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Abstract 

The main contribution of this tlwsis is the development of Least-Time Path Fast 

J\ifarching Method and the design of the algorithm implementation frame on a digi

t al hardware pla tform. This work imporb application specific digital circuit de::;igu 

technology into the domain of computa tional geoph~rsics problem solving. 

In the t hesis . first ly. geophvsics knowledge is reYiewed and theoretica l funda mental 

is introduced . From the t heory, the Leru:;t-Time Path Fast ~!arching I\lcthod that 

computes seismic tn wel time i developer! . In the algorithm rlesign se tion , the issues 

on pa rallel algorithm d sign and algorithm 3D extension a re discussed . Software 

simulation::; arc run for verify ing the algorithm. while parallel programmiug :;olution 

on a multiproce;;sor pla tform i::; int roduced a::; we ll . At the encl . a. digital circu it 

implementa tion frame for the algori thm is proposed and a p rotot_,·ping syst m i 

built on Xilinx FPGA. 

Thb t hesis is not only an implemeutnt io11 report of a digital desig11 project, out 

al o includes consideration and discussion on the future direction of reconfigurable 

computing applicat ions and methodologY. 
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Chapter 1 

Introduction (Geophysics) 

1.1 Subs urface Exploration 

Toda~·. the world has intense need for oil and gas resources. and t hese needs are 

driYing t he fast growing res arch in geo-sciences and rela ted fi elds. 

Geo-scientist s in the pet roleum industry - including geologists, geoph~·sicists . g o

chemi:;t s and paleontologist :; - :;tudy what ha · happened to rocb that may be bmied 

thousands of meters belmY the surface. how those rocks were formed and affected b~· 

events stretching back millions of ~·cars. and how to identify t rap · where oil and gas 

have accumulated within rock formations. 

On the other hand. computer engin~ers assist on the topics of geoph-'·· ics comput

ing and seismic data visualiza t ion b~· creat ing device: and developing new met hods 

and algorithms. The basis of their work is t he understanding of :;ubsurfacc exploration 

theory. upon which thc:v C'an bring compnter t dlllology iuto. Thi::. fi rst cha ptN in

t roduces t h application of our algorithm and the related geophysics t heor.-'· to help 

readers understand t h meaning of our work . ::-.roreover . from this int roduction. you 

maY get some ideas .'Yhere to find the nich in petroleum inclu::.trY for computer rngi-

1 



C'HAPTER ]. INTROD UCTION ( (; EOPHYSI S) 2 

nee ring r<'S<'arch. 

1.1.1 Role of Geophysics In Oil and Gas Ex ploration 

Borehole Tool Method 

F inding commercially nlluable accumulation~ of h~·drocarbon~ b nuel~· ~imple : u~u

ally. they a re to be found a t depth:; of at least ·e, ·eml thousand feet b C'Iow the ground 

surface. In some area of t he earth. it is possible to infer t he geology a t these depths 

from that of t he rocb exposed at the ::;urfacc, but it i~ mor common for the near-

urface geology to bear little or no rela tion to the deeper . trnctures. Ultimat f'ly, 

knowledge o[ t his deeper geolog,v can come only from drilling. but a deep borehole 

i::; cxpcn~i,·c and in many arc~ (c~pcciall~· off::;horc) t he delineation of ~tructurc by 

closely-spaced d rilling is unthinka ble. 

However , gcophy::;ic~ can a~sist exploration in ::;ome ways: ::;ei~mic refiectiou method. 

which is a major measure ex tensively used in search for oil and gas, is capable of giv

ing a resolut ion of at lea ·t a few tens of meters vert ically ai1d a fc'" hundred meters 

horizontally. Thi~ incre~e::; tremeudou::;ly the knowledge t ha t can be gained from a 

few exploration borE'holes. To introduce Seismic reftect ion method. let's rP,·iew t hE' 

concept of ,·clocity model fi rst. 

1.1.2 Velocity Model of t he Earth 

In gE'oph~·sics . t he eart h is usuall~· thought as a layPred structure. T he oeoph~·sici. t 

regards it as a series of laYers \Yith rather abrupt hange::; in v locil.v of ::;ei~m ic wa\·e 

trau~mitting between t hem YCrtically. but only gradual change~ latcrall.' ·· along a 

layer . 

In a velocity model[9]. it i~ a::;:mmed t hat the ::;e i~mic "·ave t ravels a t a. ::;pecific 
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,-eJocit~- ,-,, Inc insirll' rach Jawr. These layers are not tiM la~·crs one c1how another. 

. ctually. the long term movement of eart h contin nts cause · th rust moY menU; and 

this cnn tilt these fl at layers. The vclocit~- , -alues cnn range from less than 1,000 

meters per sP('ond to n::; much a::; 8.000 meters per second or more. 

The features of velocity model used in geoph~·sics research can be illustrated as in 

Fig. 1.1 : 

Z (dept h) 

Figure 1.1 : l\1armou ·i model 

1.1.3 Seisn1ic Reflection Method 

Seismic refi ction mrthod explorrs this hl~'Pred stmcture b? bouncing sound wavr 

off the interfaces between these Yarious ,·elocity lay rs. Th is i analogous to the way 

in which a ::;hip's echo sounder measures the depth of the ::;ea from the time taken for 

a pube of sound to retmn to the ship aft r rcfi ct iotl a t th seethed : record <'<Ul be 

produced automatically showing the time for the wa,·e to lraYel from the ship d wn 

to the sea bed and back again at ·different points along the ship 's path. B:· multiplying 

the time b,- half the \"C'locitY of sonncl in ::;ea water. t he timr ::;cale on the record can 
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Source (S) 

Renectlng Layer 

Renectln Layer 

Figure 1.2: Schematic of the seismic reflection method. Figure from ~1c Quillin. 19 -!, 

[ 1]. 

be marked off directly in depth. Similar!~·, seismic \~·m·es arc reflected at interfaces 

where rock propertie~ change; and t he round-trip t ra\'el time, together with ,-elo<.:ity 

information. giws the distance to t he interface. The profilf' on thr in terface ran be 

determined by mapping the reflection at many locat ions. 

In Fig.l.2. physica l procrss of &E'ismir rE'HE'rtion is illnstrated. The ray paths 

through successiw l a~rers are shown. There are commonly seY raJ layers ben ath 

the earth 's ~urface t ha t contribute reflection~ to a ~ingle ::;ci~mogram (a gathering 

of seismic traces. rxplanation will be given later). The unif)U E' ~:1dmntage of ei mic 

reri ect ion data is tha t it permits mapping of ma ny horiwn or Ja,·ers \\·ith ca h shot. 

Historic a ll,·. ·ei~mic r H ct ion lllPf hod i:; I he principaluwt hod by which th petrolemn 

industry explores for h.\·drocarbon-lrapping structures in .·edimentar, · basins. Its ex

t ension to deep crustal studies began in the 1960s. and since the late 1970s reflection 

tc<'hnology ha~ become the principal procedure for detailed :;tudie:; of the deep ernst. 
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Figure 1.3: Sci~mic data acqui~ition. Figmc from l\1c Quillin , 1984, [1]. 

Seismic Data Acquisition 

The very first step to apply seismic reflection method is to collect an amount of raw 

~ei~mic dat a from field ~urvey. In ~ome c~e~ ~ei~mic wm·e:::. from natural ear t hqua ke 

sour e a re received. By processing these da ta. underneath structure can be imagC'd. 

On the other hand. in the man-made experiment. as opposed to earthquake scismol

og~·. where the location and time of the ~ource i~ an unknown t hat need~ to be ::;olved 

for , beismic refi ection profiling uses a control! d source to generate seismic wan's. On 

land. large t ruck-mounted vibrators are used as a source (in Fi,..1.3). and occasionall.v 

d.n w mitc is u~ d. At ~ca. large arrays of airgun::; , which rapid!~· eject compressed air. 

are deployed. The rC'fiected signals are recorded by geo] hones or h~·drophone at sea. 

which arc similar t o ordinary microphon s. 

As in Fig .l.:~. During seismic sun· .' '· a cable with receivers at ta h d to it at 

regular intcn·a ls is laid out along a road or to\\·cd behind a ship. The source mo,·es 

along the' ::;ei::;mic line a nd generates ::;ei::;miC' wm·c::, at rf'gular intf'lYab ~uch that 
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point in t he snbsmfacC' a rC' s<tmpll'd more t han once hY nl~·s impinging on that point 

a t diffe rent angles. As a shot goes o ff. s igna ls a re recorded from each geophone a long 

the cable for a certa in amount of time. producing a series of seismic traces. T he 

::;C'i:;mic trace':; for m ch shot (called a :;hot gather ) ru·p :;avC'd on computN::, in th 

recording truck . 

Seismic Data Processing 

With a n a rray of seismic traces in computer . digit al dat a processing of raw :;eismic 

data is a m ain t ask of geoph~·sicists . Before seismic data can be sent to oil compan ies 

to be interpret ed for prospecting, geoph,n ;ici::;b apply a :;erie:; of t echnique::; to convert 

the field rE'cordings into usable seismic sections. The t ech n iqucs a re \ 'arious and 

complicated upon different applications: for exa mple. before stacking the seism ic 

traces. t he st a tic corrections need to be done to conect the da ta for t he effect of 

near-surface time dela~·s; a nd both before and after :,tack, var ious fil tering processes 

a rc applied to imprO\·c the ·signa l to noise ra tio· and increase vertical resolution. 

Especiall~·. before a ll kinds of proce:;sing we shall finall~· convert seismic section into 

a form showing thr true spatia l disposition of the reflecting snrface. throngh t he 

process of migra tion . An example of typica l processing ·equence from raw trace d ata 

to interpretable :;eismic: graph i::; shO\m iu Fig .l.-!. 

Role of Computer Engineering 

There is no unique procc:;:;ing :;equencc which can be applied to all seismic data: it 

is nhn t,·::; n<'cC'ssarr to ba lance improw mcnt. in qua li ty again:;t proce:j:;ing co:;t. Re

searchers ke p de,·ising n '" algorithms and met hods to sat is f~· all k inds of processing 

t asks. This actiYc research field is also where our computer engineers can play on 

..,kilb to de, ·elop new computing d eYice::. allCl high performance ::;olution::; to facilitate 
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Figure 1.4: Seismic data pro ·e::;sing 

the computing intensive processing jobs. 

Interpretation and Prospecting 

FinallY. oil companies buy the processed data: and t heir geophysicists and geologists 

do the iuterpretutiou on these seismic dat a. Sei::;ri1ic prospecting for oil depends 

not onl~' on high technology hut also on the interpretiw powers and experi(lnC<' of 

the practicing geoplwsicists and geologists . To a large xtent. t h techniques of 

interpretation can on]_,. be acquired as a re::;u) t of long experience translating the 

n 'sHlts of the physical experiments into gE'oiogicall~· valid model of E'arth , tructurE' 

and thE'n a ·sessing the probabi li t~· that any such st ruct ure might trap an a cumulation 

of h~·drocarbons. 

A.t this stage. t he oil and gas explorat ion procedures haYe been gone through 

rough!~·. The next ::;ect iou focuseH on the topic of ::.E'bmic migration . 
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1. 2 Seismic Migration 

Because readers of this thesis ma~· lack of geoph~·sics background . so introduction in 

this section obviates from cxccssi,·cly using jargons and abstract math . 

In short . seismic migr11tion is <1 wav0. eqnation ba ·rd procrss that remov0.s distor

tions from reflection records by mm·ing events to their correct spatial locations. and 

br collapsing encrg~· from diffraction:; back to t heir ::;cattcring poiuts[ lOJ. 1Iigration 

i::; a toolnsed in seismic processing to get a picture of nnderground layf'rs. It involv<'s 

geometric reposit ioning of returned signals to show an event (layer boundary or other 

st ructure) where it is being hit by the seismic wm·e. Seismic Migration is a central 

~tep in the seismic data processing How. It represents the cnhuinatiou of·· standn,rd .. 

processing. and it prm·ides input for several rela tiYelv exotic non-standard processes. 

Migrat ion can be t aken ru; a ::;cismic imaging process which proYidcs a geometrical 

image of the subsurface r ft.ectors, as well as qnantitatiw estimates of thf' reft. ction 

coeffi cients[l l ]. According to given seismic data and different accuracy and comput ing 

expense requirements. various migration techniques nrc developed from different ways 

of sol\'ing waYe equations. 

Among a ll these methods. Kirchhoff migration has been "'·idcly used to perform 

Pre-Stack Dept h t11igration (P SDl.1). while \Va\'C Equation Pre- 'tack Depth Migra

tion (WE PSDM) has becomf' ompetit ive in recent years. \ \'E migrat ion has t heo

retical ad,·antages owr Kirchhoff migration with implicitly dealing with the approxi

mations often made b~· t he Kirchhoff methods. But WE method is more cost!~·. and 

until recent wars it has t rausfon nrd into a economically fea::,iblP met hod bcc<tllse of 

the ach-ancement in computing technolog~·. Kirchhoff '"as the o,·erwh lming histori

cal pre-stack depth migration method of choice. Although making approximations on 

the imaged dnta. and gr<'nter imaging accnrac~· offerf'd b~· other migration methods, 
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Figure 1.5 : Smear the record d wave samples back to the reflection point 

Kirchhoff migra tion promises to remain a met hod of choice for pre-slack migra tion, 

especiall~· in 3D migration . Generall~· speaking, Kirchhoff l\Iigration is conomical, 

reliable. v r:,Rtile. and Pasy to implenwnt and undPrstl'mcl [12]. 

1.2.1 Kirchhoff Migration 

To perform Kirchhoff migra tion one needs to first compute lra\·el lime through a 

,-elocit~· depth mod I. Then for ver~· travel time of the computed travel time table. 

a sample of the inpnt data is matched . The amplitude of thi sample is scMtrrr d 

a long the migra tion impulse response corresponding lo a wave front or location of 

equal t ravel time as in F ig.l.5 . ~fathematicall~·. thb can IJ expre::;sed a::; a procc::;s 

of :,patial com·olution . Crude ;nuplitude dr('ay i::; thrn con:,itlcretl along tIll' impul. ·r 

response ctl!Te. Irnpul.-c responses are ::;l acked to recreate a seismic refiector where 

en erg~· .. stacb in .. and theoretical!~· cancel out each other in the same stack pro es::; 

out::;ide thi ::; zonP . This C'On::;tructive ::;ummation C'rentes the Kirchhoff image. [l2]. 
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Take an example[2] of migration of a singl<' sf'ismic traer' : 

Gi\· n a source and a gcophonc on the fre surface. and a single dipping refl ector in 

a homogeneou · acoustic medium. t here will be only one primary reflection recorded in 

the seismic trace Fig. l.6 . For com·cnience. multiples and direct waycs \Yill be ip,nored . 

namelY. there is onl~' on pnlsr in the seismic trace sample reprc ·ent ing the ma in waY 

front. The arrival time of t his event is equal to the t ravel time for energ_v to propagate 

from the source to t he reflection point P and from P to the geophoue. the two-\YU~'

time T\YT betwet?n source point and rt?ceivcr. The dashed line in Fig.l.6 depicts 

the associated specular ray. To backproj ct th obs rv d energy to its subsurface 

reflector, t he first step is to compute the travel times ba;:;ed on both the source point 

a nd receiver poitn. Simply speaking. traYel t ime is the t ime that seismic W ll.VP spends 

on t ravel within the sub ·urface. If the travel time of the wm·e from source point to the 

reflection point and recei,·er point has been knO\vn. in the seismic trace record , it is not 

difficult to find out the corresponding amplitude sample which matches the reflection 

event happened underneath . From this point. ~·ou ma~· already have an in tuition 

on the significant role of travel time in the migration proce ing. Conventionall~·-

there are t\vo methods to compute trm·el time: ray tracing and solving the Eikonal 

Pquation . The trawl time computation will bP introduc d in la t<'r ections. 

The next step in T\irchhoff migration is to sm ar th ob erved energ_,· to its primary 

reflection point . Thi · is n blind operation because we know not hing about wh re th 

true r flection point is . As a result . thf' evf'nt has to be migrated to a ll po:;si bl 

refl ection points. As in F'ig .l. 7. ·uch imag points r are those whose reflect ion t raYel 

1 A ::.ebmic t race b the ::.ebmic data recorded b~· on of t he geop hone::.: it record::. th amplitud 
and t iming, of t hf' :.. bmir wove reAf'ction from ~ub;,urfacf' rf'cf'iwd on th g round. A ::.f'bmic t race 
rcpn •::.cnt::; t he rc::;pun:,e of the !']n;,tic wnn·-fi!'ld t.o \·clocity nnd den:-.itv ront rn~:>tt. nero::.~ intrrfoc('" of 
layer. of rock o r dim nt,., 11~ encrg.\· tr::wcl from u ::.ource throu)!;h the ::.uh::.urfnce to n recch·cr or 
rrcriwr urrny. 
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Figure l.Ci : Seismic forward mod ling for a homogeneous medium. where a . ingle 

dipping reflector is embedded. The onl~· event being observed is n primary refle tion. 

From H. 'un. 2001 [2]. 

times ~97- +r,.9 are equa l to the observed travel time of the f>Yent . Tim::;, the E>vent 

energ_v is smeared to points r 1• r 2 , and r 3 . In addition. all of the candidate point. · fi ll up 

an entire ellipsoidal zone as shown in Fig. l.7. \\.hen the medium is heterogeneous. th 

migration aperture become::; a qua::;i-ellip::;oid . Fig.l. T depict::; a full-aperture 1\:irchhoff 

l\'ligrat ion. where the observf>rl en'nt is migrated to an f>ntire ellip.-oirl. 

Fig.l.8 shows that th dipping reflector in Fig.1.6 can be clear!~· resolved after 

many trace::; have been migrated . The common tangent of t he qua::;i-ellipse::; depict::; 

the cmve of t he layer int<'rface. Stc1rking2 of migraterl trace. helps strf>ngthen the 

true reflectors and attenuate migration artifacts. :'-Jamely. the common tangent part 

of the qua::;i-ellipse::; \\·ill b highlighted. Accompanying " ·ith man~· other technical 

m<'asnrc::; t>uch a::; t runcating the migration aperture anrl applying anti-alia::;ing fi ltc•r::;, 

2 Rou.2;hlY ::.pcn king .. t[l.(:king <:nn bP under::.too<i n::. i!,::ll hering together t he receivPd 11·ove smnJ.>le::. 
for thr ,.,ame reOec-tion point recorded in different ::.ebmic- tro c-e . 
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Figure 1.1: Full-aperture Kirchhoff ~Iigration of a single trace. Each time sample on 

tht- trace i::; ::;meart-cl along an ellip. e, anci each ewnt i · ::;mca rt-cl a long an ellipsoidal 

zone. Taken from H. Sun. 2001 [2] . 
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Figure 1.8: Migra tion of several seismic traces. The energy from the wings of the 

half-ellipses incoherently cancel, while the energy from the common t angent to the 

half-ellipses coherent!~' superimpose. From H. Sun, 2001 [2]. 

the migration can give an image of the subsurface structure:,;. 

From this Pxample. it is easy to see the important role which t ravt>l t ime plays in 

Kirchhoff migration . The travel time table or say travel t ime map work as the refer-

euce scales to interpolate the wm·e !:>amples in t he !:>patial convolution . To compute 

the travel time fields is one of the rore t asks in Kirchhoff migration proress. ln next 

section, lef s sec what trm·el t ime is and t he difficulties to compute t ra,·el times. 

1.2.2 Travel Time 

The first step to appl~' Kirchhoff migration i!:> to compute tra\'el t ime fields . For 2D 

subsurbce area, we can take it ns a, plane with the coordinnte axis X point in,; to thf' 

direction along the ground surface and coordinate axis Z point ing downward in depth . 

By meshing this interception plane of t he earth into e,·cn l~· distributed grids. Finite 

Difference !\let hod ( FD::\1 ) can be applied to do computation and numerical analY~i ::> 
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Figur 1.9: Tnn-el t ime t ablE'. 

to dPcidE' thP ph~·· ·ical propertips of tlw fi !d. Trawl time fi ld can lw considE'rPd a · 

a traYel time map or say tra,·el time tab le (a shown in Fig.1.9): each point on the 

grid has a value representing the time that the seismic wave spends 011 trav ling from 

source point to it elf. There is a numerir<:"ll approximat ion that the small a rPa around 

a grid point holds the same trav I time a· the value on this grid point. The travel 

time table. in data structure. can be an array of numbers. 

The travel tim rontonr "·hirh indicatE' thf' points hold the . arne tn'IYE'l tim 

,·alues can be plotted according to the trayeJ time ,·alues on grid poinls(Fig.l.lO). 

If th velocit~· is consta11t. traYcl time value is just a scaled value of distance. If 

thP oordinate:; of a grid point ar<> known . the distanr<> can lw achi vPd by app!~·ing 

Pyt hagorean Theorem in the simple geometr~·. Nevertheless. it is impract i a l to x-

pect the earth holding a const ant velocity eYcr~·where. imilar to the model hmYn 

in Fig. l . ll. a gPolo,ey st rn!'ture c;m haw compliccl.ted feahtrcs: Scientist::. haw ckw'l-

oped efficient ways to compute the travel t imes in complex ,-eloc it~ · models. 1\lajor 

methods arc reviewed in next section. 

f\forcowr. trm·el time data is abo required bY many othf'l' sei mic modPiing and 
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invr rsion applications. For in. tancr. th(' invrrsr migration and ,·rl llc i t~· ('Stimat ion:1. 

1.2.3 Travel Tin1e Computation 

Travel t ime calculat ion i::; computationa l illtent:~ive . Re::;earch i::; ad vancing tO\ntrd 

accm atr. robust , d firient and oconomi a] affordable mPthods. C rnC'utlly speaking. 

all these method can fall into two major categories: Ra.' · tracing method and methods 

that a rc ba::;ed on a direct numerical ::;olut io11 of t he Eikonal eq uation u::;ing fiuite 

difference. (we refer it as Eikonal eqnat ion solving method in thi thesi ). 

1.2.4 Ray Tracing M ethod 

Ray tracing i::; a v--el! practiced graphi a rt . The concept tha t ::;eismic en erg~· of 

infinitely high frequf'ncy follows a trajectory (or sa~· ray path) determines the my 

t racing equa tions. Physically, t h se equa tions describe how energy cont inues in the 

:;arne direction until it i::; refracted and reflected by velocity and clcn:;i t~· , ·arintion:;. 

There a rc two kinds of ray tracing problem:;. name!~· init ial value and boundm·~· 

, -a]ue ray trncing. Init ial vnlue ra~· tracing is l111mf'r ical!Y rathf' r stable and fclst: 

howeYer . in geoph.vsics and seismological a pplicat ions such as earthquake locat ion and 

,·clocit~· structure inversion . Two-Point (TP) ra~· tracing i:; a more com mon],· adopted 

method . Two-Point ray tracing is a bound::trv Yalue problPm[ 13]. T P raY tracing in 

a heterogeneous isotropic medium has been inYestigated b~· man)· sei&mologists and 

mathem aticians (Julian and Gubbins, 1977[14]: Cerveny et al. . 197/fl - ]: Pereyra t 

a l .. 1980[l tij). 

Ulld<"r TP raY t racing. there m·C' RaY Shooting method:; and Ray Brncling met hocl:::; [5J. 

~ Vc l ocitv c:,t imat ion i:, thr inwr:,c problrm of com·cr::.ing 1 imc mi~?;rat ion n· locit ics to 1 rue srbmic 
\'Ciocitic:; ( t.hc ,·clocitv model built in C'a r t. :,ian lkp l.h coordinate::.) by )!;Comrtrical ~prcodinl-( procr::.:, . 
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Fin!ll ray path 

~ . 
Second tnal my 

Figure 1.12: Ray Shooting Method, from D. A. Waltham , 1988 [3]. 

Final ray path 

Figure 1.1:3: Ray Bending 1\Iethod. from D. A. Waltham , 1988 [:~] . 

The shooting method fixes one end of the ray path (source point ), and t akes init ial 

incide11ce angle and initial azimuth , and t hen u::;c ray path equation to find the co-

ordinates of another end point (Fig. l.l2 ). It is like a fan of ra.vs is shot from one 

point in the general direction of the other. The correct path and t rm·el time to con-

nect the two points may then ue approached with successively more accurate gue::;::;es. 

\\ .herea.~. bending method fixe::; the hYo ends of the rav. a nd take's ::;ome initial esti-

mate of the ray pat h and perturbs it unt il it sa tisfi es a min imum travel t ime cri terion 

(Fermat"s principle or the principle of least time[ll)f3]) (Fig.l.l:J). Bending method 

is an efficie11t way to trace a ray between h,·o given end point::;. 
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Figure 1.1·-l: Graphical description of the Wavefront Construction m thods. Th 

travel times at nodes arc computed by ray tracing. The travel times at grid points 

are e:;timated " ·ithiu a ray cell. From Vinje. V .. 199;j, [..J. ]. 

Furthermore. instead of tracing onl~· one single ra~·. the computing ran propagate 

a ray fi eld . To ra ise the e ffi ciency of t he:;e methods , adjacent ra~ ·s a re grouped into ray 

tubes, the ray dcnsit~· of the ray field is checked a t certain positions. and if necessary, 

new ra_,·:; are iu:;erted. Thfl ray field may be examined a t ron:;tant depth leveb. a t 

interfaces. at the final surface, or at the wayefronls. 

f\l ethods which chPrk thf' ra~' field at \\'FlYefronts are called wavefront construct ion 

(WFC') methods. which is introduced by Vinje. Iversen and G.io.vstddal. 1993[4] . and 

became the other mile:;tonc in t he progress of ra~' tracing. The main characteristic:; 

of \\'FC (sPc Fig. l.14) are: (1) wavf' propagation . tlw propagation of the ra~· field 

" ·ith f\ conslRnt trRvf' l t ime step: (2) th insertion of a new ra.v bet\\·ccn two adjacent 

ray:; if illumination b in:;ufficicnt: (3) the c:;timntion of tran~l time:; with a ray cell. 

which i. t h0 part of t he rav tn be bC't\wen the last two construct<'d \Yavcfronts[ 1 ]. 

In general. the u::;e of ra~· tracing method followed h:v interpolat ion of travel time:; 
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onto a rrgnlar grid is 1-\ popula r and robust mrthocl for computing diffr t-lction curvr 

for Kir .hhofT migrat ion . There arc t\\'o rea~on~ to review ray t racing met hod in t h i ~ 

::;ection: 

l. \Ym·efront Con::;tru<.:tion methods and Finite Difference methods solving Eikonal 

Ef!uation arC' two widely us<'d methods to calculate travel time~. Onr mc•thod 

raised in this thesi~ i::; one of the Eikona l solving methods: before int roducing 

our algorithm, it i::; better to underst and exist ing algorithm::;. 

2. Some comment. giwn to ra~· tracing methods is tha t [l 9] rei~· t racing methods 

can accurate in describing both t ravel time~ and ray paths, but require ex

pensive global wavefront const ruction and t ravel time interpolation from these 

wavefront ::; to grid points. Indeed , from the nw tracing method . high accu

racy trave l Lime tables can be achieved (theor tically, by ray t racing. ' xact' 

·elutions can be achievable bv analytical soh·ing rav tracing equat ion). T hese 

high ac·curac)· re:;ults nre us11ally taken as th r fer nee to verify the travel time 

results genera ted from new methods. 

On the other hand . an alterna t ive to ray t racing is directly soh-ing the eikonal 

equat ion with finite difference::; a t each grid point . without computing ra)· path::;. 

Solving the Eikonal equation on such a grid simplifies the probll::'m of interpolating 

t imes onto the migration grid [l9]. This procedure also elimina tes several issues a ·so

dated with ray t racing. ::;uch as : ::;hooting ver::;us TP ra~· tracing, how many ray::; to 

trace'. and th<' t~ ·pr of \·elocih· modrl (gridded or int.erfal'e-based ) to usc. A fmt her 

reason to study griclcled solut ions of the Eikonal equa tion is for t ravel lime cal ula

tions in three dimensions. where cwn the ::,implest ra:v-based methods can be horriblv 

complex . 
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1.2.5 Eikonal Equation Solving 

In 1988 . .lohn Vidale published his famous paper Fimte-Difference Calculation of 

Travel TimP.s [SJ. which opened t hC' vnty to calrulate travel timPson a regular wlocit~· 

grid by solving the Eikonal equation using fini te differences. Following his work. many 

researchers (as \Yell as our ~?;roup) designed their own Eikonal solvers to compute travel 

times. 

\ "idale first extended the finit e difference schemes described by Reshef and Kosloff 

(1986) to compute travel time::; of first arrivals in a 2D isotropic media model (this is 

the same assumption used in our a lgorithm. namely. compute the first arrival travel 

times in a med ia model in which the Yertical velocity and the lateral , . locity are the 

same on ever~· grid point) : then he expands the problem into 3D model two year::; 

later (1990). 

Eikonal equa tions a re obtained from the elastic-wm·e equation · b~· searching for 

plane ha rmonic solutions and applying the high-frequency approximation of rnv theory/6]. 

The propagation of 2D geometric ra.,·s and the propagation of 2D wavefront ::; an be 

guided by t he Eikonal equation of ra,y tracing. 

( Dt )2 ( Dt )2 )2 -- + - = s(.T. z ox ();; ( 1.1 ) 

In the sRme w loritv larer of a model. or in vicinitv of a grid point where the 

, ·elocit~· in that small region can be t hought as the same. the slowness .~ (t he reciprocal 

of v locity ) is a con::;tant. Eq.l.l therefore can be written as E <.J .l.2. 

( 
i).' t )2 _j dt )2 2 
iJ.r ' ( iJ 2 = .~ ( 1.2) 
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Lo cal Schem e of Extrapolation 

Considering the geometrY in Fig.l. l5. assume the trawl times between the points 

; \ ( tu ). IJ 1 (t 1). and 13"2 ( t 2 ) and the source point arc known . and t he travel time l :1 

between point C '1 and the ::,ourcc point . I i!:> sought . C::.ing hYO finite differences Eq . l .3 

and Eq.l A to approxima te differential terms. Eq.1.5 can lw derived . It evaluates the 

travel time of point (.'1 using the travel limes from the source to poinls / \. TJ1 . and 

8 2 • in a plane wave approximation~ as shmm in Fig. l.16. This Eq.l.5 i::; call d Ex-

t rapolation Formula. which det rrmines the local computing srlwme that <'valuate 

the travel time of a uncompuLed point based on lhe olhcr Lhree known tra,·cl times 

on the points in the same grid . 

On the other hand , Vidale also derived Eq.l.6 to deal with th xtrapolHtion of 

the " ·a,·efronls which have high curvature . . 1· .• and z .• arc the coordinates of the ,-irtual 

sour ·e point of the circular wavefront with high cmTature. t is the origin time for 

t hP Yirtnal som ce[5]. It is straightforward that , generated from a point waxr som ce. 

the wayefronts at close-origin region haw hio·her cun ·atur than the ones at far-origin 

region ru; shown in Fig.l.l7. The combined usc of Eq.l.6 in close-origin region and 

Eq.l. !'i in far-origin region is called a ''mixed·· Theme by \ 'idale. which C<ln provide 

1V\'hf'n tr::m~mits fnr from tlw , ourcr point nnd curn1.turr of thP wnvf'front hf'comf'" low. t h \I'll.\'(' 

c-::~n hr modrlrd ~ plnn wn\·r. 
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Figure 1.15: The source grid point A and the eight points in t he ring surrounding 

point A, from Vidale, 1988. [5]. 

Figure 1.16: Plane wave approximation Scheme. The travel times at three corners 

M,N,O of a grid cell are used to estimate the travel time at th fourth corner P 
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Close source region, curvature is large. 

23 

Far source region, 
curvature is small. 

Figurf' 1.11: Illustration of t lw curvaturf' change. 

better accurac~·. For purposes of achieving high speed rather than gr at accuracy, 

Eq.l.5 ma~· be used exclusiYely in a "simple" scheme. 

( 1.6) 

Inductive Scheme 

T lw inchtrtiVf' . chcnw of adding a ring of trawl times to thosf' a lready calcnlatf'd is 

the second key point of the algorithm . It determ ines how to spread and xt nd the 

computa t ion to all the grids in the domain. 

\ 'idale·s inductive scheme is as shown in Fig.l.l . Consider the ring of radius 5. 

" ·here all t ravel t imf's inside the ring are knO\Vll. but trm·el times on and outside the 
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Figure 1.1 8: Picture of the 2-D grid as the numerical .calculat ion of travel tim is 

progressing. The ring of points shown as filled circles arc about to be timed. The 

hollow circle::; indicate point::; that have had their trayeJ time calculated. T he J ouble 

circle in the middle shows the source point . The dots are not yet timed, nor ''"ill they 

be t imed until the ring of filled circles is done. Figure is from Vidalc. 19 , [5]. 

ring are unknown. Solution ;viii proceed on the four sides s quent ialh·, follow d by 

the four corner points. Computing can st art arbit rarily wit h the right side. and find 

travel time::; for the point::; within the four ::;id ::; of the rectangular . 

The procedures can be ::;hown in Fig. l. l 9. First of all, the points in the ww arc 

Pxaminecl in order from left to right , and the point::; that are at a relative minimum 

are ident ified . otc that there are u::;ually sewral relative minima on one line (as in 

Fig.l.20). 

Then. 111 st p (1). a relative minimum in the currently computed row is u::;ed 

t o evaluate t he point adjacent to it . A rclath·c minimum is as::;umcd if there h; a 

rela tiYe miuimnm in the time for the adjacent point iu the adjacent mw that ha..':l 

----- - - - -
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Figure 1.19: Sequ nr of solu tion of one rdge of the ring: first, the points that ~-tr 

just outboard of those at a relative minimum. ext, we sweep to the right and soh·e 

the poi11ts from each rela tive minimum until either a relative maximum or the edge is 

encountered. Finally, we sweep to the left from each relatiw minimum until reaching 

a relative maximum or edge. These three steps will fi nd the Limes for the entire edge. 

0 0. 2 0. 4 0. 6 o. 8 1.2 

Figure 1.20: Rela tiYe minima and relatiYe maxima. 
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Figure 1.21: The expanding square ring process: the initial stage is the emission time 

at a source point on a regular grid. Thereafter, travel times arc determined along 

successive square rings centered at the source, using travel times on the previous ring. 

already been solved in the previous ring . To time the first point on an edge, a non

centered finite-difference of Eq.1 .2 must be used. Vidale used the plane-wave formula 

as Eq.l.7: Where t3 is the time to be found , t0 is the relative minimum time in the 

inside row, and t 1 and t2 are the times on either side of t he point whose time is t0 . The 

Fig.l.21 may give you a better illustration of this idea. Remember that as the local 

Extrapolation scheme of Eq.l.S is used, three points in a grid have to be known to 

evaluate the fourth one, that is why there is this step to compute point P as Fig1.21 

shown: 

(1. 7) 

In step (2)( as shown in Fig. 1.22), starting at each relative minimum point, so-

lution progresses along the row finding the time for each point until the relative 

maximum is encountered. The computing is iteratively following Eq.1.5 that in om-
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on~ way 
0 

Figure 1.22: The minimum-to-maximum traYel time progression: local travel time 

minima and mauxima along a side of a determined ring: first from right to left , from 

each minimum to the next ma..'Cimum. 

~ 

STAGE 3 : from minimum to maximu~ otb@r way 
..... J""t - -..,_ ..,_ +-- +- +-

Figure 1.23: Do the computing in a reverse way: from left to right, from each mini-

mum to the next maximum. 

putation of each grid . the point on the fourth corner is evaluated based on the other 

three known ones (as Fig.1.16 shown. the local Extrapolation scheme) . 

In step (3) (as shown in Fig.l.23) , upon completion of the left-to-right sweep 

through the row, the row is swept through in the reverse direction, and the remaining 

untimcd points arc solved in order from the relative minima to the relative maxima. 

One thing you may notice is that grid points in front of local ma..'Cima5 will be assigned 

two travel times[6], in step (2) and step (3). But only t he smallest is kept: this 

is equivalent to considering two geometric rays coming from either side and only 

count ing the one that arrives first [5]. 

Once all the four sides are solved in this way, the t imes for th corners may be 

found , and it proceeds to the next ring outward. By applying this method iteratively, 

t he entire two-dimensional grid is filled with travel times like a square wavefront 

~Vidale"s paper :,ay ··minima·· here. But I agree to the idea in [6]. in which :,aid it is ··maxima·· . 
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Figure 1.24: Square wavefront spreading pattern. 

spreading out (see Fig.1.24). 

Limitations of V idale's Method 

Prior to Vidal 's work, travel times were mainly computed using ray tracing. While 

these ray-tracing methods offer a high degree of accuracy, they also pose interpolation 

problems in shadow areas and areas where multiple caustics develop. The use of fini te 

difference travel times solved the problem of interpolating in shadow zones, but new 

issues ensued[20]. In Vidale's Finite Difference method, the way that the computation 

evolving is not an exact mimic of the sei::;nlic wave transmitting in the nature, so there 

are limitations would make the method fail in the models that have strong velocity 

,·ariations. It is obvious that seismic waves are not spreading as the shape of a quare: 

rather it is a better way to mimic the wave transmitting by following the Fermat's 

Principle. Two points n d to b noticed in Vidale"::; method: (1) by theory. the 

solution must follow causality, that is, the time for the part of the ray path leading 

to a point must be known before the time of the point can be found: (2) in practice, 

~olving for progressively earlier times along a row re::;ults in an instability. 
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1.2.6 Fast Marching Method 

Following Vida lc·s work. a lot of tra\"Cl time computa tion methods arc ra ised at carl~, 

90t;. After in depth t;tud.\·, rc~carclicr~ concentrated on the core of thi::; problem : com

puting travrl times is equiYalent to tracking an interface advancement \\·ith a spe0d 

normal to itself giYen by the supplied ,·elocities. The goal in such interface adYa n c

mcnt b to dea l accurately and robu~tl~, with the formation of cu~p~ and comer~, 

topological changet; in the propagating interface, and ~tabilit~· i~~ue~ in computing 

space. 

In the 1980s , the level set method[21] was developed by the American mathemati

cians Stanley Osher and James Sethian. Generally speaking. level set method is a 

numerical technique which can follow the evolution of interfacet;. It became popu

lar in many disciplines, such as image processing, computer graphics. computational 

geometry, optimization. and computational fluid dynamics. In 199G. based on previ

ous ·work. Sethian raised fast marching methods[21], which t;pecifically aimed at th 

solution of the Eikonal equation. His technique hinge on the construction of entropy

satisfving weak solutions by using numerical schemes borrowed from the technology 

of hyperbolic cont;ClTa tion law~ nnd a imed nt constructing the correct ,·it;cO~ity solu

tion of the appropriclte partial differentia l equations[20]. He cliscnssed fast marching 

method on the travel time computation issues in the geophysics application by pub

lishing scYeral papers from carl~, 90s until recently)20] [22) )2:.1] [24]. The method 

we have cleveloped in thi::. the:;i::, i · actually originated from consideration of the fa:;t 

marching method . Before presenting our algorithm. fast mar ·hing is introduced first 

ns thcor~· foundation . 

In Scthian·s method. he used the one called finite difference upwind .tcncil [21] [20] 

t o locall~ · solve ancl n.dvancc the eikonal equation. Ht> used this stencil in combination 
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NARROW BAND OF TRIAL VALUES 

Figure 1.25: Wavefront evolving of the fast marching method . From I. Lecomte. 2000, 

[6]. 

with a wa,·efront construction t chnique based on building a narrow band around the 

travel time wavefront. The trm·cl time values arc stored on a heap. with t he minimum 

n1lne at th top of the heap. The wavefront i::; a lway::; advanced b? u::;ing the minimnm 

travel t im value in the heap. The cost of a heap opera tion is log(NN8 ): wh re 1\'v 8 

is the total number of trm·cl time values in the na rrow band. 

The fru;t marching method ::;olves f'ikonal f'qua tion by directly mimicking the acl

Yancing wavefront (see Fig. l.25). E,·erY point on the computa tional grid is classified 

into three groups: point!:i behind the wavefront on the ··upwind·· side, whose travel 

times are known and accepted: point!:i on t he wavefront in a narrow band area. who!:ic 

travel t imes have been calculated . bnt are not yet ace pteci : and points aheaci of the 

'"m·cfront on the ··downwind" side. The algori t hm then proceeds as follows: 

1. Choose the point on t he wavefront in the narrow band ::;et \Yi th the smallest 

... 
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t ran 'l time. 

2. Accrpt t his t ran 'l time into t he ,et on the upwind side. 

3. Adn "tnc th " ·avefront . so that this point is behind it . and <tdjacent points are 

either on the \\'avefront or behind it. 

..! . Update travel times for adjacent points on the \\"awfront by soh ·ing Eikonal 

equa tion numerically. 

5. Repeat until eYer~· point i::; behind the " ·avefrout. 

The update proc dure in step 4 req uires the solution of a quadrat ic equation which 

i::; the numerical approximation of eikonnl equation. The m1mericnl approximation 

-cheme u ·ed here is fini te difference up\\"ind stencil \\"hich constructs an entropy

satisf~·ing approximation to the travel time gradient ( eikonal equation ·a~·· that travel 

t ime gradient i::; the im·er::;e of v locit~· at that point). For the coucept::; ::;uch a::; 

entrap~· condition <t nd entropy-sat isf:ving approximat ion. plea ·e refer to [21] and [20] 

for det ails. The~· arc concepts under the level set and fast mar hing thcor.v. T his 

:::.ection i::; trying to make reader hm·e an int uitiou of the induct iYe s ·h me of the 

Sethian · · method (rather than the mftthematic deriva tion for t he numerical scheme) . 

because in our a lgori t hm, t he inductive 1>cheme is similar t o Scthian·s. but we adopt 

a distinct numerical ::;chemc for local ext rapolation . 



Chapter 2 

Algorithm Design 

In this chapter, we first present Vidale·s and Sethian's work, and then we developed 

Least-Time Path Fast Marching Method. It originate:> from the re::;nlt of ray 

tracing. finite difference and fast marching. In local extrapolation scheme of the 

algorithm. according to ray tracing theory, the formulae arc developed based on simple 

geometry, following Fermat's principle of lea::;t t rm·el time: for introductive scheme of 

the algorithm, following the ideas of Sethian 's fast marching method, our algorithm 

aYoids the causality problem of Vidale·s fini te difference method. 

Moreover, two versions of our algorithm are proposed . The sequential version 

is based on classic implementation techniques. while a full~· parallel ,·ersion can be 

operated on Net~·orking Computing on FPGA Array or other parallel computi11g 

plat form. 

2.1 Local Scheme of Extrapolation 

Rc,·iewing Vidale·s local scheme in Fig.2. 1. his numerical approximation of Eikon al 

eqnntion is st raightforward : Eq.2.1 expresses the assumption that the trm·el time from 

32 
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Figure 2.1: Vidale's local scheme. From Vidale, 1988, [5]. 

one grid point t o its neighbor is the contribution of the time seismic wave t ransmits 

through a half length of the grid spacing at the velocity of point , and the time in 

which it travels through the other half length at the velocity of its neighbor point. 

Eq .1.3 and Eq .1.4 are all derived from this basic assumption. Thi relation does not 

consider the geometry of ray tracing, and it is a coarse approximation . 

(2.1 ) 

Whereas, in our method, the problem is first studied inside a grid. By partitioning 

a grid into two triangles, the relationship among the travel time values of thre grid 

points l0 • tb , and tc in a single t riangle is considered (see Fig.2.2). 

As shown in Fig.2.3, in finite difference method, th area of interests is parti tioned 

into evenly distributed grids. The travel time values are discreti:ted onto the grid 

points, even though the real ray path may not pass the grid points in practice. In 

this way. inside each grid, inside each t riangle the incidence position on the edge is 

- - - --- - ---- - ----
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Figure 2.2 : Geom0tn· inside one triangle . 

Source 
Ground 

-----~r---~A~n~intcrfacc between 
two layers 

Figure 2.3: Finite difference meshing. 

decided by t he traYcl time values on the two grid points (sec Fig.2.4). The ·· ray ·· 

mentioned here can he nnder::;tood in two wav::;: it can be tak n a::; the ::;ei::;mic waw 

a fter high frequency approximation: or as the normal of the travel time wavefront 1. 

1The travel timP computPd in thb tlte::. i::; i::.. in fact. t h0 fi rbt arriva l trm·pl t inw uf t he ~rbnlir 
"·ave. The re :wr co mnH'nt::, t hni t he fi rst orriva l mn:-· not, b the portion that cntTie::. l!IO::. t energy 
of the ::.0ismic wave. 1-lo\\"evcr. I will not rabc a d i:scu::.::.ion of thi:s p urr g;eoplwsic:s prob lcnt in 1 hi::. 
the::.i::.. 
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hs 

Figure 2.4: Linear interpolation . 

2.1.1 Formula Derivation following Linear Interpolation and 

Fermat 's principle 

As in Fig. 2.:3. the coefficient ,\ is defin d a a fract ion ranging from 0 lo J. If we 

assume the wav source locates a t the upper left of t he triangle. thus. because the 

wm·e "·ill fin;t reach point h lJpforr arri,·iug nt point n, tl~P t ravel ti1ue , -nlue t a on 

point n will be a l\\·ays la rger tha n the t h on b. Herein . ta - fu is posit ive. and fb- t (l 

is negat i, ·e. The ,·alue of). should sa tisfy t he following Eq.2.2. 

(2.2) 

t >. i::; th trm·el t ime at inC'idr nc·c point , and can he xpre. ·::; cl a.· in Eq.2.3 by 

applving li rwar intrrpolation chrnw. ). work. as a line<'lr intrrpola tion corfficient. 

( 2.3) 
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Comparing to Vidalc's schemr in Eq .2. 1 which simply takrs a rithm<'tic awr::tgr . 

the linear interpolat ion in Eq.2.3 is more flexible and accurat . 

In the method . squa re finite difference grid is used to mesh the field, in which four 

edges of a grid nrc the same in length . This length is denoted as h . l\fcamd1ilc. if 

wr make thr Hssumption that thC' sf'ismic WFIYP is transmit ting in a.n isotropic nwrlia, 

thus, the Yelocity in each direction is the same. and the slown ss s (the inverse of the 

vclocit~') is the same in e,·c~·y direct ion. In th is \\·a~·. h · .~ is the length of an edge of 

a sq11nr<' grid . Bru:;<'d on this <'Outcxt . the formnla Eq .2.-l for f c can be deriYed on the 

geomctr~· in Fig.2 .-J. . 

(2..!) 

This formula gives out an expression of lc concerning 10 . lb. !1 . . ~and >. . If these 

mriables a re known , t r can be eYaluated from this formula . 

Th co fficiellt ,\ is unknmm in Eq .2.4. However. it can b eYa luated from an im-

plicating condition b.v fo llowing Fermat's Principle. Accorciing to Fermat's Principle. 

the path taken bcl\\"ecn hYo points b.v a ray of light is the path tha t can be traversed 

in the I ast time. in nature. the ray will choose the incidence point along the edge 

ob (ser Fig.2.F) ) to go through a pa th that c::~n make th travel tim tr the minimum. 

In other words. the rea l ray path should be the path " ·hose ). ·an make Eq .2 . ..J be 

evaluated as a minimum of f c. 

Ba::,ecl 0 11 th i::; anal:n;i ·, the partial derivative of Eq .2.1 \Yith ,\ results in Eq .2.5. 

Thr pa rt ial d<•riYiltin' should lw C"rpwl to zNo when valne of 0· r<'ach a minimum2. 

2 According to cal·ulu~. an rxLn'nnJm cn.n br rrnchrd whrn t hr dPrivn tiw of n function i rqnn l Lo 
zrro: hO\\T\'r r. monot ropy ann J.,· ~i~ trlb u::. thot t.hr function hrrr will bra minimum \\·hen drri,·ativ<' 
i rqual to zrro. 
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Figm e 2.5: Lem;t trawl time path for rav t.rac·ing. 

(2.5) 

Herein. from Eq.2.5 we can derive the following expre:::;::;ion of /\ couceruiug Ta, Tb. 

h and s. 

\ 2 _ Ua- lb)
2 

/ - h2s2 - (ln- l b)2 (2.6) 

Furthermore. Eq.2.4 can be transformed into t he form of Eq.2.7. 

(2.7) 

Sub::;tituting ,\2 in Eq.2.7 with the expre::;::;ion 2.6. Finally, we can get a formula 

of Tc as Eq .2.8. 

- Jt 2 .2 ( )2 f r- fo J / .~- f fl - f b ( 2. ) 

This formu la is onl.'" concerning 10 . lb. h and " · his predefined , and s is read from 

an known Yelocitv t able as input. Eq.2.8 build::; up a scheme that. among :3 grid points 

in a triangle. the third one c-an be evaluated Kit h the other two known t rm·el times. 
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Figure 2.6: Range of angle n. 

T his scheme is based on geomet ric interpolation and Fermat 's principle. Comparing 

t.o Vidale's ::whf'me which needs 3 knmvu trawl time:; t o evaluate the fom th oue, our 

Eq.2.8 needs th same number of ar it hmetic operations as Vida le's Eq.l.5. So our 

local scheme has similar computational complexity (same operations such as addition, 

multiplication and square root ), but needs le::;~:; operands in the formula . 

2.1. 2 Detern1ine the Function Interval 

Eq.2.8 is the main formu la for our scheme. However. before u~:;ing i t, its eff ctiw 

interval !Jas to be determined. As in Fig.2.6. the angle n ::;hould be ranged from 0°to 

45°. beC'anse t he grid is sqnarf' A.nd the t riangle is isocel<:'s triangle. Thr fraction /\ 

thu::;, needs to sat is f~· the following relation in Eq.2.9. 

(2.9) 

Squaring Eq.2.9 on either sides. Eq.2. 10 can be achic, ·ed. 

(2. 10) 
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t,. = I&+ 2hs 

Ia > lb + J2hs 

lr = Ia + j h 2s2 - (1.- lbf 

2 
f~o S f11 ~ ft.+ Th,ot 

n is hl'twPPn Cl".-.nrl ~ .'>" 

Figure 2. 7: Function inten ·a l. 

Sub~:~titnting --\ 2 with r ight ::;ide of Eq .2.6. get 

After reduct ion. Eq. 2.12 can be achieYed from Eq .2.1 1. 

39 

(2.1 1) 

(2.12) 

This equation gives out t he cffcctiYC interval of our main formula Eq .2.8 (sec 

Fig.2.7). 

raY is act ua ll.r come from a source on upper r ight of the triangle, t hus. Eq .2. 1.1 can 

be used to compute t he trm·cl times under t his condit ion. In the same way. Eq.2.1-1 

is used to compute the t rm·el times when n > 45°and f a < tb + {} hs. 
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t,. f n+ h.s (2.1 :3) 

{2.1--1) 

2.1.3 Rice Computing U nit 

Figur 2. Rice computing uni t . 

\\'hen determining the function interval, there is a problem that th - formula Eq.2 . 

can only clc'al " ·ith the computa tion in a 45°arc: t hus how to computt• the ra~·s ,,·hich 

mav come from every direction in subsurface a rea? The solution is shown in Fig.2. : 

for a sing! grid point. combine computing triangle::; together. a nd appt~- the com

puting jointly to this grid point at. amt> time. After gt>tt ing rC'stdts. thP minimum 

among t hem is taken as fin ial an::.wer. Because triangle comput ing units can cover 

the whole 360°an: (sec Fig.2. ). the t rue answer should be caught by one of t he 

I ri<mglt'. . In pmdin•. according to F!-'ruu-tt' s Principle. ra,·s alway::; trf\v<'l through 

the lcar:;t time pa th. so the fin al answer should be the minimum among the resul ts. 

This combined comput ing unit of t riangles in Fig.2. looks like a Chinese character 

"rice.. . So it i::. called "rice computing" and "rice computing unit ... or the Radial 



C'HAPTER 2. ALGORTTJ-111! D ESIGN .J.I 

lncio<'n('f' Computing Elr nwnt (RICE). 

Rice computing c, ·aluatcs one rci:iult from 8 inputi:i plus the in formation of h a nd 

' · IIowc,·cr . it is not nccci:is::n~· for a ll of the t\ surrounding points to be known . If mw 

of the 8 sunounding points are nnkuowu . it can be set a~ "infinity'': and the t riangle 

which hold the "in fi ni t., ... \\'ill never "\\' in '· through the process of electi ng minimum . 

All the t ravel t imes known and unknown arc stored in a data arrav. If t he coor-

di11a tei:i of a target point are knovvu. by a pplyi11g + 1 or - 1. the coordinates of the 

8 snrrounding points of the target point can be a('hieved . The 8 t r iangle ('Omput-

ing can be done scqucntia lJv on a single CP U computer in a traditional language 

like C or Fortran: while the 8 comput ing units can abo be implemented iu parallel 

on the pla tform such a& FPGA and ASIC , or using para llel programming l<m guage 

constructs. 

2.2 Inductive Scheme 

The inductive schem e of our algorithm is similar to Sethia n 's fast marching method. 

The grid spacing h should be assigned at first. Th is parameter ('8 11 la rgely impart 

on the meshing, and further on the accuracy of the F inite D ifference f\Iethod (FD!\1) . 

Vidale proposed an accurac~· ei:itimation as Eq.2. 15 . which reprei:ienti:i t he timi11g error 

divided bY the transit time across the cell [5] . 

E = La- Lb 
hs 

(2.15) 

Tlw other inpnt to thr algori t hm is t.hr vrlocity model. lt i:; a dntn ann.' · holdiug 

the trm·el time ,·alues of ewry grid point. 

Before the algorithm begins. the parameter II and the ,·elocit~· arra~· arc pre-

cmnputrd. The algorithm hegin:; \\'ith :;etting a i:iet of :>f'eo point:; which a re :;m-
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[I] Seed point 

Figure 2.9 : Initial ::;ct of ::;ccd point::; . 
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D Seed points 

C>O Uncocaputed poi nts are inithrd h.od i nto lnfini tes 

Figure 2.10: Initia lization . 

rounding the ::;onrce point. Ber.an::;e thi::; init ial ::;et of point::> Rre very close to the 

source. t heir trawl times can be pre-calculated. T he amount of seed points to be 

used is determined b~' application practice (sec Fig.2.9). 

Before start ing. the travel time arra~· is fi rs t ini tialized into in fi nities on each point: 

and the initial set of ::;eed point::; ct· a::;::;igncd into the form as shmvn in Fig.2.10. 

In course of computin g. the computat ion evolves from ::;eed points oul\\'arcls. T h re 

a rc three classc::; of point::; during the process (sec Fig.2 .11). the fi rst set contains fixed 

point::; " ·hose value are computed and ha\·e been popped off from t he active ::;et . The 
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Figure 2.11: Wavefront evolving. 
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second set · i::; adiw ::;et . The point::; in active ::;et are computed: however. before 

writing them into Axed ~:;et. all the values in the act ive .·et have to be sorted . In 

dat a structure. a ll the acti,·e set values a rc put into a heap: and t he minimum should 

be a l"·a)·::; returned to the top of th heap by appl)·ing certain ::;ort ing algorithm iu 

the heap. The act ive ,·et actually conta ins points around tlw e,·oh·ing wavefront. 

" ' ilh wavefront c,·oh·ing . acti ve set mo,·cs forward to ::;weep acro::;s the whole field . 

and this i::; why it i::; called ··active". The points denoted with ·· ·· are uucomputed 

points: b<'fore computation evolving to thes<' points. the~· keep their initialization 

,·a luc "in Anity". 

In Fig. 2. ll. t he 111iniunun tnwel t imt point in the active ::;et is mnrked off \Yith a 

slar sign. This p oint will be t he start ing point of the next computing round. Because 

seismic waYc alwan attempts to travel t hrough t he point holding t he minimum travel 

time. so the computation nh·ays lwgin "·ith the cnrreut minimum trawl time point 
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Fignrc 2.12: Eight neighbor point . 

in tlw active ::;et. Thb waY follow:,; thr lrru; t travel tinw prihciplr. rmd it i:,; "' mimic of 

the phenomenon in the nature. For Vidale's method in which the computing is from 

local minimum to loca l maximum along an edge of a square. It is ob, ·iously not the 

way tlw wave would adnmce in the nature. and would cnn:,;e some <·nnsality problem:,;. 

After determining the minimum traYel time point in act iw set at beginning of a 

computing iteration, the 8 neighbor points can be found out based on the coordinates 

of the starting point a..s Fig.2. 12 shown. The::;e 8 neighbor points can be t he points 

in either fixed set. actiYe set or uncompnted set. On each neighbor point. a ricr 

computing is a pplied. ,,·hich is introduced in last sect ion , and the step::; can be shown 

a::; Fig.2 .l::J. 

2.2.1 Soundness of the result 

In a singlr triangle of a rice computing unit . if the two inpnt points f 0 and t b arc in 

fixed set or actiw ::;et and none of the paramter::; / 0 fb and hs is infinity, the result for 

t r i::; said to be "good". In coutra::;t . if either of the two point::; t u t b and lt .~ is in finit~·. 

the re::;ult from t he• t rit<ngl<' will he infinit~·. For sonw rice computing. all trianglr 

output infinities for the results. and therefore the result from rice computing un it is 

infinity. 

If a ricr computing unit output::; a "good" re ·ult and the result point i::; cmwntl,· 
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"Rice computing" for neighbor point 1. 

"Rice comput ing" for neighbor point 2 . 

••• ••• 

"Rice computing" for neighbor point 8. 

Figure 2.13: Applv rice computing times . 
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not in the fixed srt and activ<' srt. this point should lw written into activr srt . and 

pushed into the heap to be i:iOrted for future use: otherwise. if th result of rice com

puting is infinity which is not ·'good ... the result point should stn~· in the uncomputed 

:-,et. 

After all 8 computn.tions in Fig.2 .B finish , the ·tart point tYhich is the cmwnt 

minimum in the sorting heap should b put into fixed set. The algorithm repeat::; thi · 

procci:is iteratively until there arc no points left uncomputcd in the field. 

The rice computing on 8 neighbor points can be sequentia lly done one by one. a::; 

::;hown in Fig.2. 13. In this case, one rice computing unit is reused all the time. For the 

other option , a ll 8 rice computing units are built in pa rallf'l, and all computa tions 

tak place at the ::;amc time. This second solution is diffi ult to implement on a single 

JXOtei:ii:iOr platform, however , on the platform ::;uch a::; FPGA, the computing unit can 

lw built on the same chip to exert tlw parallel potf'ntial of tlw ha rdware platform. 

2.3 Summary of Algorithm Flow 

Basrd on thf' prf'viou:; dPrivation. thP algorithm can be summe:u-izPd into following 

steps: 

l. Initialize the elemeuts in the trm·el time arra_,, to be infinitY, and a:;sign a t>et of 

sef'd points to the tran•l timf' arra~· and ::;orting h0ap. 

2. Pop the minimum off the heap as starting point . 

:3. Calculatf' t h<' coorclim"t.te;., for t hf' nf'ighbor points of the• starting point . 

-! . Apply rice computing on each neighbor point based on local extrapolation 

:;chemP. 
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Figure 2.14: To comput<' tlw point on boundatT as~ign infinitie~ to the points hr.~·ond 

boundary as inputs of the "rice compute unit". 

5. \\'rite t he least time computing resultl:> into active set ( pu~h into the heap to 

~ort ). <\nct put the starting point into fixed ~et. 

6. Repeat from step 2 until all the poinb in the field are covered. 

There a rc several points to be noted when going through these steps. 

For lhc points on the cdgcl:> of the plane, rice computing cannot be dirccll.v de

ploYed on them, becau~e they do not have exact 8 neighbor points (u.s Fig.2.14 shown ). 

The solntion is to set an edge detection mechanism: eRch time when getting a mini

mum from sorting heap as starting point. the coordinates of itl:> neighbor points will 

be calc:uln.te I and examined. If an:v index appears to be negative. the ,·alue of the 

point is set to be infinitY. Thns. this assigned infinitY will g<>ncrate infinit~· as re

sult through "rice computing". Ob,·iouslY. infinity cannot win through the minimum 

electing during rice computing. so it is indeed no impact to the computing. I-lo\Ye, ·cr , 

bY adding th<'~E' rxtra infinitie::. the same pattc>rn of the rice computing nnit with 

input points can be used for a ll grid points including t he ones located on the edge 

of the field. In this \Yay t he digital logic can be simplified for implementation on 

FPC\·~ . 
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Thr compnt<'d points h,n·c to lw distingnishrd from 1mcomput0d points. Thr 

computed points include the points in fixed set and act i,·c set: they a rc all behind 

the wavefront. An '·fla~ bit .. array \Yhich has t he same size of the travel time arrav is 

set. in which each clement only ha::; one bit in it. Uncompnted point hn~ it ::; Hag ::;et 

to be ·o· . while "1' for the computed one. Each time when the algorithm reaches step 

5, the resu lts can be written back to corresponding set after checking t he fl ag bit . 

In this wHy. b~· jointly nsing oc 's and flag bit a rray. thr re is no nerd to design 

specific logic to detect boundary points on the edge of the domain. 

2.4 Fully Parallel Algorithm 

2.4. 1 Problem s w ith Sequential D ep endency 

There arc sevrra l kry parts that should be inclnded in t he system to implement the 

algori thm: the travel time array. velocity array. flag bit array. rice computing unit. 

sorting heap and corresponding memor~· access control modules. One of the charac

trristics of this s~·stem i that the execution of the algori thm steps have to strict ly 

follow certain order: Though. as mentioned in previous sect ion . t here can be som 

parallelism at small scale in thi::; vcr::;iou of the algorithm . For example. implement 8 

ri c<> computing units at the same t ime. instrad of using only one Pvery time. Hovw vrr. 

the sequential dependencY at top level of the algori thm makes it difficult to parallel 

the computation of SC\'cral rounds together into one round. Each iteration of t he 

computation has to go through nll the 5 steps sequential!,·. Fnrt hermore. the ~ortiug 

process ''"hich is time and resource consuming is inc,·itable in e\'er~· computing iter

ation. iiiorcO\·cr. there arc too many mcmor:v accesses happening in one computing 

round to fetch and writE' back the pl'trameter::; ftnd inputs from memory iUTay. 
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This strong Sf'CJH <'ntial d f' ])('nckncy and fr0qur nt m0mory acc0ss m ay not havr too 

much impact on the sequentia l program dc~igncd with C' or Port ran : ho\\'c, ·cr. it can be 

reallY a disast er for digital dc::; ign~ facing 1\ SIC's and FPGA ·s. Because as we known , 

plr\tform ::,n('h a::; FPGA's haw preferell('P ou t he d0sign probk m::, tha t ('Cl ll lw solved 

by using the design pa ttern& in st.,·le of cell networks or pipel ine::; . O n the contra ry, 

problems with strong sequential dependency arc usually put into programs using 

microproce::;sor::;. Strong ::;equcutia l dependency can prevent pipelining the a lgorit hm 

on the FPGA ·s. 

Howf>ver . in this thesis . this sequent ia l a lgorithm is still implementPd in FPCA's. 

This is beca use our research is cxploratorv. we do not haYe enough chip resource::; to 

dcYclop a m ature commClTial product: morcO\·cr , it i::; uecc::;::;ar.v for u::; to fi r ::;t a pply 

thr cia: sica! and matnre digit.al de• ign mPthodology to mak<' an exam ple implemen

tation to eva lua te th complexity and feasibili ty of the solut ion for future commercia l 

usc . 

2.4.2 Hardware/Software Co-design Solution 

There are ::;evera l t echnology trends appearing in recent ~·ear~ · of FPGA de,·elopment . 

Hardwarf> j Soft" ·are co-elf> ·ign ( H/ S co-design) is onf> of the ·p is ·uf>s. and it can be an 

ideal solution to our ::;cqucntia l algorithm . 

O\Yada~·~ . all of the seYeral ma instream FPGA production compan ies proYide soft 

core procc::;::;ors l25j which can be implemented into t heir FPGA'::; a::; common digit al 

de::;ign module:;. Thr rc ar<' no fmth r rxt rna! interface problt>m::; nerd to lw lw.ndlrd 

by the users. Tnt cgrat d de\'C~ lopment em·ironment (IDE) [26] [27] program on t he PC 

allO\YS u~cr to customize t he soft processors wit h ~pccificd fea tures. The soft core of 

proce::;::.or C'an be implemented int o VHDL modeb , ::;o t he difficnltie::; of init ializat ion 

---~ ------- -
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th<' procestior is restricted into thr VHDL langnag0 lev<'!. T his t C'chni(]ue allow us<>rs to 

nexibly specify the microproce::;sor which is best suited for their appl ication . and easily 

design peripheral modules working jointly with the microprocessors. This solution can 

fullY take <1dnmtage of the mi chip FPC A resomce (user CC\ll rh:icle capahilit~' of the 

processor and configure it }. and provide fi exibility to solve the problems with high 

sequent ial dependency. such as our algorithm. In the system design, the portion 

which is highly :;equential call be written ill high Je,·ellanguage that cn,u L>e compiled 

into the soft processor to avoid complex FS.\1 (Finit<' State !\lachine): and for other 

logical parts the traditional VHDL design methodology is kept. and used to achieve 

function paralleli:;m and high efficiency. 

2.4.3 Network on Chip 

To furt.her raise the computing efficiency and improve the fea:;ibility of the FPUA im

plementation . a modified version from the sequential algorithm is propos d . This new 

method originates from the idea of network on chip (known as NoC. Fig2.15)[28] 

[29], though it:;elf is not strictly following the NoC paradigm. 

In this new algorithm. the local extrapolation scheme from sequential algorithm is 

kept . In other worc!s. rice computing is stillnsPrl for extrapolation . Howevrr. inst.eac! 

of using one or eight rice computing units. the rice comptiting unit is put on each 

grid point iu the array. In this \Va~'· there is actually a11 arra~' of rice colllputing units 

working joint!~· together at same time for each compnting iteration(see Fig .2.16) . 

EYerv tiuw t he rice compnting unit on rach grid point computes in its own 

triangles according to formula, and elects the minimum among t he 8 results. Because 

a ll the units behm·e in the same manner t ha t the~· on!~· take care of their C\ neighbor 

points in vicini ty. the compnt.ing \Yill he passed laver by laver out\m rcb . .iust a:; 
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Figure 2.15: Network on chip. 

There is a .. rice computing unit" on each grid poim. 

In the graph, only 18 "rice computing unit" are drawn to illustrate. 
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Figure 2.16: Rice computing unit array. 
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\\"avrfront rxtcnding. Brcaui><' on t lw hardwarr platform. snch as FJ CA. thrrr ran 

be many comput ing cells running independent!)· and simultaneously: th is computing 

array pattern can exert the potential of FPG:\ ·s . The on!~· probl m now is how man~· 

cmnputing cdl::; can thr FPGA hold. 

\\ 'it h tlw s~·stem ::;tructmP :-;hown in Fig.2.Hi. the algorithm flow a::; well as thE' 

control logic can be largely ::;implified . becau ·e it doe::; not need to explicitly trace the 

evolving w vefront by keeping an act ive set in t his algorithm. Ther~ i::; no need to 

build the challrngiug ::;orting heap, thi::; ::;aw::; a lot of dE>::;ign work, and rrduce::; th 

size of the omplicated system. All one needs to do in this parallel algorithm is to 

allo"· upda ting the rice computing unit array round by round . and the wavefront will 

evolve. The uecessarv system modules only inc:lude rice computiug unit array (may 

includr thonsands of rire computing units ). and , ·elocity input arrR~·. The work ftow 

of this fully parallel algorithm can be summarized into following steps: 

1. Initialize the elements in the rice computing unit arra,· to be infini t ies. and 

assign a ct of seed points. 

2. Update the arra~· by running all ri e comput ing units round by round. 

~ - Repeat st ep 2 until all th points iu the entire fie!<.! is computed. 

2.4.4 Feasibility Discussion 

The major difficult~· of th is fully parallel solutiou is its consuming need for FPGA 

rP. ·om-ces. If thr cmnpnting is oprmtrcl in precbion uf singlP pn•<'i::,ion Hoating poiut 

number. ,·en the high end FPGA platform such as Xilinx Vertcx-.'i can onlY hold 

dozens of computing cells which CYaluatc the formula Eq.2 . , Eq.:2.1J and Eq.:2 .1-L 

It mPan::; onr FPGA chip can only procf'::; · the computing on dozf'ns of grid point::;, 
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nen)rthe)Pss. in prclctirctl application th0 grid sizr ran b0 hnndr0ds l)\' hnndr0ds or 

even lar?;Cr. 

Iu the !J8 ·t, t hi~ kind of solution i::; nnt hinkn blc. becan~e it i::; too rxpC'nsi\'C' to 

implr nwnt . Howen"r , in rPrPnt y0ars . the densit,· of IC' chips has risrn. and the 

price of FPGA product becomes more and more a ffordable. In this context. some 

researchers began experimenting FPGA an ays. T his is a new idea rai::;ed in the field 

of reconfigurable computing[:~O] [31] [32] [1:3]. It adopts mnltiple FPGA's to form 

an arrav : each FPGA chip takes responsible for comput ing in a block. and there 

a rc communications between FPGA chijJs. This idea is pretty close t o the parallel 

programming technique such as i\lPl ( ~lessc1.ge P assing Interface): the differPnce is 

that control logic is direct ly built on the chips ':vith digita l circuit ra ther than software 

programming with high level language in an operating :;~·stem. 

This technique has its many advantages. 

1. Ob,·iousl~·. this method is f&;t. It i::; ·'genuine" parallelism that you can ha.Ye 

man~· processing cells working a t the ::;ame time. ThP computation whirh nPeded 

a bunch of loop st atements in software programming: now can be fin ished in 

one time updat ing. 

2. ThP control logic is relatiwl~· simple and robust . Designer may not need to 

design complicated FSt\f to reuse limited resource. Tnst ad. more effort is pu t 

on the network :;Kitchin?; design . 

3. ThP FPCA arnw can he a scalable de::;ign. According to different problem size 

(for example. different grid number in Yarious applications. ) user can add in 

or remm·e chips to fi t t he size of t he problem. This solution is be::;t suited for 

linear Pxtendable problem in t he resPardt field su('h a::; graphics nnd S('ientific 
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computing. Om fini te diflcrrncr mrthod cr1n be an ideal application of this 

solution . 

1. Thi::; is method is also C'C'onomical. FPGA':; are nctmdly affordab le de,·icE' for 

man~· research groups compared to ASIC's. Especially. the reconfigurable fea

ture of FPGA can make the same pla tform be used for different problems after 

simply adjusting. 

As collections of FPGA processing systems grow in size, the feasibility of large 

rice unit array for travel time computation \Vill be realized . 

2.5 3D Extension of the Algorit hm 

GeophYsics imaging technolog~' is advancing toward t he direction of :3D. Nearly all 

the research on a lgori t hms in this field would consider t he expansibi litv to 3D. Vidale, 

Sethian as well as other researchers published their 3D version algorithm one or two 

years later after the init ial proposal. A critical qualitv of a good algorithm is that it 

should be easily upgraded to 3D without bringing in too much complexity. 

For our algorithm, it is extendable. The 3D version of it can be di:::,cns:>ed from 

following three aspects. 

l . For the local extra polat ion scheme. th is 3D \'ersion can inherit rice comput ing 

derived in sectimi 2.1. The same rice computing unit can be put on the :ry. 

u z, n coordinate plmws inten·epting at t he grid point . T here will be ;j ri ·e 

compu ting units with 2-! triangles (sPe Fig.2. 17 ). 

IIowc\-cr, because in ::ID. there arc 26 points surrounding 1 point in the center. 

So there can be more t riangle relation:; developed among thrse spatia.] point:> ( :::;ee 
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Figure 2.17: Rice computing unit in 30. 

Fig .2.18). The~e t ri angles have differmt sh a pE's and angiPs with the triangles 

inside rice computing unit. Mathematics has to be developed for these triangles 

again b~ed on the ::;o.me geometric principles :mel d erivation procedure~. 

Because there arc more computing triangles in a 30 cu be th an in a 20 grid. the 

single "(·ompnting c.nhe .. i~ more complica ted to huilcl. However. it may bE' not 

necessa r)· to use a ll of the t ria ngle relations among the contiguous grid points. 

The trading off between complcxit_, . and accuracy by choosing right triangles to 

compute i::; a kev point in this 30 algorithm de::;ign. 

2. For inductive scheme. thP 30 algorithm can fnll~· inheri t the sclwm e from 20 

version . Computing can evolve follo~· ing the steps described in sect ion2 .:3. How

c,·cr. the active set become::; a ::;urfncc rather than a contour iu 20 case. There 

can be many morP point .. to be sorted in t he sorting hPap. The intf'n. ivf' stor

age demand a nd la rge scale sort ing operat ion can b e challenges in building 1D 

algorithm. 

3. For fnlh· parallel a lgorithm, the thinki11g of paraJIP!izing many ··comJ.mtiug 
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cube" on grid points can he t n-tnsplantrd into :3D cas<'. Hmn'wr, it has to facE' 

the same problem cau::;ed bY the inlensi,·e expense of building 3D "computing 

cube" . EYen one of the "computing cube" units includes too mnnr arit hmetic 

opr rations . The capacity of t he FPGA i::; too ::;nwll to hold mm1Y of thi~ "com

puling cube'· units. In t his case. fur ther optimi~ation should be done on th 

design of digital arithmetic operations. 

Here. the theoretical fundamentals of t he algorit hm is deYeloped for 2D. In fol

lowing chapters , the software and hardware implementation issues will be discussed. 



Chapter 3 

Software Simulation and Parallel 

Program Design 

In the previom; chapter. the trawl time cellular a lgorithm i:> ctevelopc-'ct from math

ematic concepts to execution procedure. The algorithm ca.n be implemented on all 

kinds of platforms. Respectively. each implementation solut ion has its mn1 features. 

:;o algorithm detaib ma~' need to be modified to fit certain data structure and data 

manipulation flow . Jn this chapter. the algorithm is developed to mn in high ]Pvel 

programming languages. The languages can be Fortran, C or Ja ,·a. and the imple

mentation platforms can be PC. PC network or multi-core cluster. 

Th0re ar<' two purposes for rnnning t lw software simulations: First. high per

formance programming is still the major measure to soh· the problems in the fi eld 

of scientific computing. It is nece:;:;D.lY to di:>cus::; the :>oftware solution for a neKly 

ci<'wlop cl algorithm. SPconcl. ::;ofhmre :::,imnlat ion is ll::illi:lll.v a pplit>d to ,·eri f,v the a l

gorithm . The languages such as .l m·a and SYstem(' are object oriented: t hey are good 

to model the ph~·sical software or hard,vare modules in the vvorking svstem. 

In the project, :\IATLAB is used as the simulation hmgnage. :\IATLAB i:; not 

58 
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an objcf't orirntrd langnage. but progmm is organiz<"d into fnndion blocks \\·hirh 

corresponds to the modules constituting the system. In the first ·cction , T will give 

nn ovcn ·icK of the modules in the svstcm . to invest igate the roles they plav and ho"· 

thr~· nrc ('Ombined to get her. 

3.1 System Overview 

There a re 20 data st ructures holding three a rrays in the system : travel t ime da ta 

matrix, also called '·main matrix" , stores the travel t ime values on each grid point, and 

it is an abstraction of the meshwork: ,·elocit~ · matrix is a parameter matrix provided 

outside the i:i~·stem as velocity model input , and it has t he same size as t lw ma in 

matrix with each clement represent ing the velocity value on a grid point. Actuallv. it 

can save the velocit~· or directly save the paramet er hs which is the product of grid 

spacing Ftnd .-lowness (the reciproci-tl of the velocity value ): fiag bit matrix has one bit 

for its each clement to label whether the grid point is computed (in fixed or act ive 

set) or not . 

Sorting Engine 

Sorting cugine is a heap. holds and sorts the travel t ime values in nctive set. At the 

beginuing of each ronnd of l'Ulllput in g. the :,or-ting engine pops off t hr coordiuates of 

the minimum travel t ime point from actiw set to be the starting point . Because it 

requires ·'starting point'. to be chosen among a number of points in every computing 

rmmd. the sorting effic ienc·~· is critical to the total performance of the system. 
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Rice Computing Unit 

The rice cOllliJUting unit i:; built by u:;ing t h a rithmet ic function:; !Jl'Ovicled by 1\'IAT

LAB. Thf' dcfanlt op<'r e:1tion p1w i:,ion in ~IATLAB i::> doublP pr<'cision floating point 

number . Rice computing unit receiYes the 'larl ing p oint coordina tes from sorting 

engine and cal ulates t o fi nd out t he neighbor points of the start ing points. As men

tioned in previous :;ections, t lw ricr <·omputing 011 8 n<'ighbor points can be dmw 

togcth r or .-epa rately in sequen c . .. To be clone together'' means tha t the computing 

un it loads the data block of 25 grid p oints req uired by rice computing at once (sec 

Fig.::U ), t hi:; behavior is au ana log of t he pa ra lleli:;m in hanhYare circuit : while · to 

be donf' separate!~· in sequence" means loading in grid poin ts from main mat rix to 

feed on rice computing unit a t a t imc. a nd repeat this loading a nd computing for 

times to compute t he 8 neighbor points. Iu our program , the former on e is cho::;en 

to be implemented . Tlw 8 .. computing triangles·· in a ricf' com pu t ing unit is running 

the formulae E q .2. , Eq.2. 12 and Eq .2.13. 

System Structure 

Assembling t he modules together , t he system can be shown as in Fig .3.2 . There is a 

da t a flow going through c,·cr.r part of t he :;~·stem for each iteratio n. The computing 

brgin. wit h t he rf'!ease of a starting point from sorting rngine. According to its 

indexes. th indexes of the poin ts surrounding th is starl ing point can be cal ulat d and 

t he who le block of 25 t rnYcl time data on grid points in ,·icinit~· of the starting point 

<In• [(jtd wd . Th ib data IJ!o('k with 25 l rn \·p] t iuw values a re frd into the <·mnputing 

unit. As shown in Fig.:t:3. these 25 points may belong to cliffcrcnL sets: some of t h m 

a rc computed points in t he fixed set o r acti,·e set. '"hich have a lready had com p uted 

t ravel t imr values at tached to t hr m : \\'hilr bOille of the points ar still llnCOII11J11ted . 
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mi.d hold thr valnr::; which arr ini tializPd as infinitv. HowPvrr. no mHt"trr \Yhrther the 

points a re computed or not , the da ta block will be loaded into the computing unit 

from the travel time nrray. l\[enmYhilc. the velocity Ynlucs on the grid points that 

locate on the center of the 8 ricf' computing mtit::, arr also loaded from ,·r!oci t~· army. 

In the computing unit , there are 8 rice computing units (in a ::;ingle C'P lJ program, 

we actuaJl,· reuse one rice computing algorithm 8 times) . The mapping of the points 

to input port::> i::; ::;hown in Fig.J.l. In a rice computing unit , when computing Eq.2.8, 

Eq.2.12 and Eq.2 .13. t he wlocit~· ofthP cPntN point is nsPrl by as::;nming tlw Yelocit~· 

i::; a constant in the small vicinity of the 9 grid points. The results coming ou t of 

the "rice computing unit" are the new travel t ime ,·alues on t he 8 neighbor pointt:i 

of the starting points. Flag bit array c::u1 provide thf' information on thesP points to 

tell whet her the)' arc computed or not. Finally, the good 1 results arc written back to 

travel time array and pu::;hcd into sort ing heap : the clement::> in the flag bit nrra~· will 

hP upda ted as well. As far as this point . one ronnel of thf' computation is complNt'd . 

and t he next round begins with the release of the next starting point from sorting 

heap. 

The rrlat ion hrtwren the::>e func tion modnles in the program can b<> d0::;cribed by 

cla:-;s diagram. C lass diagram is the de::;ign assifitf:tnt tool for ohjPct oriPntrrl program

ming. It can dcscri be the struct urc of a system b_, . sho"·ing the s~·stcm·s cln1:iscs. their 

nttribute::;. a ucl t he rclat iouships between the clas::;et:; (t:iec Fig.JA). 

1The meanin~ of ··good·· i, explained in the ::.ret ion 2.2. 
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3.2 Module In1plen1entation 

3.2.1 Con1puting Unit lmplen1entation 

A ·'ricr comput ing nnif. is composed of ·'trii'tngle computing unit" as shown in 

Fig.2.7 and Fig.2. in t he section of 2.1.2 and 2.1.3 . Each computing triangle can 

only tnke care of incoming ra~·::; in 15°rn.uge. T here are three formulae iu a row to 

perform the computation inside a triangle. ThesE' thrPe formular deal with thrPe 

branches according to computing effecti,·e inten·als as the MATLA B code shown in 

Fig.3.5. The lru;t step in rice computing is to pick up the minimum among th 

results as the final for the rice compnting nnit. 

3. 2. 2 Sorting Engine 

The sorting operation has to be performed in every working iteration. Therefore, the 

efficiency of the 1>0rting is essential to the whole s\·stem performance. 

Sorting Algorithm Selection 

To choose a proper sort ing algorithm in our implementat ion. the application scenario 

of the sort ing ha::; to be con::;idcrcd. In our a lgorithm. the data to be sorted arc pushed 

int.o the heap at tlw rnd of Pach computing itPriltion. and thP number of inpnt k<'~·s 

can be c a t most (there ar results generated from rice computing units). At 

the beginning of the iteration, the numbers in the sorting heap should be smtcd . or 

a t lea:-;t the minimum in the heap should bP decided . The computing n·quirP::; this 

minimum to be the start ing point. The input ·of the sorting is not a ,,·hole array 

of numbers " ·hich arc giYcn at once together. Instead the numbers to be sorted arc 

given step b~· strp. This is a t~·pical online sorting. 
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Case 2 Case 3 Case 1 

ta 

tc 

function [ tc ] = triangle(tb, ta,hs) 
% computation in each triangle 
% h is the length of the grid side: 
% s is slowness the invers of velocit y: 
If (ta== Infinity I I tb== infinity) 
% dealing with uncomputed inputs 

tc= infinity; % a large enough number 

e l se 
if ta < tb 

tc = t 0 + hs 

1 s e i f l.o > tb + -/2h. 
tc = t b + V"i.hs 

else 

end 
end 
end 

CD 

Figme :).5: Computing triangle formnl Rr. 

/ 
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S<•veri'\1 algorit hms c11n be tls<·d in online sorting as introd11c<'Ci in the last section . 

HoweYcr. the insertion. ·ort is finally used for our design. There arc reasons for doing 

this: 

1. The a lgorithm such as merge sort can also be used in online sorting. IImYe\·er. 

it i:, diffic11lt to exactl_,. Pstilllatc tlw number of rleuwnts to lw sortPd for om 

a lgorithm . The merge sort is too complex for a large amount of inputs. Online 

merge sort need the other sorting a lgorithm to pre-sort the input pieces, and 

theu merge it into a final list. This approach cau be expensive in time and space 

if tlw received pieces a re smA ll compared to the sorted list. 

At this point. our insertion sort which is ba..,;ed on a high sp eel bus in hardware 

implementation can be easily scala ble in length. The extension of the heap can 

be done by appending cells after rear of the heap, rather than addiug merge 

st ges in the merge sort . 

2. lnsertion sort is relativelY efficient for mostlv sorted lists. In our trwel tim 

computing. with t he waYe front e \·oh·ing, the tra,·el time values are actuallv 

getting la rger. The incoming numbers to the sort ing list is rough!~· in an order 

from smnll to brge. 

3.3 Stop Criteria 

lu the s~·stcm. once startPd. the computing is going on iteratively round by rouml. 

and \\'C\\ 'efronl is C\'(Jh-ing ouhYard!:> from the initial set. The question on \\'hen the 

computing finishes must be anS\Yered: there should be a stop criteria. 

As introduced prcYioush·. before computing ::;tartcd. the travel time matrix h a:; 

to be initialized into infinity. So one way to decide \\'hether computing finishC' · is 



C'HAPTER 3. SOFT\VARE SI ll"LAT IO~ A:'-/D PARALLEL PROGRAI\1 DESIGN h 

ch0cking wh0thcr thrre is an,· infinit~· l0ft in tlw travrl t inw mMrix. \\·r can rxam th 

travel time values on the grid points \vhich a rc on the dge of t he computing fi eld . 

because upon the causnlit_, .. these points should be computed at lnst. 

The other \\·a~· to cleciclr \Yhrn to stop thr computing is that a number of iterat ions 

can be simply set. This number docs not need to be exact. For example. if running 

the program on a computing field contains 100 x 100 grid point:;. the numb r of 

iterations can bf' 10000. In this wa_, .. thrrf' wonlcl not lw complex logir involvf'cl in 

judging whether the computing finishes in 0ach round of computing. This wa~' works 

best for testing the s~·stcm. 

noth r way of program termination is based on lea t time points in the sorting 

heap. If the sorting heap is empt~·. the program is finished . 

3.4 Simulation Result 

The algorithm runs in cliiTerent test , ·elocity models for verification. For the first 

test case. the simulation runs in the simplest constant , ·clocity model. in which the 

,·elocit~· i:; con:,tant on each grid point. The re::;ult output from t he program is a travel 

time value matrix . C'ontours can be plotted according to thE' values of the mat rix. 

Fig.3.6 shows a set of travel t ime contours. in which the source point is assign d on 

the ground iu the middle of the range. 

One reason to run the simula tion in constant , ·elocit.v model is that it is possible to 

calculate the exact tr[\\·cl time value:; on each grid !JOint in t he cou:;tant Yelocit~· fi eld 

by using the PYthn.gorrn.n propo:-;ition. In thi:, m1~·. the n .. stdb frum our nl12,oritlun 

can be compared to the exact travel times. to further evalua te the error terms. The 

error distribution for the traYel time mat rix in Fig.J.6 is shmm in Fig.J.i . The error 

is a percentage calculated with the formula Eq .3.1. 
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Figure 3.6: Travel time contours. 

T - T exact lQQC'I 
err = T. x to 

e.ract. 
(3.1) 

It may be noticed that the percentages for the relative errors ar high on the 

grid points which arc close to the source point, while they arc decreased upon the 

increasing of the distance to the source point . The points at the far end from the 

source point have lower errors. This seems against common sense that the num rica! 

errors should be accumulated to increase at far-end of the computing field . In fact, the 

reason is that the formulae Eq.2.8, Eq.2.13 and Eq.2.14 arc direct] derived from the 

geometry. It is based on the high frequency approximation of the seismic wave. In the 

algori thm, the wave path i taken as the ray path without considering too much about 

t he curvature of the wavefront. Indeed our formulae arc derived for the plane wave. 

lu the region ·Jose to the source point. the cmvature is high (see Fig.3.6, the contoms 

at close-source region hm·e higher curvature). So our formulae work rela th·ely bad 

on these points. However , after the wave spreads out into the computing field. the 

curvature becomes lower , and our formulae give a better accuracy. 
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Figure 1.7: Error plot generated by comparing the result from our LTPFM method 

with the exact travel t imes using Pythagorean Proposition (Errors in percentage). 
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For tlwse computing <'rrors. a "mix . clwme·· ran be nsrd to improvr the accuracy. 

As introduced in previous sect ion 1.2.5. in Vidalc'::; local extrapolation scheme. Eq.l.G 

is de,·cloped to deal 1\'ith the high curvature situation. In our algorithm. this Eq .1.6 

can hr adopted by assigning; C"C'rtaiu rrg;ion which is clo::;<' to ::;ourc·p point . In this 

region. the Eq.l.6 is applied: while in the far-source end , our formulae Eq .2 .8. Eq.2 . 1:~ 

and Eq.2.1-! arc used. In this '"a~·- the ·'mix scheme'' can work fine in cver~·wherc in 

the computing field . 

In section 2.2, wf' haw introrlucrd the timing error dividf'd by the tnmsit timC' 

across Lhe cell as Eq.2.14, which is proposed by Vidale in [5]. This error is a measur 

of the computing accuracy and the effect of finite difference meshing (whether the 

grid size h is propf'rl~- assigned). Th plot of onr result. at h - 10 111rft1' <'lnrl 

uclor-ity = 1000 mclcrj.<.econd is. hovm in Fig .. 3.8. 

To further verify the algorithm. two source points arc assigned at underground 

posi tiom; in a constant velocit~- model. The correct resulting contours should be h ,-o 

set of s~·mmetric circles, a shown in Fig.:3.9. 

Finally. t he program runs in a more complex velocity model Dablain model as in 

Fig. :3.10. After running the program on this model , the result contours arc shown a:; 

in Fig.:~.ll. 

3.5 Program design for fully parallel n1ethod 

For the simulation of fully parallel a lgorithm. because the !;equcntial programming 

p]Mform rnnnot C'XC'cn tC' all th rice compnting iu rt-'<:d pa rallt-lism . "for loops" are 

applied to reuse a rice comput ing un it iteratiw]_,-. F ig.3.12 illustrates the st ructure 

of the program. 

There arr two trm·el time ana~·:s in the systC'm. Thf' data arC' read from one input 
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Figure 3.8: Timing error divided by the transit time across the c II. h = 10 meter 

and velocity = 1000 meter j.second. 
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Figure 3.9: Two source points experiment. 

matrix as the input to feed into rice computing unit, and the result arc written into 

other matrix. At the end of the computing iteration, the result matrix i:::, copied back 

into the input matrix. In this way, it can simulate the computing process on th 

parallel hardware platform with thousands of rice computing units, that the input 

mat rix won't change during one round updating (computing iteration) ; though there 

is only one computing unit in this simulation program. 

There is no doubts that MATLAB implementation of this method will take much 

longer running time than the sequential version of our algorithm. Because in each 

updating iteration, rice computing has to be repeated on every grid point no matter 

whether the computation is useful. However , imagining in hardware implementation , 

each updating round only spends the time of running rice comput ing for once without 

any further time expense, thus, the algorithm will be really fast . 

3.6 Simulation Result for parallel algorithm 

In a constant velocity model , the parallel program outputs the contours as shown in 

Fig.3.13 ( at t hi::; time, the ::;ourcc point is located at the center of the research field). 

The error term distribution (in percentage) comparing to exact ::;olution can be 



C'HAPTER 3. SOFTWARE S JM LATI ON AND P A RALLEL PROGRAhl DESIGN 74 

Source Point (Gr~n1il 
Z (Depth) 

1600 1400 1200 100) IIXl 600 400 200 

Source Point (Gr~n1il 
50 Z (Depth) 

100 

150 

200 

250 

300 

350 

400 

450 

500 

550 
1600 1400 1200 100J 800 600 400 200 

Figure 3.10: Dablain model. 
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Figure 3.11 : Travel time contours on Dablain model. 
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Figure 3.12: Structure of the fully parallel program. 
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Figure 3.13: Travel time contours in constant velocity model run by parallel program. 

shown as in Fig.3.14. 

The travel time contours resulting from double source points experiment is look 

like this in Fig.3.15: 

Finally, the parallel version of the program runs in Dablain model. to compar 

wit h the result from sequential program. The contours arc shown i~ Fig.3.16. 

The difference plot between this solution and the one from sequentia l program 

can be shown as in Fig.3.17. 

Processing it into relative ratio in percentage, the difference plot is shown as in 

Fig.3.1 . 

3. 7 Parallel Programming 

This parallel version of the algorithm can be implemented with parallel programming 

techniques. Parallel programming is programming that allows you to explicitly indi

cate how to partition and distribute the computation into different proces ors to be 
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Figure 3.15: Travel time contours generated from double source points experiment. 
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Figure 3.16: Travel time contours generated from Dablain model. 
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Figure 3.1 Difference between sequential algorithm and parallel algorithm in per-

ce11tage. 



C'HAPTER 3. SOFTWARE Snrl:LATTON A:-JD PARALLEL PROGRAl\1 DES! ~N 80 

execut0d concurrr ntly [31]. l-IP I ( 1\l<':>SHge Passing Intrrfacr) i H stanchud . prcifica

tion for message passing libraries. Libra ries consblent wi th this standard a llow the 

user using Fortran . C or C 1 1 t o rea lit:e multi-core programming on the platforms 

::,uch as network of worhta tiom; and multi-corr du::,trr . 

3. 7.1 Methodology 

Partitioning 

One of the most i1nportant issues for parallel programming design is partitioning. 

Parti t ioning is t hr process of dividing the computation and the data into pieces (Hlso 

known as primitive t ask), so tha t the computa tion can be assigned to di fferent pro

cessors . One approach is lmO\m as Domain Decomposition iu which designer fi rst 

dh·ides tlw da ta into piecE's c-'Lnd then ciPt ermine how to associate computation with 

the da t a . Function Decomposition is the other approach in which designer first di

Yides the computation into pieces and then determine how to associate da ta items 

with the indiYiclual computations . The::;e hYo method::; are complementary to E' c"tch 

other. 

The goal of the part it ioning is to identif.v as many p rimitive tasks as possible, 

because the number of primiti,·e t ask is an upper bound on the parallelism we can 

exploit (obviously. the limit case is to assign one of the primitiYE' tasks on one pro

cessor ). 

Conununication 

After ident ify ing the primitin:- t asks. the next st p is to determi ne the commu

nication bet\\·een them. T he primiti,·e tasks usual!~· share data \Yith others. For 

rxmnple . the primit iYe t a.-;k in om algorithm b one rice computing , and the nd.iacent 
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ricr computing nnits shan · trave•J t imr inpnts. Fmtlwrmorr , the· compnting nnit. nrrrl 

the compnt ing results from its neighbors as input . The da ta have to be transferred 

among these primiti,·e t asks. Communication among t asks is t he o, ·erhend of t h 

com pn t i ng. good \\'ay to dr~ign t he• program is to minimizr this ow rhC'ctd . 

Agglomeration 

In pa rtitioning we tr.v to ident if.'' a · much parallelism a possible . Howe,·er , th 

number of primitive tasks can exceed the number of processors by sewral orders of 

maguitucle. In our example. th r are thousands of grid points for rice computing, 

but thE' clu t rr on!~· has :36 proce~sor~ r~Ta il able ). simp!~· crrating theHe t asks would 

be a source of significant ov rhead. Agglomeration is the pro ess of grouping tasks 

into larger tasks in order to improw performance or simplif~· programming. The goa l 

of agglomera tion shonld be lower communication overhead : mainta in the TRlabilit~· 

of the pa ra llel d esian : reduce software engineering costs by la rg ly taking ad vant age 

of the existiug sequential program . 

Mapping 

Finall~·. mapping is thf' proce of assigning tRsks to proce. ~ors . The goal is to 

maximize processor utilization and minimize inter-processor communicat ion . Proc s

::;m ut ilization is the m·eragc percentage of time the s~·stem·s processor nrc activ I~· 

<'X cuting ta::.b m'e·P:::.::.<try for f hP solut iuu of f he-> problem. Procrs~or utilizntion is 

maxim ized when the computat ion i::; balanced C\'enl.\'. a llowi ng Rll pro e::;sors to begin 

and ncl execut ing at the same time. Converse!~·. processor utiliza t ion drops when 

one or more procrs::;ors are idle " ·hi!e the> remaind er of t he proces::;ors a re ::.t ill hu:::.~ ·. 
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3. 7.2 Program design 

According to the four ar:;pects of the design mcthoclolog~·. an 1\IPT program can b 

designed as follows to implement our pa rallel algorithm. 

A · c!i::;cns::;rd. t he primitivE' task in our design is rice computing. ln ic!f'Fi l C<-1se, thr 

design should implement as man~· rice computing units ar:; the number of grid points. 

Ilowe,·er. in parallel programming p latform. the number of pro essors ir:; much le ·s 

than the rnunb0r of primitive ta.sks. On the otlwr band. in our algorithm. r nch 'Tice 

computing" is equa l lo another . and there is no locality prd renee. This makes the 

agglomeration easier. 

20 partition is applied on the computing fi eld to m ake the field a 20 a rray of 

r:;ub-blocks (a 1 D partition is abo possible. see Fig.3. 19 ). The number of sub-blocks 

can be as man~· as the number of a,·aila ble processors. in tha t the computa tion of 

each sub-block is taken by one of the processors. 

~-

I 0 Decomposition 20 Decomposition 

Figm c :~ . 19: Parti t ion the computing in a finite cliffcrPnce filed into uh-block, r ach 

procei::isor take rer:;ponr:;ible for one sub-block. 

The computa tion of thr grid points 011 the edge of each sub-block needs thr t ravel 
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timr ,·alm'::; on tlw <1dj acc'nt points which is storC'd in t lw oth('r sllh-hlock of mrmory 

manug d b_,. a different processor. Thus. a communication scheme has to be built. 

.\ ::; Fig.J .:lU shmYn , a .. gho::;t rrgion .. i~ set for each sub-block which is a part of 

extra m<'mory ::.tores tlw grid point::; on tlw rdgc of other sub-hloc-k. ~IPI lihmri('::. 

prodclc the function to transfer or ex hange a chunk of data umong processors. All 

of these processors can work jointlY by exchanging data in the gho::;t region . ln::;id 

each ::;u b-ulock, the proce::.::;or ju::; t run::; the se4uential progran1 of reu::;ing a ::;ingle ric 

computing un it . 

Communication 
~ 

\ 
• 

Processor 
(Sub-block) 

~ 
I 

Ghost region 

f-LLL LLLLLLL 

=1= 1'-l 

~ 
~ 
r~ 
I~ 

Processor 
(Sub-block) 

I 
r+ 
~ 

~ ~ 
~ 

~ 
IH 

Exchange data by 
eceive and send 

Figure :3.20: Ghost region and communicat ion::; inter-procr ·sor. 



C'HAPTER 3. SOFT\ YARE SI!I.f llL AT I ON A ND P A RALLEL PROGR A !I! DESIGN 

Gt>n<'ralh· sp rRking. tlw parallf' l programming incrr asr s tlw romp11ting spr(•rl . Thr 

modification of the algorith m into this fully parallel \-crsion makes the l\ fPT program

ming become a feasible solution for our algorithm . 



Chapter 4 

Hardware Design and 

Implementation 

After developing the algorithm, Yerifying it. hardware implementation i:;::;ue::; arc di::;

cn::;::;ed in t hi. · chapter. 

4.1 Motivation 

The moti ,·ation to de,·elop such a system is to wrifv the feasibility of hard"·arc imple

mentation of the al~orit hm, and build a prototype for future comu1 rein! u::;e . FPGA 

(Firld ProorammA.ble Gate Array) i!:> r.ho::;<"n as the implementation pll-ltform. FPGA 

are u::;ually slower than their ASIC (Application Specific In tegrated Circ11i t ) counter

part::;. cannot handle a::; complex a dc::;ign, and draw more pow r. But their advantage::; 

ind ltd<' a :-hurtl'r t illJP to nmrket . <I hi lit.' · to reprogram in the field to fix bug::;. and 

lower non-recurring engineering costs. Sometimes. the design::; arc dcYclopcd on reg

ular FPGAs and then migrated into a fixed ven:,;ion that more resembles an ASIC. 

From another p0rspedin'. ('Omparing to the general purpose proc·rssor or DSP ::;o-

5 
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lu tion , FPCA has more r!Psign Hex.ihilih· becans<' fix.Pd inst ruction sPt programming 

pattern in C'PUs " ·hich is decided b\· t he processor a rchi tectu re. 1\foreover. wi t h 

FPCA. designer can parallel m a ny operations into t he same clock cycle to exert the 

potrntial of thi::, hanhvarc plMfonn. 

The s~·stem can be desiguecl as a coprocessor communicating with 'PU of a PC 

throngh PCI or PCJC' intf'r face[:35]: or it can bran inrlrprndent system working jointly 

with peripherals to compl te various tasks[3GJ . Our project focuses on the implemen

tation of core logic to realize the algorithm step:; de::;cribecl in section 2.3. a nd propo::;c::; 

a system framf' "·hich can be easil~· extended from a dPmo s~·stPm to a plc:\tform that 

can run a real geophysics model by adding in la rger memor\· capacity. The peri pheral 

issues such as I/ 0 design. data visualization cle,·ice design and high performance mcm

OlT strnctnre design can be furt her decided in t he fn ture commercialization process 

b.v t he professionals. In this project , a lgori thm ,·erification and feasibiliL.v evalua tion 

arc the main tasks. 

4.2 FPGA Design and Implementation Flow 

FPCA d esign . as an pff1cic>nt "·a~· of prototyping a digital system. has been in de

,·elopment for many years. a nd the technology evolut ion is st ill going on. Ther is a 

relat i,·ely mature methodology proposed for FPG A design aud implementa tiou pro

c:edmPs. It can he illnstrated with How chart . Beforf' introducin g thb drsign How. 

let"s first m·en ·iew the pronle of the F'PGA pla tform chosen for the project. 

Profile of Virtex-5 

Xilinx. is one of the major F'PG...\ production companies. They pro,·ide po"·erful and 

fif'xiblf' FPC A chips nnd IDE( integratf'cl dewloplllf'nt f'nYiromnent ) that cnu satisf\ 
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a \\'idr rang(' of a pplications. For thi::; proj('ct . LXT plat form of Virtrx-5 famil~· 

from Xilinx company is used . Virtex-5 is the newest high-end FPGA production of 

Xilinx[:fi ]. It adopts the ti.5 nm copper C'l\IOS process technolog~-: 1 contai n~ the most 

aclnmcrd, high prrfonmu1cr, optimal utilization logic fabric: nnd nlso includes nJnuY 

hard-a> ::..v::.lem level blocks, such as% l<bi l block RAl\1 (on hip m mon '). advanced 

DSP-lcE slice (high performance arithmetic unit ). enhanced clock management tiles 

(Cl\1T) and advanced configurat iou options. These features mentioned brought many 

connm iPncrs to om pro jrct drsign . 

Xilinx FPGA design flow 

For its FPC: A production series. Xilinx proposes the design How M..o; ::.hmvn in Fig.-1.1 [3 ]. 

Thr firs t il tf' p is design f'ntr.v, in which designers can clescribf' thf'ir rl . ign in t he 

tools such as schematic editor , HDLs (Verilog and VHDL) or Impulse C: 1 [39]. Thus. 

if m;ing a HDL for text-based eut ry, the IIDL file has to be s~·nthesized into EDIF fi le: 

or if using t he Xilinx S~·nthesis T0chnolog.v (XST) GUI. it is svnthPsized into ;'\ .c 
fil es. 

In the impl ment ation step . user can assign constraints to the design ent ry ac-

1Thcre is an increa5ing trend toward using FPGAs as hardw:ue Accelera torb for hi11;h performa nce 
computin g. jubt <:tb we do in this the;,i::;. Th b kind of a pplication:, trpicaJiy l.Jegin:, their liw;, as 
~:>uthmrP nwdrl. and thPn nJanuall\' rPIYrittrn and in1 pl<•nwnt ed in l1ardwar<' u. inl!, VHDL or Vr rilog. 
Thi. nwnual C'OIII'<'I' ion of soft ware algorithm~ to ha rdware i:, a pro r~:> that ran h<' Jon!!, nnd trdiou. 
in I'Xt rrm : hrncr. t hrrr i:, a ~trong drnwnd for mon' rnpid pnt h~ t,o working h:<rdwnrr. T hcrr i 
abo a ~tronl-( dc:-.irr to avoid latrr redr,.,il!,n,., of thnt hnrdwnre to reflect. ,.,oftwnre algorithm updat ~. 

In this contrxt. bOmr researchers and companir~:> put their rffort:o. on the rcsrarch to dficientl.1· map 
algorithm~ and up plical ion:, IITittrn for tmditional microprocrb:,Or. into arb it rar.1· lo,gic ,gatr~ ond 
regibterb combined with some1rhat higher I,,. I logic structures. Impulse (' is 01 e production from 
this kind of rcseurch. l t i:, clo~er to soft11·ar programmin,e; language. rath r han a HDL (Ha rd11·a r 
Deb ription L1ngunge) ~uch ~ Sntem C:. The de:,ign in thi:, high ]e,·cl Ja ngu a.J!. can be compiled 
into t hr fo rm that i;, acceptable to thr FPCA,., with ct>rtain l'Olnpi !Pr . F inally. t hP~· tr~· to n•alizr 
t hr <,On! I hat thr FP<; :\ drl'ire,.,. 11·hrn progm nmll'd u,., ing upproprintr n1rthod . arr not ,.,o difl'rrrnt. 
from ot hrr non-t rndit ionnl cum put ing pbtform:,. :,uch n;, DSP:,. Th i re:,c•:uch brcomc·::- a hot topic 
in rrcrnt ,vrnr,.,. j:~!'l ] 
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cording to timing and an• a design c•xprd ations. The logic dC'sign a r<' then pnssc•cl 

throngh Lh steps of mapping. p lacement and rout ing. to be ma pped into a specific 

architecture ( m, Virtex-5 in our case) . Accordingly, the development toob convert 

the logiutl dr:-;igll fi le format . such <1./j EDIF. t h nt CTC'tttC'd ill t lu• de~ign 0ntr:v nne! 

~., · nthr~is ~tage into a physical fi le forma t. Finally. the file can be compil<'d into bit 

streams that can be loaded into FPGA ch ips directly. 

Simula tion and verification in t he flow 

In the w hole process from design entry to bit stream generation, the design , ·erification 

i~ a ~tep t aken to make sure the de~ign b correct proce~~ed in each ~tep. In thi;:, Ho\\". 

several simulation a nd wrificat.ion measures me> Applied . For example. thr fnnction 

simulation is applied to veri(y the logic correctness of the design entry: the post

simulation m ake ~ure the design with constraillt~ call be correctly m apped into certa in 

a rchitectnre . In digital design , simulation and ,-erification are a.s important as the 

design a nd implementation t hemseh·es. 

D et a iled sub-st e p s in the m a jor st ep s of d esign flow 

Furthermore. a detai led flow chart that il lustrates the steps and corresponding outpu t 

of each step u~illg Xilinx IDE is shown in Fig.4.2 r38). 

ThP st>veral major steps snch as clf's ign entrY. s\·nthesi .. implenwntation cmd wr

iflcat ion actuallv include particular sub-steps in them . The init ial design entr~· is 

added \\"ith more and more constraint~ when pa~~ed through a ll t he:;e :;u b-:;tep~ be

comp:-; the fini1l p]m;ical imple111ent<'tt ion . The det <1ils of a ll t]w:-;e pnwedm . im·olw 

the knowledge in a broad area of TC (integra terl circuit ) technology, and can be ver\ 

complicated . e\·en dreadful for an inexperienced designer. However. before mastcrinp; 

all the dctaib of t he~e implementi\tion option:; to optimize the cle~ign performance 
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---, 

lj PROMGtn j l 

~---c_,......-L---, 
X100 

Fignre <-1.2 : Xilinx FPGA design fiow using Xilinx ISE. Reference from [7]. 
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into maximum, \W can apply sonw mock ratr optimization choices to achirw a s~·strm 

prototype. 

4.3 System Design (Top Level Block Diagram) 

No mattr r in industry or academia. HDLs ( Vcrilog and VHDL ) are the dominant 

ways to describe a digital design ; Lhcv arc essential to achic,·c design goals, because 

of their explicit and prccbc description and control over hardware implementat ion . 

However . the ciesign itself is th most essential part to the algorithm. rather t han t he 

tools to describe it. From this section. the design " ·ill be presented stage by stage 

without im·olving HDL detail::;. 

The discussion of software design in previous section::; has gone through the major 

components of the s~·stem and the ciata flow t ransferring between the modules. Hl'trd

warc design is different from the soft programming thai it docs not have an implicit 

execution order of t he ::;tatements. All the eYents in circuit are actually t riggered 

simultaneously all the t ime. The waY to make mociules working in an order is to 

design a nd implement FSI\1s io cont rol the timing. To a\·oid over-complex FSMs. to 

make the design clear and reliable. t\\·o strategies arc adopted : 

l\1oclulnrize the ::;y::;tem (partition the ::;y::;te1n into functional blocks, P:1c4 module 

can complete a single task and has its own implementa t ion non-related to oth er 

modules. All the modules communicate \Yith each other through clear!~, defined 

module interfaces): 

Explicit!~' use combinational comp01wnts (such a. basic gates. c!Pcorler . . and mul

t iplexers) to realize cont rol funct ions as much as possible. 

According to this basis. a system structure is proposed. "·hose top I vel diagram 

can lw ::;}10\\"n as in Fig. 1.3. 
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Th<' syst<'m in this diagram ha::; ::;imila r strnctnrr with th<' on<' hils brrn introducer! 

m ::;oft\\"are ::;imulat ion as shown in Pig.3 .2. The major modules in the system ar 

comput ing unit. ::;orting engine. storage modules (RAI•ds and ROl\Is). memory access 

modules, nnd r suit buffrr. The working How of th<' ::;~·strm b lik<' this: at the 

beginning of computing iteration . sorting engine relea. e th coordinates of th 

minimum t ra,· I time point in t h ·orting heap. This information i::; sent to ··data 

memorY acce::;::;" module, and the mo<.lule calculate::; the coordinate::; of the 25 poiut:::. 

in thr Yicinit~· (sPP sPction 3.1) and f<'trh tlw d ata block . In the s imila r way. thr 

module call d ··other memory access" can felch the Yclocity value · and flag bit 

information from velocity ROl\I and ::;tat RAl'v1 which is the lllemory store::; th 

Hag hits Ft:rray. Computing unit rPrPi ,·e · the data from mPmory acr<'ss modnles. Rnd 

computes the new trm·cl Lime ,-a lues on the neighbor points surroundin.e; the starling 

point . Before sending to result buffer, the 8 results would be te::;t din the computing 

unit to be taggPd as a '·good2 .. resnlt or ··bad .. result. From result hnff<>r . the "good"' 

results would be \Hitten back to corresponding memor,· and th sorting ngine. Thu ·. 

a new round of computiug i::; ready to begin. In the ::;~·::;tem , timing and order of thi::; 

,~·or king How is maintained by the "h i.e,h level controller .. which i:; Ft r Sl\1 sending 

cont rol s ignals to a ll of other functiona l modules. 

In Fig -1 :~ . the data flow and control flo"· are denoted with " ·ide and fine mTO\YS 

respecti,·e l~·. To further int roduce this s_,·stem. the design and implementa tion of each 

functional module would be introduced one by one in the fol lo\\'in,e; sections. 

~Thr concrpt ··g,ood·· cnn br found in ~ret ion 2.2 
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Triangle computing units Rice computing unit Computing unit 

Figure 4.-l: Hierarchical structure of computing unit. 

4.4 Computing Unit 

The fir::;t mo<inle to present i~ the computing unit. It i~ thP core of the ~:r~tf'm: mo~t 

arithmetic operations in the algorithm are carried out in this module. According to 

the section J .2.1. the computing unit has a hierarchical structure (s c Fig.4.4). 

Th elPnwntary componmt is "triangle computing unit'' . trictngl computing 

unit~ compo~e a rice computing unit. Furthermore. rice computing units arc com-

uined together to form a computing unit which can proccs~ the tlata on a block of 

2.5 grid points. this makes a rathH larg<' single rhip solution . For FPGA's. to do all 

eight th design has to.be split across several chips. 

\'HDL de~igu u:mally follow:; the mrthodolop,~· of top-clmvn d<'~ign and bottom-up 

implem ntatiun . After partitioning the system into modules and specifying certain 

function into a module. the module \\'Ould be built from basic logic components. 

4.4.1 Triangle cmnputing unit 

In this way. let's first look at t he triangle computing unit. The math matics for this 

modnl<' ha::. a lr<'nd.' · h<'en Pxplaiued in ~Pction 3.2.1. Due to thP pr<'<'ision rrqnirPment~ 
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31 30 23 22 0 

s I e f 

s sign bit - 0 = p itive 1 = negative 
e bi xpon nt ( -bits) = true exponent + 7F {127 decimal). 
f fraction - the m t 23-bit after the 1. in th if{Dificand. 

Figure -! .5: Single precis ion floa ting point number representation in IEEE i 5-! : St an

d nrcl for Bina ry F lontiug-Point Arithmetic . Fignre is from [8]. 

of pract ical geophysics a pplicatiou (we need a number representa tion scheme t ha t 

can rcprrsrnt number.· in a widf' ra ngf'). the calcula tion is best to hr d one in t h 

precision of ·'single-precision floating-point number ... The fixed point implement ation 

hru; less representation range: it m ay satis fy the requirement of small-scale trm·el time 

computa tion, hut it is lack of expansibilit y to solw a 1D problem which requirf's wide 

range a nd su ffi cient significant d igits in number represcn~ation . 

F loating point num ber 

The uit la_,·out of a single preci::;ion floating point reprc::;cntation b ::;hown in Fig.4.-

T here arc three portions to represent a number in this format : sign bi t : exp onent 

field : a nd ::;ignificand field which is actually the fractioual part (also called m a n-

tissa) . Single-preci ion Hoating point forma t· ran reprPsent t he nnmbPr from i\',11 ,, 

2- 121
i ~ 1.2 x 10- :l~ (including subnorm al numbers ) to N,w.1 = 212" ~ 1.--1 x l !Y11' . 

a nd the m achine cp::;ilon is r = 2- 23 ~ 1.2 x w-7 I ]. T hb floating poiut ::;cheme 

h a::. < ch·,mtage::. in m nge and prPcbiull of nu1uber rPpn·sentatiou: ho\Yen•r. it i::; no t at:. 

. t ra ightforward as fixed poin t representa t ion in its a rithmetic operat ions. especia lly. 

t he di,·ision operation and ::;q uare root operat ion . For t hese t \\·o operat ions. t he direct 

.. sh ift and restoring .. method that is the m imic of the paper and JH'ncilmet hod can be 
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complicatrd in digi t <1.1 im plrmrntat ion: whrrcas. t hr numrrical itrrAtiw mrthods an• 

better. Furthermore. the inverse problem to evalua te reciprocal is soh ·ed b.'" appJ_,·ing 

Ne" ·ton-Raphson itcra tion [-W] [41 ]. In this wa~·, the cxpcnsiYe diYision operation can 

he converted to srwral rcl n. ti,·e chcnprr operations using addit ion allCl nmltiplicn..tion . 

Through the work in chapter 2, the formula such as Eq.2 . , Eq.2.12, and Eq.2.13 

have been transformed to avoid expensive operations. There i:s only one square root 

operation lrft in thc::;e three equa tions, and all other operations only iucludes ad

dition , subtraction and multipli cation (no di,·ision ). For the square root operation , 

we develop a method in which a look up table is used joint!~· with a third order 

Ne,Yton-Raphson iteration formula. 

Xilinx Floating Point Arithmetic Core 

In th project , the arithmetic functions of triangle computing unit is implemeuted 

with Xilinx fiol'lting point cores[ -!2]. Xilinx provides a core gf'nerator system which 

can genera te and dcliYcr a library of pa rametcrizablc lP cores opt imized for Xilinx 

FPGAs. Wit h this system , user can create high dcnsit~', high performance dcsi)?;ns 

in less time. This core generator ~'>~·stem is integra ted into Xilinx ISE \\"ebPack IDE. 

Users can access this generator tool seamlessly in the TSE deYelopment flow . 

ot all of the IP cores from Xilinx arc free. In most cases. users can freely run 

f11nction sim11lation on the rlesigns which involw Xilinx IPs: hut haw to purcha,.;;e 

licenr:,es to usc these IPs in post-simulation and FPGA implementation . Fortunately, 

the floating point arit hmetic IP cores from Xilinx arc open source for both simula

tion and illlpleuwula t iou . Tht•n• are nbundaut operation::; included iu t h i:-; Hoating 

point collection. such a~ addit ion / subtraction. multiplication. di \' i~ ion . ~quare root, 

comparison and fixed point to floa ting point conver~ion . From G UI (graphical u~cr 

interface). thr. parameters of the core::; mn be ea:-;iJ_,. cnstomizrd . \Yhich inclnde the 

- - - - ----------- - ---
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Bit significance (i) Wr -1 

f 
: 

0 w1-1 ... Bit position 

w ... 
Figure 4.6: Xili11x floating point format . Tl"r is t he width of expone.ntia l field of th 

numb<'r , R.nd 11 ·1 is the width of fractional field . 

input/ output \Yidth , control signa ls and basic building clcments:J. · 

The floating point format in this Xilinx core is not on!~· full~· ompatible with 

IEEE 75-l single precision and double precision floating point st anda rd : user an 

abo est ablish their ow11 extended floating point format by customizing t he width of 

<'xponentia l field and fractional field of thP numhPr (see F ig.-1 .6 ). After customization. 

the rrenera tor Lool can generate corresponding cores in the form of 10\-Y 1 wl circuit 

description file with HDL interface. 

Xilinx Dedicated Arithmetic Unit: Dsp48 

In the cuslomization of Xilinx floa t ing point core, there is an option that a llo"" user 

to decide whether to usc Dsp.:t8 slice (sec Fig A. 7) to build the floating point opcr. tion 

modul<'s. All of these fioating point cores can b built v.:ith st R.ndFtrd logic slice (slic<' 

L1 JT s and slice registers): hmYever . the Dsp-l E i::ilice giY s designers a bet ter choic 

when building arithmetic functions. 

The DSP i::ilice is designed for DSP npplica t ions and large ari t hmetic operations. 

:lT he bat.ic buildi11g block i:s t. lice. A t.lice conta i n~ L l -T t. :1 nd re)!,bter:,. Generally t.peaking. th 
, lice LCT~ a re u:-.ed to fo rm combinat ion<~l c ircui : nn rl the ~l i ce reubt.ert. arP u~ed for t.rqm•nt.ia l ci r
cuit. ~ynthr~i~. To lc<Hn the bfl::-ic FPGA a rchit rct urc . :,uch a, CLB(XlLI :'\X VIRTEX Cllll''figurn lJle 
Logic Block). ~lice. i/ o rr::;ourcr::.. mrmory nnd clocking rc::.ourcr::.. P len,c rd'rr to f-n] f II ] and f-15] 
for de! nib. 

I 
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Figure -L7: DSP-1-8 Slice Ha · a 2·~ Complement rol ultiplier 1 xl and -1- -Bit Accu

mulator. 

DSP designers who traditionall~· u~e the FPGA fabric for ari thmetic applicat ions will 

find that much of their job is done for th m internall,- by th i~ D::;p 1 block. _ II they 

need to do is confignre the block by using operation mode inputs from the G L"1 of 

IDE. which control the flow of data in the block. The DSP4 slice has a 2's com

plement mult iplier 1 xlS. It al::;o ha::; a :3-input. 48-bit addcr/~ubtractor, which can 

be nsrd to crratP ~en,•ral difl'r rent arithmetic operations. Cascadp pins are included 

to support complex funct ions with no speed penal t~·. This allows user to implement 

larger arithmetic operation::; u,r linking multiple ::;lice::; together. There arc optional 

pipe• lin regbtrr:::. a t :; ,-era! puint::; 1\'i I hiu t hP DSP -1 :-;] icc to maxi miz performanC'c. 

I\Iost nsers are targeting this resour e with the core generator ~oft ware tool which can 

large!~- simplif_,- the configuration pro ess: user can folio"- the configuration guide of 

thr core generator. and the ~oftware tool will generate the low IC'Y I fi le::; and provide 
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F igurr --! .8: 1/ 0 speci fication of tri angle computing unit . 

HDL inter face . 1\ pplication of DSP 4 slice can saw the st andard slice resource in the 

FPCA. ancl achieYe a higher performance on computing. 

D esign Compa rison 

In RTL (Register Transfer Level). the interface of t riangle computing unit can be 

defi twd a: shown in Fig .--! .8. 

All t he inputs for compntation of Eq.2.8. Eq.2.12. and Eq . 2. 1 :~ are fn. t b a nd h.-;~ 

These inputs are all represent d in .'32 bit single precision Boating poin t format. T he 

output from this unit is the tra\'el ti tne va lue f c. 

Design I 

Tn F ig.-Ul. there is one design for t his triangle computing unit. in which each op ration 

in t he formulae is implemented wi th one floating point core. T his is a fu lly parallel 

implrnwnta tinn th<tt c"Lll t hr OJWra tiom; nm be processfd concmrentlv. Therr is no 

~hs i::, t.hc prod uC't of ~rid ~pacing h nnd ~ lownc::; s. Thb product C'a n bC' prr-calculntcd a nd 
~::wed in \'C'Iocit v nrrny. 
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r<'use of the op0ration modnks <\no no intl'rnal sequential procl'ssing. 

In Fig . ..J.9 . ··if80000(J"" is th(' lwxnckcimc1l rrpr0st>ntation of 11 :~2 bit bina r:· wctor. 

which ~tands for the value ·' f Infinit_v·· in ~ingle precbion floating point formal. The 

circuit tir::-,t make~ a trial of the t\\·o inpub t" and t,. If either of the~e two i~ " 

ln finit:···. th0 r<'. ·ult "·ill b0 direct!~· a::;~:>ignerl as '· Infinit::· b:· srtt ing the control 

signals of "result mux·· . The input :;ignal · pass comparison and a rithmetic modules 

in certain logic : and final re:;ult i:; output from "re:;u]t mux" . 

Xilinx lioating point core:; provide powerful feature:; thnt U~:>l'r nm ('Olltrol the 

re:;ource u~age according to specific applicat ion by customi:t~ing ··]alene:-"" and "c.w·les 

per operation·· optim1s: 

1. The parameter '"latenc_,.-· describes the number of c.vcl s bet we n a n operand 

input ::wd result output . The !at nc:' of the operators cau be ::;et between 0 

and a maximum value. The maximum latency of the divide and ,·quare root 

op rations is fraction width + ..J . and for compare operation it is lhre c_,·cles. 

Differ nt ~pecification of latency re~;ults in different low leYel implementation 

''it h diffrrent re:;ource u::;age: short0r latency mf'ans high r u:;agt> of the :;lice 

LPTs in reali :t~ing the logic: in contrary, pipel ine implem nt a tion and modul 

reuse consumes more slice r gister~:> and cause longer latenc~·. 

'"~ ·' :·rles p0r op0rr1.tion (rcltrf dr. ('ribrs the minimum numbrr of cycles that 

must lapse between inputs. ,·alu of one allows op rands to be appl ied on 

eYery clock c,·cle. a nd result::; in a full:·-parallel circuit . /\. Yalue greater than one 

<:·uable:-. l!ardware re11se. Tlw llll!l!IJE->r of ~:>!ices con~:>llllWd In· thr core rechtce::. n::; 

the number of C-'-cles per operation is increa::;ed. A valu of i.wo approximately 

halves the number of slices used . A full~· sequential implementation is obtained 

whrn thf' ntluf' i:; equal to j"ror·t10n ll'idth + 1 for thr ::-,quarr root opf'ration. 
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.. 
ji 

Figure 4.9: Fully parallel design . In th diagram , each blo k represents a floating 

point operation core. The operation is marked off on the block. The block \dth 

doubl lines on the edge i::; compnri::;on operation module: th ::;ingle line edge block 

is arithmetic operation module. 
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and frudi on u•irlth + 2 for t il<' dividf' OJWration. 

In om d ·~ign . tlw latrnrY of a ll tlw modules are set to zrro. a nd C\TI<'s per op<'r

at ion is set to one. In this wa.' ·· a fully para llel de~ign is achie,·ed : t his design is logic 

clea r \Yit hout latency: and beca u::;e c~·cle::; per operation i::; one. the triangle computing 

unit ran lw rc•used in ewr,· clock c~rcl<' . HowevN. because t h0 lark of r0gister and 

pipelin ing, th critical path is long and therefore decreases the theor tical maximum 

working frequenc, ·. At thi::; point, the optimization potential of t he circuit c.le::;ign can 

be thr topic for future rr:-searrh work. 

Design II 

Fig.4. 10 ::;how::; the other de::;ign of the "triangle compu ting unit .. \Yhich include::; 

pipelining trdmology. Sewral st age, of piprlinr rrgistrrs are set in before and a ft er 

th modules. Tn this way. the critical path in the combinational circuit is ::;horten d , 

and the maximum working frequenc~· can be increa::;ed. \\"ith pip lining. batch of 

input::; can hP continuon::;]~· fed into thr computing unit . It is good for computing 

long data str ams. 

The pipeline design can be Hexiblc. The design in Fig. -!.10 is onlY one of se,·

eml options. B~· ·etting different "latency" and "cycle::; per operation .. p arameter::; 

inside rarh float ing point opera tion module. t11P pipr linf' strnrtur in F igA.lO ran 

be changed. For example. increase the latency of the modules in the ·ame pipeline 

::,t age together. ::;eYeral stages shown in Fig.4. 10 can be incorporated into one ::;t age. 

and th0 d0sign is rh<'tngrd . Tlwrc' will hP a lot of intem ting \W>rk ran br done to 

tr.' · differ nt combinat ions of the parameter::; to achieYe better performance for the 

computing unit. 

In per:-,pecti,·e of FPGA technolog,·. brcau::;r tl1f're a rf' so man~· rrgbters in FPG.-\s. 
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piprlining is 11SW:111Y an C'ffrctiv<' \H I:'. to increasP JWrformancc . !\lorcowr . Xilinx FPCA 

has the SRL (Shift Rcgi!:>ter U ' T ) primitiYc[-lfi] which can be u!:>cd as p rogrammable 

delay clement!:> (or :'-Jo Operation. NOP). T he SRL provide a good way to add delaY 

to balance pipPline:;. 

Design III 

The design of reu!:>ing the modules i!:> shown in FigA.ll . The goal of this design is to 

minimize the uumuer of corP:; u!:>ecl in the !:>V!:itPm. ThPre i!:i only one modnle for each 

arithmPtic opera.tion, a nd the op<>ra.t ion!:> of the formulae h ave to h e clone t hro11gh the 

modules sequentially. To schedule the inputs into the operation modules in a correct 

order. a FSr-.11 can be implemented. ln!:>tead . a counter can b e simp!~· used joint!:· wit h 

a decoder. to issu<> correct control signals to the input m11ltiplPxers. The immediate 

results a rc saved in t he immediate registers. The whole system runs for several clock 

cycles as a round to generate one correct result. and the counter is rc!:>tmtcd at the 

lwginning of each round . 

This clPsign i. economic m resonrcP usagP. It is meaningful if dPsignPr want, 

to implement a lot of triangle computing units. Ne,·ertheless, t here are too many 

clock cycles to gcucrate one result. the computing cfficicnc.' · is low. r-.IorcoYer, it is 

complicatPcl to design thP counter and decoder to !:>ched11lP thP opera tion::; . 

At this st age, ba:;ed on thP liSP of Xiliu. · Hnilting point core, th rPc design solutions 

a rc proposed. The.'" a rc fully parallel d e::;ign. fully pipelined design and module reused 

design. Each of them ba::; the advantages and di::;advantagc~. The optimal dc::;ign 

:::,honlcl b e the oue trnde off among the::,P three mPthocb. 
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In the project, t he first design (the fully parallel one) is finally adopted. This is be

cause the Virtex-5 FPGA cannot contain more than 5 triangle computing units based 

on our c:>::>t irnatiou . To implement the computing nuit a::; d ::;cTilwd in Fig. -1.4, a trinn-

gle computing unit has to be reused for 64 times in a computing round . Jn this way. 

the full,· parallel design is the mo::;t ::;traightforward and reliable choice (it only takes 

one c,·c:le to complete each triangle comput ing): moreO\·er, in om implement.atiou . 

f)::,p..J.8E slice is adopted to build the operation blocks. 

The device ut ilizat ion ::;ummarY after design s_vst hesis can be shown in Fig . .f. 12 

From sYnthesis. the maximum combinational path dela~· in the circuit is 83.155 

ns in whic-h logiC' delay b 46.646 ns (55.7o/c) and route delaY i::; 37.109 11s (-14.3o/c ). 
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Device Utilization Su..ary 
Slice Logic Uti l ization Used Available Utilization 
:'\umb~r of Slic~ Registers 3 28,800 1\ 

:\umber us~d as Latch-thrus 3 
:\umb~r of Slice Llls 2. 515 28.800 s•. 

:\umber used as logic 2, 510 28,800 so. 
:\umber using 06 output only 2, 102 
:\umber using 05 output only 58 
:\umber using 05 and 06 380 

:\umber used as exclus i \·e route-tlu:u 5 
Number of rotlte-tlu·us 63 57,600 1°o 

:\umber using 06 output only 63 
Slice Logic Distribution 
:\umber of occupied Sl ices 871 7.~00 12"o 
:\umb~r of L~T Flip Flop pai r s used 2, 515 

:\umber with an unused Flip Flop 2, 512 2,515 99\ 
:\umber with an unused U:T 0 2. 515 oo. 
:\umber of fully used Lli-FF pairs 3 2,515 I•o 

10 Utilization 
t-:umber of bonded lOBs 129 180 26°o 
Specific Feature Utilization 
:\umb~r of BL"FG Bl"FGCTRLs 1 32 3•. 

:\umber used as BCFGs 1 

l:-iumber of DSP ISEs 18 IS 37°o 
l:\umber of RP\1 macros 6 
Total equi valent gate count f or desian 21, 731 
Additional JTAG gat e count for lOBs 6, 192 

Figure 4.12: D vice ut ilizat ion summary. 
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UsuaJI~·. the rf':::.nlt a ft<•r PAR5 (placing ancl ronting ) proc<'SS can lw 30<;(. to :~5<;( worse 

than the logic s~·nthcsis result[i ]. 

Synthesis and Implementation Steps in Xilinx FPGA Design Flow 

As the fiow shown in Fig..t2.therc' ar<' hm major steps lwt"·ecn d0sign rntry and 

programming fil e generation process: s~rnthesis and implement ation . 

During s~·nthesis. synthesizerfi analYzes the IIDL code and attempts to infer spe

cific design building block or macros (such as ~luxes. RA.t\ls. adders. and suhtractrrs) 

ror which it can create efficient technology implementat ions . Finite st ate machine 

(FSM) recognition is abo pmt of the HDL synthe::;i::; ::;tep. To create the mo:;t efficient 

implementation . ::;yuthe:;izer u::;e::; a target optimization gonl. to determine which of 

several FS~I encoding algorithms to use. User can control the HDL synthesis step 

using const raints . 

After ::;ynthesb, the design implementa tion process corupri::;es the following step::;: 

1. TranslatE' process merges all of the input net lists and design constraints, and 

outputs a Xilinx native generic database (NGD) file. which describes the logical 

design reduced to Xilinx primitiYes. 

2. The Iap process maps the logic defined by an NGD file into FPGA elements. 

such as CLBs and lOBs. The output design is a native circuit description 

(NCD) file that ph~·::;icall:v represent;:, the de::;ign mapped to the components in 

the Xilinx FPGA. 

"ln placing and routing;. the placer map~ logic from the design into specific loc<:~ tions in the target 
FPG. chip: the router as:,igns logica l net~ to ph~rsicul ,,·ire ~egments in the FPGA that interconn ct 
log,ic celb. For the kno\\"lcdge of de::.ign flow. plea::.e refer to ~cction ..J .2.17] According, to the 60 10 
rulP: if tlw rout<' delay b higher than ..JO percent (or morP). it is more likr lY to impron• th timing, 

lw rubing th<' routing f'ffo rl lcvf'l. 
hThc major FPCA ~.vnthc::,izcr::. for Xilinx FPC: A includ Synplif.,· and Prccbion from third part. 

aml XST from Xilinx. 
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:5 . The Placr and Route procrss takes a m<'lpped NCO fi lC'. places and routr::> the 

design to produces an NCD fi le that is used as input for bitstream generat ion 

in following ::>t eps. 

From c•ach of thf'se steps, timing rrports can he generated: 

Synthesis report is the first place performance estimates arc provid ed . The est i

mate b not vcr~· accurate at this earl)· stage, but the estimate can be an indicator of 

whether s~·nthesis results are good enough to procerd to thE' next step . 

The Post-1\'l a p Static Timing Report is useful because it. is based on the Xilinx 

timing constraints. and this report shows detailed descriptions of the longest paths 

covered by eac.h constraint. 

Post-Place and Route Static Timing Report is the report including accurate rout

ing delays. For accmate final timing information of the design , user should refer to 

this PAR timing report. 

4.4.2 Rice Con1puting Unit 

Design Comparison 

A rice computing unit contains triangle computing units. and it selects the minimum 

from the 8 results. The ideal implementation is to build 8 triangle computing units. 

and make them work in parallel. Howewr. as ment ioned in last Sf'dion. our FPGA 

cannot hold this many triangle computing units. so a single unit is reused for 8 times 

in the design . 

Thr rr arr cliffrrr nt de::,igns for the ricf' cmnpnting 11nit . F ig. 4. 1:~ shows t he 

case of using 8 t riangle computing units \\'Orking in parallel (this may become true 

in future. '"hen we haYc higher densit~· platform and optimized triangle computing 

nnit ) . The re:;nlb coming out of 8 triangle computing units are sent into a com].Htrator 
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n('twork. Through :3 ::.hctgPs of 7 compcuators. thr minimum among the rrsnlt, b 

found out. Thb ircuit can br builL in pure combinational logic or b implemented 

with pip lining (pipeline implementation is not shown in Fif!;. -1-.l:J). 

Fig. 1.11 :;how:; the de:;ign of reusin!l, only one triangle computing unit . There i:; a 

controll r in thr s~·. tc•m. which i& actu<\ll~· a counter. Thr multiplrxrrs &witch the right 

input signals into the lri anf!:lc computing unil ports according to the control signal 

clecoded from the counter. l\fen.mYhile. there is only one comparator in the system. 

At t h(' first work cycle. t he• intcrnwrliatr rrgistrr loacls in t hr first rrsults. Afterwards. 

the ,-alue in this intermediate regist r is compared to the following incoming ,-alucs. 

and the smaller value is loacled into t he intermediate register. In the 'th dock c~·cle 

the minimum b founcl out and storPd in t hr intermediate rf'gistPr. 

This dPsign saves logic resources h~· reuse. Comparing to tlw cost of building 

eight triangle computing units. the slice expense on the controller , comparator, and 

multipl xers are acceptabl . 

Synthe is Result 

.\fter synth :;is, the device utiliza tion :;ummar~· of the design is :;hown iu Fig. -!.15. 

The minimum prriocl is 86.713 ns in which logic delcw is 45.:~, 5 ns (5:3.2%) and route 

delay is ~1.328 n . ..; (-1-7.79<.). The post-map static timing result ' is 91 .2GG ns for lh 

achievable best ca:;e delay. 

Design Cou traints 

Be:;ides liDL design in the cle:;igu cntr~· step . u:;er can :;p cif.,· different types of 

constraints to Jwlp impron' thf' design pPrforma nce through the ::;Ynthesis C\nd im-

7 11li::. 1imin;.; report i::, abo !!.<'11('1'111<'0 Ubin).!; r~timn1cd dr Ja,· information: for nccurnt!' number~. 
plrr~r rC'fN to thC' po:-,1 Place and RoutC' limin); rC'port . 
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Dwice Utiliaatiaa s.-r, 
Slice Locic Utilization Used Avai l able Utilization 

~ucb~r of Sl ice R~gi~t ers 10 28, 800 1\ 

~umber us~d as Flip Flops 37 

~umber used as Latch-thrus 3 

~umber of Sl ice LUTs :J, 7·15 28, 800 9\ 

~umber used as ioeic 2, 7~1 2 28, 800 9\ 

~umber using 06 out put only 2, 303 
~umber using 05 out put only 58 
~umber using 05 and 06 381 

~umber used as exclusi,·e rout~-thru 3 

~ueber of route-thrus 61 57, 600 1\ 

~umber usine 06 output only 61 

Slice Locic Distribution 
~ueber of occupied Slices 1, 07·1 7, :JOO 1-1\ 

~umber of LL~ Fli p Flop pairs used 3, 7 15 

~umber with an unused Flip Flop :J, 705 2, 715 gg;;. 

~umber with an unused LCT 0 2, 7·15 0\ 

~umber of f ully u:;ed Lt"T-FF pairs 10 2, 7·15 H 

~umber of unique centro: s ets 5 

10 Utiliz•tion 
!~umb~r of bonded lOBs 3::!3 ·ISO 67\ 

Specific Feature Utilization 
:-lumber of BLFG. BUFGCTRLs 1 3::! 3\ 

Xwr:ber used as BLFGs 1 

~ucb~r of DSPISEs 18 ·18 37\ 
~umb~r of RPM macros 6 

Total equivalent iate count for desicn 26, 626 
Additional ]TAG gat~ count for l OBs 15.501 

Figure 4.15: Device utilization summary for "rice computing unit" . 
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pl<'nwntHtion processes. Each t~·pe of const raint sc•rvc•s a d iffrrc'nt pmpos<' cmd is 

recommended under different circumstances. 

Syntl1e~i~ con~traiub in~truct the ~Yuthe~i~ tool to perform ::,pecific operation~ . 

\ \ 'hen u::;ing X ST. ::;Ynt h<'::;i::; constraints control hoK XST procf'~~e::; and impl<'m<'nts 

FPGA resources . during the HDL synthesis a nd low le\·cl opt imi:-:ation steps . Synthe

sis constraints also allow register duplica tion control and fanout cont rol during global 

timing optimizntiou. 

Placement constra ints can be specified for each type of logic element , such as flip

flops, ROt>.Is and RAI\Is , Ft-.L\.Ps. B FTs, 'LBs. lOB~. I/0~. and global buffers in 

FPGA de::; ign~. 

Timing Constraint and PAR 

Timinp; con~traiut~ can affect the de~ign performance. The FPG.:-\ implcmeutation 

tools do not attempt to find the place and rout E> that. will obtain the h f>s t speed. 

Instead . the implementa tion tools try to meet user 's performance expectations. Tn 

other word~, t iming con::;traiut~ do uot opt imize the de~ign or change the netli~t in anY 

\vay. rath0r th0y on!~· improw th0 plac0ment and routing of the d0sign . Pflrformcmce 

xpectat ion::, are communicated with timing constraints. Timing con~traints improYe 

the design performance b~· placing logic closer together so shorter routing resources 

cau be u::;ed. 

T he implementation tools can actually do a good job of plac ing and rou ting the d -

~ign ·Kithout using timing constraints . Wit hout time constraints. the logic is grouped 

clo:: .. c!Y to proYide a good iuternal frequeuc~· alld millimizr dock ~kcw lw t he tool::;. 

Like\\·ise. t he in / out pins hm·e a logic grouping if the de::,ign has no pin assignm nts. 

If the design goal i~ to achieve higher frequenc~·. timing con~traints ~hould be 

nddecl to im,trud t he routing toob to generate the (' irc·uit of ::;horter crit iC'al pa th . 
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Sonwtinws. thr routing rffort lrYrl shonld br set higher to driw thr t t) llls to sprnd 

more C'PU time to genera te better result. lf the design is aimed to achieYe area 

efficiency (make the design take less resources ns possible). fioorplan editor can be 

n::;rcl b~· thr dcsignrr to direct!~· I a~· out the nctlists to accrss t he plncemrnt work 

manuall~'· 

Such as our work in t his thesis. the prototyping ::;~·stem at this stage is not required 

to achif've a t iming or a rf'a opt imization. The default strategv from Xilinx can be 

used , which pro,·ides a balanced optimizat ion of perform ance resul ts versus runt ime. 

Thf' placing and ronting rf'snlt of this computing unit is 102.416 11s for the achieY

a ble best case delay. 

4 .5 Sorting Engine 

In Sf'ction :3.2.2. the importance of the sorting enginf' t o om a lgorithm has been indi

cated. After ana lyzing several commonlv used sorting algori t hms. a sorting method 

which is based Oil in::;ertion sor t ing is proposed. The sorting; engine ::;hould have the 

capability to hold ctnd sort hnndrf'ds of elements in its sorting cells. Each f' lf'mPnt h11s 

three Relds: trawl t ime value. x index and z index (if writing x and z indexes into 

one vector , there arc two fields). In ever~· computing round. when a new clcm nt is 

srnt into the sorting mginr. the engiue should sort a ll the elenw11 ts accordi11g to t lwir 

, ·alue Reid . and always return t he index Gelds of the clement contains the minimum 

travel time value . In RTL. t he 1/ 0 interface of the sorting engine can be defined ns 

shown in Fig . ..J..l6. 
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Tave l 1 ime vnluf' 
·' 

32 X_mi n 

X_inclex ~ 6 

6 

Z index Sorting Z_min 

6 Engine 6 

hold 
.,._ 

shift 
I 

.... -

Figure -!.16: I/ 0 iSpecifim tion of sort ing engine 

4.5.1 Sorting Cell 

In our method . the sorting engine is designed as an array of :;orting cclb (sec Fig . 

-1.17). A single cell is connected to its right and left neighbor::; . The ndjal'eut sorting 

cells can pass thei r own travel time value fi eld and index fi elds to each other. All 

the sorting cells arc connected to the cont rol signal buses and data input buses. The 

bnses are linked from the inpnt port . and can c11.rry t he control FUHJ data to each cell 

efficiently. 

The st ruc t ure of each sorting cell can be shown in Fig. 4.1 . 

There are three regi:::.ters in each ::.orting cell to iStore the tra,·el time and indexes. 

In front of the registers are inpnt mnltiplexers. Th0 mnltiplexer switches the inputs 

into t he register according to control signals. 

The four dat a inputs of the multiplexer arc .. from left" (the value from left neigh-

hor). "insert .. (the \'Alne from input di-ltR hns ). "hold .. (the value s;:cwd in current 

register ,,·ill be fed back to itself inn xt clock c\·cle to complete t he .. hold .. fu nct ion.) 

and "shift out .. (the ,·alue from right neighbor ). 

Thr multiplexer ha::; fom control inputs. Two of t hem come from the <·OJttrol input 
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Figure 4.17: Sorting cell array. 

11 6 

!Sorting 
Cell 

bus ·'hold" and "shift". The other two come from the result of the comparators: one 

is from the result of the comparator in the current sorting cell; the other is from the 

comparator of left neighbor cell. The comparator compares the travel time saved in 

the data register of current sorting cell and the travel time brought in by the data 

inpnt bus. 

Fig. 4. 19 shows the relevancy between control signal combinations and their cor-

responding outputs. 

To further understand how the sorting engine works, let's look at the following 

example (sec Fig. 4.20). First assume that the input control signals ··hold" and "shift" 

arc '0'. The data bus brings in an incoming traw•l timf' value 18. Th compare re:;ults 

and the control bit combinations are shown in Fig. 4.20 ( 1) . The sorting cells action 

according to control combinations, and t he input travel time value is inserted into 

the right position as shown in Fig. 4.19 (2). 
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Control input Output is from CoiTl'Sponding oper·ation or the sorting 
bits ofMUX whi<·h input port eueinl' 

0 1 2 4 oftheMUX 

0 0 I I from left Trnvel time in cun·cnt cell is larger than the 

input value. The travel time in two neighbor 
cells arc also larger than the input value. 
Thus. the cell sends its values in each field to 
the right neighbor, and receives the values 

from left neighbor. 

0 0 0 I insert Trnvcl time in cmTent cell is larger than the 

input value. and travel time in left neighbor is 
smaller than the iuput value. Thus. all the 
cells at J;gbt side of current cell (including 
current cell) move their value to the right 

neighbors. The iuput travel time is inse11ed 
into current cell. 

0 0 0 0 hold Travel time nlues in cun·ent cell and left 

neighbor cell are smaller than input value. 
Thus, current cell should bold cun·ent value 

by feeding the value back to input. 

0 I 0 0 hold Control input is " hold". All the ·so1ting cells 
feed cUJTent values back to the cell inputs. 

1 0 0 0 shift All the sorting cells move their values to the 

left neighbors. The sorting engine pops out a 

result. 

Other hold Simply take: all other input combination as 
combinations " hold". 

Figure 4. 19: Control signal combinations and output ::;. 
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Figure 4.20: An example of sorting engine working. 
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In this wa:·. the n1lues in the sorting engine array cue always kept in an orcler from 

minimum to maximum. By judging the patt ern of compare results from current cell 

and neighbor cell , the incoming travel times arc inserted into right positions in the 

array. 

4.5.2 Low Skew Routing Resource for Bus bnplementation 

As the structure of sorting cell array in Fig. -1.17 suggests. the numbPr of sorting 

cells can be changed according to the application. The structure is extendable: more 

sorting cclb can be easily added on for a la rger computing task. However. if the 

array contains a large number of the sorting cells, the sorting engine woulcl consume 

more on-chip resource. and b placed into a large area on the FPGA die. Thus. how 

to make sure the control and data bu:.;cs tran:.;mit t he control and data :.;ignab to 

each sort ing cell without srriou:.; timP skews brcomes a problem. The clist ribution 

skew and long critical path keeps the ,,·orking frequency low, and impairs the design 

performance. 

To minimize the skew. "big and fat wire·· is needed . The global buffers (or BUFC:s) 

arc such primary low-skew routing resource on Xilinx FPGA. \\·hich is used to dis

tribute dock:.; or other control :.;ignab a eros:.; the entire clevice [45]. The control signal 

buses of the sorting engine for the signal '·hold'. and "shi ft" . can be routed with the ·e 

resource. 

Howe, ·er. th low-skew routing resource such a;, BUFGs is sparse. The FPGA 

used in our project docs not ha\'C' many BUFGs to route our data buses. On the one 

hand. \Ye pin our hope on a fut ure ASIC solution and to! rate the low performance 

protot.'·ping in t lw currr nt FPGA implementation . 

Still. there are de;-,ign rules and experience. such as 1/ 0 la.'·out guicleline::. and 

------------------------------
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data bus la:vont gnidC'linrs. \\'hich can hr follm\"f'd to improw prrformancf'. Simpl)· 

speaking. the gu ideline tell us that most FPCAs are designed such that their T/ 0 

pins arc placed in columns on the left and right edge of the dcYice. For example. in 

Fig. 11.21, tlH'rr i::; a FPGA has its I/ 0 pius seJXtmtf'd into three columns: 

Control Signals 

Control Signals 

Figure 4.21: Lawut rules. 

The columns on the left and right edge a rc designed for data f/ 0. The center 

column of I/ 0 pins is designed for dedicated clock pins. Cscn; should plan on a::;signing 

clocks Fmc! secondary control signals snch as globFtl res0t signal to the middlP column 

T/ 0 pins. This will ensure min imal routing delays to these global buffers and the 

DCI\ls (Digital Clock 1\lauagcr). Data siguals can be assigned to any other I/ 0 pin 

(in thP middlr or on thf' t\\'o r.dgrs ). Thr nscr may want tu plan on having target 

logic assigned to an area ncar the somce input pins and the destinat ion output pins. 

Typical dat a paths fio'A· left to right, or right to left (in the transwrsc direction ) . 

. -\!though possi ble. nitiC'al nPts do not wmally route verticalh·. This implie::, tha t 
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ns<'rs shonld tr~· to plan crit ical d<lh·1 paths such that thf' sonrc'c and df'sti na tion pins 

do not travel , ·er\· far \Wtically. Th is will help imp ro\'C t he system speed b~· shortening 

the internnl routing clelnn of clnta paths. To summarize these. ·ome lm·out rules cnn 

be illustrated as F ig.4 .21 shown . ThP implementat ion tool::; wmall.' · c!o n h0tter job 

when fo llowing these rules. 

4. 5.3 Synthes is Result 

:\ftqr s~·nthcsis, the dc,·icc utilization summary of a single sorting cell cnn be shown 

in Fig. -1 .22. ThP minimum pPrioc! is 5.126 ns (maximum frequency: 195.072 .\ / H .:) 

in which logic delay is l.084 ns (21.1 %) and route delay is -L 0-12 118 (7 .9<J( ). The 

PAR timing result is 5.49::$ 11 .~ for the uchicvnblc best case delay. 

The device utilization summary of 100 sort ing c·pJ]::; can be shown in Fig. -1.23. 

This sorting engine including 100 sorting cells ta kes more than a hal f LUTs resources 

of the FPGA chip. 

The minimmn period is 5. 126 118 (m aximum frequency: 195.072 J !H~) in which 

logic deJ a~· is 1.298 n .r; (22.2o/c) and route delav is -L5.'10 '11 8 (77.8o/c). T he PAR tim ing 

result is 6.486 11 8 for the achicYa ble best case delay. The resul ts arc actua lly not too 

bad at this st age: the distribut ion ske\\· is not that serious at the scale of hundrecb of 

sorting cf'!ls. 

4.6 Memory Systen1 

T he trawl ti11w c·omputing is C'arric·d out on fin ite differf'nce grids. In t he systf'm. 

there a re memories to store t he grid a rra.Ys. These memory components and corre

sponding memorY access management modules together compose the memor.\· s, ·stcm 

of the t rawl time C'Omputing f'ngine. Thi::; memmy system manipulate::; tlw data Ho\\· 
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Device UtiliaatioD Sw.lary 

Slice Lo&ic Utilizat ion Used Available Utili zation 

~umber of Sl ice Registers IS _8,800 1\ 

~umber used as flip f lops IS 

~umber of Sl ice LUTs 153 ~8.800 1\ 

Number used as logic 153 28.800 1\ 

~uober usin1 06 output onl y 152 

~uober usin1 05 and 06 1 

Slice Locic Distribut ion 

~umber of occupied Sl i ces 87 i . ~00 1\ 

~umber of LLI flip flop pai rs used 133 

~umber with an unused flip flop 105 153 68\ 

Number with an unused LUT 0 153 0\ 

Number of fu lly used LrT-fF pairs 18 153 31\ 

Number of unique control set s 1 

IO Utilization 

Xumber of bonded ~ 198 ISO 11\ 

Specific Peature Ut i lizat i on 

~umber of BL'FG BL'fGCTRls 1 3::! 3\ 

~umber used as BUFGs 1 

Figure 4.22: Device utilization summary for a i:iingle sorting cell. 
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Device UtilbatiGD ~ 
Slice Loric Utilization Used Available Utilization 
~ueber of Slice Ree1sters I, 800 28,800 16\ 

~umber used as Flip Flop~ I. 800 

!~ueber of Sl1ce LLi~ 15.212 28,800 5~ 

:\~ber used as loeic 1.5,:!12 28,800 5~ 

~ueber usine 06 output only 15. ll:! 
~uc~r usine 05 !llld 06 100 

Slice Loric Distribution 
:\ueber of occupied Sl1ces .5.928 ;,~oo 8::!\ 

~;uebu of LLi Flip Flop pa1n used 15.212 

:\umber ~ith an unused F:1p Flop 10, 112 15,:!1:! 68\ 

~~ber ~1th an unused LLi 0 I" ';1:' \),.- 0\ 
~umber of full~· used LLi-FF pa1rs ·1. 800 15,:!12 31': 

~~ber of unique control sets I 

IO Ut ilization 

!~ueber of bonded lQh 100 ISO 20\ 

Specific Feature Utilization 
l~:um~r of BL'FG BL'FGCTRLs 2 3:! 6': 

~~ber used as 5L'FCs " -

Figure 4.23: Device utilization summary for sorting engine with 100 cells. 

--------------
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t hrongh eAch fnnction morlule and storc1ge module. organizes all the pruts working 

jointly to form the datapath of the tra,-cl time computing sYstem. 

4 .6.1 System Overview 

Components 

The RTL diagram of the memory ncccss logic can be :::;hown in Fig. 4.24 

There are three massive memory modules i11 the ::>ystcm. including two RAMs 

(trm·el tinw RA.l\1 And ftag bit RA.l\1 ) and one ROl\1 (velocity ROl\1. which is read 

only. Contcnt!::i of t he ROM is pre-defined and unchanged during the computing). Bc

!::iides the llla::>::>ive mcuwr~', there arc five piece!::i of smnll size memory which arc u::>ed as 

buffers (one is nsed in ··data_inpuLbuffer·· module. three are used in ··other_inpuL bnffer· · 

module, and the other one is used in the "resulLbuffer·· module). The memon· s_,·stem 

can be divided into three parts with five module:::;: 

1. The first part includPs "Data_addr_gen" module and "Data_inpuLbnffer'' mod

ule. ·Data_addr_gen ·· module generates the indexes of a block of 25 grid 

points in the travel time arra' ' (please refer to Fig .::U). "Dat:::LiupuLbuffcr .. 

i:::; the buffer to save the 25 travPl time valuPs as input to the computing uni t 

(see Fig .. 'U ). These two modules in this part fetch the data block according 

to the 25 addresses generated by ·'DatLLaddr_gcn·' . and snves the data into 

·'Data _in pH Lbuffer... once the coutrol signal i::; rPceived from ('On troller, the 

·'Data_inpuLbuffer .. can send the 25 travel t ime value!::i to the computing unit . 

2. The ~:>econd part of memory system includes "other_mem_addr_gen" module and 

"other_mcnLinpuLbuf module. This part is used to accomplish the function of 

memory ncces!::i to ,-elocitY ROl\1 and tiag RAM (other than travel time RA:\1. 
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so cFI IIrd ··Ot h(•Lm<'nLaddr_gen ··). "Ot her_mcnLaddr_gen·· g<' ncratr - the ad-

drc::;ses of 8 g rid points in Yclocit.'" array and fl ag bit a rray. Thcs l points arc 

the neighbor points of the ::;tarting point (sec Fig. :3 .1). ··Other .. mcm _input 

Jmf modnle has two pir ces of bnff<' r memory in it , which ·tore the valne::; 

fetched from velocity a rra, · and state fl ag bit array. The values in this buffer 

will be fed to computing unit as inputs when receiving the '·computing st art"" 

::;ignal. 

:3. The third part of the memory sy:-;tem i::; the re::;ult buffer. It has one buffer 

memory to snYe the res11lt coming out of computing nnit . After a ronnd of 

computing. the re~;ult s are sent back to traye] lime RA J\ L st ale fl ag bit RAJ\I 

and sorting engine from this result buffer module. 

Working Flow 

In Fig. 4.24 , nt beginning of each computing iteration. t he index i (.r ) and J ( z) of 

minimum travel t.ime poin ts from sorting engine i::; sent to the module "addr..calc·· 

\-Yhich calcula tes the indexes of the rows and columns adjacent to minimum traYcl 

time point. ::;uch a::; i - 2. i - 1. i + 1. i + ~ - j- 2, j- 1. j + 1 and j + 2. l\I auwhile . 

··addr..cak '" determines \vlw ther these indexes Fi re ,·a licl (th e ind x cannot he out of 

range as a number smaller th an 0 or la rger than the data arra~ · size ). and th rc 

are tl a~~; bit output !llatching with each index to iudicate it::; valid ity (whether it b 

o11t of range). For rxample. ··ifl'" is used to notify \Yhether ''il" (r pn•sents t h 

index of i + 1) is , .FIIid The ·'addr..ca lc·· module is imp! m nt d \\'ilh combi nat iona l 

circuit . Th c:-;c result ing indcxc::; from "addr..ca lc: .. arc t hen ;;cnt to ··Data .. adclr_gen·· 

<mel ··Ot hf'Ll11C'l11 .. <1ddr..gen .. to genrra te t he memor~· address<'s. 

There are counters combined \Yit h decoders to co11trol the operation of the mod-
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ules. In Fio . 1.2'1. thPre is R "Dnt ;-t_rcLcnt" . \Yhich is a 6 1 countr r . \\ 'lwn "D<'tLL rcl cnt'' 

i ~ ~ tarted , it i::; counting from 0 to G~ . in thi ~ proce~~. the "Data_addr_gen'' and 

·'Data inpuLbuffer" ,,·ork together to :save 64 trm·cl time Yaluc~ into the data buffer . 

Thr ().! ,·nltH':s nr<' diffPn'nt c·ombiunt ion:; of thr 25 travel t inw n llues in tlw dnta block 

fetched from mcmon· as Fig. -1 .2.5 illu~tra tes . The value~ arc organized in the order 

as ~hown in Fig. 4.25 bccau::;e the computing unit can dire tly rccci,·c ,·nlues in a 

row to compute them. 

Similarl.v. th rc i~ D. "Otheu ·d_<·nt", which is a S-counter, u:scd to coutrol the 

operation of reading 8 wlocit~· YHluPs anci sta t<' fiag bit~ from com'sponcling memor~· 

compon nt · into "Other_mcm_inpuL buf' . 

After the~ bm reading operation~. computing counter "C'omp_cnt'' is ~tart ed : 

the travel time values in the ·'Dn.t:LinpuLbuffer'· . n.nd Yclocit~· valu s and flag bit:; in 

·'Otlwr_mPuLinpuUmf' <U'P fpd into CO!llpu ting nnit: at the output port of computing 

uni t. the r suits are continuou~l~' coming out. and further \\'ritt n into "resulL buffer ... 

The computing counter ha~ 72-counts. be ausc in t he computing unit \H' reuse a rice 

c·ompntiug unit for time::; as :shmm itt Fig. -1.23 . Each rice c·om1 ut iug in om rle:sign 

tftke. · 9 clock ryclP~ ( clock cycles ar<' for tri tmgle computing. a ncl on <' more clock 

cycle i~ for output buffering.) 

\\'hen computing fini~hcs. t he c results arc a ll ~tored in 'wsulLbuffer". There i:s 

a \\'rite back counter "wr_bk_cnf·. reading t ile rc:sult out one by one back to t ravel 

time R :\1. . ta te fi ag bit RA:\I and sorting Pngine. 

C<'n<' ralJ,· speaking. t lwre arr t hrcc 111 < in ;,I 0 p :, iu t lw JJ H'tuory svstem \Yorking 

flow . \\'hich are controlled by three coun ters and corresponding clccoder:s. The three 

step::; arc reading. computing and \\Titing back. The "::;t art .. ~igna ls of the:sc counter1> 

a re b:,urd from extrrnal C'Ontrollrl'. 
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Figure -L25: Data laYout in t he memory. 
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4.6.2 Xilinx Me1nory Solution 

Before presenting the design of each module in the memory s.,·stem. it is bet tcr to look 

at the technology of the memorv implemc!ltatio!l. Xilinx provide:; several memo1T 

solutions for differrnt applications. 

Block RAM 

In Virtex-5 FPGA . there are a large number of ::W !dJil block RAI\Is as shown in 

Fig. -l-.26 r46]. Each :36 r,·uit block R.Al\1 contains two indepcndentl~, controlled 

18 Kb R.Al\Is. The:;e block RAMs (abo know11 as BRAM) are dedicated hard" ·are 

resonrces on chip. Thev can be cascadable to enable a deeper and wider memory 

implementation . with a minimal timing pcnaltv. From Xilinx core generator Lool, 

user can en.:;ily implement the components such as embedded dual/ single port RAM 

modules. ROM modnles. synchronous FIFOs, and data width conn:•rters, using the 

block memory modules. For our Vi riex-5 XC:5VLX50 FPGA. there arc 48 .16 r,·bit 

block RAMs on the chip, n,nc! 1728 /(hits memor~, in total. 

In our dPsign. the travel time data arraY. velocit~· arra~r and "DatfLinpuLbuf' a re 

implemented with BRAJ\Is. The three memory blocks mentioned a rc all la rge enough 

for thi;; kind of BRA~d implementation. Furthenuorc. the 1ncmory block created from 

BRAl\1s has the othrr ff'atme that. the read port and write port can be in diflrrrnt 

width. For example, in our "Data_inpuLbuf' implementation . through the Xilinx 

core generator tool. the write port of the buffer i:; ;;et to be :32 bit wide which is the 

width of a single preC'ision Honting !JOint llltmher: wl1ile thP read port is :)t't to be 

2~6 bit that is th e \Yidth of 8 single precision floating point numbers (th is is because 

the input for computing unit is 8 single precision floating point numbers) . .1\IorcO\·cr, 

there i:; RA.l\I-ba:;ed shift register that ran prm·ide a verY efficient multi-bit \Yide shift 
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Figure -!.26: Block RA M. 

register for 11se in FIFO-like applications or as a rlel a~r line or timE' ske·w buffer . The 

fixed length shift registers a nd vari able lengt h shift registers a r built from BRAJ\'f 

primit i,·e::; without usiug any of the slice re ·ource [47]. 

Di tributed RAM 

Distribut ed RAJ\ l[ ..J. ] is th e other memorv ::;olution . It is another fun ct iona lity of t he 

LUT . Each LUT can be programmed to implement a t in~· 16-bit RA M. For large size 

memolT. block RAJ\! ::;hou ld be alwa~·::; con::; idered OYer t he db;tributed RAJ\I. becau::; 

L lJT s can also lw userl for combinatori al logic . which BRA\1 a rP rlPdirat<'d rf'sourr<'S 

only for mcmor.' · implementa tion . For our Vi rtcx-.5 XC5VLX50 FPGA . there arc 1200 

Virt ex-5 slice::; (each \ ' irtex-5 ::;lice contain::; four LUT s aml four Hip-fiop::; ). and -1 0 

/,'hit di:t ri hutf'rl memor~· can be grnrrntcd at maximum. 

In onr de::; ign. the .. velocity_inpuL buffer·· (conta ins eight 32 b1t ,·ector ). ·· flag_biLi npu L buffcr·· 

(contains bits ) and ·· resulL buffer .. (cont a ins eight 3:.!bit ,·ectors) arc a ll sma ll size 

buffer::;. the cl i:, trihuted uw morY i:-; good ::;olution for these applicat iou::;. 
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l\1emory Interface Generator 

MIG (:\femor_Y Interface Generator)f-19] is a tool used to generate memory interfaces 

for Xilinx FPGA::;. :'-diG generate::; Vcrilog or \ IIDL RTL de::;ign files. UCF cou

straints. and srript fil0s. Thf' script til0s Rrc• u. 0d to nm s~·ntlwsi . tllAP. and P R 

for the selected configuration . The tool takes inputs such as the memory int~rface 

t,·pc, FPGA familY. FPGA deYices. frequencies. data width and memory mode regis

ter value. from the user throngh Fl gmphicalus<'r intrrface (G UI). The tool gf'Iwrates 

RTL. SDC. "( C'F , and document files as output. B_Y building up memory int rface, 

user cnn take advnntnge of the on-board memory resourcr. In this wn~-- it provide · 

solution for extra large memory n::;e. 

4.6.3 Module in1ple1nentation 

There arc 5 modules in the memory s~·stcm to accomplish "da t a_mcmm·~·-accC'ss· ' and 

'·ot her_memmy _acces::;·· functions. 

Data memory address generator 

The structure of the "Data_addr_gen .. module can be shown in Fig.-1.27. T his module 

recei,·es the indexes from the "addr_cnlc'' module, which arc the ro''" indexc::; related 

to i (.r) and column ind{·xes rrlatf'd to j ( .:: ) . Thf'rf' are t\YO mnltipl(•xers whu::.f' 

cont rol ports are connected to a coun ter decoder. The decoder issues control signal · 

to multiplexer::>. nnd the multiplexer::; select right index combinat ions to form memory 

<\ddr0ssrs. tl l0nmYhil0. t hr same conntcr decoder i:::.:::.ue::; :::.ignab to control t hP ot hPr two 

multiplexers to generate corresponding fl ag bit for each address to indicate its ,-alidit_,. 

(\\·hether the address i::. out of range ). In this " ·a_,-. the output::; of thi::; module arc 

travel t ime memm·~· addrP::;::;e::; and corrrsponding Jiag bit::; along \Yith the ncldre:::.:::.es . 
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Figure 4.27: Design of data memory addres:::; generator. 
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Other memory address generator 

The structure of t he ··OthCLillCIIUU.Idr_gcn·· module which gCHCn.l.tc::; the addresses 

for 1wighhor point n 'locity \·alm•s 1-1.nd ' stat<' Hag hit.- cxn lw ~hown in Fig.1.2 . 

Thf' d<'.·ign of this moduk i::; similcu to the onr in .. Data_xddr_grn ... ThP diff<'r<'nc<' 

is that there arc only items to gen rat , ::;o the de::;ign can b ~maller . The state flag 

bit::; generat d in thi::; module arc used to indicate '"hethcr the neighbor points of 

t lw ::;tmt i11g point arc compu t<'d or not . TlJC::;r grid point::; \Yi ll b a::;::;igu<'rl the ric<' 

computing rc::;ult::; (these grid points ar ·notifi db~· "start .. marks as in Fig.:3.J ). 

Data memory input buffer 

The addr ::;ses g nerated b_,. '·Data_addr_gen .. are sent to tra,· I tim memory to felch 

the 25 data block. The fetched data i::; saved in ··Data_inpuLbuffcr .. uJoclulc. The 

~trncture of thb module can be sho\\'n in Fig.4.29. 

In the module. the buffer memoJT i · a piece of dual port memory crrated from 

block R t-.1 ·. • mentioned before. t h input port and output port of this memor.Y 

arc different in \ddlh . 

Before sending into the input port of data buffer, the trm·el time ,·alues fetched 

from travel time memory are fir::;t Hmwd through a multiplexer. The control port of 

this multiplexer is linked to thP range ch ck n•sult from ··Oata_addr_gen .. module. 1f 

any address is im·alid (out of address range). the multiplexer will select "7 J ooooo .. . ~ 
as th t rm·cl time ,·alue for this address s. 

The ·wca .. signal iu Fig .. t~9 means \\Tite enable. Iu our design. a modul<' called 

··,n•a_g<'n .. i tts<'d to genPrate a levp] signal as \\Tite enablf' signxl from two pttlsP 

•' \\' hich i:, thf' Hex rcprC'~f'ntation of a hina.n· 1·rctor rc·pr<':,<'nfing po:-.itil·r infinit.1· in ~ inglt• prrci
;:,ion Aoa1 in )!. point form~t. 
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Figure 4.28: Design of other memory address generator. 
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control sign/"\! inputs. The wri t<' ·Hdcln•ss port of tlw buft'r r mrmon· is conn<'ctc•d to 

the ·'D ata _rd _cnc· coun ter sho\\'n in Fig. 4.2-1-. The read address port is lin ked to 

"comp_cnLdccodcr'·: when comput ing starts. the travel time ntlucs arc read out and 

::.eut to th<' rice <·omputiug uni t. 

In Fig.-1-.29. it m:="· be noticed tha t there• are delay r<'gistrrs <'mlwdc!C'd in tlw cir

cuit. The reason to usc t hese dclavs is tha t the block RAJ\! memory and distributed 

RAl\1 t ake different number of clock cycle::; to complete a ·write operation. The di::;

tribnted RA~l is crPated from slic<' LUT r<'sonrcc~s . so the content can lw immediately 

read out without clock c~·cle delay. Howe,·cr, the minimum dela~· for blo ·k RAl\1 is one 

clock c~·clc . The Xiliux core generator ha::; the option to incorporate delay register::; 

inside t he memor~: as needed. 

Other memory input buffer 

Similar to data memory input bnfff' r. ·'othcr_menLinpuLbuffer" mod11le has the st ruc

ture can be shown in FigA.30. 

In this module. there arc three pieces of buffer memories to sa,·e the state ftag 1 its. 

travel t ime memory addresse::; of the 8 result point::; and 8 velocity value::. of th m . 

The flag bits sawd in "BnLmem_st '' ar<: decidPd bY two frlctors: whcthf'r the grid 

point in the tra\·el time arra~· is in the computed set or not: whether t he address of 

that grid point is out of range. These two factor::; arc incorporat ed together by the 

·'or_gate" . and the restdts are saved into thP lmff'pr. 

ThP R <)ddrPssf's of thP result points san•d in .. BuLmcm_adclr'' arr pr p<UPd for 

fut ure write back opera tion . 

The input YclocitY values flow through the multiplexer b<'fore being saved into 

the bnff<'r memory. If the corresponding ftng bi t indicMe t hE' grid points are not a 
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"good!l" onr. t he vrlori ty n lltH" is S<'t to br ·'i f800000" . 

l\lorrowr, for Parh o f thrse :3 buffers. t hrrc a rc h\·o adorcss inputs. Onf' of th<' t\\'o 

addresses is for read operation a nd the other is for write operat ion. The~· arc sent to a 

multiplexer. The write ena ble signa l "wca" for the buffer memory i:; coune<:ted to the 

control port of thP multiplr xcr. When t lw .. wra'· signal i::; "on ... the buffer mrmor~' 

arc ::;witched to wri te mode, mean while t he multiplexer output t he write addresses. 

Result buffer 

The :;tructme of ·'re::;nltJmffer .. can be ::;hown in Fig.4.31. 

The design st~·le of this moclnle is consistent with other mooulPs. There is an 

address multiplexer can s\\·i tch between read address input and write address input . 

T he "equ ... ck" unit check whether t he re::;ult from computing unit i::; equa l to 

·'7f800000". Becau:;e if a nv iuput of t he rice computing i:; ·' if800000'' (infinity ). the 

result w ill he "i£800000 .. ( infinitY): furthermore ... i f800000" (infini ty) i'IJwa~'S mel'ins 

an inYa lid input (invalid inpu ts can be the case tha t the grid point is out of ra nge. or 

the travel time on t ha t grid point i:; uncomputed ) . No m at ter in which case, if the 

result is not "good". this resnlt ,~·ill not be \>v-ritten hark to the corresponding address. 

On contrary. during write operat ion , a ll t he "bad '' results will be placed into a same 

::,pecial m emorv adclre::;:;, for example, the first or the la::; t acldre:;:; in t he m CJllOlY. 

4.6.4 Synthesis Result 

T lw de, ·icf' uti li zation sum marY of t he nwmorY arrpss system (inrluding comput ing 

u nit and all three memories) can be shown in Fig . -1. .32. The minimum period is 

88.20"1 " ·" (maximum frequenc~·: 11.337 ,1/ H z ) in which logic d elnx i:; :r;-.on n., 

Qthc meaning of "good" i ~ cxplnincd in the :>ret ion 2.:2 . 
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Figure 4.31: Design of result buffer. 
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(5:3.:39[) and ron to ri<"lay is 11 . 16:~ ns (- l6 .17c ). T hr PAR ti ming rosnlt is 9C:U65 ns 

for the achioYa ble best case delay. 

4. 7 Top Level Design 

After buildiug up all t he modules. the lnst step is to a::>semble all these modules 

together to make them work together . Fig. .J .. '3 shows the block diagram of t he 

svstem design. in which the data flow and control flow a re ill ustrated . In Fig .. L '33. 

there is the top leYel impleme11tation of the s~·stem . Comparing t o Fig . -! .3, modules 

including memory, buffers. access control logic ::mel computing nnit Hre shown into 

the upper level "memory access .. module. This module realizes the data path of th 

a lgorit hm as shov--n in Fig. 4.24. 

4. 7.1 Controller Design 

The FS:\1 of the controller can be desig11ed as shown in Fig.4.34. When t he .. star t"' 

signal is sent to controller . tl1P FSJ\1 (Finite State .!\ lachinE') of t lw controller lwgins 

t o run . It in itializes the sorting engine by loading the trm·el time data of seed poin ts 

into sort ing cells .. \ n i11i t ializo.tion counter is used to count the ini tializat ion cycles. 

P roco::>so::; of ·Tcn.ding ... ··cornpnti ng·· and .. writing !Jack ' m e ::,tart ed iu t urn by t he 

·'sta rt .. s ignals ,,·hich are pube signals issued from t he controller FS:-r. The comput ing 

stops and FSl\J goes back t o .. idle .. st ate. " ·hen the iteration counter reaches t ho 

munhor which is ::>et before hand. 
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Device Utilization SUmmary 
Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 121 28,800 1% 

Number used as Flip Flops 118 

Number used as Latch-thrus 3 

Number of Slice LUTs 3,127 28,800 10% 

Number used as logic 3,003 28,800 10% 

Number using 06 output only 2.564 

Number using 05 output only 58 

Number using 05 and 06 381 

Number used as Memory 121 7,680 1% 

Number used as Single Port RAM 121 

Number using 06 output only 101 

Number using OS and 06 20 

Number used as exclusive route-thru 3 

Number of route-thrus 61 57,600 1% 

Number using 06 output only 61 

Slice Logic Distribution 

Number of occupied Slices 1,186 7,200 16% 

Number of LUT Flip Flop pairs used 3,146 

Number with an unused Flip Flop 3,025 3,146 96% 

Number with an unused LUT 19 3,146 1% 

Number of fully used LUT-FF pairs 102 3,146 3% 

Number of unique control sets 40 

10 Utilization 

Number of bonded lOBs 62 480 12% 

Specific Feature Utilization 

Number of BlockRAMIFIFO 16 60 26°~ 

Number usmg BlockRAM only 16 

Total primitives used 

Number of 36k Block RAM used 16 

Total Memory used (KB) 576 2,160 26% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Number used as BUFGs 1 

Number of DSP48Es 18 48 37% 

Number of RPM macros 6 

Total equivalent gate count for design 2,144,182 

Additional JTAG gate count for lOBs 2,976 

Figure 4.32: Device utilization summary for memory acce::;s s~'stem . 

------------
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4. 7.2 Synthesis Result 

To implement a travel time engine with 170 sort ing cells in the sorting f'ngine, the 

device uti liL:a.tion summary of the vvhole system as shown in Fig.4.35 can be listed in 

Fig.4.35. This is too small for real 2D and 3D problems. The length of the sorting 

engine iti O(n) for 2D and O (n 2
) for 3D, where n is the largest number of grid cell::; 

in any d imension . 

Devi ce Uti liaation Su..ary (esti .. ted Yalues) 1:1 
Locic Uti l i zat ion Used Available Utilization 
~umber of Sl i ce Regi ster s ~1 6 ~8800 o•. 
~umber of Sli ce LrTs ~s :; J 9 ~8800 98'1 
l.\umber of fully used Ll"T -FF pairs 205 ~8~90 0'. 
~umber of bonded IOBs I ISO 0'. 
~umber of Block ~~~ FIFO 16 60 ::6'1 

~umber of Blr G Bl"FGCTRLs :; 3:: 6'\ 

~umber of DSPIBEs 18 18 37'• 

Figure 4.35: Device utilization ::;ummary for t ravel t ime engine. 

In our travel time engine system , the limit of t ravel time array size is decided by 

the amount of block RAM resource on the Virtex-5 FPGA chip. The size of sorting 

engine is limited by the LUT resources. As listed in Fig.4 .35 it con::;ume::; around 9 % 

LUT resource on the chip to implement a travel time enginf' which has 170 sort ing 

cells in its sorting engine. This is almost an upper limit for the design size on a single 

Virtcx-5 FP GA chip . 

From synt hesis, the estimated minimum clock period is 1514.212 ns (maximum 

frequenc~': 0.66 !lf !Tz) in wh ich logic delay is 264.569 n. (17.5o/c ) a.nd route d lay is 

1249.643 n.s ( 2.59C) . 



Chapter 5 

Summary and Conclusions 

5.1 Conclus ions 

The rc::;carch in our group i:; m aiuly conccm cd with Computational Gcophy::;ic::;. Rc::;cr

\·oir Charact erization and SPi:;mir l\1odelingj l\ligration probl!:'m::; in oil <Wei ga::; ex

ploration . To accelera te computing sp ed and imprO\·e the proc ssing effi ciency of 

seismic migration process in subsurface surYC:V and oil exploration. we dcYclop d a 

new uwthodologY including a noYel a lgorithm and n corre:;J ondiug ::;uftware/ hardware 

implementation frame to carr.\· out the travel t ime computing on are onfigurable dig

ital circuit platform. 

Throngh the. urwv of sPismir migra tion. at:: m•ll a. uthC'r sC'ismir datR J)l'OC!:'ssing 

t echniques in the oil and gas industry. the focus is put on the ·eismic travel time 

computa tion problem for Kirchhoff migra tion . The first chapter reviC\\·cd g;cophysic::; 

fundauwnt .-t!s. 0xpbiuing c-onc0rning c·OJH·ept;:, <)IH..I ;:-,t unniariziu g t lw sign ificnnc<" of om 

research topic. l\loreO\·er . in the first chapter. t he two major methods to calculate 

::;eismic trm·cl time::;. ray t racing method and eikonal equation soh·ing method. arc 

introduced. T he fa.-:,t nwrching met hod that solves eikonal equations in finite diff<"r-

146 
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rn cc grid is reYi<' \W'd . \\'e proposr our nov<' llPast-timr path fast marching mr thod in 

the ~ccond chapter. through combining t·he ad,·antage~ of' ray tracing method . eikona l 

equation ~olYing method and fast marching method. main!~· ba::;ecl on the theory of 

\ ida lr and Sethian . !\Inthcmatin; of thr method b prc::;cnt rd in hYo n..-::qH'ct::;: the local 

scheme of extrapolation and th e inductiv scheme. Hi gh level design of th e a lgori t hm 

is proposed: the algorithm parallelism and JD extension arc di::;cu~~ed . 

In chapter J. !::iOftwarc !::iimulation i::; run for verifica tion of the lea::;t-time path 

fast m arching method . and the ~imnlation re~nlt is present ed . Basrd on the soft,Yare 

simula tion . a parallel ,·e r~ion of th e a lgorithm i~ propo~ed . The program de~ ign for 

multi-proce::;.-:,or progn:mnning with ~fPI technique i!::i di::;cu::;::;ed . 

The major hardware ::;~ ·stem design work is written in chapter 4. The C"hapter 

begin~ with the analysis of the n ece~~ity and fea~ibilii~' of the de~ign of a digit a l 

~~·~tem to implement the a lgorithm onto a FPGA chip. Then . following the FPGA 

de::,ign fiow and the top-down cle::;ign methoclolog~·. om' de::;ign i::; introduced ::; t ap, 

by ~t age from top l en~] block di agram to thP RTL ~tructure map of each module . 

. ..\t the ~ame time. the fea ture of the FPGA platform we chose, the methodolog~· and 

t echnique for FPGA ::;~·nth e::;i!::i , a nd implemeuta tion are di !::iC U!::i !::ied based on our design 

practice. The ~~·nthesis re~ulb:. of the de~ ign are compared a nd anal~·zed . 

\\·e a lso summari~e our experience of choo~ing our re ·earch direction . \\'e im·ent a 

ue'" a lgorithm to imprm·c the da ta proc:cs!::i ing in the oil and ga::; iudu::;tr~·. \\'e propo::;e 

tlw pnm llel program solut ion of the n.lgoritlun iu :-,uft wnre. \\ 'r abo mi~e the idf'a 

of bui lding a applica tion specific comput ing chip to gain th e maximum parall elism 

and accelera tion . The project has been an exciting experience of creatiYe academ ic 

rE'!::if'8.l'C'h 0 
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5.2 Future Work 

This thesis is the first dissertation on topic of Least Time Path Fast Marching 

Method from our re::.earch g;roup. It is the initial work, and the approach of using 

a Fl G. solution has lwen drmonstratrrl. Thrrr ;ur scn•ral ~.>uggc'strrl points ran be 

taken as the direct ion for futur research work: 

1. As mrntioned in chapter-!. hrcausr the limitation oft chnolog~· anrl dc•sign ca-

pability. implementa tion of the sorting engine presented in this thesis is not op-

timal. Some of the modules can be refined \Yith more testing efforts to find out 

optimized parameters. for instance. the pe.rformanre of compu ting unit ran be 

improwd t hrough more experiments of the Xilinx fl oating point cores. Further-

more. adopting ad,·anced technolog~· in the future . :;uch &; abundant on-chip 

global lew,· ::,;kew rout ing resonrce:::; and hig;h-sp eel external memon· int<'rface. 

will l arge!~· facilita te the design of sorting engine and them mary system. 

2. The parallelism potential of this travel t ime engine can be further examined . 

The concept discu:::;sed in preYious chapters, such a~.> network comput ing on chip 

anrl FPGA array should be trierl out in the future research . Our algorithm is 

best suited to be implemented onto a FPGA arra~·. and the applicabi lit~· on this 

platform actuall~· det ermines the succes:; of the method. 

3. In futnr . cross-platform comparison among diffen~nt implementRtion solutions 

on this trm·el time computing problem will be an interesting research topic . 

The various implementation platforms include sequential prop;ramming on :;ingle 

CPL'. l\IPI programming on mult iple proce:->sor rlu::.ter. GPC 1 programming. 

1 CP i:, n drrlic;llf'd ~rnphic::- rcndcrinv, dr,·ic for a pl'r::,onnl computer. ,,·ork:,tntion. or :;nmr 
con~olc . lodcrn CPll::. arc 1·cr~' effi cient at mnnipulatin;1; a nd rlb plnrin:; comput.cr ~raphic,. nncl 
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ccll2 procc:o;sor programming anct r<'cunfigm abl<' computing on FPGA. 

·1. This tnw<'l time <'11ginr can lw commrrcialized. Furthr rmorr. thr product cHn br 

designed as a platform that would fit the application of a cla::;s of Gni1e difference 

computing method::; with similar ::;tru<:ture. in which on!~· a ::;mall amouut of 

moclific""tion i::; rrguirecl on the reconfigml'lbl<' chips for cHch algorithm. 

5. Besid<'s t<'chnolog:v and impl<'nwnt.ntion i:su<'s. then' a r<' some more work C<tn 

be done to impro\'e the algorithm itself. Due to the increasing demand on 

JD dat a proce::;::;ing capability from oil and ga::; indu::;tr~'· the ::;ebmic migration 

c=dgorithms are l'W>lving to tlwir ;~O ver::;ion . the ::><1,111(' trend a::; on om algorithm. 

The above issues either arc cuncntl~· umlcr inYestigation or will be addrc::;scd in 

the future research. 

I h r ir hig,h l.v pnrallrl strucl tu·r mnkr~ thrm morr rffrcl.iY<' I h n.n ~cncrn l-pmpo;,r CPU~ for a. rnngr of 
complex a lgorithms . The r ~carch of taking ath·antage of it::. pa ra llel structure and floa ting point 
pruce5::.ing capability to w h ·e ~cientific computing problem~ becomes a hot topic in th :.e da~·s. There 

·a re ~ome re::.ea rcher:, in our g,roup are now engaged in t hi:, neld . 
~ ( 'r ll i::. H micropl'O('('~~OI' <li'Chitectun• jointly U('\'f'ioprd by Sony. To,hiba. nnd TB\ r 0 {'pjj combinr, 

n g<'nr rnl-pnrpo:sr P o\\'rr Archit ect urr corr of modest prrf'ornwncr \\·i I h , 1 I'L'aJll litw d coprocc·::.::.in;.; 
r lcmrnt:, \\'hiclt g rc:1t ly acc·Plrrale mult inwdin. and , ·ret or procr::.::-oing, npplicn l ion~. n,.. \\'el l n, mn.ny 
other form::. o f rlcdicn.led ('0111 putnl ion . \\'e have ::-.onw re,Pa rcher~ in t hi~ field a,.. well. 
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