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Abstract 

This study is the fust assessment of non-indigenous ascidians (NIA) in 

Newfoundland. Field work was conducted from 2006-2007 in four harbours to assess the 

abundance and biodiversity ofmegainvertebrates on wharfpilings, including indigenous 

and non-indigenous ascidians. Quadrat samples, visual surveys and photographic records 

were taken in each harbour. The most common species found in the survey were Mytilus 

spp. Two NIA were also found, Botrylloides violaceus and Botryllus schlosseri. 

Variation in cytochrome oxidase I gene of mitochondrial DNA was analyzed for 

these NIA, as well as for two indigenous ascidians (Boltenia echinata & Halocynthia 

pyriformis), in order to determine within and between species variation for future use in 

genetic marker design and to identify probable source populations. There was less 

nucleotide dissimilarity within species (~15.6 %) than among species (17.7- 25.8 %). 

The probable source populations of B. schlosseri in Newfoundland are from locations in 

the Northwestern Atlantic and Europe, specifically the Atlantic and Mediterranean Sea 

coasts of France and Spain. 
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CHAPTER 1: INTRODUCTION 

1.1 MARINE BIOINVASIONS AND TRANSPORT VECTORS 

Bioinvasions are one of the leading marine environmental issues in the world and 

represent a serious global threat (Ruiz et al. 2000; Stachowicz et al. 2002; Occhipinti­

Ambrogi and Galil 2004; Campbell et al. 2007). Introductions of non-indigenous marine 

organisms have been detected in all oceans of the world (Campbell et al. 2007). Non­

indigenous marine species can threaten marine biodiversity, native species, the economy 

and human health (Blum et al. 2007). 

Non-indigenous species (NIS) can be transported via several vectors. They are 

transported by vessels at the national, international and local levels. They may be 

attached to hulls or suspended in ballast water (Lambert and Lambert 1998; Lutzen 

1999). Other potential transportation vectors for NIS are through the aquarium and 

aquaculture trades. NIS are particularly abundant in high risk ports that are characterized 

by high levels of shipping traffic. Once in these ports, aquatic invasive species (AIS) 

have the potential to spread by establishing themselves on wharves, other artificial 

structures, or in the natural environment. 

1.2 GENERAL ASCIDIAN BIOLOGY 

Ascidian tunicates (phylum Chordata, subphylum Tunicata, class Ascidiacea) are 

marine filter-feeding, hermaphroditic invertebrates that are found in all oceans (Plough 



1978; Pollock 1998). Ascidians generally live at all depths, typically attached to both 

natural and human-made structures. For instance, they can be attached to other marine 

organisms (i.e. mussels, clams, etc.), to rocks and cliffs, and to manufactured structures 

such as wharf pilings, buoys, boats, and fishing and aquaculture equipment. Ascidians 

undergo indirect or mixed development, where they progress through egg, larval, tadpole, 

juvenile and adult stages. Ascidian larval and tadpole stages are relatively short in 

duration, typically spanning a few days or less, after which they settle onto a substrate 

and metamorphose. Therefore they are unable to disperse long distances and colonize 

new areas based upon current flow and larval drift (Locke et al. 2007). It is for this reason 

that shipping and other anthropogenic vectors are especially important in the spread of 

these organisms. 

1.3 PROBLEMS WITH INVASIVE AND NON-INDIGENOUS 

ASCIDIANS 

There are many ecological issues associated with invasive and non-indigenous 

ascidians. A species is considered invasive when it reaches extremely high population 

levels. The main concerns associated with ascidian invasive species are biofouling and 

decreased native species biodiversity (Karayucel 1997; Uribe and Etchepare 2002; 

Lambert and Lambert 1998, 2003 ; Carver et al. 2003; LeBlanc et al. 2007; Epelbaum et 

al. 2009). Non-indigenous ascidians are a significant biofouling problem for the 

aquaculture industry on both the east and west coasts of Canada. Over the past ten years, 

four asci dian tunicates have reached invasive levels at aquaculture sites in Nova Scotia 
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and Prince Edward Island, Canada. This major increase can lead to economic problems 

for the aquaculture industry. Impacts of invasive ascidians on the aquaculture industry 

include biofouling ofthe harvested species themselves as well as fouling ofthe growing 

and processing equipment. These impacts lead to decreased economic performance of the 

farms due to increased production costs. There are increased husbandry costs such as 

additional cleaning and processing, increased handling time and increased physical 

demands on the work crew (Carver et al. 2003; LeBlanc et al. 2003). In addition to 

processing costs, ascidians are threatening the mussel aquaculture industry by heavily 

biofouling mussel socks, causing decreased growth of mussels through competition for 

food and space by decreasing the water flow and food availability (Carver et al. 2003). A 

recent estimate of the economic impact of a single invasive asci dian species Stye/a clava 

on the Canadian aquaculture industry was 25% (i.e., $ 43,000,000) of a gross annual 

income of$ 170, 000, OOO(Colautti et al. 2006). Ascidians have high rates of both sexual 

and asexual reproduction, and seasonally early recruitment rates relative to other benthic 

invertebrates (Arsenault et al. 2009; Ramsay et al. 2009). This allows them to colonize 

new substrata before other indigenous species such as bivalves have the chance to 

colonize an area following winter. Ascidians are also strong spatial competitors and once 

established can overgrow indigenous populations (Carver et al. 2003; Blum et al. 2006, 

Carver et al. 2006). 

1.4 DESCRIPTION OF NON-INDIGENOUS AND INDIGENOUS 

ASCIDIAN SPECIES IN ATLANTIC CANADA 
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The non-indigenous ascidians that are causing problems in Atlantic Canada include 

Stye/a clava, Ciona intestinalis, Botryllus schlosseri and Botrylloides violaceus. Stye/a 

clava is a solitary, stalked ascidian (Carlton 1989; Lutzen 1999). Adults are about 15 em 

long and 3 em in diameter (Carver et al. 2006b ). It is a competitive dominant that often 

occurs in dense stands in areas previously dominated by Mytilus edulis (Berman et al. 

1992). Stye/a clava is originally an Asian species indigenous to the Sea of Japan and the 

coasts of Japan, Korea and China (Lutzen 1999). This invader was probably brought to 

the Atlantic coast ofNorth America on ships from Europe sometime in the late 1600s 

(Berman et al. 1992; Carlton 1989). C. intestinalis is a solitary ascidian that has a 

gelatinous transparent tunic, similar in size to S. clava, and often co-occurs with other 

fouling ascidians. The native range of C. intestinalis is not clear but it is most likely a 

cosmopolitan species. It has been reported from the northeast Atlantic Ocean from the 

1700-1800s (Plough 1978; Knott 1990; Carver et al. 2003, Carver et al. 2006b). B. 

violaceus is a colonial ascidian, native to Japan and the Pacific Northwest (Carver et al. 

2003). Its zooids are approximately 2-4 mm long, forming thick encrusting mats that can 

be meters in length (Carver et al. 2006a). B. schlosseri is a colonial ascidian with zooids 

arranged in star-like arrays. Each zooid is about 1-2 mm long, and there are 5-20 zooids 

in a cluster (Carver et al. 2006a). B. schlosseri is a European species that is abundant 

along rocky shores of the Mediterranean and other European seas (Carver et al. 2006a; 

Paz et al. 2003). However, this invader is now found in many oceans worldwide. 

There are several ascidian species that are indigenous to Newfoundland (Van Name 

1945). Two of the most common are Halocynthia pyriformis and Boltenia echinata. H 

pyrifiormis is a solitary ascidian that occasionally occurs in dense aggregations. It is red, 
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orange or peach in color and is 1-10 em long. B. echinata is also a solitary ascidian, 

which is covered by cactus-like spines and has a brown-red surface with short siphons 

that are red. Both are northern boreal species that occur northward to the Arctic Ocean 

(Berrill 1950). 

1.5 NEWFOUNDLAND'S RISK OF INVASION BY NON­

INDIGENOUS ASCIDIANS AND EARLY DETECTION 

Newfoundland is considered to be a high-risk area for the introduction of the non­

indigenous species that have created problems elsewhere in Atlantic Canada (Therriault 

and Herborg 2008a; Therriault and Herborg 2008b). This concern is based on the fact that 

neighbouring provinces that have many shipping links with Newfoundland have already 

experienced severe problems from invasive non-indigenous ascidians (Locke et al. 2007; 

Therriault and Herborg 2008b). Several ports in Newfoundland have significant traffic 

with the Maritimes, including regular passenger and car ferries that traverse the Gulf of 

St. Lawrence from Port-aux-Basques and Argentia, Newfoundland and Labrador, to 

North Sydney, Nova Scotia. In addition to the ferries, there is regular local boat traffic 

among the Atlantic Provinces as well cargo vessels from Europe and other countries that 

frequently make port in Newfoundland. 

Aquaculture is a growing industry in Newfoundland, with substantial export value. 

Given the significant impact that non-indigenous species have had in Atlantic Canada, it 

is important to know if and where these non-indigenous species are present in 

Newfoundland. At the start of this study, the presence of these ascidians was 
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undetermined. Therefore in 2006, a pilot survey ofNIS was undertaken in four 

Newfoundland harbours that are particularly vulnerable to marine invasions, including 

Port-aux-Basques, Comer Brook, Botwood and Argentia. This project was a 

collaboration between Fisheries and Oceans Canada, Government of Newfoundland and 

Labrador, Memorial University of Newfoundland and the Newfoundland Aquaculture 

and Industry Association. 

Although shipping vectors are the primary vector for the initial introductions of non­

indigenous species, secondary spread of these species via small boats is also problematic 

and very difficult to prevent. Thus, eradication of these species once they have become 

established is generally an ineffective solution (Darling and Blum 2007). A more cost 

effective and realistic option is to support prevention of species introductions and the 

control of existing populations. Successful control of invasive organisms may be possible 

if they are detected early and if their distributions are known (Darling and Blum 2007). 

1.6 MIGITATING THE EXPANSION OF INVASIVE AND NON­

INDIGENOUS ASCIDIAN POPULATIONS 

Mitigation measures have a much greater chance of success if invasions are detected 

early. One method of early detection is through genetic markers, in particular genetic 

markers. There are several genes that can be used in the development of markers for 

species detection. However, the gene that has been proposed to serve as the global 

bioidentification system in animals is the cytochrome c oxidase I gene (COl) (Hebert et 

al. 2003). The COl gene is located in the mitochondrial DNA (mtDNA). Mitochondria 
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are commonly used in studies of phylogenetics because they have their own circular 

genome which is separate from the nuclear chromatin (Boore 1999). The matrix of the 

mitochondria contains the genetic material, including DNA, RNA and ribosomes. This 

study focuses on determination of the utility of the COr gene as a DNA "barcode" for 

both indigenous and non-indigenous ascidian species in Newfoundland. DNA 

"barcoding" aims to provide an accurate method for species-level identifications, offers 

alternative approaches to studying biodiversity, and is useful for ecological surveys and 

environmental assessments (Bhadury et al. 2006; Hajibabaei et al. 2007). DNA 

"barcoding" uses a short segment of the DNA, approximately 15-20 bases long, to 

identify species. There have been numerous studies showing that COl can be used to 

differentiate a wide range of taxa at the species level (Armstrong and Ball 2005). In most 

cases cor has been proven effective for species identification in many animals including 

fish, copepods, insects and birds (Hebert et al. 2004; Ward et al. 2005 ; Hajibabaei et al. 

2006; Pfenninger et al. 2007). 

Genetic markers are important for early detection because ascidian eggs and larvae 

are difficult to identify based on morphology. Once the barcode regions are identified, 

genetic markers can be developed for use in environmental monitoring of these species in 

Newfoundland as well as other coastal areas. 

1. 7 OBJECTI VES 

This study investigates the biofouling community of marine megainvertebrates on 

wharf pilings in four Newfoundland harbours (Argentia, Botwood, Corner Brook and 
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Port-aux-Basques). The objectives of this research are (a) to determine if known, non­

indigenous species of ascidians are present in the harbours (Chapter 2), (b) to describe the 

species composition, abundance and biodiversity of the megabenthic fouling invertebrate 

community (Chapter 2), and (c) to determine the nucleotide sequence of the COl gene 

and its variability in indigenous and non-indigenous ascidian species (Chapter 3). The 

community data presented in Chapter 2 is valuable as baseline information for the 

detection of future invasions. This tool can be used for rapid and early detection of 

potential future introductions of these non-indigenous species in and around 

Newfoundland. 
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CHAPTER 2: HARBOUR SURVEYS AND MEGABENTHIC 
COMMUNITY ANALYSIS FOR INDIGENOUS AND NON­

INDIGENOUSINVERTEBRATES 

2.1 INTRODUCTION 

Invasive species are one ofthe leading environmental issues in the world 

(Stachowicz et al. 2002). It is important for managers to know the indigenous species 

present in their waters so that if non-indigenous species are detected, regulations and 

management programs can be implemented to help control their spread (Campbell et al. 

2007). Ascidians are marine invertebrates that live in all oceans. They are filter-feeding, 

hermaphroditic organisms that have the ability to reproduce quickly when conditions are 

favourable. Their larva are short-lived, thus limiting their capability to spread long 

distances and colonize new areas (Svane and Young, 1989; Lambert and Lambert 1998; 

Locke et al. 2007). Because of their limited dispersal potential, anthropogenic vectors are 

important in the spread of these organisms. The main transport vectors for ascidians 

include shipping traffic at multiple spatial scales where ascidians may be transported 

attached to the ship hulls as juveniles and adults, or in the ballast water as larvae (Svane 

and Young 1989; Lambert and Lambert 2003). Another vector that is important in the 

spread of ascidians is through the transfer of shellfish among aquaculture sites (Carver et 

al. 2003). 

Invasive, non-indigenous ascidians have become a significant biofouling problem 
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for the aquaculture industry in Nova Scotia and Prince Edward Island since the mid-

1990's (Howes et al. 2007; Locke et al. 2007) The non-indigenous and invasive ascidians 

causing problems in Atlantic Canada include Stye/a clava, Ciona intestinalis, Botryllus 

schlosseri and Botrylloides violaceus. 

Artificial structures are prime locations for the establishment of non-indigenous 

ascidians. Invasive ascidians are a problem because they compete with and can overgrow 

indigenous benthic communities, fouling boats, floating docks and attaching to mussel 

and oyster aquaculture infrastructure (Lambert and Lambert 1998; Carver et al. 2003; 

LeBlanc et al. 2003). They can cause reduced productivity of aquaculture industries by 

competing for space and restricting water flow and thus food availability for bivalves 

(Carver et al. 2003). Invasive ascidians may also affect aquaculture operations by 

increasing production costs due to increasing handling time, requiring additional 

equipment and increasing the physical demands on crew (Carver et al. 2003; LeBlanc et 

al. 2003, Howes et al. 2007, Locke et al. 2007). In addition, there are increased 

husbandry costs due to extra cleaning and processing time. 

Given the high level of vessel traffic between Newfoundland and the Maritime 

Provinces, it is likely that one or more of these species will invade Newfoundland 

harbours. It is important to track these non-indigenous ascidians because the blue mussel 

aquaculture industry in Newfoundland has expanded rapidly in the past five yeas, 

providing rural employment. 

This study is the first assessment of non-indigenous invertebrates in 

Newfoundland harbours. The goals of this project were to use quadrat samples, visual 

surveys and photographic records to assess the abundance and biodiversity of 
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me gain vertebrates on wharf pilings and to determine if non-indigenous ascidians are 

present in four high-risk ports. All four ports are visited regularly by a variety of ships 

sailing from locations in the southern Gulf of St. Lawrence as well as from the 

northeastern United States and Europe. 

2.2 MATERIALS AND METHODS 

2.2.1 Study Sites 

Newfoundland is an island located on the east coast of Canada. A survey of four 

Newfoundland harbours (Argentia, Botwood, Comer Brook and Port-aux-Basques) was 

conducted in September-November 2006 (Trip 1) and November-December 2006 (Trip 

2) (Fig. 2.1 ). These harbours are considered to be at high risk for the invasion of non­

indigenous ascidians (Therriault and Her borg 2008a; Therriault and Herborg 2008b ). 

Argentia, Comer Brook and Port-aux-Basques were chosen because there are high levels 

of shipping traffic from Nova Scotia and Prince Edward Island. This shipping traffic 

includes ferries that run from Argentia and Port-aux-Basques to North Sydney, Nova 

Scotia. Botwood was chosen as a study harbour because of its proximity to several 

Newfoundland mussel farms. Several ascidian species are known to foul mussel 

aquaculture lines in other Atlantic Provinces so it is important to know if non-indigenous 

ascidians are present in this area. The 'Comer Brook' sampling harbour included a 

wharf located in Lark Harbour on the Humber Arm, 48 km from the main Corner Brook 

wharf, and another at Frenchman's Cove, also on Humber Arm, 25 km from Comer 

Brook wharf (Fig. 2.1). Sampling was not conducted in Frenchman's Cove during Trip 
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2. These alternative sites were required due to our inability to obtain access to 

commercial wharves within the inner Corner Brook harbour. 

2.2.2 Sampling 

'Scrape' samples were taken by SCUBA divers using a 0.25 cm2 quadrat frame 

(Stachowicz et al. 2002; Grey 2009) from 3 sites on each of 2-3 wharves in each harbour 

(Fig. 2.2). Sites were chosen by determining the perimeters of each wharf counter 

clockwise using a tape measure, then multiplying the perimeter by a random number 

from a table ranging from 0.01-1. This number gave the distance of each site from the 

point of origin. This procedure was followed with the following caveats: 1. In the case 

of any obstruction that precluded quadrat placement, a new random number was chosen. 

2. If the resulting sites were within three meters of each other, a new random number was 

chosen. 3. If the water depth was less than three meters, a new random number was 

chosen. All sample sites were recorded using GPS and the location on the wharf was 

permanently labeled so it could be revisited during Trip 2. 

The quadrat frame was positioned at each site on a wharf piling at a nominal 

depth of 2 m below the lowest low tide. All macroalgae and megafauna were removed 

from the piling within the frame by a SCUBA diver using a putty knife and placed into a 

bag with 1 em mesh. For Trip 2, the scrape samples were taken adjacent to the previous 

scrapings at the same sites. After the samples were transported ashore, the contents of 

the bag were transferred to 10 L plastic buckets filled with sea-water. The mesh bags 

were examined to ensure that any attached invertebrates or algae were retained with the 
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sample. At the end of the day, each sample was poured into a plastic tray and 

photographed to provide a permanent record. These photographs were not analyzed 

quantitatively. When present, up to three individuals of each species oftunicate were 

removed from each sample and placed in 95% ethanol to be used in genetic analyses (see 

Chapter 3). The remaining sea-water in the bucket was poured though a mesh sieve (450 

Jlm) to collect organisms. The material on the screen was washed into a bucket with 

filtered sea-water and the contents fixed in a 10% sea-water formaldehyde-solution. 

Environmental data (temperature, salinity, turbidity, dissolved oxygen, light) was 

collected for each harbour, although this data will not be presented here. 

2.2.3 Image Analysis 

Underwater photographs were taken of each quadrat before the area was scraped. 

The underwater camera was held by hand as near to the center of each grid as possible. In 

the laboratory, a 9 x 9 virtual mesh grid (i.e. 81 points) was overlaid over each quadrat 

frame image with using Image-J (NIH). Images that were out of focus or non-orthogonal 

were not analyzed. Of the 3 0 scrape samples from Trip 1, 21 had corresponding 

photographs of sufficient quality to be analyzed. Percent cover was estimated using the 

point-transect method (Pecha et al. 2004), by identifying the taxon ofmarcoalgae or 

megafauna underlying each grid point and then summing the number of grid points per 

taxon for each photograph. As we used 81 grid points, each point represented a cover of 

1.2 %. If the photograph included a non-natural component within part of the grid frame 

(such as a diver's glove), the number of points overlying the obstruction was subtracted 
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from 81 and the percentage represented by each grid point adjusted accordingly. Flora 

(algae, seaweeds, etc), fauna (invertebrates of all sizes including bryozoans and 

hydroids), ' substrate' (wharf pilings or artificial structures in which material was 

attached) and 'unknown' (targets that could not be identified or were out of focus) were 

included in the percent coverage estimates and were grouped together as 'other'. 

In addition to the photographs of quadrats described above, a vertical series of 

images was taken at each sampling site from the surface of the water to the seafloor in 

order to provide a qualitative record of the vertical distribution of visible fauna on the 

wharf pilings. This imaging was done along a taut line at 50 em intervals. Each 

photograph was then examined on a computer monitor and a species list of all identifiable 

macroalgae and megafauna was compiled. The taxonomic composition of each site was 

compared for each of the three sampling methods which included quadrat scrape samples, 

underwater photographs of the quadrat frames before the samples were removed, and the 

vertical series along the taught line. This combination of sampling techniques gives a 

more complete record of the megafauna community of each site, increasing the likelihood 

of detecting rare non-indigenous species and decreasing ambiguities of interpretation of 

taxa in the photographs. 

2.2.4 Laboratory and Statistical Analyses 

In the laboratory, the organisms from each scrape sample were sorted into major 

taxonomic groups (typically family and order) and transferred to 95% ethanol 

(Mastrototaro et al. 2008). The organisms were identified using several taxonomic keys 
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(Gosner 1925; Plough 1978; Pockington 1989; Pollock 1997). Abundance of megafauna 

taxa at each site, wharf, and harbour was determined for organisms collected on a 1 mrn 

sieve. In addition, epifauna (i.e. Balanus spp. and Stronglyocentrotus droebachiensis) 

greater than or equal to 1 em were scraped off Mytilus spp., seaweed, etc. and then 

processed through the 1 mrn sieve. The taxa were organized into the following groups for 

Trip 1. 'Mytilus spp. 'which includes Mytilus edulis and Mytilus trossulus, 'Sea stars' 

which includes Asterias spp. and Ophiopholis aculeate, 'Ascidians' which includes 

Molgula spp. and Ascidia sp. and 'Polychaetes' which includes Polynoidae and 

Hesionidae. The groups were the same for Trip 2 except that 'Ascidians ' includes 

Molgula spp., Ascidia sp. and Halocynthia pyriformis, and 'Polychaetes' which includes 

Lepidonotus squamatus, Polynoidae and Hesionidae, Hesionidae nereimyra, 

Terebellidae, and Polycirrus spp. 

The number of individuals in each taxon in each sample was multiplied by 16 

and are reported here as individuals m-2
. Mean abundance(± standard deviation) oftaxa 

was calculated for each wharf and harbour. Only sites where taxa were present were used 

to calculate mean values (i.e. 0 values were excluded from calculation of the means). As 

a double check medians were calculated with the zero values included. Community 

parameters such as the number oftaxa, number of individuals per taxon, Shannon­

Wiener's diversity index (H') and Evenness (J) were calculated for each harbour. 

2.2.5 Multivariate Community Analysis 

Differences in taxonomic composition and abundance of the megafauna! 
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community among wharves within harbours and among the four harbours were explored 

using non-metric multidimensional scaling (nMDS) (PRIMER-E v6 software) based on 

the Bray-Curtis similarity index (Clarke and Gorley 2006). nMDS was useful in this 

study since it takes into account both the changes in abundance and species composition 

and can resolve subtle differences in community structure (U gland et al. 2008). 

The number of individuals in each taxon in each sample from Trip 1 and Trip 2 

were pooled and then were multiplied by 8 and are reported as individuals m-2
. The 

' wharf' factor included wharves AI , A2, Bl-B3, Cl-C2, Dl-D3, and the ' harbour' factor 

included A, B, C, D, where 'A' is Argentia, 'B' is Botwood, 'C' is Corner Brook, and 'D' is 

Port-aux-Basques. The abundance data was log (x+l) transformed to reduce the effect of 

highly abundant taxa and increase sensitivity to rare taxa. The Bray-Curtis index and 

resultant similarity matrix was used to determine similarities between samples (Wilber et 

al. 2007). The resemblance matrix was computed using zero-adjusted Bray-Curtis 

similarity, which adds a dummy variable of 1 to the abundance matrix to adjust for cells 

with values of 0 (Clarke and Gorley 2006; Clarke et al. 2006). A dummy variable is 

analogous to adding a 'dummy species' to the matrix and forcing two samples with no 

content to be 100% similar (Clarke and Gorley 2006). 

The statistical significance of faunal clusters was determined with the CLUSTER 

group average function in PRIMER-E. nMDS was performed using the MDS function 

based on the similarity matrix; the number of algorithms was increased from the default 

of 25 to 50. Cluster analysis output and nMDS plots were compared by overlaying 

contour lines (cluster similarity: 20 and 70%) on the corresponding nMDS graph. The 

stress value associated with the nMDS plot reflect how well the distance among samples 
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in the plot reflect actual distances (Clark and Gorley 2006; Quijon and Snelgrove 2006). 

ANOSIM (analysis of similarity) tests were performed using a two-way nested AN OVA 

using the factors wharf and harbour. This tests the null hypothesis that there is no 

difference between wharfs and harbours. Using PRIMER-E ANOISIM, R-values > 0.5 

indicate significant differences between groups (Clarke and Gorley 2006; Wilber et al. 

2007). The SIMPER function in PRIMER-E was used to determine the average similarity 

and dissimilarity ofthe individual species contributing to the separation between the 

harbours based on a one-way analysis with harbour as the factor. 

2.3 RESULTS 

2.3.1 General Community Composition 

Using all three sampling methods resulted in the collection of 22 different taxa, 19 

of which were identified to the species level (Table 2 .1 ). Thirteen taxa were detected 

using the quadrat scrape method, four were documented in the quadrat scrape images, 

and ten others in the images from the vertical series. The taxa fell into the following 

groups, the Cnidaria (1 family), Annelida ( 4 families), Arthropoda (3 families) , Mollusca 

(7 families), Echinodermata (3 families) and Tunicata (3 families). The molluscs and 

annelids contained the most species identified (i.e. 7 and 6 species, respectively, Table 

2. 1). 
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2.3.2 Scrape Sample Analysis 

The samples from Trip 1 (September-October 2006) showed that Mytilus spp. 

were numerically dominant in all four harbours, with mean abundances ranging from 

1120 - 6523 indivduals m-2 (Table 2.2). The second and third most abundant taxa were 

Stronglyocentrotus droebachiensis and Balanus spp., with abundances of 392 and 272 

individuals m·2,respectively. S. droebachiensis and ascidians were found only in Corner 

Brook and Port-aux-Basques, while Balanus sp. and sea stars were only found in 

Argentia. Metridium senile and polychaetes were found in all harbours except Botwood. 

It is interesting to note that Mytilus spp. were the only species found in the scrape 

samples in Botwood and the only species that were observed in all four harbours. 

The samples from Trip 2 (October-December 2006) showed similar results to Trip 

1, evidence that the species presence and abundance patterns were consistent (Table 2.3). 

Mussels were again present in all four harbours, with mean abundances of 176 - 4429 

individuals m·2 . The second and third most abundant taxa were ascidians in Argentia and 

polychaetes in Corner Brook, with abundances of 208 individuals m·2 and 200 individuals 

m·2, respectively. Ascidians and polychaetes were observed in Argentia in addition to the 

two harbours where they were sampled during Trip 1. Ascidians were not detected in 

samples collected at Argentia during Trip 1. The ascidian species found during both trips 

were Molgula sp. and Ascidia sp. and are indigenous to Newfoundland (Gretchen 

Lambert pers. comm.). Sea stars were found in two additional harbours not reported 

during Trip 1, Corner Brook and Port-aux-Basques. 
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2.3.3 Scrape Samples versus Quadrat Images 

Comparing the results from the scrape samples to the photographic images of the 

quadrats revealed several differences between the two sampling methods. Figs. 2.3 and 

2.4 show the occurrence of taxa in each harbour from the scrape samples from Trips 1 

and 2, while Fig. 2.5 shows the distribution of taxa from the quadrat images from Trip 1. 

There were 13 megafauna! invertebrate taxa identified in the scrape samples, compared to 

only 4 taxa from the photographic analysis of the quadrats. The difference in numbers of 

taxa identified could be a result of the fact that many of the taxa identified in the samples 

were rare with low mean abundances, and therefore were likely underestimated by our 

81-point, line-transect image analysis routine. Also note that macroalgae covered by far 

the greatest amount of area in all of the quadrat photographs (data not shown). 

Macroalgal identification in the foregoing scrape samples was not an objective of my 

project. 

2.3.4 Scrape Samples versus Vertical Rope Series Images 

The vertical series of photographs allowed us to make a qualitative record of the 

vertical zonation of taxa at the four harbours. Mytilus spp. were the only taxa that were 

present in both the scrape samples and in the vertical photographic series in all four 

harbours (Table 2.4). Balanus spp. was only detected in the vertical series in Corner 

Brook and Port-aux-Basques, but was detected in both the scrape samples and vertical 

series in Argentia. This could indicate that Balanus sp. were located in Corner Brook and 
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Port-aux-Basques below the nominal sampling depth of the scrape samples and 

photographs. There were only two species (Coryphella sp. and Thyasira sp.) identified 

in the quadrat scrapes that were not identified in the vertical series. This discrepancy 

could be a result of the fact that the quadrat scrapes were at an ideal depth for sampling 

these species. Alternatively, these two taxa may have been too small or too rare to be 

identified via the vertical photographic series. There were no taxa identified only in the 

vertical photographic series in comparison to the scrape samples or quadrat photographs. 

2.3.5 Diversity and Evenness 

The Shannon-Wiener diversity index and evenness values were calculated based 

on grouping taxa into phylogenetic orders from Trips 1 and 2 (Table 2.5). Prior to 

analysis, sea star taxa were grouped together and included two orders (Forcipulatida and 

Ophiurida), which included Asterias spp. and Ophiopholis sp. The diversity and evenness 

values were very similar from Trips 1 and 2. The highest diversity and evenness values 

were in Argentia (H'= 1.15, J'= 0.72; H'= 1.47, 1'=0.91) for Trip 1 and 2, respectively. 

Corner Brook and Port-aux-Basques had diversity indexes less than 0.50 and evenness 

values less than or equal to 3. 71. Diversity and evenness could not be calculated for 

Botwood because there was only one species present. 

2.3.6 Multi-variate Community Analyses 

A 2-D nMDS plot provided an acceptable representation of the community 
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composition and abundance, with a stress level of 0.11 (Fig. 2.6). The primary result was 

that Argentia was different from the other three harbours based on the relative distances 

between points. Based on the CLUSTER analysis, wharves in Argentia grouped together 

at only a 20% similarity level, indicating a relatively high level of variability among 

wharves. Two Corner Brook wharves were included in the Argentia cluster, with one of 

them grouping with an Argentia wharf at 70% similarity. The three harbours of Botwood, 

Corner Brook and Port-aux-Basques were clustered together at a level of20% similarity 

(Fig 2.6). Within this cluster, Botwood showed the greatest similarity among wharves, 

with a majority included in a single group at 70% similarity. Corner Brook and Port-aux­

Basques were more similar to each other than they were to Botwood, grouping at 70% 

similarity. ANOSIM analysis indicated no significant difference between wharves within 

harbours (R=O.l3, p > 0.05), while there was a significant difference between harbours 

(R=0.52, p < 0.01). 

This difference between harbours was further investigated using SIMPER, which 

indicated that the dissimilarity ranged from 48 to 88 % (Table 2.6). Argentia was > 82% 

dissimilar from the other 3 harbours, supporting the clusters identified in Fig. 2.6. There 

were several species contributing to the differences between the harbours, including 

Mytilus spp. (accounting for 22- 41 %of the total difference), sea stars (1 2 - 17 %), 

Strongylocentrotus droebachiensis (14 %), Balanus sp. (11 %), polychaetes spp. (8 %) 

and Metridium senile (6 %) (Table 2.7). Mytilus spp. contributed the most to dissimilarity 

among harbours, with one exception. S. droebachiensis contributed the most to 

dissimilarity between Botwood and Port-aux-Basques, with a value of 14 %. Polychaetes 

only contributed to the dissimilarity between Corner Brook and Port-aux-Basques. 
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2.4. 7 Invasive and Non-Indigenous Ascidians 

No non-indigenous ascidians were detected during this survey. However, invasive 

Botryllus schlosseri was observed on the hull of a small boat in Argentia during a parallel 

Rapid Assessment Survey by SCUBA divers on December 7, 2006 (McKenzie and 

Deibel, unpubl.). This exemplifies the utility of quadrat studies for quantitative estimates 

of relatively common species and Rapid Assessment Surveys for the qualitative detection 

of potentially invasive species, which may be too rare to be detected in a quadrat survey. 

The indigenous ascidians Mogula sp. and Ascidia sp. were detected in the quadrat 

samples. In addition to the samples, indigenous Halocynthia pyriformis were detected in 

the vertical photographic series. Another indigenous ascidian, Eo/tenia echinata, was 

observed by SCUBA divers during the parallel Rapid Assessment Survey. 

2.4 DISCUSSION 

To my knowledge this is the first assessment of the megainvertebrate fouling 

community ofwharfpilings in Newfoundland. Thus, specific literature comparsions are 

difficult. The abundance and types of organisms found during this study are similar to 

fouling organisms reported from elsewhere in the western Atlantic Ocean (Greene and 

Grizzle 2007). Our study revealed that Mytilus spp., which included the blue mussel 

(Mytilus edulis) and the bay mussel (Mytilus trossu/us), are the most abundant and 
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common species among the harbours. Mussels are known to be competitive dominants 

and abundant members of fouling communities (Mathieson et al. 1991; Greene and 

Grizzle 2007). In Greene and Grizzle' s (2007) study of successional development of 

fouling communities in the Gulf of Maine, Mytilus edulis was the most abundant in 

density and biomass. Botwood had the highest abundance of mussels compared to any of 

the other harbours in this study. This could be due to the fact there are many mussel 

aquaculture sites in this region that are constantly seeding their farms with new mussel 

spat. There is the possibility that some of this spat is being released into the water, 

therefore seeding the surrounding areas including the wharves in Botwood harbour (B. 

Lowen, pers. comm.). 

Other species that were abundant members of the fouling community in 

Newfoundland harbours, as indicated through the various assessment methods used, were 

the green sea urchin, Stronglyocentrotus droebachiensis, Metridium senile, Balanus spp., 

sea stars and polychaetes. The seastar Asterias vulgaris, and the anemone Metridium 

senile, are also found in high numbers/and or biomass in the Gulf of Maine (Greene and 

Grizzle 2007). Several of the rare taxa found in the scrape samples in this study included 

Hiatella spp., Thyasira spp. and amphipods. Whereas in the Gulf of Maine, amphipods 

and Hiatella artica had the highest biomass during certain periods of the year, i.e. 

September-October and June-July (Greene and Grizzle 2007). 

The major source of variability in community species composition and abundance 

was differences among harbours, rather than among wharves within harbours. This is 

likely due to the large geographic area over which the harbours are spread (Fig. 2.1 ), as 

well as to the very different oceanographic environment in the region of each harbour, i.e. 
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the Gulf of St. Lawrence for Corner Brook and Port-aux-Basques, the Gulf Stream and 

shelf waters for Argentia, and the Labrador Current for Botwood. Perhaps not 

surprisingly then, these latter two harbours are most distinct. Argentia is the most 

taxonomically diverse harbour and is significantly different from the other three harbours 

in terms of community composition and abundance (nMDS analysis, Fig. 2.6). Botwood 

was distinct in terms of being almost entirely dominated by mussels. These clear 

differences among harbours should provide a valuable biotic community baseline of 

information against which future changes in these harbours can be assessed. 

The only non-indigenous ascidian species found was Botryllus schlosseri, which 

was discovered in Argentia harbour during a parallel Rapid Assessment Survey 

(McKenzie and Deibel, unpubl.). It is interesting to note that Argentia is the only harbour 

in which a non-indigenous species was found during this study. In a recent assessment, 

Argentia was ranked as one ofNewfoundland 's ports at highest risk for invasion (Baines 

2007). According to a shipping report from Transport Canada in 2000, ca. 4 7% of the 

shipping traffic entering Newfoundland was from the eastern seaboard of the USA, while 

ca. 42% came from Europe and the Mediterranean Sea (Balaban 2000). As well there is a 

regular ferry that travels from Argentia to Nova Scotia from June to September. 

Argentia harbour is located in Placentia Bay, which is on the south coast of 

Newfoundland (Fig. 2.1 ). Within Placentia Bay, there is another port (Come by 

Chance/Whiffen Head) which is located approximately 60-80 km from Argentia. This 

port receives large oil tankers that release ballast water in the area and many of these 

come from a region affected by B. schlosseri invasions (Baines 2007). The distribution of 

B. schlosseri can also be affected by secondary transport. There is much fishing and 
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recreational boating activity in the bay, and B. schosseri has the potential to attach to the 

hulls of small boats. This is problematic because these vessels have the potential to 

transport B. schosseri to smaller bays and inlets where larger ships do not travel. Also, 

there is no governmental data base oftraffic information on small vessels. Importantly, 

the B. schlosseri found in Argentia was attached to the hull of a small boat that had been 

docking there for over a year. This tunicate was previously noted on the south coast of 

Newfoundland in 1975 (Hooper 1975), but has not been reported from other regions of 

the island in subsequent years until this project began in 2006. The federal government 

took the discovery of B. schlosseri in Placentia Bay seriously, prohibiting the export of 

mussels from the bay for processing in 2006. This highlights the importance of non­

indigenous species issues in Newfoundland and the need for more scientific information 

to better inform management decision making. 

I used three different methods to determine the megabenthic invertebrate fouling 

community ofwharfpilings. Some ofthe methods (line photographs) were more 

effective in the detection of rare species while others (quadrat scrape samples) were more 

effective in quantitative estimation. In the future, more Newfoundland harbours and 

aquaculture sites should be surveyed by SCUBA divers in order to detect non-indigenous 

ascidians using Rapid Assessment Survey techniques. This was a pilot study. If it were 

repeated, it would be useful to increase both the size and number of quadrats if the goal is 

to detect and to quantify rare non-indigenous species. 

2.5 CONCLUSIONS 
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In conclusion, there are many species that contribute to the megabenthic invertebrate 

fouling community in Newfoundland harbours. Although the potentially invasive 

ascidians are not yet common members of these communities, it is important to 

continuously monitor these areas and other high risk harbours. There is a high possibility 

that the four non-indigenous ascidians in Atlantic Canada, Styela clava, Ciona 

intestinalis, Botryllus schlosseri and Botry lloides violaceus, will become common 

members of benthic communities in Newfoundland harbours in the years to come. This 

2006 survey confirms the presence of B. schlosseri in Newfoundland for the first time 

since 1975. 
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Table 2.1. List of benthic megafauna invertebrate taxa observed in the study using three 
sampling methods (quadrat scrapes, and quadrat and vertical rope photographic series, 
see Methods). 

Phylum Class Sub-Class Order Family Species 
Cnidaria Anthozoa Zoantharia Actiniaria Metridiidae Metridium senile 

Annelida Polychaeta Palpata Aciculata Polynoidae spp. 

Polynoidae 
Lepidonotus 
squama/us 

Hesionidae Hesionidae spp. 

Hesionidae 
nereimyra 

Canalipalpata Terebellidae Polycirrus spp. 

Serpulidae Spirorbis spp. 

Arthropoda Malacostraca Eumalacostraca Decapod a Pandalidae spp. 

Amphipoda Amphipod spp. 

Cirripedia Thoracica Balanidae Balanus spp. 

Mollusca Gastropoda Neotaenioglossa Littorinidae Littorina spp. 

Littorina littorea 

Patellogastropoda Acmaeidae Acmaea spp. 

Opisthobranchia Nudibranchia Coryphellidae Coryphella spp. 

Bivalvia Pteriomorphia Mytiloida Mytilidae Myti/us spp. 

Heterodonta Mytoida H iatelloidea Hiatella spp. 

Veneroida Thyasiridae Thyasira spp. 

Echinodermata Stelleroidea Ophiurida Ophiatidae 
Ophiopholis 
aculeata 

Forcipulatida Asteriidae Asterias spp. 

Echinoidea Echinoida Strongylocentrotidae 
Strongylocentrotus 
droebachiensis 

Chordata Ascidiacea Stolidobranchia Pyuridae 
Halocynthia 
pyriformis 

Molgulidae Mogula spp. 

Ascidiidae Ascidia spp. 
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Table 2.2. Mean abundance (individuals m-2
) of megafauna invertebrate taxa* from four Newfoundland harbours from quadrat 

scrapes from September 2006 and October 2006 (Trip 1 ). Only sites where taxa were present were used to calculate means. 
Values in square brackets are the number of sites a taxa was present ('n') out of the total number of sites per harbour. Errors 
are reported as (standard deviation), except when n s 3 and is reported as half the range. (---)=none observed in sample. 

Number_ of 
Mytilus Stro!lglyocentrotus 

quadrats per 
harbour 

spp. a droebachiemis 

Argentia 6 
1120 
[1] 

6523 
Botwood 9 (5743) 

[9] 

Corner 
2468 

6 (1343) 
Brook 

[4] 

Port-aux-
2354 

9 (2934) 
Basques 

[8] 

• Mytilus spp. includes Mytilus edulis and Mytilus trossulus 
b Sea stars includes Asterias spp. and Ophiopholis aculeata 
c Ascidians includes Molgula spp. and Ascidia sp. 
d Polychaetes includes Polynoidae and Hesionidae 

· Rare taxa which are not represented above include: 
Comer Brook: Coryphel/a sp. (16m-2), [ l/6] 

(-- -) 

(---) 

392 (72) 
[2] 

57 (55) 
[7] 

Sea Metridium Balanus 
stars b senile 

Ascidiansc Polychaetesd 
spp. 

64 (56) 37 (24) 
(- --) 

272 (144) 48 
[3] [3] [2] [1] 

(-- -) (-- -) (- --) (-- -) (---) 

72 (56) 48 96 (0) 
(- --) (- --) 

[2] [1] [2] 

112 (104) 88 (72) 112 (16) 
(- --) (-- -) 

[3] [2] [2] 
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Table 2.3. Mean abundance (individuals m-2
) of megafauna invertebrate taxa* from four Newfoundland harbours from quadrat 

scrapes from October 2006 and December 2006 (Trip 2). Only sites where taxa were present were used to calculate mean. 
Values in square brackets are the number of sites a taxa was present out of the total number of sites per harbour. Errors are 
reported as standard deviation, except when n :S 3 and is reported as half the range. (- - -) = none observed in sample. 

Number of 
My til us Stronglyocentrotus 

quadrats per spp.• droebachiensis 
harbour 

176 
Argentia 6 (---) 

[1] 

4429 
Botwood 9 (3154) (-- -) 

f9l 

Corner 
3120 32 3 (48) 

Brook 
f2l 

[1] 

Port-aux-
1367 76 (48) 9 (960) 

Basques [9] [8] 

• Myti/us spp. includes Mytilus edu/is and Mytilus trossulus. 
b Sea stars includes Asterias spp. and Ophiopho/is acu/eata. 
c Ascidians includes Molgula sp., Ascidia sp. and Halocynthia pryiformis. 

Sea Metridium Balanus 
stars b senile 

Ascidiansc 
spp. 

100 32 (16) 208 88 (8) (68) 
[4] [2] [1] [2] 

(---) (---) (- --) (---) 

16 64 
(---) (---) 

[1] [1] 

48 32 48 (40) 
(---) 

[1] [1] [3] 

d Polychaetes includes Lepidonotus squamatus, Polynoidae and Hesionidae, Hesionidae nereimyra, Terebel/idae, and Polycirrus spp. 

*Rare taxa which are not represented above include: 
Botwood: Hiatel/a (16, [1 /9]), Snail (16, [119]), Amphipod (16, [119]) 
Comer Brook: Thyasira (1 6, [1 /3]) 
Port-aux-Basques: (Hiatel/a sp.and Thyasira sp. 16,[1/9]), Shrimp (16, [1/9]); Coryphella sp. (16, [I/9]) 

Polychaetes 
d 

(---) 

(---) 

200 (104) 
[2] 

64 (32) 
[2] 
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Table 2.4. Comparison of megafauna invertebrate taxa identified from quadrat scrapes 
and vertical rope series. '+'indicates presence and'-' indicates absence. 

Argentia Corner Brook Port-aux-Basques 

Species Scrape Rope Scrape Rope Scrape Rope 

Mytilus spp. + + + + + + 
Stronglyocentrotus 
droebachiensis - - + - + + 

Metridium senile + - + + + + 

Sea Stars + + - - + + 

Balanus spp. + + - + - + 

Coryphellidae spp. - - + - + -
Ascidian - + + - + + 

Amphipod - - - - - + 

Polychaetes + + + - + + 

Hiatella spp. - - - - + -
Thyasira spp. - - + - - -
Littorina spp. - - - + - -

a Mytilus spp. includes Mytilus edulis and Mytilus trossulus. 
b Sea stars includes Asterias spp. and Ophiopholis aculeata. 
c Ascidians includes Molgula sp. or Ascidia sp. 
d Polychaetes includes Lepidonotus squama/us, Polynoidae and Hesionidae, Hesionidae nereimyra, 
Terebellidae, or Polycirrus spp. 
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Table 2.5. Shannon-Wiener diversity index (H') and evenness (J) of quadrat scrape 
samples from four Newfoundland Harbours from Trip 1 and 2. The Hand J could not be 
calculated for Botwood Trip 1 because there was only one species present and 
calculations cannot be computed on one species. Sea star orders combined (see text). 

Trip 1 Trip 2 

Harbour H' J' H' J' 

Argentia 1.15 0.72 1.47 0.91 

Botwood 0 0 0.01 0.01 

Corner Brook 0.44 0.25 0.60 0.37 

Port-Aux-Basques 0.30 0.31 0.38 0.17 
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Table 2.6. The dissimilarity percentages of taxa between harbours, calculated using the 
SIMPER function in PRIMER-E®. 

Argentia Botwood Comer Brook Port -aux-Basques 

Argentia 88 83 82 

Botwood 58 48 

Comer Brook 60 

Port-aux-Basques 
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Table 2.7. The individual taxa contributing to the dissimilarity between harbours shown 
in Table 2.6, including the average dissimilarity percentages, the % contribution of each 
taxon to the total dissimilarity, and the cumulative%. 

Com pars ion Taxon 
Average % % 

Dissimilari_tyJ._o/o)_ Contribution Cumulative 
Argentia vs. Botwood Mytilus spp. 40 46 46 

Sea Stars 17 20 66 

Argentia vs. Comer 
Mytilus spp. 22 26 26 

Brook 
Sea Stars 18 21 47 
Balanus spp. II 14 61 

Argentia vs. Port-aux-
Mytilus spp. 23 28 28 

Basques 

Strongylocentrotus 14 17 45 
droebachiensis 

Sea Stars 12 14 60 
Botwood vs. Comer 

Mytilus spp. 30 52 53 
Brook 

Botwood vs. Port-aux- Strongylocentrotus 14 30 30 
Basques droebachiensis 

Mytilus spp. 8 17 46 
Metridium senile 6 13 59 

Comer Brook vs. Port-
Mytilus spp. 16 27 27 

aux-Basques 
Strongylocentrotus 13 22 49 
droebachiensis 
Polychaetes 8 13 62 
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Figure 2.1. Map of insular Newfoundland, Canada, showing the sampling harbours. A= 
Argentia; B= Botwood; C= Comer Brook (1 = Lark Harbour and 2= Frenchman's Cove); 
D= Port-aux-Basques (map courtesy ofR. Brushett). 
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Harbour 

Wharf 

Quadrat 

Figure 2.2. Diagrammatic representation of the experimental design 

During Trip 2 Comer Brook (Frenchman' s Cove) was not sampled. 

* Lark Harbour 

**Frenchman's Cove 
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Argentia Botwood 

Corner Brook Port-aux-Basques 

c~tegory 

Mytilus spp, 
Stronglyocentrotus droebachi nsis 
Su stars 

0 Metridium senile 
• Ascidi.ms 
0 B~l~nus spp. 
0 Polychaetes 
• CorypheU~ spp . 
• Hiatell~ spp. 

Figure 2.3. Occurrence of each of taxon from quadrat scrapes from Trip 1 (September 
2006-0ctober 2006). 
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Argentia 

Corner Brook 

Botwood 

Port-aux-Basques 

uteg.ory 
MytiiUJ spp' 

Figure 2.4. Occurrence of taxon from quadrat scrapes from Trip 2 (October 2006-
December 2006). 
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Argentia Botwood 

Corner Brook Port-aux-Basques 

Cilleljlory 

• otl\er 

' . Bai<JnYs 
Sea Slilrs 

D Mytius spp. 
D Polychules 

Figure 2.5. Occurrence of taxon from quadrat images scrapes from Trip 1 (September 
2006-0ctober 2006). 

The 'other' category includes: flora (algae, seaweeds, etc), fauna (invertebrates of all sizes including 
bryzoans and hydroids), ' substrate' (wharf pilings or artificial structures in which material was attached) 
and ' unknown ' (targets that could not be identified or out of focus sections of the pictures. 

The number of pictures analyzed varied per harbour. The total number of pictures per harbour is as follows: 
Argentia = 4; Botwood = 8; Comer Brook = 4; Port-aux-Basques = 5. 
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Figure 2.6. Two dimensional nMDS plot of the community composition and abundance ofmegainvertebrates in four Newfoundland 
harbours (Argentia 'a', Botwood 'b', Comer Brook 'c', and Port-aux-Basques 'd'). Similarity to each other was determined using the 
nMDS mode in PRIMER. The dotted (blue) and circular lines (green) encircling the treatments 'wharves' have been plotted using the 
CLUSTER function based on the Bray-Curtis similarity index with similarity of values of 20 and 70%. 
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CHAPTER 3: DETERMINATION OF CYTOCHROME C 
OXIDASE GENE SEQUENCES OF INDIGENOUS AND 

NON-INDIGENOUS ASCIDIAN TUNICATES OF 
NEWFOUNDLAND. 

3.1 INTRODUCTION 

Several non-indigenous ascidian species (Stye/a clava, Ciona intestinalis, 

Botryllus schlosseri and Botrylloides violaceus) have become a major biofouling problem 

in the Canadian Maritime provinces in the past ten years (LeBlanc et al. 2003; Locke et 

al. 2007). Non-indigenous ascidians (NIA) foul both artificial and natural substrates. 

Shipping vectors are likely important in the introduction of non-indigenous species such 

as ascidians, which may be transported to new areas through ballast water, sea chests or 

attached to hulls (Svane and Young 1989; Carlton and Geller 1993; Carver et al. 2003; 

Lambert and Lambert 2003 and Locke et al. 2007). However, secondary spread of these 

species via small boats is also a problem and it is difficult to prevent spreading to smaller 

harbours and inlets by local vessel traffic (Wasson et al. 2001). 

There are many shipping linkages between the Canadian Maritimes and 

Newfoundland. Of the four known invasive asci dian species in the Maritime Provinces, 

two of them, Botryllus schlosseri and Botrylloides violaceus, have been detected in 

Newfoundland in the past two years. B. schlosseri was detected in December 2006 in 

Argentia, on the bottom of a small boat (McKenzie and Deibel, unpubl.). Subsequently, it 

has been detected during additional surveys in many harbours in Placentia Bay and 

surrounding areas (Fig. 3.1). This is the first report of B. schlosseri in Newfoundland 
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since 1975 (Hooper 1975). B. violaceus was detected in September 2007 on the south 

coast in Belleoram harbour (McKenzie and Deibel, unpubl.). This is the first report of B. 

violaceus in Newfoundland. 

In addition to the non-indigenous ascidians in Newfoundland, there are several 

common indigenous species that inhabit natural and artificial substrates. These species 

include Boltenia echinata, Halocynthia pyriformis, Molgula sp., and Aplidium sp. (Van 

Name 1945; Plough 1978). 

In this study, two potentially invasive species (Botryllus schlosseri and Botrylloides 

violaceus) were analyzed genetically. B. schlosseri and B. violaceus are potentially 

invasive, colonial ascidians, with mixed development and short larval periods, typically < 

2 d (Stachowicz et al. 2002). B. schlosseri is a now a cosmopolitan species that originated 

from the Mediterranean Sea, while B. violaceus it thought to have originated from the 

Northwest Pacific Ocean (Berrill1950; Carver et al. 2006). For comparison, the two 

indigenous ascidians Boltenia echinata and Halocynthia pyriformis were also analyzed. 

B. echinata and H pyriformis are solitary ascidians, both having a northern boreal 

distribution (Plough 1978). 

Generally, benthic marine species with pelagic larvae are considered to have little 

population genetic structure because of the wide dispersal potential of the larvae 

(Palumbi 1994; Dias et al. 2006;Yuan et al. 2009). However, ascidian tunicates may 

differ from this pattern, because they have very short-lived larvae and can have 

considerable genetic structure even on spatial scales < 10m (Yund 1995; Ayre et al. 

1997; L6pez-Legentil et al. 2006; Demarchi et al. 2008). This limited dispersal could 

make the identification of species-specific genetic markers difficult, because within-
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species genetic variability may become nearly as large as among species variability. For 

example, the COl gene is known to be highly polymorphic in several species of ascidians 

(Tarjuelo et al. 2003 ; Tarjuelo et al. 2004; L6pez-Legentil et al. 2006; Silva and Smith 

2008). Ascidians are difficult to identify with morphological methods, especially when 

they are in the egg, larval and juvenile stages of development (Darling and Blum 2007). 

The objectives ofthis study were a) to develop a method for determination of the 

nucleotide sequence of the COl gene ofmtDNA of indigenous and non-indigenous 

asci dian tunicates collected in Newfoundland, b) to determine whether these sequences 

can be used to distinguish among the species of Newfoundland ascidians, i.e. whether 

nucleotide sequence variability among species is greater than within species. This 

information is required for future use of genetic markers for molecular identification of 

eggs and larvae of invasive ascidians in Newfoundland, in order to evaluate whether the 

gene sequences are species-specific (Ward et al. 2008) And c) to compare Newfoundland 

haplotypes within each species to haplotypes from other samples I have collected in 

North America and to GenBank sequences from North America, the eastern Atlantic 

Ocean and the Mediterranean Sea to confirm my taxonomic identification of the 

Newfoundland specimens and to construct a genealogy of the non-indigenous species to 

develop hypotheses on possible source populations. This information is required if 

vectors of invasion are to be identified and managed in the future. 

3.2 METHODS 

55 



3.2.1 Sample Collection 

In 2006 and 2007, adult specimens of four asci dian species of ascidians were 

collected from sites within Newfoundland, Prince Edward Island and Massachusetts by 

SCUBA divers or by hand from wharf pilings. The two non-indigenous ascidians to 

Newfoundland that were sequenced were Botry llus schlosseri and Botry lloides violaceus, 

while the indigenous ascidians were Halocynthia pyriformis and Boltenia echinata. B. 

schlosseri was collected from four harbours in Newfoundland (Fig. 3.1 , North Harbour 

[B], Hermitage [A], Argentia [D], Arnold ' s Cove [C]), one harbour in Woods Hole, MA 

(J) and one harbour in the Murray River, Prince Edward Island (I). One colony of B. 

schlosseri was sequenced from each of the four locations in Newfoundland and two 

individuals were sequenced from both Prince Edward Island and MA (Table 3.1 ). B. 

violaceus was collected in one Newfoundland harbour (Fig. 3.1 , Belleoram [H]), one 

harbour in Woods Hole, MA and one harbour in Murray River, Prince Edward Island. 

Three individuals of B. violaceus were sequenced from Newfoundland, one from PEl and 

three from MA (Table 3.1). Four individuals of H. pyriformis were sequenced from Port­

aux-Basques (Fig. 3.1, [E]) and one was sequenced from Logy Bay (Fig. 3.1 , [F], Table 

3.1). One individual of B. echinata was sequenced from each location Port-aux-Basques, 

Logy Bay and Bauline, Newfoundland. Ascidian species were fixed in 95% ethanol and 

stored at room temperature. 

3.2.2 DNA Extraction, COl Amplification and S equencing 

Ascidians were identified visually before genetic analysis was performed (Plough 
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1978; Pollock 1997). Several zoo ids (~5-1 0) from a cluster were extracted for the 

colonial ascidians and considered one sample. Tissue was extracted from the pharyngeal 

sac for the solitary ascidians. Total DNA was extracted from ascidians using the DNeasy 

Blood & Tissue Kit (Qiagen Inc.) following the manufacturer's protocol. Before DNA 

was extracted, ascidian tissue samples were soaked in a series of ethanol/phosphate 

buffered saline (PBS) washes as follows for five minutes each: 1. 75% ethanol/25% 

PBS, 2. 50% ethanol/50% PBS, 3. 25% ethanol/75% PBS and 4. 100% PBS. Three 

primer sets were used for the amplification of a fragment of the mtDNA COI gene. The 

primer sets included the universal primers, HC02198r, 5' - TAA ACT TCA GGG TGA 

CCA AAA AAT CA- 3', LC01490f, 5'- GGT CAA CAA ATC ATA AAG ATA TTG 

G- 3' designed by Folmer et al. (1994), ASC_COI_F, 5'- TCG ACW AAT CAT AAA 

GAT ATT AG- 3', ASC_COI_R ,5' - GTA AAA TAA GCT CGA GAA TC-3 ' (Vogler, 

per. comm.), and a novel primer set was developed for Botrylloides violaceus, Violet 

Forward, 5'-TTA GGT TTT GGT CTA GGT TTA TTG-3' , Violet Reverse, 5' -TAA 

ATG TTG ATA AAG TAC AGG GTC-3'. 

Polymerase chain reaction (PCR) amplifications were performed in 50fll total 

reaction volumes containing 1fll (10 f.!M) of each primer, 1fll (lOmM) dNTPs, 5f.!l 10X 

buffer containing 15 mM MgCh, 1fll (1 ,000 units/ml) Dynazyme , and lfll-lOfll (~ 100 

ng) template DNA. A single incubation at 94°C for 2 min was followed by 40 cycles of 

(94°C for 30 sec, 37°C for 30 sec, and 72°C for 1 min) and a final extension at 72°C for 7 

min, on an ABI GeneAmp PCR system 9700 thermocycler. PCR products were then 

separated by 1.5% agarose gel electrophoresis, and bands were excised and purified using 

the QIAquick Gel Extraction Kit (Qiagen Inc.). The PCR amplified COl fragments were 
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then subcloned into pOEM T-Easy Vector Systems (Promega) and then transformed 

using either Subcloning Efficiency DH5Alpha Competent Cells (Invitrogen) or JMl 09 

High Efficiency Competent Cells (Promega) following the manufacturer' s instructions. 

Recombinant clones were screened for inserts of correct size and positives were cultured 

and purified using the QIAprep Miniprep Kit (Qiagen). Clones from each individual were 

then sequenced in both directions in an ABI 3730xl automated sequencer using M13 

forward and M 13 reverse primers. 

3.2.3 Sequence Variability and Genetic Distance 

Clones for each individual were compiled and aligned using Vector NTI Advance 

10. Alignments were confirmed by inspection and a consensus sequence was composed 

for each individual ascidian COl fragment. Compilation and alignments were performed 

using AlignX in Vector NTI Advance 10, which uses the CLUSTAL W algorithm 

(Thompson et al. 1994). 

The genetic diversity measures, i.e. haplotype and nucleotide diversity and the 

number of polymorphic sites, were calculated for the four asci dian species sequenced in 

this study using ARLEQUIN version 3.0 (Schneider et al. 2000). Due to the low sample 

size, individuals from each species were grouped into larger populations before diversity 

analyses. Individuals of Botry llus schlosseri and Botrylloides violaceus were combined 

into two groups, Newfoundland and the Northwest Atlantic (Woods Hole, Massachusetts 

+Prince Edward Island), whereas individuals of Halocynthia pyriformis and Boltenia 
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echinata were combined into a Newfoundland group. 

Sequence difference was calculated to quantify genetic variability within and 

among the four ascidians. Pairwise genetic distance (1 00 -the sequence identity score) 

was calculated pair-wise for all haplotypes using AlignX. Haplotype codes are shown in 

Table 3.1. 

Sequences of Botryllus schlosseri from this study were compared with those in 

GenBank to determine the geneological relationships of Newfoundland samples of 

Botryllus schlosseri to those from the Northwestern Atlantic, the Northeastern Atlantic 

and the Mediterranean Sea. All sequences longer than 524 bp were trimmed using 

AlignX to a fmal partial sequence length of 524 bp to ensure that all sequences were 

evualated over the same length. Whenever possible, haplotype codes follow those of 

L6pez-Legentil et al. (2006). Haplotype codes and GenBank numbers are shown in Table 

3.1. All sequences were aligned and imported in MSF format into MEGA version 4.1 

(Kumar et al. 2001) and the relationshipd among haplotypes was determined using the 

maximum likelihood method with Tajima-Nei distance (Tajima and Nei, 1984). 

Bootstrap analysis was performed with I 000 replicates. To confirm the haplotype 

relationships we also constructed the two parameter (K2P) distance model of Kimura 

(1980). Both methods gave similar results. 

3.3 RESULTS 

3.3.1 CO/ Sequences of Newfoundland Species 
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I obtained partial sequences of the mitochondrial cytochrome c oxidase I (COl) gene 

from four species of Newfoundland ascidians from 8 different harbours (i.e.,populations) 

(Table 3.1). The universal primers developed by Folmer et al. (1994) for the 

amplification of the COl gene were tried on all four species, Halocynthia pyriformis, 

Boltenia echinata, Botrylloides violaceus and Botryllus schlosseri. These primers 

amplified well and amplicons yielded identifiable COl sequences for H pyriformis and B. 

schlosseri, but yielded poor or incorrect sequences for B. echinata and B. violaceus. 

Therefore, another primer set developed by Vogler (pers. comm.) was applied to these 

two species. These Vogler primers were successful in the amplification of COl in B. 

echinata but failed for B. violaceus. Therefore, primers were designed for B. violaceus 

based on the limited sequences using from the Folmer primers. The B. schlosseri partial 

COl sequence that I amplified was 658 bp long, whereas the sequences of B. schlosseri 

obtained from GenBank ranged from 524 bp to 674 bp. The B. violaceus partial COl 

sequence I amplified was 590 bp, whereas those of H pyriformis and B. echinata were 

658 bp. Those sequences which have been submitted to GenBank are indicated in Table 

3.1. My sequences are the first in GenBank for H pyriformis and B. echinata. The 

lengths reported are the sequences between the primer regions. 

The four species sequenced in this study were compared with those in GenBank 

using BLAST analysis and p-distance to confirm taxonomic identification. In the cases of 

Halocynthia pyriformis and Eo/tenia echinata, there were no other sequences available in 

GenBank at the time of data analysis. However, they did match closely with other 

ascidians in the Pyuridae family. H pyriformis matched closely (85% similarity) with 

the well-studied ascidian, Halocynthia roretzi. Perez-Portela (2009) reports sequence data 
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for H pyriformis from Havre StPierre, Quebec, which is the same (i.e. 100 % similarity) 

as the PHI haplotype reported in this study. Boltenia echinata was most closely related to 

Pyura praeputialis at 78.1 percent similarity. Botryllus violaceus and Botryllus 

schlosseri matched closely with other ascidians in the Styelidae family. Upon comparing 

my B. violaceus sequences to other ascidians in GenBank, the most closely-related 

species was B. schlosseri (82% similarity). This was interesting because Perez-Portela et 

al. (2009) report sequence data on B. violaceus in GenBank which differs considerably 

from my B. violaceus sequence (only 80% similarity). This indicates that the specimens 

may have been misidentified by Perez-Portela et al. (2009) before sequencing or mis­

catalogued in GenBank. Further support for the accuracy of my sequences are that I 

found only one haplotype and no genetic diversity within samples of B. violaceus from 

the NW A, which agrees with the findings of Bock et al. (2009). B. schlosseri matched 

other B. schlosseri sequences, a finding which is discussed in detail below. 

3.3.2 COl Sequence Variability of Newfoundland Species 

All measures of genetic diversity were much higher among individual Botryllus 

schlosseri from Newfoundland harbours than among individuals of the other three 

species examined in this study (Table 3.2). In fact, genetic diversity of B. schlosseri was 

higher in Newfoundland populations than in samples from the Northwestern Atlantic 

(NWA) (i .e. NWA, Woods Hole, Mass. and Murray R. , Prince Edward Island), with 3 

haplotypes and 29 polymorphic sites in Newfoundland compared with only 1 haplotype 

among the NW A populations. In comparison to B. schlosseri, genetic diversity of the 
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non-indigenous Botrylloides violaceus was much lower, with only one haplotype shared 

among the Newfoundland and NWA populations (Table 3.2). 

Genetic diversities of the indigenous species Halocynthia pyriformis and Boltenia 

echinata were intermediate between that of Botryllus schlosseri from Newfoundland and 

Botrylloides violaceus (Table 3.2). Newfoundland populations of each of the two 

indigenous species had two haplotypes, :::::; 2 polymorphic sites and a mean haplotype 

diversity of 0.40- 0.67. The mean haplotype and nucleotide diversity of B. schlosseri 

was significantly greater than the mean values for H pyriformis (p < 0.05) but not 

significantly different from those of B. echinata (p > 0.05). 

The proportion of nucleotide sites at which sequences were different (i.e. p­

distance) was lower among haplotypes within each species than among species (Table 

3.3). The range of values within species was< 1 %for all species except Botryllus 

schlosseri, which ranged from <1 to 15.6 %, including the haplotypes from GenBank 

listed in Table 3.1 (i.e., including European haplotypes in the comparison). The among­

species ranges in p-distance were all > 17.7 %, with 5 of the 6 ranges having minimum 

values> 20% (Table 3.3). 

3.3.3 Gene Genealogy ofBotryllus schlosseri 

Sequences of Botryllus schlosseri from this study were compared with those in 

GenBank to determine the phylogenetic relationships of Newfoundland populations to 

those from the Northwestern Atlantic, the Northeastern Atlantic and the Mediterranean 

Sea (see Fig. 3.3; Table 3.1 for a list of samples in each group). Of the 3 Newfoundland 
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haplotypes, 2 are relatively closely-related to populations elsewhere in the NWA, 

whereas the North Harbour population had no closely related haplotype elsewhere in the 

NW A region. The HJ haplotype, shared by Grana (NEA) and Blanes (MED), Spain, 

appears to represent an intermediate haplotype leading to Arnold's Cove, Argentia and 

Hermitage, Newfoundland populations. This finding indicates a mixed NEA and MED 

origin of these 3 Newfoundland genotypes. The Hermitage population is somewhat 

differentiated from the HJ lineage however, closely resembling the HO haplotype from 

Rochelle, France (NEA). The North Harbour, Newfoundland, haplotype is quite 

divergent from the other Newfoundland haplotypes, showing a great deal of affinity to 

several haplotypes from the Mediterranean Sea, and only 1, from Grana, Spain in the 

NEA. North Harbour is only 18 km from Arnold' s Cove. The bottom halfofFig. 3.3. 

contains haplotypes that are relatively more divergent from those in the NW A and 

Newfoundland, indicating very little trans-Atlantic gene flow of these haplotypes. 

3.4 DISCUSSION 

Mitochrondrial (mtDNA) COl sequences of four ascidian species, Botrylloides 

violaceus, Botryllus schlosseri, Halocynthia pyriformis and Boltenia echinata, were 

obtained from Newfoundland and the Northwestern Atlantic. The four species differed 

markedly in the susceptibility of the COl gene to PCR amplification using the typical, 

universal Folmer primers. Whereas H pyriformis and B. schlosseri worked well with 

Folmer primers, B. violaceus and B. echinata did not. The Folmer primers are commonly­

used PCR primers for universal metazoan invertebrates and have been used successfully 
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to amplify over 80 taxa including ascidians and bivalves (Folmer et al., 1994; Castilla et 

al., 2002; Stach and Tubverville 2002; Kappner and Bieler 2006; Lopez-Legentil 2006; 

Turon and Lopez-Legentil 2004; Curole 2004). Perez-Portela et al. (2009) reported 

failure of amplification in Stolonica social is (Stolidobranchia ascidian) using the Folmer 

primers, and therefore created a new pair of specific primers to amplify the cor gene in 

this species. However, they reported no problem with the amplification of B. violaceus 

using the Folmer primers. Bock et al. (2009) also report sequence data for B. violaceus 

obtained using the Folmer primers. In this study, the yielding of poor or incorrect 

sequences could be a result of this universal primer amplifying DNA from a non-target 

organism. This was likely since many of the ascidians collected were attached to other 

organisms (i.e. Mytilus spp.). In the case of B. violaceus, the new primer set developed 

worked successfully the majority of the time in the amplification of this species. The new 

primer was developed by aligning the partial sequences of B. violaceus and other closely 

related species to identify regions in the sequences that were different. The Vogler primer 

set is a modification of the Folmer primers that are intended to be more specific for the 

amplification of COl in ascidians. This set was successful in the amplification of several 

ascidians species from the Mediterranean (Vogler, per. comrn.) and our Boltenia 

echinata. 

Sequence information provided confirmation of our taxonomic identifications. In 

the cases of Halocynthia pyriformis and Boltenia echinata, although there were no other 

sequences available in GenBank, they matched most closely with other ascidian species 

in their Pyuridae family. My sequence information from Botry lloides violaceus suggests a 

possible misidentification of this species in GenBank (Perez-Portela et al. 2009). This 
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type of error can occur frequently in GenBank records (Perez-Portela eta!. 2009). 

Excepting this possible misidentification, my sequence will be the first for B. violaceus in 

GenBank and my B. schlosseri sequences will add to the information in GenBank. 

The genetic diversity measures varied among the four species in this study. 

Diversity was much higher in Botfyllus schlosseri compared to the other three ascidian 

species. There were three haplotypes found for B. schlosseri from four samples 

sequenced from Newfoundland, whereas there were two haplotypes for the other species. 

In combining the haplotypes in this study and the sequences in GenBank, 24 haplotypes 

were found in 184 samples. Of course, relatively low sample number can mean I have 

underestimated intra-specific spatial genetic differentiation in Newfoundland and the 

NWA (Ward et al., 2008). However, my estimates ofthe number ofhaplotypes falls 

within the range of that published for B. schlosseri by L6pez-Legentil et al. (2006) of 2-4 

population-! based on sample sizes of 11-25. They found three haplotypes from only four 

samples at Woods Hole, Massachusetts, U.S.A., as I did for B. schlosseri in 

Newfoundland (Table 3.2). The number of polymorphic sites found for B. schlosseri 

within Newfoundland (29) was much higher than the polymorphic sites in the other three 

ascidians (0-2) from this study. However, they do fall within the range ofthe 

polymorphic sites for B. schlosseri (12-89) reported by Lopez-Legentil (2006). High 

numbers of polymorphic sites have also been reported for other ascidians, Ciona 

intestinalis, Ciona savignyi, Cytodytes sp., Clave/ina lepadiformis and Pseudodistoma sp. 

(Turon et al. 2003; Tarjuelo et al. 2001 ; Lopez-Legentil and Turon 2005; Silva and Smith 

2008). There are high levels of polymorphism reported for the invasive ascidians C. 

intestinalis and C. savignyi from California (Dehal et al., 2002; Vinson et a!. 2005). Silva 
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and Smith (2008) reported recently that ten different ascidian species show substantially 

different levels of genetic polymorphism and exceptions to the assumptions that invasive 

species start with a low level of genetic polymorphism that increases over time. 

The high genetic diversity of the COl gene in Botryllus schlosseri must be taken 

into account during species-specific molecular marker development. It is vital for there to 

be less nucleotide variation between individuals within a species than between 

individuals of different, even closely-related species (Darling and Blum 2007). The high 

percent difference range within B. schlosseri was close to the range of differentiation 

between B. schlosseri and B. violaceus. Intra-specific variation is rarely greater than 2%. 

This high degree of variability in B. schlosseri could be a result of geographical isolates 

(Hebert et al., 2003). The lack of overlap between inter and intra-specific distributions of 

genetic variation is crucial to successful species-level assignments (Meyer and Paulay 

2005; Darling and Blum 2007). 

In contrast to Botryllus schlosseri, the other non-indigenous ascidian Botry lloides 

violaceus showed no genetic diversity (i .e. there was only one haplotype, BVl) within 

Newfoundland and the NWA. Given that B. violaceus has been present in the NW A for at 

least the past ten years (Locke et al. 2007) and has only been discovered in 

Newfoundland recently, it can be inferred that B. violaceus most likely arrived in 

Newfoundland from the east coast of the U.S.A. These results are comparable to those of 

Bock et al. (2009), who also found very low haplotype and nucleotide diversity in B. 

violaceus. Within a total of 192 samples from North America and Europe there were only 

five haplotypes and the individuals from the NW A all shared the same haplotype (Bock 

et al. 2009). 
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When Botryllus schlosseri haplotypes from this study were compared to those 

obtained from GenBank, our results indicated that there are relationships between 

Newfoundland and the NW A samples to sequences from Europe, indicating that there is 

gene flow in this ascidian between the two continents. The three haplotypes from 

Newfoundland were all collected within a relatively small geographical area, in and 

around Placentia Bay. Within this small area it was surprising to find relatively high 

genetic variability within a low sample size. Since ascidians cannot disperse long 

distances on their own and have short-lived planktonic larva, they must have been 

introduced to Newfoundland via shipping traffic (Svane and Young, 1989). It is likely 

that this shipping traffic originated from populations within the NWA, the NEA and the 

MED. It can be inferred that B. schlosseri in Newfoundland came from different source 

populations and probably through multiple introductions. This interpretation fits with 

general biological invasion trends in that most biological invasions result from multiple 

introductions. Human mediated dispersal also tends to promote higher levels of within­

population genetic diversity (Wilson et al. , 2008). Given that the HO haplotype from 

Hermitage was shared with individuals from Rochelle Harbour, France and Maine, USA, 

these could be potential source populations. In contrast, because the HA haplotype from 

North Harbour shared the same haplotype as individuals from the Mediterranean Sea, this 

is likely the source population. In addition, the other haplotype (BS 1) collected in 

Placentia Bay from Argentia and Arnold ' s Cove shared a haplotype with individuals from 

the NW A. The HJ haplotype seems to be an intermediate haplotype between the two 

continents, separating the NW A clade and the NEA and MED clades. The results of this 

study are comparable to those of Bock et al. (2009), who propose that east coast 
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populations of B. schlosseri have a Mediterranean Sea origin. 

In addition to shipping as a vector for the introduction of Botryllus schlosseri to 

the NW A, human-mediated transport of cultivated bivalves has been hypothesized to be a 

major source of range expansion within and between Mediterranean Sea and eastern 

Atlantic populations ofthe nassarid snail Cyclope neritea (Couceiro eta!. 2008). Since I 

have observed invasive ascidians growing on mussel shells in Newfoundland, the 

transportation of bivalve aquaculture products may also account for the high level of 

relatedness among B. schlosseri populations in the Mediterranean Sea and eastern 

Atlantic (L6pez-Legentil et al. 2006). It will be important in future research to sequence 

more individuals from several Newfoundland populations to expand knowledge of 

haplotype diversity and to help pinpoint source populations of B. schlosseri and 

Botrylloides violaceus in Newfoundland. This question has important management 

implications, because regulation of invasion vectors is often the most effective way to 

control the spread of invasive marine invertebrates (Bax et al. 2003). 
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Table 3 .1. Summary of collection information for the asci dian species studied. Included are the geographic location name, map code 
for Figs. 3.1 and 3.2, latitude and longitude (GPS), sample size (n), haplotype code and GenBank accession numbers. Species shown 
in bold face were determined in this study. 

Newfoundland (NL) 

SEecies Location MaE Code Latitude Longitude n HaElO!l:Ee code GenBank Accession no. 

Botrylloides violaceus Belleoram H 47.5272 -55.4092 3 BV4 GU065355\ GU065356" 

Botryllus schlosseri Hemitage A 47.5563 -55.9259 I HO GU065354", DQ340216b 

North Harbour B 47.8590 -54.1000 1 HA GU065353", DQ340205b 
Arnold's Cove c 47.8747 -54.1682 1 BSl GU065350 " 
Argentia D 47.2920 -53.9904 1 BSI GU065349 " 

Halocylltlria pyriformis Port-aux-Basques E 47.5751 -59.1402 4 PHI EU1 78858a 
Logy Bay F 47.6253 -52.6646 1 PH2 EU178861 " 

Boltellia echillata Port-aux-Basques E 47.5751 -59.1402 1 BEl GU065360" 
Logy Bay F 47.6253 -52.6646 1 BE2 GU065361 " 
Bauline G 47.7232 -52.8348 1 BE2 GU065362 a 

North West Atlantic {NWA} 

Botryl/oides violaceus Murray River, PEl 46.0170 -62.6155 1 BVI GU065357 " 
Woods Hole, MA J 41.5170 -70.6683 3 BVl GU065358 •, GU065359 a 

Botryllus schlosseri Murray River, PEl I 46.0170 -62.6155 2 BSl GU065351 " 
Woods Hole, MA ] 41.5170 -70.6683 2 BSl GU065352 " 

Woods Hole, MA J 41.2103 -70.6683 4 HQ, HR, HS DQ340222b, DQ340223b, DQ340224b 

Maine, USA K 44.4133 -68.7300 1 HO DQ367525 

North East Atlantic (NEA} 

Botryllus schlosseri Rochelle Harbour, France L 46.1442 1.17027 18 HO DQ340216b 

Grana Harbour, Spain M 43.481 7 8.2600 25 HH, HI, HJ DQ340209b,DQ340210b, DQ340211 b 

Fomelos, Spain N 43 .4497 8.3103 18 HL,HM,HN DQ340213b, DQ340214b, DQ340215b 

Ferro!, Spain 0 43.4792 8.2594 2 BS2 FJ528642\ FJ528643e 

Roscoff, France p 48.7267 3.9864 ST A YI16601d 
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Botryllus schlosseri Estartit Harbour, Spain 

Roses Harbour, Spain 

Canet Harbour, Spain 

B1anes Harbour, Spain 

Cubelles, Spain 

Estaque Harbour, France 

Vilanova, Spain 

Ste. Marie La Mer, France 

Palamos, Spain 

Tossa, SEain 

"This study 
bLopez-Legenti1 et al. (2006) 
0Stach and Tuberville (2002) 
dJohnson et al. (unpublished) 
•Perez-Portela et al. (2009) 

Q 

R 

s 
T 

u 
v 
w 
X 
y 

z 

Mediterranean {MED} 

42.0542 3.2044 

42.2550 3.179722 

42.7042 3.0350 

41.6750 2.7972 

41.1981 1.6661 

43 .3603 5.3133 

41.2103 1.7244 

42.7233 3.0392 

41.8547 3.1433 

41.7214 2.9403 

16 HA DQ340205b 

11 HA,HE, HF DQ340205b, DQ340206b, DQ340207b 

15 HA, HF, HG DQ340205b,DQ340207b, DQ340208b 

13 HA, HJ DQ340205b, DQ3402ll b 

14 HA, HK DQ340205b, DQ340212b 

26 HA,HP DQ340205b, DQ34021 7 b 

9 HT, HU DQ3402 18b, DQ340219b 

I HV DQ34022lb 

2 HW DQ340220b 

HA FJ52864le 
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Table 3 .2. Genetic diversity measures for the four asci dian species studied, indicating 
population, population sample size (n), number of haplotypes (Nh), number of 
polymorphic sites (ps), mean haplotype diversity (h) (standard deviation) and mean 
nucleotide diversity (p) (standard deviation). When the number of haplotypes = 1, ps, h 
and p = 0 by definition. NWA includes samples from Woods Hole, Massachusetts and 
Prince Edward Island (see Table 3.1). 

Species Population n Nh ps " p 

Botryl/us schlosseri Newfoundland 4 3 29 0.8330 (0.2224) 0.0302 (0.0205) 
NWA 4 0 

Botrylloides violaceus 
Newfoundland 3 0 
NWA 4 0 

Halocynthia pyriformis Newfoundland 5 2 2 0.4000(0.2373) 0.0012 (0.0012) 

Eo/tenia echinata Newfoundland 3 2 0.6667(0.3143) 0.0010 (0.0013) 
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Table 3.3. Sequence difference table(%) among the four ascidian species studied. 
Haplotype codes are cross-referenced in Table 3.1. 

Botrylloides violaceus 
Botryllus schlosseri 
Halocynthia pyriformis 
Eo/tenia echinata 

Eotrylloides 
violaceus 
0 (1 Haplotype) 

Botryllus 
schlosseri 

17.7-29.5 
0.2-15.6 

Halocynthia 
PYriformis 

25.6-25.8 
23 .7-25.8 

<I 

Eo/tenia 
echinata 

23.6-23.7 
20.6-25.2 
22.7-25.1 

<I 
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Figure 3.1. Map of the Northwestern Atlantic indicating sample locations of Botryllus 
schlosseri (map courtesy ofD. Deibel). 
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Figure 3.2. Map of the Northeastern Atlantic and the Mediterranean Sea indicating 
sample locations from GenBank of Botryllus schlosseri. (Johnson et al. (unpublished); 
Stach and Tuberville 2002; Lopez-Legentil et al. 2006; Perez-Portela et al. 2009) (map 
courtesy of D. Deibel). 
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Legend 

Red= Newfoundland 

Green= Northwest Atlantic (NWA) 

Blue= Northeast Atlantic (NEA) 

Purple = Mediterranean (MED) 
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Figure 3.3. Neighbour-Joining tree for Botryllus schlosseri haplotypes using Tajima-Nei 
distance. Numbers at each branch indicates the percentage oftimes a node was supported 
in 1000 bootstrap replications. The scale bar indicates a distance equal to 0.005 
nucleotide differences per site, equivalent to 2.6 nucleotide differences per partial 
sequence of 524 bp (i.e. 0.005 * 524). The haplotype codes correspond to the codes and 
locations from Table 3.1 and Fig. 3.2. The haplotypes from each region Newfoundland, 
the Northwestern Atlantic, the Northeastern Atlantic and the Mediterranean are color 
coded in the figure. 
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CHAPTER 4: SUMMARY 

This thesis documents the first assessment of the presence of non-indigenous and 

potentially invasive species in high risk ports in Newfoundland. Ascidian tunicates have 

the potential to become invasive and spread to new areas via shipping vectors. Recently 

two non-indigenous ascidian species (Botrylloides violaceus and Botryllus schlosseri) 

have been discovered in several Newfoundland harbours. Botryllus schlosseri was found 

during a parallel rapid assessment survey in combination with my thesis research 

(Chapter 2), and B. violaceus was found during a subsequent survey in Belleoram 

harbour (Mckenzie and Deibel, unpubl.) . Thus, invasive ascidians in Newfoundland will 

need to be managed in the future. In fact , the Government of Canada (DFO) has already 

conducted two extermination efforts at the wharf in Belleoram (2008 and 2009). 

This study included the determination ofthe species composition of the benthic 

communities on wharf pilings in four Newfoundland harbours using several sampling 

methods (Chapter 2). This research can be used as baseline data for the determination of 

future invasions. The composition of these megabenthic communities was dominated 

mostly by Mytilus spp. This finding was expected as mussels are known to be 

competitive dominants and abundant members of fouling communities world wide 

(Mathieson et al. 1991 ; Greene and Grizzle 2007). However, the harbours varied in the 

diversity and abundance of organisms present. Argentia had highest species diversity, 

while Botwood was the least diverse but had the highest abundance of organisms 

(primarily Mytilus spp.) . 

The sampling methods varied in effectiveness of assessing fouling communities 
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(Chapter 2). Although B. schlosseri was found in Argentia, it was not detected with any 

of the sampling methods used. Therefore, it is important to continue to combine these 

sampling protocols with other protocols such the Rapid Assessment Surveys by SCUBA 

divers. 

mtDNA partial COl sequence data was repmted for two non-indigenous and two 

indigenous ascidian species in Newfoundland (Chapter 3). This anlysis was undertaken to 

determine whether these sequences can be used to distinguish among the species of 

Newfoundland ascidians. This information is required for future use of genetic markers 

for molecular identification of eggs and larvae of invasive Newfoundland ascidians. I 

also used the COl sequences to compare B. schlosseri Newfoundland haplotypes to 

haplotypes from GenBank from North America, the eastern Atlantic Ocean, and the 

Mediterranean Sea to confirm our taxonomic identification of the Newfoundland 

specimens and to construct a genealogy to develop hypotheses concerning possible 

source populations. This genealogy is required if vectors of invasion are to be identified 

and managed in the future. 

Overall, haplotype diversity was very low for three of the four species, but much 

higher for the potentially invasive Botryllus schlosseri. There was less within-species 

variation in the cor sequence as opposed to between-species variation, which is 

necessary for the development of DNA-based tools for species identification of eggs and 

larvae for early detection of the presence of invaders. B. schlosseri was the only species 

for which sufficient COl data exists in GenBank to attempt a genealogical assessment of 

potential source populations of Newfoundland specimens. Nearest neighbour analysis of 

genetic distance indicated that there may be three source populations seeding various 
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harbours in Placentia Bay, including from elsewhere in the Northwestern Atlantic Ocean 

(i.e. Prince Edward Island and Woods Hole, Massachusetts), as well as the Northeastern 

Atlantic Ocean (i.e. , the Bay of Biscay), and the Mediterranean Sea (i.e., the Gulf of 

Valencia and the Gulf of Lion). There is sufficient evidence from this thesis to make 

inference about the potential source populations of Botryllus schlosseri in Newfoundland. 

In the future, it will be important to continue surveys in Newfoundland harbours. 

These surveys should include more sites within and around Placentia Bay and Belleoram 

harbour, in order to determine if Botryllus schlosseri and Botrylloides violaceus 

populations are spreading to smaller bays and inlets via small boat traffic in the area. In 

conjunction with this monitoring, further samples should be collected for genetic 

analysis, in order to make a more complete assessment of within population variability in 

Newfoundland harbours and to narrow down the list of potential source populations. This 

strategy can help to implement management strategies in Newfoundland in order to 

prevent the spread of these invasive ascidians. 
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Appendices 
Appendix 1. Pairwise sequence difference(%) among all the haplotypes of four ascidian species. 
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