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ABSTRACT 

Many researchers have studied the buckling behaviour of pipelines under combined 

loading in the interest of defining pipeline capacity a the pipe undergoes large 

deformation due to extreme ground movement. Past studies have u ed a number of 

physical, analytical, and numerical methods in order to understand pipeline behaviour 

and define the strain limits necessary in limit states design. A review of published works 

has been presented here as well as two conference papers detailing the calibration of a 

numerical model and comment on the buckling behaviour of a pipeline. 

The first paper, accepted by OMAE 2009, extensively described the calibration of the 

numerical model which was used to study the buckling behaviour and capacity of 

pipelines. This paper had specific intere t in the effects of radial offset imperfections, 

due to girth welding process, on structural capacity. A parametric study also examined 

diameter, thickness, internal applied pressure and applied axial force. The presence of a 

compressive axial force was shown to decrease critical moment and strain. Strain 

capacity was shown to be reduced by a much as 35% depending on the magnitude of 

girth weld imperfection. Strain behaviour over various pres ure level was shown to be 

non-linear and shown be reflected in the development of strain based equations. 

The second paper, submitted to CSCE 2009, conducted further analysis on the results 

generated from the parametric study with a focus on the resultant buckled waveform and 

pipeline section ovality. Buckled wavelength and amplitude were influenced by pipeline 
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diameter, diameter to thickness (0/t) ratio and applied internal pressure with limited 

influence from misalignment amplitude. Ovality, a measure of pipeline out-of­

roundness, was found to remain constant over diameter, increase with decreasing 0/t, 

decrease with internal pressure, and remain unaffected by axial force or amplitude of 

imperfection. End effects were discovered to be a problem when considering pressurized 

pipes and have been quantified for select cases. This has been shown to be a direct result 

of the diameter to length ratio of the te ted pipeline. As result, it is recommended that the 

length to diameter ratios for test sections should be as large as practical, for both 

numerical and physical tests, to avoid boundary effects. 

The numerical procedure developed in this study has shown to be consistent with a 

number of ources, Ghodsi eta!. (1994), Dorey (2001) and Torselletti eta!. (2005). The 

main conclusion and recommendation given as a result of this study was that boundary 

effects greatly influence the buckling behaviour of the short pipelines studied and that 

further investigations warrants the use of longer test sections. 
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1. INTRODUCTION, OVERVIEW AND CO-AUTHORSHIP STATEMENT 

1.1 .1NTRODUCTION 

The ever expanding oil and gas industry is constantly pushing the boundaries of what are 

feasible and economical energy development projects. With exploration in deep water 

and harsh environmental conditions, especially in the Arctic, new technical challenges 

arise when transporting resources via pipeline. One of these challenges is to design 

against pipeline buckling on both local and global scales. 

Many researchers have studied buckling of pipelines under combined loading, or loading 

from axial, bending and pressure, as it arises in many of the challenging field 

developments. In the Arctic, for example, pipeline designs have to account for potential 

permafrost heave, thaw settlement and/or ice gouging if the pipeline is installed in 

offshore regions. In deep water applications, excessive bending from installation and 

external pressure impose a substantial risk to the mechanical integrity of the pipeline. In 

both these scenarios, any given loading combination may trigger local or global buckling 

rendering the pipeline unserviceable, or worse, result in catastrophic failure and 

hydrocarbon release. 

1.2. OVERVIEW 

The objective of this research is to investigate the effects of girth welded pipe on 

buckling capacity for moment and strain. By studying published works on the buckling 

behaviour of pipelines, a greater understanding of the subject was obtained. The 
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literature review presented here describes physical, analytical and numerical methods that 

have been used to characterized buckling behaviour. Based on this review, a numerical 

procedure using finite element methods wa developed to model the buckling and post­

buckling response of pipeline subject to combined stress state. 

While the literature review contains a large collection of data based on a wide range of 

parameters, few of these studies present all of the information required to properly 

calibrate a numerical model. The research program conducted at the University of 

Alberta provides the most comprehensive public domain dataset available. Selected 

studies from this research program were used in the calibration of the numerical 

procedures in this thesis. 

After calibrating the numerical model and procedures to physical test data, a parametric 

study was developed to investigate moment and strain capacity, pipeline ovality and 

buckle wave forms and amplitude based on five design parameters. These included; 

pipeline diameter, wall thickness, applied internal pressure, applied axial force and girth 

weld misalignment amplitude. 

1.3. CO-AUTHORSHIP STATEMENT 

This research topic was proposed to the principal author by Dr. Shawn Kenny, Memorial 

University of Newfoundland. His contribution to this body of work was to direct the 

author in areas of interest pertaining to buckling capacity of pipelines. Dr. Shawn Kenny 
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and Dr. Ryan Phillips, C-CORE, have both played a role in the review of this manuscript 

and published works, as well as provided comments on the revision of these documents. 

The principal author was responsible for composing this thesis, conducting literature 

review, data synthesis and analysis, conducting the parametric study, interpreting results 

and developing conclusions and recommendations from this study. 
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2. LITERATURE REVIEW 

2.1.EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS 

Early studies on the behaviour of pipelines generally involved experimental and 

analytical methods. Jirsa et al. (1972) performed physical testing on concrete coated steel 

pipes ranging in diameter from 10.75 to 20 inches, to investigate the influence of ovaling 

on flexural behaviour when tested under four-point bending. Moment-Curvature 

relations were determined by infetTing the applied moment and curvatures from finite 

difference expressions of the applied loads and strain measurements, respectively. 

The experimental results of Jirsa et al. (1972) were compared to analytical results derived 

from the principle of least work presented in Wilhoit et al. (1971), established by Ades 

(1957), concluding ovalization does not significantly reduce the moment capacity of 

pipes and the concrete coating has little effect on the ovaling characteristics. 

Bouwkamp et al. (1973) developed an experimental test program using a vertical four­

point bending test, similar to that of Jirsa (1972), with the addition of an applied axial 

load. The motivation for this experiment was to establish deformation criteria for the 

Trans-Alaskan pipeline system considering 48 inch diameter, X60, pipe under combined 

loading conditions. Seven pipe segments were tested with respect to various internal 

pressures and temperatures while accounting for end effects by way of applying 

equivalent axial forces. Buckling occurred in two distinct patterns; outward bulging in 
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the pressurized cases and diamond-shaped inward-outward deformation m the low 

pressure cases. 

Johns et al. (1975) and Johns et al. ( 1977) took an experimental and analytical approach 

to investigate the buckling of cylindrical columns. The physical experimentation of 1.25 

and 2 inch diameter pipelines, D/t ratio of 60, was tested using four-point bending inside 

a containment chamber that allowed for external pressure. The analytical procedure was 

based on thin shell theory and the complex analytical expressions were solved by the 

process of enumeration, methodical trial and error, to find the lowest possible wave 

number of buckling. 

Reddy (1979) investigated small diameter pipelines as well, testing a total of 19 pipe 

samples, 10 tee! and 9 aluminum. The pipelines were one inch in diameter, 24 inches in 

length and had D/t ratios ranging from 30 to 80. Reddy (1979) used results from 

Bouwkamp et al. (1973), as well as Wilnoit et al. ( 1973), and the theoretical predictions 

of Batterman (1965), to assess critical compressive strains obtained from experimental 

tests on both steel and aluminum alloys pipelines. Reddy (1979) concluded that wave 

type ripples trigger collapse rather than small amounts of ovalization. 

Kim (1992) aimed to simplify analytical equations, based on h deformation theory and 

energy methods similar to the works of Batteiman ( 1965), used for axisymmetric 

bifurcation analysis by investigating both experimental and theoretical results for 
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pipelines under combined loading. Kim (1992) indicated that the pnmary factors 

dominating buckling fai lure are: i) initial imperfection; ii) diameter to thickness ratio; iii) 

pipe end conditions and length; and iv) internal pressure. Kim (1992) emphasizes that 

critical strain under combined loading can be considerably greater than critical strain 

under pure bending alone. In particular, internal pressure effect have been shown to be 

beneficial, providing a margin of safety for pipelines designed on the basis of zero 

internal pressure. 

Using cantilever and fixed ended beam , the experimental work of Sherman (1976) on 

steel tubes, 270mm in diameter and 0/t ratio ranging from 18-102, consisted of two 

series of tests which primarily studied the effect of shear through the pipe section. 

Sherman (1976) made several conclusions regarding strength, critical strains and post­

buckling behaviour. The strength of the ection is greatly affected by the presence of 

shear for ections with 0/t ratios greater than 55 due to the inadequacy of the sections to 

redistribute moments. Small moment gradients in the cantilever te ts resulted in higher 

strains mea ured at the initial buckle when compare to constant moment tests. Post­

buckling behaviour is related to D/t ratio and a function of yield strength. 

2.2. NUMERICAL AND PARAMETRIC INVESTIGATIONS 

Numerical buckling analysis of pipelines is used predominantly in recent literature which 

was initiated by the development and availability of computers. Physical 

experimentation is still required, however, to obtain confidence in re ults obtained by 

numerical simulation. Numerical procedures are very cost effective in that many 
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parameters can be studied at minimal cost in order to extend the range of physical testing 

program. 

Kyriakides and Ju (1992) conducted a series of physical tests on aluminum tubing to 

study the effect of bending on long cylindrical shells, which was then used to develop a 

numerical procedure to predict the deformation behaviour, Ju and Kyriakides (1992). As 

referenced in Kyriakides and Ju (1992), the natural limit load of cylindrical shells is 

characterized by the "Brazier Effect" (Brazier, 1927), whereby circular tubes under 

bending will tend to ovalize. The growth of this ovalization results in a natural reduction 

in the bending strength on the shell, due to reduced rigidity, until a maximum bending 

moment is achieved. 

As shown by experimentation, in addition to limit load instabilitie as a result of both 

ovalization and plastic material properties, shell bending is also limited by shell buckling 

modes. As shell structures are bent, short wavelength ripples were observed 

experimentally on the compression side of the shell tubing, which in turn triggered the 

localization of ovalization. As the natural limit load is approached, the long wavelength 

imperfections become amplified resulting in non-uniform ovalization. As previously 

mentioned, the development of ripples and waveform imperfections has been 

documented in Reddy (1979) as well. 
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The experiments of K yriakides and J u ( 1992) on aluminum tubing studied D/t ratios from 

19.5 to 60.5. The authors describe a change in buckling behaviour as D/t decreases. For 

D/t > 40, the prevalent mode of instability was short wavelength rippling, characteristic 

of shell mode type buckling, which occurred in small regions randomly distributed over 

the length of the test section. The shells were found to ovalize relatively uniformly until 

collapse, which were generally diamond-shaped for zero pressure, typical of elastic shell 

buckling. Since bending strains at the initiation of rippling were much lower than the 

corresponding train at limit load, it was stated that the two instabilities showed no signs 

of interaction. 

For intermediate D/t tests, ranging from 26 to 40, short wavelength rippling was evident. 

A limiting moment was clearly defined in these tests, unlike te ts for D/t > 40. Evidence 

from these tests indicate that the natural limit load and rippling instability begin to 

interact as the curvature at which rippling occurs becomes clo er to the limit load induced 

by ovalization. 

For the thick walled pipes, D/t < 26, longer wavelength imperfections govern the shells 

bending capacity as the pipe approaches that of a beam bending. Ovalization becomes 

much more non-uniform and localizes significantly following the limit load. With the 

limit load instability dominating the failure mode, the natural load limit calculated by 

considering Brazier Effect is representative of the actual value. 
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The key result of the Kyriakides and Ju (1992) study concludes that the local buckling 

response varies significantly over the range of D/t. For D/t ratios in the 20-40 range, of 

practical importance for arctic ice gouge and deepwater applications, the primary mode 

of buckling is due to ovalization. For 0/t ratiosgreater than 40, typical for onshore 

pipelines, the buckled mode is triggered by the formation of ripples. The effect of D/t on 

buckling wavelength, presented in Ju and Kyriakides (1992), is shown in Figure 2-1. 

Ao 15~---------------------------------------------, ror 
t 1.3 

-~t 

- -...... _ ... --- - .. ~-

l.l 

.9 
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.1 - - - - -- AJliolly Loaded Cylinder 

------ ··-­-----

AI-6061-TG 

---- ----------

.5+---~----~--~----~--~----~----~--~--~ 
10 20 30 40 50 60 70 60 90 100 

---o;, 

Figure 2-1: Critical Wavelength versus D/t (Ju and Kyriakides, 1992) 

Further to the experimental work of Kyriakides and Ju (1992), Ju and Kyriakides (1992) 

developed analytical expressions and numerical procedures to capture the complex nature 

of cylindrical shell buckling. Sanders' shell kinematics and the principal of virtual work 

were used as basis for a numerical model capable of: 1) modeling ovalization at the 

cross-section of the hollow cylinder, 2) simulating the growth of short wavelength axial 

ripples, and 3) allow for the shell to localize and long wavelength amplitudes over a few 

diameters. 
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The results of the numerical procedures were largely successful in capturing the 

behaviour of the cylindrical shells as compared to experiments; however, there was a 

discrepancy noted between the critical wavelengths calculated and those recorded during 

physical testing. This discrepancy was later attributed to anisotropy (Kyriakides and 

Corona, 2007). The critical curvature yielded by the analysis was in good agreement 

with the physical tests. 

Using a finite element method, Row et al. (1983) studied the influence of material 

properties, imperfection type and size, and applied pressure and forces on pipeline 

buckling, which, as indicated in both the presented thesis and Row et al. (1983) report, 

proved to be significant design factors. These analyses were correlated against the large 

scale tests of Bouwkamp et al. (1974). 

Imperfections were idealized using both bulge and offset eccentricities, the later showing 

a greater significance on critical buckling strain. It was shown that the compressive 

strain limit decreases with increasing amplitude and decreasing wavelength of the 

imperfection and the effect of imperfection is more sensitive at low pressure. Row et al. 

(1983) studied the potential for depressurization to trigger wrinkle formation as critical 

strain limits decrease with decreasing pressure. However, Row et al. (1983) also shows 

numerically that when a pipeline is depressurized at constant axial strain the pipeline 

does not wrinkle. 
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Zimmerman et al. (1995) provided a comprehensive assessment of compressive strain 

limits for buried pipelines including the most predominant methods of analysis and 

criteria at the time. The report discussed methods of analytical and experimental analysis 

in published works and provided a thorough summary of the experimental data available 

as well as established empirical equations. Thi information i given in Figure 2-2 which 

was later updated in Zimmerman et al. (2004) shown in Figure 2-3: 

s ~~,~---~-~_-.r-.---,-J-r-' __ -.-.-_-__ ,! ---'_-._-. -._-_,.-.-_-.-._-._-_-___ ,r--.-,-
7+-~~\4--+--~~~--t--r~--+-_-_t~~~-~t--r--~i--t--r-~_--4_ 

6+-~!\~--~+-~-+--L-~-L~--L-~-L-+--r-+--r-+~~ 
\ \"' Classical Elastic 

c 5 ,\ _\ Sherman {1976) 
~ ~\ Cllc "b. V / Murphey and Langner (1985) -t---1--t---t--·t---t·--
., 4 ° u / Gresnlgt (1986) 

·~ 
3 

\) O ~ eO'~K---:h Stephensetai.(1991) - + ---11--+--t--·+ o-- ·---
c:: '\ o \ :c. to'>< ./. 

10 20 30 40 50 60 

D/1 

70 eo 90 100 

Figure 2-2: Pipe Buckling Data Base (Zimmerman, 1995) 
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Figure 2-3: Pipe Buckling Data Base (Zimmerman, 2004) 
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In addition to analytical methods and physical testing approaches, Zimmerman et a!. 

(1995) discussed the development of finite element analysis for strain based design. 

Models were calibrated to large-scale combined loading tests done at C-FER, the Centre 

for Frontier Engineering Research. This work then provided the foundation to pursue a 

numerical parametric study investigating the 0/t ratio, internal pressure, material yield 

strength, variations in the material stress-strain curve and degree of applied axial tension. 

Several conclusions were drawn from the finite element analysis. It was found that i) 

decreasing the D/t ratio increased peak moment and strain, ii) increasing internal pressure 

decreased peak moment but increased peak strain, iii) an increased plastic modulus 

results in both increased peak moment and strain, and iv) axial tension delayed yielding, 

increased peak moment and increased peak moment curvature. 

The notion of developing a "numerical testing laboratory" using finite element methods 

in order to study pipeline buckling behaviour is presented by Bruschi et a!. (1995). By 

developing numerical procedures, the overall cost and time required for the test program 

is reduced because only a select number of physical tests are needed to calibrate the 

numerical model. 

Once Bruschi et al. (1995) had a calibrated model against Reddy (1979) and Mohareb et 

al. (1993), the authors used response surface methodology to formulate regression 

equations based on numerical results. Six responses were monitored (moment, curvature 
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and axial strain measured at both the limit point and onset of buckling) as result of two 

input parameters (pressure and applied axial load), whereas element type, mesh density 

and material property definitions were held constant. 

Vitali et al. (1999), building on Bruschi et al. (1995), extended the developed numerical 

procedures to investigate the influence of pipe diameter to thickness ratio, material 

prope1ties and axial load as well as internal pressure for a total of 120 simulations. 

The findings of the parametric study in Vitali et al. (1999) confirmed that: 

• Pressurized pipelines typically buckle in an outward bulging manner whereas 

unpressurized pipelines develop inward diamond or inward/outward diamond 

shaped buckling modes depending on the diameter to thickness ratio. 

• Peak bending moment capacity decreases as the hardening of the pipe material 

decreases, axial force ratio decreases (increasing compression), and diameter to 

thicknes ratio increases. 

• Minimum compressive strains, i.e. strains measure at maximum moment, increase 

with increased internal pres ure as well as increased hardening of the pipe 

material. 

Furthering the numerical research, Torselletti et a!. (2005) focused on the effects of girth 

or circumferential welds on maximum bending moments and corresponding compressive 

strain limits. Using the finite element model developed in Vitali et a!. (1999), a 
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parametric study was done with the intent of comparing bending capacity and critical 

strain limits predicted using finite element methods with the DNV OS-Fl 0 l (2000) 

design equation . Offset misalignment and ovality were introduced as girth weld 

imperfections in the model. Ovality imperfection was shown to have le s of an effect, as 

compared to translational offset, on reducing moment capacity and critical strain limit. 

The sensitivity to misalignment becomes less prevalent for lower D/t ratios. 

Dorey et a!. (2006) emphasized the importance of modeling initial imperfection in order 

to achieve good correspondence to physical experimentation. Prior to the physical 

experiment referenced in Dorey eta!. (2006), a series of dimensional measurements were 

taken to more accurately capture the initial geometry of the test section. In mapping the 

imperfection grid to the mesh of the finite element analysis, the authors have shown very 

good conespondence to the physical experiment for both welded and plain pipes. 

Since measuring each pipe segment is impractical and expensive, Dorey et a!. (2006) 

idealizes imperfections for plain and girth-welded pipe by using half sine wave and offset 

imperfections, respectively. Using these single imperfections at the mid-section of the 

numerical analy es, the authors were able to characterize the buckling behaviour of the 

test sections measured in detail. 
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Consistent with Dorey et al. (2006), Fatemi et al. (2006) conducted a finite element 

parametric study using parameters D/t ratio, internal pressure, axial load, and geometric 

imperfections to study the effects of local buckling of a pipeline under combined loading. 

The study investigated perfect or ideal pipeline geometry as well as imperfect pipeline 

geometry with single blister-type imperfections. For a D/t ratio of 70, three different 

buckling modes were shown over varying pressure stress ratios W); for ~ < 0.15 an 

inward buckle, for 0.15 < ~ < 0.35 a single outward buckle and for ~ > 0.35 an outward 

double buckle characteristic of a higher mode buckled shape. Axial load effects were 

also investigated over a range of D/t values at a constant internal pressure to stress ratio 

of0.8. 

2.3. PIPELINE DESIGN CODES AND GUIDELINES 

Design codes and guidelines are written to protect the general public and given minimum 

requirements for pipeline design using simplistic equations. The Canadian Standards 

Association design code for oil and gas pipelines is dictated by CSA Z662 (2003). 

Contained within Annex C of the code for limits states design, a strain equation 

developed by Gresnigt (1986) for the longitudinal compressive strain limit for buckling is 

given as follows: 

E crit = 0.5_.!_ - 0.0025 + 3000((p; - pJDJ
2 

c D 2tES 
(2-1) 

where, E5 is the elastic modulus for steel (207 GPa) and p; and Pe are internal and external 

pressures, respectively. 
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As one can see from the equation, no allowance is given for the effects of girth welding 

or other imperfections which is believed to be a significant omission based on the 

literature review conducted, although the code limits the girth weld offset to a maximum 

of 1.6 mm. 

Design code DNV OS-Fl01, Submarine Pipeline Systems, incorporates limit-state design 

with calibrated safety factors to stipulate recommended strain limits for pipelines under 

combined loading while including some allowance for girth weld imperfection. The 

strain equation is intended for use in an offshore installation setting. The characteristic 

strain equation is given as (DNV OS-FlOl, 2000): 

t , ~on(~-O.Ol )[ 1 + s ;: )a;'' a,. (2-2) 

where crh and fy are hoop stress (&(D-t)/2t) and yield stress, respectively. Design factors 

ah and U gw are included to account for material hardening and girth weld effects. 

The girth weld factor is simplistically defined as a bilinear curve, shown in Figure 2-4. 

"The reduction is expected to negligible at D/t = 20. A linear interpolation is then 

proposed up to D/t = 60" (DNV OS-FIOl, 2000) where a reduction in compressive strain 

capacity was found to be on the order of 40% based on the works of Ghodsi et al. (1994) 

to yield a girth weld factor of 0.6. 
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Figure 2-4: DNV OS-FlOl (2000) Girth Weld Factor Definition 

A comparison of CSA and DNV design equations are shown in Figure 2-5 for a pipeline, 

having yield strength of 448MPa (X65), at zero and 80% design pressure. The DNV 

characteristic strain equation is factored using a resistance strain factor of 2.6 to yield a 

design strain. 

0.07 r-------;,==============;-
\ i -·-Zero Pressure (DNV) 

E 0.06 - -\~ ---···········:· ---80% Design Pressure (DNV) 
:.::J ' : ..... Zero Pressure (CSA) 

0 05 ······-~---·······-:-
~ · ', ! -80% Design Pressure (CSA) 
...... ' : ' ' (i5 0 04 ..... ......... ~, .. : ......... ... ....... . ~ .................... : .................. . 

. ~ : : 
<I> :' : ' 

-~ 0.03 ······ · ···· ··· ···!·- ~-'-,~·-······+·------ ··· · --··--·:--------- --··--·--· 
~ : ,, : 
0.. 0.02 ~-· .................... :.......... '~: .................. , .................. . 

... I I 

E ......... : : -... ........... . 
0 . .._. ~ ···"'····· : --.-.;_ 0 Q .01 ...... •.-. .. ._ ;.-.;._: ---:------------ -·-~tJu •+-••-_-.-iiit;; ~-;; : -.. ~ - : · -~-.......--~--- --

·:·-·-•-•.._ : ·:·-·········:"::": 
~0 

: ·-~-·-·-·-·- : -·-·-·-·-· 
30 40 

D/t 
50 60 

Figure 2-5: Comparison of DNV (2000) and CSA (2003) Strain Limits 
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It should be noted that the DNV critical strain equation was developed for offshore use 

where pipeline are generally thicker than onshore pipelines. Thus the equation is only 

valid for D/t ratios less than 45. Regardless, a large difference between the CSA and 

DNV strain capacity equations is shown between design equations within the D/t range of 

20 to 45. 

2.4. SUMMARY 

A review of pipeline buckling experiments, both analytical and numerical analysis 

methods, and pipeline design codes has been presented. Many physical experiments have 

been documented characterizing pipeline buckling by studying many pipeline design 

parameters. The scatter of critical strain data, seen in Figure 2-2 and Figure 2-3, can be 

attributed to variations in pipeline geometry, material properties and loading conditions. 

Various buckling mode hapes and responses have been shown to vary from thick-walled 

to thin-walled pipeline and they also show strong dependencies on applied pressure. As 

the focus of the present research is on girth welding effects in steel pipelines, studies of 

geometric imperfection in welded pipelines are of greater intere t. 
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3.1. SYNOPSIS 

The most detailed account of physical experiments involving girth welded pipeline were 

produced at the University of Alberta through the works of Ghodsi et al. (1994) and 

Dorey (200 1) and are used as the foundation of the research pre en ted in this thesis. In 

the following OMAE 2009 paper, a numerical finite element modelling procedure was 

developed to assess the bending moment and strain capacity of girth welded pipelines 

over typical design parameters. A finite element method of analysis was adopted for this 

research due to lack of direct acce s to physical testing facilities. Figure 3-1 illustrates 

the finite element model used in the analysis as well as a schematic of the U of A testing 

apparatus. 
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Figure 3-1: Finite Element Model and Physical Test Frame (Mohareb et al., 2001) 

As in the physical experiment, secondary end moment effects are generated due to the 

applied axial force acting on the pivot point I knife edge, indicated in Figure 3-1, in 

addition to the applied end moments generated by the load cell and loading arm. These 

secondary effects are significant, as illustrated in Figure 3-2, when considering the global 

buckling response of the system as end rotation (curvature) increa es. 
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Figure 3-2: Second Order Moment Effects 
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In this study, the pipelines were modeled using reduced integration shell elements 

(ABAQUS shell element S4R). As stated in the following OMAE 2009 paper, the 

element mesh density for the calibration analysis was selected to be consistent with Al­

Showaiter et al. (2008) for the physical test of Ghodsi et al. (1994) and based on Dorey's 

own numerical analysis in Dorey (2001). The calibration analysis wa shown to be 

consistent with both sets of physical data using these mesh densities and therefore an 

extensive mesh sensitivity study was not carried out. It is acknowledged, however, that 

mesh density can have a dramatic effect on buckling response of the analysis. The 

amplitude of the misalignment imperfection was varied in the calibration analysi to 

obtain con·espondence to the physical data given by Ghodsi et al. (1994) and Dorey 

(2001). 

Based on the literature revtew, five design factors were chosen to parametrically 

investigate the local buckling behaviour. These factors included: diameter, diameter to 

thickness ratio, pressure-stress ratio, axial load ratio and initial imperfection amplitude. 

Due to limited material property data, material effects were not investigated. Therefore, 

the scope of the investigation was limited to these five factors. The Ramberg-0 good 

formulation, as defined in Walker and Williams (1995), was used to define the material 

property, having specified yield strength of 483 MPa (X70), in the parametric analysis. 

As in Torselletti et al. (2005), the DNV (2000) compressive strain equation was used to 

compare the 243 results of the parametric analysis despite the fact that the strain equation 
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is only applicable for D/t ratios less than 45. The results of the parametric analysis 

presented graphically in the OMAE 2009 paper are reproduced in tabular form in 

Appendix A. The results for pure bending are shown to be consistent with that presented 

in Torselletti et al. (2005). However, including an applied axial load and pressure effects 

in combination has shown to greatly reduce the strain and moment capacity of the 

pipeline. 

The OMAE 2009 paper concludes that an increased axial force decreases critical moment 

as well as critical strain by as much as 40% and 50% for both moment and strain, 

respectively. The maximum degree of imperfection, 15% of wall thickness, is shown to 

reduce the moment and strain capacities by about 10% and 35% for moment and strain, 

respectively. 

The strain behaviour, with respect to pressure, is shown to be non-linear. This is due to 

the different buckling modes triggered; outward bulge for pressurized cases (Figure 3-3) 

and inward diamond buckles for low pressure cases (Figure 3-4). It is recommended that 

the design strain criteria be dependant on the buckling mode of the pipe as the failure 

mode changes from pressurized to unpressurized pipes. 
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Figure 3-3: Pressurized Outward Buckle 

Figure 3-4: Unpressurized Inward Buckle 

3.2. ABSTRACT 

Pipeline structural integrity is a critical component of pipeline design for extreme 

environmental conditions. Severe loads may be an issue in pipeline design if differential 

ground movement is prevalent in the design region, e.g. ground faulting or permafrost 

heave I settlement. Iceberg or ice keel interaction and large seabed deformations 

interacting with the pipeline may also be a critical design integrity issue for offshore 

pipelines in ice environments. 

Numerical finite element modelling procedures have been developed to assess the 

bending moment and strain capacity of several pipelines over a range of typical pipeline 

parameters. This study looks at the effect of girth-weld imperfection on the bending 

response of welded pipelines. Limited guidance is provided by pipeline design standards, 
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for example DNV OS-FlOl and CSA Z662, as to how to account for girth weld effects 

on the local buckling response. This paper investigates girth weld effects across a range 

of practical design parameters. 

Calibration of the numerical analysis was performed using available data, from full-scale 

tests and finite element analysis, for girth welded pipes in order to obtain confidence in 

the numerical procedure. The significance of girth weld effects was to reduce the peak 

bending moment capacity by 10% whereas strain capacity was reduced by as much as 

35% ba ed on the degree of girth weld imperfection. Girth weld effects have been 

acknowledged in industry; however, further research and physical testing is required to 

fully understand the problem, as shown in this paper. 

3.3.1NTRODUCTION 

The demand for oil compels developers to venture into new and more challenging 

environments where design loads on pipelines may be uncertain. Some of the most 

difficult design conditions are found in the Arctic where many forms of extreme loading 

conditions influence the design of pipelines; for example ground movement induced 

permafrost heave I settlement, as well as subgouge deformations due to the interaction of 

ice features with the seabed. Iceberg loading events are also of concern for pipelines and 

offshore installations on Canada's east coast. 

Physical testing of full scale pipelines is often difficult, time consuming and generally 

expensive. It may be difficult to capture all loading conditions in a single test program. 
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Numerical finite element analysis is therefore a beneficial tool in design of pipeline 

systems that can readily supplement physical test programs. Once properly developed, 

the numerical tools can rapidly and efficiently simulate many various loading conditions 

that cannot be done economically in a physical laboratory setting. This paper discusses 

the development and calibration of a numerical model for girth welded pipelines under 

combined loading conditions, demonstrates its applicability over a range of pipeline 

design parameters, then explores the significance of the girth welded imperfection 

parametrically. 

3.4. CALIBRATION OF NUMERICAL MODEL 

The commercial finite element package ABAQUS v6.7 was used to develop a buckling 

analysis based on the works of Ghodsi et al. (1994) and Dorey (2001 ). Ghodsi et al. 

(1994) undertook a physical test program and considered 12 test cases at three different 

pressure levels for two different diameters. The selected 304.8mm ( 12 inch) and 508mm 

(20 inch) outer diameter pipes were fabricated using the UOE process, a common 

fabrication process in pipeline construction where steel plates are bent into a U-shape, 

then into an 0-shape and then Expanded to form a circular section. The 304.8mm (12 

inch) and 508mm were of pipe grades of X52 and X56, respectively. The authors ' 

nomenclature for the experimental program, XYZnn(W), is summarized as follows: 

X = U, D, or H representing Upstream (unpressurized), Downstream (fully 

pressurized to 72% or 80%) and Halfway (pressurized to 36% or 40%) 

Y = G or L representing Greatest and Least thermal effect 

Z = A orR representing Active or Reactive axial force end conditions. 
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nn =Nominal diameter (in inches) 

W =Indicating that the pipe is Welded at mid-span 

Dorey (2001) conducted a series of physical experiments as well as numerical analyses 

and compared the results to a large catalogue of data including the works of Ghodsi et al. 

(1994) and Mohareb et al. (1994). Dorey's physical tests consisted of NPS 30 pipe 

sections with an outside diameter of 762 mm with a thickness of 8.3 mm with specified 

yield strength of grade X70. Dorey' s tests conducted under initial compression are of 

interest to this calibration study. These tests were denoted as CP##W, where ## 

repre ents 0, 20, 40 and 80% of the pressure to cause yield in the circumferential 

direction of the pipe section, or pressure-stress ratio ~' which is given in equation (3-1). 

(3-1) 

The physical test procedure for both experiments stipulated that the ptpe was first 

pressurized to the required level. An axial force was also applied to compensate for 

thermal loads, infeiTed from field conditions, axial Poisson effect deflections and end cap 

effects, which are not present in continuou pipelines in the field. The total applied axial 

force is resolved by summing the following forces for thermal, Poisson, and end cap 

effects, equations (3-2) through (3-4), respectively. 

F =aA E~T 
t s (3-2) 

F = -v A (PDm /2t,,) 
v s (3-3) 

(3-4) 
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A multi-point constraint (MPC) was u ed to model the end boundary conditions for the 

pipe test segment. This allowed for the circumferential nodes at the end of the pipe to be 

tied to one single reference node, located at a specified pivot point. Thi constraint 

allows for control of the end section as a whole permitting only bending rotation and 

axial translation at the 'free end' where the applied axial load is applied. The MPC used 

in this analysis does not, however, allow for the end section to ovalize. This is not 

believed to be a substantial error since the experimental pipe test section was connected 

to the test frame via an end plate where the circumferential supp011 collar were used to 

reduce stress concentrations near the endplate. An illustration of the developed finite 

element model is given in Figure 3-5. 

Rigid Pivot End 
Collars 

V" @ ! : • ~ . ~ , ) ! _II I , ! , . : , I· 

End 
Moment 

Axial 

~~ 
End 

Moment 

Figure 3-5: Finite Element Schematic 

Using the Modified Riks method, for nonlinear solution, concentrated end moments were 

applied to the end reference pivot points. The ABAQUS load participation factor (LPF) 

was used to calculate the applied end moments. Second order effects arising from the 

applied axial force were also accounted for, modified slightly from Mohereb et al. (2001), 

using the following equation, 

(3-5) 
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where horr et is the distance from the end cap to the rigid reference point and e is 

measured from the reference point of the applied axial load. Global curvatures were 

calculated based on the differential rotation measured at the reference points over the 

pipe sections total length, as indicated by equation (3-6). 

K = ~8Encts /L (3-6) 

A 4-noded shell element, with reduced integration and hourglass control (ABAQUS 

element S4R), was used as its formulation allows for large displacement and finite 

membrane strain. The circumferential to longitudinal mesh den ities used in the 

calibration analysis of 324mrn and 508mrn pipes were 60 to 161, consistent with den ity 

used in Al-Showaiter eta!. (2008). The mesh density used for the 762mm pipe was 40 to 

75, as used in Dorey (2001). Two end collars that were used in the physical experiment 

to connect the pipe text ection to the frame were also modelled numerically. All collars 

were 150mm in length and had the same thickness as the pipe section being analyzed. A 

summary table of the calibration analyses parameters for Ghodsi eta!. (1994) is given in 

Table 3-1. The calibration analyses parameters for Dorey (2001) is given in Table 3-2. 

Table 3-3 contains the true stress-strain material data used for the calibration. 

UGA I2W HGA I2W DGA I2W UGA20W HGA20W DGA20W 

D (mm) 324 324 324 508 508 508 
t, (mm) 6.35 6.35 6.35 7.9 7.9 7.9 
0/ t, 51 51 51 64 64 64 
L (m) 1.69 1.69 1.69 1.69 1.69 1.69 

~ 0.00 0.36 0.72 0.00 0.40 0.80 
P (MPa) 0.00 5.26 10.52 0.00 4.96 9.91 
Grade X 52 X 52 X 52 X 56 X 56 X 56 
horr:;e1 (mm) 162 162 162 254 254 254 
F (kN) 667 822 978 1333 1701 2069 

Table 3-1: Ghodsi et al. (1994) Input Parameters for Calibration Study 
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CPOOW CP20W CP40W CP80W 

D (mm) 762 762 762 762 
t,(mm) 8.3 8.3 8.3 8.3 
Dl t, 92 92 92 92 
L(m) 2.7 2.7 2.7 2.7 

~ 0.00 0.20 0.40 0.80 
P (MPa) 0.00 2.15 4.30 8.61 
Grade X70 X70 X70 X70 
horr (mm) 381 38 1 381 381 
F (kN) 2069 2437 2806 3548 

Table 3-2: Dorey (2001) Input Parameters for Calibration Study 

X 52 X 56 X70 
Stress (Pa) Strain(-) Stress (Pa) Strain (-) Stress (Pa) Strain (-) 
O.OOE+OO 0.00000 O.OOE+OO 0.00000 O.OOE+OO 0.00000 
2.00E+08 0.00100 2.00E+08 0.00100 5.68E+08 0.00279 
3.29E+08 0.00 194 3.3 1E+08 0.00192 5.77E+08 0.01065 
3.75E+08 0.00241 3.75E+08 0.00238 5.88E+08 0.02073 
3.92E+08 0.00476 3.87E+08 0.00376 6.0 1E+08 0.03339 
4.05E+08 0.01041 3.94E+08 0.00468 6.12E+08 0.04772 
4.16E+08 0.02029 4.05E+08 0.01020 6.23E+08 0.06473 
4.35E+08 0.03959 4. 18E+08 0.02031 6.32E+08 0.08 125 
4.49E+08 0.05794 4 .34E+08 0.03962 6.37E+08 0 .1 0290 
4.64E+08 0.07677 4.49E+08 0.05847 
5.21E+08 0.18218 4 .62E+08 0.07732 

5. 19E+08 0.18261 

Table 3-3: Calibration True Stress-Strain Definition 

The interests of Ghodsi et al. (1994) physical tests were in the strain measured at the 

initiation of the pipe wrinkling and buckling. Dorey (200 1) established critical s train 

equations based on the numerical and physical results. These reports provided a basis to 

study the effects of girth welded pipelines more specifically. The results of OMAE 2009 

calibration study, indicated by the solid data points, for Ghodsi et al. (1994) and Dorey 

(2001) are given in Figure 3-6 and Figure 3-7 , respectively. 
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Figure 3-6: Calibration to Ghodsi et al. (1994) 
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Figure 3-7: Calibration to Dorey (2001) 
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Most of the numerical results produced in OMAE 2009 study are consistent with the 

physical data with some exceptions. Ghodsi's reported some difficulties with the 20" 

diameter cases. During the initial test of UGA20W, control wa lost for the loading jack 

and the data was abandoned because the pipe was plastically bent at the beginning of the 

test. Thus data from UGA20W-2 was reported. The shape of the moment curvature 

diagram produced by the calibration analysis for UGA20W-2 is consistent with that 

reported in Ghodsi et al. ( 1994 ), although the curvature is offset. This is I ike I y due to 

similar difficulties reported in the physical experiment of UGA20W-2 as seen in 

UGA20W-l. 

At high pres ure, the pipeline system becomes inherently stiffer, thus requiring higher 

forces to bend and buckle the pipe. A potential explanation for the discrepancy between 

numerical and physical results seen in DGA20W (Figure 3-6) and CP80W (Figure 3-7) 

may be that part of the load is being carried by the testing frame and not the pipe section 

or, in the case of CP80W, "it is pos ible that the inconect material properties were used 

as input into the FEA model for specimen CP80W" as stated in Dorey (200 1 ). In spite of 

these discrepancies, the numerical model presented here is consistent with both physical 

test programs and fin ite element models presented by Dorey (2001) as shown in CPOOW, 

CP20W and CP40W of Figure 3-7. 

3.5.A PARAMETRIC ANALYSIS 

The OMAE 2009 parametric study was done to identify trends in the buckling capacity 

by varying five input parameters. These are: diameter (D), diameter to thickness ratio 
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(D/t), pressure-stress ratio (B), axial load ratio (N) and initial imperfection amplitude. 

The axial load ratio refers to the load required to yield the pipe m the longitudinal 

direction, given in the equation (3-7). 

(3-7) 

Three values of the five parameters were considered resulting in a total of 243 analyses. 

Table 3-4 shows the range of parameters used in the parametric study. 

Low Medium Hi h 
Diameter (mm) 406.4 609.6 914.4 
0/tn 30 60 90 
Pressure Ratio, B 0.00 0.40 0.80 
Axial Load Ratio, N -0.30 -0.15 0.00 
Im_IJerfection Amplitude' 5% tn 10% tn 15% tn 

1 Amplitude limited to 3mm, maximum allowable from Table D-3 DNV (2000) 

Table 3-4: Analysis Matrix for Parametric Study 

The finite element mesh generation included end caps and collars, as in the calibration 

analysis, to avoid inconsistent end buckling modes, such as "elephant foot" buckles, as 

described by Dorey (2001). Pipe section length was kept constant at 3.5 diameter , 

where circumferential to axial mesh densities used were 60x143, 92x215, and 120x281 

for 406.4mm, 609.6mm, and 914.4mm diameter pipes, respectively. As shell structures 

have closely spaced eigenvalues, the mesh density was selected to maintain consistent 

aspect ratio with element axial length of about lOmm. Generalized engineering stress-

stram relatiOnShipS used the Ramberg-Osgood formulatiOn, as defmed in Walker and 

Williams (1995), having specified yield strength of 483 MPa (X70). 
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3.6. RESULTS 

Torselletti et al. (2005) made use of design equations in DNV (2000), for pipel ines under 

internal overpres ure, to normalize the data obtained from finite element results. The 

same approach is adopted here whereby most safety factors are assumed to be unity with 

the exception of: 

• material resistance factor, Ym, set to 1. 15 

• maximum allowed yield to tensile strength ratio, ah, set to 0.92 

• girth weld factor, Ugw. set to 0.9,0.6, and 0.6 for D/t ratios 30, 60 and 90 

respectively. 

Thus, solving for MoNv m equation (3-8) yields the normalization factor for critical 

moment obtained from the numerical analysis. 

(3-8) 

The numerical critical global strain, Eg. calculated in equation (3-9), was normalized 

against the characteristic compressive strain, £oNv, equation (3-10), where Ut1 and Ugw are 

listed above. 

£ =KD g 

3-15 

(3-9) 
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The results of the parametric study are illustrated in Figure 3-8, Figure 3-9, and Figure 

3-10 for D/t ratios of 30, 60 and 90, respectively. Each curve shown in the figures 

connects the variable of imperfection for each of the other test parameters. Surprisingly, 

there is little variation in the curves over the various diameters of pipe. Thus the three 

diameters are plotted together with the same line type and symbol. This convergence 

may be related to the classic buckling equation, Ecritical = 1.2 tiD, or as an indication of 

stubby column buckling in the presence of an applied axial load since LID is only 3.5. A 

general overall trend encompassing all D/t ratios is given in Figure 3-11 using a diameter 

of 609 .6mm and an axial load ratio of 0.15. 
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For the pure bending case and D/t ratios equal to 60, the findings 111 this paper are 

consistent with that of Torselletti et al. (2005). It is shown that the DNV (2000) equation 

for bending moment, axial force and internal overpressure for load control events appears 

to be slightly non-conservative for unpressurized pipes (Mcritical I M oNv > 1). Since the 

normalization did not account for other partial safety factors, the results are deemed to be 

within reasonable limits for engineering practice. The results for critical strain for these 

cases are consistent with Torselletti et al. (2005) as well and are generally conservative 

with the inclusion of a strain resistance factor of 2.6 on design strain, as stated in DNV. 

However, including an applied axial load and pressure effects in combination has been 

shown to greatly reduce the strain and moment capacity of the pipeline. As shown in 
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Figure 3-8 for D/t = 60, the effect of applied pressure was to reduce the normalized 

moment by 0.5-0.6 and reduce normalized strain by 50%-55%. The degree of reduction 

for the normalized moment and strain due to applied axial force is dependant on the level 

of applied pres ure. In the fully pressurized case, ~=0.80, the moment ratio typically 

reduces by 0.5 while the strain ratio reduces by approximately 30%. 

The effect of the gitth weld misalignment amplitude was to reduce the peak bending 

moment capacity by 10% whereas strain capacity was reduced by as much as 35% based 

on the degree of gitth weld imperfection. 

On assessment of results for D/t ratios equal to 90, it readily becomes apparent that the 

DNV design equations, developed for D/t ratios less than 45, dramatically under predict 

global critical strains. This approach is not appropriate for design of pipelines with D/t 

ratios equal to 90, but is presented here for completeness. 

Finally, strain behaviour over various pressure levels is shown to be non-linear. It may 

be difficult to capture this behaviour in a single design equation since the mode of 

buckling changes drastically given the pressure level. 

3.7. CONCLUSIONS 

The calibrated finite element model presented in this paper has been shown to be 

consistent with several physical experiments over a range of design parameters. This 
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modeling procedure was then applied parametrically over five design parameters and has 

yielded very interesting results. 

The analysis of the parametric study has shown that: 

• An increased axial force decreases critical moment as well as critical strain by as 

much as 40% and 50% for both moment and strain, respectively. 

• The degree of imperfection has been shown to reduce the moment and strain 

capacities by about 10% and 35% for moment and strain, respectively. 

• Strain behaviour over various pressure levels is non-linear. It may be more 

suitable do develop a failure surface dependant on the buckling mode of the pipe. 
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NOMENCLATURE 

As Cross Sectional Area of Steel 

D Outside Diameter 

Dm Mean Diameter 

E Elastic Modulus 

F Applied Axial Force 

Fy Force to Yield Pipe Section Axially 

horrseL Measured Distance From End Cap to Reference Point 

L Pipe Length 
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LPF Load Participation Factor 

MoNv DNV (2000) Design Moment 

MPC Multi-Point Constraint 

NPS Nominal Pipe Size 

P Applied Pressure 

Py Pressure to Yield Pipe Section Circumferentially 

tn Nominal Wall Thickness 

~T Change in Temperature 

a Coefficient of Thermal Expansion 

U gw Girth Weld Factor 

ah Maximum Allowed Yield to Tensile Strength Ratio 

p Pressure Stre s Ratio 

£0 v DNV (2000) Characteristic Strain 

K Global Curvature 

v Poisson Ratio 

8 Rotation Measured at Reference Point 

cra Axial Stre s 

crh Circumferential (Hoop) Stress 
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4.1. SYNOPSIS 

Further reduction of the data produced from the parametric study described in Chapter 3 

focused on the assessment of buckled wave form patterns, ovality and the influence of the 

total length of the pipe section on the global buckling response of the girth welded 

section. 

It was shown in the following CSCE 2009 paper that the buckled profile of the test 

section is primarily affected by diameter, diameter to thickness ratio and pressure. 

Increasing D/t ratio, results in a decrease in the critical wavelength and amplitude 

required to trigger buckling. This is consistent with the works of Ju and Kyrikides (1992) 

in their study of cylinders under axial and bending loads. Conversely, increasing 

pressure tended to increase wavelength and amplitude of the buckle showing 

COITespondence to Kyriakides and Corona (2007) where they note an increase in the 

bifurcation wavelength due to increasing internal pressure. The other design parameters 

studied, applied compressive axial load and misalignment amplitudes, were found to 
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simply shift the value of critical buckling strain and have little effect on the buckled 

shape. 

Ovality was shown to be influenced by diameter to thickness ratio and pressure and to a 

lesser degree, by applied axial load and imperfection. Ovality remained constant over the 

range of diameters studied. 

The following CSCE 2009 paper has shown that end effects are enhanced by pressurizing 

pipes, which was shown to be a direct result of the length of the pipeline. While the 

length of the pipeline in this study was set to 3.5 diameters to simulate experimental 

conditions, the buckled wavelengths show a great degree of interference between the 

central buckle and buckles developed at the ends of the pipe. Thi paper recommend · 

that in further tudy, either physical or numerical, should consider pipe sections at a 

minimum of 5 to 6 diameters in length. 

4.2. ABSTRACT 

The ultimate goal in pipeline design is to minimize material costs without jeopardizing 

the integrity of the pipeline system. A greater level of understanding of pipeline 

deformation behaviour and more sophisticated analysis tools are required when 

considering extreme loads and large deformation. 

The Finite Element Method (FEM) has been used to assess the bending moment and 

strain capacity of pipeline under typical design condition and parameters. After the 
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analysis was calibrated to physical data, this study investigated buckled profiles and 

ovality with respect to critical bending response of girth welded pipelines over a range of 

typical design parameters. These parameter included diameter, thickness, intemal 

pressure, applied axial load and degree of misalignment. 

The results of this study have indicated that the buckled wave form observed in the 

profile of the pipelines is primarily affected by diameter, diameter to thickness ratio and 

pressure with applied compressive axial load and misalignment having lesser effects. 

Ovality has been shown to be influenced by diameter to thickness ratio and pressure. 

Ovality is affected to a lesser degree by applied axial load and imperfection. However, 

ovality has been shown to remain constant over the range of diameters studied. 

End effects were discovered to be a problem when considering pressurized pipes. This 

has been shown to be a direct result of the length of the pipeline. While the length of the 

pipeline in this study was set to 3.5 diameters to simulate experimental conditions, the 

buckled wavelengths show a great degree of interference between the central buckle and 

buckles developed at the ends of the pipe. It has been recommended that in further study, 

at a minimum, the length of the pipeline be increased to five to six diameters. 

4.3.1NTRODUCTION 

This paper details the investigation of buckling behaviour of the pipeline ection subject 

to combined loading. The purpose of this study is to provide a better understanding of 

buckling mechanisms and fai lure under non-linear and large deformation common 
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extreme loading events. Since a Finite Element Method (FEM) of analysis was adopted 

for this assessment, the numerical model was calibrated to physical data. The model was 

then used over a range of pipeline diameters, thickness, internal pressure, applied axial 

load and misalignment amplitudes to identify trends in the data. Of particular interest 

were buckled wavelength profiles and distributions of ovality of girth welded pipelines. 

Since the effects of material strength and material anisotropy were not pat1 of this study, 

isotropic standard X70 steel was used for all analysis. 

4.4. CALIBRTION OF NUMERICAL MODEL 

Ghodsi et al. (1994) and Dorey (2001) investigated the effects of girth welds on the 

buckling behaviour of pipelines. Ghodsi et al. (1994) developed a physical test program 

considering 324mm and 508mm pipelines of grade X52 and X56, respectively, at the 

pipeline testing facility at the University of Alberta. The pipelines were tested at three 

different pressure levels (pressurized, unpressurized and at a 50% pressurized level) 

where the pipeline segment was girth welded at midspan. Dorey (2001) conducted a 

series of physical experiments for girth welded pipe as well for 762mm pipe, having 

specified yield strength of grade X70, over four different pressures (P). These tests were 

denoted as CP##W, where## represented 0, 20, 40 and 80% pressure to cause yield in 

the circumferential direction of the pipe section, defined by the pressure-stress ratio ~' 

which is given in equation (4-1). Dm and tn represent mean diameter and nominal wall 

thickness, respectively. 

~ = (j Hoop I (j yield = (P D m I 2 t n ) I (j yield (4-1) 
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In addition, Dorey developed a numerical procedure to capture his own physical tests as 

well as the experiments conducted by Ghodsi et al. (1994) and Mohareb et al. (1994). 

The calibration analysis conducted for the OMAE 2009 and CSCE 2009 studies made u e 

of both Ghodsi et al. (1994) and Dorey (2001) results using ABAQUS v6.7. A Multi-

Point Constraint (MPC) was used to tie the circumferential nodes at the end of the pipe to 

a single reference node. The reference node than becomes the pivot point for the applied 

bending moment and axial force. The MPC used in this analysis does not, however, 

allow for the end section to ovalize. An illustration of the developed finite element 

model is given in Figure 4-1. 

Rigid Pivot End 
Collars 

V" @ 
End 

Moment 

I 1 I ' ! ' ' r ! ' I I t t! t ! ' ! ; ' !.!.' ! , I ·~~ ' t !: . . ' 

Axial 

~8 
End 

Moment 

Figure 4-1: Finite Element Schematic 

The nonlinear solver used for the buckling analysis was the Modified Riks Method. The 

Load Pmticipation Factor (LPF) from the solution technique was used to calculate the 

applied end moments (MEnct). Second order effect arising from the applied axial force 

(FAxiai) were also accounted for, modified slightly from Mohereb et al. (2001), using the 

following equation (4-2), 

(4-2) 
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where horrset is the distance from the end cap to the rigid reference point and el is the 

measure of rotation at the pivot point. Global curvatures (K) were calculated based on the 

differential rotation (~SEnd ) measured at the reference points over the pipe section total 

length (L) a indicated by equation (4-3). 

(4-3) 

A 4-noded shell element, with reduced integration and hourglass control (element S4R), 

was used as its formulation allows for large displacement and finite membrane strain. 

The circumferential to longitudinal mesh densities used in the calibration analysis of 

324mm and 508mm pipe were 60 to 161, consistent with the density used in Al­

Showaiter et al. (2008). The mesh density used for the 762mm pipe was 40 to 75, as used 

in Dorey (2001). Two end collars that were used in the physical experiment, as well as 

the end caps, were modelled numerically. Both collars were 150mm in length and had 

the same thickness as the pipe section being analyzed. Some of the results of the 

calibration analysis are shown in Figure 4-2 for Ghodsi et al. (1994) and Dorey (2001). 
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Figure 4-2: Calibration to Ghodsi et al. (1994) and Dorey (2001) 

A summary table of the calibration analyses is given in Table 4-1 whereas Table 4-2 

indicates the true stress-strain material data used. 

Ghodsi ( 1994) 
Dorey 
(200 1) 

UGAI2W HGAI2W DGA I2W UGA20W HGA20W DGA20W CP40W 

D (mm) 324 324 324 508 508 508 762 
tn(mm) 6.35 6.35 6 .35 7 .9 7 .9 7.9 8.3 
0/ tn 51 51 5 1 64 64 64 92 
L (m) 1.69 1.69 1.69 1.69 1.69 1.69 2.7 

~ 0.00 0 .36 0.72 0.00 0.40 0.80 0.40 
P (MPa) 0.00 5.26 10.52 0.00 4 .96 9.91 4.30 
Grade X 52 X 52 X 52 X 56 X 56 X 56 X70 
horrset (mm) 162 162 162 254 254 254 38 1 
F (kN) 667 822 978 1333 1701 2069 2806 

Table 4-1: Input Parameters for Calibration Study 
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X 52 X 56 X70 
Stress (Pa) Strain (-) Stress (Pa) Strain(-) Stress (Pa) Strain(-) 
O.OOE+OO 0.00000 O.OOE+OO 0.00000 O.OOE+OO 0.00000 
2.00E+08 0.00100 2.00E+08 0.00100 5.68E+08 0.00279 
3.29E+08 0.00 194 3.3 1E+08 0.00192 5.77E+08 0.01065 
3.75E+08 0.0024 1 3.75E+08 0.00238 5.88E+08 0.02073 
3.92E+08 0.00476 3.87E+08 0.00376 6.01E+08 0.03339 
4.05E+08 0.0104 1 3.94E+08 0.00468 6.12E+08 0.04772 
4.16E+08 0.02029 4.05E+08 0.01020 6.23E+08 0.06473 
4.35E+08 0.03959 4.18E+08 0.02031 6.32E+08 0.08125 
4.49E+08 0.05794 4.34E+08 0.03962 6.37E+08 0.10290 
4.64E+08 0.07677 4.49E+08 0.05847 
5.2 1E+08 0. 182 18 4.62E+08 0.07732 

5.19E+08 0.18261 

Table 4-2: Calibration True Stress-Strain Definition 

4.5. THE PARAMETRIC ANALYSIS 

A parametric study was done, BatTett et al. (2009), to identify trend in the buckling 

capacity by varying five input parameters. These are diameter (D), diameter to thickness 

ratio (D/t), pressure-stress ratio (~), axial load ratio (N) and mi alignment imperfection 

amplitude. The axial load ratio refers to the load required to yield the pipe in the 

longitudinal direction, given in the equation ( 4-4 ). 

(4-4) 

Three levels of the five parameters were considered resulting in a total of 243 analy es. 

Table 4-3 shows the range of parameters used in the parametric study. 

Low Medium High 

Diameter (mm) 406.4 609.6 914.4 
D/tn 30 60 90 
Pressure Ratio, ~ 0.00 0.40 0.80 

Axial Load Ratio, N -0.30 -0.15 0.00 
Imperfection Amplitude1 5% tn 10% tn 15% tn 

I Amplitude hmtted to 3mm, max1mum allowable from Table D-3 DNV (2000) 

Table 4-3: Analysis Matrix for Parametric Study 
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The pipe section length was kept at a constant at 3.5 diameters, where circumferential to 

axial mesh densities used were 60x143, 92x215, and 120x281 for 406.4mm, 609.6mm, 

and 914.4mm diameter pipes, respectively. The mesh density was selected to maintain a 

consistent aspect ratio with an element axial length of about lOmm. Generalized 

engineering stress-strain relationships used the Ramberg-Osgood formulation, as defined 

in Walker and Williams (1995), having specified yield strength of 483 MPa (X70). 

4.6. BUCKLED WAVE FORM AMPLITUDE AND LENGTH 

Buckled profiles were assessed to identify the effects of the five parameters on the mode 

and shape of buckling. Key results of interest were critical buckling amplitude, 

wavelength and number of waves across the test section. By estimating the global 

curvature radius, based on equation (4-3), and drawing an arc passing through the ends of 

the pipeline, the dominant global single sinusoidal waveform can be removed from the 

buckled shape revealing local superimposed waveforms. This concept is illustrated in 

Figure 4-3 where oR illustrates the variation from global curvature and the vertical line 

on the moment strain diagram indicates the strain level of the buckled profile. 
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Figure 4-3: Measuring Variation from Global Curvature 

Using this concept, the buckled shape from the parametric study was analyzed at the 

critical point of buckling and it was found that: 

• Decreasing diameter decreases both wavelength and amplitude. 

• Increasing D/t results in a decrease in the wavelength and amplitude required to 

trigger buckling. This is consistent with the works of Ju and Kyrikides (1992) in 

their study of cylinders under axial and bending loads. 
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• Increasing the pressure results in an increase in both the wavelength and 

amplitude of the buckle. This is shown in Kyriakides and Corona (2007) where 

they have noted that an increase in the bifurcation wavelength with increasing 

design factor (i.e. internal pressure) for problems involving plastic buckling 

response for axial compression. 

• The effect of compressive applied axial load for the parameter range examined 

had little effect on the wavelength and amplitude of the buckle. 

• Amplitude of misalignment does not affect amplitude or wavelength of buckle. 

Further, the wavelength of the buckled shape remained relatively constant and the wave 

increased in amplitude only with further end rotation. Unfortunately, it was observed for 

some of the fully pressurized cases, as shown in Figure 4-3, additional wave form 

develop near the collars having significant wavelengths and amplitudes compared with 

the central buckling mode. There are approximately eight half- wave forms shown for 

this case. 

Though the majority results displayed a central buckle, fully pressurized cases having 

imperfection misalignment of 5% tn resulted in either a single or double end buckle, the 

later being characteristic of perfect pipe buckling. This is an indication that the central 

girth weld imperfection is not great enough to overcome the end effects. In pressurized 

cases, end effects are present to some degree up to the critical buckling point. Once the 
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dominant central wave form triggered the buckle, wave forms at the ends relax in 

amplitude post-peak critical moment. 

4.7.CRITICAL OVALITY 

Ovality of a pipe is a measure of deviation of the pipe's section from a perfect circular 

section. ONV (2000) defines a normalized ovality (fo) according to equation (4-5): 

(4-5) 

Ovality measurements were recorded at the girth weld as well a 0.50, 0.750 and lD on 

both sides of the girth weld for a total of 7 measurements over all strains during the 

buckling event. The ovality measured at the critical strain was plotted against distance 

from the gitth weld to show the profile of ovality as well as trends across the various 

parameters. An example is shown in Figure 4-4. 
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Figure 4-4: Critical Ovality Measurement 

It was found that: 

• Ovality remains relatively constant over changes in diameter (Figure 4-5). 
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• Ovality increases with decreasing D/t ratio (Figure 4-6). 

• Ovality decreases with increasing pressure (Figure 4-7). 

• As a result of decreasing critical strain, applied axial load changes the location of 

the onset of the nonlinear portion of ovality. Linear portions remain constant 

(Figure 4-8). 

• The amplitude of misalignment alters the onset of buckling, not the measure of 

ovality (Figure 4-9), having a similar effect as the applied axial load. 
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Figure 4-9: Ovality Measurement for Misalignment 
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4.8. UD DISCUSSION 

In experiments conducted by Ghodsi eta!. (1994) and Dorey (2001), the purpose of the 

end collars was not only to restrain the pipe, but also to mitigate boundary effects 

interfering with the experiment. It was discovered in the study of buckled wavelength 

and shape, that orne of the analysi developed significant deformation ampl itudes near 

the collars of the pipe section. As shown in Figure 4-10, high pressure pipes are 

particularly susceptible to end buckles. It is not surprising end buckles arise in a physical 

test since the slightest imperfection or stress concentration at the ends will trigger a 

buckle away from the girth weld. 
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Figure 4-10: Buckled Profile for LID= 3.5 

At a length to diameter ratio (UD) of 3.5, the preferred wavelengths located at the centre 

and ends of the fully pressurized pipes are of sufficient length to interfere with each 

other. This interference results in an over-prediction of peak moment and strain capacity 

as the buckled mode shape tends towards buckling of a geometrically perfect pipe. 

Additional analyses were carried out using LID ratios of 5.5 (similar to UGA12W in 
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calibration analysis) and 10 for cases in the parametric analysis where end effect wave 

forms were significant in comparison to the central buckle. It was found that by 

increasing the length to diameter ratio, the influence of end effects decrease proportional 

to LID. The relative magnitude of end effect wave amplitude to girth weld wave 

amplitude was found to be 0.75, 0.5 and 0.3 for LID of 3.5, 5.5 and 10, respectively. 

Critical deformation profiles and variation from global curvature diagrams are given for 

these cases in Figure 4-10 to Figure 4-12 where variation in curvature is plotted against 

nonnalized length (Total Length I Number of Diameters). 

Moment- Strain : LID 5.5 
0. 2 1---'-----'--'--'----'----"-------'-----, 

Compressive Buckled: LID 5.5 

..._ 
E 
~ 0.15 .. 
..... -c 

Cl.l 
E 0.1 
0 
~ 

"iii 
-g 0.05 
(.!) 

E 
~ 0.15 

-c 
Cl.l 
E 0.1 
0 
~ 

"iii -g 0.05 
(.!) 

o Do• 0.4064, Dlt-90, B• O.B, N•O, imp• 0.68mm 

0.005 0.01 0.015 0.02 
Global Strain (-) 

..._ 

..!...o.s · 

.r:. -C) 

~ 0 6 -
...J • L::======~ 

o~====~======~----~ 
-2 0 2 4 

Variation from Curvature (mm) 

Figure 4-11: Buckled Profile for L/D = 5.5 

Moment- Strain: LID 10 

0.005 0.01 0.015 0.02 
Global Strain (-) 

::!: 0.8 
.r:. -C) 

~ 0 6 ·-...J • 

"C 
Cl.l 
.!::! 0.4 
"iii 
E 
~ 0.2 

Compressive Buckled: LID 10 

o~==========~L-----~ 
-10 -5 0 5 

Variation from Curvature (mm) 
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4.9. CONCLUSIONS 

Through calibration with full-scale data, a finite element model has been used to assess 

practical pipeline design parameters through parametric numerical study. By analysing 

buckled profiles, it was determined that the main factors affecting buckled wavelength 

and amplitude were pipeline diameter, diameter to thickness ratio and applied internal 

pressure, whereas applied compressive axial load and imperfection amplitude tended to 

shift the buckling point not the wave form of deformation. Similar observations were 

made about ovality measured at the peak moment. Ovality was found to remain constant 

over diameter, increase with decreasing 0/t, decrease with internal pressure, and remain 

unaffected by axial force or amplitude of imperfection. 

End effects were illustrated for fully pressurized pipes having a length equal to 3.5 

diameters. This has given insight into the problems seen in the physical testing of these 

pipes. In these cases, the buckled wavelengths show a great degree of interference. Due 

to this interference, peak moment and strain capacities are over predicted as the buckled 

wave form approaches the geometrically perfect pipe buckling mode. It is recommended 

that further study in this area involve pipe lengths, at minimum, 5 to 6 diameters in 

length. 
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5. THESIS CONCLUSIONS AND RECOMMENDATIONS 

5.1. CONCLUSIONS 

The literature review has shown that the buckling behaviour of pipelines and cylindrical 

shells have been analyzed using a variety of tools. Analytical tools and physical 

experimentation were the only means of pipeline buckling research before computers and 

numerical techniques made it possible to study buckling with greater degree of 

complexity. While research currently favours numerical testing to development of 

analytical equations, physical testing is still required to calibrate numerical models and 

validate results. 

The CSA Z662 strain based design equation does not make any allowance for girth weld 

imperfection whereas DNV OS-FlOl accounts for the girth weld effect by using a design 

factor based on D/t ratio. With limited guidance on how to account for this form of 

imperfection, more research is needed to quantify the girth weld effect. 

A finite element model has been developed and calibrated against physical data to 

investigate the buckling behaviour of girth welded pipes. The modeling procedure has 

demonstrated that the buckling characteristics and capacity of pipelines is highly 

dependant on diameter, thickness, internal pressure, applied axial load and misalignment 

imperfection as illustrated in the parametric study of these five parameters. The degree 
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of misalignment, in particular, was shown to reduce the moment and strain capacities by 

about 10% and 35% for moment and strain, respectively. 

Further analysis of the parametric study results provided insight into the deformed shape 

of the buckled shape with respect to the design parameters as well a ovality 

characteristics of the pipelines. Diameter, thickness and internal pressure were found to 

be the dominant factors with respect to buckled wave forms and ovality. Decreasing 0/t 

and increasing internal pressure were shown to increase in the wavelength and amplitude 

required to trigger buckling. In terms of ovality, it's measure typically increased with 

decreasing D/t ratio and pressure. 

The total length of the pipe test section proved to be a critical factor in the buckling 

behaviour. It was found that end effects were predominant for pipe lengths of 3.5 

diameters and highly influence the results as shown through the study of pipe sections 

having lengths of 5.5 and 10 diameters. 

5.2. RECOMENDATIONS 

Knowledge obtain from this research has provided insight into the buckling behaviour of 

pipelines. The primary recommendation for further study of pipeline buckling ba ed on 

this body of works is that length to diameter ratios for test sections should be as large as 

practical, for both numerical and physical tests. It was found that for some design cases 

studied, end effects assuredly influenced final results. This can be avoided with longer 

test section . By studying longer pipe sections, the local moment-curvature may be 
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required as the global moment-curvature tends to be quite different compared to the local 

buckling moment. 

Though the numerical model presented in this thesis have been calibrated to a series of 

test from the University of Alberta, Ghodsi et al. ( 1994) and Dorey (200 1 ), it is uncertain 

whether or not the model can reliably predict full-scale behaviour of other pipeline 

system outside the scope of this study. A further validation study is required to enhance 

the confidence in the numerical results. 

Given the nature of numerical analysis, the parametric study can readily be extended to 

include the effects of using other grade materials given the appropriate physical data. 

Material yield point, ultimate strength, anisotropy and the shape of the stress-strain curve 

are just some of the properties that could be investigated. 

Even though the DNV OS-FlO 1 strain equation is not intended for pipelines having a 

diameter to thickness ratio greater than 45, it was used in this study as a basis for 

comparison and shown to be very conservative when applied to pipelines with D/t equal 

to 90. Though thin walled pipelines are not usually used in offshore applications, a 

similar design equation may be tailored for onshore pipelines in buried configurations 

where large ground movements require strain based design. It is recommended that a 

strain based design equation be pursued in the future for thin walled pipelines. 
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APPENDIX A 

Tabulated Re ults of Parametric Study 
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Outside Wall 
Run Diameter Thickness D/t Beta 

Number (m) (m) (-) (-) 

1 0.4064 0.01355 30 0.0 
2 0.4064 0.01355 30 0.0 
3 0.4064 0.01355 30 0.0 
4 0.4064 0.01355 30 0.0 
5 0.4064 0.01355 30 0.0 
6 0.4064 0.01355 30 0.0 
7 0.4064 0.01355 30 0.0 
8 0.4064 0.01355 30 0.0 
9 0.4064 0.01355 30 0.0 
19 0.4064 0.01355 30 0.4 
20 0.4064 0.01355 30 0.4 
21 0.4064 0.01355 30 0.4 
22 0.4064 0.01355 30 0.4 
23 0.4064 0.01355 30 0.4 
24 0.4064 0.01355 30 0.4 
25 0.4064 0.01355 30 0.4 
26 0.4064 0.01355 30 0.4 
27 0.4064 0.01355 30 0.4 
37 0.4064 0.01355 30 0.8 
38 0.4064 0.01355 30 0 .8 
39 0.4064 0.01355 30 0.8 
40 0.4064 0.01355 30 0.8 
41 0.4064 0.01355 30 0.8 
42 0.4064 0.01355 30 0.8 
43 0.4064 0.01355 30 0.8 
44 0.4064 0.01355 30 0.8 
45 0.4064 0.01355 30 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-2.42E+06 
-2.42E+06 
-2.42E+06 
-1 .21E+06 
-1 .21E+06 
-1 .21E+06 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-4.03E+06 
-4.03E+06 
-4.03E+06 
-2.82E+06 
-2.82E+06 
-2.82E+06 
-1 .61E+06 
-1.61E+06 
-1.61E+06 
-5.64E+06 
-5.64E+06 
-5.64E+06 
-4.43E+06 
-4.43E+06 
-4.43E+06 
-3.22E+06 
-3.22E+06 
-3.22E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 

A-2 

Critical 
Moment 

(Nm) 

9.07E+05 
8.85E+05 
8.64E+05 
1.00E+06 
9.83E+05 
9.65E+05 
1.05E+06 
1.03E+06 
1.02E+06 
7.03E+05 
6.85E+05 
6.66E+05 
8.57E+05 
8.40E+05 
8.24E+05 
9.68E+05 
9.51 E+05 
9.38E+05 
2.50E+05 
2.43E+05 
2.34E+05 
4.69E+05 
4.61E+05 
4.54E+05 
6.58E+05 
6.48E+05 
6.41E+05 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

4.84E-02 1.024 1.152 
3.84E-02 0.813 1.124 
3.30E-02 0.698 1.098 
6.01 E-02 1.271 1.169 
4.69E-02 0.992 1.149 
3.98E-02 0.841 1.128 
7.63E-02 1.616 1.1 96 
6.08E-02 1.288 1.173 
5.16E-02 1.093 1.162 
7.16E-02 0.505 0.842 
5.62E-02 0.397 0.820 
4.63E-02 0.326 0.798 
8.43E-02 0.595 0.929 
6.61 E-02 0.466 0.910 
5.50E-02 0.388 0.893 
1.05E-01 0.744 1.017 
8.12E-02 0.573 0.999 
6.83E-02 0.482 0.985 
1.06E-01 0.448 0.496 
9.75E-02 0.413 0.482 
8.85E-02 0.375 0.465 
1.24E-01 0.524 0.715 
1.11E-01 0.472 0.703 
1.03E-01 0.434 0.692 
1.53E-01 0.648 0.931 
1.33E-01 0.563 0.917 
1.22E-01 0.51 7 0.907 

DNV 
Strain 

1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
5 .57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5 .57E-02 
5.57E-02 
5.57E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9 .28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 

DNV 
Moment 

7.87E+05 
7.87E+05 
7.87E+05 
8.55E+05 
8.55E+05 
8.55E+05 
8.78E+05 
8.78E+05 
8.78E+05 
8.35E+05 
8.35E+05 
8.35E+05 
9.23E+05 
9.23E+05 
9.23E+05 
9.52E+05 
9.52E+05 
9.52E+05 
5.04E+05 
5.04E+05 
5.04E+05 
6.56E+05 
6.56E+05 
6.56E+05 
7.07E+05 
7.07E+05 
7.07E+05 



Outside Wall 
Run Diameter Thickness 0 /t Beta 

Number (m) (m) (-) (-) 

10 0.6096 0.02032 30 0.0 
11 0.6096 0.02032 30 0.0 
12 0.6096 0.02032 30 0.0 
13 0.6096 0.02032 30 0.0 
14 0.6096 0.02032 30 0.0 
15 0.6096 0.02032 30 0.0 
16 0.6096 0.02032 30 0.0 
17 0.6096 0.02032 30 0.0 
18 0.6096 0.02032 30 0.0 
28 0.6096 0.02032 30 0.4 
29 0.6096 0.02032 30 0.4 
30 0.6096 0.02032 30 0.4 
31 0.6096 0.02032 30 0.4 
32 0.6096 0.02032 30 0.4 
33 0.6096 0.02032 30 0.4 
34 0.6096 0.02032 30 0.4 
35 0.6096 0.02032 30 0.4 
36 0.6096 0.02032 30 0.4 
46 0.6096 0.02032 30 0.8 
47 0.6096 0.02032 30 0.8 
48 0.6096 0.02032 30 0.8 
49 0.6096 0.02032 30 0.8 
50 0.6096 0.02032 30 0.8 
51 0.6096 0.02032 30 0.8 
52 0.6096 0.02032 30 0.8 
53 0.6096 0.02032 30 0.8 
54 0.6096 0.02032 30 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
1.33E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 
2.66E+07 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-5.44E+06 
-5.44E+06 
-5.44E+06 
-2.72E+06 
-2.72E+06 
-2.72E+06 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-9.07E+06 
-9.07E+06 
-9.07E+06 
-6.35E+06 
-6.35E+06 
-6.35E+06 
-3.63E+06 
-3.63E+06 
-3.63E+06 
-1 .27E+07 
-1.27E+07 
-1 .27E+07 
-9.97E+06 
-9.97E+06 
-9.97E+06 
-7.25E+06 
-7.25E+06 
-7.25E+06 

Imperfection 
(% tn) 

5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 
5.0 
10.0 
14.8 

A-3 

Critical 
Moment 

(Nm) 

3.07E+06 
3.00E+06 
2.93E+06 
3.39E+06 
3.33E+06 
3.27E+06 
3.55E+06 
3.50E+06 
3.45E+06 
2.39E+06 
2.32E+06 
2.27E+06 
2.90E+06 
2.84E+06 
2.80E+06 
3.28E+06 
3.22E+06 
3.18E+06 
8.73E+05 
8.40E+05 
8.09E+05 
1.61 E+06 
1.58E+06 
1.55E+06 
2.23E+06 
2.20E+06 
2.17E+06 

Critical 
Curvature Normalized Normalized 

{-) Strain Moment 

3.46E-02 1.098 1.156 
2.71E-02 0.860 1.129 
2.32E-02 0.736 1.103 
4.20E-02 1.334 1.174 
3.30E-02 1.048 1.154 
2.80E-02 0.888 1.133 
5.45E-02 1.730 1.198 
4.29E-02 1.362 1.181 
3.64E-02 1.155 1.164 
5.09E-02 0.539 0.848 
3.97E-02 0.420 0.823 
3.38E-02 0.358 0.806 
5.97E-02 0.632 0.931 
4.63E-02 0.490 0.912 
3.92E-02 0.415 0.899 
7.55E-02 0.799 1.021 
5.77E-02 0.611 1.002 
4.87E-02 0.515 0.989 
7.73E-02 0.491 0.514 
6.85E-02 0.435 0.494 
6.23E-02 0.396 0.476 
8.79E-02 0.558 0.727 
7.83E-02 0.497 0.714 
7.18E-02 0.456 0.700 
1.05E-01 0.666 0.935 
9.31E-02 0.591 0.922 
8.45E-02 0.536 0.910 

DNV 
Strain 

1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
1.86E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
5.57E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 
9.28E-02 

DNV 
Moment 

2.66E+06 
2.66E+06 
2.66E+06 
2.89E+06 
2.89E+06 
2.89E+06 
2.96E+06 
2.96E+06 
2.96E+06 
2.82E+06 
2.82E+06 
2.82E+06 
3.11E+06 
3.11E+06 
3.11E+06 
3.21E+06 
3.21E+06 
3.21E+06 
1.70E+06 
1.70E+06 
1.70E+06 
2.21E+06 
2.21E+06 
2.21E+06 
2.39E+06 
2.39E+06 
2.39E+06 



Outside Wall Axial Critical Critical 
Run Diameter Thickness D/t Beta Pressure N Force Imperfection Moment Curvature Normalized Normalized DNV DNV 

Number (m) {m) (-) (-) (Pa) ( -) (N) (%tn) (Nm) (-) Strain Moment Strain Moment 

1 0.9144 0.03048 30 0.0 O.OOE+OO -0.30 -1.22E+07 5.0 1.04E+07 2.36E-02 1.123 1.160 1.86E-02 8.97E+06 
2 0.9144 0.03048 30 0.0 O.OOE+OO -0.30 -1 .22E+07 9.8 1.01 E+07 1.86E-02 0.885 1.126 1.86E-02 8.97E+06 
3 0.9144 0.03048 30 0.0 O.OOE+OO -0.30 -1 .22E+07 9.8 1.01E+07 1.86E-02 0.885 1.126 1.86E-02 8.97E+06 
4 0.9144 0.03048 30 0.0 O.OOE+OO -0.15 -6.12E+06 5.0 1.14E+07 2.81E-02 1.337 1.170 1.86E-02 9.74E+06 
5 0.9144 0.03048 30 0.0 O.OOE+OO -0.15 -6.12E+06 9.8 1.12E+07 2.22E-02 1.057 1.150 1.86E-02 9.74E+06 
6 0.9144 0.03048 30 0.0 O.OOE+OO -0.15 -6.12E+06 9.8 1.12E+07 2.22E-02 1.057 1.150 1.86E-02 9.74E+06 
7 0.9144 0.03048 30 0.0 O.OOE+OO 0.00 O.OOE+OO 5.0 1.20E+07 3.67E-02 1.749 1.200 1.86E-02 1.00E+07 
8 0.9144 0.03048 30 0.0 O.OOE+OO 0.00 O.OOE+OO 9.8 1.18E+07 2.91 E-02 1.386 1.180 1.86E-02 1.00E+07 
9 0.9144 0.03048 30 0.0 O.OOE+OO 0.00 O.OOE+OO 9.8 1.18E+07 2.91E-02 1.386 1.180 1.86E-02 1.00E+07 
10 0.9144 0.03048 30 0.4 1.33E+07 -0.30 -2.04E+07 5.0 8.08E+06 3.41E-02 0.542 0.850 5.57E-02 9.51E+06 
11 0.9144 0.03048 30 0.4 1.33E+07 -0.30 -2.04E+07 9.8 7.85E+06 2.65E-02 0.421 0.825 5.57E-02 9.51E+06 
12 0.9144 0.03048 30 0.4 1.33E+07 -0.30 -2.04E+07 9.8 7.85E+06 2.65E-02 0.421 0.825 5.57E-02 9.51E+06 
13 0.9144 0.03048 30 0.4 1.33E+07 -0.15 -1.43E+07 5.0 9.80E+06 3.97E-02 0.630 0.932 5.57E-02 1.05E+07 
14 0.9144 0.03048 30 0.4 1.33E+07 -0.15 -1.43E+07 9.8 9.61E+06 3.11E-02 0.494 0.914 5.57E-02 1.05E+07 
15 0.9144 0.03048 30 0.4 1.33E+07 -0.15 -1.43E+07 9.8 9.61E+06 3.11E-02 0.494 0.914 5.57E-02 1.05E+07 
16 0.9144 0.03048 30 0.4 1.33E+07 0.00 -8.16E+06 5.0 1.11E+07 5.10E-02 0.810 1.023 5.57E-02 1.08E+07 
17 0.9144 0.03048 30 0.4 1.33E+07 0.00 -8.16E+06 9.8 1.09E+07 3.91 E-02 0.620 1.005 5.57E-02 1.08E+07 
18 0.9144 0.03048 30 0.4 1.33E+07 0.00 -8.16E+06 9.8 1.09E+07 3.91 E-02 0.620 1.005 5.57E-02 1.08E+07 
19 0.9144 0.03048 30 0.8 2.66E+07 -0.30 -2.86E+07 5.0 3.02E+06 5.37E-02 0.512 0.526 9.28E-02 5.74E+06 
20 0.9144 0.03048 30 0.8 2 .66E+07 -0.30 -2.86E+07 9.8 2.88E+06 4.70E-02 0.448 0.502 9.28E-02 5.74E+06 
21 0.9144 0.03048 30 0.8 2.66E+07 -0.30 -2.86E+07 9.8 2.88E+06 4.70E-02 0.448 0 .502 9.28E-02 5.74E+06 
22 0.9144 0.03048 30 0.8 2.66E+07 -0.15 -2.24E+07 5.0 5.51E+06 6.20E-02 0.591 0.737 9.28E-02 7.47E+06 
23 0.9144 0.03048 30 0.8 2.66E+07 -0.15 -2.24E+07 9.8 5.37E+06 5.40E-02 0.514 0.719 9.28E-02 7.47E+06 
24 0.9144 0.03048 30 0.8 2.66E+07 -0.15 -2.24E+07 9.8 5.37E+06 5.40E-02 0.514 0.719 9.28E-02 7.47E+06 
25 0.9144 0.03048 30 0.8 2.66E+07 0.00 -1 .63E+07 5.0 7.64E+06 7.52E-02 0.716 0.949 9.28E-02 8.05E+06 
26 0.9144 0.03048 30 0.8 2.66E+07 0.00 -1 .63E+07 9.8 7.47E+06 6.38E-02 0.608 0.928 9.28E-02 8.05E+06 
27 0.9144 0.03048 30 0.8 2.66E+07 0.00 -1 .63E+07 9.8 7.47E+06 6.38E-02 0.608 0.928 9.28E-02 8.05E+06 

A-4 



Outside Wall 
Run Diameter Thickness D/t Beta 

Number (m) (m) (-) (-) 

55 0.4064 0.00677 60 0.0 
56 0.4064 0.00677 60 0.0 
57 0.4064 0.00677 60 0.0 
58 0.4064 0.00677 60 0.0 
59 0.4064 0.00677 60 0.0 
60 0.4064 0.00677 60 0.0 
61 0.4064 0.00677 60 0.0 
62 0.4064 0.00677 60 0.0 
63 0.4064 0.00677 60 0.0 
73 0.4064 0.00677 60 0.4 
74 0.4064 0.00677 60 0.4 
75 0.4064 0.00677 60 0.4 
76 0.4064 0.00677 60 0.4 
77 0.4064 0.00677 60 0.4 
78 0.4064 0.00677 60 0.4 
79 0.4064 0.00677 60 0.4 
80 0.4064 0.00677 60 0.4 
81 0.4064 0.00677 60 0.4 
91 0.4064 0.00677 60 0.8 
92 0.4064 0.00677 60 0.8 
93 0.4064 0.00677 60 0.8 
94 0.4064 0.00677 60 0.8 
95 0.4064 0.00677 60 0.8 
96 0.4064 0.00677 60 0.8 
97 0.4064 0.00677 60 0.8 
98 0.4064 0.00677 60 0.8 
99 0.4064 0.00677 60 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-1 .23E+06 
-1 .23E+06 
-1 .23E+06 
-6.15E+05 
-6.15E+05 
-6.15E+05 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-2.05E+06 
-2.05E+06 
-2.05E+06 
-1.43E+06 
-1.43E+06 
-1.43E+06 
-8.20E+05 
-8.20E+05 
-8.20E+05 
-2.87E+06 
-2.87E+06 
-2.87E+06 
-2.25E+06 
-2.25E+06 
-2.25E+06 
-1.64E+06 
-1 .64E+06 
-1.64E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 

A-5 

Critical 
Moment 

(Nm) 

4.17E+05 
3.94E+05 
3.76E+05 
4.71E+05 
4.58E+05 
4.42E+05 
5.05E+05 
4.93E+05 
4.83E+05 
3.17E+05 
2.97E+05 
2.88E+05 
4.02E+05 
3.87E+05 
3.69E+05 
4.64E+05 
4.52E+05 
4.39E+05 
9.04E+04 
8.84E+04 
8.23E+04 
2.01E+05 
1.99E+05 
1.90E+05 
3.01E+05 
2.97E+05 
2.91 E+05 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

1.97E-02 2.227 1.024 
1.67E-02 1.887 0.967 
1.52E-02 1.721 0.923 
2.21E-02 2.499 1.064 
1.98E-02 2.238 1.035 
1.76E-02 1.987 0.999 
2.81 E-02 3.180 1.112 
2.43E-02 2.750 1.085 
2.18E-02 2.467 1.063 
2.54E-02 0.957 0.734 
2.01 E-02 0.756 0.688 
1.83E-02 0.689 0.667 
2.87E-02 1.080 0.842 
2.38E-02 0.895 0.810 
2.00E-02 0.755 0.773 
3.40E-02 1.283 0.942 
2.86E-02 1.076 0.917 
2.41 E-02 0.909 0.891 
3.83E-02 0.865 0.347 
3.67E-02 0.829 0.339 
2.86E-02 0.647 0.316 
4.60E-02 1.039 0.592 
4.47E-02 1.010 0.586 
3.63E-02 0.820 0.560 
5.44E-02 1.229 0.823 
4.83E-02 1.092 0.812 
4.23E-02 0.955 0.796 

DNV 
Strain 

3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 

DNV 
Moment 

4.07E+05 
4.07E+05 
4.07E+05 
4.43E+05 
4.43E+05 
4.43E+05 
4.54E+05 
4.54E+05 
4.54E+05 
4.32E+05 
4.32E+05 
4.32E+05 
4.78E+05 
4.78E+05 
4.78E+05 
4.93E+05 
4.93E+05 
4.93E+05 
2.61 E+05 
2.61 E+05 
2.61 E+05 
3.39E+05 
3.39E+05 
3.39E+05 
3.66E+05 
3.66E+05 
3.66E+05 



Outside Wall 
Run Diameter Thickness 0/t Beta 

Number (m) (m) (-) (-) 

64 0.6096 0.01016 60 0.0 
65 0.6096 0.01016 60 0.0 
66 0.6096 0.01016 60 0.0 
67 0.6096 0.01016 60 0.0 
68 0.6096 0.01016 60 0.0 
69 0.6096 0.01016 60 0.0 
70 0.6096 0.01016 60 0.0 
71 0.6096 0.01016 60 0.0 
72 0.6096 0.01016 60 0.0 
82 0.6096 0.01016 60 0.4 
83 0.6096 0.01016 60 0.4 
84 0.6096 0.01016 60 0.4 
85 0.6096 0.01016 60 0.4 
86 0.6096 0.01016 60 0.4 
87 0.6096 0.01016 60 0.4 
88 0.6096 0.01016 60 0.4 
89 0.6096 0.01016 60 0.4 
90 0.6096 0.01016 60 0.4 
100 0.6096 0.01016 60 0.8 
101 0.6096 0.01016 60 0.8 
102 0.6096 0.01016 60 0.8 
103 0.6096 0.01016 60 0.8 
104 0.6096 0.01016 60 0.8 
105 0.6096 0.01016 60 0.8 
106 0.6096 0.01016 60 0.8 
107 0.6096 0.01016 60 0.8 
108 0.6096 0.01016 60 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31 E+07 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-2.77E+06 
-2.77E+06 
-2.77E+06 
-1 .38E+06 
-1 .38E+06 
-1 .38E+06 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-4.61 E+06 
-4.61E+06 
-4.61 E+06 
-3.23E+06 
-3.23E+06 
-3.23E+06 
-1 .84E+06 
-1 .84E+06 
-1 .84E+06 
-6.46E+06 
-6.46E+06 
-6.46E+06 
-5.07E+06 
-5.07E+06 
-5.07E+06 
-3.69E+06 
-3.69E+06 
-3.69E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 

A-6 

Critical 
Moment 

(Nm) 

1.40E+06 
1.32E+06 
1.20E+06 
1.60E+06 
1.53E+06 
1.48E+06 
1.70E+06 
1.66E+06 
1.62E+06 
1.06E+06 
1.01E+06 
9.63E+05 
1.35E+06 
1.29E+06 
1.26E+06 
1.56E+06 
1.52E+06 
1.48E+06 
3.07E+05 
2.98E+05 
2.78E+05 
6.89E+05 
6.75E+05 
6.48E+05 
1.02E+06 
1.00E+06 
9.86E+05 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

1.34E-02 2.267 1.019 
1.12E-02 1.905 0.960 
9.64E-03 1.634 0.873 
1.56E-02 2.651 1.071 
1.32E-02 2.236 1.024 
1.19E-02 2.020 0.991 
1.92E-02 3.250 1.109 
1.65E-02 2.799 1.083 
1.47E-02 2.491 1.057 
1.70E-02 0.960 0.727 
1.41E-02 0.796 0.693 
1.23E-02 0.698 0.661 
1.95E-02 1.104 0.838 
1.55E-02 0.876 0.800 
1.43E-02 0.807 0.782 
2.36E-02 1.333 0.938 
1.92E-02 1.084 0.914 
1.70E-02 0.960 0.890 
2.67E-02 0.904 0.349 
2.46E-02 0.836 0.339 
2.07E-02 0.701 0.316 
3.38E-02 1.148 0.601 
3.05E-02 1.035 0.589 
2.59E-02 0.877 0.566 
3.95E-02 1.338 0.826 
3.39E-02 1.151 0.810 
3.05E-02 1.034 0.799 

DNV 
Strain 

3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
1.06E-02 
1.06E-02 
1.06E-02 
1 06E-02 
1 06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 

DNV 
Moment 

1.37E+06 
1.37E+06 
1.37E+06 
1.49E+06 
1.49E+06 
1.49E+06 
1.53E+06 
1.53E+06 
1.53E+06 
1.46E+06 
1.46E+06 
1.46E+06 
1.61E+06 
1.61E+06 
1.61 E+06 
1.66E+06 
1.66E+06 
1.66E+06 
8.79E+05 
8.79E+05 
8.79E+05 
1.15E+06 
1.15E+06 
1.15E+06 
1.23E+06 
1.23E+06 
1.23E+06 



Outside Wall 
Run Diameter Thickness 0/t Beta 

Number (m) (m) (-) (-) 

28 0.9144 0.01524 60 0 .0 
29 0.9144 0.01524 60 0.0 
30 0.9144 0.01524 60 0.0 
31 0.9144 0.01524 60 0.0 
32 0.9144 0.01524 60 0.0 
33 0.9144 0.01524 60 0 .0 
34 0.9144 0.01524 60 0 .0 
35 0.9144 0.01524 60 0 .0 
36 0.9144 0.01524 60 0.0 
37 0.9144 0.01524 60 0.4 
38 0 .9144 0.01524 60 0.4 
39 0.9144 0.01524 60 0.4 
40 0.9144 0.01524 60 0.4 
41 0.9144 0.01524 60 0.4 
42 0.9144 0.01524 60 0.4 
43 0.9144 0.01524 60 0.4 
44 0.9144 0.01524 60 0.4 
45 0.9144 0.01524 60 0.4 
46 0.9144 0.01524 60 0.8 
47 0.9144 0.01524 60 0.8 
48 0.9144 0.01524 60 0.8 
49 0.9144 0.01524 60 0.8 
50 0.9144 0.01524 60 0.8 
51 0.9144 0.01524 60 0.8 
52 0.9144 0.01524 60 0 .8 
53 0.9144 0.01524 60 0.8 
54 0.9144 0.01524 60 0 .8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
6.54E+06 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 
1.31E+07 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0 .00 
0.00 
0 .00 

Axial 
Force 

(N) 

-6.23E+06 
-6.23E+06 
-6.23E+06 
-3.11E+06 
-3.11E+06 
-3.11E+06 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 

-1 .04E+07 
-1 .04E+07 
-1 .04E+07 
-7.26E+06 
-7.26E+06 
-7.26E+06 
-4.15E+06 
-4.15E+06 
-4.15E+06 
-1.45E+07 
-1.45E+07 
-1.45E+07 
-1 .14E+07 
-1 .14E+07 
-1 .14E+07 
-8.30E+06 
-8.30E+06 
-8.30E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 

A-7 

Critical 
Moment 

(Nm) 

4 .67E+06 
4.36E+06 
4.09E+06 
5.33E+06 
5.12E+06 
4.93E+06 
5.68E+06 
5.52E+06 
5.38E+06 

3.50E+06 
3.35E+06 
3.14E+06 
4.50E+06 
4.34E+06 
4.20E+06 
5.16E+06 
5.08E+06 
4.94E+06 
9.92E+05 
9.23E+05 
8.60E+05 
2.27E+06 
2.17E+06 
2.10E+06 
3.41E+06 
3.32E+06 
3.24E+06 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

8.98E-03 2.283 1.007 
7.42E-03 1.887 0.940 
6 .61E-03 1.682 0.882 
1.05E-02 2.668 1.057 
8.91E-03 2.267 1.016 
7.92E-03 2.014 0.978 
1.30E-02 3.304 1.098 
1.09E-02 2.771 1.067 
9.78E-03 2.486 1.040 

1.11 E-02 0.943 0.711 
9.64E-03 0.817 0.681 
7.96E-03 0.675 0.638 
1.32E-02 1.116 0.827 
1.10E-02 0.935 0.798 
9.71 E-03 0.823 0.772 
1.46E-02 1.236 0.919 
1.30E-02 1.104 0.905 
1.13E-02 0.956 0.880 
1.97E-02 1.003 0.334 
1.57E-02 0.799 0.311 
1.36E-02 0.694 0.290 
2.44E-02 1.241 0.587 
1.94E-02 0.987 0.561 
1.74E-02 0.883 0.543 
2.86E-02 1.454 0.819 
2.31E-02 1.175 0.797 
2.01E-02 1.022 0.778 

DNV 
Strain 

3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 
3.54E-03 

1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.06E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 
1.77E-02 

DNV 
Moment 

4 .64E+06 
4.64E+06 
4.64E+06 
5.04E+06 
5.04E+06 
5.04E+06 
5.18E+06 
5.18E+06 
5.18E+06 

4.92E+06 
4.92E+06 
4.92E+06 
5.44E+06 
5.44E+06 
5.44E+06 
5.61E+06 
5.61E+06 
5.61E+06 
2.97E+06 
2.97E+06 
2.97E+06 
3.87E+06 
3.87E+06 
3.87E+06 
4.1 7E+06 
4.17E+06 
4.1 7E+06 



Outside Wall 
Run Diameter Thickness D/t Beta 

Number (m) (m) (-) (-) 

109 0.4064 0.00452 90 0.0 
110 0.4064 0.00452 90 0.0 
111 0.4064 0.00452 90 0.0 
112 0.4064 0.00452 90 0.0 
113 0.4064 0.00452 90 0.0 
114 0.4064 0.00452 90 0.0 
115 0.4064 0.00452 90 0.0 
116 0.4064 0.00452 90 0.0 
117 0.4064 0.00452 90 0.0 
127 0.4064 0.00452 90 0.4 
128 0.4064 0.00452 90 0.4 
129 0.4064 0.00452 90 0.4 
130 0.4064 0.00452 90 0.4 
131 0.4064 0.00452 90 0.4 
132 0.4064 0.00452 90 0.4 
133 0.4064 0.00452 90 0.4 
134 0.4064 0.00452 90 0.4 
135 0.4064 0.00452 90 0.4 
145 0.4064 0.00452 90 0.8 
146 0.4064 0.00452 90 0.8 
147 0.4064 0.00452 90 0.8 
148 0.4064 0.00452 90 0.8 
149 0.4064 0.00452 90 0.8 
150 0.4064 0.00452 90 0.8 
151 0.4064 0.00452 90 0.8 
152 0.4064 0.00452 90 0.8 
153 0.4064 0.00452 90 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
4 .33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-8.24E+05 
-8.24E+05 
-8.24E+05 
-4.12E+05 
-4.12E+05 
-4.12E+05 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-1.37E+06 
-1 .37E+06 
-1 .37E+06 
-9.62E+05 
-9.62E+05 
-9.62E+05 
-5.50E+05 
-5.50E+05 
-5.50E+05 
-1.92E+06 
-1.92E+06 
-1 .92E+06 
-1 .51E+06 
-1 .51E+06 
-1.51E+06 
-1.10E+06 
-1 .10E+06 
-1 .10E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 

A-8 

Critical 
Moment 

(Nm) 

2.48E+05 
2.33E+05 
2.20E+05 
2.91 E+05 
2.79E+05 
2.68E+05 
3.20E+05 
3.07E+05 
2.99E+05 
1.83E+05 
1.73E+05 
1.62E+05 
2.39E+05 
2.27E+05 
2.19E+05 
2.87E+05 
2.77E+05 
2.67E+05 
3.74E+04 
3.87E+04 
3.46E+04 
1.10E+05 
1.09E+05 
1.05E+05 
1.78E+05 
1.76E+05 
1.73E+05 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

1.37E-02 9.336 0.903 
1.20E-02 8.189 0.848 
1.10E-02 7.482 0.801 
1.56E-02 10.614 0.975 
1.41E-02 9.587 0.935 
1.30E-02 8.844 0.898 
1.96E-02 13.349 1.045 
1.66E-02 11.331 1.002 
1.54E-02 10.471 0.976 
1.51E-02 3.423 0.628 
1.30E-02 2.947 0.594 
1.11 E-02 2.525 0.556 
1.72E-02 3.919 0.742 
1.49E-02 3.391 0.705 
1.37E-02 3.109 0.680 
2.07E-02 4.699 0.864 
1.78E-02 4.039 0.834 
1.59E-02 3.610 0.804 
1.68E-02 2.287 0.213 
1.79E-02 2.440 0.220 
1.39E-02 1.892 0.197 
2.49E-02 3.395 0.481 
2.41 E-02 3.285 0.476 
2.10E-02 2.864 0.459 
3.08E-02 4.201 0.722 
2.75E-02 3.748 0.714 
2.58E-02 3.524 0.702 

DNV 
Strain 

5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 

DNV 
Moment 

2.75E+05 
2.75E+05 
2.75E+05 
2.98E+05 
2.98E+05 
2.98E+05 
3.06E+05 
3.06E+05 
3.06E+05 
2.91 E+05 
2.91 E+05 
2.91 E+05 
3.22E+05 
3.22E+05 
3.22E+05 
3.32E+05 
3.32E+05 
3.32E+05 
1.76E+05 
1.76E+05 
1.76E+05 
2.29E+05 
2.29E+05 
2.29E+05 
2.47E+05 
2.47E+05 
2.47E+05 



Outside Wall 
Run Diameter Thickness 0/t Beta 

Number (m) (m) (-) (-) 

118 0.6096 0.00677 90 0.0 
119 0.6096 0.00677 90 0.0 
120 0.6096 0.00677 90 0.0 
121 0.6096 0.00677 90 0.0 
122 0.6096 0.00677 90 0.0 
123 0.6096 0.00677 90 0.0 
124 0.6096 0.00677 90 0.0 
125 0.6096 0.00677 90 0.0 
126 0.6096 0.00677 90 0.0 
136 0.6096 0.00677 90 0.4 
137 0.6096 0.00677 90 0.4 
138 0.6096 0.00677 90 0.4 
139 0.6096 0.00677 90 0.4 
140 0.6096 0.00677 90 0.4 
141 0.6096 0.00677 90 0.4 
142 0.6096 0.00677 90 0.4 
143 0.6096 0.00677 90 0.4 
144 0.6096 0.00677 90 0.4 
154 0.6096 0.00677 90 0.8 
155 0.6096 0.00677 90 0.8 
156 0.6096 0.00677 90 0.8 
157 0.6096 0.00677 90 0.8 
158 0.6096 0.00677 90 0.8 
159 0.6096 0.00677 90 0.8 
160 0.6096 0.00677 90 0.8 
161 0.6096 0.00677 90 0.8 
162 0.6096 0.00677 90 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4 .33E+06 
4 .33E+06 
4.33E+06 
4.33E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-1.85E+06 
-1 .85E+06 
-1 .85E+06 
-9.27E+05 
-9.27E+05 
-9.27E+05 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-3.09E+06 
-3.09E+06 
-3.09E+06 
-2.16E+06 
-2.16E+06 
-2.16E+06 
-1 .24E+06 
-1 .24E+06 
-1 .24E+06 
-4.33E+06 
-4.33E+06 
-4.33E+06 
-3.40E+06 
-3.40E+06 
-3.40E+06 
-2.47E+06 
-2.47E+06 
-2.47E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 

10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
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Critical 
Moment 

(Nm) 

8.35E+05 
7.82E+05 
7.18E+05 
9.75E+05 
9.42E+05 
8.97E+05 
1.08E+06 
1.04E+06 
1.01E+06 
6.27E+05 
5.89E+05 
5.56E+05 
8.18E+05 
7.77E+05 
7.38E+05 
9.74E+05 
9.39E+05 
9.07E+05 
1.47E+05 
1.44E+05 
1.30E+05 
3.92E+05 
3.75E+05 
3.65E+05 
6.18E+05 
6.05E+05 
5.84E+05 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

9.22E-03 9.431 0.901 
8.10E-03 8.289 0.844 
6.96E-03 7.124 0.775 
1.04E-02 10.610 0.968 
9.56E-03 9.776 0.935 
8.64E-03 8.839 0.891 
1.31 E-02 13.386 1.045 
1.15E-02 11 .733 1.006 
1.04E-02 10.648 0.977 
1.05E-02 3.595 0.638 
8.84E-03 3.016 0.599 
7.72E-03 2.632 0.566 
1.20E-02 4.085 0.753 
1.04E-02 3.534 0.715 
9.17E-03 3.126 0.679 
1.40E-02 4.778 0.869 
1.21 E-02 4.122 0.838 
1.09E-02 3.723 0.809 
1.35E-02 2.768 0.248 
1.26E-02 2.574 0.243 
1.03E-02 2.101 0.219 
1.87E-02 3.834 0.508 
1.57E-02 3.208 0.486 
1.47E-02 2.998 0.473 
2.16E-02 4.420 0.743 
1.90E-02 3.887 0.727 
1.66E-02 3.396 0.702 

DNV 
Strain 

5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 

DNV 
Moment 

9.27E+05 
9.27E+05 
9.27E+05 
1.01E+06 
1.01 E+06 
1.01 E+06 
1.03E+06 
1.03E+06 
1.03E+06 
9.83E+05 
9.83E+05 
9.83E+05 
1.09E+06 
1.09E+06 
1.09E+06 
1.1 2E+06 
1.12E+06 
1.12E+06 
5.93E+05 
5.93E+05 
5.93E+05 
7.72E+05 
7.72E+05 
7.72E+05 
8.32E+05 
8.32E+05 
8.32E+05 



Outside Wall 
Run Diameter Thickness D/t Beta 

Number (m) (m) (-) (-) 

55 0.9144 0.01016 90 0.0 
56 0.9144 0.01016 90 0.0 
57 0.9144 0.01016 90 0.0 
58 0.9144 0.01016 90 0.0 
59 0.9144 0.01016 90 0.0 
60 0.9144 0.01016 90 0.0 
61 0.9144 0.01016 90 0.0 
62 0.9144 0.01016 90 0.0 
63 0.9144 0.01016 90 0.0 
64 0.9144 0.01016 90 0.4 
65 0.9144 0.01016 90 0.4 
66 0.9144 0.01016 90 0.4 
67 0.9144 0.01016 90 0.4 
68 0.9144 0.01016 90 0.4 
69 0.9144 0.01016 90 0.4 
70 0.9144 0.01016 90 0.4 
71 0.9144 0.01016 90 0.4 
72 0.9144 0.01016 90 0.4 
73 0.9144 0.01016 90 0.8 
74 0.9144 0.01016 90 0.8 
75 0.9144 0.01016 90 0.8 
76 0.9144 0.01016 90 0.8 
77 0.9144 0.01016 90 0.8 
78 0.9144 0.01016 90 0.8 
79 0.9144 0.01016 90 0.8 
80 0.9144 0.01016 90 0.8 
81 0.9144 0.01016 90 0.8 

Pressure 
(Pa) 

O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
4.33E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 
8.67E+06 

N 
(-) 

-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 
-0.30 
-0.30 
-0.30 
-0.15 
-0.15 
-0.15 
0.00 
0.00 
0.00 

Axial 
Force 

(N) 

-4.17E+06 
-4.17E+06 
-4.17E+06 
-2.09E+06 
-2.09E+06 
-2.09E+06 
O.OOE+OO 
O.OOE+OO 
O.OOE+OO 
-6.96E+06 
-6.96E+06 
-6.96E+06 
-4.87E+06 
-4.87E+06 
-4.87E+06 
-2.78E+06 
-2.78E+06 
-2.78E+06 
-9.74E+06 
-9.74E+06 
-9.74E+06 
-7.65E+06 
-7.65E+06 
-7.65E+06 
-5.56E+06 
-5.56E+06 
-5.56E+06 

Imperfection 
(% tn) 

5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5 .0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 
5.0 
10.0 
15.0 

Critical 
Moment 

(Nm) 

2.81E+06 
2.60E+06 
2.48E+06 
3.32E+06 
3.14E+06 
3.02E+06 
3.61 E+06 
3.50E+06 
3.39E+06 
2.10E+06 
1.97E+06 
1.88E+06 
2.77E+06 
2.59E+06 
2.49E+06 
3.29E+06 
3.17E+06 
3.04E+06 
5.12E+05 
4.82E+05 
4.42E+05 
1.31E+06 
1.26E+06 
1.19E+06 
2.10E+06 
2.00E+06 
1.96E+06 

Critical 
Curvature Normalized Normalized 

(-) Strain Moment 

6.23E-03 9.555 0.898 
5.30E-03 8.128 0.831 
4.97E-03 7.620 0.793 
7.25E-03 11 .120 0.977 
6.33E-03 9.721 0.924 
5.88E-03 9.019 0.889 
8.59E-03 13.177 1.035 
7.80E-03 11 .964 1.003 
7.05E-03 10.824 0.972 
7.02E-03 3.591 0.633 
5.87E-03 3.003 0.594 
5.24E-03 2.680 0.567 
8.25E-03 4.220 0.755 
6.89E-03 3.525 0.706 
6.30E-03 3.225 0.679 
9.62E-03 4.920 0.870 
8.29E-03 4.238 0.838 
7.29E-03 3.731 0.803 
9.96E-03 3.056 0.256 
8.39E-03 2.575 0.241 
7.20E-03 2.209 0.221 
1.21E-02 3.705 0.503 
1.08E-02 3.319 0.483 
9.14E-03 2.806 0.457 
1.53E-02 4.696 0.748 
1.19E-02 3.652 0.712 
1.12E-02 3.423 0.698 

DNV 
Strain 

5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
5.89E-04 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 
1.77E-03 

2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 
2.95E-03 

DNV 
Moment 

3.13E+06 
3.13E+06 
3.13E+06 
3.40E+06 
3.40E+06 
3.40E+06 
3.49E+06 
3.49E+06 
3.49E+06 
3.32E+06 
3.32E+06 
3.32E+06 
3.67E+06 
3.67E+06 
3.67E+06 
3.78E+06 
3.78E+06 
3.78E+06 
2.00E+06 
2.00E+06 
2.00E+06 
2.61E+06 
2.61E+06 
2.61E+06 
2.81E+06 
2.81 E+06 
2.81E+06 

FOR D/t = 90 DNV STRAIN ASSUMES DNV OS-F101 GIRTH WELD FACTOR IS 0.6 
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