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Chapter 1

Introducti~n (“‘eophysics)

1.1 Subsurfac Exploration

Todav. the world has intense need for oil and gas resources. and these necds are
driving the [ast growing rescarch in geo-sciences and related ficlds.

Geo-scientists in the petroleum industry - including geologists. geophvsicists. geo-
chemists ad paleontologists - study what has happened to rocks that mav be buried
thousands of meters below the  wrface. how those rocks were formed and affected by
cevents stretching back millions of v s, and how to identifv traps where oil and gas
have accumulated within rock  rmations.

On the other hand. compu  engineers assist on the topies of geophysics comput-
ing and seismic data vist  ization . creating devices and developing new methods
and alzorithms. The basis of their work is thie understanding of subsurface exploration
theorv, upon which they can bring computer technology into. This first chapter in-
troduces the application of our algorithm and the related geophyvsics theory to help
readers understand the mneani  of our work. Morcover. from this introduction. vou

may get some ideas where to ind t niche in petrolewm industry for computer engi-
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neering research.

1.1.1 Role of Geophysics in Oil and Gas Exploration

Borehole Tool Method

Finding commercially valuable accumulations of hivdrocarbons is rarcly simple: usu-
ally. they arve to be fonnd at depths of at least several thousand feet below the gronnd
surface. In some arca of the carth. it is possible to infer the geology at these depths
from that of the rocks exposed at e surface. but it is more common for the near-
surface geology to bear little or no relation to the deeper structures.  Ultimately,
knowledge of this deeper ology can come only from drilling. but a deep borehole
is expensive and in many arcas {especially offshorey the delincation of structure by
closelv-spaced drilling is © hinkal

However. geophyvsics canar st exploration in some wavs: seismic reflection method.
which is a major measurc ext ivelv used in scarch for oil and gas. is capable of giv-
ing a resolution of at least a fow t¢  of meters vertically and a few lhindred meters
horizontallv. This increases tremen Husly the knowledge that can be gained from a
few exploration boreholes. To introduce Seismic reflection method. let's review the

concept of velocity model first.

1.1.2 Velocity Model of the Earth

In geophvsies. the carth is usuallv thought as a lavered structure. The geophysicist
regards it as a series of Tavers with rather abrupt changes in velocity of seismic wave
transmitting between them verticallv. but only gradual changes laterallv, along a
laver.

In a velocity model’d . it is assmmed that the seismic wave travels at a specific
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points in the subsurface are sampled more than onee by rayvs impinging on that point
at different angles. As a shot goes ofl. signals are recorded [rom cach geophone along
the cable for a certain amount of time. producing a series of scismic traces. The
scismic traces for cach shot {(called a shot gather) are saved on computers in the

recording truck.

Scismic Data Proce: ng

With an arrayv of seismic traces in computer. digital data processing ol raw scisnic
data is a main task of geophysicists. Betore seismic data can be sent to oil companies
to be interpreted for prospecting, geophysicists apply a sevies of techuigues to convert
the ficld recordings into usable seismic sections. The techniques ave various and
complicated upon different applications: for example. belore stacking the seismic
traces. the static corrections need to be done to correct the data for the effect of
near-surface time delayvs: and both - efore and after stack. various filtering processes
arc applied to improve the ‘signal to noise ratio” and increase vertical resolution.
Especially. before all kinds of processing. we shall finally convert seisinic section into
a form showing the true spatial ¢ position of the reflecting surface. throngh the
process of migration. An example of typical processing sequence from raw trace data

to interpretable seismic grapl is shown in Fig 1.4

Role of Computer Engineering

There is no unique processing scquence which can be applied to all seismic data: it
15 alwavs necessary to balance improvement in quality against processing cost. Re-
scarchers keep devising new algorithms and incthods to satisfy all kinds of processing,
tasks. This active research ficld is also where onr computer engineers ¢an play on

~kills to develop new computing devices and high performance solutions to facilitate
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1.2 Seismic Migration

Because readers of this thesis mav lack of geophvsics background. so introduction in
this section obviates froni excessively using jargons and ab  act math.

In short. seismic migration is a wave equation based process that removes distor-
tions from reflection records by moving events to their correct spatial locations. and
by collapsing energy from diffractions back to their scattering points|L0]. Migration
is a tool used in seismic processing to get a picture of nndergronnd lavers. It involves
geonetric repositioning of returned signals to show an event (laver bonndary or other
structnre} where it is being hit by the seismic wave. Seismic Migration is a central
step in the seismic data processing How. It represents the culnination of “standard”
processing. and it provides input for several relativelv exotic non-standard processes.

Migration can he taken as  seismic tmaging process which provides a geometrical
image of the subsurface reflectors. as well as quantitative estimates of the reflection
cocflicients[11]. According to given seismic data and different accuracy and computing
expense requirements, v ous migration techniques are developed from different wayvs
of solving wave equations.

Among all these methods. Kirchhoff migration has been widelv used to perform
Pre-Stack Depth Migration (PSDMI. while Wave Equation Pre-Sta Depth Migra-
tion {(WE PSDA) has become competitive in recent vears. WE migration has theo-
retical advantages over Kirchhofl migration with implicitly dealing with the approxi-
mations often made by the Kirchiboff methods. But WE method is more costly, and
wintil recent vears it has transformed into o cconomically feasible method because of
the advancement in computing technology. Kirchhofl was the overwhelming histori-
cal pre-stack depth migration method of choice. Although making approximations on

the imaged data. and greater imaging accuracy offered by other migration metlhods,




CHAPTER |. INTRODUCTION (GEOPHYSICS) 9
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Figure 1.5: Smear the recorded wave samples hack to the reflection point

Kirchhofl migration promises to remain a method of choice for pre-stack migration.
especially in 3D migration. Generally speaking. Kirchhoft Migration is economical,

reliable. versatile, and easy to implement and understand|£2].

1.2.1 Kirchhoff Migratic

To perform Kirchhofl migration ¢ needs to first compute travel time through a
velocity depth model. Then for every travel time of the computed travel time table.
a sample of the input data is matched. The amplitude of this sample i~ scattered
along the migration impulse response corresponding to a wave [ront or location of
cqual travel time as in Fig.1.5. Mathematically. this can be expressed as a process
of spatial convolution. Crude amplitude decay is then considered along the impulse
response curve. Impulse responses are stacked to recreate a scismic reflector where
cuergy “stacks in” and theoreticallv cancel out cach other i the same stack process

outside this zone. This constructive smmmation creates the Kirchhoff immage. 121
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1

Take an example'2) of migration of a single seismic trace!

Given a source and a geophone on the free surface. and a single dipping reector in
a homogencous acoustic mediuni. there will be only one primary reflection recorded in
the scismic trace Fig.1.6. For convenience. multiples and direct waves will be ignored.
namely. there is only one pulse in the seismic trace sample representing the main wave
front. The arrival time of this event is equal to the travel time for energy to propagate
from the source to the reflection point P and from P to the geophone, the two-way-
time TWT between source point  id reeciver. The dashed line in Fig. 1.6 depicts
the associated specular ray. To backproject the observed energy to its subsurface
reflector. the first step is to compute the travel tinies based on bothh 10 source point
and receiver poitn. Simply speaking. travel time is the time that seismic wave spends
on travel within the subsurface. If the travel time of the wave from source point to the
reflection point and receiv  point ] Heen known. in the seismic trace record. it is not
difficult to find out the corresponding amplitude sample which matehes the refleetion
cevent happened under  ath. From this point. vou mav already have an intuition
on the significant role of travel time in the migration processing. Couventionally.
there are two methods to ¢ ipute travel time: rav tracing and solving the Eikonal

equation. The travel time computation will be introduced in later sections.

The next step in Kirchhoff migration is to smicar the observed energy to its primary
reflection point. This is a blit - op  .tion because know nothing about where the
true reflection point is. As a result. the event has to be migrated to all possible

reflection points. As in Fig. [.7. such image points 1 are those whose reflection travel

LA sefsmiie trace Is the s recorded by one of the geophiones: it records the amplitude
and timing of the seisimic wave reflection from subsurface received on the cround. A seismic trace
represents the response of the elastic wave-fick! to velocity and density contrasts across interfaces of
lavers of rock or scdimants as cnergy travels from a sourec througlh the subsurface to o receiver or

POCOIVET ArTav.




C'HAPTER . INTRODUCTION {((GEOPHYSICS) I
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Source ¥ l Receiver
. . A
)
)
]
)
t
)
L]
L]

Figure 1.6: Seismic forward modeling for a homogencous medium. where a single
dipping reflector is embedded. The only event being observed is a primary reflection.

From H. Sun. 20012,

times 7, +7,, are cqual to the observed travel time of the event. Thus, the event
energy is smeared to points .y a1 vy Inaddition. all of the candidate points (ill up
an entire (‘I‘lipsoidal zone as shown in Fig.1.7. When the medium is heterogeneous. the
migration aperture becomes a quasi-ellipsoid. Fig. 1.7 depicts a full-aperture Kirchhott

Migration. where the observed event is migrated to an entire ellipsoid.

Fig. 1.8 shows that the dipping reflector in Fig.1.6 can be clearly resolved alter
many traces have been migrated. The common tangent of the quasi-ellipses depicts
the curve of the laver interface. Stacking? of migrated traces helps strengthen the
true rellectors and attenuate migration artifacts. Namelv. the common tangent part
of the quasi-ellipses will be highlighted.  Aecompanving with many other technical

measires such as truncating the migration aperture and applving anti-aliasing filters.

“Rovehly apeakine. stacking can he nnderstood as eathering together the received wave samphos
- -

for the ~ame reflection point recorded in different seismic traces.
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Figure 1.7: Full-aperture Iirchhoff Migration of a single trace. Eachi time sample on
the trace is smeared along an ellipse. and cach event s smeared along an ellipsoidal

zone. Taken from H. Sun. 2001[2].
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Figure 1.8: Nigration of several seisiic traces. The encrgy from the wings of the
halt-ellipses incoherently cancel. while the cnergv from the common tangent to the

half-cllipses coherently superimpe From H. Sun. 2001[2].

the inigration can give an image of the subsurface structures.

From this example. it is easv to see the important role which travel time plavs in
Kirchhofl migration. The travel time table or sav travel time map work as the refer-
cnce scales to interpolate the wave samples in the spatial convolution. To compute
the travel time fields is o1 of the core tasks in Kirchhoff migration process. In next

scction. Iet's see what travel time is and the difficulties to compute travel times.

1.2.2 Travel Time

The first step to apply Kirchhoff migration is to compute travel time ficlds. For 2D
subsurface areas we can take it as a plane with the coordinate axis .\ pointing to the
direction along the ground surface and coordinate axis 7 pointing downward in depth.
By meshing this interception plane of the carth into evenly distributed erids. Finite

Difference Method (FDMN ) can be applied to do computation and numerical analvsis
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mversion applications. For instance, the inverse migration and velocity estimation®.

1.2.3 Travel Time Com itation

Travel time calculation is computational intensive. Research is advaneing toward
accurate. robust. efficient and cconomical affordable methods. Generally speaking.
all these method can [all into two major categories: Rav tracing method and methods
that arc based on a direct numerical solution of the Eikonal cquation using finite

differences (we refer it as Eikonal equation solving method in this thesis).

1.2.4 Ray Tracing Method

Ray tracing is a well practiced graphic art. The concept that seismic energy of
infinitely high frequency follows a trajectory (or say rav path) determines the ray
tracing equations. Physically. these equations d  ribe how energy continues in the
sanie direction until it is refracted and reflected by velocity and density variations.
There are two kinds of rav tracing problems. nawmely initial value and houndary
value ray fracing. Initial value rav tracing is numericallv rather stable and fast:

however. in geophysics and seismological applications such as ear  quake location and

velocity structure inversion. ©  -Point (TP ray tracing is a more commonly adopted
method. - co-Point ray tracing is a boundary value problem|13]. T rav tracing in

a heterogencous isotropic medium has been investigated by many scismologists and
mathematicians {Julian and Gubbins, 1977[14]: Cerveny ot al.. 1977[13]: Perevra et

al.. 1980{16]).

Under TP rav tracing. there are Ray Shooting methods and Ray Bending met ods 5).

*Velocity estimation s the inverse problens of conversing time migration velocitios to true seismic
velocities (the velocity model built in Cartesian depth coordinates) by geometrieal spreading process.,
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———‘—-/_/\

First trial ray Final ray path

Second trial ray

-

Figure 1.12: Ray Shooting Method. from D. A. Waltharn. 1988 (3.

————'—/—/\- I

A

2 Z- Final ray path

vy

AN

Figure 1.13: Rav Bending Method. from D. A, Waltharn. 198% [3].

The shooting method fixes one end of the ray path (source point ). and takes initial
mcidence angle and initial azimuth. and then use rav path equation to find the co-
ordinates of another end point (Fig.1.12). It is like a fan of ravs is shot from one
point in the general direction of the other. The correct path and travel time to con-
nect the two points mayv then be approached with successively more accurate guesses.
Whereas. hending method fixes the two ends of the rav. and takes some initial esti-
mate of the ray path and perturbs it until it satisfies a minimum travel time criterion
(Fermat’s principle or the principle of least timel17}13]) (Fig.1.13). Bending method

is an efficient way to trace a rav hetween two given end points.
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onto a regular grid is a popnlar and robust method for computing diffraction cnrves
for Kirchhoff migration. There are two reasons 1o review rav tracing method in this

section:

L. Wavetront Construction methaods and Finite Difference methods solving Eikonal
Equation are two widelv used methods to caleulate travel times. Our method
raised in this thesis is one of the Fikonal solving methods: before introducing

our algorithm. it is better to nnderstand existing, algorit lims.

2. Some comments given to ray tracing methods is that{19] ray tracing methods
can accurale in deseribing both travel times and rav paths. but require ex-
pensive global wavefront construction and travel time interpolation from these
wavefronts to grid points.  Indeed. from the ray tracing method. high aceu-
racy {ravel time tables can be achieved (theoretically. by rav tracing. “exact’
solutions can be achievable by analvtical solving ray tracing cquation). These
high accuracy resnlts are usually taken as the reference to verify the travel time

results generated from new methods.

On the other haud. an alternative to ray {racing is directly solving the cikonal
cquation with finite differences at cach grid point. without computing ray paths.
Solving the Eikonal equati on such a grid simplifies the problem of interpolating
times onto the migration grid[19].  is procedure also climinates several issues asso-
ciated with rav tracing. such as: shooting versus TP ray tracing. how many ravs to
trace. and the tvpe of velocity model aridded or intertface-based) to use. A fither
reason to study gridded solutions of the Eikonal equation is for travel time caleula-
tions in three dimensions. where even the simplest rav-hased inethods can be horribly

complex.
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1.2.5 Eikonal Equation Solving

In 1988, John Vidale published his famons paper Finite-Differcnce Caleulation of
Travel Times[5]. which opened the wav to calenlate travel times on a regular velocity
arid by solving the Eikonal equation using finite differences. Following his work. manyv
researchers {as well as our group) designed their own Eikonal solvers to compute travel
times.

Vidale first extended the finite difference schemes described by Reshel and Koslofl
(1986} to comwpute travel times of first arrivals in a 2D isotropic media model (this is
the same assumption used in our algorithm. namely. compute the first arrival travel
times in a media model in which the vertical velocity and the lateral velocity are the
samce on every grid point): then he expands the problem into 3D model two vears
later (1990,

Fikonal cquations are obtained from the elastic-wave equations by scarching for
planc harmonic solutions and applving the high-frequency approximation of rav theory|6].
The propagation of 2D geometric rayvs and the propagation of 2D wavefronts can be

guided by the Eikonal equation of ray tracing.
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In the same velocity laver of a model. or in vicinity of a grid point where the
velocity in that small region can be  ought as the same. the slow s » (the reciprocal

of velocity) is a constant. Eq.1.1 therefore can be written as Eq.1.2.
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Local Scheine of Extrapolation

Considering the geometry in Fig. 1 156, assume the travel times between the points
Aitgr, Dyot)) and By of,) and the source point are known. and the travel time ¢,
between point €' and the source point .1 is sought. Using two finite differences Eq. 1.3
and Eq.1.4 to approximate differential terms. Eq. 1.5 can be derived. 1t evalnates the
travel time of point ') using the travel times from the source to points . 1. /7). and
B,. in a plane wave approximation’ as shown in Fig.1.16. This Eq.1.5 is called Ex-
trapolation Formula. which determines the local computing scheme that evaluate
the travel time of a uncomputed point based on the other three known travel times

on the points in the smue grid.
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On the other hand. Vidale also derived Eq.1.6 to deal with the extrapolation of
the wavelronts which have high curvature. . and -, are the coordinates of the virtual
source point of the circular wavefront with high curvature. t, is the origin time for
the virtnal sourcel3!. It is straighttorward that. generated from a point wave source.
the wavefronts at close-origin region have higher curvature than the ones at far-origin
region as shown in Fig.1.17. The combined use of Eqg.1.6 in closc-origin region and

Eq.1.5 in far-origin region is called o "mixed” scheme by Vidale. which can provide

NWhen transmits far from the sonrec point and envvatnre of the wavefront becomes Jow. the wive

can be modeled as plan wave.
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Fignre 1.17: Hlustration of the curvature change.

better accuracy. For purposes of achieving high speed rather than great accuracy.

Eq. [.5 may be used exclusively in a “simple” scheme.

Iy = 1| s\/(.z'g B IS E R /DK {1.6)

Inductive Schene

The induetive scheme of adding a ring of travel times to those already calculated is
the sccond key point of the o rithm. It determines how {o spread and extend the
computation to all the grids in the domain.

Vidale's inductive scheme is as shown in Fig.1.18. Consider the ring of radius 5.

where all travel times inside the ring are known. but travel times on and outside the
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Figure 1.1%: Picture of the 2-D grid as the numerical calculation of travel time is
progressing. The ring of points shown as filled circles are about to be timed. The
liollow cireles indicate points that have had their travel time calculated. The donble
circle in the middle shows the source point. The dots are not vet timed. nor will they

be timed until the ring of filled circles is done. Figure is from Vidale. 1983, [5].

ring arc unknown. Solution will proceed on the four sides sequentially. followed by
the four corner points. Computing can start arbitrarilv with the right side. and find
travel thimes for the points within the four sides of the rectangular.

The procedures can be shown in Fig.1.19. First of all. the points in the row are
examined in order from left to right. and the points that are at a relative minimum
are identified. Note that there are usually several velative minima oun one line {(as in
Fie. 1.20}.

Then. in step 111, a relative minimum in the cirrently computed row is nsed
to evaluate the point adjacent to it. A relative minimum is assumned if there is a

relative minimum in the time for the adjacent point in the adjacent row that his
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Figure 1.21: The expanding square ring process: the initial stage is the emission time
at a source point on a regular grid. Thercafter, travel times are determined along

successive square rings centered at e source, using travel times on the previous ring.

already been solved in the previo ring. To time the first point on an edge, a non-
centered finite-difference of Eq.1.2 must be used. Vidale used the plance-wave formula
as Eq.1.7: Where f4 is the time to be found, #, is the relative minimum time in the
inside row, and #; and t, . the times on either side of the point whose time is ty. The
Fig.1.21 may give vou a better illustration of this idea. Remember that as the local
Extrapolation scheme of ..4.1.5 is used, three points in a grid have to be known to
evaluate the fourth one. that is why there is this  ep to compute point P as Figl.21

shown:

ts - to 4+ V(hs)2 = 025015 — 11)2 (1.7)

In step (2)( as shown in Fig.l ), starting at each relative minimum point. so-
lution progresses along the row | ling the time for cach point until the relative

maxiunun is encountered. The computing is iteratively following Eq.1.5 that in com-
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Figure 1.24: Sq e wavefront spreading pattern.

spreading out (see Fig.1.24).

Limitations of Vidale’s M hod

Prior to Vidale’s work, travel times were mainlv computed using ray tracing. While
these ray-tracing methods offer a high degree of accuracy. they also pose interpolation
problems in shadow areas and areas where multiple caustics develop. The use of finite
difference travel times solved the problem of interpolating in shadow zones. but new
issues ensued|20]. In Vidale's Finite Difference method, the way that the computation
cvolving is not an cxact mimic of the scismic wave transmitting in the nature. so there
are limitations would n te t.  method fail in the models that have strong velocity
variations. It is obvious that seismic waves are not spreading as the shapc of a square:
rather it is a better way to mimic the wave transmitting by following the Fermat's
Principle. Two points need to he noticed in Vidale's method: (1) by theorv. the
solution must follow causality, that is. the time for the part of the rav path leading
to a point must be known before the time of the point can be found: (2) in practice.

solving for progressively earlier times along a row results in an instability.
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1.2.6 Fast Marching Method

Following Vidale's work. a lot of travel time computation methods are raised at carly
Y0s. After in depth study. rescarchers coucentrated on the core of this problem: com-
puting travel times is eqitivalent to tracking an interface advancement with a speed
normal to itself given by the supplied velocities. The goal in such interface advance-
ment is to deal accurately and robustly with the formation of cusps and corners.
topological changes in the propagating interface, and stability issues in computing
space.

In the 1980s. the level set method[21) was developed by the American mathemati-
clans Stanlev Osher and James Scthian. Generally speaking. level set method is a
uumerical technique which can follow the evolution of interfaces. It bhecame popu-
lar in many disciplines. such as image processing. computer graphics. computational
geometry, optimization. and computational {luid dynamics. In 1996, based on previ-
ous work. Sethian raised fast iarching methods|21]. which specifically ainmed at the
solution of the Eikonal equation. His technique hinge on the construction of entropy-
satisfving weak solutions by ng numerical schemes borrowed from the technology
of hvperbolic conservation laws and aimed at constructing the correct viscosity solu-
tion of the appropriate partial differential equations[20]. He disenssed fast marching
method on the travel time computation issues in the geophvsics application by pub-
lishing several papers from carly Y0s until recently|20] |22} [23] [24]. The method
we have developed in this thesis is actually originated from consideration of the fast
marching method. Before presenting our algorithm fast marching is introduced first

as theorvy foundation.

In Sethian's method. he used the once called finite diffcrence upwind stencil{21, (20

to locally solve and advance the cikonal equation. He used this stencil in combination
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Fignre 1.25: Wavefront evolv:  of the tast marching method. From 1. Lecomte. 2000,

6],

with a wavefront construction technique based on building a narrow band around the
travel time wavefront. The travel titne values are stored on a heap. with the minimum
value at the top of the heap. ™7 wavetront is alwavs advanced by using the minimum
travel time value in the heap. The cost of a heap operation is log( Ny ) where Ny
1s the total numiber of travel time values in the narrow band.

The fast marching method sol i eikonal equation by directly mimicking the ad-
vancing wavefront (sce Fig.1.25). Every point on the computational grid is classified
into three groups: points behind the wavefront on the ~upwind™ side. whose travel
times are known and accepted: points on the wavefront in a narrow band arca. whose
travel times have been caleulated. but are not vet aceepted: and points ahead of the

wavelront on the "downwind™ side. The algorithm then proceeds as follows:

1. Choose the point on the wa  ront in the narrow band set with the smallest



C'HAPTER |. INTRODUCTION ((GEOPHYSICS) 3
travel time.
2 Accept this travel time into the set on the npwind side.

3. Advance the wavefront. so that this point is behind it. and adjacent points are

cither on the wavelront or behind it.

4. Update travel times for adjacent points on the wavefront by solving Eikonal

equation numerically,

5. Repeat until every point is behind the wavetront.

The update procedure in step 4 requires the solution of a quadratic equation which
is the numerical approximation of cikonal equation. The nmumerical approximation
scheme used here is finite difference upwind stencil which construcets an entropy-
satisfving approximation to the travel time gradient (eikonal equation savs that travel
time gradient is the inverse of velocity at that point). For thie concepts such as
entropy condition and entropy-satisfving approximation. please refer to [21] and |20
for details. Thev are concepts under the level set and fast marching theorv. This
scction s trving to make reader have an intuition of the inductive scheme of the
Sethian's method (rather than the mathematie derivation for the numerical scheme).
because in our algorithm. the inductive scheme is similar to Sethian's. but we adopt

a distinet numerical scheme for local extrapolation.



Chapter 2

Algorithm De._ign

In this chapter. we first present Vidale's and Sethian’s work. and then we developed
Least-Time Path Fast March 1 Method. It originates from the result of rav
tracing. finite difference and fast marching. In local extrapolation scheme of the
algorithm. according to rav tracing theory. the formulac are developed based on simple
geometry. following Fermat's principle of least travel time: for introductive schenie of
the algorithm, following the ideas of Sethian's fast marching method. our algorithm
avoids the causality problem of Vidale's finite difference method.

Moreover. two versions of our algorithm are proposed. The sequential version
is based on classic implementation techniques. while a fullv parallel version can he
operated on Networking Computing on FPGA Arrayv or other parallel computing

platform.

2.1 Local Scheme of Extrapolation

Reviewing Vidale's local scheme in Fig.2.1. his numerical approximation of Eikonal

equation is straightforward: Eq.2.1 expresses the assumption that the travel tine from

Co
[
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Figurc 2.1: Vidale's local scheme. From Vidale. 1988, [5].

one grid point to its neighbor is the contribution of the time seismic wave transmits
through a half length of the grid spacing at the velocity of point. and the time in
which it travels through the  her half length at the velocity of its neighbor point.
Eq.1.3 and Eq.1.4 are all derived from this basic assumption. This relation does not

consider the geometry of rav tracii  and it is a coarse approximation.

h
f, = 5(531 + "‘A) (21)

Whereas. in our inethod, the problen is first studied inside a grid. By partitioning
a grid into two triangles. the 1 nship among the travel time values of three grid
points t,. I, . and {, in a single tri  ile is considered (see Fig.2.2).

Asshown in Fig.2.3. lite difference method. the nreai of interests is partitioned
into cvenly distributed grids. The travel time values are discretized onto the grid
points. cven though the real rav [ 1 may not pass the grid points in practice. In

this wayv. inside each grid. inside each triaugle the incidence positic on the edge is
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Figure 2.2: Geometry inside one triangle.

\ Source Ground
A
rcal ray path e
/
—  — An facc between

two layers

Figure 2.3: Finite diflerence meshing.

decided by the travel time values on the two erid points (see Fig.2.4). The Tran”
mentioned here can be understood in two wavs: it can be taken as > seisiic wave

after high frequeney approximation: or as the normal of the travel time wavefront!.

PThe travel time computed in this thesis s in fact. the Hist arvival fravel Hime of the scismic
wave. There are comments that the first arrival miav not be the portion that earries most cnergy
of the setsmic wave, However, T will not raise a discussion of this pure geophvsics problem in this

thesis.
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Figure 2.4: Lincar interpolation.

2.1.1 Formula Derivation following Linear Interpolation and

Fermat’s principle

As in Fig.2.3. the coeflicient \ is defined as a fraction ranging from 0 to |, If we
assumce the wave source locates at the upper left of the triangle. thus. because the
wave will first reach point b hefore arriving at point o. the travel time value £, on

point a will be always larger than the 1, on b Herein. 1, — #;, is positive. and 1, — 1,

t\— 1,
\ - A [ R
te = h

[ 4]
[}

v s the travel time at incidence point. and can he expressed as in Eq.2.3 by

applving lincar interpolation scheme. N works as a lincar interpolation coefficient.

’\ ;f41+/\(f’)—fu) !23)
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Comparing to Vidale's scheme in Eq.2.1 which simply takes arithmetic average.
the lincar interpolation in E¢.2.3 is more [lexible and accurate.

In the method. square finite di rence grid is used to mesh the field. in which fonr
cdges of a grid are the same i length, This length is denoted as . Meanwhile. if
we make the assumption that the seismic wave is transmitting in an isotropic media.
thus. the velocity in cach direction is the same. and the slowness « (the inverse of the
velocity ) is the same in cvery direction. In this way. i - » is the length of an edge of
a square grid. Based on this context. the formula Eq.2.1 for ¢, can he derived on the

geometry in Fig.2 |

Lo=da LA, =t VA2 DS (2.1

This formula gives out an expression of 1, concerning f,,. 1,. /i. ~ an A, If these
vartables are known. f, can he evaluated from this formula.

The coefficient A is unknown in Eq.2. [. However. it can be evaluated from an im-
plicating condition by following Fermat's Principle. According to Fermat's Principle.
the path taken between two points by a rav of light is the path that can be traversed
in the least time. in nature. the rav will choose the incidence point along the edge
ab (see Fig.2.5) to go through a path that can make the travel time ¢, the minimun.
In other words. the real ray path should be the path whose A can make Eq.2.4 be
cvaluated as a minimum of ¢, .

Based on this analvsis. the partial derivative of Eq.2 1 with \ results in Eq.2.5.

The partial derivative should be equal to zero when value of T reach a minimum?.

“ According to caleulis, an extreninng can be reached when the derivative of a funetion is cqual to
zero: however, monotropy analvsis tells us that the funetion here will be a mininmn when derivative

is cqual to zero.
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Figure 2.5: Least travel time path for rav tracing.
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Herein. from Eq.2.5 we can derive the following expression of \ councerming T,,. Ty,

hoand .
{ / 2
( a l:) ()0>

/\.) =
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Furthermore. E¢.2.4 can be transformed into the form of Fq.2.7.

12
{

TR tu—fl
t. 1, Hz.s~\/1+/\2-(1—(—.,—"))
h?s2

(2.7 with the expression 2.6, Finally, we can get a formula

o

-T

Substituting \? in
of T, as Eq.2.%.
(2.8)

t, | \//l*’,s'—' —(t, —H)?

o

This formula is only concerning f,,. {,,. h and «. /i is predefined. and ~ is read from
g 3 erid points

an known velocity table as input. Eq.2.8 builds up a scheme that. an

m a triangle. the third one can be evaluated with the other two known travel tinies.
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Figure 2.6: Range of angle a.

This scheme is based on geometric interpolation and Fermat's principle. Comparing
to Vidale's scheme which needs 3 known travel times to evaluate the fourth one. our
Eq.2.8 needs the same number of arithmetic operations as Vidale's Eq.1.5. So our
local scheme has similar computational complexity (same operations such as addition.

wultiplication and square root), but needs less operands in the formula.

2.1.2 Determine the Function Interval
Fq.2.8 is the main formula for our scheme. However. before using it. its eflective
interval hias to be determined. As in Fig.2.6. the angle o should be ranged from 0°1o
15°. because the arid is square and the triangle is isoceles triangle. The fraction
thus. needs to satisfv the following relation in Eq.2.9.

D<At (2.9)

IA

Squaring E¢.2.9 on cither sides. Eqg.2.10 can be achieved.

0< N <] (2. 10
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Substituting A? with right side of Eq.2.6. get

(fa - fl))2
0 < <1 (2.11
RICERTEIAT |

After reduction. Fq.2.12 can be achieved from Eq.2.11.

V2
f], S fq S ,l) + ‘:—‘h“ (212)
2
This equation gives out the -~ ctive interval of our main formula Eq.2.%8 (sce

Fie 2.7).

Eq.2.8 s only applied when o is hetween 0%nd 13°0 When ¢, < #,. o < 0° the
ray is actually come from a source on upper right of the triangle. thus. Eq.2.13 can
be used to compute the travel times under this condition. In the same wav. Eq.2. 14

1s sed to compute the travel times when a > 15%ud ¢, < #, + 32 s
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te o ta hs (2.13)
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2.1.3 Rice Computing Unit

Figure 2.8: Rice computing unit.

When determining the function  terval, there is a problem that the formula Eq.2.8
can only deal with the computation in a 45%arc: thus how to compute the ravs which
may come from every direction in subsurface arca” The solution is shown in [ig.2.8:
for a single grid point. combine 8 computing triangles together. and apply the com-
puting jointly to this grid  int at same time. After getting X results. the minimum
among them is taken as finial answer. Because 8 triangle computing units can cover
the whole 360%are (sce Fig.2.3). the true answer should be caught by one of the §
ttiangles. In practice. aceording to Fermat's Principle. ravs alwavs travel throngh
the least time path. so the final answer should be the minimum among the 8 results.
This combined computing unit of 8 triangles in Fig.2.8 looks like a Chinese character

“rice”. So it is called rice compnuting” and rice computing nnit”. or the Radial
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Incidence Computing Element (RICE).

Rice computing evaluates one result from 8 inputs plus the information of i and
s. However. it is not necessary for all of the 8 surrounding points to he known. If any
of the 8 surronnding points are unkuown. it can be sot as “infinity”: and the triangle
which hold the “infinitv” will never “win™ through the process of clecting minimum.

All the travel times known and unknown are stored in a data arrav. If the coor-
dinates of a target point are known. by applving +1 or —1. the coordinates of the
8 surrounding points of the target point can be achioved. The 8 triangle comput-
ing can be done sequentially on a single CPU computer in a {raditional language
like €' or Fortran: while the 8 computing units can also he implemented in parallel
on the platform such as FPGA and ASIC! or using parallel programming language

constructs.

2.2 Inductive Scheme

The inductive schemne of our algorithn is similar to Sethian's fast marching method.

The grid spacing /i should be assigned at first. This parameter can largelyv impact
on the meshing. and further on the accuracy of the Finite Difference Method (FDAL.
Vidale proposed an accuracy estimation as Eq.2.15. which represents the timing error

divided by the transit time across the cell [5].

la —1h
F —
Irs
The other input to the algorithnn is the velocity model. 1t is o data array holding,
the travel time values of ¢very grid point.

Before the algorithm begins, the parameter /i and the velocity array are pre-

computed. The algorithm begins with setting a set of seed points which are sur-
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Figure 2.10: Initialization

rounding the source point. Becanse this initial set of points are very close to the
source. their travel times can be pre-calculated. The amount of seed points to be
used is determined by application practice (see Fig.2.9).

Before starting. the travel time arrav is first initialized into infinities on cach point:
aud the mitial set of seed points are assigned into the form as shown in Fig.2.10.

In course of computing. the computation evolves from seed points outwards. There
are three classes of points during the process (sec 19.2.11). the first set contains fixed

points whose value are computed and have been popped off from the active set. The
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Figure 2.12: Eight neighbor points.

in the active set. This wayv follows the least travel time principle. and it is @ mimic of
the phenomenon in the nature. For Vidales method in which the computing is [rom
local minimumn to local maximum along an edge of a square. It is obviouslv not the
way the wave would advance in the nature. and would canse some cansality problems.

After determining the minimum travel time point in active set at heginning of a
computing iteration. the 8 nei;  bor points can be found out based on the coordinates
of the starting point as Fig.2.12 shown. These 8 neighbor points can be the points
in either fixed set. active set or uncomputed set. On cach neighbor point. a rice
computing is applied. which is introduced in last section. and the steps can be shown

as Fig.2.13.

2.2.1 Soundness of the result

In a single triangle of a rice compnting unit. if the two input points ¢, and #, arc in
fixed set or active set and none of the paramters /,, (), and /s is infinity, the result for
f. 1s said to be “good”. In contrast. if cither of the two points ¢, 1, and /i~ is infinity,
the result from the triangle will he infinity, For sonie rice computing. all X triangles
output infinities for the results. and thercfore the result from rice computing unit is
infinity.

It a rice computing unit outputs a “good™ result and the result point is currently






C'HAPTER 2. ALGORITHM DFESIGN 16

not in the fixed set and active set. this point should be written into active set. and
pushed into the heap to be sorted for [uture use: otherwise. if the result of rice com-
puting is infinity which is not ~good™. the result point should stay in the uncomputed
set.

After all 8 computations in Fig.2.13 finish. the start point swhich is the cnrrent
minimum in the sorting heap should be put into  :ed set. The algorithm repeats this
process iteratively until there are no points left uncomputed in the field.

The 8 rice computing on 8 neiy  bor points can be sequentially done one by one. as
shown in Fig.2 13, In this case, o0 rice computing unit is reused all the tine. For the
other option. all ¥ rice computing units are built in parallel. and all 8 computations
take place at the same time. 7 is second solution is diflicult to implement on a single
processor platform. however, on tl - platform such as FPGA. the computing unit can

be built on the same chip to exert the parallel potential of the hardware platform.

2.3 Summary of A orithm Flow

Based on the previous derivation. the algorithm can be summarized into following

steps:

L. Initialize the clements in the travel time arrav to be infinity, and assign a set of

seed points to the travel time array and sorting heap.

2. Pop the minimum off the heap as starting point.

e

Calenlate the coordinates for the X neighbor points of the starting point.

1. Apply rice computing on each neighbor point hased on local extrapolation

scheme.
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Figure 2.14: To compute the point on boundary. assign infinities to the points hevond

boundary as inputs of the “rice compute unit™.

3. Write the least time computing results into active set (push into the heap to

sort ). and put the starting point into fixed set.

6. Repeat from step 2 until all the points in the field are covered.

There are several points to be noted when going through these steps.

For the points on the edges of the plane. rice computing cannot be directly de-
ploved on them. because they do not have exact 8 neighbor points {as Fig 2.1 [ shown).
The solution is to set an edge detection mechanism: each time when getting a mini-
muin from sorting heap as starting point. the coordinates of its neighbor points will
be calculated and examined.  anv index appears to be negative. o value of the
point is set to be infinity. Thus. this assigned infinitv will generate infinity as re-
sult through “rice computing™. Obviously. infinity cannot win thron,  the minimmun
clecting during rice computing. so it is indeed no impact to the computing. However.
by adding these extra infinities the sane pattern of the rice computing wmt with
input points can be used for all grid points including the ones located on the edge
of the field. In this wav the digital logic ca