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Abstract 

Over the last 30 years, seismic ray tracing methods have played the important roles in the 

geophysical exploration and seismology. Various seismic ray tracing methods had been 

proposed, including ray bending and shooting methods based on the two-point ray tracing 

and graph theory based on the grids-algorithms. Each of these methods ha its limitations, 

like shadow zone problem and nonlinear issues. In this thesis, we investigate the use of 

the genetic algorithms (GA), which are nonlinear global search algorithms, to improve 

upon these existing issues. Using a simpler continuous layer (polynomial based) function 

representation, ray tracing is accomplished by sampling each interface for a set of 

intersecting points. Based on these points, a ray path is traced from the shot point to a 

reflector interface back to the receiver. This process is similar to ray bending. The 

method for the generation of the interface points is a genetic algorithm and it finds the 

Fermat path of the least travel time. However, it is computational intensive. In order to 

improve the algorithm the run times are reduced by using the genetic algorithm to 

generate some of the interface layers points and using Snell's Law to bend the rays at 

other interface Layers. We validate the suitability and correctness of the two proposed 

methods using seismic modeling and Pre-stack Kirchhoff migration. The results of 

Kirchhoff migration demonstrate that the reconstructed subsurface structures fit the real 
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model very well, and also prove that the proposed methods are very effective seismic ray 

tracing methods. 

In addition, the hardware implementations are powerful approaches to accelerate our 

proposed ray tracing algorithms. Moreover, considering that the development of the 

hardware implementations did not attract much attention in geophysics a purpose built, 

specific hardware algorithm is developed and a hardware engine is implemented in the 

low-cost field-programmable gate array (FPGA) device. The fixed-point arithmetic, the 

functional parallel design, the high efficiency sorting engine and the memoryless design 

for the velocity model work together to produce a comparable performance with IBM 

workstation. 

All results mentioned above demonstrate that the Pre-stack Kirchhoff migration and the 

hardware implementations of our seismic ray tracing methods are all feasible and the 

proposed approaches may be further extended for the more complex media. 
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Chapter 1 

Introduction 

Ray tracing is a method to simulate the paths of rays (waves or particles) through a 

system and, based on the reflected and transmitted points on the passed surfaces, to 

model the physical effect (Glassner, 1989). It traces rays propagation obeying Snell 's 

Law, and decides rays bending directions when they travel through an interface. All the 

rays recorded at the destination are traced from the source (Cerveny, 2001), by which the 

energy and the frequency of the rays are determined. This method closely simulates the 

ray travel in nature. Thus, it is widely used in the computer graphics to produce the 

highly realistic 3D image (Peter and Keith, 2001) and used in the phy ics ciences to 

model and analyze the transmission system (Cerveny, 2001). 

In the seismic exploration or seismology, seismic ray tracing is a very powerful approach 

for providing seismic travel time (refracted, direct, reflected travel time and so on) and 

seismic wave form information (Officer, 1974) by simulating seismic wave propagation 

in the assumed complex media, including isotropic and anisotropic media. Generally, the 
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setsmtc wave propagations are studied from source to receiver to locate the source 

position (if source is set underground) (Haslinger, 2001) and to determine physical 

parameters (p-wave velocity, s-wave velocity, density) (Wesson, 1971), as well as to 

determine geometry parameters (reflector depth) (Docherty, 1991) in the subsurface. 

1.1. Seismic Modeling and Migration Using Ray Tracing 

Seismic modeling and migration play major roles in seismic exploration. They are 

valuable tools for the seismic data interpretation and the subsurface structure 

reconstruction. Seismic modeling simulates waves propagation in the assumed structure 

of the subsurface model. Based on the travel time of waves propagation and the source 

function, seismic modeling generates the synthetic seismogram (Carcione et al., 2002). 

Seismic migration utilizes the seismic data to construct the image of the subsurface 

structure and removes the effect of the seismic wave propagation from data to move 

seismic events towards their correct subsurface positions (Alaei and Pajchel, 2006). 

One of cornerstones of seismic modeling and migration is the travel time calculation 

between two given points in the assumed subsurface model. Seismic ray tracing is one of 

several travel time calculation approaches that can be used in the geophysics. Given two 

points in the subsurface model, called a shot and a receiver (shown in Fig. 1.1), as an 

efficient method, seismic ray tracing traces the propagation of the seismic waves from the 

shot point to the receiver point based on Snell's Law, and calculates the travel time of a 

wave propagation (Keller and Perozzi, 1983). 



3 

* hot 
\l : Receiver 
• : Bending point 

,' 

Fig. 1.1. The sketch map of seismic ray tracing in the 3 layers subsurface velocity model. 

1.2. Seismic Ray Tracing Methods: Shooting and Bending 

Methods 

Shooting and bending methods are two major seismic ray tracing methods in use today. 

In the shooting method, a seismic ray is firstly emitted with an assumed direction (take-

off angle) from the shot point. Then, along the take-off angle direction, the intersection 

points with the interface layer, called the bending points, are calculated. Based on Snell 's 

Law, the shooting method tries to match the calculated reflected ray to the receiver by 

iteratively improving the take-off angle (Sadeghi et al., 1999). This method IS a very 

efficient seismic ray tracing method, but, it has some known limitations. 

As shown in Fig. 1.2, for a certain subsurface model and a shot-receiver pair, we may not 

find a ray path, which is shot from the shot point with any direction arriving at the 

receiver point. Therefore, the ray paths have to be interpreted to simulate the wave 

transmission and calculate the travel time. The interpretation introduces an error that only 

occurs at the receiver location. As one can notice that, the error could also be distributed 
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into the bending points on the interfaces. So that, the simulated ray paths and the 

calculated travel times are much closer to the real cases. 

* :Shot 

'il : Receiver 

• : Bending point 

Fig. 1.2. The illustration of a failure of the seismic ray shooting method. 

In the bending method, the bending points are assumed already on the interfaces, but the 

locations of the bending points are unknown. The method uses an algorithm to search all 

the points on the interfaces and finds the bending points, which satisfy Snell's Law and 

Fermat's Principle. If the subsurface model is too complex to find the bending points, the 

search algorithm return a set of bending points that have the minimal errors (Lu and 

Bording, 2007, Zhao et al., 2004). In this case, the total travel time error is the sum of 

errors of all the bending points on the interfaces. 

1.3. The Search algorithm: Genetic Algorithm 

The Monte Carlo method (Metropolis and Ulam, 1949), simulated annealing (Kirkpatrick 

et al., 1983) and genetic algorithm (Holland, 1975) are the most popular search 

algorithms in used today. As the most powerful search algorithm, the GA is designed for 

very complex function optimization (Goldberg, 1989). The idea of GA comes from the 

biological evolution (Holland, 1975). It is based on several initial individual (bending 

points sets in this thesis) to continuing evolution. During the continuing evolution, the 
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individuals who are suitable to the environment are remain and the others are eliminated 

through the contest. After several numbers of generations, the best individual is selected 

as the optimization result. 

1.4. The Objective of the Research 

The first focus of our research is to design the seismic ray tracing bending methods using 

GAs. The derivations of two ray tracing methods: the minimum travel time method 

(MTTM) and the minimum errors of Snell's Law method (MESLM) are di cussed. The 

detailed de igns of GAs for both methods are provided and they are compared with 

respect to the calculation efficiency, results quality, software parallelizability and 

hardware implementations. In order to validate the correctness of our bending methods, 

the 2D and 3D seismic modeling and Pre-stack Kirchhoff migration are implemented. 

The error calculation of a bending point is the most computational intensive part in our 

algorithms. As the second focus of our research, to accelerate our ray tracing algorithm , 

a purpose built, specific digital hardware implementation is proposed. This hardware 

implementation is intended to work as an integrated card, which can be plugged into 

peripheral component interconnect (PCI) socket to supply the application- pecific travel 

times. The ray tracing applications, e.g. seismic modeling and Pre-stack Kirchhoff 

migration program, could access the PCI interface to read/write the data and the control 

signals. In the hardware implementation, the fixed-point calculation runs fa ter and uses 

less chip space than the corresponding floating-point calculation. Thus, the fix-point 

arithmetic is employed to evaluate the cost function. The function evaluations for each 
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layer could be organized in a parallel fashion. This idea gives much better performance 

than Von Neumann micro-processors (Bording, 1996). 

1.5. Thesis Outline 

In this thesis, there are seven chapters. Chapter l is the introduction. Chapter 2 provides 

the principle of GA. Specifically, the theory of GA, the design components of GA, the 

workflow of GA and the exploration and exploitation search strategies of GA are 

discussed. 

Chapter 3 propo es two layer based ray tracing methods, the MTTM and the MESLM. 

Both methods are ray bending methods and implemented by GA. The fitness functions 

developments and the functions sensitive analysis of both methods are discussed in detail. 

The GA components implementations of both methods are provided. 

Chapter 4 provides the implementations of seismic modeling and Pre-stack Krichhoff 

migration. The message passing interface (MPI) parallel technique design for both 

applications is discussed. Two 2D and two 3D layer based synthetic velocity models are 

introduced in the experiments. From the results of Pre-stack Kirchhoff migration, the 

proposed methods are tested. 

Chapter 5 compare the proposed MTTM with MESLM from the calculation efficiency, 

the simulated ray paths and results quality, the software parallelizability, as well as the 

hardware implementations. Moreover, the reasons of the differences are analyzed. 

Chapter 6 provides the hardware algorithm and the implementation of the hardware 

engine, based on the proposed MTTM. In this chapter, the top level de ign, the hardware 

implementations of the components of the designed GA and a high efficient sorting 
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engme with temporal and spatial complexity of O(N) are provided. The hardware 

performances are investigated by comparmg the synthesized engme with the IBM 

workstation and the function of the implemented engine is validated by the post-route 

timing simulations. 

Chapter 7 draws a conclusion for this thesis and provides the directions for some future 

work. 
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Chapter 2 

Genetic Algorithm 

As one of the effective and powerful evolutionary algorithms, GA was originally 

proposed by John Holland (Holland, 1975) to represent a fairly abstract model of 

biological evolution. It has been succes fully applied to variou cientific and engineering 

problems especially, to the very complex function optimizations (Goldberg, 1989). 

Based on the stochastic search, GA provides the approximate olutions, which could be 

further optimized by a mathematical optimizing method, e.g. Newton method. 

There are several advantages (Davis, 1991 ), which allow GA to be the efficient function 

optimization method. Firstly, the function to be optimized in GA is operated as a black 

box. The algorithm only needs to be informed the types of the inputs and outputs of the 

black box. The mathematical properties of the function are unnecessarily considered. In 

theory, the same platform of GA could be applied for any function optimization. 

Secondly, unlike other stochastic earch algorithms (Monte Carlo and simulated 

annealing), GA is based on the suitability of the previous solution to generate the next 
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elution . Thus, the random solutions are pushed to the direction, which optimizes the 

function. Moreover, because more than one previous solution are selected, the local 

optima problems are greatly avoided. 

As one can notice that in order to de ign a GA to optimize a realistic problem, the pre­

step has to abstract the problem into a mathematical function repre entation. The inputs 

of the function must be sensitive to the outputs of the function. 

2.1. The Components of GA 

An efficient GA design usually contains five components: population, selection 

replacement, individual evolution, fitness evaluation and termination. Each component i 

described below. 

2.1.1. Population 

Because of GA coming from the biological theory, the names of the components of the 

GA are close to biology. A set of solutions in GA is called a population and a single 

solution in the population is called an individual. The solution space, which includes all 

the potential solutions, is called the search space. All the individuals in the population are 

initialized in the search space and will be evolved in the search space. 

An individual in the population could be represented by several formats. Generally it is 

represented by a binary string, which is called the genotype of the individual. The value 

of the binary string, a real or integer value is called the phenotype. It could also be 

represented by a real number vector, which is the natural representation for the numerical 
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optimization (Koza, 1992). In the real number representation, the genotype and the 

phenotype are assumed to be the same for an individual. 

For example, using GA to minimize the function: y = x2 + 10 , as shown in Fig. 2.1 , the 

search space of this function should be designated as the entire real value range. The 

population might be defined as including ten individuals (repre ented by green points in 

Fig. 2.1 ). The number of individuals in the population is called population size. 

40 Individual 8 Individual 10 

~ 
Individual 9 

20 

10 

0 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

All • points together represent the population 

Fig. 2.1. The illustration for the population of GA. 

The population size will affect the performance of GA. With the same etup of other 

components, the larger population size, the more accurate solution are produced, but the 

computational complexity is increased as well. With a larger population size, more 

individuals are included in the search space thereby increasing the population density, so 

that the local optima are easily avoided. 
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2.1.2. Selection and Replacement 

In GA, the selection occurs in two places. First, GA selects the individuals in the 

population as parents to evolve and produce the offspring. Second, GA selects the 

suitable individuals to replace the worse individuals and generates a new population. The 

selection strategies work on the entire individual formats, i.e. they are representation 

independent. The different selection strategies have to be adopted for different problems. 

For the same optimizing problem, the different strategies perform differently. 

2.1.3. Individual Evolution 

Basing on the selected parents, the offspring are produced at the individual evolution step. 

The evolution methods, called genetic operators, are different with respect to the different 

individual representations. Generally, there are three main categories: crossover, mutation 

and copy. 

Crossover operator means that GA combines two or more individuals to generate at least 

one offspring. In the binary representation, the crossover occurs with exchanging the bits 

in the same position of two or more parents. In the real number vector representation, 

besides operating the arne way as that on the binary strings, the arithmetic crossover 

(Michalewicz, 1996) is also applied to generate the offspring, which are the linear 

combination of their parents. The purpose of using crossover operator is to reserve the 

suitable genes in the parents to the offspring. That similarly happens in nature as 

inheritance. 

Mutation generates one or more offspring from only one parent. In the binary 

representation, the offspring are produced by flipping the bits of a binary individual, with 
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some probabilities. For the real number vector , other random vectors are generated and 

the offspring are produced by adding the new random vectors to their parent. This genetic 

operator brings the extra genes into the original population and is called aberrance in 

nature. 

Copy operator works as its name, producing the identical offspring from the parent. It is 

designed to keep suitable individuals in the population for future. 

2.1.4. Fitness Evaluation 

The fitness evaluation is applied to measure the suitability of an individual. It substitutes 

the individuals into the fitness function, which is supposed to be optimized, and collects 

the results of the function as the fitness. For the numerical optimization, the fitness would 

be the sum error, mean squared error, root mean squared error etc. A healthy fitness 

function has one and only one fitness for an individual. 

2.1.5. Termination Criteria 

After evaluating the fitness of the parents and their offspring, the GA checks the 

termination criteria to decide whether the optimization is successful. The criteria would 

be either a tolerable time period or a threshold for the optimum solution. If the program 

reaches the criteria, the algorithm is terminated and the optimum solution is outputted. 

Otherwise the old population is replaced by the suitable individuals to generate the new 

population. 
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2.2. The Workflow of GA 

As shown in Fig. 2.2, GA is an iterative algorithm. In an iteration, called a generation, 

parents selection strategy chooses the individuals as the parents and genetic operators 

generate evolutions in the selected individual . Based on the fitne s evaluation criteria, 

the survivor selection chooses the remaining survivors and replacement produces the new 

population. With the number of generations increasing, GA pushes the random 

individuals in the population to the directions that optimize the function. 

I nitia li zatio n 

Evo lu tion 

Crossover I ,...., _M_ u_t_a t-i o- n---, 

Rep I accmcn t 

Fig. 2.2. The workflow of GA. 

2.3. The Search Strategies in GA: Exploration and Exploitation 

As a successful earch algorithm GA obtains it power from two ource : exploration 

and exploitation. The exploration strategy brings the new genes into the population and 
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exploitation trategy combines the existing genes in the population to produce the new 

individuals (Eiben and Schippers, 1998). 

If the search pace is large e.g. real number space, it is impossible to search all the 

inclusive cases. GA is based on a set of explored values (initial population) to exploit the 

potential solution within the population. If the solution genes are in the population, GA 

may easily and quickly pick up the solution. Otherwise, GA uses the potential solutions 

to explore more related values in the search space, and lead the random search to the 

solution direction. In general, the exploration strategies in GA include: initialization and 

mutation. The exploitation strategies include: selection and crossover. 

G 

Fig. 2.3. The illustration of the exploration and exploitation search strategies. 

An example, which shows how the exploration and exploitation work, is illustrated in Fig. 

2.3. The curve represent the function that GA tries to minimize. The point 'G' is the 

global minimum solution. The points ' a', 'b ', ' c' , 'd' and 'e ' are the explored initial 

individuals in the population. GA exploits the exi ting population and selects points 'd', 

'b' and 'e' as the potential solutions. Then GA may continue exploiting the potential 

solutions using arithmetic crossover, which combines the genes in the selected solutions 

to produce the other solutions, or explore the potential solutions using mutation, which 

mutates the genes in the selected solutions. Either way will lead the GA to the solution 

direction. 
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2.4. Summary 

This chapter introduces the concepts and the components of GA. The search strategie 

that GA used are also discussed. The exploration and exploitation search in GA have to 

be balanced (Eiben and Schippers, 1998) for a certain problem. Otherwise, the 

performance would be greatly affected. In general situation, if the computational 

resources are enough, the more explorations at the initialization step and more 

exploitations at evolution step would produce a better performance. 

A healthy GA has to include five components. They have the different implementation 

for the different optimization problems. The fitness evaluation component is strategy 

independent, i.e. it is black box when the GA is operated. However, for the same 

optimization problem, developing an efficient fitne s function is very important. The 

following chapters illustrate two different fitness functions for the same ray tracing 

problems, and compare the results. 
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Chapter 3 

Methodology 

Seismic ray bending methods are accurate ray tracing methods, by which the difficulties 

of shooting methods, e.g. rugose-salt-sediment interfaces and steeply dipping interfaces 

problems, are overcome. In order to design an efficient bending method, the subsurface 

velocity model must to be defined. In our research, the velocity model i designated as a 

layer-based model, in which the constant velocity is maintained between each layer. Each 

layer is described by a single value continuous function ofx-offset andy-offset (as shown 

in Fig. 3.1). The ray path only bends at the layer interfaces and at the bottom reflector. 

Therefore, to simulate a ray path in the defmed velocity model, one effective method is to 

construct the ray path by searching the bending points on the layers (reflectors). Based on 

Fermat's Principle and Snell's Law, two ray bending methods using GA are proposed in 

this chapter. 
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Fig. 3.1. The illustration of a ray path from a shot to a receiver in the assumed subsurface 
velocity model. 

3.1 . The MTTM 

Based on Fermat's Principle, the frrst reflected arrival wave is recorded by the receiver, 

which is triggered from the shot along the ray path with the minimum travel time. The 

energy of the wave is also transmitted along this path and reflected on the velocity 

interface (Moser, 1991). From this theory, a MTTM can be developed using GA. 

3.1.1. Fitness Function Description 

In order to design a GA, the fitness function has to be derived initially. This fitne s 

function works as a black box in GA and the rest of GA components associate with it but 

do not depend on it. The fitness function in MTTM is designed to calculate the travel 

time between the shot point and the receiver point. 

For a given velocity model, the travel time of a ray segment (the ray between two 

bending points) is calculated by the distance between two points divided by the velocity, 

as shown in Fig. 3.2. The distance is computed by Pythagorean principle and the travel 
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time between the shot point and the receiver point are sum of the travel time of each ray 

segment. 

Shot point 
(Sx,Sy,Sz) 

~ 
\ 

\ 
\ 

\ 
\ I 

I 
I 

I 

I 

Receiver point 
(Rx, Ry,Rz) 

-ft. 
V( l)=2000m/s 

Bending point 1 ~ 
{bx{1),by{1 ),b{1 )z) \ 

,./ Bending point 3 
/f (bx(3),by(3),b(3)z) 

\ I 
\ I 
\ I 
\ I 
\ I 
~ 

Bending point 2 
{bx{2), by{2),b{2)z) 

V(2)=3000m/s 

Fig. 3.2. The illustration of travel time calculation between two bending points. 

The travel time function in 3D velocity model is given as equation 3.1 , 

_liS-b(l)ll IIR - b(l)ll ~ llb(i)-b(i - 1)11 . -
T - V(l) + V(N) + f;t V(j) J - l , .... ,N (3 .1) 

where Tis the travel time, Sis the shot point, R is the receiver point, b(i) is the bending 

point i , notation II II is the distance between two points, l is the number of the bending 

points between the shot and receiver points, which is calculated by counting the number 

of wave reflections and V 0) is the p-wave velocity ofjth layer. 

In equation 3.1 , the coordinates of the shot and receiver points (Sx, Sy, Sz, Rx, Ry, and Rz) 

as well as the velocities (V 0), j = 1, ... ,N) are already defined. As the result of the function, 

the travel time is only sensitive to the bending points set and it is designed to be 

minimized. Thus, the equation 3.1 is reasonably designed to be the fitness evaluation 
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component in the GA. The input of this component is the bending points set and the 

output is the travel time. 

3.1 .2. Genetic Algorithm Design 

Based on the fitness function, the rest of GA components can be developed. 

3.1.2.1. Population 

The individuals in the population are represented by the natural representation of the 

numerical optimization, real number vectors, in which the genotypes are the same as the 

phenotypes. Each individual contains three vectors, and each vector separately stores the 

x, y, and z coordinates of the bending points. The lengths of the vectors are equal to the 

number of bending points between the shot point and the receiver point. 

The search space is defined as real value within the range of the layers descriptions of the 

velocity model. In the initial population, the individuals are assigned as the random 

points within all the possible bending points on all the layers. The population size 

depends on the available computational resources. However, with the crossover operation 

procedure, at least two individuals are required in the population. In our software 

implementations, after several experiments, the population size was defined as 40 

individuals, which is enough for our optimization problems. 

3.1.2.2. Selection Strategies and Replacement 

The deterministic selection strategies are adopted m our GA design. In the parents 

selection, all individuals in the population are selected as the parents. The selection, 

mutation and crossover are executed together on the old population to produce a larger 

temporary population (Eshelman, 1990), which contains the parents individual and the 
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offspring individual. Each individual, including the parent and off pring, is evaluated 

using the fitness function. In the replacement selection, the same number as the 

population size of elitism individuals are chosen. The old population i replaced by the 

chosen individuals a the new population in the next iteration. 

3.1.2.3. Individual Evolution 

In the process of individual evaluation, the uniform mutation and the arithmetic crossover 

are performed together to evolve the parents and to generate offspring. With each pair of 

parents, there is an 80% chance of being mated using the uniform mutation and a 20% 

chance of being mated using the arithmetic eros over. 

For an parent individual, which contains the coordinates of a bending points set, the 

uniform mutation will generate two vectors and will add these new vectors to the x, y 

coordinates vectors of the parent individual. The new z coordinates vector is calculated 

based on the e tablished layer function previously derived. Each new individual is 

produced as an offspring. 

Parent New Offspring 

106 10 116 

91 -9 82 

151 

56 + 
5 

6 

156 

62 

78 -8 70 

158 1 159 

199 0 199 

Fig. 3.3. An Example ofuniform mutation. 

The contents of these two new vectors are based on uniform random real values within a 

certain range, called step size. The step size in our design will evolve as the generation 
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number increases (Iorio and Li, 2002). It is initialized as ten percent of the x offset and y 

offset range and decreases with the programming run. Using this genetic operator, the 

algorithm searches the points around a parent point and the precision of the search i 

enhancing with iteration. An example of uniform mutation for x coordinates of the parent 

is illustrated in Fig. 3.3. 

In the arithmetic crossover, two new vectors (Ve 1 and Ve2) are generated. The contents of 

the vectors are real numbers from range 0 to 1 with uniform probability distribution. The 

offspring are produced by: 

Offspringx(i) = Plx(i)•Ve1(i)+P2x(i)•(1-Ve1(i)), i = l .... , / 

and, 

Offspring Y (i) = P1 y(i)•Ve2 (i) + P 2y(i)•(l- Ve2 (i)), i = 1, ... . , l 

(3.2) 

where P1x(i), P2x(i), P,y(i), and P2y(i) represent x, y coordinates of the parents, VeJ(i) and 

Ve2(i) are the new vectors, iE {1 , ... /} is the index of vector value, lis the number of the 

bending points between the shot and receiver points. We use the arithmetic crossover to 

search the points between parents. 

3.1.2.4. Termination Criteria 

In the MTTM, no threshold would be decided for the program termination. Therefore, the 

termination criterion is set to a tolerated time period. In our experiments, we set the 

termination criterion as either 100 GA generations or when all the individuals in the 

population converge to the same value. 

The MTTM is accomplished based on the above GA setups. The method simulates the 

ray propagation and is used to calculate the travel time between two given points in the 

assumed earth model. Using this method, seismic modeling and Pre-stack Kirchhoff 
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migration are implemented. The above setting is reasonably accurate for the following 

modeling and migration problems. Moreover, as one can notice that by neglecting all the 

operations on the y coordinates, the algorithm can also be transformed to the 2D seismic 

ray tracing method. 

3.2. The MESLM 

When a ray bends at a velocity interface, the reflected ray path can be determined based 

on Snell's Law. From this theory, the shooting ray tracing method is designed to simulate 

the ray propagation between the shot point and the receiver point in the subsurface model. 

However, an error may be caused by Snell's Law at receiver point. In order to produce an 

accurate result and minimize the error, the MESLM is proposed to distribute the error at 

the receiver along all the bending points on the layers and these errors can be managed 

using GA. 

3.2.1. Fitness Function Description 

The fitness function in the MESLM is designed to calculate the error caused by Snell 's 

Law at each bending point. As shown in Fig. 3.4, between the shot point S and the 

receiver point R, two bending points (A and B) are randomly initialized on the layers. 

The ray paths SA, AB and BR are thereby random ray paths. Based on Snell's Law and 

the random incidence ray paths and the reflected ray paths AB' and BR' are determined. 

The errors of Snell's Law are defined as the difference between the random ray paths and 

reflected ray paths. Therefore, the input of the fitness function is a bending points 

coordinates set and the output is the sum of the errors of Snell' s Law. If the sum of errors 

equal to zero, the Snell's paths are found. 
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8' 

Fig. 3.4. The illustration ofthe errors caused by Snell ' s Law. 

The error may be represented by the different forms, such as the angle error or the 

distance error. In the following sections, the derivations of the angle fitness function and 

the distance fitness function are provided. Moreover, based on the computational 

complexity, one of the fitness functions is selected to apply in the MESLM. 

3.2.1.1. The Angle Fitness Function Derivation 

As shown in Fig. 3.5, the points A(x 1, z 1) , B(x2, z2) and C(x3, ZJ) are defined random 

bending points. The layer lis described as z=f(x), a single value continuous function ofx­

offset. Based on the incidence angle (},, velocity V1 and V2, the reflection angle 82 is 

calculated. Moreover using trigonometric functions, p, the angle between path BC and 

normal, is also calculated. Thus, the error is represented by the difference between 82 

and p. The following equations provide the detail of the derivation of the error function 

for a single bending point. 
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Fig. 3.5. The illustration of the derivation of the angle fitness function. 

(} . (sin(Bt)•V2) (} "' 2 = arcsin , t = 'f' + a , 
Vt 

Error = abs( 82 - /]) 

¢ = arctan((x2- Xt)), a = arctan(f'(x)) 
(z2- Zt) 

Error= abs arcsin 

sin (arctan ((X2- Xt))+arctan (f'(X2) ))•V2 
(z2-Zt) ((XJ X2)) -arctan - + 8) 

~ ~-~ 
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(3.3) 

By summing up the error of each bending point, a function is derived. The error has the 

similar gradient as the difference between the random bending point and the Snell' s point, 

and therefore, when the difference is small, the error is also a small value. Thus, this 

function is adoptable as a fitness evaluation function that is used in GA for minimization. 

However, many trigonometric functions are applied in the fitness function. They cause 

the high degree computational complexity when the fitnesses are evaluated in GA. 
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Therefore, other fitness functions are investigated, which are not o computational 

intensive. 

3.2.1.2. The Distance Fitness Function Derivation 

As shown in Fig. 3.4, based on the emitted ray, the Snell's points, 8' and R' can be 

calculated. The distances between the Snell's points and the random points are sensitive 

to the random ray path, and also if the sum of the distances is zero, the random ray path is 

a Snell's ray path. Thus, a fitness function could be also represented by the distance 

function. 

Zrx 

A(~, ,z,) a x2 
-~--------~-------------------. . Ro\ . 

. 'f' \ : 
Nonn'al : 

\ . 

Bending 
0 point 

Snell 's 
• point 

Fig. 3.6. The illustration of the derivation of the distance fitness function. 

As shown in Fig. 3.6, the distance between the first random point A(x1, z1) and the 

normal intersected point with layer z=z1 is represented by a; the distance between the 

Snell's point C'(x3· , z3) and the normal intersected point with layer z=z3 is represented by 

c; the distance between the point A and the second random point B(x2, z2) and the 

distance between point B and point C' are represented by b and d re pectively. Using 

trigonometric function and Pythagorean principle, a , b, c and d are calculated by the 

following equations respectively. 



a= (x2- x1) + Tan(a)•(Z2 - z,) 

b = .Jcx2- x1)2 + (Z2 - z,)2 

c = (xJ·- x2) + Tan(a)•(v- z2) 

d = .J ( X 2 - X 3 y + ( Z2 - Z3) 2 

Based on Sine Law: 

a b . 
8 

a . .n. 
--=--=>sLn 1=-•sm"' 
sin81 sin¢ b 

c d . 8 c 0 .do --=--=>sm 2=-•sm"' 
sin82 sin¢ d 

Then using Snell's Law we get: 

a c 
- •V 2 =-•V , 
b d 

Substituting equation (3.4) into (3 .6), we get: 

( X2-XI )+ j( X2)'•( Z2 -ZJ) + ( X2-X3')+ j( X2 )'•( Z2 - ZJ ) Q 

v, • .J( X2-XI / +( Z2 -vl V2•.J( X2-X3l +( Z2 - v l 
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(3.4) 

(3.5) 

(3.6) 

(3 .7) 

Instead of calculating the Snell's point C'(x3·, z3·) and then calculating the distance 

between C' and C, the error function (equation 3.8) is produced by directly substituting 

the coordinate of third random point C(x3, z3) into equation (3.7). 

(3.8) 
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rr l E b ((XI- Sx)+ji(XI)'•( v -Sz) (X1-X2)+j i(XI)' •(v-v) ] 
1 ota rror =a s + + 

- VI•~(XI-Sx/+(v-Sz/ V2•~(x1-X2/ +( v-v/ 

b 
( 
(XI- Rx ) + fi( XI )' •( Zl - Rz ) ( XI -XI - I ) + fi( XI )' •( Zl- Zl - I ) ) 

as + + 
V1•~( XI-Rx/ +( ZI- RZ / V2•~( XI-XI -I/ +( Zl- Zl-1 / 

(3.9) 

I abs ( (Xi- Xi - 1 ) + fi( Xi ) ' •( Zi- Zi - 1 ) + (Xi- Xi + 1 ) + fi( Xi ) '•( Zi- Zi + 1 ) ) 

i=2 Vi-I·~( Xi - Xi- 1 / + ( Zi- Zi- 1/ Vi·~( Xi - Xi+ 1/ + ( Zi- Zi + 1/ 

It can be proved that the error function (equation 3.8) is a single value function and 

sensitive to the input random points set. An example of an error function plot is shown in 

Fig. 3.7. In this example the incidence ray is fixed, and the Snell's point is calculated at 

coordinates (x3'=SO, The layer IS described as 

v =lO•sin(O.l•x)+200,xE {l ..... JOO}. The error decreases as the random point 

approaches the Snell's point. Therefore, this error function is a suitable fitness function 

for GA minimization. Summing up all of the errors for the entire bending points set, the 

distance errors function is produced in equation 3.9. By comparing to the angle error 

function (equation 3.3), the computational performance is greatly increased. 
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Fig. 3.7. The illustration of fitness function curves versus distance. 
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3.2.2. The Genetic Algorithm Design 

The designs of the GA components for the MESLM are similar to the MTTM. However, 

because the developed fitness functions are different, in order to increase the runtime 

performance, the termination criteria are modified for the MESLM. 

In the MESLM, the suitability of an individual could be decided before finishing the 

evaluation. Because, if the error of one bending point is a large value, for instance, the 

distance between B and B' is too big, this individual ray path is absolutely not a Snell 's 

path. This method of ray rejection greatly improves the program runtime. The termination 

criterion is also clear in the MESLM in which the total errors are minimized to zero. 

Therefore, it may terminate the search with a successful ray path before the number of 

generations reaches the iteration limit. 

3.3. Summary 

The MTTM and the MESLM, two layers based seismic ray bending methods, have been 

proposed in this chapter. The fitness functions derivations and the GA components 

designs of both method are discussed in detail. Using either of methods, the limitations 

of other seismic ray tracing methods are overcome. In the MESLM, two fitness functions 

are derived. The angle fitness function may be further employed by another optimization 

algorithm, but, based on the computational complexity, the distance fitness function i 

applied in our research. 

The MTTM has the lower computational complexity, which is very important for the 

scientific computing. Therefore, two applications, seismic modeling and Pre-stack 
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Kirchhoff migration, are implemented based on this method. Furthermore the MESLM i 

validated in the following chapter. 
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Chapter 4 

Applications and Results Verification 

There are many applications of seismic ray tracing in the seismic exploration and the 

most of them are the inversion problems. In the practical seismic exploration, the seismic 

survey produces the wave forms and travel times information, which are recorded by the 

geophones. In order to understand the subsurface structure, the seismic ray tracing 

methods are the most frequently employed to simulate the ray propagation in the 

subsurface and calculate the travel time. 

As the most important applications of seismic ray tracing, seismic modeling and 

migration are essential stages in the sei mic exploration (Dong et al, 1991 ). They are 

effective methods for the eismic data interpretation and the subsurface image generation. 

In both of seismic modeling and migration, the seismic ray tracing methods are applied to 

calculate the ray travel time between the shot point and the receiver point. The synthetic 

seismograms are generated in the modeling process and the subsurface image is 

reconstructed in the migration (Carcione et al., 2002). 
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4.1. Seismic Modeling 

4.1.1. Seismic Modeling Theory 

From the seismic survey, the seismograms are generated. The information on the 

seismogram contains the travel times of all hot-receiver pair and the received wave 

energies. Based on this information, the seismic data are processed by the geophysicists 

and the subsurface structure is interpreted. For the research in the lab, in order to better 

understand the seismic data processing, the synthetic subsurface velocity models are 

usually employed. Seismic modeling is a process that simulates the seismic ray 

propagation in the synthetic velocity models and produces the synthetic seismogram . 

The synthetic seismograms could be applied to match to the real seismograms (Bording 

and Lines, 1997), which i a criterion to verify the correctness of the eismic data 

processing. 

As the same a the real seismic survey, in the seismic modeling, usually, the receivers are 

laid out on the surface of the velocity model and sample the seismic waves with a certain 

interval also monitor the shot activities. The shot is moved from one position to others on 

the surface of the model and explodes to generate the seismic waves. When the shot 

explodes the seismic waves at one position, the waves propagate through the velocity 

model and reflect at the velocity interfaces. After a time period, when the waves arrive at 

receiver, they are recorded and recorded time traces build up the expected synthetic 

seismogram. 

The objectives of this chapter in our research are to implement the applications of the 

seismic ray tracing methods, seismic modeling and Pre-stack Kirchhoff migration, and to 
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verify the proposed methods. Thus, the modeling processes are simplified and the several 

assumptions are considered. 

4.1.2. Seismic Modeling Methodology 

In our research, the p-wave, a type of elastic waves, is the considered seismic wave. The 

synthetic velocity models are represented by the layer based models. The process of the 

shot movements from one position to others on the surface is considered as many shot 

points lying out at the different positions. To simplify the modeling implementations, the 

energy attenuation of the ray propagation through the bending process is not considered 

and the multiple reflections phenomena are neglected. Therefore, the frequency of wave 

forms that receiver recorded are the same wave forms as the shot generated, and the 

differences in time of waves arriving at the receiver are caused by the reflections at the 

different velocity interfaces (layers). In order to mathematically represent the receiver 

sampling process, the numbers of the samples are calculated by the travel time divided by 

sample interval and the sampled wave forms are generated by convolving the reflection 

coefficients with the source function. 

The travel time from the shot point to the receiver point is produced by employing the 

proposed MTTM. The inputs of our method are the shot and receiver positions as well as 

the velocity model, the outputs are the minimum travel time and a bending points set, 

which constructs a ray path. An example of the ray path, which is produced by the 

MTTM, in the 20 polynomial layers velocity model is illustrated in Fig. 4.1 , which 

shows that the produced ray path is close to the Snell ' s path. 
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Fig. 4.1. An illustration of a ray path with the minimum travel time of one shot- receiver 
pair in the assumed velocity model. 

From the calculated travel time, the number of sample is generated by: 

. mtime( i ) . 
Ns(L)= -0.5, t=1, .. .. ,N 

dt 
(4.1) 

where Ns(i) is the number of samples, mtime(i) is the minimum travel time, dt is the 

sampling interval, N is the number of layers in the model, and 0.5 is used to produce the 

closest integer value for the number of samples. 

Without considering the energy attenuation, the reflection coefficient of each reflector, 

which determines the amplitude of the reflected wave, is calculated by: 

R( i ) = p( i + 1 )• V ( i + 1 ) - p( i )• V ( i) , i = 1, .... , N 
p( i + 1 )• v ( i + 1 ) + p( i )• v ( i ) 

(4.2) 

where R(i) is the reflection coefficient of i1
h layer, V( i) is the velocity of / 11 layer, p(i) is 

the density of i111 layer and it is assumed to be constant value, and N i the number of 

layers in the model. The reflectivity series, an unfinished synthetic eismogram, which 

contains the peaks in the sampled position, is generated by: 
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,11 . . . ( . ) {R( i ), j = Ns( i) 
reJ .ectlvlfy _ senes J = 

0
' 

Others 
, j=l, .... ,Ns( N ), i=l, .... , N (4.3) 

The integrated synthetic seismogram IS accomplished by convolving the reflectivity 

series with the source function . The flow chart of modeling process is shown in Fig. 4.2. 

Source function Velocity model 

Travel time of shot and receiver 

alculate the reflection coefficient 

Yes 0 

The reflection coefficient 

pairs 

Calculate the reflectivity series 

synthetic seismogram 

Fig. 4.2. The flow chart of modeling process. 

4.1.3. Seismic Modeling Experiments and Results 

As shown in Fig. 4.3, two 2D velocity models and two 3D velocity models are introduced 

in the experiment. The parameters of 2D and 3D models are listed in Table 4.1 and Table 

4.2 respectively. In each model, the p-wave velocities are distinguished by the different 

layers and set to constant value in the same layer. 
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Fig. 4.3. The structures of adopted velocity models. 

Table 4.1. The parameters of 2D experimental models. 

Model Layer Velocity Depth (m) x-offset (m) 
(Krnls) 

1 2.1 

2 2.2 

a 3 2.3 600 200 

4 2.4 

5 2.5 

1 2.1 

2 2.2 

b 3 2.3 400 200 

4 2.4 

5 2.5 
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Table 4.2. The parameter of 3D experimental models. 

Model Layer Velocity Depth (m) x-offset (m) y-offset (m) 
(Km/s) 

c 1 2.1 50 50 20 

2 2.2 

d 1 2.1 50 50 20 

2 2.2 

In the 2D models, 20 shots and 50 receivers are distributed on the flat 1 D surface, with 

shot spacing at 10 meters and receiver spacing at 4 meters. In 3D models, 40 shots and 40 

receivers are laid on the 2D flat surface, with shot and receiver spacing at 5 meters in x-

coordinates and 5 meters in y-coordinates (shown in Fig. 4.4). 
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l~)m . · .... ···.···.··.·····.· ·····750,20) 
(0,0) 5 I 0 SO 

b 

* : Shot point 

"\7 : Receiver point 

Fig: 4.4. The lay out of the shots and the receivers for 2D and 3D models. 

The 50Hz Gaussian pulse is applied as the ource function. Based on the Nyqui t-

Shannon sampling theorem, in order to better reconstruct the analog wave ignal, the 

sampling interval is set to 0.01 second (11 ( 2·50 )). The source function and it amplitude 

spectrum are shown in Fig. 4.5. 
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Fig. 4.5. The source function and its amplitude spectrum. 

The synthetic seismograms of adopted velocity models are produced by the implemented 

seismic modeling. The Fig. 4.6 shows two examples of traces of receivers in the 20 

model b and the 30 model d. The records from a certain shot to all of the receivers are 

illustrated. From the initial interpretation of the synthetic seismograms, the proposed the 

ray tracing methods are primarily verified. All the seismograms are employed into Pre-

stack Kirchhoff migration, which further validate the proposed methods. 

Number of trace Number of trace 
122 12'8 130 134 138 142 148 150 154 158 

~ ;-

•• 

a b 

Fig. 4.6. The example of a set of receiver traces in the synthetic seismogram .. a is the 
trace of20 model b, b is the traces of 3D model d. 
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4.2. Pre-Stack Kirchhoff Migration 

4.2.1. Pre-Stack Kirchhoff Migration Theory 

The seismogram provides the travel time information and the energies of waves reflected. 

Based on the known information, the migration process reconstructs a structure of the 

subsurface model (Bleistein, 1999). This structure is used to represent the model, which 

produces the seismogram. 

Fig. 4.7. The illustration of Pre-stack Kirchhoff migration theory. 

In the seismogram, for any receiver record which is represented by a trace shown in Fig. 

4.7, if there is a value at time t, then the model should have an elliptical mirror (layer) 

focused at the locations of the shot point and the receiver point (Bleistein, 1999). This is 

because only this model produces the required data, namely, no received signal except 

when the shot point and the receiver point are in the focus of the semi-ellipse. This 

observation plus the superposition principle suggests an algorithm (Buske, 1999) for 

making earth images, which is the basic idea of Pre-stack Kirchhoff migration. An 

example is shown in Fig. 4.8. 

This example illustrates Pre-stack Kirchhoff migration results from the records of five 

receivers, as one can notice that the bottom of each semi-ellipse lies along a line that 

could be the line of reflector for observed plane waves. Thus, in Pre-stack Kirchhoff 
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migration, instead considering the p-wave is reflected at a point in the model, each being 

interpreted as coming from a semi-ellipse layer. Adding the layers yields a flat reflector. 

offset 

60 

* : Shot point 

'7 : Receiver point 

Fig. 4.8. An example of Pre-stack Kirchhoff migration result. 

Typically, the Pre-stack Kirchhoff migration is applied to the time migration and depth 

migration. If the velocity model is unknown, the time migration is employed to 

reconstruct the shapes of the layers of the model. The simplest approach to implement 

time migration is that draw the semi-ellipses in an empty image, the focuses of the semi-

ellipses are on the position of the shot point and the receiver point, the radius are the 

records in one time trace. Summing up all the images for all the traces, the model image 

is produced. The reconstructed model image only contains the primary information of the 

hape of the layers but not others. Therefore, the Pre-stack Kirchhoff time migration is 

usually used to preprocess the seismic data. 

Pre-stack Kirchhoff migration is employed as the depth migration algorithm when the 

velocity model has been presumed. In the depth migration results, the information on 

both of the locations and shapes of the velocity layers are obtained. In our research, the 

adopted four models in the modeling process are applied in the Pre-stack Kirchhoff depth 
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migration and, based on the produced synthetic seismograms, the structure of the models 

are reconstructed. 

4.2.2. Pre-stack Kirchhoff Migration Methodology 

In our Pre-stack Kirchhoff depth migration implementation, two steps are applied. The 

first step, which generates the time tables for all the shot points and the receiver points, 

operates the known velociy model. The second step handles the matching from the 

seismogram into the structure image. 

In the first step, because the ray reflected points are unknown, every grid point in the 

velocity model is considered as a reflected point. The time table for a shot-receiver pair is 

built up by calculating the travel times of the ray propagation from the shot point to the 

receiver point, which reflected at each grid point. The time table calculation also can be 

separated into two segments: shot table calculation and receiver table calculation. In the 

shot table calculation, the travel times from the shot point to each grid point are produced 

by proposed ray tracing method, in which the shot point is processed as the first given 

point and each grid point is substituted as the second given point. Similarly, the receiver 

table is produced. Adding the shot table with the receiver table, a time table for this shot­

receiver pair is generated. An example of the time table contour is illustrated in Fig. 4.9. 
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Shot table contour Receiver table contour Shot and Receiver contour 

* : Shot point 

'V : Receiver point 

Fig. 4.9. An illustration of a travel time table calculation process. 

The time tables of all the shot receiver pairs are accomplished in the first step. In the 

second step, in order to match the seismogram with the time table, the time traces are 

interpreted from the number of samples into the time. The grid points, which produce the 

semi-ellipse layers, are searched by matching the time table with the time traces. The 

model image is reconstructed by setting the trace value in the matched grid points 

coordinates of the image table. The pseudo code for the second step of Pre-stack 

Kirchhoff migration is given in the Fig. 4.1 0. 



Do si=l to the_number_of_shot_points 

Do ri= l to thc_numbcr_of_ rcccivcr_ points 

Oo xi= l to x_offsct 

Do y= 1 to depth 

Do t=l to number_of_samplc_ in_ thc_ tracc 

If ( trace(si, ri, t) not equal to 0) then 

Time=t•dt+O.s•dt \I interpre rthe number of sumple into time 

Endif 

If( (Timctable(si, r i, xi, zi) - Time) equal to 0) then \\search the matched grid points 

Image (xi, zi)= lmage(xi, zi)+trace(si. ri, t) 

End if 

End do 

End do 

End do 

End do 

End do 

Fig. 4.10. The pseudo code for Pre-stack Kichhoffmigration matching process. 

4.2.3. Pre-stack Kirchhoff Migration Experiments and Results 
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The adopted four models in the modeling process are employed as the experimental 

models in Pre-stack Kirchhoff migration. The number of shot points, receiver points, the 

lay out of the shot, receiver points and the sample interval dt are the same setups as the 

modeling process. The MTTM is applied to calculate the time table. The results of the 

Pre-stack Kichhoff migration are shown in Fig. 4.11. 

Migratio n R esult .. ' X 
R eal M ode l 

X 

-

Fig. 4.lla. The result of the Pre-stack Kirchhoff Migration for Model a. 
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Real Model 

I--

-

Fig. 4.11b. The result ofthe Pre-stack Kirchhoff Migration for Model b. 

Fig. 4.11 c. The result of the Pre-stack Kirchhoff Migration for Model c. 

Fig. 4.11d. The result of the Pre-stack Kirchhoff Migration for Model d. 
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As shown in the results, based on the MTTM, our Pre-stack Kirchhoff migration fully 

recovers the synthetic models for both of 2D and 3D flat layer, 2D and 3D polynomial 

layer. All of the interfaces are visible, and approximate the original shape and original 

depths. 

To further testify the practicability of our Pre-stack Kirchhoff migration process and 

verify the proposed the MESLM, another model with more complex structures, which is 

closer to real subsurface model, is employed. The travel time calculation in the modeling 

process is implemented by the MESLM. In the Kirchhoff migration process, the MTTM 

is utilized. 50 shot points and 100 receiver points are lay out at the urface, with shot 

spacing at 20 meters and receiver spacing at 10 meters. The source function and the 

sample interval are unchanged. The structure of the complex model and the Pre-stack 

Kichhoffmigration result are shown in Fig. 4.12. 

Migration Result 
X 

·+· --~-----~~--~~· --~---~ 
Real Model 

X • 
·+---~--~--~--~---. 

V 2.4 km' 

\ 2 7 ~Ill "" 

Fig. 4.12. The complex model structure and the Kirchhoff migration result. 

As shown, our migration does a good job regenerating the complex subsurface structure. 

The box structure in the bottom of the model has even been clearly reconstructed. 

Therefore, we are fairly confident our algorithms are effective ray tracing methods, which 

are worth being implemented as a computer hardware chip to increa e the calculation 

efficiency. 
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4.3. Software Parallel Design 

The MTTM and the MESLM are ray bending methods implemented by the GAs. In order 

to detect a proper ray path, which is transmitted from a shot point, reflected on the layers 

of velocity model and received at a receiver point with the minimum travel time, lots of 

other candidate ray paths are calculated by the GA. In the processes of proposed seismic 

modeling and Pre-stack Kirchhoff migration, all the ray paths from all the hot points to 

all the receiver points have to be determined to provide travel times information, with 

very high computational complexities. Those applications are very time consuming 

processes, so, in order to increase the computing performance, the parallel programming 

technique, MPI, are applied into the modeling and migration proce ses. 

MPI is a specification for an application programming interface (API), which is applied 

in the computer clusters and supercomputers. In the specified resources, each processor 

has a private memory space and individually finishes the assigned workloads. The 

processors communicate with each others when the workloads are finished by passing the 

messages between each independent memory space (Gropp et al., 1994). The processors 

communications occupy extra processing time, which may be longer than the data 

processing time. Thus, the trade-off between the distributed workloads and the 

communications has to be considered in a mature MPI parallel design (Bording, 1996). 

Seismic modeling and Pre-stack Kirchhoff migration programs are parallely implemented 

with MPI specification in the Atlantic Computational Excellence Network (ACEnet), 

Placentia cluster, which has total 464 cores and 4GB RAM per core. In order to reduce 

the frequency of the communications between each processor, the modeling process is 

decomposed by the shot points (Phadke et al. , 2000). In this problem decomposition 
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strategy, each available processor is assigned the same workload for the calculation of the 

travel times from one or many shots points to all of the receivers points. The workflow of 

modeling process is shown in Fig. 4.13. Similarly, because of the methodology of the 

Pre-stack Kirchhoff migration, separated calculation for the time tables of shots and 

receivers, the migration process is decomposed into the shot and receiver points. 

Employing this strategy, the parallel programming provides a nearly linear speedup. 

Processor 0 

The Travel Time Calculation 
for all receivers from the first 

shot point 

Generate Trace of all 
receivers for the first shot 

Processor I 

The Travel Time Calculation 
for all receivers from the 

second shot point 

Generate Trace of all 
receivers for the second shot 

----

Processor sn- 1 

The Travel Time Calculation 
for all receivers from the sn'h 

shot point 

Generate Trace of all 
receivers for the snth shot 

point 

so : Number of shots poitns 
:Processing process 

- ~ : Communication process 

Fig. 4.13. The parallel program flow chart for modeling process. 

4.4. Summary 

Seismic modeling and Pre-stack Kirchhoff migration are provided in this chapter. The 

theories of seismic modeling and Pre-stack Kirchhoff migration, as well as the detail 

implementations of both applications are described. As shown in the experimental results, 

the modeling process is proven to effectively simulate the ray propagation in the 

introduced 2D/3D flat and polynomial layers velocity models, and the migration process 

is validated to fully recover the structures of the real models. ln order to improve the 
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computational performance, the MPI parallel programming technique is employed in the 

implementations. The adopted problem decompositions strategy provides a nearly linear 

speedup. 

The proposed MTTM and MESLM are validated in the applications. The different 

performances of two methods are noticed during the implementations, which are 

compared in the following chapter. As one can notice that the proposed methods well 

calculated the travel time, but have high computational complexity. Therefore, the 

purpose built, specific digital hardware implementation of the proposed methods are 

discussed and accomplished in the following chapters. 
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Chapter 5 

The Comparisons of the Proposed Methods 

The Proposed MTTM and MESLM are implemented in seismic modeling and Pre-stack 

Kirchhoff migration. Using the GA designs, both methods effectively simulate the ray 

transmission in the synthetic velocity models and calculate the travel time between two 

given points (shot point and receiver point). Because of the different principles of two 

methods, during the implementations, the performances are different. 

5.1. Calculation Efficiency 

As introduced in the chapter 3, for a ray path, the MTTM has to calculate the travel time 

for each ray segment in the ray path, and then decides this path is suitable or not. 

However, the MESLM may make a decision by partially calculating the ray path. 

Therefore, if the number of iterations is same, the MESLM is more efficient to find the 

ray path. 
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There is a clearly termination criterion in the MESLM: the total errors equal to zero. 

Therefore, it may terminate the search with a successful ray path before the number of 

generations reaches the iteration limit. 

From the above two aspects, the MESLM should have higher efficiency to find the ray 

paths. However, the fitness function in this method, given in the equation 3.9, is more 

than double complexity of the fitness function in the MTTM, given in the equation 3.1. 

Thus, only if the velocity models are simple enough, such as the introduced models in the 

modeling and migration processes, in which less number of generations is required to 

find the ray path, the MESLM has the higher efficiency. 

5.2. Simulated Ray Path and Results Quality 

Both methods are verified to successfully calculate the travel time between the shot point 

and the receiver point. However, the simulated ray paths may be different, which because 

the same travel time might be produced by many ray paths. The correct ray propagation 

path would be found in the MESLM. Two examples ray paths, which have the same 

travel time in the velocity model, are illustrated in Fig. 5.1. 

The found ray path in the MESLM 

<> : Shot point 

'\1 : Receiver point 

o : Bending point 

TI>e found ray path in the MlTM 

Fig. 5 .1. Two examples of found ray paths in the different methods. 
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Fig. 5.2. The migration results of two methods. Left is the result of the MESLM. Right is 
the result of the MTTM. 

From the migration results, another difference is noticed. As shown in Fig. 5.2, the 

qualities of the results produced by the two methods are closely same, except the range in 

the green circle. It can be explained that the MTTM produces many ray paths, which are 

reflected in that range, but not all of the ray paths satisfy Snell's Law. 

* Shot 

'i1 Receiver 

Fig. 5.3. An example of the correct results. 

For the real data, the MESLM is inferred to produce the more correct results, because if 

the wave could be reflected by two points in the model, shown in Fig. 5.3, one is the 

minimum travel time point (point 1), other is the Snell's Law point (point 2). The most 

energy is reflected though the second point. The reflected diffraction wave from the first 

point becomes the noise (Milligan et al., 1995). 
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5.3. Software Parallelizability 

The MESLM has the higher parallelizability. For one shot-receiver pair, if the problem is 

decomposed by the different sets of individuals (e.g. ten individuals in each set) and 

worker-collector designs could be applied, as shown in Fig. 5.4. Each worker processor 

has the same workloads in the MTTM. Therefore, the collector processor remains in idle 

state before all the worker processors finish the calculations. However, the worker 

processors could reject the ray paths directly in the MESLM. The workloads of each 

worker processor become difference. Thus, in this method, the collector processor might 

receive the results from a worker processor and write those errors into memory, before 

others finished. The communication time is greatly reduced. 

Number of individuals Number of individuals 

Worker 
processor 

Worker 

Collector processor 

Number of individuals 

Worker 

Fig. 5.4. The worker-collector design. 

In the parallel modeling and migration programming, the MESLM has more advantages. 

Because of another alternate termination criterion for a GA run (the total errors equal to 

zero), not every shot-receiver pair need wait the tolerance time period to find the ray path. 

Therefore, if the modeling and migration parallel design, shown in Fig. 4.12, would be 

changed to a worker-collector design, some worker processors may share their workloads 

to others, in which the assigned workloads have been already finished. 
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5.4. Hardware Implementations 

Because of the similar GA platforms are employed in both methods, the top level designs 

of the hardware algorithms of both methods are same, shown in Fig. 5.5. In this design, 

several individuals are first initialized in the Population registers block, and then they are 

passed into the Mutation&Crossover unit to produce new individuals as the offspring. 

After that, all individuals in both Population registers block and Offspring registers block 

are evaluated through the Fitness Evaluation units. Based on the fitness sorting results, 

the suitable individuals move to the Population register block and start a new iteration. 

The main difference of two proposed methods is the Fitness Evaluation units are 

implemented based on equation 3.1 and equation 3.9. As one can noticed the equation 3.9 

not only has to calculate the first derivatives of the layers function for each bending point, 

but also has more than double operations of equation 3.1. Moreover, the Fitness 

Evaluation units of the MESLM have to design the partial calculation and rejection for 

the ray paths. Therefore, the MESLM has more complexity for hardware 

implementations and requires more resources. 
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Fig. 5.5. The top level hardware algorithm design. 

In order to validate our designed hardware algorithm, all the modules and blocks, shown 

in Fig. 5.5 are implemented in C++ environment, based on the lower computational and 

the lower implementation complexity method, the MTTM. The migration result is shown 

in Fig. 5.6, which demonstrates the designed hardware algorithm is a working algorithm. 
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Fig. 5.6. The hardware algorithm verification in C++. 

5.5. Summary 

In this chapter, the MTTM and the MESLM are compared from the calculation efficiency, 

the simulated ray paths and results quality, the software parallelizability, as well as the 

hardware implementations. The comparison results show that the MESLM is more 

effective ray tracing method. It produces the more accurate results and is easily 

developed as a high efficiency parallel program. However, it also has the very high 

computational complexity. During the seismic modeling and migration experiments, if 

the velocity model are very complex, in which the Snell's paths are very hard to detect, 

the MESLM has the time consuming nearly three times more than the MTTM. Therefore, 

it is suitable to be implemented in the case of the high resolution results are required and 

the high performance clusters or supercomputers are available. 

Taking a consideration of the comparison results from the hardware implementations, the 

MTTM is applied in the hardware design. Based on the validated top level design, which 
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is shown in Fig. 5.5, the hardware implementation, the synthesis results and the post­

route timing simulation are provided in the next chapter. 
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Chapter 6 

Hardware Implementation of the MTTM 

From the implementations and the performances of seismic modeling and Pre-stack 

Kirchhoff migration, the travel time calculation for a ray path is noticed as the most 

computational intensive part. In order to accelerate our ray tracing algorithm, a purpose 

built, specific digital hardware implementation is described in this chapter. This hardware 

implementation adopts the fixed-point arithmetic, which runs faster and uses less chip 

space than the corresponding floating-point calculation, and applies the parallel 

architecture design for the fitness evaluation function as well as the mutation operation, 

which produces much better performance than Von Neumann microprocessors (Bording, 

1996). 

The implemented hardware design is supposed to work as an integrated card, which can 

be plugged into the PCI socket. A field-programmable gate array (FPGA) board, which 

is a semiconductor device containing programmable logic components, LATTICE ECP­

DSP 20E 4F484C, is employed in our research. The interface between the FPGA and 
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computer PCI socket has been developed by other colleagues in the Music-n group. The 

48-bits fixed-points arithmetic (He, Lu and Barding, 2008) is employed in the 

implementation. 

6.1. Top Level Design 

Because of the resource limitation of LATTICE ECP-DSP 20E 4F484C, the original 

design, shown in Fig. 5.5 has been modified. The velocity model memory is redesigned 

to the register buffer, which greatly reduce the access time. The top level design of the 

hardware implementation is shown in Fig. 6.1 . 

In Fig. 6.1 , as the name suggests, the Population register block is designed to contain the 

parent individuals. The Offspring register block contains the off pring individuals. The 

Mutation&Crossover unit mates the parents to produce the offspring. The Random 

Number Generation unit produces the uniform random numbers from 0 to 1, which are 

used in the initialization and Mutation&Crossover unit. The MUX and F counter work 

together to sequentially select the individuals and pass the selected individuals to the 

Fitness Evaluation unit to calculate the fitness. The Sorting engine is implemented to sort 

the fitness. The suitable individual indexes are stored in the Index Register Block. The 

number of generations is counted by the G _counter unit. if the number of generations 

does not reach the limited generations, based on the contents of the Index Register Block, 

the new population are produced by the Decoder. After the hardware implementation 

finishes the generations, the calculated travel time is stored in the 48 bit register. 
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Fig. 6.1. The top level design of the minimum travel time ray tracing engine. 

In a generation, all parent individuals are loaded into the Mutation&Crossover unit at the 

same time. Another several individuals are produced as the offspring, which are loaded 

into the Offspring register block. Each individual in the Population register block and the 

Offspring register block is sequentially evaluated by the Fitness Evaluation unit. The 

calculated fitness is attached a binary number index coming from the F _counter, which 
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indicates the location of the individuals. All fitnesses are sorted in the designed Sorting 

engine and the contents in the Index registers are produced by the locations of the 

minimum fitnesses. If the output of G _counter is less than the accepted number of 

generations, the sorted indexes are decoded into the locations the individuals and 

Population register block loads the corresponding individuals. The finite state machine 

(FSM) of the top level controller is shown in Fig. 6.2. 

Mdone='O' 

F _counter done='O' 
Fdone='O' 

G_counter done='O' 

Fig. 6.2. The FSM of top level controller for the minimum travel time ray tracing engine. 

6.2. The Fitness Evaluation Unit 

An individual, representing a ray path, consists of a set of x coordinates of the bending 

points, which is stored in a register in the Population or the Offspring register block. The 

Fitness Evaluation unit calculates travel time for each ray segment between two bending 

points in a ray path. The travel time for the entire ray path is produced by summing up 

the travel time of each ray segment. 
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The design diagram is shown in Fig. 6.3, which IS automatically produced by the 

synthesis tool "Synplify". For the whole ray path calculation, the x coordinates are 

selected by the multiplexer from an individual register and the y coordinates are produced 

by the LayerGenerator unit, which is implemented based on the layer description function. 

In order to avoid the slow division operation, the reciprocal velocities, are stored in the 

velocity buffer. TTu is the travel time calculation unit for one ray segment. The 

calculated travel time of each ray segment is accumulated in the register48. When the 

travel time for the entire ray path is computed, the Fitness Evaluation unit exports the 

travel time and a "done" signal. 

FEllltC01TOI 

""" .... 
... - +---€> 

... ' 

c5 
c1 

c2_2 

c3 

Fig. 6.3. The design diagram for the Fitness Evaluation unit. 

For one ray segment, the travel time calculation unit is designed based on the giVen 

equation 3.1 in chapter 3. The designed block diagram is shown in Fig. 6.4. The input 

ports of the travel time calculation unit are the x, y coordinates for the first point and x, y 

coordinates for the second point, as well as the slowness between two points. The square-

root unit is implemented by a binary shifting square-root algorithm (S. Majerski, 1985). 
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The fixed-point parallel multipliers and carry-saving adders (Cooper, 1988, Elguibaly et 

al., 2000) are implemented in this unit. The combinational logic circuit and the functional 

parallel design make the travel time calculation have high efficiency. 

Fig. 6.4. The design diagram of the travel time calculation unit for a ingle ray segment. 

6.3. The Sorting Engine 

Sorting, which processes the unordered data sequence to ordered, is the most frequently used 

operation in an algorithm design. The best sorting algorithm in the computer oftware has 

the efficiency O(NlogN), in which N is the number of items to sort. However, it is 

possible to design a hardware sorting algorithm with high time efficiency O(N) (Colavita 

et al., 2003). 

In our hardware implementation, the sorting engine is designed based on the insertion 

sort and has the time efficiency and area complexity at O(N). In the insertion sort, the 

data are sequential processed. An example of insertion sort is shown in Fig. 6.5, the 

sorted data are stored in the list. When a new data arrive, it is compared with the data in 

the list. After the comparison, the location of the new data is decided and the new data is 

inserted into the list. 
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comparison 

Fig. 6.5. An example of the insertion sort. 

Instead of sequentially comparing the new arrived data with the existed data, a hardware 

algorithm (Lu and Barding, 2006) is proposed that operates the comparisons at the same 

time and detects the location by the returned values of the comparisons. If the sorting 

process is eparated into three steps, the proposed algorithm is ea y to understand and 

implement. As shown in Fig. 6.5, when the number 3, as the new data, arrives, the first 

step of the algorithm is compare 3 with 1, 2, 4, 5 and 8 at the same time. The returned 

value of the comparisons are "greater", "greater", "less", "less", "less". In the second step, 

the location of number 3 is decided as fo llowing the last "greater" result. As one can 

notice that in order to insert number 3 into the list, the number 4, 5, 8 have to shift to 

right and the returned comparisons values of those three numbers are the same. Therefore, 

in the third step, the "greater" numbers stay in the location and the "less" numbers are 

moved to the right and also the number 3 is inserted. 

The hardware design diagrams are shown in Fig. 6.6. 

0 
value 

Parallel output sorted sequence Serials Output Minimum 

r Data_ Registerl 

I 
f--- 1------; f--~ 

Sorting Sorting Sorting Sorting ~xj 
Module 1-- Module Module Module 

I- f--

1 L__j I T T T 
~ 

Fig. 6.6a. The design diagram of the Sorting engine. 
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Fig. 6.6b. The design diagram of Sorting Module in the Sorting engine. 
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In a Sorting Module, the Data_ Com parer is de igned to compare the new data with the 

data in the Data_ Register. Based on the Data_Comparer result, and the result from the 

previous Sorting Module Data_ Com parer, the 1-bit-comparer returns equal or not. After 

the comparisons, the four to one MUX decides which data are load into the register. 

The flux diagram of the Sorting Module is illustrated in Fig. 6. 7. 

Register load 
original data 

Yes 

Register load 
previous data 

Previous com parer 
result=comparer result 

~ 

Fig. 6.7. The flux diagram of the Sorting Module. 
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6.4. The Random Number Generation Unit and the 

Mutation&Crossover Unit 

The Random Number Generation unit (RNGu) and the Mutation&Crossover unit work 

together to produce the offspring. The RNGus are implemented by Galois Linear 

Feedback Shift Register (GLFSR) (Pardhan and Chatterjee, 1999), which generates the 

uniform random numbers. The generated random numbers are employed to perform the 

probability selection and the uniform mutation. When the parent individual arrives, a 

random number is produced to decide which operation should be performed on the 

individuals. An example design is illustrated in Fig. 6.8. 

Parent Individuals 

Offspring Individual 

Fig. 6.8. The design of random number selection. 

The crossover unit is implemented in hardware by the two points crossover, in which the 

bits between two points in the parent individuals are exchanged. In order to perform the 

uniform mutation, another two RNGus are required. An example design is shown in Fig. 

6.9. In this design an individual contains five bending points. Each bending point is 

represented by twelve binary bits. The mgl2 unit produces the uniform random numbers 

which are operated on the parent to produce the offspring. The m g4 unit is designed to 

select the subtraction or the addition operations. The produced offspring bending points 
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are loaded in the register 12s. In this de ign, the mutation operations for the different 

bending points operate in parallel. The operation efficiency is greatly increased . 
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Fig. 6.9. An example design for the Mutation unit. 

6.5. Hardware Performance 

In order to validate our hardware design, a hardware engine is implemented in VHDL 

and synthesized for LATTICE ECP-DSP 20E 4F484C by employing the "Synplify for 

Lattice 9.4L" synthe is tools. The designed engine is expected to simulate the ray 

propagation in a three flat layers velocity model and calculate the travel time. 

The Population register block consist of four registers to contain four individuals and the 

Offspring register block is implemented to contain twelve individuals. Each bending 

points set in an individual has five x-coordinates ofbending points and each x-coordinate 

of bending point is represented by twelve binary bits. The y-coordinates of a bending 

point are calculated in the LayerGeneration unit in the Fitness Evaluation unit. In the 

initialization step, the number of generation is fixed to 100 and the velocity of each layer 
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is fixed to a constant value represented by 48 binary bits. The input ports and output ports 

of the designed engine is specified in the Table 6.1 and illustrated in Fig. 6.1 0. 

Table 6.1. The ports specification table. 

Port Name Port attribute Port width (bits) 

Tworken Input 1 

elk Input 1 

shot Input 12 

Re Input 12 

layer Input 2 

individual! Output 60 

Ttime Output 48 

TraveltimeEngine 
ITworken :> • Tworken 

~elk 

I shot[11 :0J> tho] [11 :0. shot[11 0] 
lndiVIdUI1 (59:0) 

Ttlme[47 0] 
I re[11 :0] > [11 :0J 

!11 :0. re[11 0] 

lrayer[1 :0J> [1 :8] [1 :0. layer[1 ·Q] 

uut 

Description 

The global reset signal 

The global clock signal 

The position of the shot point 

The position of the receiver 
point 

The number of layers in the 
assumed velocity model 

The bending points set which 
optimized the function 

Minimum travel time 

,M:b] 159
:
0

1individul1 [59:0] > 
, 4?:0J 

147
:
0
htime[47 :0] > 

Fig. 6.1 0. The input output ports illustration. 

The synthesis area performances are shown in the Fig. 6.11 , from which the designed 

engine is proven to fit the employed device. As one can notice no external RAM is 

required for the engine, thus, the memoryless design provides the high operational 

performance. 



Design Summary 
Number of registers : 2 4 2~ 

PFU registers : 
PIO registers : 

Number of SLICEs : 
SLICEs(logic/ROM) : 

237: 
4 8 

SLICEs(logic/ROM/RAM) : 
As RAM : 
As Logic/ROM : 

Number of logic LUT4' : 

c 
c 

6237 out of 
6237 out of 

C out of 

94 23 

9856 ( 63 •. ) 
7392 ( 841.) 
2464 (C'is) 

Number of distributed RAM : 
Number of ripple logic : 
Numbe r of shift r egi sters : 

C (C LU14 ~) 
447 (894 LU14~) 

c 
Total number of LUT4~ : 1031 i 
Number of external PIOs : 13E out of 36C (38i) 
Number of PIO IDDR/ODDR: C 
Number of PIO FIXEDDELAY: C 
Number of 3-st ate buffers : C 
Number of DQSDLL' : C out of< (C %) 
Number of PLLs : C ou t of 4 (C~) 

Number of block RAM~ : C out of 46 (C ~ ) 

Numbe r of GSRs : 1 out of 1 (10Ctl 
JTAG used : Nc 
Readback used : No 
Oscillator used : No 
Startup used : Nc 
Notes:-

1 . Total number of LUT4s • (Number of logic LUT4s) +~·!Number o( 
distributed RAMs) + ~ · (Number of ripple logic) 
~ - Number of logic LUT4s does not include count of distributed RAM and 

r i pple logic . 

Fig. 6.11. The synthesis area report. 
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The synthesis timing report IS shown m Fig. 6.12. The maximum frequency of the 

designed engme IS about ll MHz, which means the travel time calculation for a ray 

segment is about 90 ns. 

Report Summary 

Preference I Constraint) AetualiLevels 

I I I 
FREQUENCY PORT "elk " 12.000000 MHZ ; I 12.000 MHz l 11.114 MHz I 289 . 

I I I 
CLOCK_TO_OUT ALLPORTS 5 . 000000 ns I I I 
CLKPORT "elk " ; I 5.000 ns) 4 . 310 nsl 2 

I I I 

Fig. 6.12. The synthesis timing report. 

The operational performance of the RNGu, Mutation&Crossover unit, Sorting engine and 

Replacement module are velocity model independent. In another words, for any cases of 

velocity models, in one generation, the 35 clock cycles are required by the RNGu and the 
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Mutation&Crossover unit, 16 clock cycles are required by the Sorting engine and 3 clock 

cycles are required for the replacement. The performance of the Fitness Evaluation unit is 

depended on the number of velocity layers in the model. For each ray segment, the travel 

time calculation requires one clock cycle and the loading process needs another clock 

cycle. Moreover, two clock cycles are required by the initialization states and done states. 

Therefore, for a ray path, which propagated through a three layers model (six ray 

segments), 14 clock cycles are required. 

A generation of the serial process requires 150 clock cycles, 214 clock cycles and 278 

clock cycles for one layer model, two layers model and three layers model, respectively. 

For three layers model, in a second, the hardware engine operates 11 MHz/278=39568 

generations, which is a comparable performance with IBM MT-M 6218 workstation that 

has Intel® Pentium® 4 CPU 3.00GHz. The time consumption for the travel time 

calculation of three layers model, using the MTTM, in IBM workstation is roughly 

produced by the Linux system and illustrated in the Fig. 6.13. For 39568 generations, the 

IBM workstation requires about 0.5 second to process. 

(sh1l1ang@augusta t1mlngtest)S time . /maln 
Shot ponit at (58,8), Receiver point at (89,9) 

Numb r ot Generation: 39567 

Travel time : 5.5 12953 

x -coordinates of Bending po1nt set 
29.39951 39 . 96391 58 . 51765 61.98193 71.56972 

Travel Time Calculation Done 

real 9m9 . 521s 
user 8m9.514s 
sys eme.ee6s 

Fig. 6.13. The time consumption illustration for the IBM MT-M workstation. 
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Based on the operational performance of each module of the hardware engine, if a larger 

enough FPGA device is available and original parallel fitness evaluation design (shown 

in Fig. 5.5) was implemented, a generation would only require 35+16+3+((N•2)+2) 

clock cycles, where N is the number of layers handled in the hardware engine. Moreover, 

if assume the 11 MHz maximum frequency is unchanged, the inferred performances of 

the parallel hardware engine versus the 3GHz IBM workstation is illustrated in Fig. 6.14, 

which shows, with the number of layers increasing, the llMHz parallel hardware engine 

produces a much better performance than the 3GHz IBM workstation. The direct 

comparison of these clock cycles requires an understanding of the instruction complexity. 

The PC instructions are rather basic while the hardware engine instructions are quite 

complex. 
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Fig. 6.14. The inferred performances ofthe llMHz parallel hardware engine versus the 
3GHz IBM workstation. 
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Furthermore, as one can notice the maximum frequency of our designed engine is much 

lower than the IBM workstation. However, the semiconductor techniques are improving 

every day. If the frequency of designed engine would be increased, the inferred 

performances of the series and parallel hardware engmes versus the 3GHz IBM 

workstation are illustrated in Fig. 6.15. As shown in this figure, if the maximum 

frequencies of the designed engine would be increased to 200Hz, the travel time 

calculations in the hardware engine would be forty times faster than the 3GHz IBM 

workstation. 
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Fig. 6.15. The inferred performances of the series and parallel hardware engines versus 
the IBM workstation with the frequency of hardware engines increasing. 

The post-route timing simulation (emulation) is finished in Modelsim. A 20 flat three 

layer model are adopted in the emulation and one shot point and one receiver point are 
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located on the flat surface. The emulated results for the travel time of each generation are 

shown in Fig. 6.16. 

As one can notice that, the travel time is decreasing with the number of generation 

increasing, which is the expected performance. For the different layers, the required 

number of generations are different that are decided by check which generation has 

already produced the final travel time. Only the travel times that produced within the 

required number of generation are shown in Fig. 6.16. 

For the ray path reflected from the first layer in the model, only five generations are 

required. The error between the produced travel time at fifth generation and the travel 

time calculated by hand is 6.7·10-6. For the ray path reflected from the second layer, thirty 

eight generations are required. The error between the produced travel time and the hand 

calculated travel time is 3.39·10-5
. For the ray path reflected from the last layer, sixty five 

generations are needed and the error is 7.6·1 o-4. The produced errors are increasing with 

the number of ray segments increasing, which is because the errors are accumulative 

from the previous ray segments. 
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Fig. 6.l6a. The emulation result for the ray path reflected from the first layer of the 
model. 
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Fig. 6.16b_ The emulation result for the ray path reflected from the second layer of the 
model. 

5.75 . . . . . . . . . . . . . 
--~ __ ~ __ ! __ ! __ ; __ ; __ ; __ ; __ ; __ _:__ _;_ --~ _ -~ __ ~ - -~ __ ! __ ! __ ! __ ; __ ; __ ; __ ; ___ ; ___ ; __ - Travel Time 

I I I I I I I I I I I I I I I I I I I I I I I I 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

5.7 -~-- ~- -~-- ~- -~-- ~-- ~-- ~-- ~-- -:---:-- -~- -~ -- ~ --~-- ~ -- ~-- ~-- ~- -~-- ~- -~ - --:---:---:-- -~- -~-- ~- -~-- ~--:-

E 5.65 
f= 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

-I ~- - ~-- t --~- -~-- ~-- ~-- ~-- -:- --:- --~- -~-- ~--~-- ~- - t-- t-- ~- -~-- ~-- ~-- -:-- -:---:-- -~- -~-- ~ -- ~ -- t-- t--
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I 0 I I I I I I I I I I I f I I I I I I I I I I I I I I 

... - --.--.-- ... - ........ ----- ---- -·-- -·- ..... .. .. -- ...... --.--.--.-- ....... --------- •I•• -·- --1-- ... . ... -- .. . - .. .. . -- . -
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

10 20 30 
Generation 

Fig. 6.16c. The emulation result for the ray path reflected from the third layer of the 
model. 

6.6. Summary 

In this chapter, based on the MTTM, a hardware algorithm is proposed and a hardware 

engine is implemented in the low-cost FPGA device, LATTICE ECP-DSP 20E 4F484C. 

The post-route timing simulation results of the designed hardware engine show that the 

implemented hardware engine finished the expected function and produced the 

acceptable travel times. Because of the limitation of the configurable slices resources for 

the desired FPGA device, many designed modules are serially implemented_ The counter 

unit and the multiplexer unit work together to control the series data flow, which greatly 
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reduces the complexity of the FSM of the controller and makes the design highly 

adaptable. 

The performance of the designed hardware engme is actually reduced by the senes 

modules and the low-cost FPGA device. However, the fixed-point arithmetic and 

functional parallel design reduce the cost of the travel time calculation to one clock cycle, 

the high efficiency sorting engine decreases the complexity of sorting operation to O(N), 

the memoryless design causes almost no time penalty to access the velocity model. With 

all these advantages, the designs provide an implemented hardware engine with a 

comparable performance to the 3GHz IBM workstation. If a conservative design scale up 

is used then a parallel layer system would be forty times faster. 
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Chapter 7 

Conclusions and Future Work 

7.1. Conclusions 

In this thesis, two layer based seismic ray bending methods are proposed. In each method, 

based on Fermat's Principle and Snell's Law, the ray paths are constructed by using the 

genetic algorithm to search the bending points on the layers of the velocity model. The 

limitations of ray shooting methods are overcome and the accurate travel times are 

calculated by the two proposed methods. 

In order to validate our ray tracing methods, seismic modeling and Pre-stack Kirchhoff 

migration are implemented. The results of Pre-stack Kirchhoff migration show that the 

migration fully recovers the real models for both of 2D and 30 flat layers, 2D and 3D 

polynomial layers. All of the interfaces are visible, and approximate the original shapes 

and original depths. Thu , our ray tracing methods are proven to be effective ray tracing 

methods. Moreover, to improve the computational performance, the MPI parallel 
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programmmg technique is employed in the implementations and provides the 

implementations with a nearly linear speedup. 

During the implementation of seismic modeling and Pre-stack Kirchhoff migration, the 

operational and computational performances of two proposed seismic ray tracing 

methods are noticed to be different. From the comparison results, the MESLM is proven 

to be a more effective ray tracing method. It produces the more accurate results and is 

easily developed as a high efficiency parallel program. However, it suffers from the very 

high computational complexity. Therefore, it is suitable to be implemented in the case of 

the high resolution results are required and the high performance clusters or 

supercomputers are available. 

For the hardware implementations, the MTTM is the considered method to be 

implemented into the hardware engine. Because of the limitation of the configurable 

slices resources of the FPGA device, many implementations of the designed modules are 

modified from the original parallel design to the series design. However, the fixed-point 

arithmetic, the functional parallel design, the high efficiency sorting engine and the 

memoryless design for the velocity model work together to provide the implemented 

hardware engine with a comparable performance to the IBM workstation. The post-route 

timing simulation results of the designed hardware engine further proves that the 

implemented hardware engine finished the expected function and produced the 

acceptable travel time. 
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7.2. Future Work 

From several aspects of our research, the future works, which should be studied, are: 

• The MESLM is high efficient method, but it suffers from the high computational 

complexity. As one of the future study, continuing investigating the Snell's Law 

scheme and developing another similar but low cost fitness function are 

necessary. 

• The results of Pre-stack Kirchhoff migration proved the proposed ray tracing 

methods are feasible for the introduced models. Thus, another future work would 

be to extend our methods for more complex 2D and 3D earth media. 

• As one can notice, the proposed hardware algorithm could be extended to a fully 

parallel algorithm, which means one generation is finished in one clock cycle. 

However, that requires large amount of configurable slices resources and could 

not fit in any FPGA device even for a high end device. The future direction from 

this aspect is to develop the interface between FPGA devices and utilize multiple 

devices to solve the linear problem. Also, the pipelining technique hardware 

design could be considered in the future work. 
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