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Abstract 

Thrbo codes have been widely studied since they were first proposed in 1993 by Berrou, 

Glavieux, and Thitimajshima in "Near Shannon Limit error-correcting coding and decoding: 

Turbo-codes" [1]. They have the advantage of providing a low bit error rate (BER) in decod­

ing, and outperform linear block and convolutional codes in low signal-to-noise-ratio (S R) 

environments. The decoding performance of turbo codes can be very close to the Shan­

non Limit, about 0. 7 decibel (dB). It is determined by the architectures of the constituent 

encoders and interleaver, but is bounded in high SNRs by an error floor. Thrbo codes 

are widely used in communications. We explore the codeword weight spectrum properties 

that contribute to their excellent performance. Furthermore, the decoding performance is 

analyzed and compared with the free distance asymptotic performance. A 16-state turbo 

decoder is implemented using VHSIC Hardware Description Language (VHDL) and then 

mapped onto a field-programmable gate array (FPGA) board. The hardware implemen­

tations are compared with the software simulations to verify the decoding cotT ctn ss. A 

pipelined architecture is then implemented which significantly reduces the decoding latency. 

Keywords: turbo codes, decoding performance, Monte Carlo simulations, FPGA im­

plementation 
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Chapter 1 

Introduction 

1.1 Background 

Thrbo codes are high performance coding schemes in the error control coding that is 

in the field of information theory. They were first introduced by Berrou, Glavieux and 

Thitimajshima in 1993, "Near Shannon Limit error-correcting coding and decoding: Turbo­

codes", published in the Proceedings of IEEE International Communications Conference 

[1]. Thrbo coding achieved immediate worldwide attention. The importance of turbo 

codes is the fact that they enable reliable communications with power efficiencies close 

to the theoretical limit established by Claude Shannon [2]. They represent effective error 

control coding schemes in error-control coding theory. Since 1993, a large number of paper 

have been published about the performance of turbo codes. It is found that the excellent 

performance of turbo codes is determined by its encoder architectur , especially the em­

ployment of the interleavers, recursive systematic convolutional (RSC) ncoders, and th 

iterative decoding process. Consequently, the design methodology is widely studied. 

The advantag of turbo codes is that they outperform other coding schemes, such as 

linear block codes and convolutional codes, in decoding the corrupted signals with a very 

low bit error rate in a strong noise environment. The outstanding error correction d coding 
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ability of turbo codes is achieved at the cost of the increased computational complexity. 

That is to say, turbo codes require more computation and longer decoding latency than 

traditional linear and convolutional codes. 

In 1948, Shannon proved that every noisy channel has a maximum rate at which infor­

mation may be transferred through it and that it is possible to design error-correcting codes 

that approach this capacity, or Shannon limit, provided that the codes may be unbounded 

in length. For the last six decades, coding theorists have been looking for practical codes 

capable of closely approaching the Shannon limit. 

For more than four decades, National Aeronautics and Space Administration (NASA) 

and the Jet Propulsion Laboratory (JPL) have been sending deep-space probes to explore 

the far reaches of our solar system. Because of the extreme dilution of signal power over 

interplanetary distances, JPL is always looking for codes that approach Shannon limit as 

closely as possible. In late 1950s and early 1960s, the data received from probes were un­

coded. By the late 1960s and early 1970s, missions were using codes, such as Reed-Muller 

and long constraint length convolutional codes. In 1977, the Voyager was launched with an 

optimized convolutional code and a suboptimal Viterbi decoder. This convolutional code 

was concatenated with a (255,223) Reed-Solomon code. In 1993, turbo codes were proposed 

by Berrou, Glavieux and Thitimajshima. The key insights were the introduction of an 

interleaver between the two convolutional codes and the iterative suboptimal decoding. 

Before Cassini launched in 1996, JPL had already begun the standardization of turbo 

codes for future space missions. In 1998, MacKay visited JPL to present a talk on low 

density parity check (LDPC) codes. It was shown that the LDPC codes introduced from 

Gallager's thesis [3] in 1963, can be designed to perform as well as, or better than turbo 

codes. 

The history of error correction codes illustrates that turbo codes are one of the most 

effective channel coding schemes in the world. The renaissance of LDPC codes did not 

mark the end of turbo codes, however, LDPC codes have performance and complexity 

advantages over turbo codes at high code rates, but turbo codes are currently still the best 
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solutions for the lower code rates. 

For a long time, the hardware complexity has hampered turbo codes' wide application in 

communication systems. However, recent developments in very large scale integrated-circuit 

(VLSI) design enables the widespread use of the turbo codes. ow turbo codes are widely 

applied in communications, especially in code division multiple access (CDMA) system, 

digital video broadcasting (DVB) and low space communications. For example, in the third 

Generation Partnership Project turbo codes have been one of the standard error control 

coding techniques and an 8-state turbo encoder is applied, as defin din [4]. Another fa t 

is that they are employed in Consultative Committee for Space Data Systems (CCSDS). 

After the first discussions in the May, 1996, at the Meeting of the CCSDS, it was decided 

in agreement with ASA and other national space agencies , to includ a set of turbo code 

in a new issue of the CCSDS telemetry channel coding recommendation. In the future 

CCSDS applications, turbo codes will be an add-on option to th recomm ndations without 

modifying the existing coding schemes and will retain compatibility with the CCSDS Packet 

Telemetry recommendation. 

This thesis is divided into five chapters. The first chapter contains the background 

introduction. In the second chapter, the main principles of turbo codes are introduced. 

The structures of both the turbo encoders and the decoders ar xplained. The core algo­

rithm is discussed. A sliding window technique, which is specially designed for hardware 

implementation, is introduced. In the third chapter, the decoding performance of turbo 

codes is investigated in terms of BER. ot only the software simulation results, but also 

the free distance asymptotic performance of turbo codes are provided. In this chapter 

an important issue, the limited number of bits representing a number on hardware imple­

mentations, is considered. In the fourth chapter, the hardware implementation of turbo 

codes is discussed. The design is implemented in both VHDL and FPGA boards. The 

hardware simulations are compared with the software simulations to verify the decoding 

correctness. A pipelining technique, which significantly reduces th decoding latency, is 

introduced in the turbo decoding. In the hardware implementation, the different turbo 
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decoding sch mes are also evaluated by the decoding latency, which is finally represented 

by the number of clock cycles. The implementation of a turbo decoder extending to general 

cases is discussed. Finally, some further improvements are discuss d. In the last chapter, 

a summary of the thesis is given. 

1.2 Motivation for the Research 

First, turbo codes are fascinating because their performanc is so close to the Shannon 

limit. In som best cases for low code rates, th yare only 0.7dB away from the Shannon 

limit, which is not achievable with linear and convolutional codes with such low code 

rates. We are interested in the excellent performance of turbo codes and the factors that 

contribute to this performance, even if the structure of turbo encoders are rather simple. 

We study their architectures, explore the properties, and investigate the performance. We 

want to know, what are the key factors that make the turbo codes outstanding from other 

coding schemes? 

Second, the turbo decoding is of high computational complexity. The software impl -

mentation is actually an idealized model, however, it is the first step to deeply understand 

the turbo codes. Furthermore, we attempt to develop a turbo decoder in a hardware device, 

to implement its complex algorithm and iterative decoding. This implementation can b 

regarded as a real application. It will take us to focus on more considerations of hardware 

beyond modeling in mathematics. It is critical that we meet the requirements of decoding 

correctness, decoding latency, and hardware complexity, as well as to look for an effective 

tradeoff among these requirements. 

Third, Xilinx FPGA platforms are popularly employed in hardware design. One of its 

evaluation platforms in university programs, XUPV5-LX110T FPGA board, seems a good 

choice to us. We attempt to implement a turbo decoder on this board, make efforts to 

improve the decoding performance in latency and hardware complexity, and then extend 
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the original implementation to more general cases. 
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Chapter 2 

Principles of Turbo Codes 

In a communication link, the turbo encod r i employed to convert each information bit 

to a short message, called a symbol. Th symbols are transmitted through a channel eith r 

a wired or wir less channel. The symbol are corrupted by noise when th y travel through 

the channel. At the end of the channel, the received signals are f d into the turbo decoder. 

The turbo d cod r d coder implem nts an optimal or sub-optimal algorithm to decod 

the signals in an iterative way. Finally, the receiver makes a hard d cision to judge what 

is transmitted. In this chapter, the archit ctures and mechanism of turbo encoders and 

decoders ar introduc d. The compon nts are discussed in detail to explore the prop rtie 

that mak significant contributions to the decoding performanc . 

2.1 The Architecture of Turbo Encoders 

2.1.1 RSC Encoders and Turbo Encoders 

The turbo encoder consists of RSC encoders and interleavers, as hown in Figure 2.1 [5]. 

This turbo encoder is formed by a parallel concatenation of two con tituent RSC encod rs 

separated by an int rleaver, and thi is r £ rred to as a parallel concatenated convolutional 
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code (PCCC). 

In Figure 2. 1, a ode rate 1/3 4-state turbo encoder blo k diagram is shown. The 

dashed box represents an RSC encoder, which is developed from the convolutional encoders 

by feeding back one of its two outputs to th input. Two RSC n oders are conn ct d 

in parallel with an interleaver in the middle, denoted by I . These two constituent RS 

encoders are identical. They could, however, be different for more complex turbo code . 

For the RSC ncod r in the dashed box, the memory order M, whi h is also called m mory 

length and defined as the number of shift registers denoted by D , is 2. The constraint 

length, v = M + 1, equals 3. The interleaver I is used to permute th source bit denot d 

by u; the permuted s quence is applied at th input of the second R encoder. For thi 

encoder, every information bit u is encoded to a short message of 3 bits, v0 , v1 , and v2 , 

which is call d a symbol. The cod rate is defined as the ratio of th input bits to th 

output bits. Obviously, the code rate is 1/ 3. 

u ~------------------------ vo 

VI 
l...-------------~ + f----'--7 

V2 
L__------------?<+r--____,.. 

Figure 2.1: A rat 1/3 turbo encoder 

The information bit u is also consid r d as a bit sequence, because there is alway mor 

than one information bit and the information bits arrive succ iv ly. So are the output 

bits v0 , v1 , and v2 . It can be seen that th ev ry output sequen e is a linear combination 
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of the information sequence. The relationship between the information sequence u and th 

output sequences v0v1 v2 can be described by the generator matrix. In a turbo encoder, the 

two constituent RSC encoders are generally same. Therefore, a turbo encoder is described 

by either of the RSC encoders, which is expressed by a generator matrix. The generator 

matrix can be represented as G(D ) = [1 91(D)j90 (D)], with 9o(D) and 91 (D) as the 

feedback and the forward polynomials, respectively. These polynomials can be repres nted 

in a binary or octal format. For example, for the encoder in Figure 2.1, 9o(D ) = 1+D+D2
, 

can be denoted in octal by 7 ( 111) , and 91 (D) = 1 + D2
, can also be denoted by 5 ( 101). 

So, for the rate ~ component RSC code in this turbo encoder , the generator matrix is 

G(D) = [1 (1 + D2 )/(1 + D + D2
)]. 

RSC encoders are derived from convolutional encoders. Some properties of RSC en­

coders are inherited from the parent convolutional encoders. For example, the codeword 

weight distribution and spectrum. An RSC encoder, denoted by G1 (D) = [1 91 (D) / 9o(D)], 

can be derived from its original convolutional encoder, denoted by G0 (D) = [90 (D) 91(D)], 

by feeding back its output 9o(D) to its input. Any information sequence which finally ter­

minates this RSC encoder into all-zero state SO can be represented by p(D)90 (D ), with 

p(D) as a polynomial. This information sequence generates the codeword 

[p(D)90 (D) p(D)91(D)] by this RSC encoder. Obviously this codeword can also be gener­

ated by the sequence p(D) when the original convolutional encoder G0 (D) = [90 (D) 91 (D)] 

is used. Therefore, all codewords p(D)90 (D) and p(D)91 (D) generated by an RSC encoder 

with the input p(D)90 (D) can be obtained by the corresponding convolutional encoder 

with the input p(D ), and vice versa. Consequently, the RSC encoder and its original 

convolutional encoder have a common codeword weight distribution and spectrum [5]. 

Now an example is used to illustrate the relationship between convolutional encoders 

and RSC encoders. The RSC encoder G1(D) = [1 (1 + D 2)/(1 + D + D 2
)] in Figure 

2.1 can be derived from the convolutional encoder G0 (D) = [(1 + D + D2
) (1 + D 2

)] . 

Given p(D) = 1, p(D) followed by two '0' terminates the convolutional encoder G0 (D) into 

all-zero state. The two output sequences are "111" and "101" , respectively. On the other 
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hand, p(D)g0 (D) is equal to g0 (D) , the sequence "111" . If this sequence is fed into the 

RSC encoder G1(D), the RSC encoder is also terminated into all-zero state and the output 

sequences are "111" and "101", the same as what we got from the convolutional encoder 

G0 (D). Therefore, we always get same output sequences whether p(D) is fed into the 

convolutional encoder G0 (D) or p(D)g0 (D) is fed into the RSC encoder G1 (D). Therefore, 

this convolutional encoder and the derived RSC encoder have the same codeword weight 

distribution. 

Another component in a turbo encoder is the interleaver. The interleaver is viewed as 

a function of permutation. If a sequence is interleaved, a new sequence is obtained. For 

example, if "1234" is interleaved, then "2314" may be generated. In this new sequence, all 

elements can be found in the original sequence, but they are in the different positions. The 

discussion of the interleaver can be found in the section of turbo decoder architecture. 

2.1.2 The AWGN Channel Simulation 

The Gaussian random process plays an important role in communication systems. The 

fundamental reason for its importance is that thermal noise in electronics devices, which 

is produced by random movement of the electrons due to thermal agitation, can be closely 

modeled by a Gaussian random process. The reason for the Gaussian behavior of the 

thermal noise is due to the fact that the current int roduced by the movement of electrons 

in an circuit can be regarded as the sum of the small currents of a large number of sources, 

namely individual electrons. It can be assumed that at least a majority of these sources 

behave independently. By applying the central limit theorem, this total current has a 

Gaussian distribution [6]. 

The channel model in our design is the additive white Gaussian noise (AWGN) model. 

In this channel, the noise is regarded as the white Gaussian noise, which means the same 

noise power in all frequencies. In order to simulate this channel, we start from a zero­

mean Gaussian noise variable. A zero-mean Gaussian noise variable, denoted as n, can be 
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generated by using: 

n = hcos(21r · u2), (2.1) 

(2.2) 

where u1 and u 2 are uniformly distribution variables between 0 and 1, O" is the standard 

deviation for this Gaussian variable, and h is an intermediate variable. This method is 

called Box-Muller method. For every bit v traveling through the channel, a noise n is 

generated and added to the bit. In the end of the channel, signal r is received as r = v + n. 

Figure 2.2 is used to verify the noise simulation by the Box-Muller method. The left 

histogram illustrates the statistic results by the Box-Muller method, while the right shows 

the noise histogram by the standard MATLAB function. The number of noise samples is 

100,000. It can be seen that the noise distributions in two histograms are close to each 

other. Both histograms have a shape of Gaussian distribution. Therefore, it can be inferred 

that Box-Muller method employed in channel simulations is reasonable and acceptable. 

simulation noise histogram tMTlAB Function randn(l,n) Noise Hislogram 

2.5 

1.5 

0.5 

-2 8 10 
Sample Value Sample Value 

Figure 2.2: oise histogram comparison 

We consider the noise as the one-sided AWGN with the power spectrum density (PSD) 

equal to No. If the noise is AWG with zero mean and one-sided PSD No, then this is 

modeled as a Gaussian random variable with zero mean and variance ~o [2]. Decoding 

algorithms employ the symbol-energy to noise-spectral-density ratio, denoted by ~~, while 
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the performan e curves provide the rror probabilities depending on the bit-energy to noi e­

spectral-density ratio, denoted by ~~, with Es as the symbol energy and Eb as the bit 

energy. For a turbo code Es = Eb x R with R as the code rate. In general Es and Eb ar 
' No No ' ' No No 

expressed in d cibels. When the rate is 1/ 3, dB(~~) = dB(~~) + 4. 771 . For a punctur d 

code with a rat of 1/ 2, dB(~~) = dB(~~) + 3.01. 

2.2 The Architecture of Turbo Decoders 

In the classical architecture of a turbo decoder, there ar two blocks of component 

decoders call d Soft-In and Soft-Out (SISO) units [2]. The d coding process is iterative, as 

reliability information for the decoded bit 0' or '1' is exchanged between the two SISO uni ts. 

Here the reliability information is a value giving a hint of bit '0' or '1 '. A large positiv valu 

denotes a large probability of bit '1'. A larg negative value denot a large probability of 

bit '0' . The iterative process stops aft r s v ral iterations, and then the decoded equ nc 

can be generat d by the output(s) of both/eith r SISO in the last it ration. In this section, 

both the iterative d coding proce s and the Maximum A Po teriori Probablity (MAP) 

algorithm are presented. 

2.2.1 The MAP Algorithm 

In turbo code , everal trellis bas d d coding schemes can b u d as core algorithm 

in SISO units in various applications, such as uni-directional soft output Viterbi algorithm 

(SOYA), bi-dir ctional SOYA, and MAP algorithms. Compared with the SOYA algorithm, 

the MAP algorithm achieves better performance at the cost of high r computational com-

plexity [2]. 

In our research, we study the MAP algorithm which is also call d the BCJR algorithm 

named aft r its founders Bahl, Cocke Jelinek, and Raviv who discovered it in 1974. The 

MAP algorithm minimizes the BER instead of the word error rate (WER) [2]. Minimizing 
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the BER is practically equivalent to minimizing the probability of P( ue -=/= uel r) , which is 

the probability, based on the received sequence r , that the decoded bit of ue is not equal 

to the transmitted information bit ue at bit f., with f. as the bit index, f.= 0, 1, . .. , k- 1, 

and k as the sequence size. We also refer to the decoding for the bit f. as the decoding at 

stage f.. 

In the MAP algorithm, the A Posteriori Probability Likelihood values (APP 1-values) 

are used for hard-estimation. To obtain APP 1-values, first , the branch metrics for each 

stage can be calculated by [2] 

!e(s' , s) = p(ue)p(relve) = p(ue)( J ENs )t exp{- NEs lire- vell 2
} , (2.3) 

7r . 0 0 

where f. is the stage number, re is the vector of received values at stage f., ve is the corre-

sponding codeword transmitted at stage f., s' is the encoder state at stage f., sis the encoder 

state at stage f.+ 1, tis the length of the vector re and ve, and p() is the probability density 

function. This equation can be viewed as computing a probability of a Gaussian variable 

with multiple dimensions, while in each dimension the noise conforms to an independent 

and identical Gaussian distribution. From this equation it can be seen that the MAP algo-

rithm is of high complexity because of exponential operations. However, the computational 

complexity of !e(s', s) can be reduced in the log-domain, thus (2.3) becomes [2], 

!e(s', s) = ~ueLa(ue) + ~c(re • ve), (2.4) 

where La(ue) is the a priori probability of a information bit ue, Lc = ~: is the channel reli­

ability factor influenced by the symbol-energy to noise-spectral-density ratio in the channel, 

and "• " denotes the inner product of two vectors. If binary phase shift keying (BPSK) 

modulation is applied, the information bit ue is always + 1 or -1. If the information bits 

ue = -1 or ue = + 1 are of equal probability, then the a priori probability La( ue) is 0. 

The reliability Lc is regarded as a constant due to the channel property. The vector v1 is 
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actually th codeword, which can be read from the state or trelli diagram of the encoder, 

corresponding to the information bit u1. So in the right side of thi quation , only rec iv d 

signals re are affected by the signal transmi sion through the chann l, while other variable 

are pre-determined. For each stage, there are 2(M+l) branches, with M as the memory 

length of the turbo encoder. The calculation of branch metrics should be completed befor 

starting to calculate other metrics. 

Second, we calculate the forward metrics ae(s') and the backward metrics f3;( ') by 

using the branch m tries 'Ye(s' , s) . The calculation for both m tries is similar. The only 

difference between them is that the forward metrics are calculated from the first stage of 

the block, while the calculating of backward metrics starts from the last tage. The forward 

metrics a; ( ') and the backward metrics f3e ( s') are obtained by u ing [2] 

ae+1 (s) = max:'eo)'Ye (s' , s) + a;(s')], (2.5) 

and 

(2.6) 

where s' E ae d notes the branch set at stage e, in which any branch has a starting stat 

of s'. ote that there is an approximation applied to these equations [2]. It now b com s 

In (2.7), it can be seen that the computational complexity is still high because of th 

exponential op rations on the right sid . Furth r approximation can b applied to simplify 

the computation by replacing the s cond item on the rightmost side. For exampl , using 

a linear expr ssion in segments to replace ln(). However, the simplest way is to ignore th 

item ln() as follows: 

(2. ) 
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Although this simplification brings some computational errors, it significantly reduces 

the computational complexity. With this simplification, the calculations of forward and 

backward metrics include only additions and comparisons, which are convenient especially 

in the hardware implementation. If we employ Equation 2.7 in all max*() functions, the 

algorithm is called the LOG-MAP algorithm. If we further employ Equation 2.8, it is 

called the MAX-LOG-MAP algorithm. For each stage, there are 2M forward and backward 

metrics, respectively. 

When the difference between x 1 and x2 is 0.1 , ln(1 + e-lx1 -x2 1) = 0.64. In this case, 

computational errors may occur. When the difference between x 1 and x2 is larger than 6, 

the item ln(1 + e-lx 1-x2 1) is less than 0.0024756. In practice cases, the difference between 

metrics is mostly in magnitude of 10- 1 at the very beginning, and becomes larger in the 

iterative decoding. Therefore, the approximation in Equation 2.8 brings the decoding 

performance different. There is a coding gain of 0.3 r-..J 0.5dB if the LOG-MAP algorithm 

is employed instead of the MAX-LOG-MAP. However, when the SNR is larg r than 1.5dB, 

simulations show that the LOG-MAP and MAX-LOG-MAP algorithms generally make no 

difference in decoding performance in terms of BER. 

Finally, we can obtain the APP L-value and/or extrinsic probability by using the metrics 

ae(s') in (2.5), f3;(s') in (2.6) and re(s', s) in (2.4). 

L(ue) =max*( I ) " +[ai(s')+r[(s',s)+(3[+1(s)]-max(* I )E"- [a;(s')+ r[(s',s)+f3e+1(s)], 
s ,s EL.Jl s ,s L.Jt 

(2.9) 

where L:i and L:e denote the positive branch set and the negative branch set in stage f, 

respectively. Since the computation is in the log domain, the APP L-values are called log 

likelihood ratio (LLR) values as well. For each stage, there is only one APP L-value used 

as reliability information. From (2.9) it can be seen that the requirement to calculate the 

APP L-value is the availabilities of the branch, forward , and backward metric . 
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2.2.2 Iterative Decoding 

Figure 2.3 shows the iterative turbo d coder architecture based on the MAP, the LOG­

MAP, the MAX-LOG-MAP algorithms, with I as the interleavers, DI as the corresponding 

deinterleaver , La(u) as a posteriori L-valu Le(u) as the extrin ic probability and d a 

the decoded sequence [5]. The main components of the decod r ar interleavers, d int r­

leavers and two SISO units. In each SISO unit, the MAP algorithm or its simplification 

previously introduced is employed. The interleavers have the function of permutation , and 

the deinterl avers have the inverse permutation functions. 

,-------------~DI ~--------------~ 

MAP Lt(u) 
Dtcodu- 1 f--------=....:.--?1 
(SISO 1) 

1--------71 Dtcodu- 2 
:.::r2 ________________________ ~ (SISO 2) 

Figure 2.3: An iterative turbo d coder with the MAP algorithm 

In the iterativ d coding, Le(u) values which are referred to as the extrinsic proba­

bilities, from the first component decod r are used as the a priori probabilities La(u) for 

the second decoder when computing the branch metrics, and Le( u) valu s from the s cond 

decoder are used as La ( u) for the first d cod r in the next iteration. The extrinsic proba­

bilities Le(u) do not d pend on the information bits ue and the a priori probabilities La(u) , 

and results from a posteriori L-values La(u) by subtracting all it m that are relat d to 
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the information bits u and the a priori probability La(u) . From (2.4), 

(2.10) 

where ue is th information bit and Pe i the parity bit at stage e, and rue and rPt are th 

received signal corre ponding to these bit [2]. In this equation, the first and second term 

on the right side, which contain ue and/ or La( ue) should be exclud d when computing the 

extrinsic probability. Therefore, 

Le(ue) = max(s' ,s)eL:1 [af(s')+ ~c ·pe-rpe+f3e+r (s) ] -max(s's)El.::~ [a£(s')+ ~c ·Pe ·rpe+f3e+r ( )], 

(2.11) 

where al( s' ) and f3e+ r ( ) are the forward metric at stage e and backward metric at tag 

e + 1, resp ctively [2]. 

In general, the information bits of "0" or "1" are symmetric, .g. , th transmitter sends 

bit ' 0" and "1" with an equal probability. Therefore, in th b ginning of the iterative 

decoding, the La( ue) that are used to calculate the branch metrics in Equation 2.4 ar 

initialized to 0. In the iterative decoding, th extrinsic probabilitie Le(u) are calculat d 

instead of the APP L-values L(u) in the MAP / LOG-MAP / MAX-LOG-MAP algorithm. 

The extrinsic probabilities Le(u) from one SISO unit are always us d the a priori proba­

bilities La( u) to calculate the branch metrics in the next SISO uni t. Aft r vera! iterations, 

the decoding process stops. In the last half iteration, the APP L-values in Equation 2.9 

are released instead of the extrinsic probabilities Le(u) . These APP L-valu s are finally 

applied to determine the hard estimation. If the sign of an APP L-valu is positiv , then 

this bit is d cod d as "1", else it is decoded as "0". 
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2.2.3 Interleaver D esign 

Interleaving i a practical technique to enhance the error corT cting capability of itera­

tive coding. The main function of the interleaver is to deliberately permute the sequence 

of bits in a block, so that successive error in communications can b distributed over a 

wide range by an interleaver. Inserting an interleaver between th chann 1 encoder and the 

channel is an effective method to cope with burst errors [7]. 

There are four main types of interleavers: block interleavers, convolutional interleav rs, 

random interleavers and code matched interleavers. The simplest ar the block inter! av r . 

Figure 2.4 hows the structure of block interleavers. A block inter! aver formats the input 

sequence in a matrix of m rows and n columns, a ize of m x n. The input equence i 

written row by row and read out column by column. Its function i : 

1r(i) = [(i- 1) mod n] x m + l(i- 1)/nJ + 1, i EA. (2. 12) 

1 ~·d 

wrilc n+l o+2 2n 1 
mnJWS 

(m-l)a+l (m-l)n+2 ... mn 1 
~ a columns ----J 

Figure 2.4: The structure of a block interl av r 

The introduction of convolutional interleavers and code matched interleavers can b 

found in [5]. Another frequently used interleaver in turbo codes is the random interleaver. 

In general, th random interleavers outperform the block interleav r du to their constriant 

which helps to eliminate the burst error . 

For exampl , the spread-random (S-random) interleaver proposed by Divsalar and 
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Pollara in [8], is a complex interleaver. The S-random interleavers are based on the random 

generation of k integers from 1 to k with an S-constraint, where Sis defined as the minimum 

interleaving distance. Some S-random interleaver is characterized by two parameters S1 

and S2 , with S1 as the spread and S2 as the minimum interleaving distance. Each randomly 

selected integer is compared with S1 previously selected integers. If the absolute value of 

the difference between the currently selected integer and any of the S1 previous selected 

integers is smaller than S2 , then the currently selected integer is rejected, or it is accepted. 

It can be described as 

(2.13) 

whenever 

(2.14) 

where i 1 and i2 are the position indexes, A is an index set containing from 1 to k, and 1r(i) 

is the interleaver function . 

In the algorithm to construct such an S-random interleaver, there is no guarantee that 

the process will finish successfully [9] due to the randomness. Furthermore, the search 

time for the algorithm become prohibitively large for large S1 and S2 . A good trade-off 

between interleaver performance and search time is obtained for sl) s2 < j¥, with k as 

the interleaver size. 

Another random interleaver is specified in [10]. The algorithm for the interleavers, 

which can be also called permutators, is described in detail for some different block length 

k. Assuming the indeces of bits in the block are denoted by the integers 1, 2, · · · , k, the 

size k is expressed by k = k1k2 . The parameters k1 and k2 are given in Figure 2.5 for a few 

specified block size [10]. 

Next, do the following operations in the loop for s = 1 to k to obtain the permutation 

numbers. In the equation below, l x J denotes the largest integer less than or equal to x, 

and pq is defined as following: 

P1 = 31;p2 = 37;p3 = 43;p4 = 47;ps = 53;p6 = 59;p7 = 61 ;ps = 67 
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ln formalion block lenglh kt k: 
1784 8 223 
3568 8 223 X 2 
7 136 8 223 x4 
8920 8 223 X 5 
16384 (nole) ( nole) 

NOTE - Th~>C p:tr:unotcr, ""' currcndy under ,tudy and 
wall be inconlOmh..·c.l in a bter rc' t~ton. 

Figure 2.5: Parameters k1and k2 for the specified information block lengths 

m (s- 1) mod 2 

-1 
'/, l 2k2 J 

- 1 
J l--J- ik2 

2 
. kl t (19t + 1) mod -

2 

q = t mod 8 + 1 

c (pqj +21m) mod k2 

7r( ) 
kl 

2(t + c2 + 1)- m (2.15) 

where m, i, j, t, q, and c are internal variabl s, is the original ind x of the bits in the blo k 

and 1r( s) is th index of the permutated bits. Besides those typ of interleavers, ther ar 

some more complex and effective interleavers, for example, "dither" int rleavers in [11] . It 

is found that int rl avers influence ignificantly the turbo cod decoding performanc at 

BER. The answer to the observation is that the codeword weight sp trum is changed aft r 

the information bits are interleaved. It is the codeword weight p trum that determin 

the performance bounds at BER. The sp ctrum of the codewords is referred to as th 

Hamming weight distribution of all codewords except the all-z ro codeword. Research 

shows that by using pseudo-random int rl avers the spectrum of the cod words is thinn d 

[2]. This ph nom non is called "spectrum thinning effect" that r f r to the concentration 
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of codeword weight sp ctrum distribution after the information bit are interleaved. In 

spectrum thinning ffect, the number of codewords of moderate Hamming weights incr ases, 

while the number of codewords of low and high weights decreases. Such a "thinning effect" 

results in a reduc d bit error probability. As in a convolutional code th d coding error rat 

is bounded by th codeword distance sp ctrum and the basic component RSC encoder of a 

turbo code i developed from the convolutional codes, it is not diffi. ult to understand that 

the turbo code p rformance is influenc d by the change of cod word distance spectrum, 

which is caus d by th interleavers. 

A well-d sign d interleaver, e.g., a ps udo-random interleaver, can ignificantly improv 

the decoding performance. Ther for , the design of an effective int rleaver is one of the 

most important ways to improve the d coding performance. In the turbo decoder, th ar­

chitecture of d interleaver is fully d termined by the function of th int rl aver. As a result 

of the inter! aving/deinterleaving operations, burst errors are spread out in time so that 

the errors in various positions are independently distributed. After sel cting an interleav r 

type the size of the interleaver is the most significant parameter w n d to consid r. In 

general a larger size of interleaver often provides a better d coding performance. In real 

applications, the interleaver size is much larg r than the encoder m mory length M. For 

example, in th 4-state encoder the memory length is 2, while the interl aver size can b 

128, 512, 1024, 4096, 65536, or even larger. 

The selection of an interleaver i a critical i sue in the turbo code design. To find 

out a turbo code with superior performance, the design may be xtensively investigat d 

in the software simulations. Howev r the architecture of the int rl aver has already b n 

determined schematically before th hardware implementation. Whatever an interleav r 

is, it is view d as a mapping function to permute data in a long sequence. It can b 

implemented by a look-up table. This look-up table may only provi le mapping addre ses 

for a memory blo k shared by an interleav r and its corresponding d interleaver. The size 

of this look-up table generally does not dep nd on the type of the interleaver. In hardwar 

implementation , w are not seeking for a turbo code with the best performance in term of 
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BER, but implementing a fully investigated design. However, the look-up tables for both 

the interleavers and the 'Ifellis of the constituent RSC encod rs are replac able. Thus, the 

hardware implementation is more flexible. For simplicity, block interleavers are employed. 

If the block size is an even number, a look-up table is omitted. The address mapping for 

the interleavejdeinterleaver is realized by only changing the low bits with the high bits in 

addresses. For example, if an block interleaver 8 x 8 is considered, the data addresses may 

be represented in 6 bits, b5b4b3b2b1b0 . All data can be simply relocated in the deinterleavers 

as b2b1bob5b4b3. 

2. 2 .4 Sliding Window Technique 

In the introduction of the MAP algorithm, it can be seen that the calculation of forward 

metrics starts form the first stage of a block, while the calculation of backward m tric 

starts form the last stage of a block. It means the minimum length of decoding is the 

length of a block when applying the MAP algorithm. In general, this length is the size 

of the interleaverjdeinterleaver. In Figure 2.3, it can be seen that a full block has be n 

decoded by the MAP algorithm in one SISO unit before it is deliver d to the next SISO 

unit. Therefore, in the iterative decoding process, the minimum requirement to decode the 

signals successively is the requirement to decoding a block of interleaver/ deinterleaver size. 

Sliding window techniques were discussed in [12], [13], [14], and [15], especially wh n 

hardware implementation is considered. In general, the size of the interleaver is chosen to 

be large so that a desirable decoding performance can be achieved. However, the larger 

the block is, the more memory we need to store the metrics. A large memory always 

denotes a high hardware complexity. Generally, a large size of block, for example, 1024 

symbols, makes the design infeasible in hardware implementation because of the extreme 

long decoding delay and large memory to store metrics of 1024 stages. In this case, the 

minimum decoding delay for one bit is the decoding time used for a block. The first bit is 

released until the entire block is calculated, due to the backward computation tarting at 
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the last bit in the block. For a turbo code with memory length of 4, there are 32 branch, 16 

forward, and 16 backward metrics in each stage. If each metric occupies 16 bits, then the 

minimum memory for the branch and backward metrics are 1024 x (16 + 16 + 32) x 16 = 

1, 048, 576bits. 

The sliding window technology, as shown in Figure 2.6, is introduced to overcome the 

disadvantages of a long decoding delay and a high hardware complexity. It is suggest d 

that the ent ire symbol block can be divided into many small windows. Two successive 

windows are overlapped. For a window, only the bits corresponding to non-overlapped 

symbols in this window are released, and the overlapped symbols in this window enters 

into the next window. Each t ime only one window is loaded and decoded. So the decoded 

window passes across the block. Since in each window the backward metrics are always 

re-calculated from the last bit, the cost of the sliding window technique is the recalculation 

of backward metrics in the overlapped area in each window. For a block, the length of 

overlapped area is close to the size of the block. 

a block 

window#O 

window#1 

window#2 

window#3 

released 

Figure 2.6: A sliding window technique 

not released 

I 

In general, the size of the window is at least 5 times of constraint length of the encoder 

[5] , which is far smaller than the size of the block, so that the hardware area of the 

decoding algorithm is significantly reduced, and the decoding delay is reduced to the delay 

for decoding a window, not a block. The decoding starts when the symbols of the first 

window are received . Therefore, t he decoding is implementable in hardware. However, 

there is a trade-off. Because the computation of the backward metrics does not start from 
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the last stage of the block, but the last stage of a window, the backward metrics ar not 

perfect and th decoding is not optimal. Thus, there is some decoding degradation when 

sliding window technique is applied. 

2.3 Performance Analysis for Turbo Codes in the AWGN 

Channel 

The structure of the RSC encoders and the interleavers in th turbo ncoders determine 

the decoding performance bound in terms of BER. The decoding performance of a turbo 

code is upper bounded. In the AWG channel, there is an error-floor region that rang 

from moderate to highS Rs, generally tarting from Eb/No = 2 lB. In that region , th 

decoding performance curve of a turbo code becomes flatter , and can be bounded by its 

free distance asymptotic performance. This free distance asymptoti performance provid s 

an effective estimation of decoding performance in moderate and high S Rs. 

2.3.1 Distance Properties of Codewords 

Some of the basic concepts of coding are briefly explained in this section. They are es­

ential and critical in deriving the d coding performance bound of onvolutional and turbo 

codes. Thes concepts are the column distance function (CDF) , the minimum distance 

and the minimum free distance. 

The minimum free distance, denoted by drrcc' is the minimum Hamming distance b -

tween all pairs of complete codewords. ot that a complete codeword is defined as a 

codeword div rging from state SO and merging at SO exactly one . If the code C is lin ar, 

then the minimum free distance equal the minimum Hamming weight among all complet 

23 



codewords, xcluding the all-zero codeword. That is to say, 

min{w(y)IY =I 0} , (2.16) 

where d(y1
, y2

) is the Hamming distanc betwe n the codeword pair y1 and y2
, and w(y) i 

the Hamming weight of codeword y. For a non-catastrophic cod s , the CDF di approach 

the minimum free distance as the length of sequence, denoted by i, increases [16], 

(2.17) 

ate that a catastrophic code is a cod , whose corresponding tate diagram contains a 

circuit in which a nonzero input sequence corresponds to an all-zero output sequence. 

There are om other frequently used cone pts , such as the weight enumerating function 

(WEF), the input-output weight enumerating function (IOWEF), and the conditional weight 

enumerating function (CWEF). The WEF provides a completed cription of the weight 

distribution of all nonzero complete codewords that diverge from and m rge with stat 

SO exactly once. In general, the WEF is expr ssed as A(X) = 2.:: AdXd, with dr.-cc as 
d=drrc 

the minimum free distance and d as the odeword Hamming w ight. For example, th 

WEF A(X) = X 3 + 4X4 + 7X5 denotes that there are on codeword of weight 3, four 

codewords of weight 4, and seven codewords of weight 5. On way to get the WEF i 

to study th stat diagram by finding all the paths that start from SO and end at SO 

exactly once. Another straightforward method to get WEF is to xhau tively count th 

Hamming weights of all possible codewords, especially for sam v ry simple coding sch m 

with limited codewords. The evaluation of WEF for the entire turbo ncoder could be u ed 

to determin th performance bounds. 

The CWEF and the IOWEF can be d rived from the WEF. Th IOWEF A(W,X) 

contains only information about the input and the output weights of a h codeword. It is 
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expressed by 

A(W,X) = L:Aw,dwwxd, (2.18) 
w,d 

where Aw,d represents the number of odewords with weight d and information weight w. 

The relationship between WEF and IOWEF i A(X) = A(W, X)lw=l· The bit WEF B(X) 

can calculated directly from the IOWEF A(W,X) by [2] 

B(X) = ~ 8A(W, X) I 
k aw W = !, (2.19) 

where k denotes the number of information bits. 

2.3.2 Performance Bounds for Convolutional Codes 

In general, the constituent encoder of a turbo encoder are derived from the convolu­

tional encoders. For example, in the turbo ncoder proposed in [1], RSC encoders are us d 

as constituent ncoder . The RSC encoder is constructed from its original convolutional 

encoder by f eding back one of its outputs to its inputs. Thus, the th ori s in convolutional 

codes are th basic tools applied in the analysis of the RSC encod rs, and the investigation 

of the performance bounds of convolutional cod s is the basis for further research in th 

performanc bounds for turbo codes. 

The decoding performance of convolutional codes could be evaluated by a union bound 

P1(E) , which is described as the sum of th rror probabilities of all possible first-error 

event path . ote that a first error event is mad at an arbitrary time unit denoted by t if 

the all-zero path (the correct path) i liminated for the first time at time unit t in favor of 

a competitor (the incorrect path) . The word rror probability caus d by first error events 

PJ(E) < L AdPd (2.20) 
d=drrcc 

where Ad is the number of codewords of weight d. That is, th coefficient of the weight-
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d term in the codeword WEF of the code, and Pd is the word rror probability of th 

first error events of weight d. For a binary symmetric channel (BSC), the bound can b 

simplified when d is odd. The probability of the first error event Pd becomes [2] 

(2.21) 

where p is th bit error probability in the BSC channel. For any convolutional code with 
00 

codeword WEF A(X) = I: AdXd, th upper bound can be expr s ed by 
d= drree 

(2.22) 

For a small p , the event error probability bound can be dominated by its first term, 

that is, the free distance term, 

(2.23) 

If the channel is memoryless, and the transmit ted codeword is assumed to be v = 

( - 1, - 1, .. . , - 1) , and a new variable pis introduced asp= I:t=l re, th n p is a sum of d 

independent Gaussian random variables, ach with mean - 1 and variance .ie~, with r as 

the receiv d symbols; that is, p is a Gaussian random variable with mean -d and variance 

d-ie~ [2]. Thu 

(2.24) 

where Q(x) is th complementary error function. Therefore, for a convolutional code, th 

word error probability is 

(2.25) 
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and the bit error probability is 

(2.26) 

where Ad and Bd are the coefficients of WEF and bit WEF, repectively. 

2.3.3 Free Distance Asymptotic Performance of Thrbo Codes 

Note in t he last section, the union bound P1(E) of the convolutional codes is derived 

from the concepts of the free distance, first-error event, a memoryless channel , and the 

codeword weight spectrum that is represented by WEF. Compared with convolutional 

codes, the turbo codes have similar concepts for their codewords, such as the free dis-

tance, WEF, and so on. Both the convolutional codes and turbo codes can be decoded by 

Viterbi algorithm and the MAP algorithm. The difference between the turbo codes and 

convolutional codes is that in a turbo code the free distance is changed and the codeword 

spectrum is thinned after the information bits are interleaved. The decoding performance 

of a turbo code with low memory length is comparable to that of a convolutional code with 

high memory length. However, they have same concepts to derive the union bound P1(E). 

For a turbo code, the Equation 2.25 could be also applied. This union bound is a tight 

bound , representing the asymptotic performance of turbo codes. In this bound, the first 

term in the summation is the dominant term in most cases. To get the performance bounds 

of a turbo code, all one needs is the free distance dtree, the codeword WEF, A(X) , or th 

bit WEF, B(X). The bit error probability can be approximated by the first term in the 

union bound [17]. 

R ~ NfrceWfrec Q ( d 2REb) 
b N free No ' (2.27) 

where Pb denotes the performance bounds of a turbo code, Nfree denotes the number 

of information sequences causing free-distance codewords, and w free denotes the average 

Hamming weight of the information sequences causing the free distance codewords. This 
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approximation and its associated graph are called free distance asymptote of a turbo cod 

[17]. In general, th Hamming weight of the information sequences causing the free distance 

codewords ar self-terminating weight-2 input sequences. The performance of a turbo code 

is generally dominat d by low-weight codewords, most of which ar most likely contributed 

by self-terminating weight-2 sequences. 

For values of Eb/ No above the SNR at which the code rateR equals the channel cutoff 

rate R0 , that is, for 

Eb 1 ( 1- R ) N 
0 

> Ro = - R ln 2 - 1 , (2.28) 

the first few terms of WEF are necessary for an accurate estimation of performance bound . 

When R = ~ thi cutoff rate Ro is about 2.03 dB. 

2.4 Summary 

In this chapter some principles of turbo codes are explain d. These include the archi­

tecture of encod r , the permuting function of interleavers, the MAP algorithm, and th 

iterative decoding process. Besides the e w also discuss a sliding window technique whi h 

is employed to reduce hardware complexity. Then, theoretical analysis of the decoding 

performance of turbo codes is presented. The relationship between convolutional codes 

and turbo cod s h lps to derive th p rformance bound of turbo codes. Finally, the fre 

distance asymptote of a turbo code is explained. 
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Chapter 3 

Monte Carlo Simulations of Turbo Codes 

3.1 Monte Carlo Methods 

Monte Carlo methods are a class of computational algorithms that rely on repeated ran­

dom sampling to compute their results. Monte Carlo methods are often used in simulating 

physical and mathematical systems. Because of their reliance on repeated computation 

of random or pseudo-random numbers, these methods are most suited to calculation by 

a computer and tend to be used when it is infeasible or impossible to compute an exact 

result with a deterministic algorithm. 

A deterministic algorithm is an algorithm which behaves predictably. Given a particular 

input, it will always produce the same output, and the underlying machine will always pass 

through the same sequence of states. 1\n·bo decoding, including both the iterative decoding 

and the core algorithm, is deterministic. To evaluate the turbo decoding performance, 

especially in terms of BER, we need to estimate the error rate depending on the various 

input patterns, not only a particular input. Here, the randomness in the decoding is 

introduced by the input patterns. 

The randomness of the input patterns is unpredictable and uncontrollable, so that the 

turbo decoding simulations with a particular input pattern are not reliable to be used in 
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a general case. However , Monte Carlo methods provide us a way to estimate a predictable 

and reliable result. In general , the application of Monte Carlo methods need a large amount 

of random numbers, e.g. , a large amount of input patterns. In a turbo decoding simulation , 

we employed a pseudo random generator to produce a large number of information bits. 

A simulation with a pseudo random generator is always repeat able. As long as a random 

seed is provided , all information bits are predetermined even though the number of the 

information bits are huge. Those information bits are used to feed into the turbo encoder. 

Then the codewords travel through the channel and the received signals are decoded. A 

reliable simulation result always depends on this randomness and the large number of 

information bits. 

The usage of Monte Carlo methods spurs the development of pseudo random generators, 

for example, the discovery of Mersenne twister pseudo random generator. The Mersenne 

twister is a pseudo random number generator developed in 1997 by Makoto Matsumoto 

and Takuji Nishimura that is based on a matrix linear recurrence over a finite binary field. 

The Mersenne twister provides for fast generation of very high-quality pseudo random 

numbers, which is designed specifically to rectify the flaws found in older algorithms. Its 

name derives from the fact that the period length of the random number is chosen to be 

a Mersenne prime. In our simulations, the number of information bits is generally 100 

million. This number is very small when it is compared with the long period 219937 - 1 of 

the Mersenne twister generator, so that the advantage of the Mersenne twister generator is 

not fully ut ilized . We tested to use the Mersenne twister pseudo random generator in our 

model, but makes little improvement when compared with other simple random generators. 

Note t hat the Monte Carlo methods are only employed in the software simulations in our 

research , not the hardware implementation. 
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3.2 Performance Investigation of Turbo D ecoders 

3.2.1 D ecoding P erformance of a 16-state Turbo Code 

In 1993, turbo codes were first proposed by Ben·ou et al. In their paper an example 

turbo encoder was illustrated, as shown in Figure 3.1 [1]. This turbo cod is widely studied. 

It is employed as a typical case for us to start the investigation of the turbo codes decoding 

performance. Software simulations on this turbo code provide us a basic knowledge to 

the decoding performance. For example, by selecting different sizes of th interleavers and 

different iteration numbers , the decoding performance varies. 

Figure 3.2 shows a decoding performance curve with error bars at each sample. For 

this turbo code, we mainly examine decoding performance in the range of low SNRs, from 

0 dB to 2.5 dB. The decoding performance is evaluated in terms of BER. In the figure, the 

BER values represents the average BER of a large number of blocks. ote that error bars, 

which represent the standard deviation, in the log domain are asymmetric. The bars of 

a fixed length in different positions in this figure do not mean the same value. The lower 

part of an error bar is always longer than the upper part , but both parts represent a half 

of the standard deviation. 

When Eb/No < 0.5dB, the BER is high and the performan e curve is almost flat. 

In this area, the BER has a magnitude of 10- 1
. Such a high BER makes the de oded 

sequence full of errors, therefore, this area is not desirable working area. When Eb/ No is 

between 0.5dB and 1dB, there is a waterfall region in which the BER drops sharply. In this 

waterfall region, the BER is not low enough. Furthermore, it is unsteady for each block. If 

the block size is 4096, the BER could be 0.1 for one block and 0.001 for another block. This 

unsteadiness can also be inferred form the length of the error bars. For example, at 0.7dB, 

the BER is about 0.01, while the standard deviation is about (0.03- 0.01) x 2 = 0.06. 

Therefore, this area is not the desirable working area due to its unst adin ss. From 1dB to 
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2dB, the BER varies from 10- 4 to 10- 5 . The decoding performance in this area is steady 

and low. There are several bit errors in some block, while in the most blocks there is no 

error bit. That is why the error bars are long. But the standard deviations are not as large 

as we expected. At 2dB, the BER is about 10- 5 , while the standard deviation is about 

2 x (10 - 1) x 10-5 = 1.8 x 10- 5 . This is the desirable working area for turbo codes. Other 

codes, such as linear block codes and convolutional codes, cannot achieve such low BERs 

in this strong noise environment. 

When Eb/ No increases beyond 2dB, the performance curve becomes flatter. It is the 

error floor that prevents BER from falling down sharply after the waterfall region. This 

floor explains the phenomenon of why the performance of turbo codes are poorer than that 

of convolutional codes in very high SNRs, for example, at 20dB. This error floor can be 

approximated by the free distance asymptotic performance. 

u 

vO 

vl 

v 2 

Figure 3.1: A 16-state turbo encoder 
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Figure 3.2: Decoding performance of a turbo ode 

3.2.2 Calculating the Free Distance A symptot ic P erformance 

The performance bounds in Equations 2.25 and 2.26 repres nt th asymptotic perfor­

mance, and the Equation 2.27 is adopt d to calculate the free distance asymptote of a 

turbo code. Five parameters are requir d to d termine the free distance asymptot . Th s 

are N , R , drrcc, Nrrcc and Wrrcc · N r,cc, al o called multiplicity of th information sequences for 

all possibl fr e distance codewords is th number of the information sequences for overall 

free distance codewords. Wrrcc is th averag Hamming weight of th information sequence 

corresponding to free distance codewords. To calculate the fr distance asymptote, th 

most difficult task is to obtain the multiplicity N r,ce and the average information sequen e 

weight w r,cc · 

The information bit sequence is exclusively composed of zero and several non-z ro bit 

sequences if it generates a low weight cod word because the fir t constituent encoder is 

terminated wh n th information bit sequence is encoded. The numb r of bit sequences, 

corresponding to low weight codewords, is assumed to b very small. In general, this 

number is about 2. Therefore, the Hamming weights of the information and the fir t parity 

sequence ar small and not difficult to calculate. However the Hamming weight of th 

second parity quence is more complex to calculate, due to the inter! aving function. The 
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interleaved bit sequence, which is fed into the second constituent encoder, may generate 

the second parity sequence with a large Hamming weight, because the trellis termination 

is not guaranteed. The second parity sequence is completely different from the first parity 

sequence because it represents a completely different path in the trellis diagram. The 

termination of the second constituent encoder is unknown. Practically, it terminates with 

a very small probability. 

When computing the free distance asymptotic performance, the information sequence 

is always assumed to be composed of one or two bit sequences corresponding to low weight 

complete codewords. This assumption is acceptable in most cases, with the reference 

encoders being good examples. This assumption is made due to the fact that we cannot 

search all possible combinations of all available bit sequences corresponding to low weight 

complete codewords. Such a complete search could be prohibitive when the number of bit 

sequences increases , and/or the information sequence is composed of many bit sequences. 

If the total number of candidate bit sequences is B and the number of the candidate bit 

sequences in the information sequence is b, then the maximum searching t imes is Bb. In 

addition, each search requires that we exhaustively consider all possible positions for these 

candidate bit sequences in the information sequence. That is also prohibitive. For example, 

the information sequence is 4096, while there are 3 different candidate bit sequences and 

the length of each candidate bit sequence is only 7. 

The following explains how to obtain Nrrcc X Wrrcc· First, for the constituent encoder of a 

turbo encoder, we collect the bit sequences that generate rate 1/2 low weight codewords by 

this constituent encoder. These bit sequences are viewed as a set of candidate sequences. 

Second, according to the assumption, we choose one or two sequences in this set. Th chosen 

sequences can be either identical or different. Third , we generate the information sequence 

by inserting the chosen sequences into an all-zero sequence. The positions of the chosen 

sequences in the information sequence are arbitrary. Fourth, the information sequence is 

interleaved, and then fed into the second encoder to generate the second parity sequence. 

If the Hamming weight sum of information, first parity, and second parity sequences is 
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equal to the minimum distance, it is added to N rrcc X Wrrcc· If this sum is larger than the 

minimum distance, do not hing and skip to the next step. If this sum is smaller than th 

minimum distance, N rrcc X Wrrcc is initialized to this sum. Fifth , we repeat the third and 

fourth steps to exhaust all positions for the chosen sequences. Finally, we have to repeat 

the second step to exhaust all bit sequences we get in the first step. A general idea of this 

algorit hm can be seen in [18]. However , we have to modify the algorithm in [18] to ensure 

the convergence of the program, by setting a maximum length for paths when searching in 

trellis diagram in the fourt h step. 

We cannot assert that for turbo codes the information sequence is always composed 

of only one or two bit sequences corresponding to complete codewords. That means this 

algorit hm might cause computation errors in computing the free distance asymptote. The 

errors appear because we have not exhausted the case when the information sequence is 

composed of three bit sequences, or more. In Equation 2.26, the terms in the right hand 

side should be considered when calculating the performance bounds, if it is quite close to 

the dominant first term. However , this kind of computation errors are ignored if we only 

compute the free distance asymptotic performance, not the bounds. In our experience, the 

information bit sequences, which correspond to free distance codewords, often contains one 

or two non-zero bit sequences. 

3.2.3 Free Distance A sympt ot ic Performance 

In this section , the decoding performance curves of turbo codes are compared with their 

free distance asymptotic performance. The decoding performance curve is always obtained 

by software simulations, while the free distance asymptotic performance is estimated by 

using Equation 2.27. We expect that the free distance asymptotic performance should be 

close to the decoding performance curve in high S Rs due to the error floor. 

Figure 3.3 shows the decoding performance of Berrou's example. In this turbo code, 

the RSC encoder has t he free distance of 6. The rate 1/3 codewords have a free distance of 
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20. The information bit sequences, which generate codewords of weight 20, are composed 

of 2 weight-2 bit sequences. A computer search provides the total Hamming weight 16340 

in information sequences corresponding to the codewords with an overall Hamming weight 

20. That is to say, Nrrcc x Wrrcc = 16340. The free distance asymptotic performance is 

expressed as: 

pb ~ 16304Q ( 20 2Eb ) . 
4096 3 X No 

(3.1) 

It can be seen that the decoding performance curve is quite close to the free distance 

asymptotic performance after its waterfall region. For example, at 2.5 dB, the difference 

between them is only 10- 6 . That is to say, the decoding performance can be estimated by 

this free distance asymptotic performance at large SNRs. 

10·6~--------~----------~----------~----------~--------~ 
0 0.5 1.5 2 2.5 

Eb/No 

Figure 3.3: Decoding performance and free distance asymptotic performance of the Berrou's exampl 

Figure 3.4 gives another example encoder that is used in [10]. In this turbo code, its 

RSC encoder has the free distance of 7. The rate 1/ 3 codewords have a free distance of 

24. The information bit sequences, which generate codewords of weight 24, are compo ed 

of 2 weight-2 bit sequences, too. As expected , a larger free distance of rate 1/ 3 codewords 

brings a bet ter decoding performance. For example, the BER is about 10- 5 at 1.5dB, while 
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in the Ben·ou's example the BER is about 10- 5 at 2dB. Similarly, by computer search w 

calculate th fre distance asymptotic performance as 

R 16272Q ( 2Eb ) b:=:::-- . 24 . 
4096 3 X N 0 

(3.2) 

It can be conclud d from the figure that the decoding performanc curve is quite clos 

to the asymptotic performance after it waterfall region. We can use this free eli tan 

asymptotic p rformance to estimate the decoding performance for this CCSDS encod r. 

10° .----------.----------.----------.~-------------------. 
-+-Performance curve 

--Free distance asymptote 

10-SL_ ________ _L __________ L_ ________ -L----------~--------~ 

0 0.5 1 1.5 2 2.5 
Eb/No 

Figure 3.4: Decoding performance and free distance asymptotic p rformance of the CCSDS ncod r 

3.3 Limited Bits Representing a Number 

So far , we have discussed the architectur s of both turbo en oders and turbo decoders, 

explored th prop rties that contribut to the decoding performance at a given BER, and 

investigated two turbo codes with their free distance asymptoti performance. Some key 

components , for example, the MAX-LOG-MAP algorithm are explained in detail. W 
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have also investigated the decoding performance of other turbo codes with various Eb/ No. 

Those investigations are carried out by software simulations in Java. 

However, these discussions and considerations are limited because they are not based 

on the hardware implementation, except the sliding window technique. Our goal is to 

implement a turbo decoder in hardware devices, for example, on FPGA boards. We need 

some extra considerations to implement a software model in hardware. In this section, we 

discuss a basic issue in the hardware implementation: the data format used in implementing 

a turbo decoder. 

In software simulation, we employ a data type to store a number for operations. For 

example, if "1" and "2" are store in "double" , then the sum "3" is generated in "double" . 

Those number can be easily converted to "int" without extra considering any change in 

hardware, even if a "double" is stored in 64 bits and an "int" is stored in 32 bits in machines. 

But in hardware implementation, the adders and memory storages need to be updated if 

the data format is changed. For example, a 32-bit register cannot save a value of "double" 

without any loss, while a 64-bit register saves a value of "int" with redundancy. Therefore, 

before we implement the turbo decoder efficiently, we need to consider how many bits we 

should use to represent a number. 

There are two requirements in determining the limited bits to represent a number. 

First, any computation loss due to the limited bits should be controlled in a reasonable 

level. We have to confirm the decoding correctness. Second, the redundancy should be 

as little as possible. The redundancy often means a waste of hardware resources. Then, 

we can establish software model to simulate the hardware implementation. Note that all 

number are represented in 2's complement in many machines. 

Given a limited number of bits representing the numbers in a computation, there are 

computation errors if an overflow happens. To avoid the computation errors, the bits are 

supposed to be enough to accommodate the maximum and the minimum value in decoding. 

In other words, the maximum and the minimum values occurring in the decoding process 

determine necessary bits for numbers. Note that the forward metrics become larger and 
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larger when the number of decoding stages increases because of the max() function in each 

stage. Therefore, metrics quantization is applied to keep the metrics small in each window, 

if the sliding window is applied. That means, the forward metrics are reduced in each 

window by subtracting the minimum values among them, before they are delivered to the 

next window. 

In [19] and [20], theoretical upper bound of those internal metrics dynamic range was 

derived for MAX-LOG-MAP algorithm. It was shown that this range depends on the 

number of states of the constituent encoders, SNR, and the decoding iterations. In [19], 

quantization is executed by subtracting the maximum values among the metrics. In [21], 

it was proposed that at least 9 bits for the integer part if the encoder has 16-states and at 

an S R of 5dB. 

We employ Monte Carlo methods to investigate the limited bits to represent a number 

in turbo decoding. The limited bits are supposed to be two parts, the integer and the 

fraction part, with a decimal point between them. In this section, the notation (x,y) is 

used to represent x integer bits and y fraction bits. In general, x gives the range of the 

numbers and y represents the computing precision. 

3.3.1 Limited Bits Representing a Number without Sliding Window 

In our design, the constituent RSC encoders are derived from the rate 1/2 convolutional 

encoder (37, 21)(8). The notation (37, 21)(8) represents the generator polynomials in octal 

form. The interleaver is a block interleaver, with a block size of 4096. We take a fix d 

iteration number of 10 as the stopping criterion. After 10 iterations, the likelihoods are 

generated, and then we make a hard estimate to determine whether the transmitted bit is 

'0' or '1'. 

We try to find the minimum number of bits for numbers without significant performance 

degradation when the sliding window is not applied. As explained before, the minimum 

number of bits is determined by the maximum value in decoding. 
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Figure 3.5: Decoding Performance with 8 integer bits, without the sliding window 
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Figure 3.6: Decoding Performance with 9 integer bits, without the sliding window 
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Figure 3.5 shows the decoding performance when the number of integer bits is 8. At 

high S Rs, the BER increases slowly. It is explained that the metrics become large when 

the S R increases. These extra bit errors are regarded as significant degradation in per­

formance. So it is not accepted and more integer bits are needed. Figure 3.6 shows the 

decoding performance when the number of integer bits is 9. This figure shows that the 

decoding performance does not degrade compared with reference curve. When the number 

of bits for the fraction part decreases to 1, the BER rate is still low enough. So we accept 

that the minimum bits for integer and fraction part are 9 and 1, respectively. 

3.3.2 Limited Bits Representing a Number with Sliding Window 

In this section we employ a sliding window technique. Compared with the scheme when 

it is not employed, we found that the branch metrics and forward metrics are not changed, 

because we can load the forward metrics of the first stage from the previous window. But 

the backward metrics are changed, because the computation of backward metrics starts 

from the last stage of each window, and without the sliding window the computation of 

backward metrics starts from the last stage of the block. The backward metrics are not 

accumulated. Since the size of a window is far less than the size of a block, obviously it 

becomes smaller, so we do not need to assign extra bits to them. In Equations 2.9 and 

2. 11 , it can be seen that the backward metrics are dominated by the increasing forward 

metrics with the increasing index of decoding stage. So it is not necessary to store the 

APP L-values or extrinsic probabilities with more bits. Finally, we draw a conclusion that 

the minimum number of bits, which we got without the sliding window, does not cause 

significant computation errors when the sliding window is employed. It is (9,1). 

After the number of bits is determined, we investigate the decoding performance with 

different sizes of window, with various number of bits released. In Figures 3.7, 3.8, 3.9, 

3.10 and 3.11 , the number of released bits ranges about from 4 to more than a half of the 

window size. Compared those figures with Figures 3.5 and 3.6, it can be seen that the 
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Figure 3.7: Decoding performance with a 32-bit sliding window, 9 integer bits and 1 fraction bit 

decoding performance when sliding window is not employed is about 0.5 dB better than 

the cases when it is employed, because of the inaccuracy of the backward metrics. 

From these figures , it can be seen that the decoding performance is acceptable, not 

significantly degraded, for different window sizes. In Figure 3.7, the BER is a little bit 

higher if 16 bits are released. In the Figure 3.8 and 3.9, we also find that the BERs become 

a little bit higher when the number of released bits is larger than the half size of the window. 

In Figure 3.10 or 3.11 , the performance curves are almost same with various number of bits 

released. That is to say, when the window size is not large, it suggests that the maximum 

number of bits released should be less than or equal to the half size of the window. When 

the window size increases, for example, to 80 or 128, the safe number of bits released in 

each window can be larger than a half of the window size. 
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Figure 3.8: Decoding performance with a 48-bit sliding window, 9 integer bits and 1 fraction bit 
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Figure 3.9: Decoding performance with a 64-bit sliding window, 9 integer bits and 1 fraction bit 
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Figure 3. 10: Decoding performance with a 80-bit sliding window, 9 integer bits and 1 fraction bit 
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Figure 3.11: Decoding performance with a 128-bit sliding window, 9 integer bits and 1 fraction bit 
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3.4 Summary 

In this chapter, the performance of turbo codes is investigated by using Java simulations. 

First a general performance of a 16-state turbo code is provid d . Then, the free distanc 

asymptote of a turbo code is compar d with its decoding p rformance. It helps us to 

deeply understand error floor phenomenon in a turbo code. A hardware consideration, 

the limited bits r pres nting a numb r, is proposed as a fundam ntal is ue in hardwar 

implementation. This consideration is further investigated by u ing Java simulations. It 

is shown that a d coder using a 32-bit sliding window, 9 integ r bits, and 1 fraction bit 

produces ace ptable performance the 16- tate turbo code. 
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Chapter 4 

Hardware Implementation of a Pipelined 

Turbo Decoder 

In the previous chapter, we inv stigat I the decoding performanc of turbo cod s in 

software simulations. Although the Mont Carlo method employed in software simulation 

provide us d coding performance of turbo codes the design in softwar can b only vi w d 

as a model b caus physical systems are not considered in d tail. Therefore, hardwar 

implementation on FPGA board is necessary to verify the d sign. In this section , w 

will discuss the hardware implementation of a 16-state turbo d cod ron an FPGA board , 

because it g n rally outp rforms a 4 or 8 tates turbo decoder in terms of BER. Thi FPGA 

implementation is characterized by the BER, the number of gates, and the decoding delay. 

We verify th BER by comparing wav forms with the data from simulations. The BER 

is expected to be equal to that in the software model, wh n the output signal waveforms 

from the FPGA board are exactly the sam as what we got from the software simula­

tions. Consequently, we can say the decoding correctness in the FPGA implementation is 

confirmed. The number of gates and th d coding delay for a certain algorithm has nor la­

tionship to oftwar model. They d pend on the hardware design. The gates in circuit ar 

the cost, while the decoding delay repre ents the efficiency. In general, the decoding delay 
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becomes smaller if more gates are employed in the circuit and more processes are computed 

in parallel. Therefore, there is a trade-off between the hardware size and decoding latency, 

the cost and efficiency. 

The hardware implementation is completed step by step. First, the MAX-LOG-MAP 

algorithm is implemented in a Virtex 5 board. The Virtex 5 board provides abundant 

resources, for example, the random access memory RAM blocks. At this stage, hardware 

optimization is not considered yet. The decoding correcting correctness is the most im­

portant issue. The algorithm is not modified in the computational order and the memory 

blocks for metrics are not saved. Second, the MAX-LOG-MAP algorithm implementation, 

which is viewed as an SISO decoder, is developed to a turbo decoder. According to Figure 

2.3, it can be seen that in hardware implementation only one SISO decoder is required due 

to the identical architecture in both SISO decoders. A block of memory is added as an 

interleaver/deinterleaver. A more complex controller is employed to realize the sliding win­

dow technique and the iterative decoding process. Third, this hardware implementation is 

improved. The number of memory blocks are reduced by altering the computational order. 

In the MAX-LOG-MAP algorithm, the various metrics are calculated in a pipelined way 

so that the decoding latency is significantly reduced. Finally, the resources utilization is 

considered. The pipelined turbo decoder is implemented in other cheaper FPGA boards. 

Although the implementation in those boards employs different components, the main 

architectures of the MAX-LOG-MAP algorithm and the turbo decoder are not changed. 

However, the cheaper boards have fewer resources and thus the utilizations of those FPGA 

devices become higher. The FPGA implementation is supposed to be optimized when th 

utilization of on-board components reaches 100%. In this thesis, only th output signals 

and the waveforms from the Virtex 5 board are used in further discussion and analysis. 

The signals and the waveforms from other boards are mostly similar, but not identical. 
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4.1 Xilinx XUPV5-LX110T Evaluation Platform 

The XUPV5-LX110T Evaluation Platform, which includes a Virt x-5 FPGA device, is 

available to ducational institutions through the Xilinx University program. It is a unifi d 

platform for t aching and research in disciplines such as digital d ign, emb dded sy tern 

digital signal processing and communications, networking, video and image processing and 

so on. It features two Xilinx XCF32P platform flash PROMs, Xilinx Syst mACE compact 

flash configuration controller, 10/100/1000 tri-speed Ethernet interfaces , USB host and 

peripheral controllers, stereo AC97 codec, RS-232 port, 16x2 character LCD, and many 

other I/0 devices and ports [22]. The appearance of the XUPV5-LX110T board is shown 

in Figure 4.1. We develop our design on this board. 

Figure 4. 1: XUPV5-LX110T FPGA board 

The softwar to implement the design and programm the board is Xilinx Modelsim 

and ISE, resp ctiv ly. First, the design i coded in VHDL and simulated in Model im. 

Second, th .bit file is generated and programmed in the FPGA board by Xilinx ISE. Th 

intermediate signals are analyzed by using ChipScope and the output signals are di played 
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Figure 4.2: A true dual-port block RAM 

in a hyper-t rminal window. Finally, we verify the decoding corre tn s by comparing th 

waveforms with data in the simulation. 

There are two main on-board primitives we employ in our design. The first is the block 

RAM that is u ed as a memory for d oding metrics. Figur 4.2 [23] is the data flow of 

a synchronous 36Kb block memory with a true dual-port A and B. Data can be writt n 

to or read from either or both ports. Each write operation is syn hronous, and each port 

has its own address, data in, data out, clock, clock enable, and write enable. Th read and 

write operations are synchronous and r quire a clock edge [23] . 

The second is the DSP48E slices, which are designed as addition multiplication, and bit 

logic operation mits. These slices are specially designed for operations in DSP when th y 

are cascaded. Figure 4.3 [24] shows the architecture of a DSP4 E slic . Th se slices can 

be configured as 25 x 18 multipliers and an add/subtract function that has been extend d 

to function as a logic unit. This logic unit can perform a host of bitwise logical operations 

when the multiplier i not used. The DSP4 E slice include a pattern detector and a pat­

tern bar det ctor that can be used for convergent rounding, overflow/ underflow d tection 
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for saturation arithmetic, and auto-resetting counter /accumulators. Th document [24] 

provides the sp cifications of these slices. 

CAAAYCASCOUT' ----------------------------------------------
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Figure 4.3: Virtex-5 DSP48E slice 

Xilinx XUPV5-LX110T board provides various interfaces, for example a RS232 port. 

The RS232 s rial protocol is simple and widely u ed , especially in the applications that do 

not demand v ry high speed communication. With a hyper-terminal window the commu-

nication through RS232 port can be monitored . We connect th on-board RS232 port to 

a desktop through a cable. The baud rate of the communication i t to 25, a speed low 

enough to read. Finally the output can be displayed on the hyp r-terminal. 

4.2 Hardware Considerations of Turbo Codes 

We focus only on th design of turbo decoders in our research, not th encoders, becau 

the encoder ar omparatively simple. The ncoder is composed of interleaver/deinterl av r 

and RSC encoders. Both the encoder and the corresponding decod r employ the identical 

interleaver and deinterleaver which is implemented by a block of m mory. In gen ral 
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the RSC encoders are constructed from a few flip-flops or registers. But the decoders are 

further characterized by the complex decoding algorithm. 

In software simulations, metrics in the MAP algorithm are stored in "double", which 

accommodates for numbers in a very large range. The data "double" is of high accuracy. 

But this representation of "double" is regarded in hardware implementation as an unlimited 

number of bits. It is a redundancy for our design in hardware. Ther fore, first of all, w 

need to determine the data type applied in memories and arithmetic units. As explained 

before, a limited number of bits are used to represent a number. All data are represented 

in 2's complement. A number is set to the maximum or the minimum. That is to say, it is 

saturated when an overflow or underflow happens. 

The second consideration is to implement th design in a combinational or a sequ ntial 

logic circuit. More combinational logic makes the implementation simpler, a t cost of more 

gates and a longer latency for the long st path in circuit. To sketch the circuit , we need 

to estimate the numbers of additions and multiplications. From the Equation 2.4, it can 

be seen that there are 32 branches in a stage and two mult iplications and two additions 

for each branch. It would be at least 32 s ts of branch metrics calculations in each stag , 

with each set containing two multipliers and two adders , if all additions and mult iplications 

work in parall l for a 16-state decoder. In this way, the hardwar implementation consists 

of many duplicated calculations and the hardware size is high. On the other hand , if the 

circuit is implemented fully in sequential logic, the decoding latency may be prohibitiv . 

Assuming a Booth encoder completes one 16X16 multiplication in 32 clock cycles (at least 1 

clock cycle for loading and 1 clock cycle for shifting), it is necessary to compute one branch 

metric in 64 clock cycles and compute all branch metrics in one stage at least 32 x 64 = 204 

clock cycles, even if we do not consider forward and backward metrics. Our pilot design 

shows that the decoding latency is very long if the Booth encoder is used. Fortunately, 

the Xilinx XUPV5-LX110T Evaluation Platform provides us the DSP48E slices, which can 

be configured as embedded multipliers. With the help of 2 embedded multipliers it takes 

1 clock cycle for one branch metric and 17 clock cycles for all branch metrics in a stage 
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(including 1 clock cycle for the initialization) . In this scheme, the latency is significantly 

reduced from 2048 clock cycles to 17 clock cycles. Therefore, the metrics calculators are 

implemented in sequential logic, while 2 DSP48E slices are employed. 

Finally, we set some parameters to a small number to simplify the design. The number 

of iterations is assumed to be 2. The interleaver size is 64 and window size is 16, so that 

the number of windows in a block is 4. Here we employ 16 bits, 13 bits for the integer 

part, 2 bits for fraction bits, and 1 bit for the sign. When we use a small number of 

iterations and small blocks , we can save a lot of time in verifying the data and waveforms. 

The decoder can be configured to a 16-iteration decoder by replacing a 2-bit counter with 

a 4-bit counter without other modifications. The essential issue in hardware design is to 

confirm the decoding correctness. That is to say, the software simulation results should be 

completely verified by hardware implementation. The verification strategy is illustrated in 

Figure 4.4. 

Turbo decoding 
' Data ~ Java simulation / 

Random Data Turbo Encoder, 
/ Comparison ------? 

AWGN channel 
f--

Generator 
VHDL FPGA 

--i r- - r Implementation Implementation 

Figure 4.4: Verification strategy 
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~-----------------------------------------------------------------------

4.3 FPGA Implementation of a Pipelined Turbo Decoder 

4 .3.1 Implementation of the MAX-LOG MAP algorithm 

First, we consider the MAP algorithm employed in the SISO unit. The algorithm can be 

modified to log domain as the MAX-LOG-MAP or the LOG-MAP, because the exponential 

operations are introduced in the MAP algorithm. The difference between the MAX-LOG­

MAP and the LOG-MAP is illustrated by Equation 2. 7 and 2.8. The second item on the 

right hand can be approximately estimated in segments and implemented by a look up 

table in the hardware implementation. In our design, the MAX-LOG MAP is employed. 

The MAX-LOG-MAP algorithm is still a complex algorithm with considerable interme­

diate metrics, such as forward metrics, backward metrics, and branch metrics. The total 

number of those metrics is (2 + 1 + 1) x 2M x N, with Mas the memory length of the turbo 

encoder, and with N as the length of a block or a window. It is in proportion to the block 

length N and has exponential relation to the encoder memory length M. Obviously, more 

operations than this number are necessary to obtain those metrics. For a 16 state decoder, 

there are at least 2 x 32 multiplications and 2 x 32 additions for branch metrics, 2 x 16 

additions for forward metrics, 2 x 16 additions for backward metrics, and 2 x 32 additions to 

obtain one likelihood value. The numbers of multiplications and additions are 2(M+2
) x N 

and 3 x 2(M+2) x N, respectively. Here we do not include the comparisons between two 

numbers. In [21], the authors estimated the computational complexity of different decoding 

algorithms, as shown in Figure 4.5. The MAP algorithm is not included due to its inherent 

complexity for practical turbo decoder implementation. All operations include addition , 

max, table lookup and inversion. The LOG-MAP has table lookup operations, and about 

1.33 times of additions as the MAX-LOG-MAP. The MAX-LOG-MAP has approximately 

3 times of additions and 2 t imes of max operations in the SOVA algorithm when M is large 

enough. In [25], the author improved the MAP algorithm by eliminating the intermediate 
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Figure 4.5: Computation complexities of different decoding algorithms 
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Figure 4.6: Architecture of the MAP /LOG-MAP /MAX-LOG-MAP algorithm 

metrics. The author estimated the numbers of multiplications and additions as 2M+N + N 

and (2M+ N- 1)2N - 2N. It can be inferred that in the MAP algorithm the additions 

and multiplications numbers have exponential relation to N. 

The block diagram of a typical implementation of MAP /MAX-LOG-MAP algorithm is 

shown in Figure 4.6 [26]. In this figure, "G" represents the branch metrics, "A" represents 

the forward metrics and "B" represents the backward metrics. In this design, the memories 

for branch and forward metrics are dispensable. The blocks of "G Generation", "A Gener-

ation", "B Generation", and "LLR Calculus" can be implemented by either combinational 

or sequential logic. The controller is responsible for loading and storing the metrics. The 

order of the metrics computation is G, A, B, and LLR. First,the branch metrics are calcu-

lated. Second, starting from the beginning of each block, the SISO decoder calculates the 

forward metrics and stores them in the memory. At the end of the forward metrics calcu-

lation, the decoder starts backward metrics calculation in the backward direction, as well 

as LLR calculation. This computation order conforms to the principles of MAP algorithm 

discussed in Equations 2.4, 2.5, 2.6, and 2.9. 
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Figure 4.7: Architecture of A SU in the MAX-LOG-MAP algorithm 

When forward and backward metrics are calculated, addition-compari on-selection units 

(ACSUs) are employed. They are employ d in the blocks of "G Generation", "A Gen ra­

tion", "E G n ration", and "LLR Calculus". Figure 4. 7 and 4. illu trate the ACSU in 

the LOG-MAP and fAX-LOG-MAP algorithm, where 'LUT" denot s the look up table 

and the output z i equal to max(Al + Bl, A2 + B2) and max(Al + Bl , A2 + B2) + ln(l + 

e- IA1+Bl- (A2+82)1), respectively. Similar architectures of ACSU can b found in [27]. 

The backward rn tries is always cal ulated recursively from the last stage of eith r a 

window or a block. When the sliding window technique is used, w rei as the first several 

bits, not the last bits. According to Equation 2.9, we have to calculate all backward 

metrics in order to release the first bit. For the last bits unrel as d , it i not nee s ary 

to calculate thos intermediate forward rnetrics. Therefore, w change the computation 

order by calculating backward metrics first. Figure 4.9 shows the dataflow of rn tries 

in our design. A finite state machine (FSM) is employed as a controller to coordinat 

the blocks in the block diagram. In this figure, the memori s for branch and backward 

metrics are constructed by RAMEl that is introduced befor . inc ev ry metric is a 

16-bit number, the same width as the input of a RAMEl block, to load and store 16 
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Figure 4.8: Architecture of ACSU in the LOG-MAP algorithm 

Block Memory 
Gamma 

Block Memory 
Beta 

Figure 4.9: The dataflow of the MAX-LOG-MAP algorithm 

beta metrics simultaneously need 16 RAMB18s to work as a group, as shown in Figure 

4.10. The advantage of this scheme is that 16 numbers are read or written in one clock 

cycle. But the disadvantage is that the utilization of RAMB18s is low. For example, 

if a received block of data is a sequence of 32 signals, the utilization of each RAMB18s 

is 32/1024 = 0.03125 for branch metrics and backward metrics. That's the trade-off. 

Fortunately, the XUPV5-LX110T board supports loading and storing metrics in parallel 

by providing 296 RAMB18s [28]. We employ 32 RAMB18s for branch metrics and 16 

RAMB18s for beta metrics, considering that the loading and storing metrics are very 

frequent operations in the MAX-LOG-MAP algorithm. 
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Figure 4.10: the RAMB18 group 

In Java simulations , the additions are saturated as if limited bits are us d to repr sent a 

number. When a number needs more than 16 bits, an overflow or underflow happ ns. This 

number will be replaced by the maximum value 7 F F F (16) or the minimum value 8000(16) , 

with 16 in the subscription as a hexadecimal number. In a 16X16 multiplication there ult 

is a 32-bit number with the decimal point locating in the fourth bit from the LSB. This 

number is converted to a 16-bit number with the decimal point locating in the second bit 

from the LSB. This conversion causes some computation errors becau e som tail bits ar 

discarded. The computation errors are accumulated during the decoding. It is also found 

that systematic computation errors cannot be completely eliminated when a right shifting 

operation happens to a limited bits. If a number is divided by 2, the bits are shifted to 

right and LSB is discarded , whether the LSB is "0" or "1". However, the waveforms of 

VHDL implementation coincide with the decoded sequence in Java simulations, when both 

the VHDL implementation and the Java simulation follow the same operations of additions 

and multiplications. Figure 4.11 provides a block of 32 decoded signals by the MAX-LOG­

MAP algorithm in J ava simulations. The data in the second column ar r presented in th 

form of hexadecimal, which are conveniently used to compare with the waveforms. Figur 

4. 12 and Figure 4.13 provide the waveforms for t he first 8 decoded values. ote that in 

the small circles there are three variables. "wrJa" is the enable signal to write "addrJa" 

is the address of the memory when the data is written and "app' is the decoded. The 

first 8 decoded words can be read from the waveforms. They are "OOOA'' , "0006", "OOOE", 
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"FFF2", "OOOE", "FFFA", "FFFA", and "000 " . All32 decoded words from the wav form 

are verified. Therefore, the decoding corr ctness in the MAX-LOG-MAP algorithm is 

ascertained. 

t I@WH.§§M 
Fole Edrt FonT'"''t Vi- H.Hp 

0000000000001010 OOOa 2.5 
0000000000000110 0006 1.5 
0000000000001110 OOOe 3.5 
1111111111110010 fff2 -3.5 
0000000000001110 OOOe 3.5 
1111111111111010 fffa -1.5 
1111111111111010 fffa -1 .5 
0000000000001000 0008 2.0 
0000000000001000 0008 2.0 
1111111111111000 fff8 -2.0 
0000000000000110 0006 1.5 
1111111111101100 ffec -5 . 0 
0000000000011100 001c 7.0 
1111111111110110 fff6 -2.5 
1111111111111000 fff8 -2.0 
0000000000001010 OOOa 2.5 
0000000000001010 OOOa 2.5 
0000000000001010 OOOa 2.5 
0000000000010000 0010 4 . 0 
1111111111111110 fffe -0.5 
0000000000001100 OOOc 3.0 
1111111111110100 fff4 -3.0 
0000000000001100 OOOc 3.0 
1111111111111110 fffe - 0.5 
1111111111111110 fffe - 0.5 
0000000000000110 0006 1 .5 
1111111111111010 fffa -1.5 
0000000000010010 0012 4.5 
1111111111111110 fffe - 0.5 
0000000000000110 0006 1.5 
0000000000000110 0006 1.5 
1111111111111010 fffa -1.5 

Figure 4.11: Results of the MAX-LOG-MAP algorithm in Java simulations 

The FPGA implementation by the Xilinx ISE optimizes the de ign automatically, and 

the architecture of the algorithm i realized by the availabl primitive on the FPGA 

board. Besides th VHDL codes, a user constraint file (UCF) is n c ssary in translating, 

mapping, placing and routing to implement th design. This UCF is to map the input 

and output signal in th design to spe ific pins on the FPGA board or u e a designated 

device, for exampl , the clock. The Xilinx XUPV5-LX110T board provides clocks of variou 

frequencie , 27MHz, 33MHz, and lOOMHz. We employ both 33MHz and lOOMHz clo ks, 

but it makes no difference in bit errors when implementing this MAX-LOG-MAP algorithm 

and the turbo d oder. 

Figure 4.14 shows a summary of device utilization report d by the Xilinx ISE. Som 

components such as r gisters and flip-flop are generated automatically. The numb r 

of them are not controllable unless th VHDL implementation is at the gate level, but 

they indicate th hardware complexity that can be used to evaluat the implementation 
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Figure 4.12: Waveforms of the MAX-LOG-MAP algorithm in VHDL implementation (1) 

approximately. However, it can be seen that 2 DSP48E slices are used as the embedded 

multipliers in the implementation. There are a total of 51 RAM18 used as we expected. 32 

out of 51 are employed as "Block memory gamma", 16 out of 51 are employed as "Block 

memory beta", and the remaining 3 RAMB18s are used to store the received signals which 

is not indicated in the block diagram. 

4 .3.2 Implem entat ion of a Turbo D ecoder w ith t he Sliding Window 

Figure 2.3 shows the architecture of the iterative decoding in turbo codes. The main 

components are two SISO units, an interleaver, and a deinterleaver. These two SISO 

units have duplicated architecture. The interleaver and the deinterleaver have the same 

structure and inverse functions. Obviously, only one SISO unit and one block memory 

are necessary in the hardware implementation, as in [21] and [29]. The SISO unit works 
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Figure 4.13: Waveforms of the MAX-LOG-MAP algorithm in VHDL implementation (2) 

for both upper and lower half iterations. The block memory is designed for both the 

interleaver and deinterleaver. Figure 4.15 shows the implementation of a turbo decoder 

based on LOG-MAP in [21]. In this figure, the LLRs are stored in a RAM after they are 

released. The interleaver and deinterleaver memory stores the mapping addresses, which is 

used to locate the previous LLR values in the RAM. If the interleaver size isS, then the size 

of "LLR RAM" is S and the length of decoding in the LOG-MAP decoder is S. In [29], the 

author proposed a block diagram of turbo codes adapted to standard communications in 

wideband code division multiple access (WCDMA), as shown in Figure 4.16, where "7r/7r-1
" 

denotes the interleaver and deinterleaver functions , "Mem_data" denotes the memory for 

the received signals, and "Ysl" denotes the memory to store LLR values. 

However, these two implementation do not make use of the sliding window technique. 

The sliding window technique is a good strategy in turbo decoding. It helps to divide a 

block into many small windows and then decode the entire block. The advantage of this 
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Oevlol! Utllzal:lon Summary J 
Slice logic Utirlzatlon Used Available Utilization Hote(s} 

Number of Slice Re!jisters 3,014 69J120 4% 

Number used •• ~ Flops 3 ,013 

Nl..wrber used as la~s 1 

Number of Sice LlJTs 4 , 115 69, 120 S% 

Number used •• logic 4 ,048 69, 120 5% 

Number using 06 output only 31876 

Number using OS output only 51 

Number using OS and 06 121 

Nurrber ~ as Memory 59 171920 1% 

Number used as Shift R095ter 59 

Number using 06 output only 57 

Number using OS output only 1 

Number using 0 s and 06 1 

Number used as exduslve route -thru 8 

Number of route-thrus 59 

Number using 06 output only 59 

Number of occupied Sloces 2.518 17J280 14% 

Number ofllJTAip Flop pairs used 5,850 

Number with an unused Rip Flop 2,836 5,850 48% 

Ncwnber with an Ln.Jsed llJT 1,735 5,850 29~· 

Number of fully used LLJT -ff pairs 1, 279 5,850 21% 

Numl:>er of unique control sets 887 

Number of slice register sites lost 2,454 69, 120 3% 
to control set restrictions 

Number of bonded~ 4 640 1"1· 

Number ofLOCed lOBs q 4 100% 

1\Almber of SlockRAM/FIFO 38 148 25'% 

I'AJmber using BlodcRAM only 38 

Number of 181c. 8lockRAM used c 51 5 
Total ~!emory used (KB} 918 5,328 17'% 

Number of BUFGftU'GCTRls 2 32 6"1. 

Ntxrber used as BLFGs 2 

Number of BSCANs 1 • 25% 

Number of DSP48Es (' -- 2 ~) 64 3% 

!\Umber of RPM macros 9 

· Average FenoutofNon.CiodtNets 3.22 - -- ·- -· 

Figure 4.14: Device utilization summary of the MAX-LOG-MAP algorithm 

technique is that a large SISO unit is not necessary, while the disadvantage 1s overhead 

computation because of the overlapping bits in the next window. 

To simplify the design and then reduce the workload in data comparison, we set the pa-

rameters to small numbers. In the hardware implementation, the iteration number is 2, the 

block interleaver size is 8 x 8 = 64, the window size is 32, the number of windows in a block 

is 4, and in every window the first 16 bits are released. Figure 4.17 shows the block diagram 

of the turbo decoder based on the MAX-LOG-MAP with these parameters, where "Mem-

ory Data" denotes the memory for the received data from the channel, "Memory Beta" and 

"Memory Gamma" denote the memory for the backward metrics and the branch metrics 
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..--------------------------------------- -----

Decision 

Figure 4.15: Architecture of a turbo decoder (1) 

respectively, "Memory Alpha" denotes the memory for the forward metrics, "Iterations 

C4+" denotes the counter to indicate the half iterations index, "Windows C4+" denotes 

the counter to indicate the windows index, and "C64+,C64-" and "C32+,C32-" denote the 

up counters and down counters with the maximum numbers of 64 and 32, respectively. 

The SISO unit includes the various blocks except the block "Memory Data", "Memory 

LLR", "Memory Alpha", "Iterations C4+", "Windows C4+", "Interleaver/ Deinterleaver", 

and the controller. Some blocks are introduced by the sliding window technique, such as 

"Windows C4+" and "Memory Alpha". 

Due to the sliding window technique, we employ the "Memory Alpha" to store the last 

forward metrics in this window as the initial forward metrics in the next. It has small size, 

16 x 16 = 256 bits. It may be removed in a future design, if the last forward metrics are 

retained. We use "Memory Alpha" in order to prevent the data interference between the 

windows. The block "Interleaver/Deinterleaver" realizes the function and inverse function 

of interleaver. If the interleaver size is large and the permutation is irregular , then this block 

can be implemented by a large look up table that stores the mapping addresses, not the 

data LLR. Small blocks attached to memory blocks, such as "C64+,C64-" and "C32+,C32-
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• Bit_decodif 
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Figure 4.16: Architecture of a turbo decoder (2) 

" , indicate that these counters are used as address pointers for the corresponding memory 

blocks. The numbers in the top right of t he block give a hint of the computation order. 

Figure 4.18 is the state diagram of the decoder. There are three loops in the right 

and two in the left. The "calculate gamma" in the block diagram works in the first loop , 

the block "calculate beta" works in the second loop, and the block "calculate alpha" and 

"calculate LLR" work in the third loop. The state of "wait" is inserted to avoid the data 

interference between the different stages. The states of "clear gamma", "clear beta" , and 

"clear alpha", and "clear LLR" are inserted to reset the calculating blocks. The decoder 

with the sliding window technique works as following: 

1. The 3 x 64 signals are received in the "Memory Data" . 

2. The signals from 31 to 0 are loaded as the first window. They are used calculate all 

branch metrics from the first stage, and the results are stored in the memory. 

3. The backward metrics are calculated based on the branch metrics from the last stage, 
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Figure 4.17: The block diagram of a turbo decoder with a sliding window 

and stored in the memory. 

4. The forward metrics are calculated based on the branch metrics. As soon as the 

forward metrics in any stage is done, the corresponding LLR is calculated by employing 

the branch metrics, forward metrics, and backward metrics. Th LLR is stored in the 

"Memory LLR" for the next half iteration as a priori probability. This step is repeated 

until the first 16 LLRs are released. 

5. The last forward metrics are stored in "Memory Alpha". In the next window, they 

will be read as the a prior probabilities. Then, the windows counter increases by 1. 

6. The window slides for 16 stages. The signals from 47 to 16 are loaded for the second 

window. Repeat step 2 to 5 to complete this window. 

7. Repeat step 6 to complete 4 windows in this block. So far , the first half iteration is 

completed. The half iterations number increases by 1. 

8. A new half iteration starts. Since it is a lower half iteration, the block "Inter­

leaver/ Deinterleaver" works. It converts the addresses when loading data. T he re-
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write gamma 

write beta 

32 

~----------~17 ~----------~ 
calculate 

counter 
beta -

load alpha 
clear counters 

stop 

beta 

write LLR 

caclulate 
LLR 

Figure 4.18: The stat diagram of the turbo decoder 

ceiv d signals and LLRs are loaded, v ry 32 stages as a window. Repeat step 2 to 7 

to finish this half iteration. 

9. Repeat t p until all half iterations ar completed. 

Obviously, th calculations of metric are carried out serially according to the stat 

diagram in Figure 4.18. The thr e loops on the right impl m nt th MAX-LOG-MAP 

algorithm, the inner loop on the l ft implements the sliding window technique, and the 

outer loop on the left implements the it rativ decoding. This is a t raightforward design. 

On the right side, when any loop is working, the other two loops do nothing but wait. That 

means th re i orne inefficiency in the de ign, because of the waiting tate which can b 

further improved. 
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Note that the second loop and the third loop in the right are completely independent. 

But both of them depend on the first loop, the calculation of branch metrics. The block 

"Memory Gamma" keeps the branch metrics which are used in the second and third loops. 

We can make some modification in this implementation due to the relationships among 

these loops. We remove the block "Memory Gamma", the largest memory that employs 

32 RAMB18s, by calculating branch metrics again in the third loop. In this case, the first 

loop and the second loop is merged and a duplicated state of "calculate gamma" is inserted 

to the third loop. The block diagram is slightly modified . In Figure 4.17, the output of the 

block "calculate gamma" is connected directly to the blocks "calculate beta", "calculate 

alpha", and "calculate LLR". The block "Memory Gamma" is removed and other blocks 

are unchanged. 

Figure 4.19 illustrates t his modified decoding process. The first loop in the right side 

illustrates that t he backward metrics are calculated as soon as the branch metrics are 

available. The second loop in the right explains a similar process to obtain the LLRs. 

The branch metrics are calculated in both loops. Next, let us discuss the cost for this 

modification. Aft er modification, the number of clock cycles in the first loop, which is 

32 x (17 + 17 + 3) = 1, 184, is less than 32 x 20 + 32 x 21 = 1312, the sum clock cycles of 

the first and second loops in Figure 4.18. This is caused by the merges of the "overheads" 

states, such as "clear" and "wait" in these two loops. But the clock cycles in the second 

loop increases from 16 x (17 + 17 + 3) = 592 to 16 x (17 + 17 + 17 + 3) = 864. It 

is caused by insertion of the duplicated state of "calculate gamma". When the window 

size is 32 and 16 bits are released , after the modification the total number of the clock 

cycles increases for every window from 32 x 20 + 1 + 32 x 21 + 2 + 16 x 37 = 1907 to 

1 + 32 x 37 + 2 + 16 x 54 + 2 = 2, 053. If the block size is 1024, the window size is 32, 

and 16 bits are released in each window, there are 64 windows in a block. If the iteration 

number is fixed to 10, there are 20 half iterations. Then, the number for the increased clock 

cycles are (2053 - 1907) x 64 x 20 = 186,880 to decode such a block. This is the trade off 

between the memory size and the latency. However , we remove the largest memory of 32 
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RAMB18s, out of the total 51 RAMB18s , the saving rate is 32/51 = 62.7%, by calculating 

the branch metrics twice. So, this trade off is regarded as an improvement in efficiency. 

clear gamma 
clear beta 

clear gamma 
clear alpha 
clear LLR 

counter 
beta­

write beta 

write LLR 

}-----~ 17 eamma_done=l 17 ;.....=.=::==.:=~ 
calculate 
gamma 

windows++ 

load alpha 
clear counters 

iterations ++ 

clear counters stop 

) iterations=4 {) 

calculate 
LLR 

Figure 4.19: The state diagram of the modified turbo decoder 

Figure 4.20 shows the decoded signals of two windows by Java simulations. The left 

is what is released from the first window in the first half iteration. The right is from the 

last window in the last half iteration. These data are used to compare with the VHDL 

waveforms, as shown in Figure 4.21, 4.22, and 4.23. In the waveforms, "wrJa" is the signal 

enable to write, "address_extrinsic" is the address used to write the LLR to the "Memory 

LLR", and "app" is t he LLR released. It can be seen that from the simulation results the 

first 4 decoded signals, "0000", "0004", "0008", and "FFF6", perfectly coincide the VHDL 

waveforms. So does the first 8 decoded signals in the last window and last iteration. Thus, 
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the decoding orr ctness is verified by th VHDL waveforms. 

The first 16 bits 
in the 1st window in 1st ha~ iteration 

File Edit Format ViM Help 

pooooooooooooooo oooo o.o 
0000000000000100 0004 1.0 
0000000000001000 0008 2.0 
1111111111110110 fff6 -2.5 
0000000000001010 OOOa 2.5 
0000000000000000 0000 0.0 
0000000000000000 0000 0.0 
0000000000000000 0000 0.0 
0000000000001000 0008 2.0 
1111111111111110 fffe -0.5 
0000000000001000 0008 2.0 
1111111111111010 fffa -1.5 
0000000000001010 OOOa 2.5 
1111111111110110 fff6 -2.5 
1111111111110110 fff6 -2.5 
0000000000000100 0004 1.0 

The last 16 bits 
in the last window in the last haW iteration 

File Edit Format .ViM Help 

pooooooooooo1010 oooa 2.5 
1111111111111010 fffa -1.5 
0000000000010110 0016 5.5 
0000000000001110 OOOe 3.5 
1111111111100110 ffe6 -6.5 
1111111111101000 ffe8 -6.0 
0000000000001010 OOOa 2.5 
0000000000011010 001a 6.5 
0000000000011100 001c 7.0 
0000000000010100 0014 5.0 
0000000000000100 0004 1.0 
0000000000000100 0004 1.0 
1111111111111010 fffa -1.5 
0000000000000110 0006 1.5 
0000000000000100 0004 1.0 
1111111111110000 fffO -4.0 

Figur 4.20: Results of the turbo decoding in Java simulations 

Figure 4.24 indicates that it takes about 3,347,000 ns to decode a block of 64 until th 

"done" signal is set to 1. It is actually 33,470 clock cycles because we use a clock of period 

100 ns in VHDL simulations. We canal o get this number from Figure 4.19. In the right , 

the first loop tak s 1184 clock cycles. Th second takes 864 clock ycles. There ar 4 half 

iterations and 4 windows in the iterativ decoding. We can approximately estimate the 

total clock cycle is more than 4 x 4 x (204 + 5) + 64 =32,912. Thi number is approximat 

to 33,470 clock cycl s which is indicated by the VHDL waveforms. As uming the number of 

the turbo encoder state is 2M , the window size is w , and in each window d bits ar released , it 

can be calculated according to t he Figure 4.19 that the decoding latency for uch a window 

is approximat 5+((2M + 1)+(2M + 1)+3) xw+((2M + 1) + (2M +1)+(2M +1)+3) x d ~ 

2w x 2M +3d x 2M = (2w+3d) x 2M. If th block size N is divisibl by the window size wand 

the iteration numb r is fixed to i then it takes approximately (2w + 3d) x 2M x N jw x (2i) 

clock cycles to decode such a block with the sliding window. 
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Figure 4.21: Waveforms (the first 4 bits in the 1st window) of the turbo decoder in VHDL imp! m n­
tation 

4.3.3 The Implementation of a Pipelined Thrbo D ecoder 

Although the VHDL implementation of the turbo decoder decodes the signals exactly 

as we have done in the software simulations, the decoding latency is comparatively long. 

It takes a large number of clock cycles, 2, 051 , to decode a window. How can we reduce 

this number of clock cycles? The answer is to pipeline the computing. In computing, 

a pipeline is a set of data processing elements connected in series, so that the output 

of one element is the input of the next one. The elements of a pipeline are execut d 

in parallel or in time-sliced fashion [30]. For example, instruction pipelines, such as the 

classic reduced instruction set computer (RISC) pipeline, which are used in processors to 
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Figure 4.22: Waveforms (the decoded bit 0-3 of the last window) of the turbo decoder in VHDL 
implementation 

allow overlapping execution of multiple instructions with the same circuitry. The circuitry 

is usually divided up into stages, including instruction decoding, arithmetic, and register 

fetching stages, wherein each stage processes one instruction at a time. In a pipeline, the 

multiple processes cooperate and work in parallel. 

When we study the MAX-LOG-MAP algorithm in Figure 4. 19, we realize that in two 

loops the calculation of metrics takes more than 90% of clock cycles (32/35 = 91.4%, 

48/51 = 94.1 %). In either loop, there are more than one states of "calculate". The "cal-

culate" states are next to each other. Furthermore, the clock cycles to complete each "cal-

culate" state are exactly 17, which means the calculating blocks have the same computing 

length in time. We apply the pipelining in these loops. The block diagram of a pipelined 
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Figure 4.23: Waveforms (the decoded bit 4-7 of the last window) of the turbo decoder in VHDL 
implementation 

turbo decoder shown in Figure 4.25 is close to the previous modified decoder. There is 

extra pipeline registers "register gamma" used to keep the branch metrics when the block 

"calculate gamma" is working pipelined. The size of registers is exact 2 x 32 x 16 = 1, 024 

bits, because there are 32 branch metrics with 16 bits of each. The branch metrics for 

the extrinsic and a posteriori probabilities used in the last half iteration are different , so 

this number is doubled. This pipeline register is regarded as the cost for the pipelining. 

Furthermore, the controller is more complex. 

The implementation of pipelining in this turbo decoder is a kind of request/ acknowledge 

system. This request/ acknowledge system is used to coordinate the different processes and 

avoid the data interference. There are two processes to calculate the metrics in the MAX-
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Figure 4.24: The decoding time of the turbo decoder 

LOG-MAP algorithm. In a stage in trellis diagram, one process send a request and wait 

for the acknowledgement from the partner. After receiving the acknowledgement from its 

partner, this process enters into the next stage to calculate the metrics. The two processes 

cooperate as two threads in parallelism. Figure 4.26 shows the timing sequence of the 

two calculating processes, where "R" denotes the request, "W" denotes the data writing 

and "A" denotes the acknowledgement. For simplicity, we use the branch (process A) 

and backward metrics (process B) to explain the interaction between them. Note that the 

backward metrics depend on the branch metrics and process A is always leading. That is 

to say, the t ime to write the branch metrics to the pipeline registers is critical to calculate 

the backward metrics. 

The top part of Figure 4.26 shows the timing for the decoder without pipelining. The 

branch and backward metrics are calculated alternately. When on process is working, th 
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Figure 4.25: The block diagram of a pipelined turbo decoder with a sliding window 

other is idle until the partner has complete this stage. All work is done serially, without 

improving the efficiency. The lower part of this figure shows the pipeline timing. The 

calculations of branch or backward metrics are concatenated by its own "A" , "W" , and 

"R" segments. However , the most important improvement is that the calculations of branch 

and backward metrics are in parallel. One process writes the calculating results and enters 

into the next stage as soon as it gets the acknowledgement from its partner. Once a process 

is busy calculating, it cannot be interrupted by the partner's request and acknowledgement. 

In this scheme, the decoder works as following: 

1. For the process A: The 2 x 16 branch metrics in the first stage are calculated. Since 

it is the first stage, the acknowledgement B (from the process B) is always true. 

Then branch metrics are written to the pipeline registers. The acknowledgement A, 

which means the branch metrics for this stage is available, is released. Without any 
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Without pipelining 
calculating calculating calculating Process A 

0 CCJ ~-- calculating gamma 

[I] [I] ~ ProcessB 
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calculating alpha 
calculating LLR 

With pipe lining 
write 

request acknowledge 

R 

Process A 
~---- calculating gamma 

ProcessB 
calculating beta 

~calculating alpha 
calculating LLR 

Figure 4.26: The timing in the MAX-LOG-MAP algorithm 

delay, process A cont inues to calculate t he branch metrics in the second stage. It will 

complete the calculation. It stops to wait before writing the data, with sending a 

request to the process B. 

2. For the process B: At the very beginning, process B is waiting. As soon as it receives 

an acknowledgement A (from the process A), the process B starts to work (as shown 

by arrow 1) . After the calculation, the results are written to the memory. Then th 

process B releases an acknowledgement B, which means the branch metrics in this 

stage is no longer used. The process B is now sending a request and waiting for the 

next acknowledgement A. 

3. For the process A: After it gets acknowledgement B, it writes the data to the pipeline 

registers (as shown by arrow 2). It sends an acknowledgem nt A, then continues to 

calculate the branch metrics in the next stage without interruption. It stops befor 

the writing as in step 1. 

4. Repeat step 2 and step 3 alternately, until all backward m tries are calculated. 
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The processes interaction to calculate the forward metrics and LLR are the same as 

the above steps. This request/acknowledge system is designed to prevent the data out of 

boundary between stages. ote that the states "calculate gamma" and "calculate beta" in 

Figure 4.19 take the fixed number, 17, of clock cycles. It is possible to arrange the parallel 

computing without the request/acknowledge system, because the process A and process B 

have the same number of clock cycles in calculation. The data interference will not happen 

if it is deliberately designed. However, we apply the request/acknowl dge system because 

of data safety in a general implementation. We should confirm the decoding correctness 

first while we were not absolutely confident about the calculating 1 ngth in time. S cond, 

the pipeline design is adaptive to the cases in which the calculating lengths in time of 

processes are unbalanced. 

In this pipeline strategy, the decoding latency will be significantly r duced at the cost 

of the pipeline registers and a more complex controller. The controller has to coordinat 

the parallel computing, including generating request and acknowledgement signals. It is 

complex for a single controller to supervise all three processes. Therefore, the controll r 

is broken down to three small controllers. The main one is the controller that is us d to 

supervise the process of "calculating gamma". The remaining two controllers are used to 

supervise the processes of "calculating beta" and "calculating alpha and LLR". The three 

controllers exchange the messages to carry out the request/acknowledge system. Figur 

4.27, 4.28, and 4.29 illustrate the state diagrams of three controllers, wh re "Ack_gamma" 

"Ack_beta", and "Ack_alpha" denote acknowledgements, the lett rs of "A", 'W' , and 'R" 

in the states denote the segments 'A", "W", and "R" in Figur 4.26. Similar to th 

FSM above, the loops in the right in the main controller complete the MAX-LOG-MAP 

algorithm, and the loops in the left complete the iterative decoding and the sliding window 

technique. Some "wait" states inserted between the loops that are marked by "R" ar 

employed as the barriers to prevent the data interference. All three controllers begin at 

the common state "start", but only the main controller ends at the state 'end". Aft r this 

end state, other two controllers is continue waiting for the acknowledgement. But they are 
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never triggered again. 

clear counters 

clear counters stop 

lterations=4 080000 040000 

clear 
002000 

Figure 4.27: The main controller in the pipelined turbo decoder 

Here we do not repeat the software simulation results and VHDL waveforms, which are 

identical to those in Figure 4.20, Figure 4.21, Figure 4.22, and Figure 4.23. When pipelin­

ing is employed, the VHDL waveforms also verify the software simulations. Furthermore, 

the output signals from the FPGA board, transmitted through an RS232 cable to a com­

puter and then displayed in a hyper-terminal window, provide the evidence of decoding 

correctness in the FPGA implementation, as shown in Figure 4.30. It can be seen that 

the last 16 decoded signals in the last window, which are underlined in the hyper-terminal 
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write beta 

020 

Figure 4.28: The beta controller in the pipelined turbo decoder 

window, are identical to those in Figure 4.20. Actually, the output signals of the modified 

turbo decoder , which is discussed in the last section, are successfully displayed in a hyp r­

terminal window to verify the FPGA implementation. Therefore, we conclude that the 

pipelined decoding architectures in both VHDL and FPGA are exactly the same as that 

in software simulations. 

However, what we are more interested in, is the reduction of the decoding latency. 

If the latency is represented by clock cycles, how many clock cycles we may save when 

employing the pipelining? Since the main controller works throughout the decoding process, 

its working period is regarded as the decoding latency. In Figure 4.27, the number of clock 

cycles in the states of "R" cannot be predicted, because it depends on the acknowledgement 

of other controllers. But it is expected to be a few clock cycles. If this "R" state is longer 

than 17 clock cycles, it almost makes no sense to apply the pip lining. We can read it 

from the waveforms, as shown in Figure 4.31 and 4.32. The state "000020" lasts for two 

clock cycles, and the state "100000" lasts for (79100- 77300)/100 = 18 clock cycles. In 

Figure 4.27, for the first loop in the right, it takes (1 + 17 + 2 + 1 + 1) x 32 = 704 

clock cycles, except the last stage in a window. For the second loop in the right, it takes 

(1 + 17 + 2 + 1 + 1) x 16 = 352 clock cycles, except the first stage in a window. In the 
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clear 

Figur 4.29: The alpha controller in the pipelined turbo d coder 

first window the state "000020' and "100000' take only one clock cycle. The fiTst and th 

second loops have the same structure. Therefore, we can count th number of clock cycle 

in this pipelined decoder. For a window of 32, it takes ((1 + 17 + 2 + 1 + 1) x 32 + 1 + 

1) + ((1 + 17 + 2 + 1 + 1) x 16 + 18 + 1) = 1, 094. Therefore, to d code a block of 64 n ds 

approximately 4 x 4 x 1094 + 64 = 17,56 clock cycles, which is v ry close to the decoding 

time, 17,627 clock cycles in the VHDL wav form as shown in Figure 4.33. 

Note that in the last section the modified turbo decoder that de ode a block of 64 n d 

approximately 4 x 4 x (1184 + 864 + 5) + 64 = 32,912 clock cycles. However, the pipelined 

turbo decoding lat ncy can be estimated approximately as 17, 56 clock cycles. Thus, th 

improvement rate by the pipeline is about (32912- 17568)/32912 = 46.6%. It is achiev d 

at the cost of a 1024-bit pipeline register. This decoding latency, in t rms of clock cycles 

is further e timated for a general turbo code. Assuming the number of the turbo en oder 

state is 2111 , th block size is N , the number of iterations is fixed to k, th window size i 

w, and in each window d bits are releas d, the pipelined decoding latency for a window is 

approximate w(2M + 1 + 5) + d(2M + 1 + 5) +40 ~ w x 2M+ d x 2M clock cycles. If we take 

the half window release strategy, w = 2d, then the rate of reduced clock cycles is about 

4/7. In general, comparing with the modified turbo decoding lat ncy, the clock cycles 
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Figure 4.30: Display in a hyper-terminal Window (Last 16 output signals in the last window) 

are approximately reduced by a half. With the sliding window technique, the number 

of windows in a block is calculated by N / d, thus the decoding latency is approximate 

2k X (N/d) X [w(2M + 1 + 5) + d(2M + 1 + 5) + 40] c:= 2k X (N/d) X [w X 2M+ d X 2M]. 

Figure 4.34 gives the number of primitives used to implement this pip lined decoder. It 

can be seen that the number of the DSP48E slices is 2. These slices are used as embedded 

multipliers to calculate the branch metrics in parallel. The number of RAMB18s is 20. 

From the pipelined decoder 's block diagram, it can be found that 16 out of 20 RAMB18s 

are used for the backward metrics, 3 out of 20 RAMB18s are used for the "Memory data", 

and the remaining RAMB18 is used to keep the extrinsic probabilities. The numbers of 

the DSP48E slices and the RAMB18s in the pipelined turbo decoder are exactly the same 

as those in the turbo decoder without pipelining. 

4 .3.4 Conclusions 

First, the software simulation provides us fast simple simulations to investigate the 

decoding performance in terms of BER, without considering th parallel computing. We 
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Figure 4.31: The state of "000020" 

compare the waveforms and software simulation results. The hardware decoding correctness 

and the software model are verified by each other. The decoding performance in terms of 

BER for the hardware implementation and software simulation are completely identical. 

That means, it is reliable to use a Monte Carlo method in the software simulations, instead 

of hardware implementation, to investigate the decoding performance at BER. 

Second , from the last section, it can be seen that there are t rade-offs between the hard­

ware size and decoding efficiency. However, the pipelining strategy provides a significant 

improvement in decoding latency, at cost of a small group of pipeline registers, 1,024 bits. 

In Table 4.1 we list the number of main primitives employed and the clock cycles used in 

decoding a window of 32 and a block of 64. Obviously, the pipeline is the best strategy, 

which saves 2/3 RAMB18s and about 1/2 clock cycles. It is a significant improvement in 

decoding efficiency. 

Third, we compare the hardware complexity with the Xilinx 3GPP turbo decoders 

implemented on Virtex-5 and Virtex-6 family. In [31] an 8-state turbo decoder, which 

is used in 3GPP, are implemented in both Virtex-5 and Virtex-6 FPGA boards. Xilinx 
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Figure 4.32: The state of "100000' 

provides the resource requirements and decoding performance of this 3GPP turbo decod r. 

Here we mainly discuss the resource requirements. The numbers of the gates, flip-flop , 

and registers are not predicted unless the implementation is at gat 1 vel , because th 

gates, flip-flops, and registers are automatically optimized by the software. Some main 

primitives, such as the main memory blocks and DSP slices, can be designated by the 

hardware designer. Since the memory is the largest component in the turbo decoder, 

to compare the memory gives us a basic idea of the hardware complexity. Figure 4.35 

illustrates the resource requirements for the different decoders. The left two columns ar 

the implementations on Virtex-5, the middle two columns are the implementations on 

Virtex-6, and the most right column is the implementation of the pipelined decoder. A 
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Figure 4.33: Decoding time of the pipelined turbo decoder 

pair of RAMB18s are equal to one RAMB36. It can be seen that the number of memory 

blocks are very close to each other. The implementations on Virtex-6 need 13 x 36kB 

memory, while others need 10 x 36kB memory. The number of multipliers used in the 

3GPP decoders are not provided. We employ two DSP slices as two embedded multipliers, 

because the multiplications are indispensable. The numbers of look up table (LUT) pairs 

and slice LUTs in the 3GPP decoders on the Virtex-5, are close to those in the pipelined 

decoder. The implementation on Virtex-6 takes fewer LUT pairs and slice LUTs, about 

1/4 less. The number of slice registers in the pipelined decoder is about 1/ 4 smaller than 

that in the 3GPP decoders. From the above, the hardware complexity of the pipelined 

decoder is close to that of 3GPP decoders. However, the 3GPP decoder has 8 states while 

the pipelined decoder has 16 states. Therefore, it can be inferred that the implementation 

of the pipelined decoder is acceptable in terms of hardware complexity. 

Fourth, we consider the requirements for the pipeline technique. A cost of 1024-bit 
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Device Utilization Summary 

. Sttee Logic Utilization Used Available utgization Note(s) 

Number of Slice Registers <::: 3,290 ::5 69, 120 q% 

Number used as Flip Flops 3,290 

Number of Slice LUTs c 3,298 ::> 69,120 4•h, 

Number used as lo9<: 3,292 69,120 q% 

Number usng 06 output only 3,202 

Number usng 0 5 output only 2 

Number usng 05 and 06 88 

Number used as exclusive route-thru 6 

Number of route-thrus 8 138,240 1% 

Number using 06 output orly 7 

Number using 05 and 06 1 

Number of occupied Sices 1,407 17,280 8% 

Number of occupied SLICEMs 0 4,qso 0% 

Number of LUT Aip Aop pairs used c 4,931 :5 
Number with an unused ~ Flop 1,641 4,931 33% 

Number with an unused LUT 1,633 4,931 33% 

Number of fuly used LUT -ff pairs 1,657 4,931 33% 

Number of unique control sets 69 

Number of slice register sites lost 34 69,120 1% 
to control set restrictions 

Number of bonded lOBs 4 640 1% 

NumberofB~~FO 13 1qs 8% 

Number using Blod<RAM orly 13 

Number of l8k Blod<RAM used < 20 ::5 
Total ~1emory used (KB) 360 5,328 6% 

Number of BUFG,WFGCTRls 1 32 3% 

Number used as BUFGs 1 

Number of DSP48Es < 2 ::> 64 3% 

Average Fanout of Non-Clock Nets 3.87 

Figure 4.34: Device utilization summary of the pipelined turbo decoder 

pipeline registers, which is used to isolate the branch metrics in different stages, is not 

expensive. ote that the parallel computing is always suitable to calculate the branch 

and backward metrics , when the backward metrics depends on the branch metrics and 

the branch metrics are independent on backward metrics. What are the requirem nts of 

an efficient pipelining decoding? From the state diagram in Figur 4.27, it can be seen 

that the "R" state inside the loops in the right , which is a waiting state, can be viewed 

as a cost of the pipelining. Minimizing the clock cycles in these stat s, for example, the 

state "000020", improves the efficiency. The clock cycles in the waiting state are mainly 
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Table 4.1: Comparison of different decoding schemes of the MAX-LOG-MAP algorithm 
Original Modi fi ed Pipelining 

Number of DSP48E 2 2 2 
umber of RAMB18s 48 16 16 

1907 2503 1094 
umber of Clock cycles for a block 30512 32912 17568 

Other Costs one None Registers(1024-bit) 

Core 1 Core 2 Core3 Core 4 Pipeline Decoder 

Options lr,rd_ouput,ft_thres,si: ,rd_outpul,ft_thres,sl 

Xlllnx Part XC5VLX50 XC5VLX50 XC6VLX75T XC6VLX75T XUPV5-LX110T 

LUT/FF Pairs( I) 4717 4750 3765 3910 4931 

Slice LUTs 3463 3790 3712 3656 3289 

Slice Registers 4115 4146 4062 4099 3290 

Block RAMs (36k) 6 6 6 6 0 

Block RAMs (2x1 6k) 4 4 7 7 10 

DSP Blocks 0 0 0 0 2 dsp48e 

Speed Grade ·1 ·3 ·1 -3 -1 -3 -1 -3 -3 

Max Clock Freq(12) 299MHz 365 MHZ 299MHz 361 MHZ 265 MHZ 349 MHZ 291 MHZ 367 MHZ N!A 

Figure 4.35: Comparison with the Xilinx turbo d coders 

determined by the difference in the numbers of clock cycles betwe n the state "000020 in 

Figure 4.27 and the state "020" in Figure 4.28, the difference in time between calculating 

branch metrics and calculating the backward metrics. The best strat gy is to make them 

equal in the calculating time. Therefore, an efficient pipelining has some requirement on 

the metrics calculating time, for example, to calculate the branch and forward metrics in 

the same clock cycles although the number of the branch metrics i as twice as that of 

forward metrics. 

Fifth, this pip lined turbo decoder prototype may be ext nded to build other turbo 

codes without much effort. The look up table that stores the trellis diagram may b up-

dated to create a turbo decoder with different constituent RSC encoders. If the interleaver 

structure is changed, then the look-up table that stores th address mapping function 

should be employed or updated. To build a general pipelined d coder, if the number of 
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iterations is fixed to k, the counter "Iterations C4+" should be replaced by "Iteration 

C(2K)+". The counter for the window index should be replaced by "Windows C(N/ d)+". 

If the interleaver size is " " , then the counters "C64+,C64-", which are attached to th 

block "Memory Data", could be replaced by "C(N)+,C(N)-". For the same reason, the 

counters "C(w)+,C(w)-" are applied , to address the block "Memory Beta" to configure 

the window size, and another counter "C(d)+" is applied to configure the number of bits 

released in each window. Note that the memory block "Memory Beta" is utilized shallowly 

with a very low percentage, about (w/1027)%. In a future design , this block, which is im­

plemented by 16 RAMB18s, can be replaced by a smaller memory with size of 16 x w x 16 

bits. But it is not necessary to replace the block "Memory LLR" is unless the interleaver 

size is larger than 1024. If the interleaver size is larger than 1024, we should employ a larger 

block memory primitive, for example, RAMB36. Furthermore, according to the limited bits 

to represent a number investigated in the last chapter , we may modify the 16-bit valu s 

to the 10-bit values , 9 bits for the integer part and 1 bit for the fraction bits. Th refore, 

this pipelined turbo decoder prototype can be configured and then xtended to other turbo 

decoders. 

4.4 Hardware Implementation in Cheaper FPGA Devices 

When the resources utilization is considered this pipelined turbo decoder is implemented 

in other cheaper FPGA boards, because the powerful virtex 5 board provides abundant 

resources. These resources , including the memory blocks, are far more than necessary. The 

cheaper boards have fewer resources. The utilizations of cheaper FPGA devices become 

higher , and th cost of the hardware implementation drops. 

This decoder is also developed in the Xilinx Nexys2 FPGA platforms, which includes 

an XC3S1200E chip in the Spartan3E family. The Xilinx exys2 platform is an economi­

cal FPGA device, which contains different primitives. When we implemented this decoder 
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in the Xilinx Nexys2 platform, the main primitives, RAMB18s and DSP48E slices, were 

replaced by RAMB16_Sl8_Sl8s and MULT18X18SIOs. Another difference is the on-board 

oscillator, which is lOOMhz in the Xilinx XUPV5-LX110T Evaluation Platform and 50Mhz 

in the Nexys2 platform, respectively. However, the implementations at both frequencies 

work without any problem. With the Xilinx exys2 FPGA platform, the decoding correct­

ness is also confirmed. The decoding latency in terms of clock cycles remains unchanged, 

if the primitives are well configured. Furthermore, this pipelined decoder was also imple­

mented in a smaller FPGA platform, "Spartan3E Starter" , which contains an XC3S500E 

chip. This board is cheaper, and contains fewer gates and blocks of memory. We employed 

all 20 RAMB16_Sl8_Sl8s on board. When using "Spartan3E Starter" , the utilization of 

"Slice Flip Flops" is 39%, the utilization of 4 input LUTs is 50%, and the utilization of 

RAMB16s is 100%. So far , it is the smallest FPGA device that we employed to implement 

the pipelined decoder. 

4.5 Summary 

A pipelined turbo decoder is proposed in this chapter. This decoder is implemented on a 

Virtex 5 board. The original design without pipelining is verified for decoding correctness. 

Then, the decoding algorithm is modified in the computational order to save memory 

blocks. The decoding delay is significantly reduced when pipelining is introduced. This 

delay is estimated in terms of clock cycles. The hardware complexity is compared with 

those of the Xilinx cores. Furthermore, the implementation of this pipelined turbo decoder 

is attempted in cheaper FPGA boards to improve the utilization of resources. Finally, the 

scalability of this pipelined turbo decoder is discussed. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

Our study of turbo codes starts from concepts of error correction coding in information 

theory. Turbo codes are derived from convolutional codes, by introducing an interleaver 

between two parallel concatenated convolutional encoders, to spread the burst errors in 

the information sequence. They outperform linear block codes and convolutional cod s, 

especially in a low SNR environment. After turbo codes were proposed in 1993, they 

were widely applied in the communications, for example, in satellite communications and 

planetary probes. Although turbo codes have a disadvantage of a very high computational 

complexity that originally prevented them from implemention in hardware, recent VLSI 

development makes it easier to employ the turbo decoding in more applications. 

We explain the architectures of encoders and decoders in detail. For the encoders, 

the constituent RSC encoders and the interleaver determine the free distance asymptotic 

performance. For the decoders, the SOYA/MAP algorithm or their variants are generally 

employed as the suboptimal decoding algorithm. These algorithms calculate the likelihood 

ratios, while the iterative decoding requires the exchange of likelihood ratios between the 

different SISO units. Finally, the likelihood ratios in the last iteration are used to make 
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a hard decision, to release whether the information bit is "1" or "0". Furthermore, we 

briefly explore the codeword weight properties, which significantly influence the decoding 

performance of turbo codes. From the performance union bound of the convolutional codes, 

the free distance asymptotic performance, which is used to illustrate the error floor in turbo 

codes, is derived. 

Thrbo decoding performance is mainly evaluated in terms of BER when running sim­

ulations in software. Due to the uncertainty of the information bits, some randomness is 

introduced in turbo codes. Therefore, Monte Carlo methods are employed to repeat simu­

lations for a very large number of the information bits. We investigate two 16-state turbo 

codes, and show the decoding performance on simulation results. The free distance asymp­

totic performance is also provided to compare with the decoding performance. Actually, 

they are close to each other in medium and high S Rs in both two samples, so that their 

decoding performance can be approximately estimated from the free distance asymptotic 

performance. 

Here we have considered two essential issues. The first is the sliding window technique, 

which is used to separate a large block into many of small windows. It helps to r due 

the hardware complexity, because each time the SISO unit only decodes a window, not a 

block. The cost of the sliding window is some decoding degradation in performance. That's 

the trade off. The second consideration is the minimum number of bits used to represent 

numbers. This consideration is critical in the hardware implementation, whatever for the 

memories and arithmetic units. Too many bits used for numbers means redundancy, while 

not enough bits cannot confirm the decoding correctness. We determine the minimum 

number of bits to represent numbers through Monte Carlo simulations in software. Finally, 

we found that 9 integer bits and 1 fraction bit are sufficient for the investigated turbo 

decoder, without causing significant decoding performance degradation. 

Hardware implementation is further used to verify the decoding correctness in the soft­

ware simulations. We complete this implementation in both VHDL simulation and FPGA 

implementation. The verification strategy is to develop the hardware design, compare the 
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waveforms with the software simulation results, confirm the decoding correctness , improve 

the decoding efficiency, and further reduce the hardware complexity. A 16-state turbo 

decoder prototype is implemented on a Xilinx FPGA platform. The MAX-LOG-MAP al­

gorithm is implemented first. Then computation process is modified to save a majority 

of memory blocks by calculating the branch metrics twice. In the modified decoder, the 

computation order is changed due to the sliding window technique. To further improve 

the decoding efficiency, pipelining, which is a popular concept in computer architectures, is 

introduced. A pipelined turbo decoder is developed. With pipelining, a pipeline register is 

inserted and then parallel computing of branch metrics and other metrics is realized. Thi 

pipelining strategy significantly shortens the decoding latency in terms of clock cycles. For 

example, about 46% of clock cycles are saved when the pipelining strategy is employed , if 

the window size is 32 and in each window 16 bits are released. 

The following are the main contributions in this thesis. First, the software simulations 

provide an overall survey of turbo decoding performance. Two hardware implementation 

considerations, the sliding window technique and limited bits representing for numbers , 

are investigated in software simulations. These investigations provide the basis for the 

further FPGA implementation. Second, a 16-state turbo decoder is implemented in VHDL 

and finally programmed in different Xilinx FPGA devices. The software simulations , the 

VHDL codes, and the FPGA design are verified for decoding correctness by each other. The 

FPGA design is flexible. It can be configured, by changing counters and/ or replacing look 

up tables, to construct other specified turbo decoders. Third , the relationship b tween the 

metrics in the decoding algorithm is observed. The calculation of branch metrics is as twice 

as that of forward and backward metrics individually. The calculation of branch metrics 

is independent on the forward and backward metrics, while the calculation of forward and 

backward metrics depends on the branch metrics. Thus, a pipelining technique with a 

request/acknowledgement system is introduced to improve the computational efficiency. 

This technique significantly reduces the decoding latency. 
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5.2 Future Work 

First, further work should be done on this hardware implementation with a block of a 

larger size, although this implementation does not need much modification if the interleaver 

size is less than 1024. The scalability of this implementation is discussed , but not tested and 

verified. More work need to do in the extension of this prototype. Second, the longest path 

determines the clock skew. The design working in an over high frequency may generate 

the decoding errors in terms of BER. Future work can also be done to find out the max 

frequency to optimize this design. Third, a look up table can be added to update the 

MAX-LOG-MAP algorithm to the LOG-MAP algorithm. Fourth, the software simulations 

may help us to find turbo codes with one of the best decoding performance. For example 

to replace block interleavers by random interleavers. This work will make a critical move to 

apply turbo codes in real applications. Fifth, the turbo codes with a higher memory order 

may be investigated and then implemented, when the pipelining technique is employed. 
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