly three decades of relative
obscurity since Povarov's original report.\(^8\)

SCHEME 2.1 The Povarov Reaction

![Scheme 2.1 The Povarov Reaction](image)

An important finding in the mid 1990s was that various lanthanide metal salts
catalyze the one-pot Povarov reaction.\(^6\) More recently, a variety of cost-effective and
environment-friendly catalysts were reported by Perumal\(^7\)\(^{-g}\) and others.\(^7\)\(^{i-n}\) In general,
aliphatic aldehydes have been found to be poor participants in this type of chemistry.
However, Batey and Menéndez have independently shown that aliphatic aldehydes or
aldehyde equivalents can be employed under appropriate conditions (slow addition of the
aldehyde or aldehyde equivalent to the aniline and dienophile in the presence of a mild
Lewis acid).\(^9\) This reaction has also been carried out in the absence of a Lewis acid
catalyst by using fluorous solvents.\(^10\) The Povarov reaction has also found applications in
total synthesis, such as in the synthesis of (±)-martinellic acid (8), (±)-martinelline (9), camptothecin (14) and luotonin A (16)11 (Schemes 2.2, 2.3 and 2.4, respectively). Nevertheless, it has so far been limited almost exclusively to the synthesis of tetrahydroquinolines because, with very few exceptions,12 only anilines have been used successfully as the amine component. The application of amines other than anilines, if successful, would provide a direct route to a variety of heterocycles, which are uncommon or otherwise not easily accessible.

SCHEME 2.2 Total Synthesis of (±)-Martinellie Acid (8) and (±)-Martinelline (9)

![Scheme 2.2](image)
SCHEME 2.3 Formal Total Synthesis of Camptothecin (14)

During the course of our efforts aimed at the development of new families of electron deficient dienes for application in the inverse electron demand Diels-Alder (IEDDA) reaction,13 coumarin-fused, electron deficient 2-azadienes were identified as reasonable candidates for reaction with electron rich alkenes. In fact, the IEDDA reaction of this class of dienes, which should be accessible from the condensation of 3-
aminocoumarin with an aldehyde, coincides with the original form of the Povarov reaction. 3-Aminocoumarin has been known for close to a century, but there are very few reports of imines derived from this system.14 There are no previous reports of such imines being used as dienes in the IEDDA (or Povarov) reaction. The 2-pyrone ring of the coumarin system is partially aromatic.15 As such, 3-aminocoumarins behave like enamines in some cases (e.g. hydrolysis under acidic aqueous conditions)16 and like anilines in others (e.g. Fischer indole synthesis).17 We thus envisioned that 3-aminocoumarin (17) would readily form an aldimine upon reaction with an aldehyde and then take part in a Povarov reaction in the presence of an electron rich alkene and a suitable Lewis acid catalyst. The partial aromatic character of the pyrone unit would also be expected to favor the tautomerization of the initial cycloadduct (Scheme 2.5).

SCHEME 2.5 The Povarov Reaction Involving 3-Aminocoumarin
2.2 Results and Discussion

Preliminary work on this concept was performed earlier in the Bodwell group\(^1^8\). A coumarin-fused 2-azadiene 20, which was prepared by the condensation of 3-aminocoumarin (17)\(^1^9\) and 4-nitrobenzaldehyde (19) using modified Bishnoi conditions\(^2^0\) was shown to participate in the Povarov reaction with electron rich alkenes such as 3,4-dihydro-2H-pyran (DHP) in the presence of Yb(OTf)\(_3\) as a Lewis acid (Scheme 2.6). The yields were generally good and the diastereoselectivity of the reaction ranged from \(>95:5\) (for ‘endo adduct’) to 8:92 (for ‘exo adduct’).

SCHEME 2.6 Povarov Reaction between a Coumarin-fused 2-Azadiene 20 and DHP (21)

Having this precedent, the possibility of developing this reaction into a one-pot operation, in which the diene would be formed in situ from 3-aminocoumarin and an
aldehyde, was investigated. Indeed, the reaction of 3-aminocoumarin (17), 4-nitrobenzaldehyde (19) and DHP (21) in the presence of 5 mol% Yb(OTf)₃ afforded Povarov adducts 22a,b in a similar ratio (39:61) to the reaction of diene 20 with DHP (21) (36:64), but with a lower yield (40% cf. 90%) (Scheme 2.7).

Other products were observed by tlc analysis of this one-pot reaction, but none of these could be obtained in pure form. The possibility that water generated during the formation of 2-azadiene 20, might have adversely affected the yield was ruled out when a similar yield (42%) of Povarov adducts 22a,b was obtained when the same reaction was performed in the presence of anhydrous MgSO₄. This suggested that some other factor(s) is (are) affecting the yield of this one-pot Povarov reaction and hence an optimization study for this reaction was undertaken.

SCHEME 2.7 One-pot Povarov Reaction

\[
\begin{align*}
\text{17} & \quad \text{+} \quad \text{19} \\
& \quad \text{21} \\
\text{22a,b}
\end{align*}
\]

5 mol% Yb(OTf)₃, CH₃CN, rt, 24 h, 40%

2.2.1 Optimization Study for the One-pot Povarov Reaction

The study of the effect of various Lewis acids and solvents on the yield and diastereoselectivity of the one-pot reaction was the starting point for this study (Table 2.1). To this end, a set of reactants was required, the products of which would be easily
separable from the side products so that the isolated yields and diastereomeric ratios could be determined easily. After some experimentation, it was found that the reaction between 3-aminocoumarin (17), 2-naphthaldehyde (23) and DHP (21) met this criterion. Under the previously employed conditions (Scheme 2.7), two diastereomeric products, 24a and 24b, were isolated in a 21:79 ratio in 56% combined yield (Scheme 2.8). The two diastereomers were formally the products of endo and exo addition in an IEDDA reaction followed by tautomerization of the initial cycloadduct. The relative stereochemistry was determined using standard 1D and 2D NMR techniques. Although the retention of the relative stereochemistry of the dienophile in both adducts is entirely consistent with a concerted mechanism, a stepwise mechanism cannot be ruled out. If a stepwise mechanism is operating, the ring closure must occur in a highly diastereoselective fashion.

SCHEME 2.8 One-pot Povarov Reaction between 3-Aminocoumarin (17), 2-Naphthaldehyde (23) and DHP (21)
Kobayashi and co-workers have shown that various lanthanide metal salts catalyze the Povarov reaction. Therefore, the performance of Dy(OTf)₃ (Entry 2, Table 2.1) and CeCl₃·7H₂O (Entry 3, Table 2.1) were also evaluated in the one-pot reaction. Neither of these catalysts fared better than the original choice, Yb(OTf)₃. Lower yields (28% and 25%, respectively) and poor diastereoselectivity (43:57 and 38:62, respectively) were obtained. The yields increased with an increase in the oxophilic character (according to the oxophilicity scale developed by Imamoto and coworkers) of lanthanide salts. This finding was in agreement with previous reports on the activity of various lanthanide salts as Lewis acids. Following the reports of the use of cheap and environmentally benign catalysts for the parent Povarov reaction, the effect of catalysts such as molecular iodine (I₂) (Entry 7, Table 2.1), potassium hydrogen sulfate (KHSO₄) (Entry 6, Table 2.1) and silica gel was also studied. Silica gel did not catalyze the reaction at room temperature or reflux (Entries 4 and 5, Table 2.1). Conversely, I₂ and KHSO₄ afforded yields and diastereoselectivities comparable to those obtained using Yb(OTf)₃.

Using Yb(OTf)₃ as the Lewis acid, the effect of solvent was then investigated. A low yield (10%) and no diastereoselectivity (50:50) were observed for CHCl₃ (Entry 11, Table 2.1). Although very good diastereoselectivity (≈ 1:9) was achieved in polar protic solvents (methanol and methanol/water), the reaction was very slow. Traces of one of the starting materials, 3-aminocoumarin, were present in the reaction (by tlc analysis) even after refluxing for 24 and 48 h, respectively (Entries 12 and 13, Table 2.1). The addition of methanol and/or water to the C=N bond of the 2-azadiene may be responsible
for the slow reaction of the azadiene. The use of a somewhat less polar solvent, THF (Entry 14, Table 2.1), or THF with water as a co-solvent (Entry 15, Table 2.1) did not improve the yields (41% and 16%, respectively) as compared to acetonitrile. In a nonpolar solvent, toluene, a low yield (28%) and a low diastereomeric ratio (38:62) were obtained (Entry 16, Table 2.1), whereas in a polar aprotic solvent, DMF, the reaction did not proceed appreciably after 2 hours at room temperature. Except for CHCl₃ and DMF, the yields increased with an increase in the dielectric constant of the solvent (when the reactions were run without a co-solvent). Thus, acetonitrile proved to be the best among the solvents screened.

Based on the results of the solvent study, some comments can be made on the mechanism. For Povarov reactions of aniline-derived 2-azadienes, a product arising from the nucleophilic addition of methanol to an intermediate oxonium ion has been reported, which suggests a stepwise mechanism.⁶ᵇ,⁷ˣ No such product was isolated from the above reactions (Entries 12 and 13, Table 2.1). Moreover, the yield of the Povarov adducts was not significantly affected. These observations suggest that, in contrast to the Povarov reactions of aniline-derived 2-azadienes, the Povarov reactions of 2-azadiene 9 most likely proceed through a concerted, yet asynchronous, mechanism. The difference in mechanism may be a consequence of the considerably weaker aromatic character of the 2-pyrone unit in coumarin-derived azadienes compared to that in the benzene ring of aniline-derived azadienes. In other words, a concerted reaction of an aniline-derived azadiene would be disfavoured more than the corresponding reaction of a coumarin-derived azadiene because of a greater loss of aromatic stabilization energy in going from
the ground state to the transition state.

As anticipated, the diastereomeric ratio could be improved by lowering the temperature, but this occurred at the expense of the yield (Entries 8-10, Table 2.1). Yields of 44%, 19% and 7% were obtained when the reactions were performed at 0 °C, –20 °C and –30 °C, respectively. At –30 °C, the reaction was quite sluggish and 54% of the starting 3-aminocoumarin (17) was recovered after running the reaction for 4 h.

Table 2.1 Effect of the Catalyst and Solvent on the Povarov Reaction of 17 with 23 and 21

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalyst</th>
<th>Solvent</th>
<th>Temperature</th>
<th>endo/exo ratioa</th>
<th>Combined Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 mol% Yb(OTf)3</td>
<td>CH₃CN</td>
<td>rt</td>
<td>21:79</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>5 mol% Dy(OTf)3</td>
<td>CH₃CN</td>
<td>rt</td>
<td>43:57</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>10 mol% CeCl₃·7H₂O</td>
<td>CH₃CN</td>
<td>rt</td>
<td>38:62</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>silica gel</td>
<td>CH₃CN</td>
<td>rt</td>
<td>-</td>
<td>no reaction</td>
</tr>
<tr>
<td>5</td>
<td>silica gel</td>
<td>CH₃CN</td>
<td>reflux</td>
<td>-</td>
<td>no reaction</td>
</tr>
</tbody>
</table>
6 40 mol% KHSO$_4$ CH$_3$CN rt 18:82 52
7 30 mol% I$_2$ CH$_3$CN rt 28:72 53
8 5 mol% Yb(OTf)$_3$ CH$_3$CN 0 °C 15:85 44
9 5 mol% Yb(OTf)$_3$ CH$_3$CN -20 °C 9:91 19
10 5 mol% Yb(OTf)$_3$ CH$_3$CN -30 °C ≤5:95 7
11 5 mol% Yb(OTf)$_3$ CHCl$_3$ rt 50:50 10
12 5 mol% Yb(OTf)$_3$ MeOH reflux 12:88 45
13 5 mol% Yb(OTf)$_3$ MeOH/H$_2$O reflux 8:92 46
14 5 mol% Yb(OTf)$_3$ THF rt 24:76 41
15 5 mol% Yb(OTf)$_3$ THF/H$_2$O rt 53:47 16
16 5 mol% Yb(OTf)$_3$ toluene rt 38:62 28
17 5 mol% Yb(OTf)$_3$ DMF rt - no reaction

a Diastereomeric ratios were determined by 1H NMR analysis of crude reaction mixtures. b Isolated yields.

2.2.2 Scope of the One-pot Povarov Reaction

Based on the optimization studies, the scope of the one-pot reaction was investigated by varying the three components. To begin with, the aldehyde component, which provides C-1 of the azadiene and the substituent attached to it, was varied while the 3-aminocoumarin (17) and the dienophile (DHP) were kept constant (Table 2.2). The conditions used for the synthesis of 24a,b (Entry 1, Table 2.1) were employed. Application of a heterocyclic aldehyde, 3-formylcoumarin (25),27 in the three-component reaction with 3-aminocoumarin (17) and DHP (21) in presence of Yb(OTf)$_3$ in
acetonitrile (Entry 2, Table 2.2) proceeded smoothly at room temperature to afford tetrahydropyrido[2,3-c]coumarins 26a,b in a ratio of 36:64 in favor of the exo diastereomer and 71% combined yield. The more electron deficient nature of the aldehyde 25 (compared to aldehyde 23) appeared to have a positive effect on the yield of the Povarov adducts.

When 3-aminocoumarin (17) was reacted with methyl 4-formylbenzoate (27) and DHP (21), Povarov adduct 28b was obtained with very high selectivity (<5:95) in 54% yield (Entry 3, Table 2.2). By the same token, very high selectivity (≤5:95) in favor of the exo diastereomer was obtained when 3-aminocoumarin (17) was reacted with 4-acetoxybenzaldehyde (29) and DHP (12) to afford Povarov adduct 30b. However, the yield was only 26% (Entry 4, Table 2.2). The mild electron donating ability of the acetoxy group in 4-acetoxybenzaldehyde, which would be expected to attenuate the electron deficient nature of the in situ formed 2-azadiene, might be responsible for the low yield.

For the highest-yielding reaction in the above set of reactions (Entry 2, Table 2.2), changing the dienophile from DHP (21) to 2,3-dihydrofuran (DHF) (31) resulted in the formation of Povarov adducts 32a,b in 58% yield. The diastereoselectivity (42:58) was close to that observed when DHP was used (cf. Entries 2 and 5, Table 2.2). Employment of ketone-containing heterocyclic aldehyde 33 afforded Povarov adducts 34a,b in relatively good yield (59%, Entry 6, Table 2.2). Isolation of the endo diastereomer was very difficult in this reaction. Only the exo diastereomer 34b could be isolated in pure form. This experiment also demonstrated that the three-component reaction could be
performed in the presence of a potentially competitive ketone functionality. When 4-acetoxybenzaldehyde (29) was employed, a low yield (33%) and poor diastereoselectivity (46:54) were obtained (Entry 7, Table 2.2). The reaction had to be heated at reflux for 2.5 days to achieve complete consumption of the starting 3-aminocoumarin (17).

The 3-aminocoumarin was then varied while the dienophile (DHF) and the aldehyde (methyl 4-formylbenzoate) were kept constant. In general, all of these reactions afforded low yields and diastereoselectivities (Entries 8-11, Table 2.2). In most cases, the 3-aminocoumarins bore an electron donating substituent on the carbocyclic ring, which would be expected to deactivate the diene. However, surprisingly, the reaction involving 3-amino-6-nitrocoumarin (Entry 11, Table 2.2) afforded the lowest yield of all (28%). In this case, the formation of the 2-azadiene may have been retarded. The reaction of 3-amino-8-methoxycoumarin and 4-acetoxybenzaldehyde (29) with DHF under the same reaction conditions (Entry 12, Table 2.2) afforded a 60% yield of the Povarov adducts 40a,b in a 38:62 ratio.

Phenyl vinyl sulfide, when reacted with 3-aminocoumarin (17) and 4-nitrobenzaldehyde (19) afforded a mixture (59:41) of the diastereomeric Povarov adducts 42a,b in 38% yield (Entry 13, Table 2.2). It is interesting to note that the formation of the endo diastereomer is preferred in this reaction. Also, the yield of this reaction was low (38%) compared to the Povarov reaction performed on azadiene 20 with phenyl vinyl sulfide as a dienophile (81%). In general, the reaction times were usually short and yields were satisfactory for the above set of aldehyde and dienophile components with
TABLE 2.2 Three-Component Synthesis of Pyrido[2,3-c]coumarins

\[
\begin{align*}
R & \quad \text{Aldehyde} & \quad \text{Dienophile} & \quad \text{Products} & \quad \text{endo/exo ratio}^a & \quad \text{Yield} \quad (\%)^b,c \\
1 & H & \text{CHO} \quad 23 & \text{cyclo} \quad 21 & 24a & 24b & 21:79 & 56 (89) \\
2 & H & \text{CHO} \quad 25 & \text{cyclo} \quad 21 & 26a & 26b & 36:64 & 71 \\
3 & H & \text{CHO} \quad 27 & \text{cyclo} \quad 21 & 28a & 28b & <5:95 & 54 \\
\end{align*}
\]

\[\text{Yb(OTf)}_3 + \text{ArCHO} + \text{Dienophile} \xrightarrow{\text{CH}_3\text{CN}} \text{Povarov adducts} \]
<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Aldehyde</th>
<th>Dienophile</th>
<th>Products</th>
<th>endo/exo ratio<sup>a</sup></th>
<th>Yield (%)<sup>b,c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>H</td>
<td>29</td>
<td>21</td>
<td>30b</td>
<td><5:95</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>H</td>
<td>25</td>
<td>31</td>
<td>32a, 32b</td>
<td>42:58</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>33</td>
<td>31</td>
<td>34a, 34b</td>
<td>44:56</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>H</td>
<td>29</td>
<td>31</td>
<td>35a, 35b</td>
<td>46:54</td>
<td>33</td>
</tr>
<tr>
<td>Entry</td>
<td>R</td>
<td>Aldehyde</td>
<td>Dienophile</td>
<td>Products</td>
<td>endo/exo ratio<sup>a</sup></td>
<td>Yield (%)<sup>b,c</sup></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>8</td>
<td>6-OCH<sub>3</sub></td>
<td>CHO<sub>27</sub> COOCH<sub>3</sub></td>
<td>31</td>
<td></td>
<td>39:61</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>8-OCH<sub>3</sub></td>
<td>CHO<sub>27</sub> COOCH<sub>3</sub></td>
<td>31</td>
<td></td>
<td>36:64</td>
<td>34 (54)</td>
</tr>
<tr>
<td>10</td>
<td>6-Br</td>
<td>CHO<sub>27</sub> COOCH<sub>3</sub></td>
<td>31</td>
<td></td>
<td>44:56</td>
<td>30 (19)</td>
</tr>
<tr>
<td>Entry</td>
<td>R</td>
<td>Aldehyde</td>
<td>Dienophile</td>
<td>Products</td>
<td>endo/exo ratio<sup>a</sup></td>
<td>Yield (%)<sup>b,c</sup></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>11</td>
<td>6-NO₂</td>
<td>CHO</td>
<td>🗡️</td>
<td>39a, 39b</td>
<td>42:58</td>
<td>28 (19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COOCH₃</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8-OCH₃</td>
<td>CHO</td>
<td>🗡️</td>
<td>40a, 40b</td>
<td>38:62</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>COOCH₃</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>CHO</td>
<td>PhS⁻</td>
<td>42a, 42b</td>
<td>59:41</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO₂</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Diastereomeric ratios were determined by ¹H NMR analysis of crude mixtures.
^b Isolated yields are listed.
^c Numbers in parentheses represent yields obtained by using 1.00:1.05:10.0 ratio of amine:aldehyde:dienophile and 10 mol% catalyst.
the parent 3-aminocoumarin (17). However, attempted variation of the 3-aminocoumarin component resulted in poor yields (Entries 8-11, Table 2.2). In most cases, small amounts of one or more side products were observed by tlc analysis and were even isolated during chromatography. However, their 1H NMR spectra were complex and could not be reasonably interpreted. Their mass spectra were also complicated, but often contained major signals corresponding to M-2 or M-4 for the Povarov adducts. Some intractable materials were also generated. Self-reaction of the in situ formed azadienes may be responsible for this result.29

2.2.3 Study of the Effect of Various Parameters on the One-pot Povarov Reaction

At this stage, other parameters, i.e. the effect of catalyst loading, ratios of the reactants and the effect of concentration on the yield, were investigated. For this purpose, a reaction having the following features was desired: 1) the two diastereomeric products should be easily separable from other side products by flash chromatography, 2) the reaction time should be short, and 3) the aldehyde should be commercially available. The reaction between 3-aminocoumarin (17), 2-naphthaldehyde (23) and 3 equiv of DHP (Entry 1, Table 2.3) again met these criteria. The yield of the Povarov adducts was considerably improved (74%) when 10 mol% Yb(OTf)$_3$ was used (Entry 2, Table 2.3). A further increase in the catalyst loading did not improve the yields (Entries 3 and 4, Table 2.3). Increasing the number of equivalents of DHP to 5 and then 10 resulted in an increase in the yield of the Povarov adducts (84% and 89%, Entries 5 and 6, respectively, Table 2.3). A further increase in the number of equivalents of the dienophile did not have
TABLE 2.3 Effect of Catalyst Loading, Concentration of 17 and Equivalents of Dienophile on the Yield

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Yb(OTf)$_3$ mol%</th>
<th>Concentration of 17, equivalents of dienophile (equiv)</th>
<th>endo/exo ratioa</th>
<th>Combined Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.10 M, 3.0</td>
<td>21:79</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.10 M, 3.0</td>
<td>26:74</td>
<td>74</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>0.10 M, 3.0</td>
<td>18:82</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.10 M, 3.0</td>
<td>24:76</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.10 M, 5.0</td>
<td>22:78</td>
<td>84</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.10 M, 10.0</td>
<td>21:79</td>
<td>89</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0.10 M, 15.0</td>
<td>19:81</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>0.10 M, 20.0</td>
<td>22:78</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>0.05 M, 10.0</td>
<td>22:78</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.25 M, 10.0</td>
<td>21:79</td>
<td>88</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>0.50 M, 10.0</td>
<td>21:79</td>
<td>84</td>
</tr>
</tbody>
</table>

a Diastereomeric ratios were determined by 1H NMR analysis of crude reaction mixtures. b Isolated yields.
any further beneficial effect on the yield (Entries 7 and 8, Table 2.3). Also, the yields were not significantly affected by the changes in concentration of 3-aminocoumarin (17) (Entries 9-11, Table 2.3). Thus, a few of the reactions listed in Table 2.2 were repeated with the new reaction conditions, i.e. a 1.00:1.05:10.0 ratio of 3-aminocoumarin:aldehyde:dienophile with 10 mol% Yb(OTf)₃. The observation that the yield increased in two cases (Entries 1 and 9, Table 2.2) and decreased in two cases (Entries 10 and 11, Table 2.2) suggested that optimal conditions are somewhat case-specific for the one-pot Povarov reaction.

To ascertain whether the Povarov adducts can equilibrate, endo diastereomer 32a was resubjected to the original reaction conditions, i.e. 5 mol% Yb(OTf)₃ in acetonitrile. No signs of conversion to the exo diastereomer (32b) were observed at room temperature (3 hours) or after 24 hours at reflux. Also, the ratio of a 50:50 mixture of diastereomers 32a,b did not change when the mixture was heated to reflux in acetonitrile in the presence of 5 mol% Yb(OTf)₃. These results suggest that either the tautomerization step is not reversible under these conditions or that the tautomerization is reversible and the IEDDA reaction, whether concerted or stepwise, is not. Finally, X-ray quality crystals for exo diastereomer 24b were obtained. A single crystal X-ray structure determination confirmed that the NMR-based assignments of the relative stereochemistry were correct (Fig. 2.1).
2.2.4 Chemistry of Povarov Adducts

With a set of relatively complex molecules (tricyclic and tetracyclic heterocycles with 2-3 stereogenic centers) in hand, some aspects of their chemistry were then investigated. Access to free hydroxy or carboxylic acid functional groups might be useful for water solubility and further synthetic transformations. In this context, compound 35a was chemoselectively hydrolyzed with K_2CO_3/MeOH to afford phenol 43.
in 72% yield (Scheme 2.9). Similarly, ester 28b was chemoselectively hydrolyzed to afford carboxylic acid 44 in 99% yield. Interestingly, when 28b was subjected to anydrous demethylation conditions, i.e. TMSCI/NaI,30 the desired carboxylic acid 44 was not formed. After heating at 50 °C in DMF for 18 hours and then 150 hours at 90 °C, 10% of the starting material 28b was recovered after flash chromatography along with two new products. One of the products was pyrido[2,3-c]coumarin 45 (R = H), which was presumably formed by an elimination/dehydrogenation process. It was then hydrolyzed with 10 M KOH to afford the ring opened terphenyl-type product 47 (Scheme 2.10). The other new product was the formate ester 46 (R = CHO), which could form from 45, or one of its precursors, via a Vilsmeier-Haack-like formylation.

SCHEME 2.9 Reactions of Povarov Adducts 35a and 28b
SCHEME 2.10 Synthesis of a Terphenyl-type Compound 47

The observation that Povarov adduct 28b could be converted into the corresponding pyrido[2,3-c]coumarin, a rather uncommon heteroaromatic system, provided incentive to investigate more efficient ways of achieving this transformation. The treatment of Povarov adducts with an oxidizing agent, e.g. bromine, would be expected to bring about aromatization of the nitrogen-containing ring through a series of addition and elimination reactions. Accordingly, 28b was reacted with Br₂ in the dark. Aromatized product 45 was isolated in 61% yield after 1 h. An internal elimination reaction, which opened the tetrahydropyran ring, occurred during the aromatization process. Similarly, Povarov adducts 35a,b were converted into the corresponding pyrido[2,3-c]coumarin 48 (80%), by the action of Br₂/CH₂Cl₂ in the dark (Scheme 2.11). However, only 9% and 39% yields of the pyrido[2,3-c]coumarins 49 and 50 were obtained from the reactions (Scheme 2.11) of Povarov adducts 32a,b and 26a,b, respectively. The low yields are presumably due to the presence of an additional coumarin unit, which may react unproductively with Br₂.

Other aromatization methods were then screened. When compounds 32a,b were
refluxed with Pd/C in xylenes, the reaction was very sluggish. Only traces of the pyrido[2,3-c]coumarin 49 were observed by tlc analysis after 6 days at reflux. Acetic acid has been known to accelerate such dehydrogenations.\(^\text{34}\) Therefore, the dehydrogenation was attempted with acetic acid as the solvent. Again, only traces of the product were observed (tlc analysis) under these conditions. Another commonly used reagent for carrying out dehydrogenations is DDQ.\(^\text{35}\) Heating the Povarov adducts 32a,b with DDQ in benzene at reflux afforded pyrido[2,3-c]coumarin 49 and traces of another product, which could not be obtained in pure form. \(^{1}\text{H} \text{NMR} \) and LC/MS analysis of this impure and poorly soluble compound were consistent with the aromatized compound 51.
Following a procedure by Hartmann et al., in which nitrous gases (obtained by dropwise addition of 6 M NaNO₂ solution to conc. HCl) were used for preparation of 1,2,4,5-tetrazines from corresponding dihydrotetrazines, a stream of nitrous gases was passed through a solution of 32a,b in CH₂Cl₂. Gratifyingly, the desired product 49 was formed in 90% yield. Other oxidizing agents i.e. MnO₂ and CAN, also delivered 49, but the yields were lower (MnO₂: 24% and CAN: 21%) and the reactions were considerably slower. Disappointingly, the nitrous gases, when employed for the conversion of 28b into 45 afforded only 10% yield.

Povarov adducts formed by using phenyl vinyl sulfide as a dienophile, have been converted into quinolines by an oxidation (NaIO₄) and thermolysis of the resulting sulfoxide. Treatment of 42a,b with NaIO₄ at room temperature did not show any signs of reaction (by tlc). However, pyrido[2,3-c]coumarin 53 was obtained when the reaction mixture was heated at reflux for 23 hours. Presumably, the first step in this conversion is the oxidation of the sulfide to the sulfoxide 52, which then undergoes a syn elimination.
reaction (Scheme 2.12). The resulting diene is then oxidized to form the aromatized product.

SCHEME 2.12 Synthesis of 53 by Oxidation/syn Elimination/Dehydrogenation

![Chemical structure]

2.3 Conclusion

In conclusion, *in situ*-generated 2-azadienes derived from the condensation of 3-aminocoumarins and aromatic aldehydes take part in the Povarov reaction to afford 1,2,3,4-tetrahydropyrido[2,3-c]coumarins. The available evidence points toward a concerted asynchronous IEDDA cycloaddition rather than a stepwise cyclization during the Povarov reaction. The multicomponent version of this reaction provides rapid access to unusual tricyclic and tetracyclic heterocycles. The corresponding pyrido[2,3-
Coumarins can be formed upon oxidation of the Povarov adducts with various oxidizing agents. Further applications of this methodology to the synthesis of complex heterocycles will be discussed in the following chapter.
2.4 Experimental Section

2.4.1 General Methods

All reactions were carried out without inert gas protection, unless otherwise mentioned. THF was dried and distilled over sodium/benzophenone. All other chemicals, including solvents, were used as received, without further purification. Thin layer chromatography (tlc) was performed on MN PolyGram precoated silica gel plates using 254 nm UV visualization. Flash chromatography was performed on silica gel columns. Melting points were recorded on Fisher-Johns apparatus and are uncorrected. All new compounds were characterized by 1H NMR, 13C NMR, COSY, HMQC, HMBC, IR and HRMS techniques. 1H and 13C NMR spectra were recorded on Bruker AVANCE spectrometer at 500.133 MHz and 125.770 MHz, respectively. Peaks reported are relative to internal standards: TMS ($\delta = 0.00$) for 1H and CDCl$_3$ ($\delta = 77.23$) or DMSO-d_6 ($\delta = 39.51$) for 13C spectra. 1H NMR signals for H-5 protons in the Povarov adducts were used for the determination of diastereomeric ratio of Povarov adducts. Reported multiplicities are apparent. Infrared spectra were obtained on Bruker Tensor 27 instrument using neat samples. Low-resolution mass spectra were obtained using using Agilent 1100 series LC/MS chromatographic system and high-resolution mass spectra were obtained using Waters GCT Permier Micromass mass spectrometer using neat samples. X-ray crystal structure was obtained on AFC8-Saturn single crystal X-ray diffractometer by Julie. Collins, C-CART.
2.4.2 General Experimental Procedures

2.4.2.1 General Experimental Procedure A: Preparation of Povarov adducts using the three-component reaction

To a clear, colorless solution of 3-aminocoumarin in acetonitrile (~ 0.1 M solution) were added the aldehyde (1.05 equiv), Yb(OTf)₃ (5 mol %) and the dienophile (3.0 equiv). The reaction mixture was stirred at room temperature or heated at reflux as specified. The reaction was monitored by tlc until the complete consumption of 3-aminocoumarin occurred. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography. The isolated product was then recrystallized from the appropriate solvent(s). The dr was determined from 1H NMR analysis of the crude reaction mixture.

2.4.2.2 General Experimental Procedure B: Preparation of Povarov adducts using modified conditions for the three-component reaction

To a clear, colorless solution of 3-aminocoumarin in acetonitrile (~ 0.1 M solution) were added the aldehyde (1.05 equiv), Yb(OTf)₃ (10 mol %) and the dienophile (3.0 equiv). The reaction mixture was stirred at room temperature or heated at reflux as specified for individual reactions. The reaction was monitored by tlc until the complete consumption of 3-aminocoumarin occurred. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography. The isolated product
was then recrystallized from the appropriate solvent(s). The dr was determined from 1H NMR analysis of the crude reaction mixture.

2.4.2.3 General Experimental Procedure C: Preparation of pyrido[2,3-c]coumarins

To a clear, pale yellow solution of Povarov adducts (~ 1:1 ratio of endo and exo diastereomers) in dichloromethane (~ 0.1 M solution) was added Br$_2$ (1.0 M solution in dichloromethane, 2.0 equiv). This solution was stirred in the dark at room temperature until the Povarov adducts were totally consumed. The reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with aqueous NaHSO$_4$ followed by brine. The organic solution was then dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography to afford the corresponding pyrido[2,3-c]coumarin.
2.4.3 Synthesis and Characterization for Individual Compounds

(4aS*,5S*,12cS*)-5-(4-Nitrophenyl)-3,4,4a,5,6,12c-hexahydro-2H-1,8-dioxa-6-aza-benzo[c]phenanthren-7-one (22a) and (4aS*,5R*,12cS*)-5-(4-nitrophenyl)-3,4,4a,5,6,12c-hexahydro-2H-1,8-dioxa-6-aza-benzo[c]phenanthren-7-one (22b)

Following general experimental procedure A, 3-aminocoumarin (17) (0.161 g, 1.0 mmol), 4-nitrobenzaldehyde (19) (0.159 g, 1.05 mmol), Yb(OTf)_3 (0.031 g, 5.0 mol%) and DHP (0.27 mL, 3.0 mmol) in acetonitrile (10 mL) were reacted at room temperature for 24 h. The reaction mixture remained a clear yellow solution (after the addition of dienophile) over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 36:64 in favor of the exo isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 22a as a white solid (0.041 g, 11%), 22b as a white solid (0.094 g, 25%) and a mixed fraction (0.015 g, 4%). Combined yield = 0.15 g, 40%.

22a: mp = 228-229 °C (chloroform/hexane). δ_H(CDCl_3) = 8.27 (d, 2H, J = 9.1 Hz, H-3'), 8.21 (d, 1H, J = 7.6 Hz, H-12), 7.63 (d, 2H, J = 8.7 Hz, H-2'), 7.37-7.34 (m, 2H), 7.30-
7.28 (m, 1H), 5.50 (d, 1H, J = 4.7 Hz, H-12c), 5.07 (s, 1H, H-6), 4.81 (d, 1H, J = 2.5 Hz, H-5), 3.65-3.64 (m, 1H, H-2a), 3.25 (td, 1H, J = 11.0, 1.2 Hz, H-2β), 2.38-2.35 (m, 1H, H-4a), 1.76-1.67 (m, 1H), 1.59-1.48 (m, 1H), 1.43-1.41 (m, 2H) ppm; δ_C(CDCl3) = 158.5 (C-7), 148.5, 147.9, 147.2, 130.7, 128.0 (C-3'), 127.1, 125.1, 124.8 (C-12), 124.1 (C-2'), 120.3, 116.7, 116.6, 71.8 (C-12c), 62.9 (C-2), 58.9 (C-5), 38.3 (C-4a), 24.3 (C-3), 19.7 (C-4) ppm; IR ν = 3340 (w), 2854 (w), 1722 (s), 1618 (w), 1598 (w), 1516 (m), 1348 (s), 1181 (m), 1091 (s), 857 (m), 752 (s) cm⁻¹. HRMS m/z [M⁺] calcd for C₂₁H₁₈N₂O₅ 378.1214, found 378.1225. 22b: mp = 263-264 °C (chloroform/hexane). δ_C(CDCl3) = 8.27 (d, 2H, J = 9.4 Hz, H-3'), 7.62 (d, 2H, J = 8.2 Hz, H-2'), 7.57-7.55 (m, 1H, H-12c), 7.29-7.27 (m, 3H), 5.09 (s, 1H, H-6), 4.87 (d, 1H, J = 11.4 Hz, H-5), 4.71 (d, 1H, J = 3.5 Hz, H-12c), 4.20-4.17 (m, 1H, H-2a), 3.82 (td, 1H, J = 11.6, 1.7 Hz, H-2β), 2.12-2.08 (m, 1H, H-4a), 1.94-1.78 (m, 2H), 1.48-1.46 (m, 2H) ppm; δ_C(CDCl3) = 158.9 (C-7), 148.6, 148.3, 147.9, 130.0 (C-2'), 129.0, 126.8, 125.1, 124.3 (C-3'), 122.0, 120.3, 116.8, 115.4, 69.7 (C-12c), 69.3 (C-2), 54.2 (C-5), 38.9 (C-4a), 23.6 (C-3), 22.0 (C-4) ppm; IR ν = 3389 (w), 2946 (w), 1710 (s), 1633 (m), 1509 (s), 1341 (s), 1186 (m), 1090 (m), 752 (s) cm⁻¹. HRMS m/z [M⁺] calcd for C₂₁H₁₈N₂O₅ 378.1214, found 378.1230.
Following general experimental procedure B, 3-aminocoumarin (17) (0.32 g, 2.0 mmol), 2-naphthaldehyde (0.33 g, 2.1 mmol) and DHP (0.54 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.062 g, 5.0 mol%) in acetonitrile (20 mL) at room temperature for 5 min. The reaction mixture remained a clear pale yellow solution (after the addition of dienophile) over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 21:79 in favor of the exo isomer. The residue was then subjected to flash chromatography (0-5% ethyl acetate/hexanes) to afford 24a as a white solid (0.06 g, 8%), 24b as a white solid (0.21 g, 28%) and a mixed fraction (0.15 g, 20%). Combined yield = 0.42 g, 56%

24a: mp = 201-202 °C (chloroform/hexane); δ_H(CDCl$_3$) = 8.26 (d, J = 7.4 Hz, 1H), 7.91 (s, 1H), 7.88-7.85 (m, 3H), 7.54-7.47 (m, 3H), 7.34-7.31 (m, 2H), 7.30-7.26 (m, 1H), 5.57 (d, J = 5.9 Hz, 1H, H-12c), 5.18 (s, 1H, H-6), 4.87 (d, J = 2.1 Hz, 1H, H-5), 3.65-3.62 (m, 1H, H-2), 3.22-3.18 (m, 1H, H-2), 2.42-2.40 (m, 1H, H-4a), 1.73-1.66 (m, 1H),
1.57-1.51 (m, 1H), 1.47-1.42 (m, 2H) ppm; δ_c(CDCl$_3$) = 158.6 (C-7), 148.3, 136.9, 133.4, 133.2, 131.3, 128.6, 128.1, 127.9, 126.7, 126.6, 126.3, 125.5, 125.03, 124.96, 124.8, 120.7, 116.5, 115.8, 72.2 (C-12c), 62.5 (C-2), 59.3 (C-5), 38.5 (C-4a), 24.6, 19.5 ppm; IR ν = 3348 (m), 1686 (s), 1595 (m), 1563 (m), 1501 (m), 1449 (w), 1347 (w), 1317 (w), 1264 (w), 1204 (m), 1186 (m), 1104 (w), 1087 (s) cm$^{-1}$; MS (APCI) m/z (relative intensity) = 384 (M$^+$+1, 55), 382 (100), 380 (61), 376 (13). HRMS [M$^+$] calcd for C$_{25}$H$_{21}$NO$_3$ 383.1521, found 383.1526.

24b: mp = 240-241 °C (chloroform/hexane);
δ_t(CDCl$_3$) = 7.91-7.85 (m, 4H), 7.58 (dd, J = 8.5, 2.0 Hz, 1H), 7.54-7.50 (m, 3H), 7.30-7.27 (m, 3H), 5.19 (s, 1H, H-6), 4.94 (d, J = 11.0 Hz, 1H, H-5), 4.75 (d, J = 2.6 Hz, 1H, H-12c), 4.20 (dd, J = 11.4, 3.7 Hz, 1H, H-2), 3.83 (m, 1H, H-2), 2.21 (m, 1H, H-4a), 2.02-1.95 (m, 1H), 1.81-1.74 (m, 1H), 1.59-1.56 (m, 1H), 1.44-1.41 (m, 1H) ppm; δ_c(CDCl$_3$) = 159.1 (C-7), 148.4, 137.7, 133.6, 133.5, 130.4, 129.1, 128.1, 128.0, 127.6, 126.7, 126.5, 126.2, 125.2, 125.0, 121.9, 120.8, 116.7, 114.5, 70.1 (C-12c), 69.4 (C-2), 54.7 (C-5), 38.5 (C-4a), 23.7, 22.1 ppm; IR ν = 3363 (m), 1700 (s), 1626 (m), 1603 (w), 1572 (w), 1507 (m), 1473 (w), 1450 (w), 1357 (w), 1320 (m), 1285 (w), 1255 (w), 1215 (m), 1198 (m), 1181 (m), 1125 (w), 1062 (s) cm$^{-1}$; MS (APCI) m/z (relative intensity) = 384 (M$^+$+1, 100), 383 (24), 382 (58), 380 (21), 376 (17). HRMS [M$^+$] calcd for C$_{25}$H$_{21}$NO$_3$ 383.1521, found 383.1519.

Following general experimental procedure B, 3-aminocoumarin (17) (0.081 g, 0.50 mmol), 2-naphthaldehyde (0.083 g, 0.53 mmol) and DHP (0.14 mL, 1.5 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.031 g, 10 mol%) in acetonitrile (5 mL) at room temperature for 5 min. The reaction mixture remained a clear pale yellow solution (after
the addition of dienophile) over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 18:82 in favor of the *exo* isomer. The residue was then subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 24a,b as a white solid (0.17 g, 89%).

(4aS*, 5S*, 12cS*)-5-(2-Oxo-2H-chromen-3-yl)-3,4,4a,5,6,12c-hexahydro-2H-1,8-dioxa-6-aza-benzo[c]phenanthren-7-one (26a) and (4aS*, 5R*, 12cS*)-5-(2-Oxo-2H-chromen-3-yl)-3,4,4a,5,6,12c-hexahydro-2H-1,8-dioxa-6-aza-benzo[c]phenanthren-7-one (26b)

Following general experimental procedure B, 3-aminocoumarin (17) (0.32 g, 2.0 mmol), 3-formylcoumarin (25) (0.37 g, 2.1 mmol) and DHF (0.54 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.062 g, 5.0 mol%) in acetonitrile (20 mL) at room temperature for 30 min. The clear pale yellow solution turned into a thick pale yellow suspension (after 5 min) and again into a clear yellow solution over the course of the reaction. A yellow residue was obtained and the dr was determined to be 36:64 in favor of the *exo* isomer. The residue was then subjected to flash chromatography (0-5% ethyl
acetate/hexanes) to afford 26a as a white solid (0.14 g, 17%), 26b as a white solid (0.27 g, 34%) and a mixed fraction (0.15 g, 19%). Combined yield = 0.57 g, 71%.

26a: mp = 224-225 °C (chloroform/hexane); δH(CDC13) = 8.28 (d, J = 8.0 Hz, 1H), 7.97 (s, 1H, H-4'), 7.58-7.55 (m, 2H), 7.38 (d, J = 9.0 Hz, 1H), 7.34-7.33 (m, 3H), 7.29-7.27 (m, 1H), 5.55 (d, J = 5.0 Hz, 1H, H-12c), 4.86 (s, 1H, H-5), 4.75 (s, 1H, H-6), 3.66 (dd, J = 11.0 Hz, J = 2.0 Hz, 1H, H-2), 3.18 (t, J = 11.5 Hz, 1H, H-2), 2.66 (m, 1H, H-4a), 1.68-1.66 (m, 2H, H-3), 1.64-1.62 (m, 2H, H-4) ppm; δC(CDC13) = 160.3 (C-2'), 158.6 (C-7), 153.3, 148.4, 139.4 (C-4'), 135.4, 134.4, 131.9, 130.8, 130.5, 128.2, 127.1, 126.8, 125.0, 120.3, 118.8, 117.6, 116.6, 71.7 (C-12c), 62.5 (C-2), 53.8 (C-5), 33.8 (C-4a), 24.6 (C-3), 19.9 (C-4) ppm; IR ν = 3370 (m), 1712 (s), 1621 (w), 1607 (w), 1501 (m), 1448 (w), 1386 (w), 1356 (w), 1341 (w), 1317 (m), 1282 (w), 1255 (m), 1204 (m), 1174 (w), 1113 (m), 1087 (s), 1051 (s), 1021 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 402 (M⁺+1, 100), 400 (19), 398 (32). HRMS [M⁺] calcd for C₂₄H₁₉NO₅ 401.1263, found 401.1255.

26b: mp = 267-269 °C (chloroform/hexane); δH(CDC13) = 7.94 (s, 1H, H-4'), 7.64-7.62 (m, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.33-7.27 (m, 4H), 5.10 (d, J = 9.6 Hz, 1H, H-5), 4.97 (s, 1H, H-6), 4.70 (d, J = 3.0 Hz, 1H, H-12c), 4.08 (d, J = 10.2 Hz, 1H, H-2), 3.78 (td, J = 11.2 Hz, J = 2.4 Hz, 1H, H-2), 2.20 (m, 2H), 1.94-1.87 (m, 1H), 1.79-1.76 (m, 1H), 1.52-1.49 (m, 1H) ppm; δC(CDC13) = 161.0 (C-2'), 159.0 (C-7), 153.6, 148.5, 141.3, 132.3, 130.1, 129.3, 128.2, 126.7, 125.1, 124.9, 122.4, 120.4, 119.1, 116.7, 115.3, 69.8 (C-12c), 68.7 (C-2), 49.1 (br, C-5), 38.8 (br), 24.3, 22.3 ppm; IR ν = 3380 (m), 1714 (s), 1701 (s), 1653 (m), 1632 (m), 1609 (m), 1575 (m), 1558 (w), 1504 (m), 1474 (m), 1463 (m), 1448 (w), 1402 (w), 1377 (w), 1340 (w).
1319 (m), 1282 (w), 1245 (w), 1224 (w), 1185 (m), 1138 (w), 1123 (w), 1098 (w), 1068 (m), 1060 (m), 1007 (w) cm⁻¹; MS m/z (relative intensity) = 388 (M⁺+1, 100), 386 (61), 384 (34), 369 (14), 368 (60), 356 (60). HRMS [M⁺] calcd for C₂₄H₁₉NO₅ 401.1261, found 401.1259.

(4aS*, 5R*, 12cS*)-4-(7-Oxo-2,3,4,4a,5,6,7,12c-octahydro-1,8-dioxa-6-aza-benzo[c]phenanthren-5-yl)benzoic acid methyl ester (28b)

Following general experimental procedure B, 3-aminocoumarin (17) (1.77 g, 11.0 mmol), methyl 4-formylbenzoate (27) (1.90 g, 11.6 mmol) and DHF (3.02 mL, 33.0 mmol) were reacted in the presence of Yb(OTf)₃ (0.34 g, 5.0 mol%) in acetonitrile (125 mL) at room temperature for 23 h. The thick pale yellow suspension turned into a clear yellow solution after 5 min. A yellow residue was obtained and the dr was determined to be <5:95 in favor of the exo isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 28b as a white solid (2.32 g, 54%).

mp = 206-207 °C (chloroform/hexane). δH(CDCl₃) = 8.08 (d, 2H, J = 7.6 Hz, H-2'), 7.57-7.55 (m, 1H, H-12), 7.56 (d, 2H, J = 7.3 Hz, H-3'), 7.30-7.25 (m, 3H), 5.11 (s, 1H, H-6),
4.82 (d, 1H, J = 11.5 Hz, H-5), 4.70 (d, 1H, J = 3.4 Hz, H-12c), 4.19-4.16 (m, 1H, H-2), 3.94 (s, 3H, COOCH₃), 3.81 (td, 1H, J = 11.9, 2.1 Hz, H-2), 2.11-2.08 (m, 1H, H-4a), 1.93-1.87 (m, 1H), 1.82-1.75 (m, 1H), 1.62-1.60 (m, 1H), 1.50 (m, 1H), 1.44 (m, 1H) ppm; δC(CDCl₃) = 166.8 (COOCH₃), 159.0 (C-7), 148.4, 145.6, 130.6, 130.6, 130.38, 130.9, 130.2 (C-2'), 126.4 (H-12), 125.0, 120.6 (C-3'), 116.7, 114.8, 69.9 (C-12c), 69.3 (C-2), 54.43 (C-5), 54.35 (COOCH₃), 38.7 (C-4a), 23.7, 22.0 ppm; IR ν = 3400 (w), 2844 (w), 1714 (s), 1704 (s), 1506 (w), 1279 (m), 1058 (m), 783 (s) cm⁻¹. HRMS m/z [M⁺] calcd for C₂₃H₂₁NO₅ 391.1420, found 391.1424.

(4aS*, 5R*, 12cS*)-Acetic acid 4-(7-oxo-2,3,4,4a,5,6,7,12c-octahydro-1,8-dioxa-6-aza-benzo[c]phenanthren-5-yl)-phenyl ester (30b)

Following general experimental procedure B, 3-aminocoumarin (17) (1.10 g, 6.80 mmol), 4-acetoxybenzaldehyde (29) (1.17 g, 7.14 mmol) and DHF (1.87 mL, 20.4 mmol) were reacted in the presence of Yb(OTf)₃ (0.21 g, 5.0 mol%) in acetonitrile (100 mL) at reflux for 3.5 h. The thick pale yellow suspension turned into a clear yellow solution after 5 min. A yellow residue was obtained and dr was determined to be <5:95 in favor
of the *exo* isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 30b as a white solid (0.69 g, 26%).

mp = 230-231 °C (chloroform/hexane). \(\delta_{\text{H}}(\text{CDCl}_3) = 7.57-7.56 \) (m, 1H, H-12), 7.45 (d, 2H, \(J = 8.5 \) Hz, H-2'), 7.30-7.25 (m, 3H), 7.15 (d, 2H, \(J = 8.3 \) Hz, H-3'), 5.09 (s, 1H, H-6), 4.78 (d, 1H, \(J = 11.5 \) Hz, H-5), 4.71 (d, 1H, \(J = 2.8 \) Hz, H-12c), 4.20-4.16 (m, 1H, H-2β), 3.81 (td, 1H, \(J = 11.5, 2.2 \) Hz, H-2α), 2.33 (s, 3H, OCOCH₃), 2.09-2.06 (m, 1H, H-4α), 1.92-1.88 (m, 1H, H), 1.81-1.76 (m, 1H), 1.62-1.60 (m, 1H), 1.45-1.42 (m, 1H), ppm; \(\delta_{\text{C}}(\text{CDCl}_3) = 169.5 \) (OCOCH₃), 158.0 (C-7), 150.9, 148.4, 137.9, 130.3, 129.1 (C-2'), 126.3, 125.0, 122.2 (C-3'), 121.9 (C-12), 120.7, 116.7, 114.5, 70.1 (C-12c), 69.4 (C-2), 54.0 (C-5), 38.7 (C-4α), 24.4, 22.8, 21.4 ppm; IR \(\nu = 3411 \) (w), 2937 (w), 2852 (w), 1717 (s), 1635 (m), 1507 (m), 1184 (s), 1061 (s), 1043 (s), 791 (s) cm⁻¹. HRMS \(m/z \) [M⁺] calcd for C₂₃H₂₁NO₃ 391.1420, found 391.1406.
(3aS*, 4S*, 11cS*)-4-(2-Oxo-2H-chromen-3-yl)-2,3,3a,4,5,11c-hexahydro-1,7-dioxo-5-aza-cyclopenta[c]phenanthren-6-one (32a) and (3aS*, 4R*, 11cS*)-4-(2-Oxo-2H-chromen-3-yl)-2,3,3a,4,5,11c-hexahydro-1,7-dioxo-5-aza-cyclopenta[c]phenanthren-6-one (32b)

Following general experimental procedure B, 3-aminocoumarin (17) (0.32 g, 2.0 mmol), 3-formylcoumarin (25) (0.37 g, 2.1 mmol) and DHF (0.45 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)₃ (0.062 g, 5.0 mol%) in acetonitrile (20 mL) at room temperature for 20 min. The clear pale yellow solution turned into a thick pale yellow suspension over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and dr was determined to be 42:58 in favor of the exo isomer. The residue was then subjected to flash chromatography (0-3% ethyl acetate/hexanes) to afford 32a as a white solid (0.13 g, 17%), 32b as a white solid (0.23 g, 29%) and a mixed fraction (0.09 g, 12%). Combined yield = 0.45 g, 58%.

32a: mp = 248-249 °C (dichloromethane); δH(CDCl₃) = 8.10 (s, 1H, H-4'), 7.85 (d, J = 7.7 Hz, 1H), 7.59-7.56 (m, 2H), 7.40-7.30 (m, 5H), 5.50 (d, J = 7.1 Hz, 1H, H-11c), 4.87 (d, J = 1.7 Hz, 1H, H-4'), 4.69 (s, 1H, H-5), 3.89 (td, J = 7.9, 2.3 Hz, 1H, H-2), 3.85-3.80
(m, 1H, H-2), 3.40-3.35 (m, 1H, H-3a), 2.10-2.01 (m, 1H, H-3), 1.73-1.67 (m, 1H, H-3) ppm; $\delta_{C}(\text{CDCl}_3) = 160.4$ (C-2'), 159.0 (C-6), 153.3, 149.0, 138.8 (C-4'), 132.1, 129.4, 128.3, 128.2, 127.6, 125.1, 125.0, 124.8, 120.2, 120.0, 119.0, 116.9, 116.6, 72.4 (C-11c), 67.4 (C-2), 51.8 (C-4), 41.1 (C-3a), 25.6 (C-3) ppm; IR $\nu = 3371$ (m), 1715 (s), 1702 (s), 1638 (m), 1611 (m), 1578 (w), 1508 (m), 1469 (m), 1451 (m), 1399 (w), 1372 (w), 1342 (w), 1324 (m), 1282 (w), 1260 (w), 1248 (w), 1223 (w), 1282 (m), 1131 (w), 1123 (w), 1097 (w), 1077 (m), 1044 (m), 1005 (w); MS (APCI) m/z (relative intensity) = 388 (M^++1, 100), 386 (33), 384 (21), 369 (21), 368 (84), 356 (14). HRMS $[M^+]$ calcd for $C_{23}H_{17}NO_5$ 387.1107, found 387.1115.

32b: mp = 258-259 °C (dichloromethane); $\delta_{H}(\text{CDCl}_3) = 7.89$ (s, 1H, H-4'), 7.77 (d, $J = 6.1$ Hz, 1H), 7.57 (t, $J = 7.9$ Hz, 1H), 7.52 (d, $J = 7.2$ Hz, 1H), 7.38 (d, $J = 8.1$ Hz, 1H), 7.33-7.27 (m, 4H), 5.20 (s, 1H, H-5), 4.81 (d, $J = 5.3$ Hz, 1H, H-11c), 4.38 (d, $J = 9.3$ Hz, 1H, H-4), 4.13 (dd, $J = 14.9$, 8.0 Hz, 1H, H-2), 3.98 (dd, $J = 14.2$ Hz, 8.1 Hz, 1H, H-2), 2.73-2.72 (m, 1H, H-3a), 2.30-2.23 (m, 1H, H-3), 2.07-2.05 (m, 1H, H-3) ppm; $\delta_{C}(\text{CDCl}_3) = 161.3$ (C-2'), 158.8 (C-6), 153.6, 148.5, 141.2 (C-4'), 132.4, 130.0, 128.4, 128.3, 127.1, 125.1, 125.0, 123.6, 120.8, 119.0, 116.9, 116.7, 116.6, 72.3 (C-11c), 66.2 (C-2), 51.0 (C-4), 42.3 (C-3a), 28.7 (C-3) ppm; IR $\nu = 3380$ (m), 1716 (s), 1704 (s), 1626 (m), 1609 (m), 1573 (w), 1505 (m), 1473 (m), 1453 (m), 1398 (w), 1376 (w), 1341 (w), 1321 (m), 1281 (w), 1259 (w), 1243 (w), 1220 (w), 1283 (m), 1135 (w), 1123 (w), 1099 (w), 1073 (m), 1045 (m), 1006 (w) cm$^{-1}$; MS (APCI) m/z (relative intensity) = 388 (M^++1, 100), 386 (61), 384 (34), 369 (14), 368 (60), 356 (60). HRMS $[M^+]$ calcd for $C_{23}H_{17}NO_5$ 387.1107, found 387.1115.
4-Acetyl-2-formylpyrrole-1-carboxylic acid methyl ester (33)

![Chemical Structure](image)

To a clear, pale yellow solution of 4-acetylpyrrole-2-carboxaldehyde (0.685 g, 5.00 mmol) in THF at 0 °C, sodium hydride (60% dispersion in mineral oil, 0.200 g, 5.00 mmol) was added. To the resulting cloudy solution, methyl chloroformate (0.390 mL, 5.00 mmol) was added after 5 min and the reaction mixture was allowed to stir for 18 h. A few drops of methanol were added to the reaction mixture and the solvent was removed under reduced pressure. Water was added to the resulting gummy mass. It was extracted with dichloromethane (3 x 25 mL). The organic layers were combined, dried over anhydrous sodium sulfate and concentrated and recrystallized to afford 33 as a pale yellow solid (0.448 g, 46%). The filtrate was concentrated to dryness and purified by flash chromatography to afford 33 as a pale yellow solid (0.324 g, 33%). Combined yield = 0.772 g, 79%.

mp = 114-115 °C (ethyl acetate/hexane); \(\delta^1\text{H} (\text{CDCl}_3) = 10.35 \text{ (s, 1H, CHO)}, 8.05 \text{ (d, } J = 1.9 \text{ Hz, 1H, H-3}), 7.52 \text{ (d, } J = 1.3 \text{ Hz, 1H, H-5}), 4.12 \text{ (s, 3H, COOCH}_3\text{)}, 2.47 \text{ (s, 3H, COCH}_3\text{)}, \delta^1\text{C} (\text{CDCl}_3) = 192.6 \text{ (CHO), 182.1 (COOCH}_3\text{), 150.2, 135.4, 129.4 (C-3), 127.6, 119.5 (C-5), 55.7 (COOCH}_3\text{), 27.3 (COCH}_3\text{) ppm; Elemental analysis calcd for C}_9\text{H}_9\text{NO}_4 \text{ C 55.39%; H 4.65%; N 7.18%, found C 55.43%; H 4.67%; N 7.05%.
(3aS*, 4R*, 11cS*)-4-Acetyl-2-(6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxa-5-aza-cyclopenta[c]phenanthren-4-yl)-pyrrole-1-carboxylic acid methyl ester (34b)

Following general experimental procedure B, 3-amino-coumarin (17) (0.32 g, 2.0 mmol), aldehyde 33 (0.41 g, 2.1 mmol) and DHF (0.45 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.062 g, 5.0 mol%) in acetonitrile (20 mL) at room temperature for 30 sec. The clear pale yellow solution turned into a clear orange solution over the course of the reaction. An orange residue was obtained and the dr was determined to be 44:56 in favor of the exo isomer by 1H NMR analysis of the crude reaction mixture. The residue was then subjected to flash chromatography (0-10% ethyl acetate/dichloromethane) to afford 34ab as a diastereomeric mixture (40:60 ratio 0.48 g, 59%). Exo isomer could be recrystallized as an off-white solid (0.15 g, 18%). Endo isomer could not be isolated in pure form.

34b: mp = 267-269 °C (chloroform/hexane); δ_H(CDCl$_3$) = 7.90 (d, $J = 1.8$ Hz, 1H, H-3'), 7.77-7.75 (m, 1H), 7.30-7.27 (m, 3H), 6.73 (d, $J = 1.2$ Hz, 1H, H-5'), 5.55 (s, 1H, H-5), 4.96 (d, $J = 6.1$ Hz, 1H, H-11c), 4.66 (d, $J = 9.5$ Hz, 1H, H-4), 4.05 (s, 3H, COOCH$_3$), 4.03-3.98 (m, 1H, H-2), 3.92 (dd, $J = 15.5$, 8.5 Hz, 1H, H-2), 2.90-2.86 (m, 1H, H-3a),
2.46 (s, 3H, COCH₃), 2.38-2.33 (m, 1H, H-3), 1.96-1.91 (m, 1H, H-3) ppm; δₓ(CDCl₃) = 193.0 (COCH₃), 158.8 (C-6), 150.7 (COOCH₃), 148.6, 135.8, 129.5, 127.2, 127.0 (C-3'), 126.9, 125.0, 123.5, 120.8, 116.5, 116.2, 111.9 (C-5'), 72.0 (C-11c), 66.2 (C-2), 55.3 (COOCH₃), 49.5 (C-4), 40.7 (C-3a), 30.1 (C-3), 27.3 (COCH₃) ppm; IR ν = 3395 (m), 3139 (m), 1762 (s), 1715 (s), 1673 (s), 1631 (m), 1582 (w), 1526 (w), 1504 (m), 1474 (w), 1445 (m), 1408 (w), 1396 (w), 1376 (m), 1348 (m), 1339 (m), 1324 (w), 1306 (m), 1285 (w), 1264 (s), 1240 (s), 1213 (m), 1186 (m), 1170 (m), 1149 (m), 1122 (w), 1103 (s), 1072 (w), 1037 (m), 1005 (m) cm⁻¹; MS m/z (relative intensity) = 409 (M⁺+1, 100), 347 (19), 331 (30), 329 (24). HRMS [M⁺] calcd for C₂₂H₂₀N₂O₆ 408.1321, found 408.1320.

(3aS*, 4S*, 11cS*)-4-(4-Acetoxyphenyl)-2,3,3a,4,5,11c-hexahydro-2H-1,7-dioxo-6-aza-6H-furan-[4,5-c]phenanthren-6-one (35a) and (3aS*, 4R*, 11cS*)-4-(4-acetoxyphenyl)-2,3,3a,4,5,11c-hexahydro-2H-1,7-dioxo-6-aza-6H-furan-[4,5-c]phenanthren-6-one (35b)
Following general experimental procedure B, 3-aminocoumarin (17) (2.58 g, 16.0 mmol), 4-acetoxybenzaldehyde (29) (2.76 g, 16.8 mmol) and DHF (3.63 mL, 48.0 mmol) were reacted in the presence of Yb(OTf)₃ (0.497 g, 5.0 mol%) in acetonitrile (50 mL) at room temperature for 5 min. The reaction mixture remained a clear red solution (after the addition of dienophile) over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 46:54 in favor of the exo isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 35a as a white solid (0.45 g, 7%), 35b as a white solid (0.67 g, 11%) and a mixed fraction (0.88 g, 15%). Combined yield = 1.99 g, 33%.

35a: mp = 183-184 °C (chloroform/hexane). δH(CDCl₃) = 7.83-7.81 (m, 1H, H-11), 7.52-7.50 (m, 2H, H-2'), 7.33-7.27 (m, 3H), 7.16-7.14 (m, 2H, H-3'), 5.49 (d, 2H, J = 7.4 Hz, H-11c), 4.94 (s, 1H, H-5), 4.72 (d, 1H, J = 2.8 Hz, H-4), 3.91 (td, 1H, J = 8.6, 2.7 Hz, H-2a), 3.81-3.76 (m, 1H, H-2p), 2.95-2.92 (m, 1H, H-3a), 2.33 (s, 3H, OCOCH₃), 2.23-2.16 (m, 1H, H-3a), 1.68-1.62 (m 1H, H-3p) ppm; δC(CDCl₃) = 169.0 (OCOCH₃), 158.9 (C-6), 150.6, 148.9, 138.1, 129.8, 127.8 (C-2'), 127.1, 124.8, 124.5 (C-11), 122.2 (C-3'), 120.3, 118.8, 116.6, 73.0 (C-11c), 67.7 (C-2), 57.6 (C-4), 47.0 (C-3a), 25.9 (C-3), 22.1 (OCOCH₃) ppm; IR ν = 3371 (w), 2869 (w), 1709 (s), 1631 (w), 1502 (m), 1204 (s), 1186 (vs), 1050 (m), 778 (s) cm⁻¹. HRMS m/z [M⁺] calcd for C₂₂H₁₉NO₅ 377.1263, found 377.1258.

35b: mp = 158-159 °C (chloroform/hexane). δH(CDCl₃) = 7.78-7.75 (m, 1H, H-11), 7.46 (d, 2H, J = 9.1 Hz, H-2'), 7.32-7.30 (m, 3H), 7.16 (m, 2H, J = 8.3, H-3'), 5.25 (s, 1H, H-5), 4.75 (d, 1H, J = 5.1 Hz, H-11c), 4.10 (td, 1H, J = 8.2, 6.4 Hz, H-2β), 3.97 (td, 1H, J = 9.0, 5.4 Hz, H-2α), 3.84 (d, 1H, J = 11.1 Hz, H-4), 2.52-2.47 (m, 1H, H-3a),
2.31 (s, 3H, OCOCH$_3$) 2.18-2.12 (m, 1H, H-3β), 1.84-1.78 (m, 1H, H-3α) ppm; δ$_c$(CDCl$_3$) = 169.6 (OCOCH$_3$), 158.8 (C-6), 151.0, 148.4, 137.6, 130.8, 129.5 (C-2'), 126.8, 12.51, 123.2 (C-11), 122.3 (C-3'), 121.2, 116.6, 116.0, 72.9 (C-11c), 65.9 (C-2), 57.1 (C-4), 43.1 (C-3a), 28.6 (C-3), 21.3 (OCOCH$_3$) ppm; IR ν = 3305 (m), 1744 (s), 1730 (s), 1058 (m), 1242 (s), 1176 (s), 1046 (m), 787 (s) cm$^{-1}$. HRMS m/z [M]$^+$ calcd for C$_{22}$H$_{19}$NO$_5$ 377.1263, found 377.1254.

(3aS*, 4S*, 11cS*)-4-(10-Methoxy-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxa-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (36a) and (3aS*, 4R*, 11cS*)-4-(10-Methoxy-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxa-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (36b)

Following general experimental procedure B, 3-amino-6-methoxycoumarin (0.19 g, 1.0 mmol), 4-formyl methylbenzoate (0.17 g, 1.05 mmol) and DHF (0.23 mL, 3.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.031 g, 5.0 mol%) in acetonitrile (30 mL) at room temperature for 20 min. The reaction mixture turned from a thick yellow suspension to a pale yellow suspension over the course of the reaction. The solvent was
removed under reduced pressure to afford a yellow residue and the \(dr \) was determined to be 39:61 in favor of the \(\text{exo} \) isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 36a as a white solid (0.04 g, 10\%), 36b as a white solid (0.06 g, 15\%) and a mixed fraction (0.04 g, 10\%). Combined yield = 0.14 g, 34\%.

36a \(\text{mp} = 209-210 \degree C \) (dichloromethane/hexane); \(\delta_H(\text{CDCl}_3) = 8.08 \) (d, \(J = 8.6 \) Hz, 2H, H-2\'), 7.56 (d, \(J = 8.1 \) Hz, 2H, H-3\'), 7.30 (d, \(J = 3.2 \) Hz, 1H, H-11), 7.22 (d, \(J = 9.0 \) Hz, 1H, H-8), 6.90 (dd, \(J = 9.0, 3.2 \) Hz, 1H, H-9), 5.45 (d, \(J = 8.0 \) Hz, 1H, H-11c), 5.00 (s, 1H, H-5), 4.77 (d, \(J = 2.6 \) Hz, 1H, H-4), 3.94 (s, 3H, COOCH\(_3\)), 3.91-3.88 (m, 1H, H-2), 3.87 (s, 3H, C-10-\(\text{OCH}_3\)), 3.80-3.75 (m, 1H, H-2), 2.97-2.92 (m, 1H, H-3a), 2.21-2.12 (m, 1H, H-3), 1.58-1.52 (m, 1H, H-3); \(\delta_C(\text{CDCl}_3) = 166.8 \) (C-6), 158.9, 156.6, 145.6, 143.3, 130.3 (C-2\'), 130.2, 129.9, 126.7 (C-3\'), 120.9, 118.6, 117.4 (C-8), 114.4 (C-9), 107.6 (C-11), 73.0 (C-11c), 67.6 (C-2), 57.0 (C-4), 56.0 (C-10-\(\text{OCH}_3\)), 52.4 (COOCH\(_3\)), 46.0 (C-3a), 25.2 (C-3) ppm; IR \(\nu = 3364 \) (w), 1700 (s), 1631 (w), 1608 (w), 1579 (w), 1506 (s), 1464 (m), 1425 (m), 1365 (w), 1310 (w), 1286 (s), 1222 (m), 1197 (s), 1176 (s), 1119 (m), 1108 (m), 1086 (s), 1060 (s), 1035 (s), 1015 (m) cm\(^{-1}\); MS (APCI) \(m/z \) (relative intensity) = 408 (M\(^{+}\)+1, 8), 388 (100), 376 (75). HRMS \([M^{+}]\) calcd for C\(_{23}\)H\(_{21}\)NO\(_6\) 407.1369, found 407.1363. 36b: \(\text{mp} = 168-171 \degree C \) (dichloromethane/hexane); \(\delta_H(\text{CDCl}_3) = 8.09 \) (d, \(J = 8.3 \) Hz, 2H, H-2\'), 7.52 (d, \(J = 8.1 \) Hz, H-3\'), 7.24-7.22 (m, 2H), 6.88 (dd, \(J = 9.0, 3.0 \) Hz, 1H, H-9), 5.29 (s, 1H, H-5), 4.70 (d, \(J = 5.2 \) Hz, 1H, H-11c), 4.10 (td, \(J = 8.2, 6.7 \) Hz, 1H, H-2), 3.98-3.93 (m, 1H, H-2), 3.95 (s, 3H, COOCH\(_3\)), 3.87 (s, 3H, C-10-\(\text{OCH}_3\)), 3.86 (d, \(J = 10.4 \) Hz, 1H, H-4), 2.52-2.48 (m, 1H, H-3a), 2.13-2.09 (m, 1H, H-3).
1.80-1.76 (m, 1H, H-3) ppm; δ(CDC13) = 166.8 (C-6), 158.9, 156.9, 145.1, 143.0, 131.0, 130.8, 130.4, 128.5, 121.8, 117.5, 116.1, 113.8 (C-9), 106.7, 72.9 (C-11c), 65.8 (C-2), 57.4 (C-4), 56.1 (C-10-OCCH3), 52.5 (COOH2), 43.1 (C-3a), 28.4 (C-3) ppm; IR ν = 3288 (w), 1714 (s), 1633 (w), 1611 (w), 1576 (w), 1510 (m), 1435 (m), 1384 (w), 1341 (w), 1279 (s), 1219 (w), 1176 (s), 1144 (w), 1108 (m), 1068 (m), 1042 (s), 1018 (m) cm⁻¹;

MS (APCI) m/z (relative intensity) = 408 (M⁺+1, 22), 406 (32), 389 (14), 388 (55), 377 (28), 376 (100), 214 (26). HRMS [M⁺] calcd for C23H21NO6 407.1369, found 407.1364.

(3aS*, 4S*, 11cS*)-4-(8-Methoxy-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxo-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (37a) and (3aS*, 4R*, 11cS*)-4-(8-Methoxy-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxo-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (37b)

Following general experimental procedure B, 3-amino-8-methoxycoumarin (0.34 g, 1.8 mmol), 4-formyl methylbenzoate (0.31 g, 1.89 mmol) and DHF (0.41 mL, 5.4 mmol) were reacted in the presence of Yb(OTf)₃ (0.056 g, 5.0 mol%) in acetonitrile (18 mL) at room temperature for 10 min. The reaction mixture turned from an orange
precipitate to a clear orange solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 36:64 in favor of the exo isomer. The residue was then subjected to flash chromatography (dichloromethane) to afford 37a as a white solid (0.05 g, 6%), 37b as a white solid (0.11 g, 16%) and a mixed fraction (0.09 g, 12%). Combined yield = 0.25 g, 34%.

37a: mp = 210-211 °C (dichloromethane/hexane); δ_{H}(CDCl$_3$) = 8.08 (d, J = 8.5 Hz, 2H, H-2′), 7.56 (d, J = 8.1 Hz, 2H, H-3′), 7.41 (d, J = 8.0 Hz, 1H, H-11), 7.20 (t, J = 8.2 Hz, 1H, H-10), 6.92 (d, J = 7.9 Hz, 1H, H-9), 5.48 (d, J = 8.1 Hz, 1H, H-11c), 5.00 (s, 1H, H-5), 4.78 (d, J = 2.9 Hz, 1H, H-4), 3.96 (s, 3H, C-8-OCCH$_3$), 3.94 (s, 3H, COOCH$_3$), 3.89 (td, J = 8.5, 2.6 Hz, 1H, H-3a), 3.79-3.74 (m, 1H, H-2), 2.96-2.94 (m, 1H, H-3), 1.57-1.52 (m, 1H, H-3) ppm; δ_{C}(CDCl$_3$) = 166.9 (COOCH$_3$), 158.4 (C-6), 147.4 (C-8), 145.6 (C-4′), 138.5 (C-7a), 130.4 (C-2‌′), 130.2, 130.0, 126.6 (C-3′), 124.7 (C-10), 121.1, 119.0, 116.2 (C-11), 109.7 (C-9), 73.1 (C-11c), 67.6 (C-2), 57.1 (C-4), 56.4 (C-8-OCCH$_3$), 52.4 (COOCH$_3$), 46.0 (C-3a), 25.2 (C-3) ppm; IR ν = 3361 (w), 1711 (s), 1632 (w), 1605 (m), 1579 (m), 1500 (m), 1479 (w), 1450 (m), 1344 (w), 1319 (w), 1293 (s), 1276 (m), 1201 (m), 1170 (s), 1053 (m), 1017 (m) cm$^{-1}$; MS (APCI) m/z (relative intensity) = 409 (M$^+$+2, 27), 408 (M$^+$+1, 100), 406 (13). HRMS [M$^+$] calcd for C$_{23}$H$_{21}$NO$_6$ 407.1369, found 407.1395. 37b: mp = 191-192 °C (triturated with ethyl acetate); δ_{H}(CDCl$_3$) = 8.08 (d, J = 8.1 Hz, 2H, H-2′), 7.52 (d, J = 8.6 Hz, 2H, H-3′), 7.35 (m, 1H, H-11), 7.23 (t, J = 7.9 Hz, 1H, H-10), 6.90 (m, 1H, H-9), 5.29 (s, 1H, H-5), 4.72 (d, J = 5.1 Hz, 1H, H-11c), 4.10 (m, 1H, H-2), 3.96 (s, 3H, 8-OCCH$_3$), 3.95 (s, 3H,
COOCH₃), 3.97-3.92 (m, 1H, H-2), 3.87 (d, J = 11.0 Hz, 1H, H-4), 2.52-1.47 (m, 1H, H-3a), 2.14-2.09 (m, 1H, H-3), 1.79-1.74 (m, 1H, H-3) ppm; δc(CDCl₃) = 166.9 (COOCH₃), 158.3 (C-6), 147.4, 145.1 (C-4'), 138.0, 130.9, 130.7, 130.4 (C-2'), 128.5 (C-3'), 125.0 (C-10), 121.9, 116.2, 115.0 (C-11), 109.5 (C-9), 73.0 (C-11c), 65.7 (C-2), 57.3 (C-4), 56.4 (C-8 OCH₃), 52.5 (COOCH₃), 43.0 (C-3a), 28.4 (C-3) ppm; IR ν = 3366 (w), 1710 (s), 1631 (w), 1604 (w), 1576 (m), 1506 (w), 1480 (w), 1452 (w), 1437 (w), 1387 (w), 1345 (w), 1272 (m), 1231 (w), 1200 (w), 1175 (m), 1109 (m), 1092 (m), 1040 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 409 (M⁺+2, 27), 408 (M⁺+1, 100), 388 (17), 376 (11), 236 (5). HRMS [M⁺] calcd for C₂₅H₂₁N₅O₆ 407.1369, found 407.1344.

Following general experimental procedure B, 3-amino-8-methoxycoumarin (0.096 g, 0.50 mmol), 4-formyl methylbenzoate (0.087 g, 0.53 mmol) and DHF (0.14 mL, 1.5 mmol) were reacted in the presence of Yb(OTf)₃ (0.031 g, 10.0 mol%) in acetonitrile (5 mL) at room temperature for 10 min. The reaction mixture turned from an orange precipitate to a clear orange solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 36:64 in favor of the exo isomer. The residue was then subjected to flash chromatography (5% ethyl acetate/dichloromethane) to afford 37a,b as a white solid (0.11 g, 54%).
Following general experimental procedure B, 3-amino-6-bromocoumarin (0.48 g, 2.0 mmol), 4-formyl methyl benzoate (0.35 g, 2.1 mmol) and DHF (0.46 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.062 g, 5.0 mol%) in acetonitrile: chloroform (25 mL:1.0 mL) at room temperature for 20 min. The reaction mixture turned from a thick yellow suspension to a clear yellow solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 44:56 in favor of the exo isomer. The residue was then subjected to flash chromatography (0-2% ethyl acetate/dichloromethane) to afford 38a as a white solid (0.05 g, 6%), 38b as a white solid (0.12 g, 13%) and a mixed fraction (0.10 g, 11%). Combined yield = 0.27 g, 30%.

38a: mp = 244-245 °C (dichloromethane/hexane); δ_{H}(CDCl$_3$) = 8.09 (br s, 2H, H-2'), 7.96 (s, 1H, H-11), 7.56 (br s, 2H, H-3'), 7.40 (d, J = 7.4 Hz, 1H, H-9), 7.16 (d, J = 7.8 Hz, 1H, H-9).
Hz, 1H, H-8), 5.40 (d, J = 6.1 Hz, 1H, H-11c), 5.06 (br s, 1H, H-5), 4.79 (br s, 1H, H-4), 3.94 (s, 3H, COOCH₃), 3.89-3.88 (m, 1H, H-2), 3.79-3.77 (m, 1H, H-2), 2.95-2.88 (m, 1H, H-3a), 2.15-2.11 (m, 1H, H-3), 1.56 (br s, 1H, H-3) ppm; δₑ(CDCl₃) = 166.8 (COOCH₃), 158.3 (C-6), 147.6, 145.3, 130.4 (C-3'), 130.1, 129.8 (C-6), 127.1 (C-11), 126.6 (C-2'), 122.1 (C-11a), 118.1 (C-8), 117.9, 117.4, 72.7 (C-11c), 67.6 (C-2), 56.9 (C-4), 52.4 (COOCH₃), 45.9 (C-3a), 25.2 (C-3) ppm; HRMS [M⁺] calcd for C₂₂H₁₈BrNO₅ 456.0368, found 456.0163. 38b: mp = 216-217 °C (dichloromethane/hexane); δₑ(CDCl₃) = 8.09 (d, J = 8.5 Hz, 2H, H-2'), 7.86 (d, J = 2.1 Hz, 1H, H-11), 7.51 (d, J = 8.4 Hz, 2H, H-3'), 7.38 (dd, J = 8.6 Hz, 2.5 Hz, 1H, H-9), 7.17 (d, J = 9.0 Hz, 1H, H-8), 5.35 (s, 1H, H-5), 4.66 (d, J = 5.1 Hz, 1H, H-11c), 4.12-4.07 (m, 1H, H-2), 3.99-3.96 (m, 1H, H-2), 3.95 (s, 3H, COOCH₃), 3.86 (d, J = 11.2 Hz, 1H, H-4), 2.52-2.47 (m, 1H, H-3a), 2.14-2.09 (m, 1H, H-3), 1.79-1.74 (m, 1H, H-3) ppm; δₑ(CDCl₃) = 166.8 (COOCH₃), 158.2 (C-6), 147.2, 144.8, 131.2, 130.9, 130.4 (C-2'), 129.6 (C-9), 128.5 (C-3'), 125.7 (C-11), 123.0, 118.2 (C-8), 114.9, 72.5 (C-11c), 65.8 (C-2), 57.4 (C-4), 52.5 (COOCH₃), 42.9 (C-3a), 28.4 (C-3) ppm. IR ν = 1369 (w), 1710 (s), 1620 (w), 1594 (w), 1499 (m), 1439 (w), 1415 (m), 1336 (w), 1312 (w), 1277 (s), 1225 (m), 1191 (m), 1136 (m), 1104 (m), 1064 (m), 1044 (m), 1021 (m) cm⁻¹; MS m/z (relative intensity) = 458 (M⁺+1, 80) and 456 (M⁺+1, 100), 282 (6). HRMS [M⁺] calcd for C₂₂H₁₈BrNO₅ 456.0368, found 456.0430.

Following general experimental procedure B, 3-amino-6-bromocoumarin (0.12 g, 0.50 mmol), 4-formyl methyl benzoate (0.087 g, 0.53 mmol) and DHF (0.14 mL, 1.5 mmol) were reacted in the presence of Yb(OTf)₃ (0.031 g, 10 mol%) in acetonitrile: chloroform (4.5 mL:0.5 mL) at room temperature for 20 min. The reaction mixture
turned from a thick yellow suspension to a clear yellow solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the \(dr \) was determined to be 44:56 in favor of the \(\text{exo} \) isomer. The residue was then subjected to flash chromatography (5% ethyl acetate/dichloromethane) to afford 38a,b as a white solid (0.043 g, 19%).

\[
(3aS^*, 4S^*, 11cS^*)-4-(10-Nitro-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxa-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (39a) and (3aS^*, 4R^*, 11cS^*)-4-(10-Nitro-6-oxo-3,3a,4,5,6,11c-hexahydro-2H-1,7-dioxa-5-aza-cyclopenta[c]phenanthren-4-yl)-benzoic acid methyl ester (39b)
\]

Following general experimental procedure B, 3-amino-6-nitrocoumarin (0.41 g, 2.0 mmol), 4-formyl methyl benzoate (0.35 g, 2.1 mmol) and DHF (0.46 mL, 6.0 mmol) were reacted in the presence of Yb(OTf)$_3$ (0.062 g, 5.0 mol%) in acetonitrile (20 mL) at room temperature for 20 min. The reaction mixture turned from a yellow suspension to a clear yellow solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the \(dr \) was determined to be 42:58 in
favor of the exo isomer. The residue was then subjected to flash chromatography (0-2% ethyl acetate/dichloromethane) to afford 39a as a yellow solid (0.05 g, 6%), 39b as a yellow solid (0.03 g, 4%) and a mixed fraction (0.15 g, 18%). Combined yield = 0.24 g, 28%.

39a: mp = 261-262 °C (dichloromethane/hexane); δH(CDC13) = 8.77 (d, J = 2.7 Hz, 1H, H-11), 8.21 (dd, J = 9.0, 2.7 Hz, 1H, H-9), 8.14 (d, J = 8.4 Hz, 2H, H-2'), 7.60 (d, J = 8.5 Hz, 2H, H-3'), 7.44 (d, 9.0 Hz, 1H, H-8). 5.53 (d, J = 7.9 Hz, 1H, H-11c), 5.18 (s, 1H, H-5), 4.88 (d, J = 2.9 Hz, 1H, H-4), 3.99 (s, 3H, COOCH3), 3.92 (td, J = 8.1, 2.5 Hz, 1H, H-2). 3.85 (td, J = 8.4, 6.5 Hz, 1H, H-2), 3.04-3.02 (m, 1H, H-3a), 2.19-2.14 (m, 1H, H-3), 1.64-1.61 (m, 1H, H-3) ppm; δC(CDC13) = 166.8 (COOCH3), 157.8 (C-6), 152.1, 144.9, 130.52, 130.46, 126.6, 121.9, 121.0, 120.7, 117.4, 117.2, 72.3 (C-11c), 67.4 (C-2), 56.8 (C-4), 52.5 (COOCH3), 45.8 (C-3a), 25.1 (C-3) ppm; 423 (M+I, 81), 403 (100), 391 (39), 377 (23). HRMS [M+] calcld for C22H18N2O14 422.1114, found 422.1095. 39b: mp = 226-227 °C (dichloromethane/hexane); δH(CDC13) = 8.62 (s, 1H, H-11), 8.15-8.10 (m, 3H, H-8 and H-2'), 7.52 (d, J = 7.5 Hz, 2H, H-3'), 7.42 (t, J = 7.8 Hz, 1H, H-9), 5.43 (s, 1H, H-5), 4.75 (d, J = 5.1 Hz, 1H, H-11c), 4.13-4.09 (m, 1H, H-2), 4.04-3.99 (m, 1H, H-2), 3.95 (s, 3H, COOCH3), 3.91 (d, J = 10.5 Hz, 1H, H-4), 2.55-2.54 (m, 1H, H-3a), 2.19-2.12 (m, 1H, H-3), 1.81-1.78 (m, 1H, H-3) ppm; δC(CDC13) = 166.7 (COOCH3), 157.5 (C-6), 151.6, 145.2, 144.4 (C-4'), 131.7, 131.1 (C-5a), 130.5 (C-2'), 128.4 (C-3'), 122.0, 121.6 (C-8), 119.3 (C-11), 117.5 (C-9), 114.7, 72.4 (C-11c), 65.9 (C-2), 57.4 (C-4), 52.5 (COOCH3), 42.9 (C-3a), 28.4 (C-3) ppm; IR ν = 3341 (w), 1712 (s), 1632 (w), 1576 (w), 1517 (m), 1435 (w), 1417 (w), 1332 (m), 1277 (s), 1247 (w), 1184 (m), 1104 (m), 1044
(m), 1020 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 423 (13, M⁺+1), 421 (17), 419 (29), 404 (25), 403 (100), 391 (38), 377 (10). HRMS [M⁺] calcd for C₂₂H₁₈N₂O₇ 422.1114, found 422.1128.

Following general experimental procedure B, 3-amino-6-nitrocoumarin (0.10 g, 0.50 mmol), 4-formyl methyl benzoate (0.087 g, 0.53 mmol) and DHF (0.14 mL, 1.5 mmol) were reacted in the presence of Yb(OTf)₃ (0.031 g, 10 mol%) in acetonitrile (5 mL) at room temperature for 20 min. The reaction mixture turned from a yellow suspension to a clear yellow solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 44:56 in favor of the exo isomer. The residue was then subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 39a,b as a yellow solid (0.040 g, 19%).
Following general experimental procedure B, 3-amino-8-methoxycoumarin (0.34 g, 1.8 mmol), 4-acetoxybenzaldehyde (0.31 g, 1.89 mmol) and DHF (0.41 mL, 5.4 mmol) were reacted in the presence of Yb(OTf)_3 (0.056 g, 5.0 mol%) in acetonitrile (18 mL) at room temperature for 10 min. The reaction mixture remained a clear yellow solution over the course of the reaction. The solvent was removed under reduced pressure to afford a yellow residue and the dr was determined to be 38:62 in favor of the exo isomer. The residue was then subjected to flash chromatography (0-2% ethyl acetate/dichloromethane) to afford 40a as a white solid (0.12 g, 16%), 40b as a white solid (0.28 g, 16%) and a mixed fraction (0.12 g, 16%). Combined yield = 0.44 g, 60%.

40a: mp = 203-204 °C (dichloromethane/hexane); δ_H(CDCl_3) = 7.49 (d, J = 8.3 Hz, 2H, H-2'), 7.40 (dd, J = 8.2, 1.0 Hz, 1H, H-11), 7.22 (t, J = 8.0 Hz, 1H, H-10), 7.15-7.12 (m,
2H, H-3'), 6.90 (dd, J = 8.3, 1.3 Hz, 1H, H-9), 5.46 (d, J = 7.7 Hz, 1H, H-11c), 4.96 (s, 1H, H-5), 4.71 (d, J = 2.0 Hz, 1H, H-4), 3.95 (s, 3H, C-8-OC\textsubscript{3}H\textsubscript{3}), 3.89 (td, J = 8.3, 1.3 Hz, 1H, H-9), 5.46 (d, J = 7.7 Hz, 1H, H-11c), 4.96 (s, 1H, H-5), 4.71 (d, J = 2.0 Hz, 1H, H-4), 3.95 (s, 3H, C-8-OC\textsubscript{3}H\textsubscript{3}), 3.89 (td, J = 8.3, 2.8 Hz, 1H, H-2), 3.79-3.74 (m, 1H, H-2), 2.92 (m, 1H, H-3a), 2.32 (s, 3H, OCOCH\textsubscript{3}), 2.21-2.17 (m, 1H, H-3), 1.65-1.63 (m, 1H, H-3) ppm; δ\textsubscript{c}(CDCl\textsubscript{3}) = 169.6 (OCOCH\textsubscript{3}), 158.4 (C-6), 150.5 (C-4'), 147.4 (C-8), 138.4 (C-7a), 138.1 (C-1'), 130.1 (C-5a), 127.7 (C-2'), 124.6 (C-10), 122.2 (C-3'), 121.2 (C-11a), 118.9 (C-11b), 116.2 (C-11), 109.6 (C-9), 73.1 (C-11c), 67.6 (C-2), 56.8 (C-4), 56.4 (C-8-OC\textsubscript{3}H\textsubscript{3}), 46.2 (C-3a), 25.3 (C-3), 21.3 (OCOCH\textsubscript{3}) ppm; IR ν = 3374 (w), 1752 (m), 1712 (s), 1574 (m), 1495 (w), 1448 (w), 1367 (w), 1271 (w), 1193 (w), 1053 (s), 1011 (s) cm-1; MS (APCI) m/z (relative intensity) = 815 (2M++1, 11), 409 (M++2, 27), 408 (M++1, 100), 406 (23), 366 (16), 334 (10). HRMS [M+] calcd for C\textsubscript{23}H\textsubscript{21}N\textsubscript{6}O\textsubscript{6} 407.1369, found 407.1347.

40b: mp = 197-198 °C (triturated with ethyl acetate); δ\textsubscript{h}(CDCl\textsubscript{3}) = 7.45 (d, J = 9.0 Hz, 2H, H-2'), 7.34 (dd, J = 7.2, 0.9 Hz, 1H, H-11), 7.22 (t, J = 7.8 Hz, 1H, H-10), 7.14 (d, J = 9.1 Hz, 2H, H-3'), 6.88 (dd, J = 8.3, 1.0 Hz, 1H, H-9), 5.26 (s, 1H, H-5, H-5'), 4.71 (d, J = 4.8 Hz, 1H, H-11c), 4.10-4.06 (td, J = 8.6, 6.6 Hz, 1H, H-2), 3.96-3.92 (m, 1H, H-2), 3.95 (s, 3H, C-8-OC\textsubscript{3}H\textsubscript{3}), 3.81 (d, J = 10.9 Hz, 1H, H-4), 2.48-2.45 (m, 1H, H-3a), 2.32 (s, 3H, OCOCH\textsubscript{3}), 2.14-2.11 (m, 1H, H-3), 1.81-1.78 (m, 1H, H-3) ppm; δ\textsubscript{c}(CDCl\textsubscript{3}) = 169.5 (OCOCH\textsubscript{3}), 158.3 (C-6), 151.0, 147.4 (C-8), 138.0 (C-1'), 137.5, 131.0, 129.5 (C-2'), 124.9 (C-10), 122.2 (C-3'), 122.1 (C-11a), 115.9, 115.0 (C-11), 109.4 (C-9), 73.0 (C-11c), 65.7 (C-2), 57.0 (C-4), 56.4 (C-8-OC\textsubscript{3}H\textsubscript{3}), 42.9 (C-3a), 28.6 (C-3), 21.4 (OCOCH\textsubscript{3}) ppm; IR ν = 3327 (w), 1751 (m), 1715 (m), 1653 (w), 1628 (w), 1604 (w), 1576 (m), 1503 (w), 1479 (w), 1449 (w), 1439 (m), 1365 (w), 1334 (w), 1277 (w), 1225 (s), 1201 (s), 1175 (s), 1167 (s).
1038 (m), 1017 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 815 (2M⁺+1, 28), 409 (M⁺+2, 27), 408 (M⁺+1, 100), 366 (5). HRMS [M⁺] calcd for C₂₃H₂₁NO₆ 407.1369, found 407.1342.

(2S*,4S*)-(2-(4-Nitrophenyl)-4-(4-phenylsulfanyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-10H-phenanthren-10-one (42a) and (2R*,4S*)-(2-(4-nitrophenyl)-4-(4-phenylsulfanyl)-1,2,3,4-tetrahydro-9-oxa-1-aza-10H-phenanthren-10-one (42b)

Following general experimental procedure B, 3-aminocoumarin (5) (1.61 g, 10.0 mmol), 4-nitrobenzaldehyde (8) (1.59 g, 10.5 mmol) and phenyl vinyl sulfide (3.90 mL, 30.0 mmol) were reacted in the presence of Yb(OTf)₃ (0.310 g, 5.00 mol%) in acetonitrile (50 mL) at room temperature for 17 h. The clear yellow solution turned into a thick yellow suspension over the course of the reaction. The resulting yellow residue was subjected to flash chromatography (5-20% ethyl acetate/hexanes) to afford 42a as a yellow solid (1.3 g, 29%), 42b as a yellow solid (0.082 g, 2%) and mixed fraction (0.31 g, 7%). The dr was determined to be 59:41 in favor of the endo isomer by 1H NMR analysis of the crude reaction mixture. Combined yield = 1.68 g, 38%.
42a: mp = 225-226 °C (chloroform/hexane). $\delta_{\text{H}}(\text{CDCl}_3) = 8.26$ (d, 2H, $J = 8.5$ Hz, H-3$'$), 7.77-7.24 (m, 1H, H-5), 7.62 (d, 2H, $J = 8.9$ Hz, H-2$'$), 7.59-7.58 (m, 2H, H-6), 7.43-7.42 (m, 2H), 7.38-7.32 (m, 4H), 5.26 (s, 1H, H-1), 5.11 (dd, 1H, $J = 11.6$, 3.3 Hz, H-2), 4.64 (dd, 1H, $J = 3.4$, 1.6 Hz, H-4), 2.34 (dt, 1H, $J = 13.4$, 2.0 Hz, H-3β), 2.20-2.12 (m, 1H, H-3α). $\delta_{\text{C}}(\text{CDCl}_3) = 158.4$ (C-10), 149.2, 149.1, 148.3, 148.1, 134.1, 132.6, 129.8, 128.5, 127.9, 126.9, 125.0 (C-2$'$), 124.4 (C-3$'$), 122.2 (C-5), 119.8, 117.0, 113.6, 51.2 (C-2), 41.5 (C-4), 36.1 (C-3). IR $\nu = 3387$ (w), 1719 (s), 1629 (m), 1599 (w), 1518 (m), 1504 (m), 1347 (m), 1328 (m), 1195 (m), 1069 (w), 782 (w), 692 (m) cm$^{-1}$. HRMS m/z [M$^+$] calcd for C$_{24}$H$_{18}$N$_2$O$_4$S 430.0987, found 430.1015. 42b: mp = 200-201 °C (chloroform/hexane). $\delta_{\text{H}}(\text{CDCl}_3) = 8.20$ (d, 2H, $J = 8.4$ Hz, C-3$'$), 7.67 (dd, 1H, $J = 7.6$, 1.8 Hz, H-5), 7.48 (d, 2H, $J = 9.4$ Hz, H-2$'$), 7.37-7.27 (m, 6H), 7.16-7.08 (m, 2H), 5.59 (s, 1H, H-1), 4.92 (t, 1H, $J = 4.6$ Hz, H-2), 4.67 (t, 1H, $J = 3.9$ Hz, H-4), 2.71 (dt, 1H, $J = 14.4$, 3.4 Hz, H-3α), 2.60 (dt, 1H, $J = 14.6$, 6.2 Hz, H-3β) ppm; $\delta_{\text{C}}(\text{CDCl}_3) = 158.5$ (C-10), 150.6, 148.1, 147.5, 134.3, 132.2, 129.4, 129.3, 128.1, 127.4, 126.8 (C-2$'$), 124.9, 123.9 (C-3$'$), 122.6 (C-5), 119.8, 116.8, 113.8, 52.2 (C-2), 40.1 (C-4), 33.4 (C-3) ppm; IR $\nu = 3374$ (w), 1701 (s), 1623 (m), 1516 (s), 1336 (m), 1314 (w), 1212 (m), 1073 (m), 850 (m), 741 (s), 694 (m) cm$^{-1}$. HRMS m/z [M$^+$] calcd for C$_{24}$H$_{18}$N$_2$O$_4$S 430.0987, found 430.1001.

(3aS^*, 4S*, 12cS^*)-4-(4-Hydroxyphenyl)-2,3,3a,4,5,11c-hexahydro-1,7-dioxa-5-azacyclopenta[c]phenanthren-6-one (43)
To a clear colorless solution of 35a (38 mg, 0.10 mmol) in 1:1 methanol:chloroform (5 mL) was added K_2CO_3 (17 mg, 0.12 mmol) and the reaction mixture was stirred at room temperature for 16 h. The solvents were removed under reduced pressure and the residue obtained was dissolved in chloroform (10 mL), washed with 1.0 M HCl (5.0 mL). The two layers were separated. The organic layer was washed with brine and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the solid was recrystallized from acetone/hexanes to afford 43 as a white solid (24 mg, 72%).

mp = 221-222 °C (acetone); δ_H(CDCl_3) = 7.81 (d, J = 6.0 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H, H-2'), 7.30-7.27 (m, 3H), 6.87 (d, J = 8.5 Hz, 2H, H-3'), 5.47 (d, J = 8.4 Hz, 1H, H-11c), 5.08 (s, 1H, OH), 4.91 (s, 1H, H-5), 4.65 (d, J = 2.9 Hz, 1H, H-4), 3.90 (td, J = 8.9, 2.5 Hz, 1H, H-2), 3.81-3.74 (m, 1H, H-2), 2.93-2.88 (m, 1H, H-3a), 2.24-2.15 (m, 1H, H-3), 1.67-1.62 (m, 1H, H-3) ppm; δ_C(CDCl_3) = 159.1 (C-6), 155.8 (C-4'), 148.8, 133.0, 130.2, 128.3 (C-2'), 127.2, 125.1, 124.6, 120.5, 118.9, 116.8, 116.1 (C-3'), 73.3 (C-11c), 67.9 (C-2), 56.9 (C-4), 46.7 (C-3a), 25.5 (C-3) ppm; IR ν = 3287 (w), 1700 (m), 1684 (s), 1653 (s), 1616 (m), 1558 (s), 1539 (m), 1506 (s), 1217 (m), 1061 (m) cm⁻¹; MS m/z (relative intensity) = 336 (M⁺+1, 32), 335 (23), 317 (19), 316 (85), 305 (22), 304 (100).

HRMS [M⁺] calcd for C_{20}H_{17}NO_4 335.1158, found 335.1143.
(4aS*, 5R*, 12cS*)-4-(7-Oxo-2,3,4,4a,5,6,7,12c-octahydro-1,8-dioxa-6-aza-
benzo[c]phenanthren-5-yl)-benzoic acid (44)

A suspension of 28b (78 mg, 0.20 mmol) in 1M KOH/MeOH (5.0 mL) was
heated at reflux for 1 h. The reaction mixture was acidified with 6 M HCl. The resulting
precipitate was filtered under suction and washed with water. The product was air dried
to afford 50 as a white solid (74 mg, 99%).

mp = 258-259 °C. δH(CDCl3) = 12.84 (br s, 1H, COOH), 7.96 (d, J = 7.9 Hz, 2H, H-2'),
7.60 (d, J = 5.6 Hz, 1H), 7.54 (d, J = 7.7 Hz, 2H, H-3'), 7.30-7.27 (m, 3H), 6.27 (s, 1H,
NH), 4.71 (s, 1H), 4.68 (d, J = 11.4 Hz, 1H, H-5), 3.94 (d, J = 9.6 Hz, 1H), 3.79-3.74 (m,
1H), 2.01-1.99 (m, 1H), 1.83-1.70 (m, 2H), 1.34-1.24 (m, 2H) ppm; δc(CDCl3) = 167.2
(COOH), 157.6 (C-7), 147.4, 146.4, 130.2, 130.0, 129.4, 128.1, 125.7, 124.6, 122.1,
120.4, 115.8, 113.8, 68.5 (C-11c), 67.8 (C-2), 53.5 (C-5), 37.3 (C-4a), 22.9 (C-3), 21.4
(C-4) ppm; IR ν = 3315 (m), 1700 (s), 1680 (s), 1625 (m), 1575 (w), 1516 (m), 1484 (w),
1454 (w), 1419 (m), 1364 (w), 1329 (w), 1284 (w), 1264 (m), 1225 (s), 1195 (s), 1185
(s), 1133 (s), 1109 (w), 1091 (m), 1060 (m), 1018 (s) cm⁻¹; MS (ESI) m/z (relative
intensity) = 376 (M⁺-1, 100). Elemental analysis calcd for C₂₂H₁₉NO₅; C 70.02%; H 5.07%; N 3.71%, found C 68.89; H 5.00%; N 3.63%.

4-[3-(3-Hydroxypropyl)-10-oxo-10H-9-oxa-1-aza-phenanthren-2-yl]-benzoic acid methyl ester (45) and 4-[3-(3-Formyloxypropyl)-10-oxo-10H-9-oxa-1-aza-phenanthren-2-yl]-benzoic acid methyl ester (46)

Method 1: To a clear colorless solution of 28b (78 mg, 0.20 mmol) in DMF (3.0 mL), was added TMSCI (0.04 mL, 0.30 mmol), followed by the addition of sodium iodide (45 mg, 0.30 mmol). The resulting mixture was heated at 50 °C for 18 h and then at 90 °C for 150 h. The reaction mixture was allowed to cool to room temperature. Ice cold water (15.0 mL) was added to it and the resulting white suspension was allowed to stir at room temperature for 1 h. It was extracted with ethyl acetate (20 mL). The aqueous layer was saturated with NaCl and extracted with ethyl acetate (2 × 15 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography
(30-100% ethyl acetate/hexanes) to afford 28b (8.0 mg, 10%), 45 (18 mg, 23%) and 46 (25 mg, 30%).

45: mp = 224-226 °C; δ_H(DMSO-d_6) = 8.87 (s, 1H, H-4), 8.50 (dd, J =8.4, 1.7 Hz, 1H, H-5), 8.12 (d, J = 8.2 Hz, 2H, H-3'), 7.75 (d, J = 8.2 Hz, 2H, H-2'), 7.64 (t, J = 7.4 Hz, 1H), 7.46-7.44 (m, 2H), 4.48 (t, J = 5.1 Hz, 1H, OH), 3.87 (s, 3H, COOCH_3), 3.38-3.35 (m, 2H, H-7'), 2.90-2.86 (m, 2H, H-5'), 1.76-1.71 (m, 2H, H-6') ppm; δ_C(DMSO-d_6) = 166.0 (COOCH_3), 159.0 (C-10), 157.9, 150.8, 143.6, 142.1, 135.2, 132.2, 130.6, 129.5, 129.3, 129.1, 124.8, 124.7, 124.5, 117.2, 116.7, 60.0 (C-7), 52.3 (COOCH_3), 32.9 (C-5'), 29.1 (C-6') ppm; IR ν = 3524 (m), 1734 (m), 1708 (s), 1612 (w), 1457 (w), 1436 (m), 1274 (s), 1237 (w), 1180 (s), 1051 (w), 1020 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 391 (M⁺+2, 100); HRMS [M⁺] calcd for C_{23}H_{19}NO_5 389.1263, found = 389.1267.

46: mp = 166-167 °C; δ_H(CDCl_3) = 8.40 (s, 1H, H-4), 8.16 (d, J =8.1 Hz, 2H, H-3'), 8.09 (d, J = 7.7 Hz, 1H, H-5), 7.99 (s, 1H, CHO), 7.64 (d, J = 8.0 Hz, 2H, H-2'), 7.77 (t, J = 7.7 Hz, 1H, H-6), 7.43-7.40 (m, 2H), 4.13 (t, J = 6.2 Hz, 2H, H-7'), 3.97 (s, 3H, COOCH_3), 2.97 (t, J = 7.8 Hz, 2H, H-5'), 1.98-1.92 (m, 2H, H-6') ppm; δ_C(CDCl_3) = 166.8 (COOCH_3), 160.9 (CHO), 160.5 (C-10), 158.9, 151.5, 143.3, 140.9, 136.2, 131.7, 131.3, 131.0, 130.7, 130.0, 129.3, 125.1, 123.3, 118.2, 116.7, 62.8 (C-7), 52.5 (COOCH_3), 29.8 (C-6'), 20.9 (C-6') ppm; IR ν = 3418 (s), 1748 (m), 1719 (s), 1700 (s), 1638 (s), 1617 (s), 1558 (w), 1508 (w), 1458 (w), 1434 (w), 1385 (m), 1283 (m), 1169 (m), 1115 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 419 (M⁺+2, 29), 418 (M⁺+1, 100); HRMS [M⁺] calcd for C_{24}H_{19}NO_6 417.1212, found 417.1210.
Method 2: To a clear colorless solution of 28a,b (~1:1 mixture of endo and exo diastereomers, 0.20 g, 0.50 mmol) in dichloromethane (15 mL) at room temperature in the dark was added a 1.0 M solution of Br₂ in dichloromethane (1.05 mmol) dropwise over 2 min. After the addition, the solution turned yellow-turbid. The reaction mixture was stirred for 1 h. The reaction mixture turned into a white suspension over the course of the reaction. Solid NaHSO₄ was added to the reaction mixture and diluted with ethyl acetate. This solution was washed with 1.0 M Na₂CO₃ solution followed by a wash with brine. The organic layer was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the solid was recrystallized from ethyl acetate/hexane to afford 45 as a white solid (0.12 g, 61%).

6-(4-Carboxyphenyl)-2-(2-hydroxyphenyl)-5-(3-hydroxypropyl)-pyridine-2-carboxylic acid (47)

A solution of 45 (50 mg, 0.13 mmol) in 10 M KOH (3.0 mL) was stirred at room temperature for 16 h. The reaction mixture was cooled in an ice bath and 6.0 M HCl was added dropwise until the solution became acidic (pH = 5.0). The resulting white
precipitate was filtered under suction and washed with cold water and air dried to afford 47 as a white solid (33 mg, 66%).

mp = 250-251 °C (ethanol); \(\delta_{H} (\text{CDCl}_3) = 8.70 \) (s, 1H, H-4), 8.31 (d, \(J = 7.2 \), 1H, H-10'), 8.19 (d, \(J = 8.4 \) Hz, 2H, H-3'), 7.74 (s, 1H, C-6'-OH), 7.68 (d, \(J = 7.6 \) Hz, 2H, H-2'), 7.63 (t, \(J = 7.6 \) Hz, 1H, H-8'), 7.49 (t, \(J = 7.8 \) Hz, 1H, H-9'), 7.44 (d, \(J = 8.4 \) Hz, 1H, H-7'), 3.53 (t, \(J = 6.1 \) Hz, 2H, H-13'). 2.98 (t, \(J = 8.0 \) Hz, 2H, H-11'), 1.82 (p, \(J = 6.2 \) Hz, 2H, H-12') ppm; \(\delta_{C} (\text{DMSO-d}_6) = 167.0, 159.2, 157.9, 150.8, 143.2, 142.1, 135.1, 132.1 \) (C-4), 131.3, 130.7, 130.5 (C-3'), 129.2 (C-2'), 124.8, 124.4 (C-10'), 117.2, 116.7, 60.1 (C-13'), 32.9 (C-12'), 29.1 (C-11') ppm; IR \(\nu = 3639 \) (br, s), 3416 (br, s), 1718 (s), 1701 (s), 1653 (w), 1636 (w), 1617 (m), 1457 (w), 1437 (m), 1384 (w), 1235 (s), 1177 (s), 1118 (w) cm\(^{-1}\); MS (ESI) \(m/z \) (relative intensity) = 375 (M-17, 31), 374 (M-18, 100), 212 (90); Elemental analysis calcd for C\(_{22}\)H\(_{19}\)NO\(_6\); C 67.17%; H 4.87%; N 3.56%, found C 67.54%; H 4.36%; N 3.54%.
Acetic acid-4-[3-(2-hydroxyethyl)-10-oxo-10H-9-oxa-1-aza-phenanthren-2-yl]phenyl ester (48)

To a clear colorless solution of 35a,b (~1:1 mixture of endo and exo diastereomers, 0.19 g, 0.50 mmol) in dichloromethane (15 mL) at room temperature in the dark was added a 1.0 M solution of Br₂ in dichloromethane (1.05 mmol) dropwise over 2 min. After the addition, the solution turned yellow-turbid. The reaction mixture was stirred for 1 h. The reaction mixture turned into a white suspension over the course of the reaction. Solid NaHSO₄ was added to the reaction mixture and diluted with ethyl acetate. This solution was washed with 1.0 M Na₂CO₃ solution followed by a wash with brine. The organic layer was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (20% ethyl acetate/dichloromethane) to afford 48 as a white solid (0.15 g, 80%).

mp = 208-209 °C; δH(DMSO-d₆) = 8.85 (s, 1H, H-4), 8.43 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H, H-3'), 7.61 (t, J = 7.6 Hz, 1H), 7.46-7.44 (m, 2H), 7.30 (d, J = 8.9 Hz, 2H, H-2'), 4.82 (t, J = 5.1 Hz, 1H, OH), 3.73 (q, J = 6.0, 2H, H-6'), 3.02 (t, J = 6.5 Hz, 2H, H-5'), 2.35 (s, 3H, OCOCH₃) ppm; δC(DMSO-d₆) = 169.1 (OCOCH₃), 159.7 (C-10), 158.0, 150.73, 150.66, 139.4, 136.5, 135.1, 132.5, 131.2, 130.4, 130.0, 124.8, 124.2, 121.6, 117.1, 116.7, 60.6 (C-6'), 35.6 (C-5'), 20.9 (OCOCH₃) ppm; IR ν = 3412 (br, w), 1740
(s), 1653 (w), 1600 (w), 1460 (m), 1436 (m), 1328 (w), 1301 (m), 1216 (s), 1181 (s), 1167 (s), 1114 (m), 1096 (w), 1053 (w), 1014 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 376 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₂H₁₇NO₅ = 375.1107, found = 375.1110.

3-(2-Hydroxyethyl)-2-(2-oxo-2H-chromen-3-yl)-9-oxa-1-aza-phenanthren-10-one (49)

To a clear pale yellow solution of 32a,b (~1:1 mixture of endo and exo diastereomers, 0.50 g, 1.3 mmol) in dichloromethane (20 mL) at room temperature in the dark was added a 1.0 M solution of Br₂ in dichloromethane (2.7 mmol) dropwise over 2 min. After the addition, the solution turned yellow-turbid. The reaction mixture was stirred for 24 h. The reaction mixture remained yellow over the course of the reaction. Solid NaHSO₄ was added to the reaction mixture and diluted with ethyl acetate. This solution was washed with 1.0 M Na₂CO₃ solution followed by a wash with brine. The organic layer was then dried over anhydrous sodium sulfate. The solvent was removed.
under reduced pressure and the residue was subjected to flash chromatography (10% ethyl acetate/dichloromethane) to afford 49 as a white solid (0.04 g, 9%).

mp = 243-244 °C; δ_H(DMSO-d_6) = 8.90 (s, 1H, H-4), 8.45 (dd, J = 9.2, 1.5 Hz, 1H), 8.34 (s, 1H), 7.90 (dd, J = 8.4, 1.6 Hz, iH), 7.75-7.72 (m, 1H), 7.67-7.63 (m, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.50-7.44 (m, 3H), 4.73 (t, J = 5.4 Hz, 1H, OH), 3.72-3.68 (m, 2H, H-10'), 2.94 (t, J = 6.7 Hz, 2H, H-9'); δ_C(DMSO-d_6) = 159.3 (C-2'), 157.8 (C-10), 154.8, 153.6, 150.9, 144.2, 143.7, 135.2, 132.7, 131.5, 131.4, 129.1, 127.7, 126.8, 124.9, 124.8, 118.7, 117.2, 116.6, 116.3, 60.0 (C-11'), 32.8 (C-9'), 28.8 (C-10') ppm; IR ν = 3402 (br, w), 1717 (s), 1701 (s), 1686 (m), 1648 (s), 1635 (m), 1576 (m), 1558 (m), 1539 (m), 1507 (m), 1457 (m), 1117 (w) cm⁻¹; MS (APCI) m/z (relative intensity) = 387 (M⁺+2, 26), 386 (M⁺+1, 100), HRMS [M⁺] calcd for C₂₃H₁₅NO₃ 385.0950, found 385.0956.

3-(3-Hydroxypropyl)-2-(2-oxo-2H-chromen-3-yl)-9-oxa-1-aza-phenanthren-10-one (50)

To a clear pale yellow solution of 26a,b (~1:1 mixture of endo and exo diastereomers, 0.35 g, 0.86 mmol) in dichloromethane (30 mL) at room temperature in the dark was added a 1.0 M solution of Br₂ in dichloromethane (1.8 mmol) dropwise over
3 min. After the addition, the reaction mixture turned to a clear orange solution and then to an orange suspension. The reaction mixture was stirred for 22 h. Additional Br₂ in dichloromethane (0.9 mmol) was added to the reaction mixture and the reaction mixture was stirred for 4 h. Solid NaHSO₄ was added to the reaction mixture and diluted with ethyl acetate. This solution was washed with 1.0 M Na₂CO₃ solution followed by a wash with brine. The organic layer was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (40% ethyl acetate/hexanes) to afford 50 as a white solid (0.13 g, 39%).

mp = 256-258° C; δₜ(HCl₃) = 8.43 (s, 1H, H-4), 8.12 (s, 1H), 8.10-8.08 (m, 1H), 7.64-7.55 (m, 3H), 7.44-7.40 (m, 2H), 7.36 (t, J = 7.5 Hz, 1H), 3.72 (t, J = 5.8 Hz, 2H, H-11'), 2.98 (t, J = 7.7 Hz, 2H, H-9'), 2.06-2.01 (m, 2H, H-10') ppm; δₜ(DMSO-d₆) = 159.3 (C-2'), 157.8 (C-10), 154.8, 153.6, 150.9, 144.2, 143.7, 135.2, 132.7, 131.5, 131.4, 129.1, 127.7, 126.8, 124.9, 124.8, 118.7, 117.2, 116.6, 116.3, 60.0 (C-11'), 32.8 (C-9'), 28.8 (C-10') ppm; IR ν = 3401 (br, w), 1734 (m), 1718 (s), 1700 (s), 1684 (s), 1651 (s), 1576 (m), 1558 (m), 1539 (m), 1457 (m), 1117 (m) cm⁻¹; MS m/z (relative intensity) = 400 (M⁺+1, 100), HRMS [M⁺] calcd for C₂₄H₁₇NO₃ 399.1107, found 399.1069.

2-(4-Nitrophenyl)-9-oxa-1-aza-phenanthren-10-one (53)
To a clear, yellow solution of $42a,b$ (1.00:0.28 ratio, 120 mg, 0.278 mmol) in a 4:1 dioxan:water mixture (10 mL) was added sodium periodate (596 mg, 2.78 mmol). The reaction mixture was heated at reflux for 23 h. The reaction mixture was allowed to cool to room temperature and then saturated NaHCO$_3$ (15 mL) was added to the reaction mixture. It was extracted with ethyl acetate (3 × 20 mL). Organic layers were combined and washed with brine. The organic layer was then dried over anhydrous Na$_2$SO$_4$. The solvent was removed under reduced pressure and the residue was triturated with dichloromethane and air-dried to afford 53 as a brown solid (78 mg, 89%).

mp = 270-271 °C; δ_{H}(DMSO-d$_6$) = 9.03 (d, $J = 9.2$ Hz, 1H), 8.65 (d, $J = 9.1$ Hz, 1H), 8.53 (d, $J = 8.8$ Hz, 2H, H-3'), 8.44 (d, $J = 7.5$ Hz, 1H), 8.39 (d, $J = 8.9$ Hz, 2H), 7.63 (t, $J = 8.0$ Hz, 1H), 7.46-7.44 (m, 2H) ppm; δ_{C}(DMSO-d$_6$) = 158.7 (C-10), 155.5, 151.6, 149.1, 143.8, 138.7, 133.9, 132.5, 132.1, 129.0, 127.2, 125.8, 125.4, 125.0, 118.1, 117.6 ppm; MS m/z (relative intensity) = 324 (M$^+$+2, 29), 323 (M$^+$+1, 100). HRMS [M$^+$+H] calcd for C$_{18}$H$_{11}$N$_2$O$_4$ 319.0719, found = 319.0720.
2.5 References

20. 4 Å molecular sieves were added to the reaction mixture and rest of the procedure was same as reported by Bishnoi; see ref. 14e.
21. The diastereomeric ratio was determined from the 1H NMR analysis of crude reaction mixture before purification.

23. At room temperature, the reaction with 4-bromostyrene showed no signs of progress after 4 h. So, it was then heated at reflux.

28. Prepared from 4-acetylpyrrole-2-carboxaldehyde by reaction with NaH and methyl chloroformate. For the preparation of 4-acetylpyrrole-2-carboxaldehyde,

2.6 Appendix

2.6.1 ^{1}H and ^{13}C NMR Spectra for Individual Compounds
38b
1,4-dioxan
2.6.2 Assignment of Relative Stereochemistry

The key indicator that was used to assign the relative stereochemistry in the major diastereomer 24b was the magnitude of coupling constant between H₄₈ and H₅. The large coupling constant 11.5 Hz between H₄₈ and H₅ in the major diastereomer indicates a trans-diaxial relationship between these protons. As expected, no nOe was observed between these protons. However, an nOe was observed between H₁₂c and H₄₈ in both the isomers suggesting the cis arrangement of these protons (Fig. 2.3). In the minor diastereomer 24a, H₄₈ and H₅ are cis to each other and consequently have an approximate gauche relationship. The coupling constant between these protons is accordingly low (2.1 Hz). Significant nOe effects (3.4%–5.7%) were observed between each of H₁₂c, H₄₈ and H₅ which is consistent with an all-cis arrangement of these protons. The enhancement observed between H₁₂c and H₅ is only possible via a 1,3-diaxial interaction. In the cases of exo diastereomer 24b, the NMR-based assignments of the relative stereochemistry were corroborated by an X-ray crystal structure determination.
$J(\text{H}_4\alpha-\text{H}_5) = 2.1$ Hz

$J(\text{H}_4\alpha-\text{H}_5) = 11.5$ Hz

FIGURE 2.3. nOe studies on Povarov adducts
2.6.3 X-ray Crystal Structure Data for 24b

Data Collection

A colorless prism crystal of C$_{25}$H$_{21}$NO$_3$ having approximate dimensions of 0.35 x 0.20 x 0.10 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn CCD area detector with graphite-monochromated Mo-Kα radiation.

Indexing was performed from 330 images that were exposed for 12.0 seconds. The crystal-to-detector distance was 35.06 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive orthorhombic cell with dimensions:

$$ a = 8.3461(7) \text{ Å} $$

$$ b = 18.8665(17) \text{ Å} $$

$$ c = 23.936(2) \text{ Å} $$

$$ V = 3769.0(6) \text{ Å}^3 $$

For Z = 8 and F.W. = 383.45, the calculated density is 1.351 g/cm3. The systematic absences of:

h00: h ± 2n

0k0: k ± 2n

00l: l ± 2n

uniquely determine the space group to be:

P2$_1$2$_1$2$_1$ (#19)
The data were collected at a temperature of \(-120 \pm 1^\circ C\) to a maximum 2\(\theta\) value of 61.8\(^\circ\). A total of 1140 oscillation images were collected. A sweep of data was done using \(\omega\) scans from -50.0 to 70.0\(^\circ\) in 0.5\(^\circ\) step, at \(\chi=0.0^\circ\) and \(\phi = 0.0^\circ\). The exposure rate was 24.0 [sec./\(^\circ\)]. The detector swing angle was 10.09\(^\circ\). A second sweep was performed using \(\omega\) scans from -80.0 to 85.0\(^\circ\) in 0.5\(^\circ\) step, at \(\chi=54.0^\circ\) and \(\phi = 90.0^\circ\). The exposure rate was 24.0 [sec./\(^\circ\)]. The detector swing angle was 10.09\(^\circ\). Another sweep was performed using \(\omega\) scans from -50.0 to 70.0\(^\circ\) in 0.5\(^\circ\) step, at \(\chi=0.0^\circ\) and \(\phi = 90.0^\circ\). The exposure rate was 24.0 [sec./\(^\circ\)]. The detector swing angle was 10.09\(^\circ\). Another sweep was performed using \(\omega\) scans from -80.0 to 85.0\(^\circ\) in 0.5\(^\circ\) step, at \(\chi=54.0^\circ\) and \(\phi = 180.0^\circ\). The exposure rate was 24.0 [sec./\(^\circ\)]. The detector swing angle was 10.09\(^\circ\). The crystal-to-detector distance was 35.06 mm. Readout was performed in the 0.137 mm pixel mode.

Data Reduction

Of the 63026 reflections that were collected, 7411 were unique (\(R_{int} = 0.060\)); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). Net intensities and sigmas were derived as follows:

\[
P_i^2 = \left[\Sigma (P_i - mB_{ave}) \right] \cdot Lp^{-1}
\]

where \(P_i\) is the value in counts of the \(i^{th}\) pixel

- \(m\) is the number of pixels in the integration area
- \(B_{ave}\) is the background average
Lp is the Lorentz and polarization factor

\[B_{\text{ave}} = \frac{\Sigma (B_j)}{n} \]

where n is the number of pixels in the background area

\[B_j \] is the value of the jth pixel in counts

\[\sigma^2(F_{hkl}^2) = [(\Sigma P_i) + m((\Sigma (B_{\text{ave}} - B_j)^2)/(n-1))] \cdot L_p \cdot \text{errmul} + (\text{erradd} \cdot F^2)^2 \]

where \(\text{erradd} = 0.00 \)

\[\text{errmul} = 1.00 \]

The linear absorption coefficient, \(\mu \), for Mo-Kα radiation is 0.885 cm\(^{-1}\). A numerical absorption correction was applied which resulted in transmission factors ranging from 0.9805 to 0.9936. The data were corrected for Lorentz and polarization effects. A correction for secondary extinction\(^2\) was applied (coefficient = 0.006030).

Structure Solution and Refinement

The structure was solved by direct methods\(^3\) and expanded using Fourier techniques\(^4\). The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement\(^5\) on \(F^2 \) was based on 7411 observed reflections and 533 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

\[R_1 = \frac{\Sigma ||F_o|| - ||F_c||}{\Sigma ||F_o||} = 0.0588 \]

\[wR_2 = \left(\frac{\sum (w(F_o^2 - F_c^2)^2)}{\sum w(F_o^2)^2} \right)^{1/2} = 0.1349 \]
The standard deviation of an observation of unit weight6 was 1.27. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.20 and -0.18 e\(\cdot\)Å\(^3\), respectively.

Neutral atom scattering factors were taken from Cromer and Waber7. Anomalous dispersion effects were included in Fcalc8; the values for \(\Delta f\) and \(\Delta f''\) were those of Creagh and McAuley9. The values for the mass attenuation coefficients are those of Creagh and Hubbell10. All calculations were performed using the CrystalStructure11,12 crystallographic software package except for refinement, which was performed using SHELXL-973.

\textbf{References}

(5) Least Squares function minimized: (SHELXL97)

\[\Sigma w(F_0^2 - F_c^2)^2 \]

where \(w = \) Least Squares weights.

(6) Standard deviation of an observation of unit weight:

\[\left[\frac{\Sigma w(F_0^2 - F_c^2)^2}{(N_o - N_v)} \right]^{1/2} \]

where \(N_o = \) number of observations

\(N_v = \) number of variables

EXPERIMENTAL DETAILS

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C_{25}H_{21}NO_{3}</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>383.45</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>colorless, prism</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.35 X 0.20 X 0.10 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Indexing Images</td>
<td>330 images @ 12.0 seconds</td>
</tr>
<tr>
<td>Detector Position</td>
<td>35.06 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.137 mm</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 8.3461(7) Å</td>
</tr>
<tr>
<td></td>
<td>b = 18.8665(17) Å</td>
</tr>
<tr>
<td></td>
<td>c = 23.936(2) Å</td>
</tr>
<tr>
<td></td>
<td>V = 3769.0(6) Å^{3}</td>
</tr>
<tr>
<td>Space Group</td>
<td>P2_{1}2_{1}2_{1} (#19)</td>
</tr>
<tr>
<td>Z value</td>
<td>8</td>
</tr>
<tr>
<td>D_{calc}</td>
<td>1.351 g/cm^{3}</td>
</tr>
<tr>
<td>F_{000}</td>
<td>1616.00</td>
</tr>
<tr>
<td>\mu (MoK\alpha)</td>
<td>0.885 cm^{-1}</td>
</tr>
</tbody>
</table>
B. Intensity Measurements

Detector: Rigaku Saturn
Goniometer: Rigaku AFC8
Radiation: MoKα (λ = 0.71070 Å)
Detector Aperture: 70 mm x 70 mm
Data Images: 1140 exposures

| ω oscillation Range (χ=0.0, φ=0.0) | -50.0 - 70.0° | Exposure Rate | 24.0 sec./°
| Detector Swing Angle | 10.09°
| ω oscillation Range (χ=54.0, φ=90.0) | -80.0 - 85.0° | Exposure Rate | 24.0 sec./°
| Detector Swing Angle | 10.09°
| ω oscillation Range (χ=0.0, φ=90.0) | -50.0 - 70.0° | Exposure Rate | 24.0 sec./°
| Detector Swing Angle | 10.09°
| ω oscillation Range (χ=54.0, φ=180.0) | -80.0 - 85.0° | Exposure Rate | 24.0 sec./°
| Detector Swing Angle | 10.09°
<p>| Detector Position | 35.06 mm |</p>
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel Size</td>
<td>0.137 mm</td>
</tr>
<tr>
<td>$2\theta_{\text{max}}$</td>
<td>61.8°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>63026</td>
</tr>
<tr>
<td>Unique:</td>
<td>7411 ($R_{\text{int}} = 0.060$)</td>
</tr>
<tr>
<td>Absorption</td>
<td></td>
</tr>
<tr>
<td>(trans factors: 0.9805 – 0.9936)</td>
<td></td>
</tr>
<tr>
<td>Lorentz-polarization</td>
<td></td>
</tr>
<tr>
<td>Secondary Extinction</td>
<td></td>
</tr>
<tr>
<td>(coefficient: 6.03000e-003)</td>
<td></td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

Structure Solution

Refinement

Function Minimized

Least Squares Weights

Direct Methods (SHELX97)

Full-matrix least-squares on F^2

$\Sigma w(Fo^2 - Fc^2)^2$

$w = 1/\left[\sigma^2(Fo^2) + (0.0499 \cdot P)^2 + 0.8919 \cdot P \right]$

where $P = (\text{Max}(Fo^2,0) + 2Fc^2)/3$

52.0°

All non-hydrogen atoms

7411

533

13.90

0.0588

0.0596

0.349

1.268

0.000

0.20 e^-/Å³

-0.18 e^-/Å³

200
<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>distance</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>C(1)</td>
<td>1.395(3)</td>
<td>O(1)</td>
<td>C(9)</td>
<td>1.362(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>C(9)</td>
<td>1.213(3)</td>
<td>O(3)</td>
<td>C(10)</td>
<td>1.440(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>C(11)</td>
<td>1.438(3)</td>
<td>O(4)</td>
<td>C(26)</td>
<td>1.385(3)</td>
</tr>
<tr>
<td>O(4)</td>
<td>C(34)</td>
<td>1.363(3)</td>
<td>O(5)</td>
<td>C(34)</td>
<td>1.217(3)</td>
</tr>
<tr>
<td>O(6)</td>
<td>C(35)</td>
<td>1.441(3)</td>
<td>O(6)</td>
<td>C(36)</td>
<td>1.439(3)</td>
</tr>
<tr>
<td>N(1)</td>
<td>C(8)</td>
<td>1.378(3)</td>
<td>N(1)</td>
<td>C(15)</td>
<td>1.467(3)</td>
</tr>
<tr>
<td>N(2)</td>
<td>C(33)</td>
<td>1.383(3)</td>
<td>N(2)</td>
<td>C(40)</td>
<td>1.463(3)</td>
</tr>
<tr>
<td>C(1)</td>
<td>C(8)</td>
<td>1.388(3)</td>
<td>C(1)</td>
<td>C(6)</td>
<td>1.390(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>C(3)</td>
<td>1.375(4)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>1.398(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>C(5)</td>
<td>1.387(3)</td>
<td>C(5)</td>
<td>C(6)</td>
<td>1.401(3)</td>
</tr>
<tr>
<td>C(6)</td>
<td>C(7)</td>
<td>1.452(3)</td>
<td>C(7)</td>
<td>C(8)</td>
<td>1.355(3)</td>
</tr>
<tr>
<td>C(7)</td>
<td>C(10)</td>
<td>1.507(3)</td>
<td>C(8)</td>
<td>C(9)</td>
<td>1.460(3)</td>
</tr>
<tr>
<td>C(10)</td>
<td>C(14)</td>
<td>1.536(3)</td>
<td>C(11)</td>
<td>C(12)</td>
<td>1.515(3)</td>
</tr>
<tr>
<td>C(12)</td>
<td>C(13)</td>
<td>1.524(4)</td>
<td>C(13)</td>
<td>C(14)</td>
<td>1.534(3)</td>
</tr>
<tr>
<td>C(14)</td>
<td>C(15)</td>
<td>1.532(3)</td>
<td>C(15)</td>
<td>C(16)</td>
<td>1.503(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>C(17)</td>
<td>1.366(3)</td>
<td>C(16)</td>
<td>C(25)</td>
<td>1.424(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>C(18)</td>
<td>1.425(3)</td>
<td>C(18)</td>
<td>C(19)</td>
<td>1.410(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>C(23)</td>
<td>1.420(3)</td>
<td>C(19)</td>
<td>C(20)</td>
<td>1.368(4)</td>
</tr>
<tr>
<td>C(20)</td>
<td>C(21)</td>
<td>1.409(4)</td>
<td>C(21)</td>
<td>C(22)</td>
<td>1.368(4)</td>
</tr>
<tr>
<td>C(22)</td>
<td>C(23)</td>
<td>1.416(3)</td>
<td>C(23)</td>
<td>C(24)</td>
<td>1.414(3)</td>
</tr>
<tr>
<td>C(24)</td>
<td>C(25)</td>
<td>1.370(3)</td>
<td>C(26)</td>
<td>C(27)</td>
<td>1.388(4)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>C(26)</td>
<td>C(27)</td>
<td>1.393(3)</td>
<td>C(28)</td>
<td></td>
<td>1.378(4)</td>
</tr>
<tr>
<td>C(28)</td>
<td>C(29)</td>
<td>1.387(4)</td>
<td>C(29)</td>
<td>C(30)</td>
<td>1.390(4)</td>
</tr>
<tr>
<td>C(30)</td>
<td>C(31)</td>
<td>1.406(3)</td>
<td>C(31)</td>
<td>C(32)</td>
<td>1.444(3)</td>
</tr>
<tr>
<td>C(32)</td>
<td>C(33)</td>
<td>1.360(3)</td>
<td>C(32)</td>
<td>C(35)</td>
<td>1.504(3)</td>
</tr>
<tr>
<td>C(33)</td>
<td>C(34)</td>
<td>1.456(3)</td>
<td>C(33)</td>
<td>C(35)</td>
<td>1.527(3)</td>
</tr>
<tr>
<td>C(36)</td>
<td>C(37)</td>
<td>1.506(4)</td>
<td>C(36)</td>
<td></td>
<td>1.524(4)</td>
</tr>
<tr>
<td>C(38)</td>
<td>C(39)</td>
<td>1.535(3)</td>
<td>C(38)</td>
<td></td>
<td>1.542(3)</td>
</tr>
<tr>
<td>C(40)</td>
<td>C(41)</td>
<td>1.509(3)</td>
<td>C(40)</td>
<td></td>
<td>1.374(3)</td>
</tr>
<tr>
<td>C(41)</td>
<td>C(42)</td>
<td>1.418(3)</td>
<td>C(41)</td>
<td></td>
<td>1.416(3)</td>
</tr>
<tr>
<td>C(43)</td>
<td>C(44)</td>
<td>1.417(3)</td>
<td>C(43)</td>
<td></td>
<td>1.418(3)</td>
</tr>
<tr>
<td>C(44)</td>
<td>C(45)</td>
<td>1.366(4)</td>
<td>C(44)</td>
<td></td>
<td>1.399(4)</td>
</tr>
<tr>
<td>C(46)</td>
<td>C(47)</td>
<td>1.370(4)</td>
<td>C(46)</td>
<td></td>
<td>1.426(3)</td>
</tr>
<tr>
<td>C(48)</td>
<td>C(49)</td>
<td>1.416(3)</td>
<td>C(48)</td>
<td></td>
<td>1.362(3)</td>
</tr>
<tr>
<td>atom</td>
<td>atom</td>
<td>atom</td>
<td>angle</td>
<td>atom</td>
<td>atom</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>C(1)</td>
<td>O(1)</td>
<td>C(9)</td>
<td>121.7(2)</td>
<td>C(10)</td>
<td>O(3)</td>
</tr>
<tr>
<td>C(26)</td>
<td>O(4)</td>
<td>C(34)</td>
<td>121.9(2)</td>
<td>C(35)</td>
<td>O(6)</td>
</tr>
<tr>
<td>C(8)</td>
<td>N(1)</td>
<td>C(15)</td>
<td>117.3(2)</td>
<td>C(33)</td>
<td>N(2)</td>
</tr>
<tr>
<td>O(1)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>115.8(2)</td>
<td>O(1)</td>
<td>C(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>C(1)</td>
<td>C(6)</td>
<td>123.5(2)</td>
<td>C(1)</td>
<td>C(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>120.3(2)</td>
<td>C(3)</td>
<td>C(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>C(5)</td>
<td>C(6)</td>
<td>121.2(2)</td>
<td>C(1)</td>
<td>C(6)</td>
</tr>
<tr>
<td>C(1)</td>
<td>C(6)</td>
<td>C(7)</td>
<td>119.4(2)</td>
<td>C(5)</td>
<td>C(6)</td>
</tr>
<tr>
<td>C(6)</td>
<td>C(7)</td>
<td>C(8)</td>
<td>118.3(2)</td>
<td>C(6)</td>
<td>C(7)</td>
</tr>
<tr>
<td>C(8)</td>
<td>C(7)</td>
<td>C(10)</td>
<td>119.5(2)</td>
<td>N(1)</td>
<td>C(8)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>N(1)</td>
<td>C(8)</td>
<td>C(9)</td>
<td>113.6(2)</td>
<td>C(7)</td>
<td>C(8)</td>
</tr>
<tr>
<td>O(1)</td>
<td>C(9)</td>
<td>O(2)</td>
<td>118.4(2)</td>
<td>O(1)</td>
<td>C(9)</td>
</tr>
<tr>
<td>O(2)</td>
<td>C(9)</td>
<td>C(8)</td>
<td>123.9(2)</td>
<td>O(3)</td>
<td>C(10)</td>
</tr>
<tr>
<td>O(3)</td>
<td>C(10)</td>
<td>C(14)</td>
<td>111.10(19)</td>
<td>C(7)</td>
<td>C(10)</td>
</tr>
<tr>
<td>O(3)</td>
<td>C(11)</td>
<td>C(12)</td>
<td>111.5(2)</td>
<td>C(11)</td>
<td>C(12)</td>
</tr>
<tr>
<td>C(12)</td>
<td>C(13)</td>
<td>C(14)</td>
<td>111.3(2)</td>
<td>C(10)</td>
<td>C(14)</td>
</tr>
<tr>
<td>C(10)</td>
<td>C(14)</td>
<td>C(15)</td>
<td>109.01(19)</td>
<td>C(13)</td>
<td>C(14)</td>
</tr>
<tr>
<td>N(1)</td>
<td>C(15)</td>
<td>C(14)</td>
<td>107.60(19)</td>
<td>N(1)</td>
<td>C(15)</td>
</tr>
<tr>
<td>C(14)</td>
<td>C(15)</td>
<td>C(16)</td>
<td>115.7(2)</td>
<td>C(15)</td>
<td>C(16)</td>
</tr>
<tr>
<td>C(15)</td>
<td>C(16)</td>
<td>C(25)</td>
<td>120.7(2)</td>
<td>C(17)</td>
<td>C(16)</td>
</tr>
</tbody>
</table>
C(16) C(17) C(18) 122.0(2) C(17) C(18) C(19) 121.7(2)
C(17) C(18) C(23) 118.7(2) C(19) C(18) C(23) 119.6(2)
C(18) C(19) C(20) 120.4(2) C(19) C(20) C(21) 120.6(2)
C(20) C(21) C(22) 120.0(2) C(21) C(22) C(23) 121.1(2)
C(18) C(23) C(22) 118.4(2) C(18) C(23) C(24) 118.5(2)
C(22) C(23) C(24) 123.0(2) C(23) C(24) C(25) 121.3(2)
C(16) C(25) C(24) 120.8(2) O(4) C(26) C(27) 116.4(2)
O(4) C(26) C(31) 120.8(2) C(27) C(26) C(31) 122.8(2)
C(26) C(27) C(28) 118.7(2) C(27) C(28) C(29) 120.4(2)
C(28) C(29) C(30) 120.4(2) C(29) C(30) C(31) 120.4(2)
C(26) C(31) C(30) 117.2(2) C(26) C(31) C(32) 118.8(2)
C(30) C(31) C(32) 123.9(2) C(31) C(32) C(33) 119.3(2)
C(31) C(32) C(35) 120.5(2) C(33) C(32) C(35) 120.0(2)
N(2) C(33) C(32) 123.6(2) N(2) C(33) C(34) 115.2(2)
C(32) C(33) C(34) 121.2(2) O(4) C(34) O(5) 118.2(2)
O(4) C(34) C(33) 117.9(2) O(5) C(34) C(33) 123.8(2)
O(6) C(35) C(32) 105.1(2) O(6) C(35) C(39) 112.1(2)
C(32) C(35) C(39) 112.3(2) O(6) C(36) C(37) 110.5(2)
C(36) C(37) C(38) 109.3(2) C(37) C(38) C(39) 111.0(2)
C(35) C(39) C(38) 110.4(2) C(35) C(39) C(40) 110.5(2)
C(38) C(39) C(40) 113.5(2) N(2) C(40) C(39) 107.0(2)
N(2) C(40) C(41) 111.2(2) C(39) C(40) C(41) 112.2(2)

206
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(40)-C(41)-C(42)</td>
<td>120.2(2)</td>
<td>C(40)-C(41)-C(50)</td>
<td>121.0(2)</td>
</tr>
<tr>
<td>C(40)-C(41)-C(50)</td>
<td>121.0(2)</td>
<td>C(41)-C(42)-C(43)</td>
<td>118.8(2)</td>
</tr>
<tr>
<td>C(42)-C(41)-C(50)</td>
<td>121.8(2)</td>
<td>C(42)-C(43)-C(44)</td>
<td>122.4(2)</td>
</tr>
<tr>
<td>C(42)-C(43)-C(44)</td>
<td>118.9(2)</td>
<td>C(43)-C(44)-C(48)</td>
<td>118.6(2)</td>
</tr>
<tr>
<td>C(43)-C(44)-C(48)</td>
<td>121.1(2)</td>
<td>C(44)-C(45)-C(46)</td>
<td>120.2(2)</td>
</tr>
<tr>
<td>C(44)-C(45)-C(46)</td>
<td>120.9(2)</td>
<td>C(45)-C(46)-C(47)</td>
<td>120.9(2)</td>
</tr>
<tr>
<td>C(45)-C(46)-C(47)</td>
<td>119.0(2)</td>
<td>C(46)-C(47)-C(48)</td>
<td>120.1(2)</td>
</tr>
<tr>
<td>C(46)-C(47)-C(48)</td>
<td>122.7(2)</td>
<td>C(47)-C(48)-C(49)</td>
<td>118.3(2)</td>
</tr>
<tr>
<td>C(47)-C(48)-C(49)</td>
<td>122.7(2)</td>
<td>C(48)-C(49)-C(50)</td>
<td>121.5(2)</td>
</tr>
<tr>
<td>C(48)-C(49)-C(50)</td>
<td>120.7(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 3. Intramolecular Inverse Electron Demand Diels-Alder (IEDDA) Reactions of Coumarin-fused 2-Azadienes

3.1 Introduction

A large number of biologically active natural products and drugs have polycyclic structures. The synthesis of such systems usually requires at least one key cyclization event, which is often accompanied by the generation of one or more stereogenic centers.\(^1\) In most cases, cyclization is a key step in the synthesis of such molecules, especially if the molecule is chiral. Therefore, predictable control over the regio- and stereoselectivity of the cyclization step is of paramount importance. As is evident from numerous examples in the literature,\(^2\) the Diels-Alder reaction can be performed predictably with high levels of regio- and stereochemical control. Further advantages are its very broad scope and functional group tolerance.

Logically, if the reacting partners of a Diels-Alder reaction, \(i.e.\) a diene and a dienophile, are constrained to be in a single molecule by a tether, the Diels-Alder reaction allows the formation of more than one ring in a single step. This variant of the Diels-Alder reaction is termed as the intramolecular Diels-Alder (IMDA) reaction. As shown in Scheme 3.1, compounds having various polycyclic skeleta can potentially be accessed \(via\) the IMDA reaction.
SCHEME 3.1 Synthesis of Polycyclic Structures via the IMDA Reaction

![Diagram of Scheme 3.1]

Few other methods provide such rapid access to these kinds of polycyclic structures. Depending upon the structural constraints, enhanced (or reversed) regio- and stereoselectivity can be expected in the IMDA reaction. Also, the IMDA reaction, like any other intramolecular reaction, benefits from an entropic advantage as compared to the corresponding intermolecular reaction and thus can often be performed under milder reaction conditions.

The first example of an intramolecular Diels-Alder reaction appears to be an unpublished result quoted by Alder and Schumacher in 1953, in which 1,4-pentadiene (3) and dimethylacetylenedicarboxylate (4) were reported to afford bicyclo[4.1.0]heptane derivative 6, via an in situ-generated ene adduct 5 (Scheme 3.2). In the beginning of the early 1960s, some isolated examples of IMDA reactions were published. However, it was not until the reports by Brieger (attempted synthesis of longifolene 9) (Scheme 3.3), Klemm (synthesis of γ-apopicipodophyllin 16) (Scheme 3.4) and Oppolzer (synthesis of chelidonine 20) (Scheme 3.5) that the IMDA reaction started to gain a more prominent place in the field of synthesis. Since then, many spectacular examples of the application of the IMDA reaction to complex synthetic targets have been documented. A particularly impressive example is Shair's dual Diels-Alder-based strategy during the synthesis (−)-longithorone A.
In Chapter 2, the Povarov reactions of a series of \textit{in situ}-generated coumarin-fused 2-azadienes were described. The key step of these Povarov reactions is an IEDDA reaction. In its one-pot version (multi-component reaction), this reaction affords tri- or tetracyclic heterocycles. The possibility of extending this to an intramolecular variant was attractive due to the potential of forming structurally more complex products in one operation.
SCHEME 3.4 Total Synthesis of rac-γ-Apopicropodophyllin (16) by Klemm et al.

SCHEME 3.5 Total Synthesis of dl-Chelidonine (20) by Oppolzer et al.
3.2 Results and Discussion

3.2.1 Type 1 and Type 2 IMDA Reactions

There are two ways to connect a diene and a dienophile for an IMDA reaction.\(^\text{12}\) When the diene and dienophile are connected at a terminal position of the diene (C-1 or C-4), a fused bicyclic (or polycyclic) compound is usually the product. This type of IMDA is called a Type 1 IMDA reaction. On the other hand, if the diene and dienophile are connected through C-2 or C-3 of the diene, bridged bicyclic ring systems are formed (Scheme 3.6). This variant is referred to as a Type 2 IMDA reaction.\(^\text{12}\) For the study of IMDA reactions of coumarin-fused 2-azadienes, attention was focused exclusively on Type 1 IMDA reactions.

\[\text{SCHEME 3.6 Type 1 and Type 2 IMDA Reactions}\]

3.2.2 Exploratory Studies on Intramolecular Povarov Reactions

Based on the previous findings (Chapter 2) that 3-aminocoumarin (25) condenses with aromatic aldehydes \textit{in situ} and the resulting 2-azadienes undergo a Povarov reaction
in the presence of an electron rich alkene and catalytic amount of Yb(OTf)₃, it was envisioned that aldehyde derivatives of the general structure 26 might give rise to intramolecular Povarov reactions upon reaction with 3-aminocoumarin (25) to afford pentacyclic products 28 (Scheme 3.7).

SCHEME 3.7 Povarov Reaction between 3-Aminocoumarin (25) and Aldehyde 26

Having a Pendant Dienophile

For initial studies, 2-(allyloxy)benzaldehyde (29),¹³ which was prepared in 87% yield by the O-alkylation of salicylaldehyde with allyl bromide in the presence of anhydrous K₂CO₃, was chosen. Enal 29 was then reacted with 3-aminocoumarin (25) in the presence of 5 mol% Yb(OTf)₃. No reaction was evident at room temperature (tlc analysis). This was not surprising because the C=C bond in the allyl group is electron
neutral and would therefore not be expected to easily take part in an IEDDA reaction, even an intramolecular one. However, upon heating for 19 hours at reflux, three new products were isolated along with 23% recovery of 3-aminocoumarin (25) (Scheme 3.8).

SCHEME 3.8 Reaction of 3-Aminocoumarin (25) with 2-(Allyloxy)benzaldehyde (29)

One of these new products was determined to be the Povarov adduct 31, which is the product of an *endo* transition state in the (formal) IEDDA step of the Povarov reaction. The relative stereochemistry of 31 was established based on its 1D and 2D NMR spectra. In the 1H NMR spectrum, H-7a appeared as a singlet (instead of a doublet), presumably due to a very small coupling constant with the *cis* proton H-13a. The other two products were assigned to structures 32 and 33. Compound 33 is an oxidized (dehydrogenated) version of 31 while 32 is a reduced form of the *in situ*-generated imine 30. This suggested that these two products were formed as a result of
transfer hydrogenation from Povarov adduct 31 to the \textit{in situ}-generated imine 30. The observed ratio of 2:1 for the yields of 32 and 33 is consistent with this notion. Interestingly, such transfer hydrogenations during Povarov reactions of aniline-derived azadienes were reported very recently.14 Although the Povarov adduct was isolated in only 17\% yield, this result was encouraging, especially considering that the double bond in the allyl group is not a very good dienophile for the IEDDA reaction.

On the basis of the above finding, it was anticipated that the employment of an alkyne-containing side chain as a dienophile for the intramolecular IEDDA reaction would more easily afford 33 because the Povarov adduct would only need to lose two hydrogen atoms to form the aromatized product. In this vein, 2-(propargyloxy)benzaldehyde (34)15 was reacted with 3-aminocoumarin (25). Very slow progress of the reaction was observed (tlc analysis). 3-Aminocoumarin (25) was recovered (19\%) after heating the reaction mixture in acetonitrile for 9 days. Nevertheless, the aromatized product 33 was isolated in 47\% yield (Scheme 3.9). As anticipated, the aromatized product 33 was isolated in a better yield (47\%) as compared to the first reaction involving an allylic double bond as a dienophile. However, no reduced product corresponding to 32 was isolated, which may indicate that the oxidation of 36 occurs by some other mechanism.

The slow rate of this reaction may be also attributed to the electron neutral nature of the dienophile. Of course, IEDDA reactions proceed more easily with electron rich dienophiles. Thus, it was speculated that the activation of the alkyne dienophile by the introduction of a phenyl group at the terminal position of the dienophile might result in a
SCHEME 3.9 Intramolecular Povarov Reaction between 25 and 34

In this vein, an aldehyde 42 having an alkyne-containing side chain was synthesized (Scheme 3.10). The synthesis of this aldehyde commenced with a Sonogashira reaction between bromobenzene (37) and propargyl alcohol (38) to afford compound 39 in 73% yield.\(^{16}\) Ynol 39 was then converted into bromide 40 upon treatment with CBr\(_4\)/PPh\(_3\).\(^{17}\) The crude bromide was used for the next step without purification. O-Alkylation of salicylaldehyde (41) with crude bromide 40 smoothly afforded aldehyde 42\(^{18}\) in 72% yield (over 2 steps).

No reaction was observed at room temperature when aldehyde 42 was stirred with 3-aminocoumarin (25) in the presence of 10 mol% Yb(OTf)\(_3\) for 3 hours. However, heating 42 and 25 at reflux, resulted in the formation of a new product (tlc analysis). The reaction was stopped after 48 hours of reflux. Although the starting materials 25 and 42 had not been fully consumed, tlc analysis indicated that byproducts were becoming more
abundant. The aromatized product 43 was isolated in 43% yield by column chromatography along with 27% of the starting material 3-aminocoumarin (25) (Scheme 3.10).

SCHEME 3.10 Intramolecular Povarov Reaction between 42 and 25

During the investigations on the intermolecular Povarov reactions, styrenes were found to react with the preformed coumarin-fused 2-azadienes at room temperature with good/satisfactory levels of endo/exo selectivity. This prompted the investigation of styrene derivatives in the intramolecular version of the reaction. In this vein, 2-(cinnamylxy)benzaldehyde (45) was prepared by the O-alkylation of salicylaldehyde (41) with cinnamyl bromide 44.

When 2-(cinnamylxy)benzaldehyde (45) was reacted with 3-aminocoumarin (44) in the presence of 5 mol% Yb(OTf)_3 in acetonitrile, the exo diastereomer of the Povarov adduct 46 was formed in 56% yield (Scheme 3.11). More interestingly, this reaction proceeded at room temperature in 1 hour. The yield could be improved to 85%
by using 10 mol% catalyst. In an analogous fashion to that of the intermolecular Povarov adducts (Chapter 2), the relative stereochemistry of 46 was assigned based on standard 1D and 2D NMR experiments. The magnitude of the coupling constants between \(H_{7a} \)-\(H_{13a} \) (11.1 Hz) and \(H_{14} \)-\(H_{13a} \) (11.0 Hz) were used as key indicators of the relative stereochemistry.

SCHEME 3.11 Povarov Reaction between 45 and 25

Traces of what appears to be the other diastereomer (endo) could be detected in the \(^1\)H NMR of the crude reaction mixture. However, attempts to isolate it by flash chromatography failed. This reaction also had the practical advantage that the major Povarov adduct (exo diastereomer) precipitated as the reaction progressed. Therefore, the product could be isolated by simple suction filtration of the reaction mixture after the starting 3-aminocoumarin (25) was totally consumed (tlc analysis).

It was envisaged at this stage that the application of 2-formylphenyl cinnamate
(48) in the intramolecular Povarov reaction with 3-aminocoumarin (25) would result in the formation of a product that would contain a new dihydrocoumarin moiety (Scheme 3.12). Therefore, 2-formylphenyl cinnamate (48) was prepared (90%) from salicylaldehyde (41) and trans-cinnamic acid (47) using slightly modified literature conditions.21

As anticipated for an electron deficient dienophile, the reaction of 2-formylphenyl cinnamate (48) with 3-aminocoumarin (25) did not show any signs of progress at room temperature. After heating the reaction mixture at reflux for 60 hours, some conversion was observed (by tlc analysis) and a white solid was obtained by suction filtration of the crude reaction mixture. The 1H NMR spectrum of this product was complicated due to the apparent presence of more than one compound. Nevertheless, it clearly showed the presence of signals corresponding to the expected exo Povarov adduct 49. The characteristic signals in the 1H NMR spectrum were 5.56 (s, 1H), 4.99 (d, J = 10.0 Hz, 1H), 4.45 (d, J = 10.9 Hz, 1H) and 3.18 (m, 1H). This white product was insoluble in common organic solvents and hence could not be purified. LC/MS analysis of this product showed a molecular ion peak (m/z = 395) corresponding to the expected Povarov adduct 49.
SCHEME 3.12 Attempted Intramolecular Povarov Reaction between 48 and 25

The introduction of electron donating substituents on the phenyl ring in the cinnamoyl unit would be expected to assist the participation of this dienophile in the Povarov reaction and possibly enhance the solubility of the product. Therefore, 2,3-dimethoxycinnamic acid (50) was converted into its salicyl ester (51) upon reaction with salicylaldehyde (41) in the presence of DCC and DMAP. However, ester formation was very slow. No reaction was evident at room temperature for 2 hours. The starting materials were not totally consumed (tlc analysis) even after heating the reaction mixture for 28 hours at reflux. Only 18% yield of the desired product 51 was achieved along with the 61% recovery of salicylaldehyde (41). This result is not surprising, considering that the lone pairs of the ortho-situated methoxy group are conjugated with the carbonyl group, which attenuates its electrophilicity. Nevertheless, a sufficient quantity of the ester 51 was obtained for subsequent study (Scheme 3.13).

Disappointingly, however, the presence of the methoxy groups did not appear to have any beneficial effect on the attempted Povarov reaction. The reaction again did not
show any signs of progress at room temperature. After heating at reflux for 72 hours, traces of a new product were observed (tlc analysis). Steric crowding due to the two methoxy groups may also account for the poor reactivity of this dienophile. The insoluble white product was isolated by suction filtration and it showed a molecular ion peak ($m/z = 455$) and signals in the 1H NMR spectrum {4.75 (d, $J = 10.0$ Hz), 4.44 (d, $J = 10.0$ Hz and 3.39 (br, m)} that are consistent with the Povarov adduct 52. However, due to solubility problems, this product could not be isolated in a pure form.

SCHEME 3.13 Attempted Intramolecular Povarov Reaction between 51 and 25

3.2.3 Scope of Intramolecular Povarov Reactions

The reaction between 3-aminocoumarin (25) and 2-(cinnamylxy)benzaldehyde (45) offers three points of diversity, *i.e.* the carbocyclic ring of the coumarin unit, the aromatic ring of the aldehyde unit that connects the dienophile to diene and the dienophile. Thus, a small library of pentacyclic heterocycles could potentially be formed
by a simple sequence of reactions. In order to make progress toward this objective, a
variety of 3-aminocoumarins with different substituents on the carbocyclic ring of
coumarin were required. Also, a set of cinnamyl bromides for reactions with various
salicylaldehyde derivatives was desired to form the dienophile-tethered aromatic
aldehydes.

Although commercially available, the parent cinnamyl bromide (44) could be
prepared from less expensive cinnamyl alcohol,23 which, in turn, could be obtained easily
from ethyl cinnamate upon reduction with DIBAL-H. Similarly, other cinnamyl
bromides (Ar = 4-bromophenyl24 and 4-nitrophenyl25) were prepared from the
corresponding aldehydes 53 and 54 in three steps using the published methods.24,25
Salicylaldehyde (41) was O-alkylated upon reaction with the cinnamyl bromides 53 and
54 in the presence of anhydrous K\textsubscript{2}CO\textsubscript{3} in refluxing acetone in good yields (81\% and
67\%, respectively) (Scheme 3.14).

\textbf{SCHEME 3.14} Synthesis of 2-(Cinnamyloxy)benzaldehydes 55 and 56

\begin{center}
\begin{tikzpicture}
\begin{scope}[scale=0.7]
\node [text width=3cm, text centered] (a) at (0,0) {
\begin{align*}
\text{Ar} & \equiv & \text{Br} & \equiv & \text{OH} & \equiv & \text{CHO} \\
\text{K}_2\text{CO}_3, \text{acetone} & \text{reflux} & \rightarrow & \text{O-} & \text{Ar} & \equiv & \text{R}_1 \\
\text{CHO} & \equiv & \text{Ar} & \equiv & \text{CHO} & \equiv & \text{Ar}
\end{align*}
\end{tikzpicture}
\end{scope}
\end{center}

53 $\text{Ar} = 4$-BrC\textsubscript{6}H\textsubscript{4} \\
54 $\text{Ar} = 4$-(NO\textsubscript{2})C\textsubscript{6}H\textsubscript{4}$

55 $\text{Ar} = 4$-BrC\textsubscript{6}H\textsubscript{4}, R\textsubscript{1} = H, 81\% \\
56 $\text{Ar} = 4$-(NO\textsubscript{2})C\textsubscript{6}H\textsubscript{4}, R\textsubscript{1} = H, 67\%
As with the reaction involving aldehyde 45 (Scheme 3.11), the reaction between 3-aminocoumarin (25) and aldehyde 55 proceeded smoothly at room temperature. A precipitate formed immediately after the addition of Yb(OTf)$_3$ to a solution of 3-aminocoumarin (25) and aldehyde 55 (R = Br). After 2 hours of reaction, the precipitate was isolated by suction filtration in 84% yield and determined to be the exo diastereomer 57 arising from an intramolecular IEDDA reaction (Scheme 3.15). The 1H NMR spectrum of the filtrate did not show the presence of any signals expected for the endo diastereomer. The reaction took 2 hours for complete consumption of 3-aminocoumarin (25), whereas the parent reaction (R = H) was complete after 1 hour at room temperature. The slightly longer reaction time can be attributed to the $-I$ effect of the bromo group in 4-position of the phenyl ring, which would be expected to destabilize any developing positive charge at the benzylic carbon at the transition state.

SCHEME 3.15 Intramolecular Povarov Reaction between 25 and 55

![Diagram of the reaction](image)

Based on this result, it was anticipated that the aldehyde 56 (R = NO$_2$), if subjected to similar reaction conditions, would take a much longer time for the reaction to run to completion. Indeed, this reaction took 5 days at room temperature for the complete consumption of the starting 3-aminocoumarin (25). The fact that this reaction
occurs at all at room temperature is a testament to the power of the IMDA reaction. Again, only the *exo* diastereomer 58 was isolated (Scheme 3.16). A single crystal X-ray structure determination for 58 confirmed that the NMR-based assignments of the relative stereochemistry were correct (Fig. 3.2). Traces of what appeared to be the *endo* diastereomer were observed in 1H NMR spectrum of the crude reaction mixture, but this product could not be isolated by flash chromatography.

SCHEME 3.16 Intramolecular Povarov Reaction between 25 and 56

When the reaction was repeated at reflux in acetonitrile, the reaction was complete after 16 hours (Scheme 3.16). However, a lower yield (49%) of the *exo* diastereomer was obtained and a complex mixture of other products formed. Having already prepared a variety of 3-aminocoumarins (Chapter 1), these compounds were then employed in the intramolecular Povarov reactions with various 2-
(cinnamyloxy)benzaldehyde derivatives. The parent 2-(cinnamyloxy)benzaldehyde (45) was chosen for the initial set of reactions. All of the reactions proceeded smoothly at room temperature to afford the corresponding \textit{exo} diastereomers in good yields (78-87\%) and excellent diastereoselectivity (<5:95) (Table 3.1).

\textbf{FIGURE 3.1} Pov-ray Representation of 58
TABLE 3.1 Intramolecular Povarov Reactions between 59 and 45

![Chemical structure diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yielda,b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-CH₃</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>6-OCH₃</td>
<td></td>
<td>84c</td>
</tr>
<tr>
<td>3</td>
<td>6-Br</td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>6-NO₂</td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>8-OCH₃</td>
<td></td>
<td>88</td>
</tr>
</tbody>
</table>

a *endo/exo* ratio <5:95, determined by ¹H NMR analysis of the crude mixtures. b Isolated yields. c Additionally, 62 was isolated in 2% yield.
FIGURE 3.2 Side product 62 from Intramolecular Povarov Reaction between 59 (R = 6-OMe) and 45

All of these reactions had the practical advantage that the \textit{exo} diastereomer has low solubility in acetonitrile. Only on one occasion were small amounts of two minor products isolated by flash chromatography of the filtrate (Entry 2, Table 3.1) in small quantities. One of these products was an isomer of 53 (by LC/MS analysis), presumably the product arising from an \textit{endo} transition state. The 1H NMR and mass spectra of the other product showed signals consistent with the aromatized product 62. This product was isolated in 2\% yield (Figure 3.2). It was characterized by 1H NMR spectrum, IR and mass spectrometry. 13C NMR spectrum of this compound could not be obtained due to its poor solubility in common organic solvents.

Two other 2-(cinnamyl)benzaldehyde derivatives 68 and 69 were then prepared by reacting substituted salicylaldehydes 66 and 67 (R = 3-OMe and 5-Br, respectively) with cinnamyl bromide (44) under the alkylation conditions used previously for similar substrates. The resulting aldehydes 68 and 69 were then employed in Povarov reactions with 3-aminocoumarin (25) and \textit{exo} adducts 70 and 71 were obtained in 89\% and 69\% yield, respectively (Scheme 3.17). Enal 68, was reacted with a variety of 3-
aminocoumarins (Table 3.2) to afford a series of pentacyclic heterocycles (72-76) in good yields (75-86%). These reactions were usually complete within 1 hour. Thus, in a short period of time, several pentacyclic heterocycles were prepared using solution phase chemistry.

SCHEME 3.17 Synthesis of 70 and 71

![Scheme 3.17](image-url)

66, R = 3-OMe
67, R = 5-Br
68, R = 3-OMe
69, R = 5-Br
70, R = 3-OMe
71, R = 5-Br
TABLE 3.2 Intramolecular Povarov Reactions between 59 and 68

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>Product</th>
<th>Yield<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-CH<sub>3</sub></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>6-OCH<sub>3</sub></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>6-Br</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>4</td>
<td>6-NO<sub>2</sub></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>8-OCH<sub>3</sub></td>
<td></td>
<td>86</td>
</tr>
</tbody>
</table>

^a *endo/exo* ratio <5:95, determined by ¹H NMR analysis of the crude mixtures.
In all of the above examples, two new rings (both six-membered) were formed. Clearly, the length of the tether determines the size of the ring that is fused with the newly formed N-containing six-membered ring. An aldehyde having a shorter or longer tether (than the one studied so far), connecting the dienophile, was desired in order to test whether the length of the tether has a significant effect on the rate, yield and/or selectivity of the intramolecular Povarov reaction of coumarin-fused 2-azadienes. A pyrrole-based aldehyde 77^{27} being available in the Bodwell laboratory, was selected as the nitrogen atom of the pyrrole system provides a handle for incorporating a cinnamyl tether. Careful investigation (Table 3.3) showed that selective N-alkylation of the aldehyde 77 could be performed by reacting it with cinnamyl bromide (44) in the presence of NaH in DMF at room temperature in 64% yield.

TABLE 3.3 Synthesis of 78

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reaction conditions</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KOH, CH$_2$Cl$_2$, reflux, 72 h</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>NaH, THF, reflux, 4 h</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>KOH, DMF, rt, 24 h</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>NaH, DMF, 0 °C, 2 h</td>
<td>64</td>
</tr>
</tbody>
</table>

a Isolated yields
When subjected to the typical Povarov reaction conditions with 3-aminocoumarin (25), slow consumption of the starting materials was observed with the concomitant appearance of a major new compound. After stirring for 6 hours at room temperature, the reaction mixture was heated at reflux for 18 hours. Interestingly, compound 79, which has all-cis stereochemistry, was formed in this reaction (Scheme 18). The all-cis relative stereochemistry was assigned based on standard 1D and 2D experiments (COSY, HMQC, HMBC). Thus, a [6,5,5] fused ring system could be prepared in a one-pot reaction from 3-aminocoumarin (25) and ketoaldehyde 78. Clearly, the stereochemical outcome of this intramolecular Povarov reaction is different from those discussed previously. The fact that the trans relationship between the substituents on the dienophile is not maintained in the product points towards a stepwise mechanism. Presumably, the concerted pathway is disfavoured by the build-up of strain in the developing trans-[6,5] ring system.
3.3 Conclusion

In conclusion, a concise and highly diastereoselective synthesis of functionalized pentacyclic heterocycles has been achieved using Povarov reactions involving an intramolecular IEDDA step. The insolubility of the \textit{exo} (major) diastereomer in the reaction medium allows easy isolation and thus a very rapid access to a diverse set of pentacyclic heterocycles. For the most part, this study has utilized a four-atom tether and the major product is an isomer arising from an \textit{exo} transition state for the intramolecular IEDDA reaction. The presence of a shorter tether (three atoms) results in a change in the stereochemical outcome of the reaction, which may be due to a change in mechanism.
3.4 Experimental

3.4.1 General Methods

All reactions were carried out without inert gas protection, unless otherwise mentioned. THF was dried and distilled over sodium/benzophenone. All other chemicals, including solvents, were used as received, without further purification. Thin layer chromatography (tlc) was performed on MN PolyGram precoated silica gel plates using 254 nm UV visualization. Flash chromatography was performed on silica gel columns. Melting points were recorded on Fisher-Johns apparatus and are uncorrected. All proton and carbon assignments are based on 2D experiments (COSY, HMQC, HMBC). 1H and 13C NMR spectra were recorded on Bruker AVANCE spectrometer at 500.133 MHz and 125.770 MHz, respectively. Peaks reported are relative to internal standards: TMS ($\delta = 0.00$) for 1H and CDCl$_3$ ($\delta = 77.23$), CD$_2$Cl$_2$ ($\delta = 54.00$) or DMSO-d_6 ($\delta = 39.51$) for 13C spectra. Reported multiplicities are apparent. Infrared spectra were obtained on Bruker Tensor 27 instrument using neat samples. Low-resolution mass spectra were obtained using using Agilent 1100 series LC/MS chromatographic system and high-resolution mass spectra were obtained using Waters GCT PermiMicromass mass spectrometer using neat samples. X-ray crystal structure was obtained on AFC8-Saturn single crystal X-ray diffractometer by David Miller, C-CART.
3.4.2 General Procedures

3.4.2.1 General Procedure 3-A

To a solution of 3-aminocoumarin in acetonitrile (~0.1 M solution) was added enal (1.05 equiv) and Yb(OTf)$_3$ (10 mol%) at room temperature. The resulting mixture was stirred at room temperature or heated at reflux as specified until complete consumption of the starting material (3-aminocoumarin) was observed by tlc analysis. The resulting slurry was subjected to suction filtration and the solids were washed with cold acetonitrile and air-dried to afford the product. The filtrate was subjected to flash chromatography depending upon the result of LC/MS analysis.
3.4.3 Synthesis and Characterization for Individual Compounds

3-(2-Allyloxybenzylamino)chromen-2-one (31), (7aS*, 13aR*)-5,6,7,7a,12,13,13a,14-Octahydro-5,12-Dioxa-7-azadibenzo[a,h]anthracen-6-one (32) and 5,6,12,13-Tetrahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (33)

![Chemical Structures]

To a clear, colorless solution of enal 29 (0.087 g, 0.54 mmol) in acetonitrile (5.0 mL) was added 3-aminocoumarin (25) (0.082 g, 0.51 mmol) at room temperature followed by the addition of Yb(OTf)₃ (0.016 g, 0.026 mmol). The clear, colorless solution turned into a clear yellow solution instantaneously. The reaction mixture was stirred at room temperature for 3 h and then heated at reflux for 19 h. The solvent was removed under reduced pressure and the yellow residue was subjected to flash chromatography (0-10% ethyl acetate/petroleum ether) to afford 31 (0.061 g, 39%) as a pale yellow gum, 32 (0.026 g, 17%) as an off-white solid, 33 (0.029 g, 19%) as a white solid and recovered 25 (0.014 g, 17%) as an off-white solid.

31: δ_H(CDCl₃) = 7.29-7.24 (m, 4H), 7.22-7.15 (m, 2H), 6.95-6.90 (m, 2H), 6.38 (s, 1H, H-4), 6.13-6.06 (m, 1H, H-9'), 5.44 (dd, J = 16.8, 1.3 Hz, 1H, H-10' trans to H-9'), 5.36
(br s, 1H, H-1'), 5.31 (dd, J = 10.8, 1.7 Hz, 1H, H-10' cis to H-9'), 4.62 (dd, J = 3.6, 1.8 Hz, 2H, H-2'), 4.43 (d, J = 5.6 Hz, 2H, H-8') ppm; δC(CDCl3) = 159.9 (C-6), 156.5, 148.1, 133.3, 133.2, 128.94, 128.89, 125.8, 125.2, 124.7, 122.0, 121.0, 117.8, 116.2 (C-4), 111.9, 105.5, 69.0 (C-2'), 42.7 (C-8') ppm; IR ν = 3412 (w), 1705 (s) , 1627 (m), 1602 (w), 1574 (w), 1504 (m), 1456 (m), 1355 (w), 1287 (m), 1239 (m), 1167 (m), 1117 (w) cm⁻¹; MS m/z (relative intensity) = 308 (M⁺+1, 21), 147 (M⁺-160, 100); HRMS [M⁺] calcd for C₁₉H₁₇NO₃ 307.1208 found 307.1211. 32: mp = 212-214 °C (ethyl acetate/hexanes); δH(CDCl3) = 7.38-7.37 (m, 1H), 7.29-7.25 (m, 3H), 7.24-7.21 (m, 2H), 6.93 (t, J = 7.0 Hz, 1H), 8.87 (d, J = 8.0 Hz, 1H), 5.07 (s, 1H, H-7), 4.53 (s, 1H, H-7a), 4.22-4.14 (m, 2H, H-13), 3.03 (dd, J = 18.3, 6.8 Hz, 1H, H-14β), 2.72 (dd, J = 18.5, 4.5 Hz, 1H, H-14α), 2.68-2.64 (m, 1H, H-13a) ppm; δC(CDCl3) = 158.3 (C-6), 153.9, 148.1, 129.9, 129.1, 126.5, 126.2, 124.8, 122.6, 121.5, 121.3, 121.1, 117.1, 116.7, 114.6, 66.7 (C-13), 47.5 (C-7a), 28.7 (C-14), 22.8 (C-13a) ppm; IR ν = 3331 (m), 1701 (s), 1612 (w) cm⁻¹; MS m/z (relative intensity) = 307 (M⁺+2, 21), 306 (M⁺+1, 100), 304 (14), 302 (72), 174 (17); HRMS [M⁺] calcd for C₁₉H₁₅NO₃ 305.1052 found 305.1048. 33: mp = 222-224 °C; δH(DMSO) = 8.79 (s, 1H), 8.30 (m, 1H), 8.24 (dd, J = 7.6, 1.0 Hz, 1H), 7.64-7.61 (m, 1H), 7.48-7.46 (m, 3H), 7.21 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 8.0 Hz, 1H), 5.50 (s, 2H) ppm; δC(DMSO) = 157.9 (C-6), 156.6, 150.5, 149.1, 137.3, 132.6, 132.1, 131.2, 130.8, 127.6, 124.8, 123.8, 122.6, 121.6, 117.3, 117.1, 116.9, 67.2 (C-13) ppm; IR ν = 1742 (s), 1608 (m), 1509 (s),
1432 (m), 1339 (s), 1177 (w), 1026 (s) \text{ cm}^{-1}; \text{MS } m/\text{z (relative intensity)} = 303 (M^{+}+2, 23), 302 (M^{+}+1, 100); \text{HRMS } [M^+] \text{ calcd for C}_{19}H_{11}NO_3 301.0739 \text{ found 301.0741.}

5,6,12,13-Tetrahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (33)

To a clear, colorless solution of 3-aminocoumarin (25) (0.161 g, 1.00 mmol) in acetonitrile (10.0 mL) was added aldehyde 34 (0.168 g, 1.05 mmol) followed by Yb(OTf)_3 (0.031 g, 5 mol%). The reaction mixture was heated at reflux for 9 d, during which time the reaction mixture became a yellow suspension. After cooling to room temperature, the reaction mixture was subjected to suction filtration and the solids were washed with cold dichloromethane and air-dried to afford 33 as a yellow solid (0.111 g, 37%). The filtrate was concentrated and purified by flash chromatography on silica gel (20% ethyl acetate/ light petroleum ether) to afford a second batch of 33 (0.029 g, 10%) as an off-white solid and recovered 3-aminocoumarin (25) (0.030 g, 19%) as an off-white solid. Combined yield of 33 = 0.140 g (47%).
14-Phenyl-5,6,12,13-tetrahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (43)

To a clear, colorless solution of 3-aminocoumarin (25) (0.081 g, 0.50 mmol) in acetonitrile (5.0 mL) was added ynal 42 (0.125 g, 0.525 mmol) and Yb(OTf)₃ (0.031 g, 10 mol%). The resulting yellow suspension was stirred at room temperature for 3 h. The reaction mixture was then heated at reflux for 72 h. The mixture was cooled to room temperature. The precipitate was isolated by suction filtration, washed with acetonitrile and air-dried to afford 43 as a white solid (0.085 g, 45%). mp = 277-279 °C (decomp); δₜ(CD₂Cl₂) = 8.35 (d, J = 7.8 Hz, 1H), 7.55-7.54 (m, 3H), 7.32 (t, J = 7.5 Hz, 1H), 7.28-7.27 (m, 2H), 7.23-7.22 (m, 2H), 7.10 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 7.7 Hz, 1H), 6.77-6.72 (m, 2H), 4.94 (s, 2H) ppm; δₒ(CD₂Cl₂) = 159.3 (C-6), 157.2, 151.6, 150.2, 144.6, 139.2, 136.8, 133.2, 131.6, 130.9, 130.8, 130.0, 129.5, 128.5, 127.9, 126.3, 124.3, 123.3, 122.6, 118.3, 118.1, 117.5, 66.7 (C-13) ppm; MS m/z (relative intensity) = 379 (M⁺+2, 29), 378 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₅H₁₅NO₃ 377.1052 found 377.1049.
2-(Cinnamylxy)benzaldehyde (45)

A mixture of salicylaldehyde (41) (0.54 g, 4.4 mmol), anhydrous K$_2$CO$_3$ (0.61 g, 4.4 mmol), cinnamyl bromide (44) (0.79 g, 4.0 mmol) and acetone (20 mL) was stirred at room temperature under a nitrogen atmosphere for 16 h. The mixture was subjected to suction filtration and the solids were washed with acetone. The filtrate was concentrated under reduced pressure and the residue was redissolved in chloroform. The resulting solution was washed sequentially with 1 M NaOH solution and brine. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The residue was crystallized from ethyl acetate/hexanes to afford 45 (0.88 g, 91% yield). mp = 51-52 °C (lit. 20 50-51 °C). δ_H(CDCl$_3$) = 10.57 (s, 1H, CHO), 7.85 (dd, $J = 7.7, 1.8$ Hz, 1H), 7.55-7.51 (m, 1H), 7.41 (d, $J = 7.7$ Hz, 2H), 7.34 (t, $J = 7.7$ Hz, 2H), 7.28-7.24 (m, 1H), 7.05-7.02 (m, 2H), 6.76 (d, $J = 15.3$ Hz, 1H), 6.42 (dt, $J = 15.4, 5.6$ Hz, 1H), 4.81 (dd, $J = 5.7, 1.5$ Hz, 2H) ppm; δ_C(CDCl$_3$) = 189.9, 161.2, 136.3, 136.0, 133.7, 128.9, 128.7, 128.4, 126.8, 125.4, 123.6, 121.1, 113.1, 69.4 ppm.
(7aR*, 13aR*, 14S*)-14-Phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-
azadibenzo[a,h]anthracen-6-one (46)

Method 1: To a clear, colorless solution of 3-aminocoumarin (25) (0.040 g, 0.25 mmol) in acetonitrile (2.5 mL) was added enal 45 (0.062 g, 0.26 mmol) followed by Yb(OTf)₃ (0.008 g, 5 mol%). The resulting clear, yellow solution was stirred at room temperature for 1 h. The reaction turned into a pale yellow suspension over the course of the reaction. The product was isolated by suction filtration and washed with cold acetonitrile to afford 46 as an off-white solid (0.053 g, 56%).

Method 2: According to general procedure 3-A, 3-aminocoumarin (25) (0.097 g, 0.60 mmol), enal 45 (0.15 g, 0.63 mmol) and Yb(OTf)₃ (0.037 g, 10 mol%) afforded 46 as a white solid (0.195 g, 85%). mp = 268-269 °C; δₓ(CD₂Cl₂) = 7.36 (d, J = 7.7 Hz, 1H), 7.30-7.28 (m, 2H), 7.27-7.26 (m, 2H), 7.25-7.23 (m, 3H), 7.21-7.19 (m, 1H), 7.07-7.05 (m, 1H), 6.98-6.95 (m, 2H), 6.85 (d, J = 7.4 Hz, 1H), 5.49 (s, 1H, H-7), 4.42 (d, J = 11.1 Hz, 1H, H-7a), 4.36 (dd, J = 10.6, 3.1 Hz, 1H, H-13α), 4.11 (t, J = 10.6 Hz, 1H, H-β), 3.98 (d, J = 11.0 Hz, 1H, H-14), 2.44-2.39 (m, 1H, H-13a) ppm; δₓ(CD₂Cl₂) = 159.1 (C-6), 154.4, 150.5, 149.0, 142.5, 132.1, 129.5, 129.4, 129.1, 126.7, 125.7, 125.5, 124.7, 124.2, 121.5, 121.2, 120.8, 117.3, 116.7, 66.9 (C-12), 52.0 (C-7), 45.0 (C-13a), 44.0 (C-
14) ppm; IR $\nu = 3334$ (m), 1702 (s), 1581 (w), 1492 (m), 1475 (w), 1445 (w), 1347 (m), 1322 (m), 1287 (w), 1252 (m), 1229 (m), 1191 (s), 1129 (w), 1116 (w), 1074 (w), 1050 (m), 1028 (w), 1012 (w) cm$^{-1}$; MS m/z (relative intensity) = 383 (M$^+$+2, 14), 382 (M$^+$+1, 53), 380 (29), 379 (29), 378 (100); HRMS [M$^+$] calcd for C$_{25}$H$_{19}$NO$_3$ 381.1365, found 381.1371.

(E)-Cinnamic acid 2-formylphenyl ester (48)

\[
\begin{align*}
 &\text{CHO} \\
 \text{O} & \quad \text{O} \\
 & \text{Ph} \\
\end{align*}
\]

A mixture of salicylaldehyde (41) (0.244 g, 2.00 mmol), *trans*-cinnamic acid (47) (0.445 g, 3.00 mmol), DCC (0.619 g, 3.00 mmol) and DMAP (0.037 g, 0.30 mmol) in dichloromethane (5.00 mL) was stirred at room temperature for 3 h. The mixture was then diluted with dichloromethane (20 mL) and successively washed with water (2 \times 10 mL), NaHSO$_4$ solution (10 mL), saturated NaHCO$_3$ solution (10 mL) and brine (10 mL). The organic layer was dried over anhydrous sodium sulfate and filtered. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (10-15% ethyl acetate/hexanes) to afford 48 as a white solid (0.455 g, 90%). mp = 76-77 °C (lit.21 76.1-76.5 °C). δH(DCl$_3$) = 10.21 (s, 1H, CHO), 7.96-7.93 (m, 2H), 7.66-7.64 (m, 1H), 7.62 (br m, 2H), 7.44-7.40 (m, 4H), 7.29 (d, $J = 7.9$ Hz, 1H), 6.70 (d, $J = 15.9$ Hz, 2H).
Hz, 1H) ppm; δ_C(DCl_3) = 188.8 (CHO), 165.3, 152.3, 147.8, 135.4, 133.9, 131.2, 130.1, 129.2, 128.5, 128.2, 126.3, 123.5, 116.3 ppm

(E)-2,3-Dimethoxycinnamic acid 2-formylphenyl ester (51)

\[\text{CHO} \]

A mixture of salicylaldehyde (41) (0.244 g, 2.00 mmol), 2,3-dimethoxy trans-cinnamic acid (50) (0.625 g, 3.00 mmol), DCC (0.619 g, 3.00 mmol) and DMAP (0.049 g, 0.40 mmol) in dichloromethane (10 mL) was stirred at room temperature for 24 h and then heated at reflux for 24 h. The mixture was cooled to room temperature, diluted with dichloromethane (20 mL) and successively washed with water (2 x 10 mL), NaHSO_4 (10 mL), saturated NaHCO_3 (10 mL) and brine (10 mL). The organic layer was dried over anhydrous Na_2SO_4, filtered and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography on silica gel column (10-15% ethyl acetate/hexanes) to afford 51 as a colorless oil (0.112 g, 18%). δ_H(DCl_3) = 10.23 (s, 1H, CHO), 8.25 (d, J = 16.7 Hz, 1H, H-3), 7.94 (dd, J = 7.5, 1.4 Hz, 1H, H-3'), 7.68-7.64 (m, 1H, H-5'), 7.40 (t, J = 7.6 Hz, 1H, H-4'), 7.29 (d, J = 8.1 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H, H-6'), 7.12 (t, J = 8.4 Hz, 1H, H-8), 7.00 (d, J = 8.5 Hz, 1H), 6.75 (d, 16.7 Hz, 1H, H-2), 3.91 (s, 3H), 3.90 (s, 3H) ppm; δ_C(DCl_3) = 188.7 (CHO), 165.5, 153.4, 152.6,
149.1, 142.8, 135.5, 130.0, 128.2, 126.5, 124.5, 123.7, 119.8, 117.6, 114.9, 61.6, 56.1 ppm; IR \(\nu = 2765 \) (w), 1743 (m), 1701 (s), 1636 (s), 1602 (s), 1576 (m), 1480 (w), 1448 (m), 1404 (w), 1309 (m), 1262 (w), 1195 (m), 1156 (m), 1123 (s) cm\(^{-1}\); MS m/z (relative intensity) = M\(^+\) was not found, 287 (100).

2-(4-Bromocinnamoyloxy)benzaldehyde (55)

![Structural diagram of 2-(4-Bromocinnamoyloxy)benzaldehyde (55)](image)

A mixture of salicylaldehyde (41) (0.147 g, 1.20 mmol), bromide 53 (0.348 g, 1.26 mmol) and anhydrous \(\text{K}_2\text{CO}_3 \) (0.174 g, 1.26 mmol) in acetone (12.0 mL) was heated at reflux for 4.5 h. The reaction mixture was then allowed to cool to room temperature and filtered through a pad of Celite\(^\text{®} \) under suction and washed with acetone. The solvent was removed from the filtrate under reduced pressure and the residue was subjected to flash chromatography (5-10% ethyl acetate/hexanes) to afford 55 as a white solid (0.308 g, 81%). mp = 83-84 °C. \(\delta_{\text{H}}(\text{CDCl}_3) = 10.56 \) (s, 1H, CHO), 7.86 (dd, \(J = 7.7, 2.3 \) Hz, 1H), 7.56-7.53 (m, 1H), 7.47 (m, 2H), 7.28 (m, 2H), 7.07-7.02 (m, 2H), 6.71 (d, \(J = 15.4 \) Hz, 1H, H-4'), 6.42 (dt, \(J = 15.6, 5.9 \) Hz 1H, H-3'), 4.82 (d, \(J = 5.3 \) Hz, 2H, H-2') ppm; \(\delta_{\text{C}}(\text{CDCl}_3) = 189.9 \) (CHO), 161.1, 136.1, 135.3, 132.4, 132.0, 128.9, 128.3, 125.4, 124.5, 122.2, 121.3 (C-3'), 113.1 (C-2'), 69.1 (C-1') ppm; MS m/z (relative intensity) = 318.
A mixture of salicylaldehyde (41) (0.140 mL, 1.33 mmol), bromide 54 (0.339 g, 1.40 mmol) and anhydrous K₂CO₃ (0.194 g, 1.40 mmol) in acetone (10.0 mL) was heated at reflux for 4 h. The reaction mixture was then allowed to cool to room temperature and suction filtered through a pad of Celite®. The filter cake was washed with acetone and the solvent was removed from the filtrate under reduced pressure. The yellow residue was subjected to flash chromatography (5-20% ethyl acetate/petroleum ether) to afford 56 as a pale yellow solid (0.254 g, 67%) and recovered starting material 41 (0.049 g, 30%) as a colorless liquid. 56: mp = 91-92 °C. δ_H(CDCl₃) = 10.57 (s, 1H, CHO), 8.20 (m, 2H, H-7'), 7.87 (dd, J = 7.5, 1.1 Hz, 1H, H-6), 7.58-7.55 (m, 3H, H-4, H-6'), 7.08 (t, J = 7.2 Hz, 1H, H-5), 7.04 (d, J = 7.9 Hz, 1H, H-3), 6.86 (d, J = 15.8 Hz, 1H, H-4'), 6.62 (dt, J = 15.3, 4.9 Hz, 1H, H-3'), 4.89 (dd, J = 5.2, 2.2 Hz, 2H, H-2') ppm; δ_C(CDCl₃) = 189.7 (CHO), 160.8 (C-2), 147.5 (C-8'), 142.7 (C-5'), 136.1 (C-4), 130.8 (C-4'), 129.0...
(C-6), 128.6 (C-3'), 127.3 (C-6'), 125.4 (C-1), 124.3 (C-7'), 121.5 (C-5), 113.0 (C-3),
68.6 (C-2') ppm; MS m/z (relative intensity) = M⁺ not observed, 266 (M⁺-17, 22), 214
(100). HRMS [M⁺] calcd for C₁₆H₁₃NO₄ 283.0845 found 283.0844.

(7aR*, 13aR*, 14S*)-14-(4-Bromophenyl)-5,6,7,7a,12,13,13a,14-octahydro-5,12-
dioxa-7-azadibenzo[a,h]anthracen-6-one (57)

According to general procedure 3-A, 3-amino coumarin (25) (0.135 g, 0.840
mmol), enal 55 (0.28, 0.88 mmol) and Yb(OTf)₃ (0.052 g, 10 mol%) afforded 57 as a
white solid (0.32 g, 84%). mp = 276-278 °C; δH(CD₂Cl₂) = 7.48 (d, J = 7.1 Hz, 1H), 7.44
(d, J = 8.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.26-7.22 (m, 2H), 7.16-7.15 (m, 2H), 7.07
(t, J = 6.9 Hz, 1H), 7.01-6.98 (m, 2H), 6.87 (d, J = 7.1 Hz, 1H), 5.51 (s, 1H, H-7), 4.43
(d, J = 10.8 Hz, 1H, H-7a), 4.34 (dd, J = 10.4 Hz, 2.7 Hz, 1H, H-13α), 4.10 (t, J = 10.4
Hz, 1H, H-13β), 3.97 (d, J = 10.9 Hz, 1H, H-14), 2.41-2.34 (m, 1H) ppm; due to very low
solubility of this compound, a satisfactory ¹³C NMR spectrum could not be obtained; the
following major signals were observed: δC(CD₂Cl₂) = 141.7, 132.6, 132.0, 129.5, 126.8,
125.4, 124.5, 124.4, 121.3, 117.3, 116.8, 66.7 (C-13), 51.9 (C-7a), 44.9 (C-13a), 43.4 (C-
14) ppm; IR ν = 3389 (w), 1704 (s), 1628 (m), 1555 (w), 1462 (m), 1457 (w), 1428 (w),
1346 (m), 1322 (w), 1281 (w), 1260 (w), 1238 (m), 1189 (m), 1172 (m), 1051 (m) cm\(^{-1}\);
HRMS [M\(^+\)] calcd for C\(_{25}\)H\(_{18}\)N\(_2\)O\(_3\)Br 459.0470, found 459.0471.

(7aR\(^*\), 13aR\(^*\), 14S\(^*\))-14-(4-Nitrophenyl)-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (58)

According to general procedure 3-A, 3-amino coumarin (25) (0.055 g, 0.34 mmol), enal 56 (0.10, 0.36 mmol) and Yb(OTf)\(_3\) (0.021 g, 10 mol%) afforded 58 as a pale yellow solid (0.104, 72%). mp = 239-240 °C; \(\delta_N(CH_2Cl_2) = 8.17\) (m, 2H), 7.43-7.41 (m, 3H), 7.34 (d, \(J = 7.4\) Hz, 1H), 7.25-7.18 (m, 2H), 7.04 (t, \(J = 7.5\) Hz, 1H), 6.94 (t, \(J = 7.2\) Hz, 1H), 6.84 (d, \(J = 7.7\) Hz, 2H), 5.55 (s, 1H, H-7), 4.45 (d, \(J = 10.7\) Hz, 1H, H-7a), 4.29 (dd, \(J = 10.3, 3.2\) Hz, 1H, H-13\(a\)), 4.13-4.09 (m, 2H), 2.39-2.35 (m, 1H, H-13a) ppm; \(\delta_C(CH_2Cl_2) = 159.0\) (C-6), 154.4, 150.5, 149.2, 147.9, 132.7, 129.9, 129.6, 127.2, 125.7, 125.0, 124.7, 124.3, 121.7, 121.2, 120.4, 119.5, 117.6, 117.2, 66.7 (C-12), 52.1 (C-7a), 44.9 (C-13a), 44.0 (C-14) ppm; IR \(\nu = 3401\) (w), 1705 (s), 1629 (w), 1552 (m), 1489 (m), 1448 (w), 1431 (m), 1327 (w), 1277 (w), 1258 (w), 1236 (m), 1181 (m), 1176 (w), 1042 (m) cm\(^{-1}\); MS m/z (relative intensity) = 413 (M\(^+\)+2, 30), 412 (M\(^+\)+1, 100). HRMS [M\(^+\)] calcd for C\(_{25}\)H\(_{18}\)N\(_2\)O\(_3\) 426.1216, found 426.1211.
(7aR*, 13aR*, 14S*)-2-Methyl-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (60)

According to general procedure 3-A, 3-amino-6-methylcoumarin (0.105 g, 0.600 mmol), enal 45 (0.15, 0.63 mmol) and Yb(OTf)₃ (0.037 g, 10 mol%) afforded 60 as an off-white solid (0.206, 87%). mp = 228-229 °C; δₚ(CD₂Cl₂) = 7.24-7.21 (m, 2H), 7.19-7.17 (m, 2H), 7.15-7.11 (m, 3H), 7.10-7.07 (m, 1H). 6.94-6.91 (m, 1H), 8.86-8.83 (m, 1H), 6.62 (d, J = 8.4 Hz, 1H), 5.43 (s, 1H, H-7), 4.34 (d, J = 10.8 Hz, 1H, H-7a), 4.29 (dd, J = 10.7, 3.5 Hz, 1H, H-13α), 3.96 (t, J = 11.0 Hz, 1H, H-13β), 3.88 (d, J = 11.1 Hz, 1H, H-14), 2.32-2.24 (m, 1H, H-13a), 2.23 (s, 3H, C-2-CH₃) ppm; δₚ(CD₂Cl₂) = 159.4 (C-6), 152.3, 149.3, 142.7, 132.4, 130.9, 130.3, 129.6, 128.7, 128.8, 125.9, 124.9, 124.4, 121.4, 121.2, 121.0, 117.2, 116.9, 67.1 (C-13), 52.2 (C-7a), 45.3 (C-13a), 44.3 (C-14), 20.8 (C-2-CH₃) ppm; IR ν = 3366 (w), 1727 (s), 1699 (w), 1684 (w), 1652 (w), 1628 (m), 1558 (m), 1541 (w), 1499 (s), 1465 (m), 1340 (m), 1323 (m), 1287 (w), 1257 (m), 1222 (m), 1192 (m), 1180 (m), 1117 (m), 1073 (w), 1048 (m), 1036 (m) cm⁻¹; MS m/z (relative intensity) = 397 (M⁺+2, 28), 396 (M⁺+1, 100), 395 (16), 394 (22), 392 (47). HRMS [M⁺] calcd for C₂₆H₂₁NO₃ 395.1521 found 395.1520.
(7aR*, 13aR*, 14S*)-2-Methoxy-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (61) and 2-Methoxy-14-phenyl-5,6,12,13-tetrahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (62)

According to general procedure, 3-amino-6-methoxycoumarin (0.076 g, 0.40 mmol), enal 45 (0.10 g, 0.42 mmol) and Yb(OTf)$_3$ (0.025 g, 10 mol%) afforded 61 as an off-white solid (0.14 g, 84%). Additionally, flash chromatography (ethyl acetate) of the filtrate afforded 62 as a white solid (0.003 g, 2%). 61: mp = 228-229 °C. δ_{H}(CD$_2$Cl$_2$) = 7.41 (d, $J = 7.1$ Hz, 1H, H-8), 7.35-7.32 (m, 2H), 7.28 (d, $J = 7.0$ Hz, 1H), 7.26-7.20 (m, 3H), 7.17 (d, $J = 8.8$ Hz, 1H, H-4), 7.02 (t, $J = 7.4$ Hz, 1H, H-9), 6.82 (d, $J = 8.4$ Hz, 1H, H-11), 6.73 (dd, $J = 8.9$, 2.1 Hz, 1H, H-3), 6.42 (d, $J = 2.0$ Hz, 1H, H-1), 5.49 (s, 1H, H-7), 4.41 (d, $J = 10.2$ Hz, 1H, H-7a), 4.32 (dd, $J = 10.7$, 3.0 Hz, 1H, H-13α), 4.07 (t, $J = 11.1$ Hz, 1H, H-13β), 3.91 (d, $J = 11.3$ Hz, 1H, H-14), 3.42 (s, 3H, C-2-OCH$_3$), 2.41 (m, 1H, H-13a) ppm; δ_{C}(CD$_2$Cl$_2$) = 159.3 (C-6), 156.2, 154.6, 143.5, 142.7, 132.5, 129.7, 129.6, 128.7, 127.9, 125.6 (C-8), 121.6, 121.5 (C-9), 121.4, 120.9, 117.7, 117.5 (C-11), 114.4 (C-3), 107.9 (C-1), 67.2 (C-13), 55.9 (C-2-OCH$_3$), 52.1 (C-7a), 44.8 (C-14), 44.4 (C-13a) ppm; IR $\nu = 3360$ (w), 1702 (s), 1614 (w), 1560 (w), 1499 (m), 1467 (w), 1451
(w), 1426 (w), 1343 (m), 1319 (w), 1282 (w), 1258 (w), 1234 (w), 1187 (m), 1170 (m), 1050 (m) cm⁻¹; MS m/z (relative intensity) = 413 (M⁺+2, 30), 412 (M⁺+1, 100), 411 (39), 410 (69), 408 (65). HRMS [M⁺] calcd for C₂₆H₂₁N⁴O₄ 411.1471, found 411.1465. 62: mp = 273-274 °C (decomp); δH(CDCl₃) = 8.54 (dd, J = 7.6, 2.4 Hz, 1H), 7.68-7.65 (m, 2H), 7.59 (d, J = 7.3 Hz, 1H), 7.40-7.38 (m, 1H), 7.35 (d, J = 6.5 Hz, 1H), 7.27-7.26 (m, 1H), 7.18 (t, J = 7.6 Hz, 1H), 6.94-6.90 (m, 2H), 6.47 (d, J = 7.0 Hz, 1H), 4.98 (s, 2H), 3.29 (s, 3H) ppm; δC(CDCl₃) = due to small quantity and low solubility of this compound, ¹³C NMR could not be obtained. IR ν = 1734 (s), 1597 (w), 1561 (w), 1499 (m), 1465 (s), 1431 (m), 1376 (m), 1294 (m), 1252 (m), 1215 (s), 1190 (m), 1153 (s), 1110 (m), 1085 (w), 1061 (w), 1039 (s), 1020 (m) cm⁻¹; MS m/z (relative intensity) = 409 (M⁺+2, 26), 408 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₆H₁₇NO₄ 407.1158, found 407.1160

(7αR*, 13αR*, 14S*)-2-Bromo-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (63)

According to general procedure 3-A, 3-amino-6-bromocoumarin (0.072 g, 0.30 mmol), enal 45 (0.075, 0.32 mmol) and Yb(OTf)₃ (0.019 g, 10 mol%) afforded 63 as a
white solid (0.11, 78%). mp = 273-274 °C; δ_H(DMSO-d_6) = 7.68 (dd, $J = 7.2, 2.6$ Hz, 1H, H-3), 7.40-7.37 (m, 3H), 7.34-7.30 (m, 4H), 7.24 (m, 1H), 7.22-7.21 (m, 1H), 7.19 (dd, $J = 7.8, 2.8$ Hz, 1H), 6.68 (d, $J = 8.4$ Hz, 1H, H-11), 6.08 (s, 1H, H-7), 4.42 (d, $J = 10.2$ Hz, 1H, H-7a), 4.29-4.04 (m, 3H), 2.13-2.05 (m, 1H, H-13a) ppm; δ_C(CD$_2$Cl$_2$) = 159.1 (C-6), 154.5, 150.4, 149.2, 147.9, 131.6, 130.0, 129.7, 127.2, 125.6, 125.0, 124.8, 124.4, 121.6, 121.3 (C-9), 120.4, 119.6, 117.5, 117.2 (C-11), 66.7 (13), 52.1 (C-7a), 44.9 (C-14), 44.0 (C-13a) ppm; IR $\nu = 3392$ (w), 1703 (s), 1620 (m), 1595 (w), 1583 (w), 1559 (w), 1488 (s), 1458 (m), 1410 (m), 1343 (s), 1310 (m), 1275 (m), 1254 (w), 1230 (w), 1217 (m), 1201 (s), 1137 (w), 1077 (m), 1048 (s), 1024 (m), 1009 (m) cm$^{-1}$; HRMS [M$^+$] calcd for C$_{25}$H$_{18}$NO$_3$Br 459.0470, found 459.0468.

(7aR^*, 13aR^*, 14S*)-2-Nitro-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (64)

According to general procedure 3-A, 3-amino-6-nitrocoumarin (0.062 g, 0.30 mmol), enal 45 (0.075 g, 0.32 mmol) and Yb(OTf)$_3$ (0.019 g, 10 mol%) afforded 64 as a pale yellow solid (0.105 g, 82%). mp = 262-263 °C; δ_H(CD$_2$Cl$_2$) = 8.00 (dd, $J = 9.0$ Hz,
According to general procedure 3-A, 3-amino-8-methoxycoumarin (0.076 g, 0.40 mmol), enal 45 (0.10, 0.42 mmol) and Yb(OTf)₃ (0.025 g, 10 mol%) afforded 65 as an off-white solid (0.141 g, 86%). mp = 276-278 °C; δH(CD₂Cl₂) = 7.33 (d, J = 7.6 Hz, 1H), 7.23 (m, 2H), 7.16 (m, 1H), 7.12 (m, 3H), 6.93 (t, J = 7.3 Hz, 1H), 6.78 (t, J = 7.8 Hz, 1H),
A mixture of o-vanillin (0.46 g, 3.0 mmol), cinnamyl bromide (0.62 g, 3.2 mmol) (44) and anhydrous K$_2$CO$_3$ (0.44 g, 3.2 mmol) in acetone (30 mL) was heated at reflux for 3 h. The reaction mixture was allowed to cool to room temperature and then suction filtered through a pad of Celite® and the filter cake was washed with acetone. The
solvent was removed from the filtrate under reduced pressure and the residue was subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 68 as a thick gum (0.77 g, 96%). $\delta_{\text{H}}(\text{CDCl}_3) = 10.49 \,(s, 1\,\text{H}), 7.42 \,(dd, J = 7.1, 2.5 \,\text{Hz,} 1\,\text{H}), 7.38-7.37 \,(m, 2\,\text{H}), 7.31 \,(t, J = 7.5 \,\text{Hz,} 2\,\text{H}), 7.25 \,(t, J = 7.3 \,\text{Hz,} 1\,\text{H}), 7.16-7.11 \,(m, 2\,\text{H}), 6.66 \,(d, J = 15.6 \,\text{Hz,} 1\,\text{H}), 6.43 \,(m, 1\,\text{H}), 4.82 \,(d, J = 6.4 \,\text{Hz,} 2\,\text{H}), 3.92 \,(s, 3\,\text{H}) \,\text{ppm; $\delta_{\text{C}}(\text{CDCl}_3) = 190.5, 153.3, 151.4, 136.4, 134.6, 130.4, 128.8, 128.3, 126.8, 124.4, 119.4, 118.2, 75.3, 56.3 \,\text{ppm (one carbon signal fewer than expected)}; MS m/z (relative intensity) = M^+ not observed, 251 (M^+ - 17, 100). HRMS [M^+] calcd for C_{17}H_{16}O_3 268.1099 found 268.1108.

5-Bromo-2-(cinnamyloxy)benzaldehyde (69)

A mixture of 5-bromosalicylaldehyde (67) (0.10 g, 0.50 mmol), cinnamyl bromide (0.11 g, 0.53 mmol) (44) and anhydrous K_2CO_3 (0.073 g, 0.53 mmol) in acetone (5 mL) was heated at reflux for 5 h. The reaction mixture was allowed to cool to room temperature and then suction filtered through a pad of Celite® and the filter cake was washed with acetone. The solvent was removed from the filtrate under reduced pressure and the residue was subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 69 as a pale yellow solid (0.15 g, 94%). mp = 69-71 °C; $\delta_{\text{H}}(\text{CDCl}_3) = 10.51 \,(s, 1\,\text{H},

253
CHO), 7.66 (d, J = 2.3 Hz, 1H), 7.42-7.39 (m, 3H), 7.32-7.30 (m, 2H), 7.24 (dd, J = 7.4, 2.6 Hz, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.72 (d, J = 15.7 Hz, 1H), 6.45-6.41 (m, 1H), 4.69 (d, J = 6.5 Hz, 2H) ppm; δ(CDC6H) = 190.7, 159.2, 136.7, 136.5, 133.8, 130.3, 128.4, 128.3, 127.9, 126.1, 124.4, 124.3, 114.2, 70.2 ppm; MS m/z (relative intensity) = M⁺ not observed, 118 (100); HRMS [M⁺] calcd for C16H13BrO2 316.0099 found 316.0105.

(7aR*, 13aR*, 14S*)-11-Methoxy-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (70)

According to general procedure 3-A, 3-aminocoumarin (25) (0.040 g, 0.25 mmol), enal 68 (0.070, 0.26 mmol) and Yb(OTf)₃ (0.016 g, 10 mol%) afforded 70 as a white solid (0.092 g, 89%). mp = 261-262 °C; δH(CDC6H) = 7.30-7.27 (m, 3H), 7.26-7.24 (m, 1H), 7.22-7.19 (m, 3H), 7.01-6.96 (m, 4H), 6.88 (d, J = 6.9 Hz, 1H), 5.42 (s, 1H, H-7), 4.42-4.38 (m, 2H, H-7a, H-13α), 4.06 (t, J = 11.0 Hz, 1H, H-13β), 3.94 (d, J = 11.1 Hz, 1H, H-14), 3.79 (s, 3H, C-11-OCH3), 2.41-2.35 (m, 1H, H-13a) ppm; δC(CDC6H) = 159.3 (C-6), 149.23, 149.21, 144.2, 142.6, 132.4, 129.6, 128.7, 127.8, 126.8, 124.9, 124.4, 122.3, 121.3, 121.1, 121.0, 117.2, 116.9, 111.7, 67.2 (C-13), 56.4 (C-11-OCH3), 254
52.2 (C-7a), 45.1 (C-13a), 44.2 (C-14) ppm; IR ν = 3396 (w), 1717 (s), 1616 (w), 1598 (w), 1580 (w), 1494 (m), 1483 (m), 1457 (m), 1442 (m), 1342 (m), 1269 (m), 1216 (m), 1198 (m), 1181 (m), 1130 (m), 1115 (w), 1091 (m), 1063 (m) cm⁻¹; MS m/z (relative intensity) = 413 (M⁺+2, 24), 412 (M⁺+1, 97), 411 (42), 410 (100); HRMS [M⁺] calcd for
C₂₆H₂₅NO₄ 411.1471 found 411.1461.

(7aR*, 13aR*, 14S*)-9-Bromo-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (71)

According to general procedure 3-A, 3-aminocoumarin (25) (0.040 g, 0.25 mmol), enal 69 (0.082, 0.26 mmol) and Yb(OTf)₃ (0.016 g, 10 mol%) afforded 71 as a white solid 0.10 g, 89%). mp = 271-272 °C; δH(CDCl₃) = 7.51 (s, 1H), 7.32-7.23 (m, 5H), 7.19-7.13 (m, 3H), 6.97-6.90 (m, 2H), 6.71 (d, 1H, J = 8.8 Hz), 5.41 (s, 1H, H-7), 4.44-4.33 (m, 2H, H-7a, H-13α), 4.05 (t, J = 10.7 Hz, 1H, H-13β), 3.90 (d, J = 10.6 Hz, 1H, H-14), 2.40-2.11 (m, 1H, H-13a) ppm; δC(CDCl₃) = 159.0 (C-6), 153.1, 148.7, 141.7, 132.2, 131.4, 129.4, 128.0, 127.6, 126.7, 124.2, 123.0, 121.2, 120.2, 119.0, 116.6, 113.1, 66.7 (C-13), 51.4 (C-7a), 44.2 (C-13a), 43.8 (C-14) ppm (one carbon signal fewer
than expected); IR ν = 3357 (w), 1720 (s), 1630 (m), 1602 (w), 1501 (m), 1484 (m), 1461 (m), 1451 (s), 1404 (w), 1367 (m), 1322 (m), 1292 (w), 1256 (m), 1234 (m), 1198 (s), 1176 (m), 1137 (w), 1116 (w), 1091 (w), 1072 (w), 1047 (m), 1034 (s) cm⁻¹; MS m/z (GC/MS) (relative intensity) = 461 (M⁺(81), 94), 459 (M⁺(79), 100); HRMS [M⁺] calcd for C₂₅H₁₈BrNO₃ 459.0470 found 459.0476.

(7aR*, 13aR*, 14S*)-11-Methoxy-2-methyl-14-phenyl-5,6,7a,12,13,13a,14-octahydro-5,12-dioxo-7-azadibenzo[a,h]anthracen-6-one (72)

![Chemical Structure](image)

According to general procedure 3-A, 3-amino-6-methylcoumarin (0.044 g, 0.25 mmol), enal 68 (0.070 g, 0.26 mmol) and Yb(OTf)₃ (0.016 g, 10 mol%) afforded 72 as a white solid (0.089 g, 84%). mp = 230-232 °C; δH(CD₂Cl₂) = 7.24 (t, J = 7.0 Hz, 2H), 7.18 (d, J = 6.8 Hz, 1H), 7.14-7.13 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.94-6.87 (m, 3H), 6.77 (d, J = 7.8 Hz, 1H), 6.73 (s, 1H), 5.32 (s, 1H, H-7), 4.33 (dd, J = 11.3, 3.5 Hz, 1H, H-13α), 4.30 (d, J = 10.9 Hz, 1H, H-7a), 3.98 (t, J = 11.5 Hz, 1H, H-13β), 3.84 (d, J = 10.8 Hz, 1H, H-14), 3.72 (s, 3H, C-11-OC₃H₃), 2.31 (m, 1H, H-13a), 2.00 (s, 3H, C-2-
CH_3 ppm; $\delta_C(\text{CD}_2\text{Cl}_2) = 159.5$ (C-6), 149.2, 147.3, 144.2, 142.7, 134.0, 132.3, 129.6, 128.7, 127.8, 125.1, 122.4, 121.5, 121.1, 120.6, 117.2, 116.5, 111.7 (C-10), 67.2 (C-13), 56.4 (C-11-OCH_3), 52.1 (C-7a), 44.8 (C-13a), 44.1 (C-14), 28.6 (C-2-CH_3) ppm (one carbon signal fewer than expected); IR $\nu = 3358$ (w), 1701 (s), 1678 (w), 1650 (w), 1613 (m), 1501 (s), 1469 (m), 1345 (w), 1312 (w), 1281 (w), 1252 (m), 1219 (m), 1191 (m), 1172 (w), 1119 (m), 1065 (w), 1033 (m) cm$^{-1}$; MS m/z (relative intensity) = 427 ($M^+ + 2$, 30), 426 ($M^+ + 1$, 100), 425 (18), 424 (32), 422 (11); HRMS [M^+] calcd for $C_{27}H_{23}NO_4$ 425.1627, found 425.1623.

(7aR*, 13aR*, 14S*)-2,11-Dimethoxy-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxo-7-azadibenzo[a,h]anthracen-6-one (73)

According to general procedure 3-A, 3-amino-6-methoxycoumarin (0.048 g, 0.25 mmol), enal 68 (0.070, 0.26 mmol) and Yb(OTf)$_3$ (0.016 g, 10 mol%) afforded 73 as a white solid (0.094, 85%). mp = 258-260 °C; $\delta_H(\text{CD}_2\text{Cl}_2) = 7.25$ (t, $J = 7.4$ Hz, 2H), 7.19 (d, $J = 7.4$ Hz, 1H, H-4), 7.09-7.08 (m, 2H), 7.08 (d, $J = 9.1$ Hz, 1H), 6.93-6.87 (m, 2H), 6.76 (d, $J = 7.7$ Hz, 1H, H-10), 6.64 (d, $J = 9.0$, 3.1 Hz, 1H, H-3), 6.34 (d, $J = 2.9$ Hz, 1H, H-8).
1H, H-1), 5.37 (s, 1H, H-7), 4.34-4.30 (m, 2H, H-7a, H-13α), 3.97 (t, J = 11.1 Hz, 1H, H-13β), 3.83 (d, J = 10.2 Hz, 1H, H-14), 3.71 (s, 3H, C-11-\textit{OCH}_3), 3.33 (s, 3H, C-2-\textit{OCH}_3), 2.32 (m, 1H, H-13a) ppm; δ(CD_2Cl_2) = 159.3 (C-6), 156.2, 149.2, 144.2, 143.5, 142.7, 132.5, 129.7, 128.7 (C-4), 127.9, 122.3, 121.5, 121.1, 120.8, 117.6, 117.2, 114.3 (C-3), 111.7 (C-10), 107.9 (C-1), 67.2 (C-13), 56.4 (C-11-\textit{OCH}_3), 55.9 (C-2-\textit{OCH}_3), 52.1 (H-7a), 44.7 (H-13a), 44.4 (H-14) ppm; IR ν = 3365 (w), 1699 (s), 1619 (w), 1555 (m), 1501 (m), 1468 (w), 1421 (m), 1329 (m), 1302 (w), 1285 (w), 1257 (w), 1232 (m), 1182 (m), 1169 (m), 1029 (m) cm⁻¹; MS m/z (relative intensity) = 443 (M⁺+2, 32), 442 (M⁺+1, 100), 441 (24), 440 (48), 438 (26); HRMS [M⁺] calcd for C_{27}H_{23}NO_5 441.1576, found 441.1577.

(7aR*, 13aR*, 14S*)-2-Bromo-11-methoxy-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (74)

![Chemical Structure of 74](https://example.com/structure.png)

According to general procedure 3-A, 3-amino-6-bromocoumarin (0.060 g, 0.25 mmol), enal 68 (0.070, 0.26 mmol) and Yb(OTf)_3 (0.016 g, 10 mol%) afforded 74 as an
off-white solid (0.092, 75%). mp = 253-255 °C; δ_H(CD_2Cl_2) = 7.28-7.26 (m, 2H), 7.22 (m, 1H), 7.17 (dd, J = 9.2, 1.8 Hz, 1H, H-3), 7.13 (m, 2H), 7.07 (d, J = 8.1 Hz, 1H, H-4), 7.02 (d, J = 2.1 Hz, 1H, H-1), 6.93-6.88 (m, 2H), 6.78 (d, J = 7.4 Hz, 1H, H-10), 5.44 (s, 1H, H-7), 4.35 (d, J = 11.5 Hz, 1H, H-7a), 4.31 (dd, J = 10.9 Hz, J = 3.9 Hz, 1H, H-13α), 3.97 (t, J = 11.3 Hz, 1H, H-13β), 3.80 (d, J = 11.1 Hz, 1H, H-14), 3.72 (s, 3H, C-11-OCH_3), 2.31 (m, 1H, H-13a) ppm; δ_C(CD_2Cl_2) = 158.7 (C-6), 149.3, 148.0, 142.2, 141.9, 132.8, 129.8, 129.3 (C-3), 128.1, 127.5 (C-1), 122.9, 122.0, 121.2, 119.4, 118.5 (C-4), 117.2, 117.1, 111.8 (C-10), 67.2 (C-13), 56.4 (C-11-OCH_3), 52.1 (C-7a), 44.8 (C-13a), 44.1 (C-14) ppm (one carbon signal fewer than expected); IR ν = 3351 (m), 1710 (s), 1614 (w), 1584 (w), 1497 (m), 1482 (s), 1455 (m), 1407 (w), 1345 (m), 1316 (w), 1263 (s), 1229 (s), 1214 (m), 1203 (m), 1122 (w), 1091 (w), 1077 (w), 1059 (w), 1037 (s) cm⁻¹; HRMS [M⁺] calcd for C_{26}H_{20}BrNO_4 489.0576, found 489.0574.

(7aR*, 13aR*, 14S*)-11-Methoxy-2-nitro-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxo-7-azadibenzo[a,h]anthracen-6-one (75)
According to general procedure 3-A, 3-amino-6-nitrocoumarin (0.052 g, 0.25 mmol), enal 68 (0.070 g, 0.26 mmol) and Yb(OTf)$_3$ (0.016 g, 10 mol%) afforded 75 as a pale yellow solid (0.089 g, 78%). mp = 257-259 °C; δ_{H}(CD$_2$Cl$_2$) = 7.89 (dd, J = 8.7, 2.3 Hz, 1H), 7.82 (d, J = 2.7 Hz, 1H), 7.29-7.26 (m, 3H), 7.21-7.19 (m, 3H), 6.93-6.89 (m, 2H), 6.78 (dd, J = 7.2, 1.5 Hz, 1H), 5.53 (s, 1H, H-7), 4.41 (d, J = 10.7 Hz, 1H, H-7a), 4.31 (dd, J = 10.7 Hz, 3.2 Hz, 1H, H-13a), 3.98 (t, J = 11.5 Hz, 1H, H-13β), 3.90 (d, J = 11.3 Hz, 1H, H-14), 3.72 (s, 3H, C-11-OC$_3$H$_3$), 2.36 (m, 1H, H-13a) ppm; δ(CD$_2$Cl$_2$) = 163.2 (C-6), 158.1, 152.4, 149.3, 144.5, 144.3, 141.4, 133.2, 130.0, 128.3, 121.74, 121.67, 121.4, 121.3, 120.7, 119.2, 117.8, 117.0, 111.9, 67.1 (C-13), 56.5 (C-11-OC$_3$H$_3$), 52.1 (C-7a), 44.5 (C-13a), 44.1 (C-14) ppm; IR ν = 3395 (w), 1725 (s), 1629 (m), 1560 (m), 1499 (m), 1467 (w), 1451 (w), 1426 (w), 1343 (m), 1319 (w), 1282 (w), 1258 (w), 1234 (w), 1187 (m), 1170 (m), 1050 (m) cm$^{-1}$; MS m/z (relative intensity) = 457 (M$^+$+1, 14), 456 (M$^+$, 52), 455 (100), 419 (26), 214 (56); HRMS [M$^+$] calcd for C$_{28}$H$_{26}$N$_{2}$O$_6$ 456.1321 found 456.1325.

(7aR*, 13aR*, 14S*)-4,11-Dimethoxy-14-phenyl-5,6,7,7a,12,13,13a,14-octahydro-5,12-dioxa-7-azadibenzo[a,h]anthracen-6-one (76)
According to general procedure 3-A, 3-amino-8-methoxycoumarin (0.048 g, 0.25 mmol), enal 68 (0.070 g, 0.26 mmol) and Yb(OTf)₃ (0.016 g, 10 mol%) afforded 76 as an off-white solid (0.095, 86%). mp = 265-266 °C; δ_H(CD₂Cl₂) = 7.31-7.29 (m, 2H), 7.26-7.23 (m, 1H), 7.19-7.18 (m, 2H), 7.01 (d, J = 7.8 Hz, 1H), 6.97 (t, J = 8.3 Hz, 1H), 6.87-6.84 (m, 2H), 6.77 (d, J = 7.5 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 5.43 (s, 1H, H-7), 4.41-4.37 (m, 2H, H-7α, H-13α), 4.05 (t, J = 11.0 Hz, 1H, H-13β), 3.92-3.91 (m, 4H, H-14), 3.79 (s, 3H), 2.36 (m, 1H, H-13α) ppm; δ_C(CD₂Cl₂) = 158.8, 149.2, 147.8, 144.2, 142.8, 138.7, 132.5, 129.6, 128.6, 127.7, 124.0, 122.3, 121.8, 121.5, 121.1, 117.2, 116.7, 111.7, 109.3, 67.1, 56.7, 56.4, 52.1, 45.1, 44.3 ppm; IR ν = 3345 (m), 1681 (s), 1602 (w), 1576 (m), 1558 (w), 1483 (m), 1439 (m), 1337 (m), 1258 (m), 1205 (s), 1175 (s), 1133 (m), 1109 (m), 1090 (m), 1064 (s) cm⁻¹; MS m/z (relative intensity) = 443 (M⁺+2, 32), 442 (M⁺+1, 100), 440 (12); HRMS [M⁺] calcd for C₂₇H₂₃NO₅ 441.1576 found 441.1583.

4-Acetyl-1-cinnamyl 1H-pyrrole-2-carbaldehyde (78)

To a clear yellow solution of 77 (0.14 g, 1.0 mmol) in freshly distilled DMF (2.0 mL) was added sodium hydride (60% dispersion in mineral oil, 0.044 g, 1.1 mmol) at 0 °C followed by the addition of cinnamyl bromide (0.22 g, 1.1 mmol). The resulting turbid orange mixture was stirred at rt for 1 h. The reaction was quenched by the addition
of few drops of methanol. Ice-cold water was then added and the mixture was suction filtered. The solids were washed with cold 5% ethyl acetate/hexanes to afford 78 as a pale yellow solid (0.12 g, 46%). The filtrate was diluted with water and extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with water, washed with brine, dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The resulting yellow residue was subjected to flash chromatography (15% ethyl acetate/hexanes) to afford 78 as a pale yellow solid (0.046 g, 18%). mp = 161-162 °C. \(\delta_{\text{H}}(\text{CDCl}_3) = 9.63 \) (s, 1H, CHO), 7.59 (s, 1H), 7.36-7.35 (m, 3H), 7.32-7.29 (m, 2H), 7.25 (m, 1H), 6.54 (d, \(J = 15.7 \) Hz, 1H, H-3'), 6.30 (ddd, \(J = 15.9, 12.6, 3.2 \) Hz, 1H, H-2'), 5.13 (d, \(J = 6.2 \) Hz, 2H, H-1'), 2.44 (s, 3H, COCH\(_3\)) ppm; \(\delta_{\text{C}}(\text{CDCl}_3) = 192.7 \) (CHO), 180.3 (COCH\(_3\)), 135.9, 134.4, 133.0, 132.2, 128.8, 128.4, 126.8, 126.4, 124.2, 123.7, 51.4 (C-1'), 27.4 (COCH\(_3\)) ppm; MS m/z (relative intensity) = 254 (M\(^+\)+1, 100), 211 (65); HRMS [M\(^+\)] calcd for C\(_{16}\)H\(_{15}\)N\(_2\)O\(_2\) 253.2958 found 253.2964.

(7aS*, 11aS*, 12R*)-9-Acetyl-12-phenyl-7,7a,10a,11,11a,12-hexahydro-6H-chromeno[3,4-b]pyrrolizino[2,1-e]pyridin-6-one (79)
According to general procedure 3-A, 3-aminocoumarin (25) (0.040 g, 0.25 mmol), enal 78 (0.066 g, 0.26 mmol) and Yb(OTf)₃ (0.016 g, 10 mol%) were reacted at rt for 6 h and then heated at reflux for 18 h. The precipitate was suction filtered and the solids were washed with cold acetonitrile to afford 79 as a pale yellow solid (0.038 g, 38%). The solvent was removed from filtrate under reduced pressure and the residue was subjected to flash chromatography (30% ethyl acetate/hexanes) to afford 79 as a pale yellow solid (0.011 g, 11%). Combined yield = 0.049 g, 49%. mp = 265-266 °C; δH(CDC1₃) = 7.36-7.33 (m, 4H), 7.30-7.26 (m, 2H), 7.24 (s, 1H), 7.22-7.18 (m, 2H), 7.12-7.08 (m, 1H), 6.47 (s, 1H), 4.93 (s, 1H, H-7), 4.65 (d, J = 5.4 Hz, 1H, H-7a), 4.30 (s, 1H, H-12), 4.23 (dd, J = 10.8, 7.4 Hz, 1H, H-11α), 3.84 (t, J = 10.8 Hz, 1H, H-11β), 3.40-3.35 (m, 1H, H-11α), 2.35 (s, 3H, COCH₃) ppm; δC(CDC1₃) = 193.4 (COCH₃), 158.2 (C-6), 148.0, 142.5, 138.7, 129.8, 129.5, 128.5, 127.8, 127.5, 126.2, 124.9, 121.6, 120.8, 116.7, 112.0, 102.3, 50.1 (C-11), 49.4 (C-11a), 46.7 (C-7a), 38.9 (C-12), 27.2 (COCH₃) ppm; MS m/z (relative intensity) = 400 (M⁺+2, 21), 399 (100); HRMS [M⁺] calcd for C₂₅H₂₀N₂O₃ 396.1474 found 396.1479.
3.5 References

7133.

3.6 Appendix

3.6.1 ^1H and ^{13}C NMR Spectra for Selected Compounds

![NMR Spectra](image)
3.6.2 X-ray Crystal Structure Data for 58

Data Collection

A colorless platelet crystal of \(\text{C}_{25}\text{H}_{18}\text{N}_{2}\text{O}_{5} \) having approximate dimensions of 0.30 x 0.30 x 0.03 mm was mounted on a glass fiber. All measurements were made on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K\(\alpha \) radiation.

Indexing was performed from 360 images that were exposed for 20 seconds. The crystal-to-detector distance was 35.04 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

\[
\begin{align*}
a &= 8.7591(18) \text{ Å} \\
b &= 13.493(3) \text{ Å} \\
c &= 16.814(4) \text{ Å} \\
\beta &= 100.732(5)^\circ \\
V &= 1952.5(7) \text{ Å}^3
\end{align*}
\]

For \(Z = 4 \) and F.W. = 426.43, the calculated density is 1.451 g/cm\(^3\). The systematic absences of:

\(h0l: h \pm 2n \)

\(0k0: k \pm 2n \)

uniquely determine the space group to be:

\[\text{P2}_1/\alpha (\#14) \]

The data were collected at a temperature of -120 ± 1°C to a maximum 2\(\theta \) value of 65.4\(^\circ \). A total of 690 oscillation images were collected. A sweep of data was done using
ω scans from -75.0 to 105.0° in 0.5° step, at χ = 0.0° and φ = 0.0°. The exposure rate was 40.0 [sec./°]. The detector swing angle was 15.12°. A second sweep was performed using ω scans from -75.0 to 90.0° in 0.5° step, at χ = 54.0° and φ = 90.0°. The exposure rate was 40.0 [sec./°]. The detector swing angle was 15.12°. The crystal-to-detector distance was 35.04 mm. Readout was performed in the 0.137 mm pixel mode.

Data Reduction

Of the 17498 reflections that were collected, 3839 were unique (Rint = 0.062); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). Net intensities and sigmas were derived as follows:

\[F^2 = [\sum_i (P_i - mB_{ave})] \cdot Lp^{-1} \]

where \(P_i \) is the value in counts of the \(i^{th} \) pixel

\(m \) is the number of pixels in the integration area

\(B_{ave} \) is the background average

\(Lp \) is the Lorentz and polarization factor

\[B_{ave} = \sum_j (B_j)/n \]

where \(n \) is the number of pixels in the background area

\(B_j \) is the value of the \(j^{th} \) pixel in counts

\[\sigma^2(F^2_{hkl}) = [(\sum_i P_i) + m(\sum (B_{ave} - B_j)^2)/(n-1))] \cdot Lp \cdot errmul + (erradd \cdot F^2)^2 \]

where \(erradd = 0.00 \)

\(errmul = 1.00 \)
The linear absorption coefficient, \(\mu\), for Mo-K\(\alpha\) radiation is 1.024 cm\(^{-1}\). The data were corrected for Lorentz and polarization effects. A correction for secondary extinction\(^2\) was applied (coefficient = 0.004120). A numerical absorption correction was applied which resulted in transmission factors ranging from 0.9784 to 0.9964.

Structure Solution and Refinement

The structure was solved by direct methods\(^3\) and expanded using Fourier techniques\(^4\). The non-hydrogen atoms were refined anisotropically. Some hydrogen atoms were refined isotropically, some were refined using the riding model, and the rest were included in fixed positions. The final cycle of full-matrix least-squares refinement\(^5\) on \(F^2\) was based on 3822 observed reflections and 294 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

\[
R_1 = \frac{\sum |F_{o}|-|F_{c}|}{\sum |F_{o}|} = 0.0939
\]

\[
wR_2 = \left[\frac{\sum w(F_{o}^2 - F_{c}^2)^2}{\sum w(F_{o}^2)^2} \right]^{1/2} = 0.1756
\]

The standard deviation of an observation of unit weight\(^6\) was 1.32. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.19 and -0.19 e\(^{-}/\text{Å}^3\), respectively.

Neutral atom scattering factors were taken from Cromer and Waber\(^7\). Anomalous dispersion effects were included in \(F_{\text{calc}}\); the values for \(\Delta f\) and \(\Delta f''\) were those of Creagh and McAuley\(^9\). The values for the mass attenuation coefficients are those of
Creagh and Hubbell10. All calculations were performed using the CrystalStructure11,12 crystallographic software package except for refinement, which was performed using SHELXL-9713.

References

(3) **SHELX97**: Sheldrick, G.M. (1997).

(5) Least Squares function minimized: (SHELXL97)

\[\sum w(F_0^2-F_c^2)^2 \] where \(w = \) Least Squares weights.

(6) Standard deviation of an observation of unit weight:

\[\sqrt{\frac{\sum w(F_0^2-F_c^2)^2/(N_0-N_V)}{N_0}} \]

where: \(N_0 = \) number of observations

\(N_V = \) number of variables

EXPERIMENTAL DETAILS

A. Crystal Data

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>C₂₅H₁₈N₂O₅</td>
</tr>
<tr>
<td>Formula Weight</td>
<td>426.43</td>
</tr>
<tr>
<td>Crystal Color, Habit</td>
<td>colorless, platelet</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.20 X 0.20 X 0.20 mm</td>
</tr>
<tr>
<td>Crystal System</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>Primitive</td>
</tr>
<tr>
<td>Detector Position</td>
<td>35.04 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.137 mm</td>
</tr>
<tr>
<td>Lattice Parameters</td>
<td>a = 8.7591(18) Å</td>
</tr>
<tr>
<td></td>
<td>b = 13.493(3) Å</td>
</tr>
<tr>
<td></td>
<td>c = 16.814(4) Å</td>
</tr>
<tr>
<td></td>
<td>β = 100.732(5)°</td>
</tr>
<tr>
<td></td>
<td>V = 1952.5(7) Å³</td>
</tr>
<tr>
<td>Space Group</td>
<td>P2₁/a (#14)</td>
</tr>
<tr>
<td>Z value</td>
<td>4</td>
</tr>
<tr>
<td>D<sub>calc</sub></td>
<td>1.451 g/cm³</td>
</tr>
<tr>
<td>F₀₀₀</td>
<td>888.00</td>
</tr>
<tr>
<td>μ(MoKα)</td>
<td>1.024 cm⁻¹</td>
</tr>
</tbody>
</table>
B. Intensity Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>Rigaku Saturn</td>
</tr>
<tr>
<td>Goniometer</td>
<td>Rigaku AFC8</td>
</tr>
<tr>
<td>Radiation</td>
<td>MoKα (λ = 0.71070 Å) graphite monochromated</td>
</tr>
<tr>
<td>Detector Aperture</td>
<td>70 mm x 70 mm</td>
</tr>
<tr>
<td>Data Images</td>
<td>690 exposures</td>
</tr>
<tr>
<td>ω oscillation Range (χ=0.0, φ=0.0)</td>
<td>-75.0 - 105.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>40.0 sec./°</td>
</tr>
<tr>
<td>Detector Swing Angle</td>
<td>15.12°</td>
</tr>
<tr>
<td>ω oscillation Range (χ=54.0, φ=90.0)</td>
<td>-75.0 - 90.0°</td>
</tr>
<tr>
<td>Exposure Rate</td>
<td>40.0 sec./°</td>
</tr>
<tr>
<td>Detector Swing Angle</td>
<td>15.12°</td>
</tr>
<tr>
<td>Detector Position</td>
<td>35.04 mm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>0.068 mm</td>
</tr>
<tr>
<td>2θmax</td>
<td>65.4°</td>
</tr>
<tr>
<td>No. of Reflections Measured</td>
<td>Total: 17498</td>
</tr>
<tr>
<td></td>
<td>Unique: 3822 (Rint = 0.062)</td>
</tr>
<tr>
<td>Corrections</td>
<td>Lorentz-polarization</td>
</tr>
<tr>
<td></td>
<td>Secondary Extinction</td>
</tr>
<tr>
<td></td>
<td>(coefficient: 4.12000e-003)</td>
</tr>
<tr>
<td></td>
<td>Numerica Absorption</td>
</tr>
<tr>
<td></td>
<td>(0.9964 – 0.9784)</td>
</tr>
</tbody>
</table>
C. Structure Solution and Refinement

Structure Solution

Refinement

Function Minimized

Least Squares Weights

$2\theta_{\text{max}}$ cutoff

Anomalous Dispersion

No. Observations (All reflections)

No. Variables

Reflection/Parameter Ratio

Residuals: R_I ($I>2.00\sigma(I)$)

Residuals: R (All reflections)

Residuals: wR^2 (All reflections)

Goodness of Fit Indicator

Max Shift/Error in Final Cycle

Maximum peak in Final Diff. Map

Minimum peak in Final Diff. Map

Direct Methods (SHELX97)

Full-matrix least-squares on F^2

$\sum w (F_o^2 - F_c^2)^2$

$w = 1/ [\sigma^2(F_o^2) + (0.0352 \cdot P)^2$

$+ 1.5665 \cdot P]$

where $P = (\text{Max}(F_o^2,0) + 2F_c^2)/3$

52.0°

All non-hydrogen atoms

3822

294

13.00

0.0939

0.1091

0.1756

1.319

0.000

0.19 e/Å3

-0.19 e/Å3
<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>distance</th>
<th>atom</th>
<th>atom</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>C(1)</td>
<td>1.356(4)</td>
<td>O(1)</td>
<td>C(19)</td>
<td>1.395(4)</td>
</tr>
<tr>
<td>O(2)</td>
<td>C(1)</td>
<td>1.217(4)</td>
<td>O(3)</td>
<td>C(9)</td>
<td>1.371(4)</td>
</tr>
<tr>
<td>O(3)</td>
<td>C(10)</td>
<td>1.426(4)</td>
<td>O(4)</td>
<td>N(2)</td>
<td>1.217(5)</td>
</tr>
<tr>
<td>O(5)</td>
<td>N(2)</td>
<td>1.226(5)</td>
<td>N(1)</td>
<td>C(2)</td>
<td>1.381(4)</td>
</tr>
<tr>
<td>N(1)</td>
<td>C(3)</td>
<td>1.458(4)</td>
<td>N(2)</td>
<td>C(23)</td>
<td>1.474(5)</td>
</tr>
<tr>
<td>C(1)</td>
<td>C(2)</td>
<td>1.455(4)</td>
<td>C(2)</td>
<td>C(13)</td>
<td>1.357(4)</td>
</tr>
<tr>
<td>C(3)</td>
<td>C(4)</td>
<td>1.519(4)</td>
<td>C(3)</td>
<td>C(11)</td>
<td>1.523(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>C(5)</td>
<td>1.385(4)</td>
<td>C(4)</td>
<td>C(9)</td>
<td>1.389(5)</td>
</tr>
<tr>
<td>C(5)</td>
<td>C(6)</td>
<td>1.392(5)</td>
<td>C(6)</td>
<td>C(7)</td>
<td>1.378(5)</td>
</tr>
<tr>
<td>C(7)</td>
<td>C(8)</td>
<td>1.379(5)</td>
<td>C(8)</td>
<td>C(9)</td>
<td>1.389(5)</td>
</tr>
<tr>
<td>C(10)</td>
<td>C(11)</td>
<td>1.518(5)</td>
<td>C(11)</td>
<td>C(12)</td>
<td>1.541(4)</td>
</tr>
<tr>
<td>C(12)</td>
<td>C(13)</td>
<td>1.518(4)</td>
<td>C(12)</td>
<td>C(20)</td>
<td>1.529(4)</td>
</tr>
<tr>
<td>C(13)</td>
<td>C(14)</td>
<td>1.448(4)</td>
<td>C(14)</td>
<td>C(19)</td>
<td>1.393(5)</td>
</tr>
<tr>
<td>C(14)</td>
<td>C(15)</td>
<td>1.400(4)</td>
<td>C(15)</td>
<td>C(16)</td>
<td>1.370(5)</td>
</tr>
<tr>
<td>C(16)</td>
<td>C(17)</td>
<td>1.385(5)</td>
<td>C(17)</td>
<td>C(18)</td>
<td>1.378(5)</td>
</tr>
<tr>
<td>C(18)</td>
<td>C(19)</td>
<td>1.391(4)</td>
<td>C(20)</td>
<td>C(21)</td>
<td>1.387(4)</td>
</tr>
<tr>
<td>C(20)</td>
<td>C(25)</td>
<td>1.389(5)</td>
<td>C(21)</td>
<td>C(22)</td>
<td>1.386(5)</td>
</tr>
<tr>
<td>C(22)</td>
<td>C(23)</td>
<td>1.369(5)</td>
<td>C(23)</td>
<td>C(24)</td>
<td>1.381(5)</td>
</tr>
<tr>
<td>C(24)</td>
<td>C(25)</td>
<td>1.391(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3.5 Bond angles (°)

<table>
<thead>
<tr>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
<th>atom</th>
<th>atom</th>
<th>atom</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>O(1)</td>
<td>C(19)</td>
<td>120.8(3)</td>
<td>C(9)</td>
<td>O(3)</td>
<td>C(10)</td>
<td>117.6(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>N(1)</td>
<td>C(3)</td>
<td>114.3(3)</td>
<td>O(4)</td>
<td>N(2)</td>
<td>O(5)</td>
<td>123.5(4)</td>
</tr>
<tr>
<td>O(4)</td>
<td>N(2)</td>
<td>C(23)</td>
<td>119.2(4)</td>
<td>O(5)</td>
<td>N(2)</td>
<td>C(23)</td>
<td>117.3(4)</td>
</tr>
<tr>
<td>O(2)</td>
<td>C(1)</td>
<td>O(1)</td>
<td>117.5(3)</td>
<td>O(2)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>123.8(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>C(1)</td>
<td>C(2)</td>
<td>118.7(3)</td>
<td>C(13)</td>
<td>C(2)</td>
<td>N(1)</td>
<td>124.6(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>C(2)</td>
<td>C(1)</td>
<td>121.6(3)</td>
<td>N(1)</td>
<td>C(2)</td>
<td>C(1)</td>
<td>113.8(3)</td>
</tr>
<tr>
<td>N(1)</td>
<td>C(3)</td>
<td>C(4)</td>
<td>112.0(3)</td>
<td>N(1)</td>
<td>C(3)</td>
<td>C(11)</td>
<td>107.0(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>C(3)</td>
<td>C(11)</td>
<td>110.0(3)</td>
<td>C(5)</td>
<td>C(4)</td>
<td>C(9)</td>
<td>118.2(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>C(4)</td>
<td>C(3)</td>
<td>122.4(2)</td>
<td>C(9)</td>
<td>C(4)</td>
<td>C(3)</td>
<td>119.5(3)</td>
</tr>
<tr>
<td>Atom</td>
<td>Atom</td>
<td>Atom</td>
<td>Bond Angle (°)</td>
<td>Atom</td>
<td>Atom</td>
<td>Atom</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>C(4)</td>
<td>C(5)</td>
<td>C(6)</td>
<td>121.5(2)</td>
<td>C(7)</td>
<td>C(6)</td>
<td>C(5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>119.2(3)</td>
<td>C(7)</td>
<td>C(8)</td>
<td>C(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.3(3)</td>
<td>C(7)</td>
<td>C(8)</td>
<td>C(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.0(4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)</td>
<td>C(9)</td>
<td>C(4)</td>
<td>120.3(3)</td>
<td>O(3)</td>
<td>C(9)</td>
<td>C(8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)</td>
<td>C(9)</td>
<td>C(8)</td>
<td>120.8(3)</td>
<td>C(7)</td>
<td>C(10)</td>
<td>C(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>112.3(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(10)</td>
<td>C(11)</td>
<td>C(3)</td>
<td>108.3(3)</td>
<td>C(10)</td>
<td>C(11)</td>
<td>C(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>112.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)</td>
<td>C(11)</td>
<td>C(12)</td>
<td>111.3(3)</td>
<td>C(13)</td>
<td>C(12)</td>
<td>C(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113.3(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(13)</td>
<td>C(12)</td>
<td>C(11)</td>
<td>111.0(3)</td>
<td>C(20)</td>
<td>C(12)</td>
<td>C(20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>108.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)</td>
<td>C(13)</td>
<td>C(14)</td>
<td>118.1(3)</td>
<td>C(2)</td>
<td>C(13)</td>
<td>C(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.3(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14)</td>
<td>C(13)</td>
<td>C(12)</td>
<td>121.6(3)</td>
<td>C(19)</td>
<td>C(14)</td>
<td>C(15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>115.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19)</td>
<td>C(14)</td>
<td>C(13)</td>
<td>119.3(3)</td>
<td>C(15)</td>
<td>C(14)</td>
<td>C(13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>125.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(16)</td>
<td>C(15)</td>
<td>C(14)</td>
<td>121.7(3)</td>
<td>C(15)</td>
<td>C(16)</td>
<td>C(17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atoms</td>
<td>Bond Angles (°)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18) - C(17) - C(16)</td>
<td>120.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(17) - C(18) - C(19)</td>
<td>117.6(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(18) - C(19) - C(14)</td>
<td>124.1(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(14) - C(19) - O(1)</td>
<td>115.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(19) - O(1) - C(14)</td>
<td>121.0(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20) - C(21) - C(22)</td>
<td>120.5(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(21) - C(22) - C(23)</td>
<td>120.4(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(22) - C(23) - C(24)</td>
<td>121.3(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(23) - C(24) - C(25)</td>
<td>123.2(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(20) - C(25) - C(24)</td>
<td>120.9(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1 Introduction

Due to the general curiosity regarding reactivity and potential applications in optoelectronic devices, linearly-fused polycyclic aromatic compounds have become the subject of great interest as fundamental skeletons for functional organic molecules.1 Linear polynuclear hydrocarbons, which are also called \([n]\)acenes, have received considerable attention in this regard. Pentacene (1) (Fig. 4.1), which has five linearly-fused benzene rings, is by far the most thoroughly studied and a promising candidate for organic thin-film transistors.2 Recent research in this field has resulted in the synthesis of various \(\pi\)-conjugated systems including higher acene homologs such as 3 (Scheme 4.1),3 heteroacenes such as 44 and main group element-containing \(\pi\)-conjugated (acene-like) molecules such as 5 (Fig. 4.2).5 Within the heteroacene class, various heterocyclic motifs have been investigated.6

![Figure 4.1 Pentacene 1](image_url)
SCHEME 4.1 Synthesis of a Functionalized Heptacene Derivative 3

![Synthesis of a Functionalized Heptacene Derivative 3](image)

FIGURE 4.2 Heptathienoacene 4 and Silicon-based Heteroacene 5

In connection with the involvement of the Bodwell group in the development of new electron deficient dienes for application in the inverse electron demand Diels-Alder (IEDDA) reactions, chromone-fused dienes 6 (EWG = electron withdrawing group) have been prepared. These dienes were utilized in the synthesis of xanthone derivatives by reaction with various electron rich alkenes, e.g. enamine 7 (Scheme 4.2). This xanthone-building strategy was recently applied to the synthesis of a heteroacene 12, which contains an alternating 4H-pyran-4-one / benzene motif (Scheme 4.3). Work aimed at the synthesis of more ambitious targets such as 13 (Fig. 4.3) has also been initiated.
SCHEME 4.2 Synthesis of Xanthones by IEDDA Methodology

![Chemical structure of Scheme 4.2](image)

![Chemical structure of Scheme 4.3](image)

FIGURE 4.3 A Hetero[9]acene of Current Synthetic Interest in the Bodwell Group

The [n]phenacenes, e.g. [9]phenacene (14) (Fig. 4.4), are isomeric to the [n]acenes and have received considerable attention in recent years. However,
heteroaromatic analogs of \([n]\)phenacenes have received considerably less attention.\(^{10}\) Another PAH motif, which is isomeric to the \([n]\)phenacenes and shares an oligo\((p\-)phenylene\) backbone is exemplified by compound 15 (Fig. 4.4), which has no trivial name and will be referred to as "isophenacenes" in this thesis. Very little work has been invested in studying this class of compounds, for both the parent systems\(^{11}\) and heteroaromatic analogs.\(^{12}\)

![FIGURE 4.4 [9]Phenacene (14) and [9]Isophenacene (15)](image)

As is the case with \([n]\)phenacenes, \([n]\)isophenacenes can be viewed as graphite ribbons of varying lengths. In this case, the ribbons have a serpentine motif. Alternatively, this class of compounds may also be viewed as oligo\((p\-)phenylene\) derivatives fused with benzene rings alternately on either side of the \(p\-)phenylene backbone. Although this motif appears to be interesting in view of its potential electronic and optical properties, most of the synthetic work appears to be limited to smaller members of this class \((n = 5)\).\(^{11}\)

Compound 18 is systematically named as dibenzo\([a,h]\)anthracene, but will be referred to here as \([5]\)isophenacene (due to the presence of five benzene rings). It has been synthesized using several different approaches.\(^{11}\) Recently, ring-closing metathesis
of tetraene 16 and intramolecular benzannulation of diyne 19 were used by King11a and Liu,11b respectively, for the efficient synthesis of 18 (Scheme 4.4). Heteroaromatic analogs12 of these type of compounds will be referred to as hetero[n]isophenacenes, where \(n \) represents the number of aromatic rings. Nitrogen-containing analogs of [5]isophenacene have also been prepared.12 For example, dibenzo[\textit{a,h}]phenazine (22) was prepared from 1-aminonaphthalene (20) and 1-nitronaphthalene (21) through the action of ethylmagnesium bromide (Scheme 4.5).12a

SCHEME 4.4 Synthesis of 18

![Scheme 4.4](image)
Previous work in the Bodwell group resulted in the discovery of a benzocoumarin-forming reaction (Scheme 4.6)13 analogous to the conversion of diene 6 to xanthone 8 (Scheme 4.2). Electron deficient diene 25, which can be prepared easily in multigram quantities from salicylaldehyde (23) and dimethyl glutaconate (24), reacts with enamines such as 26 and 7 to afford benzocoumarins 29 and 31, respectively, albeit by slightly different mechanisms. It was therefore envisaged that this chemistry might be utilized for the synthesis of coumarin-based hetero[n]isophenacenes, which will be referred to as coum[n]isophenacenes due to the presence of a repeating coumarin unit. The value of n still represents the total number of rings to maintain homology to the parent [n]isophenacenes.

For the synthesis of coum[n]isophenacenes, an iterative strategy was envisioned (Scheme 4.7). The key feature of this strategy is to be able to either directly generate benzocoumarins with a salicylaldehyde substructure, \textit{i.e.} 32, or, more likely, convert the products of the existing methodology into such systems. As such, each iteration would consist of three stages: (1) diene synthesis (salicylaldehyde reacting with dimethyl glutaconate), \textit{e.g.} 32 to 33, (2) benzocoumarin formation (IEDDA-driven
domino reaction), e.g. 33 to 34 and (3) regeneration of the salicylaldehyde subunit (functional group interconversion), e.g. 34 to 35.

SCHEME 4.6 Synthesis of Benzocoumarins by IEDDA-Driven Domino Reactions

![SCHEME 4.6](image-url)
The initial target for this type of molecules would be coum[5]isophenacene 36 (Fig. 4.5). A long chain alkyl group was included in the target molecule for the purpose of maintaining solubility.
4.2 Results and Discussion

The synthesis commenced with condensation of 5-bromosalicyladehyde (37) and dimethyl glutaconate (24), which afforded coumarin-fused electron deficient diene 38 in 87% yield (Scheme 4.8). This diene was then reacted with tetramethoxyethene (39), which was available in the Bodwell laboratory. The intention was to effect an IEDDA reaction followed by the loss of two equivalents of methanol from the initially formed adduct to afford benzocoumarin 40. This compound bears an oxygen-based substituent adjacent to the ester, which offers the potential for the generation of a salicylaldehyde unit through selective demethylation of the methoxy group and reduction of the ester.

SCHEME 4.8 Synthesis of Coumarin-fused Diene 38

Not unexpectedly, no reaction was evident at room temperature or reflux in dichloromethane (Table 4.1, Entry 1). At reflux in acetonitrile, slow consumption of diene 38 was observed along with the development of a major new compound (\(^1\)H NMR analysis), but complete conversion was not observed after heating for 84 hours. However, the desired benzocoumarin 40 was obtained in 48% yield (Entry 2, Table 4.1). When the reaction was performed without solvent at 140 °C for 72 hours, benzocoumarin 40 was isolated in 70% yield (Entry 3, Table 4.1). For this reaction, 5.0 equivalents of
the dienophile were used. Although the yield was satisfactory, some efforts were made to optimize the reaction. The use of 2.5 equiv of the dienophile did not afford a homogeneous solution, even after heating at 140 °C for 96 hours. At this time, the reaction was still incomplete (approximately 75% conversion by 1H NMR) and the yield was not determined (Entry 4, Table 4.1).

TABLE 4.1 IEDDA Driven Domino Reaction for the Synthesis of Benzocoumarin 28

<table>
<thead>
<tr>
<th>Entry</th>
<th>Dienophile (equiv)</th>
<th>Reaction conditions</th>
<th>Yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
<td>CH$_2$Cl$_2$, reflux, 84 h</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>CH$_3$CN, reflux, 84 h</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>neat, 140 °C, 72 h</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>neat, 140 °C, 96 h</td>
<td>n.d.</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>C$_2$H$_5$Cl$_4$, 140 °C, 44 h</td>
<td>74</td>
</tr>
</tbody>
</table>

a isolated yield

It had been reported that 1,1,2,2-tetrachloroethane was a good solvent for the reaction of diene 6 with tetramethoxyethene (39), but its use in the reaction of diene 38 with tetramethoxyethene (39) offered very little advantage over the solventless reaction.
in terms of yield (74%). However, the number of equivalents of the dienophile could be reduced to 2.5 and the reaction time could be reduced to 44 hours.

The next task in the synthesis was to install the solubilizing group on the benzocoumarin moiety. Bromobenzocoumarin 40 was subjected to Sonogashira coupling with 1-decyne (41) in benzene with triethylamine as the base (Scheme 4.9). The reaction was very slow, giving only 21% of the desired alkyne 42 along with 57% recovery of 40 after 48 hours at reflux. The use of triethylamine as both the solvent and the base did not improve the yield significantly (30%). However, the employment of benzene as the solvent and DBU as the base proved to be beneficial. Complete consumption of the starting material was achieved after 4.5 hours at reflux and the isolated yield of 42 rose to 61%. Catalytic hydrogenation of 42 using 10% Pd/C then afforded decyl-substituted benzocoumarin 43 in 95% yield.

Scheme 4.9 Synthesis of Triol 44
The next goal was to install formyl and hydroxy functional groups on C-8 and C-9 of the benzocoumarin structure, respectively. In this direction, ester 43 was reduced with LAH to afford triol 44 in 90% yield. Oxidation of this triol with a mild oxidant was expected to afford the desired aldehyde directly. The initially-formed dialdehyde 45 would be expected to form hemiacetal 46 and then undergo further oxidation to restore the benzocoumarin system.\(^{13}\)

When 44 was subjected to reaction with Fetizon’s reagent (\(\text{Ag}_2\text{CO}_3/\text{Celite}\))\(^\circ\),\(^{15}\) no reaction was observed at room temperature or reflux in benzene, but the application of PCC afforded the desired aldehyde 47 in 50% yield when the reaction was performed on a 40 mg scale. However, when the reaction was performed on a larger scale (250 mg), more products were observed by tlc analysis and the yield of the desired aldehyde was only 10% (Scheme 4.10). In view of the small amounts of material that were available at this point, work on this project was discontinued.

Considering the large number of mild oxidants that are available, it is reasonable to assume that conditions will eventually be found for the efficient conversion of 44 to 47 on a multigram scale. Based on previous results from the Bodwell laboratory (viz. the conversion of 11 to 12 in Scheme 4.3), aldehyde 47 is expected to undergo highly selective demethylation to afford a formylhydroxy compound 48,\(^{16}\) which is the starting point for a second iteration.
4.3 Conclusion

An iterative strategy for the synthesis of a novel class of polycyclic heteroaromatic compounds (coum[π]isophenacenes) has been proposed and preliminary synthetic work has been conducted. Although a full iteration was not completed, some useful groundwork has been laid for future investigations.
4.4 Experimental

4.4.1 General Methods

All reactions were carried out using oven-dried glassware with inert gas protection, unless otherwise mentioned. THF and benzene were dried and distilled over sodium/benzophenone. Dichloromethane was dried and distilled over CaH$_2$. All other chemicals, including solvents, were used as received without further purification. Thin layer chromatography (tlc) was performed on MN PolyGram precoated silica gel plates using 254 nm UV visualization. Flash chromatography was performed on silica gel columns. Melting points were recorded on Fisher-Johns apparatus and are uncorrected. All proton and carbon assignments are based on 2D NMR experiments (COSY, HMQC and HMBC). 1H and 13C NMR spectra were recorded on Bruker AVANCE spectrometer at 500.133 MHz and 125.770 MHz, respectively. Peaks reported are relative to internal standards: TMS ($\delta = 0.00$) for 1H and CDCl$_3$ ($\delta = 77.23$) for 13C spectra. Reported multiplicities are apparent. Infrared spectra were obtained on Bruker Tensor 27 instrument using neat samples. Low-resolution mass spectra were obtained using Agilent 1100 series LC/MS chromatographic system and high-resolution mass spectra were obtained using Waters GCT Permier Micromass mass spectrometer using neat samples.
4.4.2 Synthesis and Characterization

Methyl 2-bromo-9,10-dimethoxy-6-oxo-6H-benzo[c]chromen-8-carboxylate (40)

A mixture of 38 (1.28 g, 4.16 mmol), 39 (1.55 g, 10.5 mmol) and 1,1,2,2-tetrachloroethane (1 mL) was heated at 135-140 °C for 44 h. The pale yellow suspension turned into a clear, yellow solution as the heating progressed. The reaction mixture was cooled to room temperature and diluted with acetonitrile. The resulting pale yellow precipitate was filtered under suction, washed with acetonitrile and air-dried to afford 40 as an off-white solid (1.21 g, 74%). mp = 229-231 °C (chloroform/hexane); δ_H(CDCl_3) = 9.19 (d, J = 2.6 Hz, 1H, H-1), 8.66 (s, 1H, H-7), 7.63 (dd, J = 8.8, 2.2 Hz, 1H, H-3), 7.25 (d, J = 9.0 Hz, 1H, H-4), 4.09 (s, 3H), 4.01 (s, 3H), 3.97 (s, 3H) ppm; δ_C(CDCl_3) = 164.7 (C-1'), 159.7 (C-6), 159.2, 151.7, 150.6, 134.2 (C-7), 130.8, 130.7 (C-1), 129.6 (C-3), 127.3, 119.5 (C-4), 118.7, 117.9, 117.7, 62.2, 60.6, 52.9 ppm; HRMS [M'] calcd for C_{17}H_{13}O_6 Br 391.9889, found 391.9895.
Methyl 2-(dec-1-ynyl)-9,10-dimethoxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (42)

To a mixture of CuI (0.064 g, 20 mol%) and Pd(PPh₃)₂Cl₂ (0.12 g, 10 mol%) was added a clear, pale yellow solution of 40 (0.655 g, 1.67 mmol) in benzene (30 mL) followed by DBU (1.0 mL, 6.7 mmol) and 1-decyne (41) (1.21 mL, 6.7 mmol) sequentially. The resulting dark brown solution was then heated at reflux for 13 h. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane (30 mL) and filtered under suction through a pad of Celite®. The residue was washed with dichloromethane (10 mL). The filtrate was sequentially washed with saturated NH₄Cl (20 mL) solution, brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 42 as a pale yellow oil (0.46 g, 61%). δ_H(CDCl₃) = 8.96 (d, J = 2.0 Hz, 1H, H-1), 8.65 (s, 1H, H-7), 7.52 (dd, J = 9.1, 1.9 Hz, 1H, H-3), 7.27 (d, J = 9.1 Hz, 1H, H-4), 4.09 (s, 3H), 4.01 (s, 3H), 3.97 (s, 3H) 2.44 (t, J = 6.9 Hz, 2H, H-3'), 1.64 (p, J = 7.2 Hz, 2H, H-4'), 1.48 (p, J = 6.6 Hz, 2H, H-5'), 1.37-1.30 (m, 8H), 0.89 (t, J = 6.7 Hz, 3H, H-10') ppm; δ_C(CDCl₃) = 164.3 (C-1'), 160.2 (C-6), 159.5,
151.1, 149.6, 139.9, 132.0 (C-1), 131.3 (C-3), 129.7 (C-7), 127.2, 122.5 (C-4), 121.1, 118.6, 117.7, 101.9 (C-2'), 81.4 (C-1'), 61.9, 60.1, 52.5, 30.1 (C-3'), 29.7, 29.6, 29.4, 22.0, 14.5 (C-10') (two carbon signals fewer than expected, presumably due to accidental degeneracy) ppm; HRMS [M'] calcd for C₂₇H₃₀O₆ 450.2042, found 450.2046.

Methyl 2-decyl-9,10-dimethoxy-6-oxo-6H-benzo[c]chromene-8-carboxylate (43)

![Chemical Structure](image)

To a clear, yellow solution of alkyne 41 (0.41 g, 0.91 mmol) in ethanol (30 mL) was added Pd/C (0.041 g, 10% by weight) and the reaction mixture was stirred under hydrogen atmosphere at room temperature for 14 h. The reaction mixture was filtered through a pad of Celite[®] and washed with ethanol. The solvent was removed from the filtrate under reduced pressure to afford 43 as a colorless gum (0.39 g, 95%). δ_H(CDCl₃) = 8.74 (d, J = 2.1 Hz, 1H, H-1), 8.68 (s, 1H, H-7), 7.39 (dd, J = 9.0, 2.1 Hz, 1H, H-3), 7.25 (d, J = 9.0 Hz, 1H, H-4), 4.07 (s, 3H), 3.97 (s, 3H), 3.96 (s, 3H) 2.72 (t, J = 6.9 Hz, 2H, H-1'), 1.67-1.64 (m, 2H, H-2'), 1.41 (br m, 2H, H-3'), 1.31-1.23 (m, 12H), 0.89 (t, J = 6.7 Hz, 3H, H-10') ppm; δ_C(CDCl₃) = 164.2 (C-1'), 160.2, 159.7, 151.2, 149.9, 140.0, 131.8, 131.4, 129.8 (C-7), 128.1, 127.2, 118.7, 118.6, 117.7, 62.1, 60.2, 52.7, 36.7 (C-1')
31.4 (C-2'), 29.8, 29.71, 29.68, 29.6, 22.3, 14.7 (C-10') (two carbon signals fewer than expected, presumably due to accidental degeneracy) ppm; HRMS [M'] calcd for C_{27}H_{34}O_{6} 454.2355, found 454.2352.

5-Decyl-4',6'-bis(hydroxymethyl)-2',3'-dimethoxybiphenyl-2'-ol (44)

![Chemical structure of 5-Decyl-4',6'-bis(hydroxymethyl)-2',3'-dimethoxybiphenyl-2'-ol (44)](image)

To a 0 °C suspension of LAH (0.053 g, 1.4 mmol) in THF (2 mL) was added a solution of ester 43 (0.32 g, 0.70 mmol) in THF (5 mL) over a period of 5 min. The resulting mixture was heated at reflux for 16 h. The reaction mixture was cooled to room temperature and then cooled in an ice bath. Ice-cold water (1 mL) was added to the reaction mixture dropwise followed by the addition of 15% NaOH (1 mL) solution followed by 1M HCl (10 mL). The reaction mixture was saturated by adding NaCl and then extracted with ethyl acetate (2 x 25 mL). Combined organic layers were washed with brine (15 mL), dried over anhydrous Na_{2}SO_{4}. The solvent was removed under reduced pressure to afford 44 as brown oil (0.27 g, 90%). Major peaks in the ^1H and ^13C NMR of the crude product are listed below. (This compound was used as such for the next step). δ_H(CDCl₃) = 7.11-7.09 (m, 2H), 6.93-6.91 (m, 2H), 4.72 (s, 2H), 4.34 (s, 2H).
3.94 (s, 3H) 3.57 (s, 3H), 3.39 (br s, 2H), 2.54 (br m, 2H), 1.58 (br m, 2H), 1.29-1.24 (m, 14H), 0.88 (br m, 3H) ppm; δ\textsubscript{c}(CD\textsubscript{3}Cl) = 156.2, 151.0, 150.2, 135.2, 131.9, 130.8, 130.0, 125.4, 125.3, 124.6, 123.4, 116.4, 63.6, 61.2, 60.9, 35.3, 31.9, 29.7, 29.71, 29.68, 29.5, 22.9, 14.4 (three carbon signals fewer than expected) ppm; [M+] calcd for C\textsubscript{27}H\textsubscript{38}O\textsubscript{5} 430.2719, found 430.2711.

2-Decyl-9,10-dimethoxy-6-oxo-6H-benzo[c]chromene-8-carbaldehyde (47)

To a clear, yellow solution of PCC (1.1 g, 2.9 mmol) in dichloromethane (30 mL) was added a clear, brown solution of triol 44 (0.25 g, 0.58 mmol) in dichloromethane (6 mL) followed by the addition of Celitec (1.0 g). The reaction mixture was stirred at room temperature for 20 h and then filtered under suction. The solvent was removed under reduced pressure and subjected to flash chromatography (20% ethyl acetate/hexanes) to afford 47 as a white solid (0.024 g, 10%). mp = 182-183 °C (ethyl acetate/hexanes). δ\textsubscript{H}(CD\textsubscript{3}Cl) = 10.48 (s, 1H, H-1'), 8.76 (d, J = 2.1 Hz, 1H, H-1), 8.37 (s, 1H, H-7), 7.35 (dd, J = 8.5, 2.2 Hz, 1H, H-3), 7.24 (d, J = 8.5 Hz, 1H, H-4), 4.19 (s, 3H), 3.99 (s, 3H), 2.73 (t, J = 7.1 Hz, 2H, H-1'), 1.72-1.70 (m, 2H, H-2'), 1.11-1.28 (m, 14H), 0.87 (t, J =
7.0 Hz, 3H, H-10’) ppm; δ\textsubscript{C}(CDCl\textsubscript{3}) = 188.2 (C-1’’), 160.9 (C-6), 160.3, 150.9, 150.0, 139.8, 134.3, 132.2 (C-1), 129.8, 127.9 (C-7), 127.5 (C-3), 118.4, 117.7 (C-4), 116.6, 62.6, 60.4, 35.9 (C-1’), 32.1 (C-2’), 31.8, 29.8, 29.7, 29.5, 29.4, 22.9, 14.3 (C-10’) (one carbon signal fewer than expected) ppm; HRMS [M+] calcd for C\textsubscript{26}H\textsubscript{32}O\textsubscript{5} 424.2250, found 424.2251.
4.5 References

4.6 Appendix

5.1 Introduction

According to IUPAC, "helicenes are ortho-fused polycyclic aromatic compounds in which all rings (minimum five) are angularly arranged so as to give helically shaped molecules, which are thus chiral."\(^1\) The helical structure of these molecules is a result of severe steric repulsions between nonbonded atoms when the molecule adopts the planar conformation. Due to the presence of an inherently chiral chromophore and the possibility of intramolecular through-space interactions between the overlapping aromatic rings, helicenes have attracted considerable attention in recent years\(^2\) and interesting optical and electronic properties of helicenes have been revealed.\(^3\)

Helicenes 1, 2 and 3 having 5, 6 and 7 ortho-fused benzene rings, respectively, are shown in Fig. 5.1. While IUPAC nomenclature can be used for systematically
naming such molecules, a simpler system is usually followed for their nomenclature. According to this system, the number of rings present in the compound is indicated by a number in square brackets followed by the word ‘helicene’. Thus, compounds 1, 2 and 3 are named as [5]helicene, [6]helicene and [7]helicene, respectively.

Helicenes having aromatic rings other than benzene (e.g. thiophene) have also been known for a long time. A variety of helicenes, including heterohelicenes and carbohelicenes as large as [14]helicene, have been prepared. A classical method for the preparation of helicenes is photocyclization of stilbene derivatives into the corresponding phenanthrene derivatives in the presence of an oxidizing agent. However, this method suffers from serious drawbacks such as regioselectivity of the cyclization and photodimerization of the stilbene derivatives to afford cyclobutane-derivated byproducts (Scheme 5.1). Another problem with the photochemical cyclization is that the scale is limited. Therefore, it is unsuitable for the preparation of larger amounts of helicenes, which are required for the exploration of their chemical and physical properties as well the exploitation of these properties, e.g. in optoelectronic devices.

A major breakthrough in this field was reported by Katz, who utilized a Diels-Alder-based approach in the synthesis of various helicene quinones. This method enabled the synthesis of sufficient quantities of helicenes for the study of their properties. Other nonphotochemical methods have been developed for the syntheses of helicenes and these include carbenoid insertion, [2+2+2] cycloisomerization, tandem radical cyclization, ring closing metathesis, double direct arylation and, more recently.
SCHEME 5.1 Drawbacks in the Photocyclization of Stilbene Derivatives

Friedel-Crafts-type cyclization of 1,1-difluoro-1-alkenes. Among these methods, the most general and atom-economical method appears to be the one developed by Starý and coworkers. In this approach, a nickel- or cobalt-catalyzed [2+2+2] cycloisomerization of triynes is used as the key skeleton-building reaction. For example, triynes 12 or 13 can be cycloisomerized to the corresponding helicene precursors, which are then converted into helicene 1 by dehydrogenation or elimination-dehydrogenation (Scheme 5.2). A variety of substrates has been employed in this reaction and thus various helicenes, including azahelicenes and other helicene-like molecules, have been constructed by the Starý group.

A common feature of all of the helicenes reported so far is that the helical aromatic backbone is as wide as a single benzene ring or other heteroaromatic unit.
Helicenes having wider aromatic backbones are unprecedented. Such helicenes are obtained upon benzannulation of the outer edge of a parent helicene (Fig. 5.2). For example, benzannulation of the outer edge of [5]helicene (1) affords helical arene 14. A second benzannulation process gives a wider helical system 15. The synthesis of such targets, or even partially benzannulated helicenes, is a daunting task with the available synthetic methodology.
The first step toward achieving such a goal would be the incorporation of wider aromatic pieces (such as naphthalene, phenanthrene and or pyrene) at either or both of the termini of a helicene. In the course of efforts directed toward the synthesis of a coumarin-fused 2-azadiene having a pyrene unit at one end, a functionalized pyrene derivative 16 (Fig. 5.3) was prepared,\(^{17}\) which has the functionality that might be exploited to prepare helicene precursors using Starý's methodology. Therefore, a target which can be viewed as a naphtho-fused [7]helicene 17 was designed for preliminary work in this area (Fig. 5.3).

![FIGURE 5.3 A Functionalized Pyrene Derivative 16 and Naphtho-fused [7]Helicene 17](image)

5.2 Retrosynthetic Analysis

5.2.1 Retrosynthetic Plan 1

Based on the [2+2+2] cycloisomerization strategy for building the central three rings of the naphtho-fused [7]helicene 17, the first retrosynthetic cut simplified the target to a triyne 18, which contains pyrene and naphthalene pieces connected through an acetylenic linker. This triyne 18 could be the product of a Sonogashira reaction between diyne 19 and iodide 20 (Scheme 5.3). Diyne 19 is analogous to one previously reported.
in which the same side chain is attached to a benzene ring. Therefore, it was expected that the alkylic side chain at C-2 of the pyrene unit could be installed in a similar fashion i.e. from bromide 21 and a propargyl bromide-derived organometallic reagent. Bromide 21 can be traced back to the pyrene derivative 22 by way of a Sonogashira reaction. The other key intermediate required for this synthesis was iodide 20, which has been synthesized previously in the Starý group.

SCHEME 5.3 Retrosynthetic Plan 1
5.2.2 Retrosynthetic Plan 2

An alternative retrosynthetic plan was also prepared for this synthesis (Scheme 5.4). According to this plan, acetoxytriyne 23 was envisioned as a precursor to the helicene 17. In the forward sense, cycloisomerization of the acetoxytriyne 23 followed by elimination and dehydrogenation would afford the helicene 17. Intermediate 23 could be simplified in a retrosynthetic sense to an aldehyde 24, which would be expected to undergo 1,2-addition with an appropriate organopropargyl reagent. Aldehyde 24, which has two alkyne units, was envisioned to be the product of a Sonogashira reaction between a functionalized pyrene derivative 22 and a naphthalene-based diyne 25, the synthesis of

SCHEME 5.4 Retrosynthetic Plan 2
which was accomplished previously by the Starý group.18

5.3 Results and Discussion

5.3.1 Synthesis of 7-t-butyl-2-formyl-1-hydroxypyrene (29)

The first objective in the synthesis was the preparation of pyrene derivative 22, which has an aldehyde functionality at C-2 and a halide or a pseudo-halide at C-1 of pyrene. For the purpose of maintaining solubility, the design included a 7-t-butyl group on the pyrene unit.

With the above-mentioned requirements in mind, 1-acetoxypyrene (26) was prepared from pyrene in two steps following a published method.19 Subjection of 26 to Friedel-Crafts alkylation using \(t\text{-BuCl}/\text{AlCl}_3 \) afforded two major products: 7-t-butyl-1-acetoxypyrene (27) and 7-t-butyl-1-hydroxypyrene (28) in 49\% and 35\% yields, respectively. A slightly lower yield of 27 was obtained (42\%) when the reaction was performed on a multigram scale (3.5 g), while the yield for 28 remained the same (35\%).

Hydrolysis of the ester functionality in 27 presumably occurred during aqueous workup to afford 28. As expected, purified ester 27 was hydrolyzed easily under mild conditions to give 28 in almost quantitative yield. (Scheme 5.5).

Attempts to introduce an aldehyde functionality at the 2-position of 7-t-butyl pyrene-1-ol (28) by using Skattebøl20 or modified Gattermann21 formylation conditions were unsuccessful (Scheme 5.6). Therefore, a longer, but more reliable, route involving Directed \textit{ortho} Metallation (DoM) chemistry22 was chosen to synthesize the desired formylhydroxypyrene derivative 29. 7-t-Butylpyrene-1-ol (28) was protected as a
carbamate 30 upon reaction with N,N-dimethylcarbamoyl chloride in the presence of triethylamine and a catalytic amount of DMAP to afford 30 in quantitative yield. In the absence of DMAP, no reaction was evident even after heating at reflux in CHCl₃ for 3 hours.

SCHEME 5.5 Synthesis of 28

![Scheme 5.5 Synthesis of 28](image)

SCHEME 5.6 Attempted Formylation of 28

![Scheme 5.6 Attempted Formylation of 28](image)

(a) MgCl₂, Et₃N, (HCHO)ₓ, CH₃CN, reflux
(b) Zn(CN)₂, CHCl₃, HCl(g)
Carbamate 30 was reacted under typical DoM reaction conditions (n-BuLi, TMEDA, -78 °C, followed by the addition of DMF), but the desired product was not formed. Instead, the major product isolated from this reaction was 31 (55%), the product of an anionic ortho-Fries rearrangement (Scheme 5.7). 7-β-Butyl pyrene-1-ol (28) was isolated as a minor product (4%) from this reaction. This prompted the employment of other directing groups.

SCHEME 5.7 Anionic ortho-Fries Rearrangement of 30

The O-MOM group has been reported to be a reasonable directing group for DoM chemistry on pyrene substrates. Therefore, O-MOM derivative 32 of 7-β-butyl pyrene-1-ol (28) was prepared. Initially, the reaction of 28 with methoxymethyl chloride (MOMCl) in the presence of an organic base, triethylamine was studied. However, this reaction was very slow. The reaction mixture had to be heated at reflux for 48 hours and only 74% of the alkylated product 32 was obtained. The use of a strong base, sodium hydride, not only accelerated the rate of reaction (1 hour at room temperature) but also
SCHEME 5.8 Synthesis of 33 Using O-MOM as a Directing Group

improved the yield to 89% (Scheme 5.8).

Following a literature procedure performed on a similar substrate,15b the DoM reaction was carried out in dry ether using n-BuLi and TMEDA followed by the addition of DMF to afford aldehyde 33 in 62% yield (Scheme 5.8). When diethyl ether was replaced by THF, a satisfactory yield (70%) of the desired product was obtained. The use of a different electrophile, N-methylformanilide afforded essentially the same yield (70%). Finally, the removal of the directing group was achieved in quantitative yield.

SCHEME 5.9 Synthesis of 29
upon treatment of 33 with 2:1 MeOH: conc. HCl (Scheme 5.9). This afforded 7-\textit{t}-butyl-2-formyl-1-hydroxypyrene (29) and completed the first stage of the synthesis.

5.3.2 Approach 1

5.3.2.1 Attempted Synthesis of Bromide (21)

With aldehyde 29 in hand, efforts were directed toward employing this hydroxyaldehyde in the approach to helicenes developed by Starý and coworkers. The first step was to convert the hydroxy group in 29 into a pseudo halide in preparation for subsequent Sonogashira chemistry. Reaction of 29 with nonafluorobutyrylsulfonyl fluoride/NaH in DMF afforded nonaflate 34 in 75% yield (Scheme 5.10). Reaction of 34

\[\text{CHO} \quad \text{CHO} \quad \text{CHO} \]

SCHEME 5.10 Attempted Synthesis of Bromide 21
with trimethylsilylacetylene (TMSA) under standard Sonogashira conditions at 50 °C gave ynal 35 in 64% yield. When the reaction was performed in a sealed tube at 90 °C, the yield rose to 95% yield. Ynal 35 was then reduced with DIBAL-H to afford ynom 36 in 76% yield (Scheme 5.10).

The next task in the synthesis was to convert ynom 36 into the corresponding bromide and then use the newly formed functionality to attach an alkyne-containing side chain. In this vein, attempts were made to convert the alcohol into bromide 21. Disappointingly, all of the methods that were attempted for this conversion met with failure (Table 5.1). On three occasions (Entries 1, 3 and 5), the starting material was totally consumed (tlc analysis) and a complex mixture of products formed. The most nonpolar product from this complex mixture was isolated as a single spot (tlc analysis) on two occasions (Entry 1 and 3), but the spectroscopic data (NMR, IR and MS) of this product were inconclusive. The only useful information from the 1H NMR spectrum of this product was the absence of trimethylsilyl (TMS) group. This indicated that the TMS functionality is not stable towards the bromination conditions employed.

5.3.3 Approach 2

5.3.3.1 Attempted Synthesis of Triyne (23)

In order to circumvent the problem that occurred during bromination of ynom (36), the second retrosynthetic plan was considered, in which the coupling between the pyrene and naphthalene units was planned at an earlier stage in the synthesis. Thus, nonaflate 34
was subjected to Sonogashira reaction with naphthalene-containing diyne 25 at room temperature to afford diynal 24 in 68% yield.

The stage was now set for the introduction of the alkyne-containing side chain to the pyrene moiety. In this direction, the addition of propargylmagnesium bromide to 24 was attempted, but the starting material, 24 was recovered (almost 100%) from this reaction (Scheme 5.11).

Indium-mediated reactions of the propargyl bromides have been reported to selectively afford either allenic or homopropargylic alcohols depending upon the choice
of the silyl protecting group.23 This method also was unsuccessful (Scheme 5.12). The starting material 24 was recovered (almost 100%).

SCHEME 5.11 Attempted Synthesis of 29

![Scheme 5.11](image)

SCHEME 5.12 Attempted Synthesis of 38

![Scheme 5.12](image)
5.3.3.2 Synthesis of Enediyne 40

The presence of a propargyl group was desired for the crucial \([2+2+2]\) cycloisomerization reaction. However, the reluctance of the aldehyde 24 to react with organopropargyl reagents raised a question whether the aldehyde was reactive towards such addition reactions. To find out whether this aldehyde could take part in similar reactions, it was reacted with allylmagnesium bromide. In fact, this reaction followed by protection of the resulting secondary alcohol as an acetate proceeded smoothly to afford protected enediyne 39 in 70% overall yield for the two steps (Scheme 5.13). It is not immediately obvious why the addition of allylmagnesiumbromide proceeds smoothly and

SCHEME 5.13 Synthesis of Enediyne 40
that of propargylmagnesiumbromide does not. Finally the silyl protecting group was removed through the action of TBAF on 39 to afford 40 in 93% yield.

5.3.3.3 Reaction of 40 Under [2+2+2] Cycloisomerization Conditions

At this stage, it was decided to explore the possibility of subjecting enediyne 40 to the [2+2+2] cycloisomerization conditions. Although the central ring that would be formed in this cycloisomerization would not be aromatic, it was hoped that the subsequent decomplexation (oxidative conditions) of the metal from the resulting cyclic diene might be accompanied by the aromatization of the central ring (Scheme 5.14). When enediyne 40 was reacted with Jonas catalyst24 at room temperature, the starting material was consumed after 15 minutes and two new products were observed (tlc analysis). However, the 1H NMR spectra of both the crude reaction mixture and the single-spot fractions that were isolated by column chromatography were too complicated to assign any structure. Stirring a solution of these products (as a mixture) in THF open to air (1 hour at room temperature) did not show any reaction (tlc analysis). At this point, despite having made considerable progress, work aimed at the synthesis of 17 had to be discontinued due to a lack of time.

FIGURE 5.4 Interesting Target for Future Work
5.4 Conclusion

Although the synthesis of the target molecule 17 could not be achieved, various key intermediates for this synthesis were prepared, which may be useful in the future efforts toward the synthesis of 17 or its derivatives. Alternatively, other possibilities to prepare a suitable triyne from the nonaflate derivative 34 may be explored in future. A successful synthesis of 17 will mark the beginning of new type of synthetic targets such as 42 (Fig. 5.4), a helicene with two pyrene units.
5.5 Experimental

5.5.1 General Methods

All reactions were carried out using oven-dried glassware with inert gas protection, unless otherwise mentioned. For products 27, 30, 31, 32 and 33, nitrogen was used as the inert atmosphere and for 24, 34, 35, 36, 39 and 40, argon was used as the inert atmosphere. THF, diethyl ether and toluene were dried and distilled over sodium/benzophenone. Dichloromethane was dried and distilled over CaH₂. TMEDA was dried and distilled over KOH pellets and stored over 4 Å molecular sieves. DMF was dried over CaO and was freshly distilled for DoM reactions. All other chemicals, including solvents, were used as received without further purification. The concentration of n-BuLi in hexanes was determined prior to each use.

Thin layer chromatography (tlc) was performed on MN PolyGram precoated silica gel plates using 254 nm UV visualization. Flash chromatography was performed on silica gel columns. Melting points were recorded on Fisher Johns apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker AVANCE spectrometer at 500.133 MHz and 125.770 MHz, respectively. Peaks reported are relative to internal standards: TMS (δ = 0.00) for ¹H and CDCl₃ (δ = 77.23) for ¹³C spectra. Reported multiplicities are apparent. All proton and carbon assignments are based on 2D experiments (COSY, HMQC and HMBC for 27, 30, 31, 32 and 33 and COSY, HMBC and HSQC for compounds 24, 34, 35, 36, 39 and 40). Infrared spectra were obtained on Bruker Tensor 27 instrument using neat samples. Low-resolution mass spectra were obtained using using HP5970 GC/MSD or Agilent 1100 series LC/MS chromatographic
system and high-resolution mass spectra were obtained using Waters GCT Permier Micromass mass spectrometer.
5.5.2 Synthesis and Characterization

7-tert-Butylpyren-1-yl acetate (27) and 7-tert-butylpyren-1-ol (28)

To a -10 °C slurry of AlCl₃ (3.77 g, 28.3 mmol) in dichloromethane (40 mL) was added 2-chloro-2-methylpropane (1.61 mL, 14.8 mmol) and the resulting mixture was stirred at -10 °C for 15 min. To this mixture was added dropwise a clear, pale yellow solution of 26 (3.50 g, 13.5 mmol) in dichloromethane (40 mL) over a period of 15 min. The resulting mixture was stirred at -10 °C for a further 1 h. Ice-cold 1 M HCl solution (50 mL) was then added to the reaction mixture and the biphasic mixture was transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with dichloromethane (2 × 20 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (10% ethyl acetate/hexanes) to afford 27 (1.79 g, 42%) as an off-white solid and 28 (1.06 g, 29%) as a brown gum. 27: mp = 161-162 °C (trituration with ethyl acetate). δH(CDCl₃) = 8.24 (d,
$J = 1.9$ Hz, 1H), 8.22 (d, $J = 1.9$ Hz, 1H), 8.14 (d, $J = 8.3$ Hz, 1H, H-3), 8.09 (d, $J = 9.0$ Hz, 1H), 8.05 (d, $J = 9.1$ Hz, 1H), 8.05-8.02 (m, 2H), 7.75 (d, $J = 8.2$ Hz, 1H, H-2), 2.54 (s, 3H, H-3'), 1.59 (s, 9H, H-2'') ppm; $\delta_c(\text{CDCl}_3) = 169.9$ (C-2'), 149.8 (C-7), 144.4 (C-1), 131.2, 129.4, 128.2, 127.0, 126.9, 126.1, 125.3 (C-3), 124.3, 124.2, 122.0, 120.4, 120.3, 119.9, 119.6 (C-2), 36.2 (C-1'), 31.9 (C-2''), 21.8 (C-3') ppm; IR $\nu = 1759$ (s), 1599 (w), 1499 (m), 1459 (w), 1437 (w), 1416 (w), 1380 (m), 1367 (m), 1244 (w), 1216 (m), 1198 (s), 1167 (m), 1152 (m), 1143 (m), 1131 (w), 1172 (w), 1069 (m), 1011 (w) cm$^{-1}$; GC/MS m/z (relative intensity) = 316 (M$^+$, 17), 274 (100), 259 (30), 218 (16); HRMS [M$^+$] calcd for C$_{22}$H$_{20}$O$_2$ 316.1463, found 316.1457. **28:** $\delta_t(\text{CDCl}_3) = 8.28$-7.88 (br m, 7H), 7.52-7.35 (br m, 1H), 5.48 (s, 1H, exchangeable with D$_2$O), 1.57 (s, 9H) ppm, GC/MS m/z (relative intensity) = 274 (M$^+$, 100), 259 (51), 218 (28), 189 (21), 115 (27). Due to very broad peaks in 1H NMR, this compound was not fully characterized. It was used in the next step and the product of that reaction was fully characterized.

7-tert-Butylpyren-1-ol (28)

To a clear, brown room temperature solution of 27 (1.79 g, 5.66 mmol) in chloroform:methanol (1:1) (50.0 mL) was added K$_2$CO$_3$ (0.860 g, 6.22 mmol). The
reaction mixture was stirred open to air at room temperature for 16 h. The solvent was removed under reduced pressure and the residue was dissolved in dichloromethane (60 mL). This solution was washed with 1 M HCl solution (2 × 25 mL), washed with brine (20 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford 28 as a brown gum (1.54 g, 99%).

7-tert-Butylpyren-1-yl dimethylcarbamate (30)

To a clear, brown solution of 28 (0.19 g, 0.69 mmol) in chloroform (7.0 mL) were added DMAP (0.017 g, 20 mol%), triethylamine (0.11 mL, 0.76 mmol) and N,N-dimethylcarbamoyl chloride (0.07 mL, 0.8 mmol) and the reaction mixture was heated at reflux for 3 h. The reaction mixture was cooled to room temperature and chloroform (10 mL) was added. The resulting mixture was washed with 1 M HCl solution (2 × 20 mL), washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was triturated with ether to afford 30 (0.076 g, 32%) as a pale yellow solid. The mother liquor was filtered through a short (4 cm × 2
cm) silica gel column (20% ethyl acetate) to afford 30 (0.16 g, 68%) as a pale yellow solid. Combined yield = 0.24 g (100%). mp = 178-179 °C (trituration with ethyl acetate).

δ_H(CDCl3) = 8.19 (m, 2H), 8.11-8.04 (m, 3H), 7.98 (m, 2H), 7.79 (d, J = 8.1 Hz, 1H, H-2), 3.39 (s, 3H, H-4'), 3.08 (s, 3H, H-4'), 1.58 (s, 9H, C-2") ppm; δ_C(CDCl3) = 155.5 (C-2'), 149.7 (C-7), 145.4 (C-1), 131.4, 131.3, 129.1, 128.4, 127.4, 127.3, 125.9, 125.2, 123.6, 123.3, 122.9, 122.6, 120.7, 120.1 (C-2), 37.3 (C-4'), 37.1 (C-4'), 35.6 (C-1''), 32.3 (C-2'') ppm; MS (APCI) m/z (relative intensity) = 346 (M++1, 100), 274 (48); HRMS [M+] calcd for C23H23N02 345.1729, found 345.1723.

7-tert-Butyl-1-hydroxy-N,N-dimethylpyrene-2-carboxamide (31)

![Chemical Structure](image)

To a −78 °C mixture of TMEDA (0.040 mL, 0.28 mmol) and n-BuLi (1.4 M solution in hexanes, 0.20 mL, 0.28 mmol) in THF (1.0 mL) was added a clear, pale yellow solution of 30 (0.087 g, 0.25 mmol) in THF (2.0 mL). The resulting cloudy red solution was stirred at −78 °C for 2 h. DMF (0.08 mL, 1.00 mmol) was added and the reaction mixture
was stirred at -78 °C for another 2 h. Cold saturated NH₄Cl solution (5 mL) was added to the reaction mixture carefully. The solvent was removed under reduced pressure and the residue was diluted with cold water (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (0-10% ethyl acetate/hexanes) to afford 31 as a yellow solid (0.048 g, 55%). mp = 198-199 °C (trituration with ethyl acetate). \(\delta_H(\text{CDCl}_3) = 10.96 \, (s, \ 1H, \ H-1'), 8.48 \, (d, \ J = 8.3 \, Hz, \ 1H), 8.15-8.11 \, (m, \ 2H), 8.04-8.02 \, (m, \ 2H), 7.85 \, (m, \ 2H), 3.32 \, (s, \ 6H, \ H-3’’), 1.56 \, (s, \ 9H, \ H-2”’) ppm\); \(\delta_C(\text{CDCl}_3) = 173.1 \, (C-1’), 154.1 \, (C-1), 150.4 \, (C-7), 132.4, 132.1, 127.3, 127.2, 127.1, 125.7 \, (C-3). 124.2, 123.1, 122.8, 121.90, 121.88, 120.2, 113.9, 38.4 \, (C-3’’), 35.5 \, (C-1’’’), 32.1 \, (C-2”’) ppm (one carbon signal fewer than expected); IR \(\nu = 3629 \, (w), 1684 \, (s), 1653 \, (m), 1617 \, (m), 1560 \, (m), 1499 \, (m), 1477 \, (w), 1440 \, (w), 1414 \, (m), 1390 \, (w), 1375 \, (m), 1353 \, (m), 1250 \, (s), 1190 \, (s), 1127 \, (m), 1088 \, (w), 1059 \, (m) \, \text{cm}^{-1}; \) MS (APCI) \(m/z \) (relative intensity) = 346 (M⁺+1, 100); HRMS [M⁺] calcd for C₂₃H₂₃NO₂ 345.1729, found 345.1727.
Method 1: NaH (60% suspension in mineral oil, 0.48 g, 9.72 mmol) was washed with n-hexane (2 x 10 mL) in a 3-necked round-bottomed flask. THF (20.0 mL) was added and the resulting suspension was cooled in an ice bath. A clear, brown solution of 7-tert-butylpyrene-1-ol (28) (2.21 g, 8.10 mmol) in THF (50 mL) was then added and the reaction mixture was stirred for 15 min at 0 °C. Methoxymethyl chloride (0.740 mL, 9.72 mmol) was then added and the reaction mixture was stirred at 0 °C for 3 h. A few drops of methanol were added to the reaction mixture and the solvent was removed under reduced pressure. The residue was dissolved in ethyl acetate (80 mL) and the resulting solution was washed with cold water (40 mL), brine (30 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (0-2.5% ethyl acetate/hexanes) to afford 32 as a pale yellow gum (2.21 g, 89%). δH(CDCl₃) = 8.42 (d, J = 9.4 Hz, 1H), 8.16 (br s, 1H), 8.15 (br s, 1H), 8.05 (d, J = 8.6 Hz, 1H, H-3), 8.03 (d, J = 9.6 Hz, 1H), 7.94 (d, J = 9.4 Hz, 1H), 7.89 (d, J = 9.0 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H, H-2), 5.52 (s, 2H, H-2'), 3.61 (s, 3H, H-
4'), 1.57 (s, 9H, H-2") ppm; δ_{C(DCl_3)} = 151.3 (C-1), 149.4 (C-7), 131.64, 131.59, 127.3, 127.1, 126.3, 126.0, 125.9, 125.5, 123.4, 122.1, 121.8, 121.2, 121.0 (C-2), 111.9, 95.7 (C-2'), 56.6 (C-4'), 35.4 (C-1''), 32.1 (C-2'') ppm; GC/MS m/z (relative intensity) = 318 (M^+, 39), 273 (100), 243 (11); HRMS [M^+] calcd for C_{22}H_{22}O_2 318.1620, found 318.1629.

Method 2: To a clear, brown, 5 °C solution of 28 (1.26 g, 4.59 mmol) in THF (50 mL) were added triethylamine (0.96 mL, 6.89 mmol) and methoxymethyl chloride (0.520 mL, 6.89 mmol). The reaction was stirred at room temperature for 48 h and then heated to reflux for a further 48 h. The reaction mixture was allowed to cool to room temperature and then cold water (30 mL) was added. The biphasic mixture was transferred to a separatory funnel and the two layers were separated. The aqueous layer was extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine and dried over anhydrous Na_2SO_4. The solvent was evaporated under reduced pressure and the residue was subjected to flash chromatography (0-5% ethyl acetate/hexanes) to afford 32 as a pale yellow gum (1.08 g, 68%).
7-tert-Butyl-1-(methoxymethoxy)pyrene-2-carbaldehyde (33)

Method 1: To a clear, pale yellow, -20 °C solution of 32 (1.90 g, 5.97 mmol) and TMEDA (1.08 mL, 7.16 mmol) in THF (50.0 mL) was added n-BuLi (0.94 M solution in hexanes, 7.62 mL, 7.16 mmol). The resulting deep red solution was stirred at -20 °C for 1 h. DMF (0.920 mL, 11.9 mmol) was then added and stirred was continued at -20 °C for 1.5 h. Cold saturated NH₄Cl solution (20 mL) was then added to the reaction mixture carefully. The solvent was removed under reduced pressure and the residue was diluted with cold water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (0-10% ethyl acetate/hexanes) to afford 33 as a yellow solid (1.44 g, 70%). mp = 132-134 °C; δH(CDCl₃) = 10.74 (s, 1H, H-1′), 8.53 (s, 1H, H-3), 8.31 (d, J = 8.5 Hz, 1H), 8.20 (d, J = 1.5 Hz, 1H), 8.18 (d, J = 1.5 Hz, 1H), 8.09 (d, J = 8.8 Hz, 1H), 7.97 (d, J = 9.1 Hz, 1H), 7.94 (d, J = 9.4 Hz, 1H), 5.37 (s, 2H, H-2′), 3.67 (s, 3H, H-4′),
1.57 (s, 9H, H-2") ppm; δ(CDC13) = 191.3 (C-1"'), 154.4 (C-1), 151.3 (C-7), 132.1, 132.0, 129.3, 128.7 (C-3), 128.0, 127.9, 127.8, 126.6, 124.7, 123.9, 123.2, 122.9, 122.8, 121.4, 102.6 (C-2'), 58.5 (C-4'), 35.6 (C-1"'), 32.0 (C-2") ppm; GC/MS m/z (relative intensity) = 346 (M+, 24), 316 (13), 300 (100), 286 (39), 273 (23), 257 (16), 243 (18), 189 (14); HRMS [M+] calcd for C23H22O3 = 346.1569, found = 346.1563.

Method 2: To a clear, pale yellow -20 °C solution of 32 (0.32 g, 1.0 mmol) and TMEDA (0.18 mL, 1.2 mmol) in THF (10 mL) was added n-BuLi (0.94 M solution in hexanes, 1.3 mL, 1.2 mmol). The resulting deep red solution was stirred at -20 °C for 1 h and N-methylformanilide 0.25 mL, 2.0 mmol) was added. Stirred was continued at -20 °C for a further 1.5 h and then cold saturated NH4Cl solution (5 mL) was added carefully. The solvent was removed under reduced pressure and the residue was diluted with cold water (10 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (0-10% ethyl acetate/hexanes) to afford 33 as a yellow solid (0.24 g, 70%).

Method 3: To a clear, pale yellow -20 °C solution of 32 (0.32 g, 1.0 mmol) and TMEDA (0.18 mL, 1.2 mmol) in diethyl ether (10 mL) was added n-BuLi (0.94 M solution in hexanes, 1.3 mL, 1.2 mmol). The resulting deep red, cloudy solution was stirred at -20 °C for 1 h and DMF (0.15 mL, 2.0 mmol) was then added. Stirring was continued at -20 °C for a further 1.5 h. and cold saturated NH4Cl solution (5 mL) was added carefully. Diethyl ether (5 mL) was then added and the resulting biphasic mixture was transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted with
diethyl ether (2 × 5 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was subjected to flash chromatography (0-10% ethyl acetate/hexanes) to afford 33 as a yellow solid (0.21 g, 62%).

7-tert-Butyl-1-hydroxyphenene-2-carbaldehyde (29)

A yellow suspension of 33 (1.14 g, 3.00 mmol) in methanol:37% HCl solution (2:1) (60 mL) was stirred open to air at room temperature for 16 h. The solvent was evaporated under reduced pressure and the residue was dissolved in dichloromethane (80 mL). The solution was washed with saturated NaHCO₃ solution (40 mL) and washed with brine (40 mL). The organic layer was then dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure to afford 29 as a yellow solid (0.902 g, 100%).

mp = 191-192 °C (dichloromethane). δH(CDCl₃) = 11.93 (s, 1H, H-1'), 10.29 (s, 1H, H-1''), 8.48 (s, 1H, H-3), 8.20 (d, J = 8.4 Hz, 1H), 8.15 (s, 1H), 8.12 (s, 1H), 8.05 (d, J = 8.6 Hz, 1H).
Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 9.2 Hz, 1H), 1.57 (s, 9H, H-2") ppm;
\(\delta _C (\text{CDCl}_3) = 197.1 \) (C-1"), 155.8 (C-1), 151.4 (C-7), 132.9, 132.5, 129.4, 128.3 (C-3), 127.2, 127.1, 126.0, 124.0, 122.8 (C-2), 122.3, 122.0, 121.3, 119.3, 116.7, 35.3 (C-1"), 31.7 (C-2") ppm; MS (APCI) \(m/z \) (relative intensity) = 303 (M+1, 24), 302 (100);
HRMS [M+] calcd for C_{21}H_{18}O_2 = 302.1307, found = 302.1309.

7-tert-Butyl-2-formylpyrene-1-yl 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonate (34)

To a 0 °C suspension of NaH (80% dispersion in mineral oil, 0.12 g, 4.0 mmol, washed once with n-hexane (10 mL)) in DMF (10 mL) was added a clear yellow solution of 7-tert-butyl-2-formyl-1-hydroxypyrene (29) (0.60 g, 2.0 mmol) in DMF (10 mL) and the resulting mixture was stirred at 0 °C for 1.5 h. Nonafluorobutanesulfonyl fluoride (0.46 mL, 2.6 mmol) was then added and the resulting mixture was stirred at room temperature for 62 h. The solvent was removed under reduced pressure (10 mbar, 60 °C) and the residue was subjected to flash chromatography (0-2.5% ethyl acetate/hexanes) to afford 34 as a yellow solid (0.87 g, 75%). mp = 103-104 °C; \(\delta _H (\text{CDCl}_3) = 10.66 \) (s, 1H, H-1'), 8.72 (s, 1H, H-3), 8.36 (d, J = 9.5 Hz, 1H, H-10), 8.35 (m, 2H, H-6 and H-8), 8.29 (d, J =
9.5 Hz, 1H, H-9), 8.21 (d, J = 9.0 Hz, 1H, H-5), 8.16 (d, J = 9.1 Hz, 1H, H-4), 1.60 (s, 9H, H-2") ppm; δ\(_{c}\)(CDCl\(_3\)) = 187.6 (d, C-1'), 152.0 (s, C-7), 141.5 (s, C-1), 131.5 (s, C-5a), 131.2 (s, C-8a), 130.7 (d, C-9), 130.5 (s, C-3a), 129.9 (d, C-5), 128.5 (s, C-10b), 127.2 (d, C-4), 125.8 (s, C-10a), 124.6 (d, C-3), 124.44 (d, C-6), 124.42 (s, C-2), 124.1 (d, C-8), 121.8 (s, C-10c), 119.9 (d, C-10), 35.5 (s, C-1''), 31.8 (q, C-2'') ppm (chemical shifts for CF\(_2\)CF\(_2\)CF\(_2\)CF\(_3\) are not given because unambiguous assignment was not possible due to strong \(^{13}\)C,\(^{19}\)F splitting); IR \(\nu\) = 1720 (s), 1696 (s), 1652 (w), 1635 (w), 1606 (w), 1592 (w), 1565 (m), 1478 (w), 1470 (w), 1461 (w), 1429 (m), 1398 (m), 1369 (m), 1352 (m), 1285 (m), 1243 (s), 1146 (s), 1089 (w), 1032 (w), 1009 (w) cm\(^{-1}\); MS (EI) \(m/z\) (relative intensity) = 584 (M\(^+\), 26), 583 (M\(^+\)-1, 100), 301 (31), 299 (27). HRMS [M\(^+\)] calcd for C\(_{25}\)H\(_{17}\)O\(_4\)F\(_9\)S 584.0704, found 584.0696.

7-tert-Butyl-1-((((trimethylsilyl)ethynyl)pyrene-2-carbaldehyde (35)

\[
\text{CHO} \equiv \text{Si}
\]

A Schlenk flask was charged with PdCl\(_2\)(PPh\(_3\))\(_2\) (32 mg, 0.046 mmol, 5 mol%) and CuI (18 mg, 0.092 mmol, 10 mol%) and kept under argon. Through a septum, a clear yellow
solution of 34 (0.54 g, 0.92 mmol) in DMF (20 mL) was added followed by the addition of triethylamine (0.64 mL, 4.6 mmol) and trimethylsilylacetylene (0.16 mL, 1.1 mmol). The reaction flask was sealed with a teflon screw cap and the reaction mixture was heated at 90 °C for 2 h. The solvent was removed under reduced pressure (15 mbar, 60 °C) and the residue was adsorbed on silica gel and subjected to flash chromatography (0-5% ethyl acetate/hexanes) to afford 35 as a yellow solid (309 mg, 87%). mp = 124-125 °C; δH(CDC13) = 11.01 (s, 1H, H-1”), 8.64 (s, 1H, H-3), 8.63 (d, J = 9.1 Hz, 1H, H-10), 8.29 (d, J = 1.8 Hz, 1H, H-8), 8.26 (d, J = 1.8 Hz, 1H, H-6), 8.21 (d, J = 9.1 Hz, 1H, H-9), 8.10 (d, J = 9.1 Hz, 1H, H-5), 8.07 (d, J = 9.1 Hz, 1H, H-4), 1.60 (s, 9H, H-2”), 0.43 (s, 9H, H-3”) ppm; δC(CDC13) = 193.2 (d, C-1”), 151.1 (s, C-7), 132.8 (s, C-2), 132.6 (s, C-10a), 131.8 (s, C-5a), 131.7 (s, C-8a), 130.5 (s, C-3a), 129.5 (d, C-9 and d. C-5, degenerate peaks), 127.9 (d, C-4), 127.0 (s, C-10b), 125.2 (d, C-10), 123.6 (d, C-6), 123.5 (d, C-8), 122.5 (d, C-3), 122.1 (s, C-10c), 120.4 (s, C-1), 108.1 (s, C-1’), 99.2 (s, C-2’), 35.4 (s, C-1”’), 31.8 (q, C-2””), 0.03 (q, C-3’) ppm; IR ν = 3301 (w), 2145 (m), 1692 (s), 1670 (m), 1252 (m), 1633 (w), 1626 (w), 1588 (m), 1563 (m), 1546 (m), 1462 (w), 1383 (m); MS (EI) m/z (relative intensity) = 382 (M*, 94), 367 (69), 256 (22), 72 (66), 57 (100). HRMS [M+] calcd for C26H26OSi 382.1753, found 382.1759.
(7-tert-Butyl-1-((trimethylsilyl)ethynyl)pyrene-2-yl)methanol (36)

To a clear, yellow solution of 35 (0.36 g, 0.94 mmol) in toluene (30 mL) was added DIBAL-H (1.5 M solution in toluene, 0.75 mL, 1.1 mmol) over 2 min at 0 °C under an argon atmosphere. The reaction mixture was stirred at room temperature for 16 h. Saturated NaCl solution (1.0 mL) was added carefully and the solvent was removed under reduced pressure. Saturated NaCl solution (20 mL) was added to the residue and the resulting mixture was extracted with dichloromethane (1 × 20 mL and 2 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography (0-10% ethyl acetate/hexanes) to afford 36 as a yellow solid (0.31 g, 85%). mp = 148-149 °C; δH(CDCl₃) = 8.55 (d, J = 9.1 Hz, 1H, H-10), 8.26 (d, J = 1.8 Hz, 1H, H-8), 8.24 (d, J = 1.8 Hz, 1H, H-6), 8.16 (d, J = 9.1 Hz, 1H, H-9), 8.09 (d, J = 9.2 Hz, 1H, H-5), 8.08 (s, 1H, H-3), 8.01 (d, J = 9.2 Hz, 1H, H-4), 5.70 (s, 2H, H-1''), 1.59 (s, 9H, H-2''), 0.40 (s, 9H, H-3') ppm; δC(CDCl₃) = 149.6 (s, C-7), 135.1 (s, C-2), 132.4 (s, C-10a), 131.0 (s, C-5a), 130.8 (s, C-3a and s, C-8a, degenerate peaks), 129.0 (d, C-9), 128.9 (d, C-5), 127.0
(d, C-4), 125.4 (d, C-10), 124.2 (d, C-3), 123.9 (s, C-10b), 123.1 (s, C-6 and s, C-8,
degenerate peaks), 122.3 (s, C-10c), 116.7 (s, C-1), 105.7 (s, C-1'), 101.0 (s, C-2'), 65.8
(t, C-1''), 35.3 (s, C-1''), 31.9 (q, C-2''), 0.12 (q, C-3'') ppm; HRMS [M\(^{+}\)+CH\(_3\)CN+1]
calcd for C\(_{28}\)H\(_{32}\)NOSi (M\(^{+}\)+H\(^{+}\)CH\(_3\)CN) 426.1796, found 426.2005.

7-tert-Butyl-1-((2-(4-triisopropylsilyl)but-3-ynyl)naphthalene-1-yl)ethynyl)pyrene-2-
carbaldehyde (24)

![Diagram of molecule 24]

To a Schlenk flash containing naphthalene-based diyne 25 (0.34 g, 0.94 mmol) under an
argon atmosphere was added Pd(PPh\(_3\))\(_4\) (38 mg, 0.033 mmol, 8 mol%), CuI (19 mg,
0.098 mmol, 24 mol%) and DMF (2.0 mL). To this mixture was added triethylamine
(0.11 mL, 0.82 mmol). A clear, yellow solution of nonaflate 34 (0.24 g, 0.41 mmol) in
DMF (8.0 mL) was then added to the resulting brown solution. The reaction mixture was
stirred at room temperature for 16 h. The solvent was removed under reduced pressure
and the residue was subjected to flash chromatography to afford 24 (0.16 g, 68%) as a
yellow oil. \(\delta_H(\text{CDCl}_3) = 11.27 \ (s, \ H-1'')\), 8.92 (d, \(J = 9.1\ Hz, \ H-10\)), 8.76 (s, \(H\), H-3), 8.62 (dq, \(J = 8.4, 0.9\ Hz, \ H-8'\)), 8.31 (d, \(J = 9.1\ Hz, \ H-9\)), 8.31 (d, \(J = 1.8\ Hz, \ H-8\)), 8.30 (d, \(J = 1.8\ Hz, \ H-6\)), 8.16 (s, 2H, H-5 and H-4), 7.91 (ddt, \(J = 8.3, 1.3, 0.7\ Hz, \ H-5'\)), 7.88 (br d, \(J = 8.4\ Hz, \ H-4'\)), 7.80 (d, \(J = 8.4\ Hz, \ H-3'\)), 7.68 (ddd, \(J = 8.4, 6.8, 1.3\ Hz, \ H-7'\)), 7.56 (ddd, \(J = 8.0, 1.3, 0.7\ Hz, \ H-6'\)). 3.53 (t, \(J = 7.4\ Hz, \ H-1''\)), 2.89 (t, \(J = 7.4\ Hz, \ H-2''\)), 1.61 (s, 9H, H-2''''), 0.98-0.95 (m, 21H, H-5''' and H-6'''') ppm; \(\delta_C(\text{CDCl}_3) = 192.7 \ (d, \ C-1''\)), 151.2 (s, C-7), 142.4 (s, C-2'), 133.8 (s, C-8'a), 132.64 (s, C-2), 132.60 (s, C-10a), 132.1 (s, C-4'a), 132.0 (s, C-5a), 131.8 (s, C-8a), 130.6 (s, C-3a), 129.8 (d, C-9), 129.5 (d, C-5), 129.2 (d, C-4'), 128.4 (d, C-5'), 127.9 (d, C-4), 127.6 (d, C-3'), 127.35 (d, C-7'), 127.31 (s, C-10b), 126.1 (d, C-6' and C-8', degenerate peaks), 125.3 (d, C-10), 123.7 (d, C-8), 123.5 (d, C-6). 123.2 (d, C-3), 122.3 (s, C-10c), 120.7 (s, C-1), 118.9 (s, C-1'), 107.5 (s, C-3''''), 98.4 (s, C-b), 93.3 (s, C-a), 81.6 (s, C-4''''), 35.4 (s, C-1''''), 35.0 (t, C-1''''), 31.8 (q, C-2''''), 21.6 (t, C-2''''), 18.5 (q, C-6''''), 11.2 (s, C-5'''') ppm; IR \(\nu = 3056\) (w), 2963 (s), 2865 (s), 2194 (w), 2170 (w), 1691 (s), 1633 (w), 1624 (w), 1605 (w), 1589 (m), 1545 (w), 1508 (w), 1495 (w), 1481 (w), 1464 (m), 1432 (w), 1315 (w), 1396 (m), 1392 (w), 1382 (w), 1364 (w), 1102 (w), 1080 (w). 997 (w), 920 (w), 884 (s), 679 (m), 661 (m), 615 (w); MS (EI) \(m/\ell\) (relative intensity) = 645 (M+, 85), 631 (90), 606 (100), 605 (80); HRMS [M'] calcd for \(\text{C}_{46}\text{H}_{49}\text{OSi}\) 645.3547, found 645.3544.
1-(7-tert-Butyl-1-((2-(4-triisopropylsilyl)but-3-ynyl)naphthalene-1-yl)ethynyl)pyrene-2-yl)but-3-enyl acetate (39)

To a clear, orange solution of 24 (0.14 mg, 0.21 mmol) in THF (5.0 mL) at 0 °C under an argon atmosphere was added allylmagnesium bromide (0.42 mL 1.0 M solution in diethyl ether, 0.42 mmol). The resulting clear yellow solution was stirred at room temperature for 10 min and acetic anhydride (0.48 mL, 5.0 mmol) was added. The reaction mixture was then stirred at room temperature for 12 h. Cold water (10 mL) and ethyl acetate (10 mL) were added to the reaction mixture. The layers were separated and the aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was subjected to flash chromatography (0-5% diethyl ether/hexanes) to afford 39 as a pale yellow oil (0.13 g, 85%). δH(CDC13) = 8.83 (d, J = 9.1 Hz, 1H, H-10), 8.77 (dq, J = 8.4, 0.9 Hz, 1H, H-8'), 8.25 (d, J = 9.1 Hz, 1H, H-9), 8.26 (d, J = 1.8 Hz, 1H, H-8), 8.25 (d, J = 1.8 Hz, 1H, H-6), 8.24 (s, 1H, H-3), 8.11 (d, J
= 9.1 Hz, 1H, H-5'), 8.06 (d, J = 9.1 Hz, 1H, H-4), 7.89 (ddt, J = 8.1, 1.4, 0.7 Hz, 1H, H-5'), 7.84 (d, J = 8.4 Hz, 1H, H-4'), 7.67 (dd, J = 8.1, 6.8, 1.4 Hz, 1H, H-7'), 7.61 (d, J = 8.4 Hz, 1H, H-3'), 7.54 (dd, J = 8.1, 6.8, 1.2 Hz, 1H, H-6'), 7.03 (dd, J = 8.0, 5.0 Hz, 1H, H-1''), 5.89 (ddddd, 17.2, 10.2, 7.3, 6.5 Hz, 1H, H-3''), 5.10 (dq, 17.2, 1.5 Hz, 1H, H-4''a), 5.06 (ddt, J = 10.2, 1.8, 1.1 Hz, 1H, H-4''b), 3.58-3.51 (m, 2H, H-1''''), 3.01 (ddt, J = 14.8, 6.5, 1.4 Hz, 1H, H-2'''), 2.93 (dtt, J = 14.8, 7.5, 1.2 Hz, 1H, H-2'') , 2.90 (t, J = 7.3 Hz, 2H, H-2'''), 2.22 (s, 3H, H-b''), 1.60 (s, 9H, H-2''), 1.01-0.99 (m, 21H, H-5'''' and H-6''''') ppm; δ_C(CDCl3) = 170.1 (s, C-a'), 149.5 (s, C-7), 141.9 (s, C-2'), 139.4 (s, C-2), 133.8 (s, C-8'a), 133.4 (d, C-3''), 132.2 (s, C-10a), 132.1 (s, C-4'a), 131.02 (s, C-3a), 130.96 (s, C-8a), 130.8 (s, C-5a), 129.2 (d, C-9), 128.8 (d, C-5), 128.6 (d, C-4'), 128.2 (d, C-5'), 127.8 (d, C-3'), 127.13 (d, C-4), 127.07 (d, C-7'), 126.5 (d, C-8'), 125.9 (d, C-6'), 125.5 (d, C-10), 123.9 (s, C-10b), 123.1 (d, C-8), 123.0 (d, C-6), 122.4 (s, C-10c), 121.8 (d, C-3), 119.5 (s, C-1'), 118.2 (t, C-4''), 115.8 (s, C-1), 108.0 (s, C-3'''''), 96.9 (s, C-b), 95.0 (s, C-a), 81.4 (s, C-4'''''), 74.1 (d, C-1''), 41.2 (t, C-2''), 35.3 (s, C-1'''''), 35.0 (t, C-1'''''), 31.9 (q, C-2''), 21.6 (t, C-2'''), 21.3 (q, C-b''), 18.6 (q, C-6'''''), 11.3 (d, C-5''''') ppm; IR ν = 3078 (w), 3054 (w), 2964 (s), 2866 (s), 2866 (s), 2170 (w), 1737 (s), 1642 (w), 1602 (w), 1590 (w), 1566 (w), 1508 (w), 1494 (w), 1478 (w), 1463 (m), 1431 (w), 1417 (w), 1395 (w), 1380 (m), 1371 (m), 1364 (m), 1240 (s), 1155 (w), 1026 (m), 996 (m), 884 (s), 867 (w), 815 (m) cm⁻¹; MS (EI) m/z (relative intensity) = 728 (M⁺, 10), 662 (M⁺-56, 100), 316 (38); HRMS [M⁺] calcd for C₅₁H₅₆O₂Si 728.4050, found 728.4069.
1-(1-(2-(But-3-ynyl)naphthalen-1-yl)ethynyl)-7-tert-butylpyren-2-yl)but-3-enyl acetate (40)

To a clear, yellow room temperature solution of 39 (0.12 g, 0.17 mmol) in THF (3.0 mL) was added TBAF (0.914 M solution in THF, 0.22 mL, 0.20 mmol) under an argon atmosphere. The resulting clear, orange solution was stirred at room temperature for 15 min. The solvent was removed under reduced pressure (at 25-28 °C). The residue was purified by filtration through a short (5 cm x 2 cm) silica gel column (5% diethyl ether/hexane) to afford 40 as a pale yellow gum (0.09 g, 93%). $\delta_{\text{H}}^{13}(\text{CDCl}_3) = 8.83$ (d, $J = 9.1$ Hz, 1H, H-10), 8.78 (dq, $J = 8.3$, 1.0 Hz, 1H, H-8'), 8.28 (d, $J = 1.8$ Hz, 1H, H-8), 8.26 (d, $J = 1.8$ Hz, 1H, H-6), 8.25 (s, 1H, H-3), 8.24 (d, $J = 9.1$ Hz, 1H, H-9), 8.12 (d, $J = 9.0$ Hz, 1H, H-5), 8.07 (d, $J = 9.0$ Hz, 1H, H-4), 7.90 (ddt, $J = 8.0$, 1.3, 0.7 Hz, 1H, H-5'), 7.87 (d, $J = 8.4$ Hz, 1H, H-4'), 7.68 (ddd, $J = 8.3$, 6.8, 1.2 Hz, 1H, H-7'), 7.55 (ddd, $J = 8.0$, 6.8, 1.2 Hz, 1H, H-6'), 7.55 (d, $J = 8.4$ Hz, 1H, H-3'), 7.04 (dd, $J = 7.9$, 5.3 Hz, 1H, H-1''), 5.90 (dddd, $J = 17.0$, 10.2, 7.3, 6.6 Hz, 1H, H-3''), 5.11 (dq, 17.0, 1.5 Hz, 1H, H-
4"a), 5.06 (ddt, J = 10.2, 1.8, 1.1 Hz, 1H, H-4"b), 3.55 (t, J = 7.6 Hz, 2H, H-1"'). 3.00 (ddt, J = 14.6, 6.6, 1.2 Hz, 1H, H-2"'), 2.94 (dtt, J = 14.6, 7.5, 1.2 Hz, 1H, H-2"'), 2.82 (dt, J = 7.6, 2.6 Hz, 2H, H-2"'), 2.22 (s, 3H, H-b"'), 2.08 (t, J = 2.6 Hz, 1H, H-4"'), 1.60 (s, 9H, H-2"') ppm; δ(CDCl₃) = 170.2 (s, C-a"'), 149.5 (d, C-7), 141.5 (s, C-2'), 139.5 (s, C-2), 133.8 (s, C-8'a), 133.4 (d, C-3"'), 132.2 (s, C-10α), 132.1 (s, C-4'a), 131.0 (s, C-3α and C-8a), 130.8 (s, C-5α), 129.2 (d, C-9), 128.9 (d, C-5'), 128.8 (d, C-5), 128.7 (d, C-4'), 127.4 (d, C-3'), 127.2 (d, C-7'), 127.1 (d, C-4), 126.5 (d, C-8'), 126.0 (d, C-6'), 125.6 (d, C-10), 123.9 (s, C-10β), 123.13 (d, C-8), 123.09 (d, C-6), 121.8 (d, C-3), 119.7 (s, C-1'), 118.2 (t, C-4''), 115.7 (s, C-1), 96.7 (s, C-b), 95.1 (s, C-a), 83.8 (s, C-3'''), 74.1 (d, C-1''), 69.3 (d, C-4''''), 41.2 (t, C-2''), 35.3 (s, C-1''''), 34.7 (t, C-1'''''), 31.9 (q, C-2'''), 21.3 (q, C-b''), 20.2 (t, C-2''') ppm; IR ν = 3309 (m), 3079 (w), 3053 (w), 2967 (s), 2188 (w), 2118 (w), 1737 (s), 1648 (w), 1643 (w), 1602 (w), 1590 (w), 1567 (w), 1507 (w), 1479 (w), 1461 (w), 1432 (w), 1417 (w), 1395 (m), 1364 (m), 1342 (m), 1239 (s), 1154 (w), 1026 (m), 994 (w), 925 (m), 887 (m), 639 (m), 604 (w) cm⁻¹; MS (EI) m/z (relative intensity) = 572 (M⁺, 100), 512 (16), 321 (38), 178 (44), 84 (47), 71 (70), 57 (92); HRMS [M⁺] calcd for C₄₂H₃₆O₂ 572.2715, found 572.2720.
5.6. References

17. Kudale, A. A.; Bodwell, G. J. Unpublished results; this intermediate was prepared for collaborative research with Dr. David Thompson’s research group.

18. This compound was provided by Miroslava Šišková. It was prepared by following the procedure from ref. 12b.

24. As per the findings from the Starý group, this catalyst has been found to achieve [2+2+2] cycloisomerization of other triynes under milder reaction conditions as compared to other cobalt-catalysts.
5.7. Appendix

NMR Spectra for Selected Compounds
Current Data Parameters
NAME Stara-AAK_7_05a
EXPNNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20071110
Time 7:10
INSTRUM spect
PROBNO 5 mm CPTCI 11
PULPROG zg30
TD 5790
SOLVENT CDC13
NS 16
DS 0
SWN 7211.839 Hz
FIDRES 0.125005 Hz
AQ 3.998681 sec
RG 10
dw 69.333 usec
DE 6.00 usec
TE 300.0 K
TD1 0.00000000 sec
TD0 1

===
CHANNEL 1
NUC1 1H
P1 10.00 usec
PL1 5.10 dB
SF01 600.1332407 MHz

F2 - Processing parameters
SI 131072
SF 600.1200996 MHz
WOW no
SB 0
LB 0.00 Hz
GB 0
PC 1.00
Current Data Parameters
NAME Star-AAK-7_07a
PROCNO 1

F2 - Acquisition Parameters
Date 20071105
Time 7.13
INSTRUM spect
PROBHD 5 mm CPTCl (1)
PULPROG zg30
TD 57690
SOLVENT CDCl3
NS 16
DS 0
SWH 7211.539 Hz
FIDRES 0.125005 Hz
AQ 3.9998901 sec
RG 10
DW 69.333 usec
GE 0.00 usec
TE 300.0 K
D1 0.00000000 sec
D2 1

****** CHANNEL 1 ******
NUC1 1H
F1 10.00 usec
PL1 8.10 dB
SF01 600.1322407 MHz

F2 - Processing parameters
SI 131072
SF 600.1300109 MHz
WDW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.00

I.Stara AAK-7-07a
in CDCl3, ref=TMS
5.11.2007 DA

37225
Current Data Parameters
NAME: Stara-AAK_7_07a
EXPNO: 2
PROCNO: 1

F2 - Acquisition Parameters
Date: 20071105
Time: 7:32

INSTRUM: INSTRUM
PROBHD: 5 mm CP (Cl 1H, 13C)
TD: 35536
SOLVENT: CDCl3
NS: 256
DS: 4

SWH 36057.691 Hz
FIDRE 0.550197 Hz
AQ: 0.90665129 sec
RG: 128
DW: 13,867 usec
DE: 6.65 usec
TE: 303.0 K
D1: 0.0000000 sec
D1: 0.0000000 sec
DELTA: 1.89999996 sec
TD0: 1

CHANNEL f1
NUC1: 13C
PL1: 11.50 usec
PL1: -14.0 dB
SF01: 150.917888 MHz

CHANNEL f2
PCPD2: 80.00 usec
PL12: 25.00 dB
PL13: 25.00 dB
PL14: 7.00 dB
SF02: 600.1331237 MHz

F2 - Processing parameters
SI: 131072
SP: 150,902,8135 MHz
WDW: EM
LB: 1.00 Hz
GB: 0
PC: 1.40

37225
Current Data Parameters
NAME Stara-AAK_7-08
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20080521
Time 7:45
INSTRUM spect
PROBHDI 5 mm CP1C11
PULPRG zg30
TD 57890
SOLVENT CDCl3
NS 16
DS 0
SOM 7211.539 Hz
FIDRES 0.125006 Hz
AQ 3.9998901 sec
RG 10
DW 69.333 usec
DE 6.00 usec
TE 300.0 K
D1 0.00000000 sec
TD0 1

======== CHANNEL 1 ======
NUC1 1H
P1 10.00 usec
PL1 8.10 dB
SF01 600.1332407 MHz

F2 - Processing parameters
SL 131072
SL 600.1300113 MHz
WDW no
SSB 0
LB 0.00 Hz
PC 1.00

38314
I. Stara AAK-7-17
in CDCl3, ref=TMS
27.5.2008 DA

Current Data Parameters
NAME Stara-AAK_7_17
EXPNO 5
PROCNO 1

F2 - Acquisition Parameters
Date 20080628
Time 7.19
INSTRUM spect
PROBHD 5 mm CPT(c11)
PULPROG zg30
TD 48076
SOLVENT CDCl3
NS 40
dS 0
SWH 711.539 Hz
FIDRES 0.150003 Hz
AQ 3.3333194 sec
RG 9
DW 69.333 ussec
DE 6.00 ussec
TE 300.0 K
D1 0.00000000 se:.
D0 1

borah=001

== CHANNEL F1 ==
NUC1 1H
P1 10.00 ussec
PI1 8.19 dB
SFO1 600.1333007 MHz

F2 - Processing parameters
SI 131072
SF 600.13000091 MHz
WOW no
SSB 0
LB 0.00 Hz
GB 0
PC 1.00

TIPS

24

CHO

TIPS

24
I. Stara AAK-7-22
in CDC13, ref=TMS
28.5.2008 DA

Current Data Parameters

NAME Stara-AAK_7_22
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20080528
Time 7:31
INSTRUM spect
PROBHD 5 mm CPTCI 11
PULPROG zg30
TD 48078
SOLVENT CDC13
NS 32
DS 0
SWH 6009.815 Hz
PERRES 0.128002 Hz
AG 3.999733 sec
RG 9
DW 63200 usec
DE 6.00 usec
TE 300.0 K
DI 0.00000000 sec
TD6 1

====== CHANNEL M ======
NUC1 1H
PI 10.00 usec
PL1 8.10 dB
SF01 600.1327006 MHz

F2 - Processing parameters
SI 131072
SF 600.1200106 MHz
WWD no
SSB 0
LB 0.00 Hz
GB 0
PC 1.00
Current Data Parameters
NAME: Stara-AAK-7_23
EXPNO: 1
PROCNO: 1

F2 - Acquisition Parameters
Date: 20080519
Time: 7.31
INSTRUM: spect
PROBHD: 5 mm CPTCI 11
PULPROG: zg30
TD: 48070
SOLVENT: CDCI3
NS: 16
DS: 0
SWF: 6000.615 Hz
FIDRES: 0.125002 Hz
AQ: 3.999733 sec
RG: 9
DW: 83.2007263 Hz
DE: 6.00 ussec
TE: 300.0 K
DT1: 0.00000000 sec
TD0: 1

==== CHANNEL 1 ====
NUC1: 1H
P1: 10.00 ussec
PL1: 8.10 dB
SF01: 600.1327006 MHz

F2 - Processing parameters
SI: 131072
SF: 600.1300082 MHz
WOW: 1.00
SSB: 0
LB: 0.00 Hz
GB: 0
PC: 1.00
Current Data Parameters

<table>
<thead>
<tr>
<th>NAME</th>
<th>Stara-AAK_7_23</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPNO</td>
<td>2</td>
</tr>
<tr>
<td>PROCNO</td>
<td>1</td>
</tr>
</tbody>
</table>

F2 - Acquisition Parameters

- **Date**: 20080519
- **Time**: 7:33
- **INSTRUM**: spect
- **PROBHD**: 5 mm CPT C1H
- **F1LPROG**: zgpg30
- **TD**: 59520
- **SOLVENT**: CDC13
- **NS**: 2048
- **DS**: 0
- **SWH**: 29761.504 Hz
- **FIDRES**: 0.500032 Hz
- **AD**: 0.99999862 sec
- **RG**: 128
- **DW**: 16.800 usec
- **TF**: 300.0 K
- **D1**: 1.00000000 sec
- **d11**: 0.03000000 sec
- **DELTA**: 0.89999998 sec

Channel 1

<table>
<thead>
<tr>
<th>NUC1</th>
<th>3C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>11.50 usec</td>
</tr>
<tr>
<td>PL1</td>
<td>-1.40 dB</td>
</tr>
<tr>
<td>SF01</td>
<td>150.9178993 MHz</td>
</tr>
</tbody>
</table>

Channel 2

<table>
<thead>
<tr>
<th>NUC2</th>
<th>1H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCPD2</td>
<td>80.00 usec</td>
</tr>
<tr>
<td>PL12</td>
<td>22.00 dB</td>
</tr>
<tr>
<td>PL13</td>
<td>25.00 dB</td>
</tr>
<tr>
<td>PL2</td>
<td>7.00 dB</td>
</tr>
<tr>
<td>SF02</td>
<td>600.1327006 MHz</td>
</tr>
</tbody>
</table>

F2 - Processing parameters

- **SI**: 131072
- **SF**: 150.9028130 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 1.00 Hz
- **GB**: 0
- **PC**: 0.50

38296