














sequence analysis or combination methods, demonstrating their own advantages on
predicting different genetic information.  1ditionally, our work shows an inspiring

perspective of developing a gene finder with a more friendly interface.
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identifying the stretches of genomic sec ences that carry genetic information in DNA.
Prokaryotes are single-celled o  nisms. Compared to eukaryotes, finding genes in
prokaryotes is easy since their e structure is simpler. Usually Interpolated Markov
models (IMM) are applied for prokaryotic gene prediction. However, eukaryotic gene
p1 iction is far more difficult because of the low coding density of genomes and
the presence of introns in RNA. Genes are represented by a collection of substrings,
which are sections of contiguous tripll ;. This poses the problem of predicting the
locations of genes in a gen  : given ly the genomic DNA sequence [15]. Based
on the difference between prokaryotes and eukaryotes, this review of gene prediction
methods is only regarding the metlods for finding eukaryotic genes.

To date, the methods for predicting genes mainly fall into two categories: ab initio
gene finding and sequence simi ty approaches. The first method predicts the gene

structures by the know Ige of genes, while the other method looks for the similar

sequences by searching the databases.

2.2.1 Ab initio Gen ~ediction

The ab initio gene prediction approach uses the known gene structure as a template
to detect genes in DNA seqi  zes. Tl  method usually makes use of two types of
patterns: signal sensors and content sensors. Signal sensors attempt to identify the
short sequence motifs such as pr 10oters, splice sites, polyA signals, start codons and
stop codons. Content sensors de :t the content of the sequences like exons and CpG
islands, in other words, they try to distinguish coding from non-coding regions. The

most important and well-studied content sensor predicts coding regions [16]. To build
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gene structure models, many algorithms are applied, such like dynamic programiming,
Hidden Markov models (H] s), decision trees, neural networks and linear discrim-

inant analysis (I A). Dynamic programming and Hidden Markov models are the

most, widely used.

Dynamic Prog mming

Dynamic programming is the most fundamental method in bioinformatics. Some-
times a problem will be split into subproblems and the solutions of the subproblems
will be combined to obtain the final solution. However, the subprobleins may be very
large and the same subproblem may 1 ve to be solved repeatedly, which increases
the running time. Dynamic pr¢ amm g organizes the computations so as to avoid
recomputation [15].

In the context of gene prediction, dynamic programming is always used to combine
the submodels built for seqi 1ce feat es to produce an optimal solution. These
submodels are constructed by other ma nele:  ngapproaches. . or example, many
programs like GeneMark.hmm [17] usii HMMs have the sub-HMMs for each type of
signal and content like splice and donors. Then by being given the rules of the
known gene structures, dynamic programming is applied to integrate these submodels
into a model of the whole st 1ence and determine the highest scoring structure of
the query sequence. Also, dy1 nic programming algorithms are combined with other
methods such as neural network (Gen: arser) and position weight arrays (PWAs).
Presentative programs are GeneParser |18, 19] and GenelD [20, 21].

In gene prediction, dynamic programming is also the basic method to sequence
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alignment which determines the optimal alignment by establishing a two-dimensional
matrix. The matrix with each aligned sequence on one dimension is filled with the
scoring scheme. By searching the highest score in this matrix, the dynamic pro-
gramning algorithm finds the best al 1unent between the pair of sequences. Two
examples are ClustalW [22] and SIM [23, 24]. The former produces both local and

global multiple alignments, while the | er is a local pairwise alignment program.

Hidden Markov Models (HI Ms)

Biological sequences can be modeled as the output of a stochastic process. In this
process, the probability for a given nucleotide t occurring at position p depends on the
nucleotide occupying k previous positic . This is called k-order Markov model [25].
A HMM is an extension of the Ma  ovcl n with the states of the model being hidden.
Generally, a HMM is a statistical model whose input is a sequence of states and whose
outputs are random sequences after a stochastic transition. Since only the output is
shown but states in the process are invisible to an external observer, it is called
“hidden”. A HMM has a set ¢ 1inite states X, initial state probabilities 7 associated
with each state, transition probabilities A between states, output probabilities B of
the observation symbols in states and a set of observable outputs Y.

There are three basic problen in HI /s. The first one is how to efficiently com-
pute the observation probability P(O|)A), which O is an observation sequence and A is
the initial state probability dis bution. The second one is how to choose an optimal
corresponding state path @ = qy¢2 ... gr for the observation sequence. The third one

is how to adjust the parameters of the del such that P(O | A) is the maximum.
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Regarding these three problems, the forward algorithm, the Viterbi algorithm and
the classic Baum-Welch algorithm are correspondingly applied to HMMs [26].
Although HMMSs are popular in speech recognition, HMMs are now also a fun-
damental method for biological sequence analysis in molecular biology. For gene
prediction, HMMs will be constructed based on the current knowledge of DNA se-
quences; this knowledge is used for estimating parameters of the models. Then by
using training data, models are trained iteratively and parameters obtain new values
each time. Models will be updated with new parameters until the likelihood of the
training data is maximized.  ‘terwards, these models are used to find the optimal
result for a query sequence, which means that the query sequence will be scored to
show how well it matches th : models. Each state of a HMM emits a set of ele-
ments and in gene prediction, the elements are the four bases A, T, G and C if the
model is based on nucleotide sequences. When one state changes to another, there
is a transition probability. The emission of each element in each state also has a
emission probability (or output probability). In the final step, all of the transition
and emission probapbilities for each possible path are considered to calculate a total
probability for the path. To build accurate models, submodels of distinct features are
separately constructed by HMMs 1d integrated into one model of genes by statistical
approaches. Currently one of the best programs is GenScan [27], which uses a serni-
Markov HMM ([11]. The HMM structure of GenScan (Figure 2.4) can explain the
process of HMMS in gene prediction which has been given above. Other applications

include HMMGene [28], GeneMark [29], Glimmer [30], GENIE [31], VEIL [32] and

some other programs.
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functional classes of sequences. It can also serve to identify the most significant

measure for a given discrimination pre lem. GeneFinder [37, 38] and FGENEH [39]

use LDA.

2.2.2 Sequence Similarity

Researchers have already sec  nced and annotated genomes of many species and thus
a number of genome databases have been established. Accordingly, sequence simi-
larity search is a method t! . compares query sequences with database entries to
detect regions which are significantly saimne with or similar to the known seciuences.
Basically sequence similarity can be used in several ways [40]. First, comparing a
genomic sequence with the databases of expressed sequence tags (ESTs) can iden-
tify the regions that may be transcribed to mRNA. BLAS . .1 [41] is an example of
a program used for this purpose. Second, the probable coding regions can be ob-
served by compa 1g a genomic sequence with the databases of protein sequences.
BLASTX [41] uses this approach. Third, alignment of the candidate coding regions
of a genomic sequence with a homologous protein sequence may obtain more accurate
results. PROCRUSTES [42] is this type of a program. Fourth, the peptides predicted
by some programs can be compared v h the protein sequence databases to verify
these results. Fifth, comparison of the translated genomic sequences with databases
of translated sequences or w 1 cDNA databases can locate the similarities among
the coding regions, like the program TT ASTX [42]. At last, genomic sequences can
be aligned to homologous genomic sequence databases derived from closely related

organisms. This can be very hel 1 to detect conserved regions which indicate impor-
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both, local alignment and global alignment. Global alignment gives an overview of
the entire sequence while local aligmnent is more specific to highly conserved regions.
Afterwards, an algorithm is applied to assemble the evidence obtained from align-
ment so that a gene model is constructed. The most used algorithm in this step is
dynamic programming [47, 48, 4¢  he dynamic programming algorithm is applied
to find optimal chains of candidate genes with maximum scores. SGP2 however is
an exception to the general structure. It combines the alignment of two sequences
with the predictions from GenelD, which is an ab initio gene finder. Still sequence
alignment is an essential step of cross-species comparative gene finders.

For predicting genes by cross-species comparative sequence analysis, an appro-
priate selection of species is critical. Comparison of two species that diverged 40-80
million years ago from a common ancestor reveals conservation in both coding re-
gions and a significant number - non-coding regions [47]. Comparison of human
with mouse and two species of frui  es (Drosoplila inelanogaster with Drosophila
pseudoobscura) are good examples. Furthermore, most protein coding sequences
evolve slowly since they are responsible for retaining function. Therefore, the ability
to detect conserved elements (both coding and non-coding) could be enhanced by
comparing the orthologous DNA :quenc: of two species over a large phylogenetic
distance, such as human and pufferfish that diverged 450 million years ago [50]. In
addition, comparison of closely related spe s, such as human and chimpanzee, can
not only identify conserved regions, but also find some unique genes related to certain
species. This is beneficial for understanding the evolutionary process of these specics.
Zhang et al.’s paper [51] validates that evolutionary distance can decide the perfor-

mance of gene prediction; a well-chosen distance can provide an optimal accuracy.
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Their experiment also exhibits tt  evolutionary distance beyond that of human and

mouse gives better performance even though the tested mouse sequence falls in the

area with high accuracy.

3.2 AGenDA and SGP2

3.2.1 AGenDA

AGenDA (Alignment-based Gene-Detection Algorithm) 2], which is developed by
Rinner and Morgenstern [43], is a tool using cross-species comparative sequence anal-
ysis. Based on pair-wise hun 1/mouse alignments created by CHAOS [52] and DI-
ALIGN [53], the gene finder searches for cc  erved splice sites around local sequence

similarities to identify candidate ns and constructs a complete gene model from

the candidate exons .

Architecture and Methods

AGenDA has five main steps as shown in Figure 3.1. In the first step, Repeat-
Masker [54] is applied to the inp juences to mask interspersed repeats and low
complexity DNA sequences that are enriched for sinj  amino acids. The second step
is to obtain a chain of high-homology regions by using CHAOS. Local alignments
from CHAOS will be used as anchor points to reduce the search space and execu-
tion time for the following steps and can fasten the global alignment considerately.
Subsequently DIALIGN calculates an alignment of the inp  sequences based on an-

chor points created by CHAOS. al ] am in _ ates local and global
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with maximum score Lg(g) which is interpreted as:
La(g) = Li(er) + Li(e2) + Lip(es) + . + Li(en) (3.2)

where L},(e;) is the score of the exon i.

By using TBLASTX, the query sequence is compared against one sequence or a
collection of sequences from a distinct species to look for the counterpart homolo-
gous exon in the reference sequences at the amino acid level. TBLASTX provides
an optimal alignment and gives corresponding score. A substitution matrix, like
BLOSUM matrix, is used to score the alignment. The score can be assumed to be a
log-likelihood ratio. The optimal alignment is considered as the high-scoring segment
pairs (HSP) with the maximal score. However, in the case of the collection of reference
sequences which are igmentary and irregular, the query exon sequence may have
different optimal alignments correspouding to different sequences of the set. To solve
this problem, SGP2 derives a scc  s;(e) from a set of HSPs covering each fraction of
the candidate exon in the way «  ribed as follow. First, a set of HSPs h; ... h, found
by TBLASTX are projected onto the query sequence and thus the query sequence is
partitioned into pieces of segm i as z; ...z, which lengths are exactly same with
those of HSPs. The segments are scored as s,(z,) ... s,(z,). For each predicted exon
in the sequence e, a set of maxir scoring segments X, overlapping the exon will be
found. Hence the final score s:(e) is computed as:

se) s (33)

TtAe
where ||a|| denotes the length of the segment a. In this way, cach predicted exon
can include the maximally scoring HSPs w ch are from those HSPs overlapping the

ex
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In the final step of SGP2, the final score of the exon s(¢) is not just summing the
scores up like sy(e) + sy(e), where s4(e) is the score from GenelD. As s,(e) depends
on the probability of juence of e if it codes for the proteins, while s,(e) depends on
the optimal alignment in which it is assume that both query and reference sequences
code for the proteins. The two parameters are not independent. Therefore, an “ad

loc” coefficient w is applied to :ight the contribution of s;(e) and the final score of

the exon is computed as sqy(€) + ws;(e).

Experiments

SGP2 has been tested on two data sets [1]. For optimizing soine parameters of
SGP2, the dataset is adapted from Jareborg et al.’s dataset [61]. 33 pairs of mouse
and human sequences in the original dataset are collected. They code for single
complete genes. In addition, six | rs of human and mouse sequences are added from
the SWISSPROT database. So this training dataset has 39 pairs of sequences in
total. Parts of the dataset are use for  ;ing as well and this data set is called
SCIMOG. Another testing dataset, which is called the MIT data set by SGP2’s
authors, is derived from the dataset used by AGenDA. It is constructed by Batzoglou
et al. [49]. This dataset has 117 ort  ogous human and mouse genes. But the pairs
of sequences with m iple genes have been discarded. Also, those pairs in which
the coding regions start at position 1 in either sequence of the pairs have not been
considered. Therefore, the final ¢ .aset used by SGP2 has 110 genes. Somne overlap
between the first and e second dataset have remained. Humnau and niouse databases

are built from both datasets. SGP2 has been compared with GenScan, ROSETTA
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Discussion

AGenDA is a typical gene finder using cross-species comparative sequence analysis,
whereas SGP2 combines the alignment of different species with the result of an ab
initio gene finder. Ab initio approaches can provide prediction based on a whole gene
structure. Therefore, SGP2 may take advantage of the ab initio gene finding methods
to make up for what cross-species compar: ve analysis is not good at.

Regarding application and performance of the two gene finders. although AGenDA
has a similar performance to SGP2 on that data set, AGenDA may have the best per-
formance at predicting genes just depending on comparison of Homo sapiens and Mus
musculus, because its parameters are optimized for human and mouse. Furthermore,
the maximum length of input sequences is a limitation for AGenDA, that restricts
AGenDA not to predict genes of long DNA sequences. If long sequences of DNA
are split into smaller pieces, so: : critical genetic information may be missed. In
comparing the result files of AGenDA and SGP2, SGP2 provides inore detailed infor-
mation than AGenDA. Additionally, SGP2 as been tested on human chromosome 22
and had an acceptable performance on this dataset. In conclusion, SGP2 can supply

satisfying prediction of genes by ¢« Haring sequences of different species.

Conclusion

Our study aims at discoverii some novel genes and genetic information of hu-
mans and the cross-species comparative se  nce analysis shows the ability to explore
some undisclosed areas of human DNA sequences. Because of evolution, present-day

creatures are more and less ‘netically similar; important genetic information is con-
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which have alrcady been identified. Thercfore, some unknown or novel genes would
be missed when the two methods are applied independently. In addition, some of
programs put more efforts in predic 1g certain genetic features, while other programs
can provide more accurate predictions on other features. Therefore, combination
methods have been proposed to integrate the evidence predicted by two or more
programs so that more precise gene structures can be built and thus more accurate
predictions can be generated.

In general, combination methods could be mainly classified into two types: one
is to parse the outputs/evidence from different programs into a gene model by a
statistic approach; another type is to just combine the outputs/evidence fromn differ-
ent programs by applying the rt  ; proposed by Katsuhiko Murakami and Toshihisa
Takagi [8]. The first type usually builds a gene model by a statistic method and then
the outputs/eviendence from sc : programs are complementary to the gene model.
HMMSs, dynamic programming, neural networks, decision trees, Bayesian networks
or other algorithms is applied to integrate evidence. The work presented in Stanke
et al.’s paper [62] uses a Generalii  Hidden Markov Model (GHMM) to integrate
the external evidence into a probabilistic model. Usually a GHMM for gene predic-
tion defines a joint probability I’(¢,s) for ¢ :h pair of a DNA sequence s and a gene
structure ¢. In this paper, a piece of external evidence of the DNA sequence s, called
hint, is taken into account to extend the GHMM. There are six types of hints, which
stand for the translation start e, stop codon, the donor splice site, the acceptor
splice site, the coding region and exon. Each hint is associated with cach position 1

in the DNA sequence s. Thereby, the joint probability is extended to P(¢,s,h)which
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reading frame. EUI method is applied to filter the exons which are in the determined
reading frame. This study is tested on the data set HMR195, the Burset/Guigo data
set [12] and a Drosophila melanogaster Adh region [69]. Compared to the results of
GenScan and HMMgene, the specificities of the three methods are iimproved more
than the sensitivities at both nu otide and exon levels. The test also demonstrates
that EUI method would be best applied to short sequences, while GI and EUI_frame

methods are more suitable for long quences.

4.2 GAZE, JIGSAW and ExonHunter

4.2.1 Review of The Thi : Gene Finders

GAZE

GAZE provides a framework for tlie external evidence of signal sensors and content
sensors. It does not work directly on gene sequences, but predicts a gene structure
from input files with results being the scored signals and content. By using a dynamic
programming algorithm, evidence is assembled and the highest score is obtained ac-
cording to a configuration file. ..iis file specifies how features (signal sensors) and
segments (content sensors) are combined into a complete gene structure shown as
Figure 4.2.

All input files of the evidence to GAZE  we to be in the General Feature Forinat
(GFF) which is an exchange format for feature deseription [70]. The configuration

file, which is in XML format, d how to read the lines {rom the GFF files and
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V(0) = 0, (4.2)

V(i) = maz;<i[V(7) + Segu;) ) (U¢5), L{d1)) — Lenyg,)—a0) (L;), i) + g(:)]

(4.3)

t(¢) is the type of the feature. [(¢) is the location. g(¢) is the score. Seggrctq(z, ¥)

is a sum of the scores for each s 1ent type and Leng.. . (2,y) is the length penalty
function. The maximal score is V(n+1) and the optimal structure is obtained by
a traceback procedure which is storing the index j for the maximal score at each
stage. Considering that commonly the gene structure with the highest score is not
necessarily the correct one, GA..b calculates the posterior probability of features to

measure how much the features match with the structure. The posterior probability

is as following:

pf(d)z) - eF‘(i)+B(i)~F(1l+l) (44)

which F(i) is a Forward vector and B(i) is a Backward vector both of which are in
log-space. F(i) denotes the sum of the exponential scores of all the “upstream” partial
gene structures till the feature ¢;. Whereas B(i) denotes the sum of the exponential
scores of all the “dov stream” | ‘tial gene structure beginning from the feature ¢,.
the posterior probability applied by GAZE could be the indicator of reliability for the
results.

GAZE has been applied on predicting genes of Caenorhabditis elegans and verte-
brates. GAZE uses the evidence produced by the program Genefinder for C. elegans,
and the program GENEID [21] for the vertebrates.

Since GAZE was orig” ly anticipated to be a curation tool for C. elegans anno-
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obtained for predicting the location of the feature. In this procedure, to avoid the
problem of large sample space, a decision tree algorithm is applied to partition the
feature vector space into subregions so as to distinguish the accurate set from the
inaccurate set of the feature vectors.

This research work used two test sets to e uate JIGSAW on human gene predic-
tion [5]. One data set is 1563 randormn genes selected from a set of 174, . non-redundant
RefSeq genes [76]. 2/3 of the data is used for training and 1/3 is for testing. The
second data set is the annotations from the Havana group [77] in the 44 ENCODE
regions. This data set does not over > with the 1563-gene data set and includes some
known alternatively spliced ger . As to the evidence, JIGSAW used an annotation
database which was downloaded from the UCSC genome annotation database [78].
The collection of evidence includes ¢cDNA from human genes, RefSeq genes from
non-human species, predictions from ab initio gene finders such as Genscair, Geneid,
GeneZilla and GlimmerHMM, the TIGR Gene Index [79] and others. The results
of the first data set are shown in Table 4.4. With respect to gene seusitivity, JIG-
SAW’s predictions using three different coinbinations of evidence are not as good as

the predictions from nsembl and the cDNA alignment. But other results are better.

Table 4.5 presents the perfo  ance on the ENCODE data set. The results from
JIGSAW with four distinct combinations of evidence are compared with those from
Ensembl, cDNA alignments and vo comparative analysis tools: Twinscan [80] and
SGP. cDNA alignments to Swiss-Prot/TrEMBL proteins performed outstandingly on
the sensitivity at the gene, exon and nucleotide levels. Whereas JIGSAW using human

expression cvidence as input(the first two rows) lias the nearly best performance on
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proposes a technique which is the geometric-tail distribution [84] to solve the problem.
In this method, the length distribution is decomposed into two parts: a head with
arbitrary distribution and a geometrically decaying tail. This technique helps niodel
accurate exon and intron non-geometric length distributions. The HMM is the basis
of the framework and thus ExonHunter is an ab initio gene finder when there is no
external evidence input.

The supplementary evidence is presented as advisors. In ExonHunter, there are
four types of advisors: the advisors for pri :in alignments, EST alignments, genome
alignments and repeats. For the query sequence, an advisor specifies a probability
distribution over a set of annotation labels which correspond to signals and contents.
As it is hard to estimate a complete probability distribution from some sources of
information, an advisor is allon to -ovide partial information. For example, the
advisor predicting donor signals can not be used for estimating the probability of a
position which is inside an intr Accor ngly, an overall probability distribution
for each position will be created to coordinate the different advisors. It is called
the superadvisor which is a probability distribution z* = (z;,...,x,,) over all labels
at a particular position; z; is the probability of the ith label from a set of labcls.
The problemn i1 comnbining the - s is that different advisors produce different
partitions. Suppose that 7, is a partition of the set of labels and S is the set of
the partition elements. I all the advisors do not conflict with each other, then the
sum of the probabili s in z* for all labels in S should be equal to the probability
distribution over all the partition elements for the advisor a, p,(.S). However, actually
the advisors are always in conflicts. Thus, the probability distribution z* should

maximumly satisfy the constraints under which advisors are compatible with each
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other. To find this probability distribution, ExonHunter chooses to minimize the

sum of the weighted distances between the advices and z*. It is defined as follows:

prior(S) Jr?

Jcha

dist,(z*) = N _ (pa(S) — Zg) (4.9)

where

prior(S) =\ prior(j) (4.10)
g5

and prior(j) is the prior probability of label j, which is estimated as the proportion

of the genome annotated with a given label. Then the advisors are combined by a

convex quadratic programming [85]:

minimizeZwa - dist,(x") (4.11)
subject to Y x; = z; 2 0for all the labels j € Y (4.12)
i€y’

where w, is the positive weight of advisor a and }_ is the set of labels.
The last step in ExonHunter combines the superadvisor and the HMM. The final
result is to find the most probable annotation given the sequence and the external

evidence. It uses the Bayes’ rule to calculate the probability:

Pr(seq, ev|A) - Pr( A)
PT(AlS@(], (i’U) = _—]JT(?(] 61))- — (413)

This formula is based on an assumption that is the DNA sequence and the external
evidence are conditionally independent given the annotation A. Therefore, according

to the formula

Pr(seq,ev|A) = Pr(seq|A) - Pr(ev|A) (4.14)

and Bayes Theorem, Equation 13 can be simnplified to:

. ~(Alev)

Pr(Alseq, ev) < Pr(A|seq) - “Pr(A)

a3



Here Pr(A) is the prior probabil - of the annotation A, which is a sequence of labels

lllg .. .lﬂl

Pr(4) = || prior(l) (4.16)

i=1

Nevertheless, in practice the independence assumption is not true. Hence, a parameter
e is introduced to the equation to reduce the cffect from the superadvisor:

Pr(Alev)®

BT (4.17)

Pr(Alseq,ev) «x Pr(Alseq) -

where o < 1.

ExonHunter used the data set from ENCODE project [86]. The data set is split
into the testing set and training set. The research work also used the ROSETTA
set of 117 human single-gene sequences [87] collected by Batzoglou et al. [49] for
the testing. For the training, a set of 1284 human single-gene sequences created by
Stank [88] is adopted to train the HMM an  all the parameters of advisors are trained
on the ENCODE training data set. But ¢ sequences from the Stank data set have
been removed due to the s _ ficant similarities to the ROSETTA set used for testing.
The training set included a set of 15,263 human splice sites from SpliceDB [89] for
training the models of splice site signals. Additionally intergenic region lengths have
been trained on a part of the annotated human chromosome 22 from the RefSeq [76].

ExonHunter con ared its performance with other gene finders like GENSCAN,
ROSETTA, SLAM and some others. The following Table 4.6 is the comparison with
ExonHunter and other pre on the ROSETTA data set. From the table, it is
significant that the sensitivities and specificities at all three levels from ExonHunter
are higher or equal to those of other progra ;. Compared with ExonHunter including

supplement evidence "™ column), ExonHunter without additional evidence (EH-nh
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Table 4.7: Performance Comparison on the ENCODE Data set (based on [6])

Nucleotide-Level Ezcon—Level

Programs Sn Sp Sn Sp
GenScan 0.85 0.44 0.59 | 0.37
ExonHunter(no adv.) | 0.7 0.52 0.55 | 0.39
GenelD 0.74 0.78 0.47 | 0.59
TwinScan lo77| 083 052|065
JIGSAW 0.95 0.92 0.80 | 0.89
TwinScan(ES” 0.87 0.92 0.76 | 0.88
Fgenesh 0.91 0.77 0.75 1 0.69
ExonHunter 0.93 0.67 0.69 | 0.51
RefSeq 0.86 0.98 0.64 | 0.83
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no penalty for the unsupported genes in ExonHunter. Nevertheless, according to the
evaluation results, sensitivity an  specificity ol _.conHuuter at the gene level are 29%
and 10%, compared to the ..,0 gene sensitivity and 6% gene ecificity performed
by GeuScan. It can be demonstrated that ExonHunter is engaged in finding as many

possible genes as the query sequence probably has.

4.2.2 Comparison of the Three Gene Finders

Comparison on the Archi :tures

Among the present gene finders, the three gene finders compreliensively combine
the external evidence that includes predictions of both signal and content sensors.
Firstly they all construct basic 1 structures. Then the evidence is applied as a
complement so that more accurate gene structures could be obtained. GAZE uses
an XML file to describe a gene odel ¢ 1 to assemnble the cvidence into a model.
Subsequently, a dynamic progra 1 1g algorithm calculates the highest score of the
model. In JIGSAW, a generalized HM] (GHMM) is applied to build an overall
gene structure. Evidence is combined into this GHMM by a dynamic programming
algorithm. ExonHunter also has a GHMM for building a whole gene model. The
supplemental evidence is integrated into the gene model by dynamic programiming and
the help of the Baysian Theorem. A summary for the comparison of the architectures
is listed in Table 4.8.

Regarding the [rameworks of the thr  gene finders, both JIGSAW and Exon-

Hunter build basic gene models by GHMMs. The structures of GHMMS are similar,
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Table 4.8: Summary for the Comparison on the Architectures

Method for Building Algorithm for Evidence from Cross-Species
Programs
a Gene Model Combining Evidence Comparative Sequence Analysine
GAZE XML I Dwnpamic Programming No
JIGSAW GHMM I Munamic Programming Yes
GHMM” Baysian Theorem Yes
ExonHunter
and Dynamic Programming

"It has some extensions on GC content, signal models and length distribution

but ExonHunter’s HMM has s 1e extensions for GC content, signal models and
length distribution. Moreover, there is an essential difference between the GHMMs
of JIGSAW and ExonHunter: in GSAW the evidence is a part of the GHMM for
building a whole gene structure, while the GHMM of ExonHunter can construct a
gene structure without any evidence. In other words, ExonHunter is an ab initio gene
finder when no external evidence is input, but JIGSAW is not. Unlike JIGSAW and
ExonHunter applying HMMs, GAZE defines a gene structure by the configuration
files written in XML and then sets tlie parameters of the model by the predictions
from other gene finders. This is novel m 10d to build gene models.

After having fundamental frameworks, the programs will coordinate the incor-
peration of cvidence into their frameworks. GAZE and JIGSAW apply dynainic
programings to integrate evidence. Besides defining gene models, the XML file of
GAZE configures how to read lines of inpr  evidence files so that the parameters of
the model are determined. Then dynamic programming algorithm decides the best
gene structure by calculating the highest score. JIGSAW asscmibles evideuce into its
framework by adding an independent conditional probability to the GHMM. Simi-

larly, JIGSAW predicts the best gene structure by dynamic programming. Whereas




ExonHunter initially coordinates different cvidence into the superadvisor that is an
overall probability distribution for each position. Afterwards, it adopts the Bayesian
Theorem to join the superadvisor and the predictions from its HMM.

As to the choice « the evidence, the three gene finders all combine the predictions
of up to six features: start/stop codon, nor/acceptor site, coding regions and in-
trons. JIGSAW and ExonHunter exploit e predictions from different gene finders,
while GAZE considers the predictions produced only by Genefinder for C. elegans
and by GENEID for vertebrates. Therefore, compared to JIGSAW and ExonHunter,
the limitation of GAZE is that GAZE cannot consider predictions from comparative
sequence analysis. Nevertheless, compara ‘e sequence analysis approaches are very

helpful for predicting genes now.

Comparison on the Applicas »ns an Performance

Aside from a comparison on the architectures of the three programs, we also
tested these gene finders and compared their performance in term of the seusitivity
and specificity. Since evidence for each program is different, we firstly compare the
evidence they adopt and the formats of the evidence files defined by the programs.
Next, we discuss their performance according to the experiments mentioned in the
section 4.2.1. Also we compare the performance of GAZE and ExonHunter on the
hmr195 data set.

The three gene finders all have their own specific requireinents for the formats of
the evidence files. For input files of evidence, GAZE requires files in the GFF format.

JIGSAW reads several file forn s: “btab™ and “gfl” i gener  and “ghininerm”
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possible genes and exons, but the correctness is somehow lowered. Although GAZE
is not prominent, its sensitivities and specificities at both levels are close. It has an
average performance which shows that GAZE can provide good specificitics to genes

and exons and does not lower its sensitivities.

Discussion

In conclusion, JIGSAW and ExonHunter adopt a wider range of evidence that
can include predictions from programs using conmparative sequence analysis, whereas
GAZE cannot. Although ExonHunter’s outstanding sensitivity indicates that it is
good at predicting as many genes as possible, JIGSAW and GAZE show that they
could not only guarantee the correctness of predictions but also keep sensitive to
genes and exons. As to the usage of these programs, all have their advantages and
disadvantages. To run GAZE, an XML file needs to be created for each species on
which the prediction will be made. With respect to JIGSAW, though it has better
performance than the other two, the collection of evidence is not a pleasant work. In
addition, JIGSAW cannot run multiple-sequence files, which are universally used now.
Compared with JIGSAW and G/ 7, ExonHunter does not have better performance,
but it is easy to use and to obt  result files relatively fast. Additionally, ExonHunter
cau also be used as an ab initio gene finder.

All in all, the three gene finders demonstrate that combination methods truly
improve the accuracy of gene pre ction. This class of gene finders is limited by the
incompleteness and availability of evidence. As more knowledge about genomes of

further species is obtained. evidence will become more and more refined. We ik
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develop a framework  at has the ability to easily combine evidence and also to give

out reliable prediction results.
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Chapter 5

Two Algorithms to Combine

ExonHunter and SG“P2

After surveying work done on predicting genes, we found that the tendency in gene
prediction is to use combination methods. Current gene finders using combination
methods have improved the accuracy on predicting genes. In addition, some of these
gene finders are flexible for exter1  evidence; users carl choose predictions from some
other programs to integrate into the gene finders. However, we also recognize that it
is a bit hard for users to int: e ;ional evidence into whole systems. There are
two main reasons. First, the formats of external evidence are variable and thus there
is a heavy workload for converting formats. Second, there are some limitations on ev-
idence; either certain types of evidence are allowed to use, or certain source programs
of evidence are used. Inspired by GeneComber [66]'s work, we have a thought of a
system, which can eliminate the two main limitations: users can combine evidence

from any prograins they prefer and 2 cor ination process is simplified. To achieve
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this, our work described in this thesis adopts a gene finder using combination meth-
ods and another gene uder using comparative sequence analysis, and then combines
their predictions.

According to our work described in chapter 4, we choose ExonHunter as the basic
framework of our work from the th : gene finders. because ExonHunter predicts as
many possible genes as it can. This is useful for detecting novel genes. Also, the
usage of ExonHunter is simpler than the other two and it can give good predictions.
However, the methods applied by Exon 1nter for aligning the protein database to a
query sequence are relatively simple which may affect its exon sensitivity. In order
to improve the cross-species com ive sequence analysis module of ExonHunter’s
framework, the gene finder SGP2 has been considered based on our work introduced
in chapter 3.

At the beginning of this chapter, the motivation of the thesis, which is the heart
disease Sudden Cardiac Death, is reviewed. Next, we demonstrate the two algorithms
we developed. In the experimental section. first the genomic properties of Homo
sapiens, Mus musculus and Canis familiaris are reviewed because we predict geunes
on human chromosome 3 by using the mouse and dog databases. We also briefly
introduce human chromosome 3 | the mouse and dog databases we use. Then the
results of our algorithms running on the HMR195 data set are discussed. Finally, we

give our predictions of the sequence between the markers D3S51259 and D3S3659 on

human chromosome 3 and analyse the results.
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regarding priorities of exon and gene prediction, respectively.

5.2.1 And-based and Or-based Rules at Exon Level

And-based and Or-based rules have been introduced in Chapter 4. This algorithm
basically follows the two rules: for the And-based rule, it considers the overlapping
exons and genes predicted by both ExonHt ter and SGP2. Wh : for the Or-based
rule, it considers all the predicted exons and genes predicted by at least one of the

two gene finders: ExonHuuter or SGP2.

To decide whether And-based or Or-t ed rule will be chosen, a threshold is
calculated. Since ExonHunter does not provide any probat ty score in thie predicted
results, only probability scores of SGP2 results are considered and a threshold is

determined by these scores. As shc 1 in Figure 5.1, the algorithm fundamentally

considers four cases:
1. If the predicted exons given by ExonHunter and SGP2 overlap:
e If the scores of SGP2 are higher than the threshold, then only the overlap-
ping regions of ExonHunter and SGP2 are considered;
e Otherwise, all exo1 fr  ExonHunter including the overlapping regions
with SGP2 are considered.
2. If the cxons given by ExonHunter and SGP2 have no overlap:
e If the scores of SGP2 arch 1er than the threshold, all the predicted results
given by both ExonHunter and SGP2 are considered;

e Otherwise, only the exons from = « ™7 ‘er are considered.
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consider scores between -50 to 1000 and ignore the minority of scores beyond 1000.
First, the scores in this range are converted the values ranging for 0 to 1. Subsequently,
the maximum and minimum scores in the range of -50 to 1000 are detected. For the
consideration of the frequencies of the scores i1 diacrent ranges, the weighted mean

is applied to determine the threshold. It is calculated as:

m Wk,
Pehr = T & (5.1)
i=1Wi
where w; is the number of scor ing in the i-th range belonging to the whole

range (0,1), p; is the mean of the scores in the i-th range, and n is the total number of
segments. The division of the whole range and the number of segments are determined
by the distribution of all scores. To ensure that the average can evenly distributed
all scores into two parts, we divide the whole range (0,1) iuto eight segments by
experiments.

This algorithm integrates .xonHunter 1d SGP2 at the exon level. It considers

all candidate exons given by ExonHunter and SGP2 and the scores are probability

scores of exons.

5.2.. And-based and Or-based ules at Gen 1 el

This second algoritlimn is similar to the first one, but it first looks at gene level and
then exon level. It considers all candidate genes given by ExonHunter and SGP2. But
only genes predicted by both gene 1ders are considered. Then for each candidate
gene, the first algorithm is applied to decide the exons belonging to the genes. Figure
5.2 illustrates how t.  algorithm selects the predicted genes and exons.

First. the algorithm separates the predicted genes of each gene finders into two
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of human genes is similar to or lower than the number of genes of simpler organisms
such as Arabidopsis thaliana(26,000 genes) and pufferfish(33,000 genes). However,
the human proteome has more complex architecture than invertebrates have due to
alternative splicing. . is confirmed that alternative splicing is critical in creating
the proteome diversity. Also it is estimated that the frequency of alternative splicing
per gene ranges from 35% to 60% [100]. More than 98% of the human genome does
not code for genes [101]; many portions of the human genome consist of repetitive
DNA elements such as long interspersed elements, short interspersed elements and
long-terminal-repeat retrotransposons.

The house mouse (Mus Musculus) genome has had a huge impact on biological and
wmedical studies. It is considered to be a sufficiently stable genowue sequence. Many
researchers have worked on the comparison of human and mouse genomes. Sequencing
of the whole Mus musculus genome was completed in 2000. It has approximately 3
billion base pairs and is estimated to have at least 30,000 genes [102]. Although the
mouse genome is 14% smaller than the human genome, approximately 99% of mouse
genes can find counterparts in hu_man DNA. At the nucleotide level, approxiinately
40% of the human genome can be aligned to the mouse genome [103]. Becausc
human and mouse evolved from a comion ancestor about 75 million years ago and
both species have inherited the ancestor’s genes, they have many common genetic
clements. So far, 1200 new genes in humans have been identified by comparing with
the mouse genome [10 ; a significant munber of these genes are likely to he involved
in cancer and other diseases. Ther »re, the mouse genome accelerates the speed

of finding genes in the human genome and thus helps to better understand human
diseases.
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contain 18.9 and 21.1 genes per Mb falling into the base coordinates from 10 to 17
Mb and from 41 to 55 Mb respectively. These two regions represent 26% of the genes
on this chromosome. The sequence we work on is a part of p-arm. In addition,
chromosome 3 is remarkable for having lowest rate of segment duplication in the
genome. It only has 1.7% of its bases composed of duplicated sequences compared
to the whole genome average of 5.3% which is the lowest percentage for any other
human chromosomes.

This paper also presents some evolution studies that have been done on chromo-
some 3. It has been compared with chicken, African apes, chimpanzee, gorilla, rheus
macaque and more. It is found that a large-scale pericentric inversion occurred in
the ancestor of the African apes, chimpanzees and gorilla also is present in human
chromosome 3 as well. Additionally, two scaflolds from the study of rheus macaque
Mmuly.1 assembly were found to span both breakpoints of the human inversion [111}
and the inversion regions on chromosome 3 are characterized by segmental duplica-
tions [112]. The inv(3)(p25:q21) pericentric inversions may be the most interesting
because they exist along with other comj 1ying chromosomal abniormalities which
cause severe developmental abnormalities 3, 114]. Regions of segmental duplica-
tions involved in evolutionary rearrangements can be included in the rearrangements
related to human disease as well. Furthermore, chromosome 3 includes a chemokine
receptor gene cluster as well as numerous loci involved in multiple human cancers. At
least 505 diseasec loci have been mapped to this chiromosome. A large nmunber of can-
cer lesions have also been mapped to it and cancer breakpoints likely correlate with
the four known breakable sites on the chromosome. The paper concludes that chro-

mosome 3 is a rich resource for the study of evolution histories and for understanding
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used in our work is written for human. We apply all default external evidences:
repeat, alignment of human ESTs database, alignment of mouse ESTs databasc and
alignment of human protein database. For masking repeat sequences, RepeatMasker
is applied. WUBLAST and SIM4 are used for aligning the human and mouse ESTs
databases. BLASTX is selected for align 3 the human protein database. Those
databases have been downloaded from the NCBI ftp website [119]. First, tBLAST
included in WUBLAST is used to obtain the alignment of HMR195 sequences and
our mouse database. Then SGP2 p  licts genes based on the HMR195 sequence file
and the alignment.

After running the first algorithin on ExonHunter and SGP2 result files. it predicts
212 genes, 1398 exons (208 initial exons, 1228 internal exons and 212 terminal exons)
and 1171 introns. The results are compared with the ExonHunter’s results and the
comparison is presented in Table 5.1. ExonHunter predicts 225 genes, 1044 exons (177
initial exons, 642 internal exons and 177 terminal exons) and 819 introns. Except
the sensitivity and specificity on nucleotide level, other measurciments of the first
algorithm are slightly lower than those of ExonHunter. Our nucleotide sensitivity
reaches 100%, which means this algorithm is very sensitive to the nucleotides.

The second algorithm is the one at the g clevel. It predicts 225 genes, 1041 exons
(224 initial exons, 818 interna. :ons and 224 terminal cxons). Table 5.1 prescnts the
comparison of the performance of our algorithm and ExonHunter,

This algorithm performs almost as well as ExonHunter. The measurements on
nucleotide level and the sensitivity on transcript level are higher than those of Exon-
Hunter. Whercas all the other measurements are close to ExonHunter’s. Table 5.2

presents the statistics of the predicted signals. “Pred” means the nuinber of predicted
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signals and “Correct” stands for the correctly predicted signals. “Sn” and “Sp” in-
dicate the correct seusitivity and specificity of the predicted signals. As we can see,
our two algorithms predict more correct splice acceptor and donor sites than Exon-
Hunter does. But because the first algorithm predicts quite more splice sites than
ExonHunter and the second algorithm do, its correct sensitivities and specificitices
are lowered. However, the second algorithm | s higher sensitivity and specificity ou
the splice sites than ExonHun Other measurements are pre 7 close to those of

ExonHunter except the specificity of start coc ns.

Results on the Dog Database

The HMR195 data set is aligned with tI  Canis database by tBLAST. Then
SGP2 predicts genes based on the ignment and the HMR195 sequences. The re-
sults fromm ExonHunter are not changed, since the parameter files for the alignment
in ExonHunter is just for mouse. For the first algorithm. it predicts 212 genes, 1385
exons (207 initial exons, 1191 internal exons and 212 terminal exons) and 1107 in-
trons. Table 5.3 shows the compar m of the results from the first algorithm using
dog database and from ExonlF ter. As we 1n see, like the algorithin using the
mouse database, the algorithm on Canis database still has better performance on nu-
cleotide level than ExonHunter. However, other mmeasuremecuts are lower than those
of ExonHunter.

The second algorithm predicts 231 genes, 1 .6 exons (224 initial exons, 825 inter-

nal exons and 224 terminal exons) and 815 introns. Its comparison with ExonHunter

is shown in Table 5.3.
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Table 5.4: Performance Comparison of the Two Algorithms and ExonHunter on

Signals of HMR195 (dog)

ExonHunter t Algorithm | 2nd Algorithm
Pred 819 1279 886
Splice Correct 326 392 361
Acceptor Sn 94.48% 94.75% 94.75%
Sp 40 ’RN% R0.65% 40.74%
Pred 819 1326 1033
Correct 330 396 416
Splice Donor
Sn 95.93% 94.17% 96.79%
Sp 40.29% 29.86% 40.27%
Pred 225 212 231
Correct 60 53 62
Start Codon
Sn 80.87% 68.92% 78.38%
Sp 26.67% 25.00% 26.84%
Pred 225 212 231
Co . 67 38 63
Stop Codon
Sn 91.34% 51.35% 83.78%
Qn 20 3RY, 17 92% 27.27%
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323 exons. Table 5.9 shows the numbers of predicted genes and exons which are in
the annotations and are candidates. We pr¢ nt one sample run in UCSC genome
browser in Figure 5.4.

Also, we compared the results obtained by applying the mouse database and the
canis database. Combination of the two gene finders greatly improved the accuracy
at nucleotide and exon levels and thus is helpful for finding novel genetic information
on chromosome 3. In general, e mouse database performs better than the canis
database for finding genes on this sequelnice. By comparing the mouse genome, mmore
exons and nucleotides can be detected and the correctness of the predictions is reliable
as well. In our experiments, the « 1is genome also advanced tlie performarnce on
predicting genes on the sequence, but tlie specificities are not satisfying on the first
algorithin. For the first algorithin, the canis genome made a bit more predictions
than the mouse genome. For the second algorithin, the genomes of the two species

achieved similar performance.

5.3.4 Discussion

With regard to the experiments on the HMR195 data set, the performance ¢ our
algorithins using both databases is quite close to that of ExonHuuter. Briefly, the
algorithm on the gene level works better than on the exon level. Plus, the results on
the mouse database : : more accurate than t! se on dog database.

The first algorithim works not as well as ExonHunter except, for the performance
at nucleotide level - its nucleotide sensitivity rcaches 100%. We analyze that it is

because the purpose of this algorithmistocc  lerex  re”' 1t an genes and thus
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more exons have been integrated from the predictions of SGP2. Since our algorithm
fundamentally considers all the candidates from ExonHunter and extra exons given by
SGP2 are combined only if their probability scores are higher than the threshold, the
specificities are possibly decreased but the sensitivities for exons and the accuracy for
detecting nucleotides would be increased. The second algorithm works better overall
than the first one. It is more seusitive than ExonHunter at nucleotide and trauscript
levels. In addition, can discover more correct nucleotides than ExonHunter and
the first algorithm do. This is because this  ;orithm cousiders geues predicted by
both programs and also counts the exons belonging to the candidate genes as much
as it can. Therefore it can guarantee the accuracy of genes and meanwhile Liave much
more information about exons and nucleotides.

Concerning the results on the mouse data se and dog database respectively, the
predictions from the comparison with mouse database likely provide more accurate
external evidence. But the evidence acquired by comparing with dog database help
predict more genes and exouns. This may be  used by the threshold defined in the
algorithimms. However, it is promising that the dog database probably supplies some
novel genetic information.

The experiments of the two algorithms on the HMR195 dataset proved that our
algorithms has increased the accuraci  on ni eotide and transcript levels by inte-
grating the predictions from the comnparison with mouse and dog into ExonHunter.
The first algorithmm can detect more genetic inforination than ExonHunter, whercas
the second one partially has a higher accuracy than ExonHuuter does. This indi-
cates that our algorithms could be helpful for discovering novel genes and genetic

information on the human chromost e 3, whi  are related to sudden cardiac deatl:.
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tive cvidence can be developed. The interface will eliminate the difficulties from dif-
ferent formats of prediction files and simplify the combination process. Furthermore,
our study shows comparing the human genome with different species can advance
the performance of the present gene finding programms. The cross-species comparative
analysis is a powerful tool which is worth being considered. For the future wo , we
will endeavor to combine more gene finding p1  rams with diverse advantages on pre-
dicting genes. How to find a more decent method to obtain a more effective threshold
is critical for next step of the future work. We consider that genetic algorithins are
commendable for determining a more accurate threshold. Also, the committee deci-
sion maker presented in Peter J. Bentley’s work [123] could be an interesting solution.
In a word, the future work for the system will be rr-lore concentrated on how to develop

a better method to decide the threshold with: t the probability scores provided and

the rules to combine more evidence.
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combine more evidence.
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APPENDIX A

Algorithm 1: The main runcuon: ensgp.pl

Data: The result files from ExonHunter and SGP2
Result: Predictions from combining the two result files
initialization;

Check the two 1 ut files;

if The files are right then

| Create SGP object and ExonHunter object for the input files, respectively;
end

if Choose run the first algorithm the

| Run the first algorithm;

end

if Choose run the second algorithm then

| Run the second algorithm;

end
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