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Abstract 

Malaria is one of the most important parasitic infections in humans and more than 

two billion people are at risk every year. There were an estimated 247 million malaria 

cases in 2006, causing nearly a million deaths. Currently, malaria is still endemic in 

109 countries. Human malaria is caused by protozoan parasites of the genus Plasmod

ium, transmitted from human-to-human by the female Anopheles mosquito. Over the 

past century, considerable work has .been invested in the study of malaria transmis

sion. However, only a few studies with malaria consider the spatial and temporal 

heterogeneities of this disease. Hence, there is an essential need for more informa

tion on the spatial and temporal patterns of disease burden, distribution and control 

strategies. The aim of this thesis is to study the malaria transmission in heterogeneous 

environments. 

We begin with a brief introduction of mathematical background for this thesis in 

chapter 1. We shall provide some mathematical terminologies and theorems related to 

the theories of monotone dynamical systems, uniform persistence, basic reproduction 

ratio, spreading speeds and traveling waves. 

Chapter 2 is devoted to the study of global dynamics of a periodic susceptible

infected-susceptible compartmental model with maturation delay. We first obtain 

sufficient conditions for the single population growth equation to admit a globally 
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attractive positive periodic solution. Then we introduce the basic reproduction ratio 

R 0 for the epidemic model, and show that the disease dies out when Ro < 1, and 

the disease remains endemic when R 0 > 1. Numerical simulations are also provided 

to confirm our analytic results. The study in this chapter also enables us to consider 

time-delayed and periodic malaria models. 

In chapter 3, we present a malaria transmission model with periodic birth rate 

and age structure for the vector population. We first introduce the basic reproduction 

ratio for this model and then show that there exists at least one positive periodic state 

and that the disease persists when R 0 > 1. It is also shown that the disease will die 

out if Ro < 1, provided that the invasion intensity is not strong. We further use these 

analytic results to study the malaria transmission cases in KwaZulu-Natal Province, 

South Africa. Some sensitivity analysis of R 0 is performed, and in particular, the 

potential impact of climate change on seasonal transmission and populations at risk 

of the disease is analyzed. 

Based on the classical Ross-Macdonald model, we propose in chapter 4 a periodic 

model with diffusion and advection to study the possible impact of the mobility of 

humans and mosquitoes on malaria transmission. We establish the existence of the 

leftward and rightward spreading speeds and their coincidence with the minimum 

wave speeds in the left and right directions, respectively. For the model in a bounded 

domain, we obtain a threshold result on the global attractivity of either zero or a 

positive periodic solution. 

To understand how the spatial heterogeneity and extrinsic incubation period (EIP) 

of the parasite within the mosquito affect the dynamics of malaria epidemiology, we 

formulate a nonlocal and time-delayed reaction-diffusion model in chapter 5. We then 

define the basic reproduction ratio R 0 and show that R 0 serves as a threshold param-



iii 

eter that predicts whether malaria will spread. FUrthermore, a sufficient condition is 

obtained to guarantee that the disease will stabilize at a positive steady state even

tually in the case where all the parameters are spatially independent. Numerically, 

we show that the use of the spatially averaged system may highly underestimate the 

malaria risk. The spatially heterogeneous framework in this chapter can be used to 

design the spatial allocation of control resources. 

At last, we summarize the results in this thesis, and also point out some problems 

for future research in chapter 6. 
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PRELIMINARIES 1 

Chapter 1 

Preliminaries 

In this chapter, we present some terminologies and known results which are going 

to be used in the rest of this thesis. They are involved in monotone dynamical 

systems, uniform persistence and coexistence states, basic reproduction ratios for 

compartmental epidemic models in periodic environments, and.the theory of spreading 

speeds and traveling waves for monotone periodic semifiows. 

1.1 Monotone dynamics 

Let E be an ordered Banach space with an order cone P having nonempty interior 

int(P). For x, y E E , we write x ~ y ifx-y E P, x > y ifx-y E P\ {0} and x » y 

if x - y E int(P). If a< b, we define the order interval [a,b]:={x E E: a:::; x:::; b}. 

Definition 1.1.1 Let U be a subset of E, and f : U ---> U a continuous map. The 

map f is said to be monotone if x ~ y implies that f ( x) ~ f (y); strictly monotone if 

x > y implies that f ( x) > f (y); strongly monotone if x > y implies that f ( x) » f (y) . 
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Theorem 1.1.1 (Dancer-Hess connecting orbit theorem) {22, Proposition 1} Let u1 < 

u 2 be fixed points of the strictly monotone continuous mapping f : U ---.. U, let I := 

[u1 , u2] c U, and assume that f (I) is precompact and that f has no fixed point distinct 

from u1 and u2 in I. Then either 

(a) there exists an entire orbit {xn}~=-oo off in I such that Xn+l > Xn, Vn E Z, 

and limn__..-00 Xn = U1 and limn__..00 Xn = u2; or 

(b) there exists an entire orbit {Yn}~=-oo off in I such that Yn+l < Y n, Vn E Z, and 

limn__..-00 Yn = U2 and limn-.oo Yn = ul. 

Recall that a subset K of E is said to be order convex if [u, v] E K whenever · 

u,v E K satisfy u < v. 

Definition 1.1.2 Let U E P be a nonempty, closed and order convex set. A contin

uous map f : U ---.. U is said to be subhomogeneous if f(>.. x) 2': >..f(x) for any x E U 

and).. E [0, 1]; strictly subhomogeneous if f(>..x) > >..f(x) for any x E U with x » 0 

and).. E (0, 1); strongly subhomogeneous if f(>..x) » >..f(x) for any x E.U with x » 0 

and>.. E (0, 1). 

Theorem 1.1.2 {105, Theorem 2.3.2} Assume that f: U---.. U satisfies either 

(i) f is monotone and strongly subhomogeneous; or 

(ii) f is strongly monotone and strictly subhomogeneous. 

Iff : U ---.. U admits a nonempty compact invariant set K C int(P), then f has 

a fixed point e » 0 such that every nonempty compact invariant set off in int(P) 

consists of e . 
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Recall that a continuous mapping f : X -+ X is said to be asymptotically smooth 

if for any nonempty closed bounded set B C X for which f(B) c B , there is a 

compact set J C B such that J attracts B. Denote the Frechet derivative off at 

u = a by Df(a) if it exists, and let r(Df(a)) be the spectral radius of the linear 

operator D f(a) : E-+ E. 

Theorem 1.1.3 (Threshold dynamics) [105, Theorem 2.3.4} Let V = [0, b] with b » 
0, and f: V-+ V be a continuous map. Assume that 

(1} f : V -+ V satisfies either 

(i) f is monotone and strongly subhomogeneous; or 

(ii} f is strongly monotone and strictly subhomogeneous; 

(2) f : V -+ V is asymptotically smooth, and every positive orbit off in V is 

bounded; 

(3} f(O) = 0, and Df(O) is compact and strongly positive. 

Then there exists threshold dynamics: 

(a) Jfr(Df(O)) ~ 1, then every positive orbit in V converges to 0; 

(b) If r(Df(O)) > 1, then there exists a unique fixed point u* » 0 in V such that 

every positive orbit in V \ {0} converges to u*. 

1. 2 Uniform persistence and coex istence st ates 

Suppose X is a metric space with metric d. Let f : X -+ X be a continuous map 

and Xo c X an open set. Define 8Xo := X\ Xo, and Ma := {x E 8Xo : r(x) E 

8X0 , \:fn ~ 0}, which may be empty. 
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Definition 1.2.1 A bounded set A is said to attract a bounded set B in X if 

lim sup {d(r(x),A)} = 0. 
n->oo, xEB 

A subset A C X is said to be an attractor for f if A is nonempty, compact and 

invariant ( f(A) = A), and A attracts some open neighborhood of itself. A global 

attractor for f : X ~ X is an attractor that attracts every point in X. For a 

nonempty invariant set M, the set W 8 (M) := {x EX : limn_.oo d(r(x), M) = 0} is 

called the stable set of M. 

Recall that a continuous mapping f : X ~ X is said to be point dissipative if 

there is a bounded set B0 in X such that Bo attracts each point in X. 

Theorem 1.2.1 {105, Theorem 1.1.3] Iff : X ~ X is compact and point dissi

pative, then there is a connected global attractor A that attracts each bounded set in 

X. 

Definition 1.2.2 f is said to be uniformly persistent with respect to (Xo, 8Xo) if 

there exists anT}> 0 such that lim infn_.oo d(r(x), 8Xo) 2: T} for all x E Xo. 

Definition 1.2.3 Let A c X be a nonempty invariant set for f. We say A is 

internally chain-transitive if for any a, b E A and any E > 0, there is a finite sequence 

x 1, ... , Xm in A with x 1 =a, Xm = b such that d(J(xi), xi+1 ) < E, 1 ::; i ::; m- 1. 

The sequence { x 1, . . . , xm} is called an ~:-chain in A connecting a and b. 

Definition 1.2.4 A lower semicontinuous function p : X ~ JR.+ is called a general

ized distance function for f : X ~ X if for every x E (Xo n p-1 (0)) U p-1 (0, oo), we 

have p(r(x)) > 0, Vn;::: 1. 
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Theorem 1.2.2 (83, Theorem 3} (or {105, Theorem 1.3.2}) Let p be a generalized 

distance function for continuous map f: X-+ X. Assume that 

(P1) f has a global attractor; 

( P2) There exists a finite sequence M = { M1, ... , Mk} of disjoint, compact, and 

isolated invariant sets in 8X0 with the following properties: 

(a) UxEMaw(x) C Uf=1Mi, where w(x) represents the omega limit set of x; 

(b) no subset of M forms a cycle in 8Xo; 

(c) Mi is isolated in X ; 

(d) W 8 (Mi ) n p- 1(0, oo) = 0 for each 1 :::; i :::; k, where W 8 (Mi) is the stable 

set of Mi. 

Then there exists a 8 > 0 such that. for any compact chain transitive set L with 

L rt Mi, for all1 :::; i :::; k, we have minxEL P(x) > 8. In particular, f is uniformly 

persistent in the sense that there exists an 17 > 0 such that lim infn__,oo d(r(x), 8Xo) 2:: 

17 for all x E Xo. 

Suppose T > 0, a family of mappings q,(t) :X-+ X , t 2:: 0 , is called aT-periodic 

semifl.ow on X if it possesses the following properties: 

(1) q,(o) =I, where I is the identity map on X; 

(2) q,(t + T) = q,(t) o q,(T), Vt 2:: 0; 

(3) q,(t)x is continuous in (t, x) E [0, oo) x X. 

The mapping q,(T) is called the Poincare map (or period map) associated with this 

periodic semifl.ow. In particular, if (2) holds for any T > 0, q,(t) is called an au

tonomous semifl.ow. 
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Theorem 1.2.3 {105, Theorem 3.1.1} Let <I>(t) beaT-periodic semifiow on X with 

<I>(t)Xo C X o, \It~ 0. Assume that S := <I>(T) is point dissipative in X 'and compact. 

Then the uniform persistence of S with respect to (X0 , 8X0 ) implies that of <I>(t) : 

x~x. 

Recall that the Kuratowski measure of noncompactness, a, is defined by 

a(B) := inf{r: B has a finite cover of diameter< r} 

for any bounded set B of X. It is not hard to see that B is precompact if and only 

if a( B) = 0. Let (X, d) be a complete space, and Jet p : X ~ JR+ be a continuous 

function. We define M0 := {x EX: p(x) > 0} and 8M0 := {x EX: p(x) = 0} . 

D efinition 1.2.5 A continuous map f : X~ X is said to be p uniformly persistent 

if there exists c > 0 such that lim infn ..... oo p(r ( x)) ~ c, Vx E Mo. The map is said 

to be a - condensing (a-contraction of order k, 0 :::; k < 1} if f takes bounded sets 

to bounded set and a(J(B)) < a(B) (a(J(B)) < ka(B)) for any nonempty closed 

bounded set B c X with a(B) > 0. 

Theorem 1.2.4 {60, Theorem 3.1 and Remark 3.1 OJ Let f : X ~ X be a continuous 

map with f(M0 ) C M0 . Assume that f : X ~ X is asymptotically smooth and p

uniformly persistent, and that f has a global attractor A. Then f : Mo ~ Mo has a 

global attractor A0 . Analogously, this result still holds for an autonomous semifiow 

<I>(t) on X with <I>(t)Xo c X 0 , \It ~ 0. 

Let {r}~=l be the discrete semidynamical system defined by a continuous map 

f : X ~ X with f(Mo) C M0 • A pointed x0 E X is called a coexistence state of 
' 

{fn}~=l if x0 is a fixed point off in Mo, i.e. , Xo E Mo and f( xo) = Xo. Assume that 

X is a closed and convex subset of a Banach space (E, II · II), that p : X ~ JR+ is a 
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continuous function such that M0 := {x E X : p(x) > 0} is nonempty and convex, 

and that f : X --4 X is a continuous map with f(M0 ) C M0 • Then, we have the 

following two results on the existence .of a coexistence steady state. 

Theorem 1.2.5 {60, Theorem 4.1 and Theorem 4. 7} Assume that f : X - X is 

a-condensing. Iff : Mo --4 M0 has a global attractor A0 C M0 , then f has a fixed 

point x0 E A0 . The analogous result holds for an autonomous semifiow <I> ( t): let <I> ( t) 

be an autonomous semifiow on X with <I>(t)(M0 ) c M0 , \:It ~ 0. Assume that <I>(t) 

is a-condensing for each t > 0, and that <I>(t) : M0 --4 M0 has a global attractor A0 . 

Then <I>(t) has an equilibrium xo E A0 , i.e., <I>(t)x0 = x0 , \:It~ 0. 

Theorem 1.2.6 (60, Theorem 4.5} Assume that 

( 1) f : X --4 X is point dissipative and p-uniformly persistent. 

(2} ro is compact for some integer no 2 1. 

(3} Either f is a-condensing or f is convex k-contracting. 

Then f : M0 - M0 admits a global attractor A0 , and f has a fixed point in A0 . 

1.3 Basic reproduction ratios in periodic environ

ments 

A central concept in the study of the spread of communicable diseases is the basic 

reproduction number, denoted by Ro, which is defined as the expected number of sec

ondary cases produced, in a completely susceptible population, by a typical infective 

individual (see, e.g., [3, 24]). In many cases, one may expect that such a disease can 
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invade the susceptible population if 'R0 > 1. Thus, we need to reduce 'Ro to be less 

than 1 in order to eradicate a disease. For a large class of autonomous compartmental 

epidemic models, the explicit formula for 'R0 was obtained in [91]. This work has been 

extended recently to the periodic case in [95]. 

In this section, we will introduce the theory of basic reproduction ratios for com

partmental epidemic models in periodic environments developed in [95]. We consider a 

heterogeneous population whose individuals can be grouped into n homogeneous com

partments. Suppose that the compartments can be divided into two types: infected 

compartments, labeled by i = 1, 2, ... , m, and uninfected compartments, labeled by 

i = m + 1, ... , n. Define Xs to be the set of all disease-free states 

Xs := {x ~ 0: Xi= 0, Vi= 1, 2, ... , m}. 

Let Fi(t,x) be the input rate of newly infected individuals in the i-th compartment, 

vi+(t, x) be the input rate of individuals by other means (for example, births, immi

grations), and vi-(t, x) be the rate of transfer of individuals out of compartment i (for 

example, deaths, recovery and emigrations) . Thus, the disease transmission model in 

a periodic environment is governed by a periodic ordinary differential system: 

d~i = Fi(t, x) - Vi(t, x) := fi(t , x), i = 1, ... , n, 

where V(t , x) = vi- (t, x)- Vt(t, x). Assume that the model (1.1 ) has an infection-free 

periodic solution x0 (t) = (0, ... ,O,x~+1 (t), ... ,x~(t))T with x?(t) > 0, m + 1 :S: i::; n 

for all t. Let f = (!1 , ... , fn)T , and define the following matrices 

M(t) := (8fi(t,x
0
(t))) ' F(t) := ( 8Fi(t,x

0
(t)) ) , 

OXJ m+l:5i,j:Sn OXJ 1:5i,j:5m 
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Then 

DxF(t , X (t)) = , Dx V(t , X (t)) = 1 

0 ( F(t) 0 ) 0 ( V(t) 0 ) 
0 0 J (t) -M(t) 

where J (t) is an (n- m) x n matrix. 

Denote 1 p ( t) be the monodromy matrix for the periodic system ~: P(t )z. 

Assume that 

(B1) For each 1 ~ i ~ n, thefunctionsFi(t,x), Vt(t,x) and vi-(t,x) are nonnegative 

and continuous on R x R~ and continuously differential with respect to x. 

(B2) There is a real number T > 0 such that for each 1 ~ i ~ n, the functions 

Fi(t, x), v i+ (t, x) and vi-(t, x) are T-periodic in t. 

(B3) If Xi = 0, then vi- = 0. In particular, if X E Xs, then v i- = 0 fori= 1, ... 'm. 

(B4) Fi = 0 fori> m. 

(B5) If x E X 8 , then Fi(t, x) = Vi(t, x) = 0 fori= 1, ... , m. 

(B6) p(!M(T)) < 1, where p(!M(T)) is the spectral radius of ! M(T) . 

(B7) p(1-v(T)) < 1. 

Let Y(t, s), t > s, be the evolution operator of the linear T-periodic system 

dy 
dt = -V(t)y. 

That is, for each s E R, them x m matrix Y(t, s) satisfies 

d 
dtY(t,s) = -V(t)Y(t,s), Vt 2: s, Y(s ,s) =I, 
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where I is the m x m identity matrix. Set Cr be the ordered Banach space of all 

T-periodic functions from lR to lRm, which is equipped with the maximum norm and 

the positive cone C:} := {¢ E Cr : ¢(t) 2: 0, \:It 2: 0}. Then we can define a linear 

operator L : Cr ---+ Cr by 

(L¢)(t) = 1oo Y(t , t- a)F(t- a)¢(t- a)da, \:It E JR, ¢ E Cr. 

We call L the next infection operator, and define the spectral radius of Las the basic 

reproduction ratio 

Ro := p(L) 

for the periodic epidemic model ( 1.1). 

The following result shows that Ro is a threshold parameter for the local stability 

of a disease-free periodic solution x0 (t). 

Theorem 1.3.1 [95, Theorem 2.2] Assume that (B1}-(B7} hold. Then the following 

statements are valid: 

(1} Ro = 1 if and only if p(Y F- v(T)) = 1. 

(2} Ro > 1 if and only if p(Y F-v(T)) > 1. 

(3} Ro < 1 if and only if p(Y F- v(T)) < 1. 

Thus, x0 (t) is asymptotically stable if R0 < 1, and unstable if Ro > 1. 

Let U(t, s, >.) , t > s, s E JR, be the evolution operator of the following linear 

system 

~~ = [-V(t) + F~t)] u, t E JR. 

Then the following theorem is useful to numerically compute the basic reproduction 

ratio Ro. 
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Theorem 1.3.2 {95, Theorem 2.1} Let (B1)-(B1) hold. Then the following state

ments are valid: 

{1) If p(U(T, 0, .A)) = 1 has a positive solution .-\0 , then .-\0 is an eigenvalue of L, 

and hence Ro > 0. 

(2) If Ro > 0, then .Ao = Ro is the unique solution of p(U(T, 0, .A))= 1. 

(3) Ro = 0 if and only if p(U(T, 0, .A)) < 1 for all .A> 0. 

For a continuous periodic function g(t) with period T , we define its average as 

1 {T 
[g] := T Jo g(t)dt. 

The following result gives explicit formulae for Ro in two special cases. 

Theorem 1.3.3 {95, Lemma 2.2} Let (B1}-(B1} hold. Then the following state

ments are valid: 

(1) If V(t) = diag(V1(t), ... , Vm(t)) and F(t) = diag(FI(t), . .. , Fm(t)), then Ro = 

max {1Eti} 
l~i~m [V,] ' 

{2) If V(t) = V and F(t) = F are two constant matrices, then R 0 = p(V~1 F) = 
p(FV-1). 

1.4 Spreading speeds and traveling waves 

Let C be the set of all bounded and continuous functions from lHl to Rk, where lHl = R 

or Z. Clearly, every vector in Rk can be regarded as a function in C. We equip Rk 

with the positive cone R~, so that Rk is an ordered space. For u = (u1, ... ,uk), w = 
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(w1 , . .. , wk) E C, we write u ~ w (u » w) provided ui(x) ~ wi(x) (ui(x) > wi(x)), 

\:/i = 1, ... , k, \:/x E !HI, and u > v provided u ~ w but u =I w. For any r » 0, we 

define 

[O,r] := {u E JRk: 0 ~ u ~ r} and Cr := {u E C: 0 ~ u ~ r} . 

We equip C with the compact open topology, i.e., um --+ u in C means that the 

sequence of um(x) converges to u(x) uniformly for x in any compact set in H. If we 

define 

d( ) ·= ~ max!x!<k lu(x)- w(x)l w ,.. 
u, w . ~ 

2
k , vu, wE ~L- , 

k=l 

where I · I denotes the usual norm in JRk, then (C, d) is a metric space. 

Define the reflection operator R by R[u](x) = u(-x). Given any y E !HI, define 

the translation operator Ty by Ty[u](x) := u(x- y). Let Q : C13 --+ C13 be a map, 

where {3 » 0 in JRk . Assume that 

(Al) Q[R[u]J = R[Q[u]J, Ty[Q [u]J = Q[Ty[u]J, V.y E !HI. 

(A2) Q : C13 --+ C13 is continuous with respect to the compact open topology. 

(A3) Q[C13] is precompact in X.13 . 

(A4) Q : C13 --+ C13 is monotone (order-preserving) in the sense that: Q[u] ~ Q[v] 

whenever u ~ v in C13. 

(A5) Q admits exactly two fixed points 0 and {3 , and for any positive number £ , 

there is an a E [0, {3] with II all < c such that Q[a] » a. 

Then the following theorem guarantee that the discrete-time ~emifiow {Qn}~=O (in 

short, the map Q) on C13 admits an asymptotic speed of spread c*. 
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Theorem 1.4 .1 (57, Theorem 2.11, Theorem 2.15 and Corollary 2.16} (or (56, The

orem A}) Suppose that Q satisfies (A1)-(A5). Let Uo E c/3 and Un = Q [un-1] for 

n ~ 1. Then there is a real number c* such that the following statements are valid: 

(i) For any c > c*, if 0 ~ u0 « /3 and u0 (x) = 0 for x outside a bounded interval, 

then limn-oo,lxl~ncUn(x) = 0. 

(ii) For any c < c* and any a E [0, r] with a» 0, there exists ra > 0 such that if 

Uo ( x) ~ a for x on an interval of length 2r a, then limn-oo,lxl~nc Un ( x) = /3 . If, in 

addition, Q is subhomogeneous on c/3, then ra can be chosen to be independent 

of a» 0. 

We call c* in the above theorem the asymptotic speed of spread (in short, spreading 

speed) of the map Q on c13. In order to estimate the spreading speed c*, a linear 

operator approach was developed in [57]. Let M := C---+ C be a linear operator with 

the following properties: 

(Cl) M is continuous with respect to the compact open topology. 

(C2) M is a positive operator, that is, M[u] ~ 0 whenever u > 0. 

(C3) M satisfies (A3) with C13 replaced by any subset of C consisting of uniformly 

bounded functions. 

(C4) M['R[u]] = 'R[M[u]], Ty[M[u]] = M[Ty[u]], 'VuE C, y E lHI. 

( C5) M can be extended to a linear operator on the linear space 6 of all of functions 

u E C(lHI, JRk) having the form 
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such that if Un, u E C and un(x) ---+ u(x) uniformly on any bounded set, then 

M[un](x) ---+ M[u](x) uniformly on any bounded set. 

Note that hypothesis (C4) implies that M is also a linear operator on JRk. Define 

the linear map B~-' : JRk ---+ JRk by 

In particular, Bo = M on JRk. If 17n, 17 E JRk and 17n---+ 17 as n---+ oo, then 17ne-~-'x---+ 

17e-~-'x uniformly on any bounded subset of !HI. Thus, B~-'[17n] = M[17ne-~-'x](O) ---+ 

M[17e-~-'x](O) = B~-'[17], and hence B~-' is continuous. Moreover, B~-' is a positive operator 

on JRk. Assume that 

(C6) For any 1-l ~ 0, B~-' is positive, and there is an n0 such that B~0 = B~-'B~-' .. . B~-' 
'---v--" 

no 
is a compact and strongly positive linear operator on JRk . 

.. 
It then follows from [57, Lemma 3.1] that B~-' has a principal eigenvalue A(J.£) with a 

strongly positive eigenfunction. Moreov~r, we have the following property for A(J.t). 

Lemma 1.4.1 (57, Lemma 3. 7} >.(1-l) is log convex on JR. 

The following condition is needed for the estimate of the spreading speed c*. 

(C7) The principal eigenvalue >.(0) of B0 is larger than 1. 

Define W(~-L) := In.X(~J.), VJ.£ > 0. Then, we can use the following result to estimate 
J.l. 

the spreading speed of map Q. 

Theorem 1.4.2 (57, Theorem 3.1 OJ Let Q be an operator on C.e satisfying (A 1 )

(A 5) and c* be the asymptotic speed of spread of Q . Assume that the linear operator 

M satisfies (C1)-(C7), and that the infimum of W(J.t) is attained at some finite value 

1-l* and W(+oo) > W(~-L*) . Then the following statements are valid: 
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(1) If Q[u] :S M[u] for all u E C13, then c* :S inf11>o w(,u). 

(2) If there is some TJ E JRk, with TJ » 0, such that Q[u] ~ M[u] for any u E C11 , 

then c* ~ inf 11>o 1¥ (,u). 

Based on the theory of spreading speeds and traveling waves for periodic semifiows 

in the monostable case [56], we have the following result on the existence of spreading 

speeds for periodic semiflows. 

Theorem 1.4.3 {56, Theorem 2.1] Let {Qt}t~o be aT-periodic semifiow on Cr 

with two x-independent T -periodic orbits 0 « u* ( t). Suppose that the Poincare map 

Q = Qr satisfies all hypotheses (A1)-(A5) with {3 = u*(O), and Qt satisfies (A1) 

for any t > 0. Let c* be the asymptotic speed of spread for Qr. Then the following 

statements are valid: 

(1) For any c > ~' ifv E C13 with 0::; v « {3, and v(x) = 0 for x outside a bounded 

interval, then limt_,oo,lxl~tc Qt[v](x) = 0. 

(2) For any c < ~ and any a E [0, r] with a » 0, there exists a positive number 

ru > 0 such that if v E Cp and v(x) » a for x on an interval of length 2ru , 

then limt_,oo,lxl::;tc(Qt[v](x)- u*(t)) = 0. If, in addition, Qr is subhomogeneous 

on c13 , then ru can be chosen to be independent of a» 0. 

We say that W(t, x- ct) is a periodic traveling wave of the T-periodic semifiow 

{Qt}t~o if the vector-valued function W(t, z) is T-periodic in t and Qt[W(O, ·)](x) = 

W(t, x - ct), and that W(t, x- ct) connects u*(t) to 0 if W(t -oo) = u*(t) and 

W(t, +oo) = 0 uniformly fortE [0, T]. 
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Theorem 1.4.4 {56, Theorem 2.2 and Theorem 2.3] Let {Qth~o be anT-periodic 

semifiow on Cr with two x -independent T -periodic orbits 0 « u * ( t). Suppose that the 

Poincare map Q = Qr satisfies all hypotheses (A1}-(A5) with f3 = u*(O). Let c* be 

the asymptotic speed of spread for Qr. Then the following statements are valid: 

(1) For any 0 < c < ~~ {Qt} 1~0 has noT-periodic traveling wave W(t,x- ct) 

connecting u*(t) to 0. 

(2) If, in addition, Qt satisfies (A1} and (A4) for each t > 0, then for any c 2': ~~ 

{ Qt}t~o has anT -periodic traveling wave W(t, x- ct) connecting u*(t) to 0 such 

that W(t, z) is continuous, and nonincreasing in z E R 

Remark: If the reflection invariance, i.e., Q[R[u]] = R [Q[u]], is not assumed in (Al ), 

then we have the existence of the rightward spreading speed c~ and the leftward 

spreading speed c:_, see [97]. These spreading speeds can also be estimated by the 

linear operators approach. Further, both c~ and c:_ are the minimum wave speeds 

for monotone traveling waves in the right and left directions, respectively. 
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Chapter 2 

Threshold Dynamics in A 

Time-Delayed Periodic SIS 

Epidemic Model 

2.1 Introduction 

Many mathematical models for the spread of infectious diseases are described by au

tonomous systems of differential equations (see, e.g., [3,24]) . However, certain diseases 

admit seasonal behavior and it is now well understood that seasonal fluctuations are 

often the primary factors responsible for recurrent epidemic cycles. Periodic changes 

in social interactions can alter t he contact rate for some directly transmitted conta

gious infections. For example, in the case of childhood infectious disease, the contact 

rates vary seasonally according to the school schedule [26] . Fluctuations of birth rates 

are also evidenced in the works of population dynamics [58, 105]. Periodic vaccination 

strategies are often used to control diseases [27]. We further refer to two surveys [2,34] 
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and references therein for seasonal fluctuations in epidemic models. It thus becomes 

natural to model these diseases by periodically forced nonlinear systems. 

The purpose of this chapter is to obtain a threshold type result on the global 

dynamics for a periodic SIS epidemic model with maturation delay. Moreover, we 

will find conditions to ensure that a periodic single population growth model admit 

an attractive positive periodic solution, which will be used in the study of mosquito 

population in the next chapter. The model is presented in the next section and a 

single species growth model is analyzed with three types of birth rate functions. In 

section 2.4, we introduce the basic reproduction ratio and show that it acts as a 

th~eshold parameter for the uniform persistence and global extinction of the disease. 

The last two sections in this chapter give some numerical simulations and concluding 

remarks. 

2.2 The model 

Many epidemiological models are formulated so that the infectious disease spreads in a 

population which either is a fixed closed population or has a fixed size with balancing 

inflows and outflows due to births and deaths or migration. However , it is generally 

accepted in ecology that the sizes of plant and animal populations are influenced and 

constrained by foraging, predation, competition and limited resources. In [19], Cooke 

et al. considered the variable population size and derived a time-delayed SIS epidemic 

model: 

{ 

S'(t) 

I'(t) 

= B(N(t- r))N(t- r)e-d17· - dS(t) - f3S~fgt) + -yl(t ), 

f3Stt~(t) - (d + d2 + -y) I(t) , 
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where I is the number of the infective population, S is the number of the susceptible 

population and N(t) = S(t) + I(t). Here d > 0 is the death rate constant at the adult 

stage, B(N) is a birth rate function, r is the maturation time, d2 2: 0 is the disease 

induced death rate, 1 > 0 is the recovery rate ( ~ is the average infective time), and 

d1 is the death rate constant for the juvenile stage. The standard incidence function 

is used with f3{v giving the average number of adequate contacts with infectives of 

one susceptible per unit time. Typical examples of birth rate functions B (N) in the 

biological literature are: 

(Bl) B1(N) = q!tvn, with p, q, n > 0 and ~>d. 

(B2) B2(N) = ~ + c, with A> 0, d > c > 0. 

(B3) B3(N) =be-aN, with a> 0, b >d. 

FUnctions B1 with n = 1 and B3 are known as Beverton-Holt function and Ricker 

function, respectively. 

Their model was obtained under the following assumptions: 

(1) Transmission of disease is assumed to occur due to contact between susceptibles 

and infectives. 

(2) There is no vertical transmission. 

(3) The disease confers no immunity, thus upon recovery an infective individual 

returns to the susceptible class (hence the name SIS model) . 

This type of model is appropriate for some bacterial infections. If the population does 

not recover from the disease, the recovery rate constant is set to zero, giving an SI 

model. 
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Let B(t, N) and d(t), respectively, be the time-dependent birth and death rates 

of the population at the adult state, and d1 ( t) be the death rate of the population at 

the juvenile stage. Assume that the maturation delay is T > 0. It then follows that 

the rate of entry into the adult stage is 

Thus, we obtain the following nonautonomous SIS model: 

S'(t) = B(t- T N(t- T))N(t- T)e- fL-rd 1(s)ds- d(t)S(t)- (J(t)S(t)J(t) 
' N(t) 

+ r(t) I(t), (IT) 

I' (t) = (J(t)~~~~I(t) - (d(t) + d2(t) + r(t))I(t), 

where N(t) = S (t)+I(t ), B (t, N), (J(t), d(t), d1 (t), d2 (t) and r(t) are nonnegative. To 

incorporate seasonal effects, we further assume that all these functions are T-periodic 

in t for some T > 0. It is easy to see that the function 

is also T-periodic in t. Thus, model (2.1) is a periodic time-delayed differential system. 

_ We should point out tha_t_the model (2.1)~ilh B(f N_) = -fJ + c anci_d(t), d1(t), d2(t) 

and 1(t) being constants was studied in [106]. Here we investigate the global dynamics 

of (2.1) with the general forms of birth rate functions. 

We assume that B(-, ·) E C 1 (1R x (0, +oo), JR+) and B(t, N)N admits a continuous 

extension G(t, N) from lR x (0, +oo) to lR x JR+. It then follows that for any ¢ E 

C([-T, OJ, JR~), there is a unique local solution (S(t, ¢), I(t, ¢)) of system (2.1) with 

(S(B, ¢), I(B , ¢)) = ¢(8), VB E [-T, OJ (see, e.g., [38, Theorem 2.3]). Further, we have 

(S(t, ¢), I(t, ¢)) ~ 0 in its maximal interval of existence according to [80, Theorem 



2.3 A SINGLE POPULATION GROWTH MODEL 21 

5.2.1]. It is also easy to see that if¢>= (¢1 , ¢2 ) E C([-T, 0], ~~) with ¢2(0) > 0, then 

I (t,¢>)' > 0 and S(t,¢>) > 0 for all t > 0 in its maximal interval of existence. For any 

function x : [-T, a) --+ ~m, a > 0, we define Xt E C([-T, 0], JRm) by Xt(B) = x(t +B), 

VB E [-T,O] . In what follows, we write x for the element of C ([-T, O], JRm) satisfying 

x(B) = x for all B E [-T, OJ . 

2.3 A single population growth model 

In this section, we consider the single-species population growth model: 

N'(t) = a(t)B(t- T, N(t- T))N(t- T)- d(t)N(t) £ F(t, N(t), N(t- T)), ~ 

where a(t) = e- ftt-T dt(s )ds. We will establish four sets of sufficient conditions under 

which system (2.2) admits a globally attractive positive T-periodic solution, and 

hence, the single population stabilizes eventually at an oscillating state. 

For any ¢> E C([- T, 0], JR+), there is a unique local solution N(t, ¢>) of (2.2) with 

N(B, ¢) = ¢(B), VB E [-T, OJ (see, e.g., [38, Theorem 2.3]). Moreover, we have 

N(t, ¢) 2: 0 in its maximal interval of existence according to [80, Theorem 5.2.1]. 

Consider the linear equation with time delay T: 

u'(t) = a(t)u(t) + b(t)u(t- T), 

where a(t), b(t ) are T-periodic and continuous, b(t) > 0, Vt 2: 0. 

For any ¢ E C([ -T, 0], JR), let u(t, ¢) be the unique solution of (2.3) satisfying 

u0 = ¢. Let P be the Poincare map associated with (2.3) on C([- T, 0], JR), that is, 

P(¢) = ur(¢) . The following result comes from [101, Proposition 2.1]. 
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Lemma 2.3.1 Let r(F) be the spectral radius of P. Then r = r(F) is a positive 

eigenvalue of P with a positive eigenfunction. Moreover, u(t) = v0 (t)e~ln(r) is a 

solution of {2.3}, where v0 (t) is T-periodic and v0 (t) > 0, Vt 2:0. lfT = kT for some 

integer k 2: 0, then r - 1 has the same sign as for (a( t) + b( t) )dt. 

Note that the condition r(F) < 1 (r(F) > 1) implies that the zero solution of 

(2.3) is stable (unstable). Thus, Lemma 2.3.1 implies that in the case where the time 

delay is an integer multiple of the time period, the stability of zero solution of (2.3) is 

equivalent to that of zero solution of the linear periodic ordinary differential equation 

u'(t) = (a(t) + b(t))u(t). 

2.3.1 A general periodic form of B1(N) 

Assume that 

(H1) B(· , ·) E C1(1R x (0, +oo), IR+) with 88~~N) < 0, VN E (0, +oo), ~ > B(t

T, oo)"; and there exists G(·, ·) E C(IR x IR+, IR+) such that G(t, N) = B(t, N)N, 

Vt E IR, N > 0. 

(H2) G(t, 0) = 0 and r1 =r(P1) > 1, where r(PI) is the spectral radius of P1, and P1 

is the Poincare map of the following linear equation 

N'(t) = o:(t)B(t- T, O)N(t- T)- d(t)N(t). 

(H3) BG(t,N) > 0 VN E IR t E IR 
8N ' +> . 

It then follows that the periodic function F(t, v1 , v2) has the following properties: 
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(2) F is strictly subhomogeneous, i.e., for any A E (0,1), V'v1 ,v2 > 0, F(t,Av1,Av2 ) 

> AF(t, v1, v2). 

(3) There exists a positive number h0 > 0 such that F(t, h0 , h0 ) ~ 0. 

The following result is a straightforward consequence of [101, Theorem 2.1]. 

Theorem 2.3.1 Assume (H1}-(H3} hold. Then equation (2.2} admits a globally at

tractive positive T-periodic solution N*(t) in C([-r,O],JR+) \ {0}. 

2.3.2 A general periodic form of B2(N) 

Assume that 

(A1) B(·, ·) E C1(1R x (0, +oo), IR+) with 88J~N) < 0, V'N > 0, t E IR, and ~ > 

B(t- r,oo) for all t E JR. 

(A2) There exists G(·, ·) E C(IR x IR+, IR+) such that G(t, N) = B(t, N)N , V't E IR, 

N > 0, and G(t,O) > 0, V't E JR. 

(A3) BG(t,N) > 0 V' N E IR t E IR 
8N ' +> . 

Theorem 2.3.2 Assume (A1}-( A3} hold. Then equation (2.2} admits a globally at

tractive positive T-periodic solution N*(t) in C([-r,O],IR+) \ {0} . 

Proof. From (A2), we have F(t, 0, 0) > 0 and there is ho > 0 such that F(t, h, h) ~ 0 

for all h > h0 . It then follows from [80, Remark 5.2.1] that [0, h] is positively invariant. 

Thus, for any¢ 2: 6, we can find some hq, > h0 such that ¢ ~ hq,, and hence N(t, ¢) 

exists for all t 2: 0. Define the Poincare map P2 : C([-r, 0], IR+) -+ C([-r, 0], IR+) 

by P2 (¢) = Nr(¢). Thus, [80, Theorem 5.1.1 and Corollary 5.3.5] imply that P2 is 
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monotone and p;o is strongly monotone when n0T 2: 2T. By the theory of delay 

differential equation (see, e.g., [38, Theorem 3.6.1]) , p;o is compact. Moreover, we 

note that F(t, u, v) is strictly subhomogeneous in (u, v). Using the similar arguments 

as in [104, Theorem 3.3], we can deduce that P2 is strictly subhomogeneous in t he 

sense P2(a¢) > aP2 (¢) for ¢ » 6 and 0 < a < 1. Thus, p;o is also strictly 

subhomogeneous. 

Note that 6 :::; P2 (0). We claim 6 < P2 (0). Suppose not, then P2 (0) = 6, hence, 

N(T+B, 0) = 0 for all BE [-T, 0] and N'(T, 0) = 0. However, N'(T, O)=G(T-T, O)a(t) 

> 0, a contradiction. Consequently, 6 < P2(0). Thus, 

Therefore, for any cP1 E Wn0 (0), we have cP1 2: p;o+l(O) » 0, where W n0 (¢;) denotes 

the omega-limit set of¢ under P;-0
• Moreover, V¢ 2: 6 and V'!j; E Wn0 (¢; ), we have 

7/J 2: p;o+l (0) » 0 from the monotonicity of p;o . 

By Theorem 1.1.2 as applied to p;o, there exists a ¢0 » 6 with P;-0 (¢0 ) = ¢0 such 

that ¢0 = Wn0 (<p) for all of <p 2: 6. Regarding (2 .2) as an noT-periodic system, we then 

see that (2.2) admits a globally attractive positive n0T-periodic solution N(t, ¢0). It 

remains to prove that N(t, ¢0 ) is T-periodic, that is, ¢0 is a fixed point of P2 . Since 

and p;no (o) ---+ ¢0 as n ---+ oo, it easily follows that Pr(o) ---+ ¢0 as n ---+ oo, and 

hence, ¢0 is the fixed point of P2 . Therefore, N(t, ¢0 ) is a globally attractive T

periodic solution for (2.2) in C([-T, OJ, JR+) \ {6}. • 

2.3.3 A general periodic form of B3(N) 

In this subsection, we take B(t, N) = p(t)e-q(t)N and assume that 
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(Sl) p(t), q(t), d(t), d1 (t) are nonnegative and T-periodic in t, and p(t) > 0, q(t) > 0 

for all t E IR; 

(82) r=r(P3 ) > 1, where r(P3) is the spectral radius of P3 , and P3 is the Poincare 

map of the following linear equation 

N'(t) = a(t)p(t- T)N(t - T)- d(t)N(t). 

Note that 

N'(t) a(t)p(t- T)e-q(t-r)N(t-r) N(t- T)- d(t)N(t) 

< a(t)p~t- 7~ e-1
- d(t)N(t). 

q t- T 

Consider the periodic ordinary differential equation 

O'(t) = a(t)p~t- 7~ e-1
- d(t )O(t). 

q t- T 

It then follows that equation (2.6) has a unique periodic solution 

and O•(t) is globally asymptotically attractive for (2.6) with 0(0) 2: 0. By the 

comparison theorem, we have N(t, ¢) ~ O(t, ¢(0)) for all t in its maximal inter

val of existence, where O(t, ¢(0)) is the solution of (2.6) with 0(0) = ¢(0). Since 

lim (O(t, ¢(0))- O*(t)) = 0, the solution for (2.2) exists globally, and the periodic 
t~oo 

solution semiftow for (2.2) is point dissipative. 

In addition to (Sl)-(82), we further assume that 

(s3) o·(t) ~ qtt). 
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Then the following result holds. 

Theorem 2.3.3 Assume {S1}-{S3} hold. Then {2.2} admits a globally attractive pos

itive T-periodic solution N*(t) in C([-r,O],JR+) \ {6}. 

P roof. Let P4 is the Poincare map associated with (2.2). It then follows that 

w('lj;) ~ [6, 00] for any '1/J E C([-r, 0], JR+), where w('lj;) is the omega limit set of '1/J ~ 6 

for P4 and 00 E C([-r, 0], JR+) with 00(8) = U*(B), VB E [-r, 0]. Furthermore, for 

each ¢ E [6, 00], we have ¢(0) :::; U*(O), and hence, N(t, ¢) :::; U*(t) for all t 2: 0, 

which implies that [6, 00] is positively invariant for P4 . 

For a positive £ > 0, let re: be the spectral radius of 

v'(t) = (a(t )p(t- r)- £o)v(t- r)- d(t)v(t). 

Since r(P3 ) > 1, we can choose £o small enough such that re:0 > 1 and a(t )p(t- r) 

£o > 0. From Lemma 2.3.1, (2.7) admits a solution v*(t) = e~lnr•ou0 (t) , where u0 (t) 

is positive and T-periodic. Hence, v•(t) --+ oo. 

For £o > 0, we choose a sufficiently small positive number 80 , such that 

a(t)p(t- r)e-q(t-r)N ~ a(t)p(t- r)- £o, 'it 2: 0, 0 :S N < 8a. 

Since lim Nt ( ¢) --+ 0 uniformly for t E [0, T], there exists 81 > 0 such that 
¢-+0 

We first claim that lim sup IIP.f'I/JII ~ 81 for all of '1/J E [6, UQ'] \ {6}. Suppose not, and 
n-+oo 

lim sup IIP.f¢11 < 81 for some ¢ E [6, 00] \ {6} , then there exists an integer N1 2: 1 
n-+oo 

such that IIP.f¢11 < 81, 'in 2: Nr. For any t- T 2: N1T , we have t = nT + t' with 

n 2: N1, t' E [0, T] and IINt(¢)11 = IINt'.(P.f¢)11 :::; 8a. Then 

N'(t, ¢) > a(t)p(t- r)e-q(t- r)N(t-r,</>) N(t - T , ¢) - d(t )N(t, ¢) 

> (a(t)p(t- r) ~ £o)N(t- T, ¢)- d(t )N (t, ¢). 
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Since N(t, ¢) > 0, Vt > T, we can choose a small number k > 0 such that N(t) > 

kv*(t), Vt E [N2T, N2T + Tj, where N2 > N1 and N2T > T. By the comparison 

theorem (see e.g. [80, Theorem 5.1.1 ]), we have N(t, ¢) > kN*(t), Vt :2:: N2T + T. 

Thus, lim N(t, ¢) = oo, a contradiction. 
t~oo 

Let X = [6, 00] and Xo = { ¢ E X : ¢(0) > 0}, define 8X0 = X\ X0 . Note 

that ? 4 is point dissipative, asymptotically smooth and the orbits of bounded sets 

are bounded. It then follows from Theorem 1.2.1 that ? 4 admits a global attractor 

A E X. It is clear that Ma := {¢ E 8X0 : PJ:(¢) E 8X0 , Vn :2:: 0} = {0} and 

Q(Ma) := UcbeM8 w(¢) = {6}, where w(¢) is thew-limit set of¢; with respect to ?4 . In 

view of the above claim, {0} is isolated in X and W 8 (0) n X 0 = 0 where W 8 (6) is the 

stable set of 6 for ? 4 • Moreover, for each 'lj; E 8X0 and 'lj; ::/: 6, there exists a t0 E [0, Tj 

such that N(t0 , 'lj;) > 0, where N(t, 'lj;) is the solution of equation (2.2) through 'lj;. 

Hence, N(t, 'lj;) > 0 for all t :2:: t0 , which implies that PJ:('Ij;) E X0 for nT > T. 

Therefore, w(¢) ::/: {0} and there is no cycle in 8X0 from 6 to 6. By the acyclicity 

theorem on uniform persistence for maps (see Theorem 1.2.2 or [105, Theorem 1.3.1 

and Lemma 1.3.1]), it follows that ? 4 : C([-T, 0], JR+) --+ C([- T, 0], JR+) is uniformly 

persistent with respect to X0 . Note that ? 4 is an a-contraction for an equivalent norm 

in C([-T,O],IR+) (see [37, Theorem 4. 1.1]) . Moreover, ? 4 is point dissipative and P4n 

is compact for nT > T. Thus, Theorem 1.2.6 implies that ? 4 : X 0 --+ X 0 admits a 

global attractor A0 in X0 . Since for every¢; E A0 , N(t , ¢) > 0 for all t :2:: 0, it follows 

from the invariance of A0 for ? 4 that A0 c int(C([-T, 0], JR+)). Consequently, for any 

'lj; EX\ {0}, ~e have w('lj;) C Ao C int(C([-T, 0], IR+)). 

Define 

E(t, u, v) := a(t)p(t- T)ve-q(t-r)v- d(t)u . . 
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For any ¢ E [6, 0'0], we have 

8E av (t, N(t), N(t- T, ¢)) 

= (1- q(t- T)N(t- T, ¢))a(t)p(t- T)e-q(t-r)N(t-r,t/>) 

> (1- q(t- T)U*(t- T))a(t)p(t- T)e-q(t-r)N(t-r,t/>) ~ 0. 

It then follows that p;a is strongly monotone in [6, 0'0] when n0T ~ 2T. Note that 

E(t, N(t), N(t - T)) is strictly subhomogeneous. Using the same argument as in 

[104, Theorem 3.3], we can deduce that P4 is strictly subhomogeneous. Thus, p;a 

is also strictly subhomogeneous. It then follows from Theorem 1.1.2, as applied to 

p;o : U = [6, 0'0] --t U, that p;:o has a fixed point ¢0 » 0 in [6, 0'0] such that 

every nonempty compact invariant set of p;:o is in int(C([-T; 0], JR.+)) . Since for 

each 'ljJ E C([-T, 0], JR.+) \ {6}, w('lf;) is a nonempty compact invariant set of p;:o 

in [6, 0'0] and w('lf;) C int(C([-r, 0], JR.+)), it follows that w('lj;) = ¢0 , and hence, 

P4(¢0 ) = ¢0 . Therefore,. N(t, ¢0 ) is a globally attractive T-periodic solution for (2.2) 

in C([-r, 0], JR.+)\ {6}. • 

Assume that 

(83)' max {a(t)p(t- r)e-2
} < min { 1+\d(t) }. 

O:s;t~T O~t~T re 

Then, we have the following result. 

Theorem 2.3.4 Assume that (S1)JS2} and (83}' hold. Then (2.2) admits a globally 

attractive positive T-periodic solution in C([-T,O],JR+) \ {0}. 

Proof. Note that 
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We use the exponential ordering introduced in [81] to prove this theorem. For some 

J.L 2: 0, we define 

KJJ. = {¢ E C([-T, O],IR+): ¢2:0 and ¢(s)eJJ.s is nondecreasing on [-T,O]}, 

and KJJ. = KJJ. n CL where CL is the Banach space of Lipschitz functions on [-T, OJ 

with the norm II¢11Lip := 1¢1 +sup{ lt/>(sl=t(t)l: s # t,s,t E [-T,O]} . 

Denote the exponential ordering defined by KJJ. as ~w Then if ¢ <JJ. '1/;, we have 

e-JJ.r['I/J( -T)- ¢( -T)j ~ '1/;(0)- ¢(0), i.e., '1/J( -T)- ¢( -T) ~ eJJ.r['l/;(0)- ¢(0)] . 

Therefore, 

Since 

J.L('I/;(0)- ¢(0)) + E(t, N(t, '1/;), N(t- T, '1/;))- E(t, N(t, ¢), N(t- T, ¢)) 

= J.L('I/;(0)- ¢(0)) + E(t, 1/;(0), '1/;( -T))- E(t, ¢(0), ¢( -T)) 

2: J.L('I/;(0)- ¢(0))- d(t)('l/;(0)- ¢(0))- a(t)p(t- T)e-2 ('1/J(-T)- ¢( -T)) 

2: [J.L - d(t)- a(t)p(t- T)e-2eJJ.r]('I/;(O)- ¢(0)). 

1 
max {a(t)p(t- T)e- 2

} < min { I+ d(t) } and '1/;(0)- ¢(0) > 0, 
09~T O$t~T Te r 

there is some J.L > 0 such that 

J.L- d(t)- a(t)p(t- T)e-2eJJ.r > 0, 

and hence, 

J.L('l/;(0)- ¢(0)) + E(t, '1/;(0) , '1/;( -T))- E(t, ¢(0) , ¢( -T)) > 0. 

For every¢ 2: 6, we have N(t, ¢) 2: 0 and there exists M,p > 0 such that¢ «JJ. M,p and 

E(t, M,p, M,p) < 0. Thus N(t, ¢) ~ M,p, N(t, ¢) exists for all t 2: 0. By [80, Theorem 
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6.2.3], p;o is strongly monotone in the ordered space (CL, K,..) for n0T 2: T, where P5 

is the Poincare map of (2.2) . 

If¢ »,.. 0 in K,.., then N(t, ¢) > 0 for all t > -T. For 0 < >. < 1, let W (t) = 

N(t >.¢)- >.N(t, ¢), then W(O)=O. Since 

W'(O) = N'(O, >.¢) - >.N'(O, ¢) 

= a(O)p( - r)e-q(- r)>.¢(- r) ~¢( -T)- >.a(O)p( -r)e- q(-r)¢(-rl¢( -T) > 0, 

we have W(t) > 0 for all sufficiently small t > 0. 

We further claim W(t) > 0 for all t > 0. Suppose not. Then there is t 0 > 0 

such that W(t0 ) = 0, W(t) > 0 for t < t0 , and d';;?l I ~ 0. Since >.¢ «,.. ¢, 
to 

N(t0 - r, >.¢) < N(to- r, ¢). Then we have 

dW(t) I --;{t to= E(to, N(to, >.¢), N(to- T, >.¢))- >.E(to, N(t0 , ¢), N(t0 - r, ¢)) 

= a(t0 )p(to- r)e-q(to- r}N(to-r,>.¢) N(to- T, >.¢)- d(to)N(to, >.¢) 

-[a(t
0
)p(to- r)e-q(to-r)N(to-r,¢) >.N(to - T, ¢)·- >.d(to)N(to, ¢)] 

> a(to)p(to- r)e-q(to- r)N(to- r,>.¢) >.N(to- T, ¢) 

-a(to)p(to- r)e-q(to-r)N(to-r,¢) >.N(to- T, ¢) 

= a(to)p(to _ r)[e-q(to-r)N(to-r,>.¢) _ e-q(to-r)N(to-r,cl>l]>.N(to _ T, ¢) > O, 

a contradiction. This proves that W(t) > 0 for all t > 0. 

For every¢»,.. 0, let Z(t)= [N(t, >.¢)- >.N(t, ¢)]' + .u[N(t, >.¢)- >.N(t, ¢)]. Then 

Z(O) = W'(O) > 0, hence. for sufficiently small t > 0, Z(t) > 0. We claim that 

Z(t) > 0 for all t > 0. Suppose not, then there is a t0 > 0 such that Z(t0 ) = 0 and 
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Z(t) > 0 fort < t0 . It then follows that 

Z(to) = a(to)p(to- T)e-q(to-r)N(to-r,>..¢) N(to- T, >..¢) + J.L[N(to, >..¢)- >..N(to, ¢)] 

-[>..a(to)p(to- T)e-q(to-r)N(to-r,r/J) N(to- T, ¢)- >..d(to)N(to, ¢)]- d(to)N(to, >..¢) 

> a(to)p(to- T)e-q(to-r )N(to-r,>..<t>) N(to- T, >..¢) + [J.L- d(to)][N(to, >..¢)- >..N(to, ¢)] 

-a(to)p(to- T)e-q(to-r)>..N(to-r,</>) >..N(to- T, ¢) 

?: -a(to)p(to- T)e-2 [N(to- T, >..¢)- >..N(to- T, ¢)] 

+[J.L- d(to)][N(to, >..¢)- >..N(to, ¢)]. 
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Since Z(t) > 0 for all t < t0 , we have N(t0 - T, >.¢) - >.N(t0 - T, ¢) ::::; e~'r 

[N(t0 , >.¢)- >.N(t0 , ¢)], and hence 

Z(t0 ) > [-a(t0 )p(t0 - T)e-2e~'t + J.L- d(t0 )][N(t0 , >.¢)- >.N(t0 , ¢)] > 0, 

a contradiction. Thus, Z(t) > 0 for all t > 0. It then follows from [80, Theorem 6.2.3] 

that Nt(>.¢) »~-' >.Nt(<P) fort> T and p;a(>,¢) »~-' >.P;0 (¢) in Kl-' for n0T > T. 

Since for every¢ E C([-T,O],JR+) \ {0} and t > 0, we have 

[N(t, ¢)]' + J.LN(t, ¢) 

= a(t)p(t- T)e-q(t-r)N(t-r,r/J) N(t- T, ¢)- d(t)N(t, ¢) + J.LN(t , ¢) 

> [J.L- d(t)]N(t, ¢) 2 0, 

and hence, P;0 (¢) E int(K~-') for n0T > T. By using P;0 (¢) if necessary, we may 

therefore assume that ¢ E int(KI-') to study the asymptotic behavior of¢ > 0 under 

p;o. 

For any /3 ?: 1, choose V,a = [0, f3ho]K~ where h0 is determined such that p(t- T) 

e-q(t-r)h a(t) < d(t) always holds for all t 2 0 and h > h0 . Then V,a is positively 

invariant. First note that when n0T > T, p;o is order-compact in the sense that 

P;0 ([u, v]xJ is precompact for all of u <K~ v. Moreover, p;o is strictly subhomoge

neous and strongly monotone with respect to the exponential ordering. 
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By the continuity and differentiability of solutions with respect to initial values, it 

follows that the P5 is differentiable at zero, and DP5(0) = P3 , where P3 is the Poincare 

map of the linear equation of (2.5). Clearly, P!;'0 is compact. Moreover, P!;'0 is strongly 

positive for the exponential ordering Kw FUrthermore, D(P;-0 (0)) = (DP5 (0))no and 

r {D(P;-0 (0))} = r{(DP5 (0))}no = [r(P3)Jno . By Theorem 1.1.3, p;o has a unique 

positive fixed point ¢0 in V13 , and ¢0 is globally asymptotically stable with respect to 

v/3 \ {0}. This implies that Wno(¢) = ¢o for all ¢ E V/3 , where Wno(¢) is thew-limit 

set of¢ associated with p;o. 

By the arbitrariness of {3, it then follows that (2.2) admits a globally attractive, 

positive n0T-periodic solution N(t, ¢0 ) in C([-r, OJ, JR+) \ {0}. It remains to prove 

that N(t, ¢ 0 ) is also T-periodic. For¢ > 6, since p;no(¢) ----+ ¢ 0 as n ----+ oo, it then 

follows that P5 (P;no(¢)) ----+ Ps(¢o) as n ----+ oo. On the other hand, Ps(P;no(¢)) = 
p;no(P5 (¢)) ----+ ¢0 as n----+ oo. Thus, P5 (¢0 ) = ¢0 , and N (t, ¢0) is a globally attractive 

T-periodic solution for (2.2) in C([-r, OJ, JR+) \ {0}. • 

2.4 Threshold dynamics 

We now assume that a disease is invading the population, and the population is 

divided into susceptible and infective classes. The disease transmission is modeled by 

system (2.1). In this section, we will study the global dynamics of system (2.1) . Let 

Clearly, M0 is an open set relative to M. Note that (N* (t), 0) is the disease-free 

periodic solution of (2.1). By linearizing (2.1) at (N*(t), 0), we obtain the following 

linearized equation for the infective population variable I: 

I'(t) = {J(t)I(t)- (d(t) + d2 (t) + '"'!(t))I(t). 
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Let CT be the ordered Banach space of all T-periodic functions from lR to IR, 

which is equipped with the maximum norm II · II and the positive cone C:j; := { ¢ E 

CT: ¢(t) ~ 0, \:ft E IR}. According to.the theory developed in [95] (see also section 

1.3) with F(t) = {3(t) and V(t) = d(t) + d2(t) + 1(t), we define the next infection 

operator L : CT - CT by 

(L¢)(t) = 1oo Y(t, t- a){3(t- a)¢(t- a)da, \:ft E IR, ¢ E CT, 

where Y(t, s) = e- I: V(u)du = e- J:(d(u)+d2 (v.)+"f(v.))du, t 2: s. Then the basic reproduc

tion ratio is defined as 'R0 := p(L), the spectral radius of L. By Theorem 1.3.3, it 

follows that 
foT {3(t)dt 

'Ro= . 
f

0
T(d(t) +d2(t) +1(t))dt 

ote that in the previous section, we have obtained four sets of sufficient conditions 

for system (2.2) to have a globally attractive positive T-periodic solution N*(t) (see 

Theorems 2.3.1-2.3.4). We are now in a position to prove the threshold type result 

on the global dynamics of (2.1) in terms of 'R0 . 

Theorem 2.4.1 Assume that (2.2) has a globally attractive positive T -periodic solu

tion N*(t) in C([-T, OJ, R+) \ {0}, and that there is an L such that B(t- T, N)a(t) < 

d(t), \:f N > L, t > 0. Let G(t, N) = B(t, N)N satisfy one of the following conditions: 

(Cl) G(t,O)=.O and r=r(P) > 1, where r(P) is the spectral radius of P and P is the 

Poincare map of the following linear equation: 

N'(t) = a(t)B(t- T, O)N(t- T)- (d(t) + d2 (t))N(t). 

(C2) G(t, 0) > 0 for all t ~ 0. 
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Then the following statements are valid: 

(a) If Ro < 1, then any solution (S(t, ¢), I (t, ¢)) of system (2.1) with ¢ E M0 

satisfies lim (S(t, ¢)- N*(t)) = 0 and lim I(t, ¢) = 0. 
t-oo t--+oo 

(b) If R 0 > 1, system (2.1} has a positive T-periodic solution in M0 , and there is 

an rJ > 0 such that any solution (S(t,¢) ,I(t,¢)) of system (2.1) with¢ E M0 

satisfies lim inf S ( t, ¢) ?:. rJ and lim infl ( t, ¢) ?:. rJ. 
t-+oo t-+oo 

Proof. Let (S(t, ¢) ,I(t, ¢)) be the unique solution of (2.1) with (S(B, ¢),I(B, ¢)) = 

¢(B), W E [-T, 0]. Since N(t, ¢) = S(t, ¢) + I(t, ¢) ?:. 0 in the maximal interval of 

existence, N ( t) satisfies the differential inequality 

N'(t) :::; a(t)B(t- T, N(t- T))N(t- T)- d(t)N(t) . 

For ¢ E M, there is a M,p > L and M,p > ¢ such that B(t- T, M,p)a(t) :::; d(t). 

By [80, Theorem 5.2.1], N(t, ¢) is uniformly bounded. Since S(t, ¢) :S N(t, ¢) and 

I(t , ¢) :::; N(t, ¢), it follows that each solution (S(t, ¢), I (t, ¢)) exists globally on 

[0, oo), and solutions of (2.1) is uniformly bounded in M. Define <P(t)¢ = (St(¢), It(¢)), 

t?:. 0, ¢ E M. Then <P(t) is aT-periodic semiflow on M. We have following claims: 

Claim 1. There is some 81 > 0 such that lim sup II<P(nT)¢11 ?:. 01 for all¢ E Mo. 
n-+oo 

In the case where (C1) holds, for a positive c: > 0, let ro: be the spectral radius of 

u'(t) = (a(t) B (t - T, 0+)- c:)u(t- T)- (d(t) + d2(t))u(t). ~ 

Since r(P) > 1, we can choose c: small enough such that ro: > 1 and B(t, o+)-c: > 0 

for all t ?:. 0. From Lemma 2.3.1, (2.9) admits a solution u*(t) = e,j.tnr•u0 (t), where 

u0 (t) is positive and T-periodic. Hence u*(t) ~ oo. 
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For c > 0, we can choose a sufficiently small positive number 80 , such that 

a(t)B(t- T, N) 2: a(t)B(t- T, o+) - c, Vt 2: 0, 0 ~ N < Oo. 

Since lim Nt(¢) ~ 0 uniformly fortE [0, T], there exists 81 > 0 such that 
¢-0 

//Nt(¢)// ~ oo, Vt E [0, T], 1/¢1/ ~ 81. 
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Suppose, by contradiction, that lim sup 1/cll(nT)¢1/ < 81 for some¢ E M 0 . Then 

there exists an integer N1 2: 1 such that llcll(nT)¢11 < 81 , Vn 2: N 1 . For any t- T 2: 

N1T, we have t = nT+t' with n 2: N1 , t' E [0, T ] and 1/ cll(t)¢ 11 = jj cll(t')cll(nT)¢1/ ~ 80 . 

Then, 

N'(t) > a(t)B(t- T, N(t- T))N(t- T)- (d(t) + d2 (t))N(t) 

> (a(t)B(t- T, o+) - c)N(t- T)- (d(t) + d2(t))N(t). 

Since N(t, ¢) = S(t, ¢) + I(t , ¢) > 0, Vt > 0, V¢ E M0 , we can choose a small number 

k > 0 such that N(t , ¢) > ku*(t), Vt E [N1T, N1T + Tj. By the comparison theorem 

[80, Theorem 5.1.1], we have N(t,¢) > ku*(t) ,Vt 2: N1T, and hence, lim N(t,¢) = 
t-oo 

oo, a contradiction to the uniform boundedness of N(t, ¢ ). 

In the case where (C2) holds, we can choose c small enough such that 

min{a(t)B(t- T, o+)- c} > max{d(t) + d2 (t)}. 
t~O t~O 

For c > 0, we can choose a sufficiently small positive number 80 , such that 

a(t)B(t- T, N) 2: a(t)B(t- T, o+) - c, Vt 2: 0, 0 ~ N < Oo. 

Since lim Nt(¢) ~ 0 uniformly fortE [0, T], there exists 81 > 0 such that 
<P-O 

IINt(¢)11 ~ oo, Vt E [0, T], 11¢11 ~ 81. 
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Suppose, by contradiction, that lim sup ll~(nT)¢11 < 81 for some ¢ E M0 . Then 
n-+oo 

there exists an integer N1 ~ 1 such that ll ~(nT)¢1 1 < 81 , Vn ~ N1 . For any t- T ~ 

N1T, we have t = nT+t' with n ~ N1 , t' E [0, T] and ll~(t)¢ 11 = ll~(t')~(nT)¢1 1 ::; Oo. 

Thus 

Since 

N'(t) > a(t)B(t- T, N(t- T))N(t- T)- (d(t) + d2 (t))N(t) 

> (a(t)B(t- T, o+)- c)N(t- T)- (d(t) + d2(t) )N (t ) 

> min{a(t)B(t- T, o+)- c}N(t- T)- max{d(t) + d2(t)}N(t). 
t~O t~O 

min{a(t)B(t- T, o+)- c} > max{d(t) + d2(t)}, 
t~O t~O 

it follows from [80 , Theorem 5.1.1] that there is a solution u*(t) = estu with s > 0 

and u > 0 for the following equation: 

u(t) = min{a(t)B(t- T, o+)- c}u(t- T)- max{d(t) + d2(t)}u(t). 
t~O t~O 

Hence, u*(t) - oo as t-oo. Since N(t, ¢) = S (t, ¢)+I(t, ¢) > 0, Vt > 0, ¢ E M0 , we 

can choose a small number k > 0 such that N(t , ¢) > ku*(t), Vt E [N1T, N1T +T]. By 

the comparison theorem [80, Theorem 5.1.1], we have N (t , ¢) > ku* (t), Vt ~ N1T+T. 

Thus lim N(t, ¢) = oo, also a contradiction. This completes the proof of claim 1. 
t-+oo . 

In the case where Ro < 1, we have J0T {3(t)dt < J0T (d(t) + d2(t) + 1(t))dt. If 

I(O) > 0 , then N(t) ~ I(t) > 0, Vt ~ 0 and hence, we have 

I'(t) ~ ({3(t)- (d(t) + d2 (t) +1(t)))I(t), Vt ~ 0. 

Then 

J(t) ~ J(O)ef~ .B(s)- (d(s)+d2(s)+y(s))ds Vt ~ 0, 
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and hence, lim I(t) = 0. Therefore, the equation for the who~e population is asymp-
t ..... oo 

totic to the following periodic time-delayed equation: 

N'(t) = B(t- T, N(t- T))N(t- T)a(t)- d(t)N(t), (2.10) 

which is the same as (2.2). Note that N*(t) is a global attractive solution of (2.2). 

Next, we use the theory of internally chain transitive sets (see e.g., [43, 105]) to prove 

lim (S(t)- N*(t)) = 0. 
t_.oo 

In fact, if we denote the Poincare map P := <P(T) : M --+ M, then pn(¢) = 

<P(nT)¢, Vn ~ 0,¢ E M. Let ¢= (¢1, ¢2) EM\ {6} and w = w(¢) be the omega limit 

set of {Pn(¢)}. Since I(t , ¢)--+ 0 as t--+ oo, there holds w = w x {0}. We first claim 

that w =f {0}. Assume not, i.e., w = {0}, then lim (SnT(¢), InT(¢)) = lim <P(nT)¢ = 
n-+oo n--+oo 

(6, 6), which contradicts claim 1. It is easy to see that pnlw(¢, 6) = (Pn(¢), 6) where 

Pis the periodic solution semiflow of (2.2). By [105, Lemma 1.2.1], w is an internally 

chain transitive set for P, and hence, w is an internally chain transitive set for P. 

Define N0 E C([-T, OJ, IR+) by N0(0) = N*(O), WE [-T, OJ. Since w =/= {0} and N0 is 
a globally stable fixed point for Pin C([-T, OJ, IR+) \ {0}, we have w n W 8 (N0) =/= 0, 

where W 8 (N0) is the stable set of N0. By [105, Theorem 1.2.1], we then get w = N0. 

This proves w = (N0,0), and hence, lim((S(t,¢),I(t,¢))- (N*(t),O)) = 0. 
t_.oo 

In the case where R 0 > 1, we have JoT (J (t)dt > J0T (d(t) + d2(t) + r(t))dt. Fix a 

number T]o E ( .,io , 1), since 

1
. N(t)- I (t) 
1m = 1 > T]o, 

(I(t) ,N(t) ) ..... (O,N· (t)) N ( t) 

there exists T]1 > 0, such that 
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Since lim . q'?(t)¢ = (N0, 0) uniformly for t E [0, T], there exists ry2 > 0 such that 
t/!-+(N0,0) 

llq'?(t)¢- (N0, 0)11 ~ TJ1 , Vt E [0, T], II¢ - (N0, 0)11 ~ T/2· Then we have t he following 

claim: 

Claim 2. lim sup llq?(nT)¢- (N0,0)II ~ T/2 for all¢ E Mo. 
n-oo 

Suppose, by contradiction, that lim sup llq?(nT)¢-(N0,0)II < ry2 for some¢ E M0 . 
n-+oo 

Then there exists an integer N2 ~ 1 such that llq?(nT)¢- (N0, 0)11 < ry2, Vn ~ N2. 

For any t ~ N2T, we have t = nT + t' with n ~ N2 and t' E [0, T]. Thus, we have 

ll q'?(t)¢- (N;,O)II = ll q'?(t')(q?(nT)¢)- (N; , D) II ~ T/1. Vt ~ N2T. 

Therefore, I(t) satisfies the following differential inequality 

I'(t) ~ ({3(t)ry0 - (d(t) + d2(t) + 'Y(t)))I (t), Vt ~ N2T. 

By the comparison theorem, it follows that 

Since Ro > 1 and TJo E (i , 1), we have lim I(t) = oo, a contradiction. 
o t-+oo 

In the case where G(t, 0) = 0, we choose 

It then follows that M1 and M2 are disjoint, compact and isolated invariant set for 

Pin 8Mo, and Aa := U¢EBMaw(¢) = {M1 , M2}. Further, no subset of M1, M2 forms 

a cycle in 8M0 . In view of two claims above, we see that M1 and M2 are isolated 

invariant sets for Pin M, and W 8 (Mi) nM0 = 0, i = 1, 2, where W 8 (Mi) is the stable 

sets of Mi for P. 

In the case where G(t, 0) > 0 for all t ~ 0, M2 is the only compact invariant set 

for Pin 8M0 , and hence we only choose i = 2 in the above argument. 
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By the acyclicity theorem on uniform persistence for maps (see Theorem 1.2.2 

or [105, Theorem 1.3.1 and Remark 1.3.1]), it follows that P : M ---t M is uniformly 

persistent with respect to M0 . Thus, Theorem 1.2.3 implies that the periodic semiflow 

<I>(t) : M ---t M is also uniformly persistent with respect to M 0 . According to [106, 

Theorem 3.1], system (2.1) has aT-periodic solution (S*(t), I*(t)) with (S;, I;) E M0 

for all t 2: 0. Clearly, s; > 0 and It > 0 for all t > 0. 

It follows from Theorem 1.2.6, with p(x) = d(x, 8M0 ), that P: M0 ---t M0 has a 

compact global attractor A0 . Since A0 = P(A0 ) = <I>(T)A0 , it follows that ¢ 1(0) > 0 

and ¢2(0) > 0 for all ¢ E Ao. Let Bo:=Ute(o,T] <I> (t)Ao. We have Bo C Mo and 

lim d(<I>(t)¢, B0 ) = 0 for all ¢ E M0 . Define a continuous function p: M ---t JR+ by 
t-<oo 

Since B0 is a compact subset of Mo, we have infct>eBo p( ¢) = minq:,eBo p( ¢) > 0. 

Consequently, there exists ry > 0 such that 

liminfmin(S(t,¢),I(t,¢)) = liminfp(<I>(t)¢) 2: ry, V¢ E Mo. 
t-<oo t-<oo 

This completes the proof. • 

2. 5 Numerical simulations 

In this section, we use specific birth functions to verify our results in the previous two 

sections by numerical simulations. 

Example 1. In this example, we choose B(t , N)N = N2(1i~~(t)), d(t) = 0.5, dt(t) = 

1, T = 1. Then a(t) = e-1 and the equation (2.2) becomes 

N' ( ) = N ( _ ) 2 ( 1 + cos ( t - 1)) _1 _ ~ N ( ) 
t t 1 N( ) e 2 t . 1 + t- 1 
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Figure 2.1: Time series for each compartment with B(t , N) taking a general periodic 

form of B1 (N). 
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It is easy to see that (H1)-(H3) in Theorem 2.3.1 hold for this equation, our 

numerical simulations in Fig. 2.1(a) and Fig. 2.1(b) show that there is a globally 

asymptotically attractive positive periodic solution N*(t). Moreover, if we choose 

d2(t) = fa, {J(t) = 1 + sin(t) and 1(t) = 1~, then 'Ro = 1~ > 1. Thus, we have Fig. 

2.1(c) , which shows that the disease is uniform persistence and there is a positive 

periodic solution when 'R0 > 1. On the contrary, if we choose d2 (t) = ~( 1 + sin(t)), 

[J(t) = H 1 + 3 sin(t)) and 1(t) = ~, then 'Ro = ~ < 1. We have Fig. 2.1(d) for 

this case. For other initial data, we have similar simulations, which may suggest that 

every solution converges to the disease-free periodic solution. 

Example 2. In this example, we choose B (t, N)N = 0.8 + N, d(t) = 1, d1(t) = 

1 + sin(t), r = 1. Then a(t) = e-l+cos(t)-cos(t-l) and the equation (2.2) becomes 

N'(t) = (0.8 + N(t _ 1))e-l+cos(t)-cos(t-1) _ N(t). 

It is easy to see that (A1)-(A3) in Theorem 2.3.2 hold for this equation, our 

numerical simulations in Fig. 2.2(a) and Fig. 2.2(b) show that there is a globally 

asymptotically attractive positive periodic solution N*(t). Moreover, if we choose 

d2(t) = ~, [J(t) = 4(1 + sin(t)) and 1(t) = ~, then 'Ro = 2
7° > 1. Thus, we have Fig. 

2.2(c), which shows that the disease is uniform persistence and there is a positive 

periodic solution when 'Ro > 1. On the other hand, if we choose d2(t) = ~, /3(t) = 

H1 + sin(t)) and 1(t) = ~, then 'Ro = 1
5
4 < 1. We have Fig. 2.2(d) for this case. 

For other initial data, we have similar simulations, which may suggest every solution 

converges to the disease-free periodic solution. 

Example 3. In this example, we choose B(t , N)N = 1.2N(1 +sin(t))e-~N, d(t) = ~' 

d1(t) = 1 + sin(t), T = 4. Then a(t) = e-4+cos(t)-cos(t- 4) and, the equation (2.2) 
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becomes 

N'(t) = ~N(t- 4)e-4+cos(t)-cos(t-4)(1 + sin(t- 4))e-~N(t-4)- ~N(t). 

It is easy to see that (81) and (82) hold for this equation. In this case, q(t) = 2 and 

(2.6) becomes 

O'(t) = a(t)p~t- 7~ e-1
- d(t)U(t) 

q t- T 

= e-4+cas(tJ-cas(t-4) 1.2(1 + s~n(t- 4)) e-1 _ ~O(t)(t) 
2 

3 1 -< e- x 4.8- r;U(t). 

Hence, U*(t) ::; 5 :1·8 
::; 2, and (83) holds. Our numerical simulations in Fig. 

2.3(a) and Fig. 2.3(b) show that there is a globally asymptotically attractive positive 

periodic solution N*(t). Moreover, if we choose d2(t) = t• (J(t) = 1 + sin (t) and 

'Y(t) = t• then no = ~ > 1. Then, we have Fig. 2.3(c), which shows that the 

disease is uniform persistence and there is a positive periodic solution when no > 1. 

On the other hand, if we choose d2(t) = t• (J(t) = 0.2(1 + sin(t)) and 'Y(t) = t• 
then Ro = ~ < 1. We have Fig. 2.3(d) for this case. For other initial data, we have 

similar simulations, which may imply that every solution converges to the disease-free 

periodic state. 

Example 4. In this example, we choose d(t) = 0.2, d1(t) = 1+0.2sin(t), T = 0.1 and 

B(t, N)N = N(1 + cos(t))e-2N, then a(t) = e-O.H0.2(cos(t)-cos(t-0.1)l and the equation 

(2.2) becomes 

N'(t) = N(t- 0.1)(1 + cos(t- 0.1))e-2N(t-0.1)e-io+%(cos(t)-cos(t- 0.1))- ~N(t). 
5 

It is easy to see that (81), (82) and (83)' hold for this equation, our numerical 

simulations in Fig. 2.4(a) and Fig. 2.4(b) show that there is a globally asymptotically 
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attractive positive periodic solution N*(t). Moreover, if we choose d2 (t) = i, (J(t) = 
4(1 + sin(t)) and 'Y(t) = k, then R 0 = 2

3° > 1. Thus, we have Fig. 2.4(c), which 

shows that the disease is uniform persistence and there is a positive periodic solution 

when Ro > 1. On the other hand, if we choose d2(t) = i, (J(t) = H1 + sin(t)) and 

'Y(t) = g, then R 0 = ~ < 1. We have Fig. 2.4(d) for this case. For other initial data, 

we have similar simulations, which may suggest that every solution converges to the 

disease-free periodic solution. 

2 .6 Concluding remarks 

As discussed in [106], we remark that in the case d2 (t) = 0, N(t) satisfies equation 

(2.2), and hence 

lim (N(t)- N*(t)) = 0. 
t-->oo 

ote that I( t) satisfies the following nonautonomous equation 

I'(t) = (J(t)(N(t)- I(t))I(t) - (d(t) + 'Y (t))I(t) 
N(t) ' 

which is asymptotic to the following periodic equation 

I'(t) = (J(t)(N*(t)- I(t)) I (t) - (d(t) + 'Y(t))I(t). 
N•(t) 

If R 0 > 1, i.e., J0T((J(t)- d(t)- ')'(t))dt > 0, and (J(t) > 0, Vt E [O,T], then it 

follows from [105, Theorem 5.2.1] that equation (2.12) admits a unique positive T

periodic solution I*(t), which is globally asymptotically stable in IR+ \ {0}. It then 

follows from the theory of asymptotically periodic system (see [105, Section 3.2]) that 

lim (I(t) -I*(t)) = 0. This implies that system (2.1) has a globally attractive positive 
t-->oo 

T-periodic solution (N*(t)- I*(t), I*(t)). 
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By applying the perturbation theory of a globally stable fixed point (see [82, 

Theorem 2.2]) and the theorem on uniform persistence uniform in parameters (see 

[105, Theorem 1.4.2]) to the Poincare map of system (2.1), we can further show that 

if 'R0 > 1, (J(t) > 0, Vt E [0, T], and JJd2(·)1i := max Jd2(t)J is sufficiently small, 
O::;LST 

system (2. 1) has a globally attractive positive T-periodic solution (S(t),l(t)). On 

the other side, our numerical results (for example, see Figs.(2.1(c)), (2.2(c)), (2.3(c)) 

and (2.4(c))) suggest that in the case where 'Ro > 1, every solution with nontrivial 

initial data is asymptotic to a periodic solution, while these periodic solutions may 

be different. This implies that there may be no uniqueness of positive T-periodic 

solution for some d2 (t) ~ 0. 
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Chapter 3 

A Climate-Based · Malaria 

Transmission Model with 

Structured Vector Population 

3.1 Introduction 

The first model of malaria transmission was developed by Ross [73] and later re

formulated by Macdonald [59]. In [59], Macdonald figured out that there exists a 

threshold density, the basic reproduction number R 0 , defined as the average num

ber of secondary cases produced by an index case during its infectious period. The 

threshold theorem states that malaria can persist in a popula~ion only if the number 

of mosquitoes is greater than a given threshold. Moreover, Macdonald [59] performed 

a sensitivity analysis of the basic reproduction number on the parameters. The sensi

tivity analysis consists of calculating the effect of small changes in each of the param

eters on the basic reproduction number, and comparing the effects with each other. 
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His analysis showed the potential use of the basic reproduction number for malaria 

intervention. Much further work has been done to model the malaria transmission 

dynamics, see, e.g., Chitnis, Cushing and Hyman [15], Ngwa and Shu [69], Ngwa [68], 

Chiyaka and coworkers [17], Gumel and collaborators [28, 66, 70], Li [53], Ruan, Xiao 

and Beier [74] and references therein. 

The standard technique for developing mathematical descriptions of mosquito -

plasmodium interactions is to model the system as a set of autonomous ordinary 

differential equations (ODEs). This is an immensely powerful approach, and has led 

to many insights into the factors that affect malaria prevalence and control. However, 

the following two important biological aspects seem to have received little attention. 

The first aspect is the stage structure of the vector (mosquitoes). The biological 

cycle of a mosquito goes through four separate and distinct stages: egg, larva, pupa 

and adult mosquito. The first three stages are also known as immature stage or 

aquatic form. The life cycle of a mosquito begins as an egg, it hatch into larvae, 

which turns into pupa. After about 2 to 4 days of pupation, the mosquito ~merges 

as an adult . The maturity of mosquitoes is defined as the time of the first flight, 

which is shortly followed by the first bite [44]. As noted in [44], the developmental 

stages of vector have a profound impact on the transmission dynamics of vector borne 

diseases. First, the immature mosquitoes do not fly and bite humans, so they do not 

participate in the infection cycle and are, basically in a waiting period, which limits 

rapid vector population growth. Second, matured mosquitoes are quite different from 

immature mosquitoes from biological and epidemiological perspectives, and a realistic 

model needs to take these different stages into account. Although, there is auite a bit 

of research on epidemic models with structured host population (see [19, 32, 54, 94] 

and the references therein), it is also important to consider the age structure of the 
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vector population in the study of vector-borne diseases. 

The second aspect is the climate· effect on the dynamics of vector population 

and the biting rate from mosquitoes to humans. Transmission and distribution of 

vector-borne diseases are greatly influenced by environmental and climatic factors. 

Seasonality and circadian rhythm of mosquito populations, as well as other ecological 

and behavioral features, are strongly influenced by climatic factors such as temper

ature, rainfall, humidity, wind, and duration of daylight [44, 71]. It is believed that 

malaria epidemics caused by meteorological factors can be predicted from climatic in

dicators and climate forecasts. Moreover, the malaria cases may significantly increase 

due to climate change [62, 71, 108], since it will induce the change of the population 

dynamics and biting pattern of its mosquito vector. Therefore, it is important to un

derstand the climate-based dynamics of malaria transmission well enough to predict 

the malaria burden and manage control programs efficiently. 

In this chapter, by taking the key feature of climate/seasonality into account, · 

we derive a periodic model to describe the dynamics of malaria transmission. We 

calculate the basic reproduction ratio R 0 and prove a threshold dynamics result in 

terms of R 0 . Using the monthly mean temperature for KwaZulu-Natal Province, 

South Africa, we estimate the periodic coefficients for the model and carry out some 

sensitivity analysis on R 0 in order to to study the effect of control strategy, vector 

immature duration, and global warming on the basic reproduction ratio. Numerical 

simulations are carried out to illustrate the obtained results. 
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3.2 The model 

Motivated by the compartmental malaria models in [15, 68, 69], we derive an age

structured malaria model with seasonality to account for the cross-infection between 

mosquitoes and humans. The human population is divided into four epidemiological 

categories representing the state variables: the susceptible class Sh, exposed class Eh, 

infective class h, and recovered class Rh (immune and asymptomatic, but slightly 

infectious humans) [68]. The adult mosquito population is divided into three epidemi

ological classes: the susceptible class Sv, exposed class Ev, and infectious class Iv. If 

a susceptible human is bitten by an infectious mosquitoe, then the human progresses 

through the exposed, infectious, and recovered classes before reentering the suscep

tible class. Susceptible mosquitoes can become infected when they bite infectious or 

recovered humans, and once infected they move through the exposed and infectious 

classes. Since mosquitoes never recover from infection after they are infected, (their 

infective period ends with their death due to their relatively short life-cycle), the 

vector population does not include an immune class. It is assumed throughout this 

chapter that all vector population measures refer to densities of female mosquitoes 

unless specifically stated. We divide the mosquitoes into two stages: immature and 

mature, and we assume that the average mature period is T. For the aquatic stage, 

we suppose that the egg, larva, and pupa have the same development rate with death 

rate d1 (t) at timet, where d1 (t) is determined by the climate profile. It then follows 

that b(t- r,Nv(t- r))e-It'-rdJ(fl)dry is the mature rate at timet, which is produced 

by the mature mosquitoes at time t- T . Here, b(t, Nv(t)) is the egg reproduction 

function, which is a function of the total number of mature mosquitoes Nv(t). 

For the infection term, we assume reservoir frequency-dependent disease trans-
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mission [98] for our model. The infection rate for each species depends on the biting 

rate of mosquitoes and the transmission probabilities, as well as on the number of 

infectives and susceptibles of each species. The biting rate {3(t) of mosquitoes is the 

average number of bites per mosquito per unit time at time t. This rate depends on a 

number of factors, and in particular, climatic ones, but for simplicity in this chapter 

we assume {3(t) to be periodic. Based on the fact that the total number of bites made 

by mosquitoes is equal to the total number of bites received by humans, the average 

number of bites per human per unit time at timet is /3(2~~?), where Nh(t) is the total 

human population at time t. The transmission probability is the probability that 

an infectious bite produces a new case in a susceptible member of the other species. 

Suppose the transmission probabilities from humans to vectors and from vectors to 

humans are denoted by c and d, respectively. Then, the infection rates per susceptible 

vector and per susceptible human are given by 

and 

respectively. 

Following the above assumptions, we get the schematic diagram (see Fig. 3.1) for 

malaria transmission, and Table 3.1 shows the model coefficients. Considering climate 

effects on mosquito development, we further assume that {3(t), dv(t), and dJ(t) are 

positive and periodic functions with the same period T=12 months. 

From the schematic diagram for malaria transmission (Fig. 3.1) , we obtain the 

following model: 
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c Probability of transmission of infection from an infectious human to a susceptible 

mosquito given that a contact between the two occurs. Dimensionless. 

(3(t) Biting rate of the mosquitoes to the humans. Time- 1. 

0' Ratio between the probability of transmission from recovered humans to susceptible 

53 

mosquitoes and the probability of transmission from infectious humans. Dimensionless. 

dv(t) Death rate for adult vectors. Time- 1. 

dJ(t) Mortality rate for immature vectors. Time- 1 . 

a Transmission rate of mosquitoes from the exposed state to the infectious state, with 1/o

the average duration of the latent period. Time-1 . 

PE Transmission rate of mosquitoes from the exposed state to the infectious state, with 1/ps 

the average duration of the latent period. Time- 1. 

PI Recovery rate of humans, with 1/ PI the average duration of the infectious period. Time- 1 . 

PR Per capita rate of loss of immunity for humans, with 1/ PR the average duration of the 

immune period. Time- 1 . 

A,. Constant recruitment rate for humans. Humans x Time- 1 . 

d,. Human death rate. Time- 1 . 

o,. Disease-induced death rate for humans. Time-1 . 

d Probability of transmission of infection from an infectious mosquito to a susceptible 

human given that a contact between the two occurs. Dimensionless. 

r Maturation period. Time. 

Table 3.1: The model parameters and their dimensions. 
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Mosquitoes Humans 

Figure 3.1: Compartmental model for malaria. See Table 3.1 for parameter descrip

tions. 
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where Nh(t) = Sh(t) + Eh(t) + h(t)+ Rh(t), and H(t) = h(t) + o-Rh(t). It is a 

time-delayed periodic differential system, allowing us to study the effect of seasonal 

fluactuations on malaria transmission. 

ote that the whole adult mosquito population N11 (t) = Sv(t) + E11 (t) + l 11 (t ) 

satisfies the following time-delayed equation: 

In the biological literature, there are three types of timeT-periodic birth functions 

(see, e.g., [~7, 19,84] for the autonomous case): 

(B1) b1 (t, N) = q(t~2~n, with p(t) > 0, q(t) > 0 and n > 0. 

(B2) b2(t, N) = a(t) + c(t)N, with a(t) > 0, c(t) 2: 0. 

(B3) b3 (t, N) = b(t)e-a(t)N N, with a(t) > 0, b(t) > 0. 

Using the theory of monotone dynamical systems, we obtained in chapter 2 and [101] 

four sets of sufficient conditions for system (3.2) to have a globally asymptotically 

stable positive T-periodic solution N~(t) (see [101, Theorem 2.1] and Theorems 2.3.1-

2.3.4 in chapter 2). In the case where b(t, N) = b(t) > 0 for all t;::: 0, equation (3.2) 

reduces to a periodic ordinary differential equation, and the dynamics of the mosquito 

population is governed by the following equation: 

It is easy to see that (3.3) has a globally asymptotically periodic solution 

N~(t) = e- f~d,(s)ds X [J~b(s - r)exp [- j
8

8_.,.dJ(17)d77] ef;d,(w)dwds 

+ J0T b(w-r) exp[- J;:_T dJ(!))d!)]efd" dv(s)dsdw ] . 

efo dv(•)d• _ 1 
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In order to study the malaria transmission in a periodic environment, we assume 

that the vector (mosquito) population stabilizes at a periodic state. Accordingly, we 

make the following assumption throughout this chapter: 

(A) For the timeT-periodic function b(t,N) E C 1(IR x IR+,IR+), there is a positive 

number ho such that b(t- r 1 , L) exp[- J/-
11 

dJ(ry)dry] - dv(t)L < 0, VL ~ h0 • 

Moreover, system (3.2) has a globally asymptotically stable positive T-periodic 

solution N;(t) in C([-r, 0], IR+) \ {0}. 

Then we have the following result. 

Lemma 3.2.1 For any¢ E C([-r,O],IR~), system {3.1} has a unique nonnegative 

solution through ¢, and all solutions are ultimately bounded and uniformly bounded. 

Proof. For all of¢ E C([-r, O],JR~), define G(t,¢) := 

b (t- T, t ¢i( -r)) e- IL-r dJ(T/)dT/- dv(t)¢1 (0) - c,B(t) <1>6 (~)+u¢7 (0) ¢1 (0) 
~~ E ~~ 

c,B(t)<l>6 (~)+u¢7 (0)¢1(0)- (dv(t) + a)¢2(0) 
E<I>;(O) 
i=4 

a¢2(0)- dv(t)¢3(0) 

1==4 

Ah + PR¢7(0) - d,B(t) 7<1>
4 (o) ¢3(0) - dh¢4(0) 

E<i>;(O) 
i=4 

PE¢s(O)- (PI+ Oh + dh)¢6(0) 

PI¢6(0) - (PR + dh)¢7(0) 

Since for all¢ E C([-r, 0], JR~), G(t, ¢) is continuous, and G(t, ¢) is Lipschitzian in¢ 

in each compact set in IR x C([-r, 0], JR~). Hence, there is a unique solution of system 



3.3 THRESHOLD DYNAMICS 57 

through (0, ¢). Note that Gi(t, 1/;) ~ 0 whenever 1/; ~ 0 and 1/Ji(O) = 0. It then follows 

from [80, Remark 5.2.1] that C([-T, OJ, IR~) is positively invariant. 

For the whole host population Nh(t) = Sh(t) + Eh(t) + h(t) + Rh(t) and vector 

population Nv(t), we have 

dN;/t) = Ah- dhNh(t) - 6hh(t) ~ Ah- dhNh(t), 

dN;p> =·b(t- T, Nv(t- T)) exp [ -l~T dJ(ry)dry] - dv(t)Nv(t). 

By the comparison principle, it follows that the solution exists for all t ~ 0. Moreover, 

we have 

and 

limsup(Sv(t) + Ev(t) + Iv(t)- N:(t)) ::; 0, 
t-<OO 

where N:(t) is the unique positive periodic solution to (3.2). This implies that all 

solutions are ultimately bounded. Moreover, when Nh(t) > max{h0 , ~}and Nv(t) > 

max{h0 , ~ } , we have 

dNh(t) O d dNv(t) O 
dt < an ~<. 

This implies that all solutions are uniformly bounded. • 

3.3 Threshold dynamics 

We define the "diseased" classes as the human or mosquito populations that are either 

exposed, infectious, or recovered but slightly infectious, i. e., Ev, Iv, Eh, h and Rh. 
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To find the disease-free state, letting Ev = Iv = Eh = h = Rh = 0, we then get 

Hence, there is only one disease-free state, (N;(t),O,o,N,:,O,O,O), in the case where 

0 is not an equilibrium of (3.2), where N;(t) is the positive periodic solution of (3.4) 

and N,: = ~· In the case where 0 is an equilibrium of (3.2), there exists another 

trivial equilibrium, (0, 0, 0, N,:, 0, 0, 0). 

In what follows , we introduce the basic reproduction ratio for the malaria trans

mission system according to the theory developed in [95] (see also section 1.3), which 

is a generalization of the work in [91] to the periodic case. Linearizing the system at 

the disease-free periodic state (N;(t), 0, 0, N,:, 0, 0, 0), we obtain the following system 

(here we write down only the equations for the "diseased" classes): 

d~pl = - (dv(t) + a)Ev(t) + c{3(t) Ni~t) h (t) + ca{3(t) Ni~t) Rh (t), 
h h 

di~tt) = aEv(t)- dv(t)Iv(t), 

dEJP) = d{3(t)Iv(t) - (PE + dh)Eh(t), @]) 
dl~?) = PEEh(t) - (Pr + Oh + dh)h(t), 

d~~(t) = Prh(t) - (PR + dh)Rh(t). 

Let 
0 0 0 c{3( t) N£~t) N;(t) ca{3(t) w 

h h 

0 0 0 0 0 

F(t) = 0 d{3( t) 0 0 0 

0 0 0 0 0 

0 0 0 0 0 
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and 

dv(t) +a 0 0 0 
) 

dv(t) 0 0 -a 

V(t) = 0 0 PE +dh 0 

0 0 -pE PI+ oh + dh 

0 0 0 -pi 

Then we can rewrite (3.6) as 

d~~t) = (F(t)- V(t))x(t), 

where x(t) = (Ev(t), Iv(t), Eh(t), h(t) , Rh(t))r. 

0 

0 

0 

0 

PR +dh 

Assume Y(t, s), t 2': s, is the evolution operator of the linear-periodic system 

dy 
dt =-V(t)y. 

That is, for each s E IR, the 5 x 5 matrix Y(t,s) satisfies 

d 1 

dt Y ( t, s) = - V ( t) Y ( t, s) , Vt 2': s, Y ( s 1 s) = I, 

where I is the 5 x 5 identity matrix. 
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Let Cr be the Banach space of all T-periodic functions from IR to IR5
, equipped 

with the maximum norm. Suppose¢ E Cr is the initial distribution of infectious indi

viduals in this periodic environment, then F(s)¢(s) is the rate of new infections pro

duced by the infected individuals who were introduced at times, and Y(t, s)F(s)¢(s) 

represent the distribution of those infected individuals who were newly infected at 

time s and remain in the infected compartments at timet for t 2': s. Hence, 

'1/J(t) = 1~ Y(t, s)F(s)¢(s)ds = 100 

Y(t, t- a)F(t- a)¢(t- a)da 

--~ -----~ 
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is the distribution of accumulative new infections at time t produced by all those . 

infected individuals <P(s) introduced at previous time. 

We define the linear operator L : Cr ~ Cr by 

(L¢)(t) = 1oo Y(t, t- a)F(t- a)¢(t- a)da, Vt E IR, ¢ E Cr. 

It then follows from section 1.3 (see also [95]) that L is the next infection operator, 

and the basic reproduction ratio is 'Ro := p(L), the spectral radius of L. 

Let W(t, .A) be the monodromy matrix of the following linear T-periodic system 

d:?) = ( - V(t) + ~F(t)) W(t) , t E JR, 

with parameter .A E (O,oo). Since F(t) is nonnegative and -V(t) is cooperative, 

it follows that p(W(T, .A)) is continuous and non-increasing for .A E (0, oo), and 

lim p(W(T, .A) ) < 1. 
.1.-+oo 

Thanks to Theorem 1.3.2, we have the following argument, which implies that 'Ro 

is in scale with {3(t) . That is, if /3(t)=af3(t) is another biting rate for some a > 0, 

then no = a'Ro. In fact, when /3(t)=af3(t), then F(t) = aF(t), and V(t) = V(t) and 

the monodromy matrix W(t, .A) satisfies 

dvV ( - 1 - ) - ( 1 ) -dt = - V(t) + ).F(t) W(t) = - V(t) + ).aF(t) W(t) : 

Hence, W(t, .A) = W(t , ~) and W(T, >.) = W (T, ~). Th~refore, p(W(T, no)) = 1, 

which implies that p(W(T, ~)) = 1. This implies that no= a'Ro. 

Our first result shows the uniform persistence of the disease if 'Ro > 1. 

Theorem 3.3.1 Let (A) hold. !fRo> 1, then system {3.1) admits at least one posi

tive periodic solution and there is an ry > 0 such that any solution (Sv(t), Ev(t), l v(t), 
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Sh(t), Eh(t ), h(t), Rh(t)) of the system in C([-T, OJ, JR:) with Ev(O) > O,Iv(O) > 

0, Eh(O) > 0, h(O) > 0, Rh(O) > 0 satisfies 

lim inf(Ev(t), lv(t), Eh(t), h(t), Rh(t)) ~ (17, ry, 17, ry, ry). 
t~oo 

Proof. Let 

X= C([-T, OJ, !R:), 

Xo := {¢ = (¢I,¢2,¢3,¢4,¢s,¢6,¢7) EX : ¢i(O) > 0, ViE {2 3,5, 6, 7}}, 

and 8Xo := X\Xo ={¢EX: ¢i(O) = 0 for some i E {2, 3, 5, 6, 7} }. 

Clearly, X 0 is an open set relative to X. Let u(t, ¢) be the unique solution of the 

system (3.1) with u0(¢) = ¢. Let ~(t)'lj; = Ut('l/J) and P : X --+X be the Poincare 

map associated with system (3.1), that is, P(¢) = uT(¢), V¢ E X. It is easy to see 

that ~(t)(X0) C X0 , 'tit ~ 0. ote that Lemma 3.2.1 implies that the discrete-time 

system P : X --+ X is point dissipative and pno is compact whenever n0T > T. It 

then follows from Theorem 1.2.1 that P admits a global attractor A in X. We first 

prove that P is uniformly persistent with respect to (X0 , 8X0 ) . 

Let M1 := { (0, 0, 0, N;;, 0, 0, 0)} and M2 := { (N~0 , 0, 0, N/:, 0, 0, 0)}, where N~0 (0) = 

N~(B), VB E [-T, OJ. Since N:(t) is a positive periodic solution, we can choose a small 

positive number 60 such that 

Since lim (~(t)¢- MI) = 0 uniformly fortE [0, T], there exists 61 such that 
<P~Mt 

We have the following claims: 

Claim 1. lim sup ll ~(nT)¢ - M1ll ~ 81 for all¢ E Xo. 
n~oo 
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Suppose, by contradiction, that lim sup II <P(nT)~- M1ll < 81 for some~ E X0 . 

Then there exists an integer N1 2 1 such that II <P( nT)~ - M1 ll < 811 Vn 2 N1. For 

any t- T 2 N1T, we have t = nT + t' with n ~ N1, t' E [0, T] and II <P(t)~

M1ll = II <P(t')<l>(nT)~- M1ll :S Oo. Hence Sv(t) :S Oo, Ev(t) :S Oo, Iv(t) :S Oo and 

Nv(t) :S 38o when t- T 2 N1T. Since Nv(O) = '1/Jt (0) + 'I/J2(0) + 'lj;3(0) > 0, we have 

lim (Nv(t)- N:(t)) = 0, a contradiction. 
t-tOO 

Let M,(t)= 

-(dv(t) +a) 0 0 c(3(t)(Ni~t) -E) !:!lJ!:l ca(3(t)( N· -E) 
h h 

a -dv 0 0 0 

0 d(3(t)(1- €) -(ps + dh) 0 0 

0 0 PE -(PI+ Oh + dh) 0 

0 0 0 PI -(pR + dh) 

It then follows from Theorem 1.3.1 that 'Ro > 1 if and only if p(<PF-v(T)) > 1. By 

the continuity of solutions with respect to parameter E, we see that lim <PM, (T) = 
,_,o+ 

<PF-v(T). Moreover, we have lim p(<PM,(T )) = p(<PF-v (T)) by the continuity of the 
,_,o+ 

spectrum for matrices [46, Section II.5.8]. Thus, there exists an E1 > 0 such that 

p(<PM,(T)) > 1, VEE [0, E1]. Since lim <l>(t)¢- <P(t)M2 = 0 uniformly fortE [0, T], 
</> ..... M2 · 

there exists "71 such that 

Sv(t, ¢>) > N:(t) - € and Sh(t , ¢>) > 1- € Vt E [0 T] II A.- M2ll <_ '~'~t· 
Nh(t, ¢>) - Nh 1

- Nh(t, ¢>) - 1
' ' ' '~' ., 

Claim 2. lim sup II <P(nT)¢- M2 ll 2 "71 for all ¢> E Xo. 

Assume, by contradiction, that lim sup II<P(nT)'I/J- M2ll < "71 for some '1/J E Xo. 
n ..... oo 

Then there exists an integer N2 2 1 such that I I <P(nT)~- M2ll < "71, Vn 2 N2. 

For any t - T 2 N2T, we have t = nT + t' with n 2 N2 , t' E [0, T] such that 

II <P(t)'lj;- <P(t)M2II = II<P(t')<P(nT)~- <P(t')<P(nT)M2II = II<P(t')<P(nT)'I/J- <P(t')M2II, 
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and 

dE;r ~ -(dv(t) + a)Ev(t) + c{J(t)(I,..(t) + aR,..(t)) ( Ni~t) - E1) , 
di;tl = aEv(t)- dv(t) Iv(t), 

dE:t(t) ~ d{J(t)(1- t:t)lv(t)- (PE + dr.)Er.(t), 

dl~t(t) = PsEr.(t)- (PI+&,..+ dr.)J,..(t), 

dR:/t) = Pih(t)- (PR + dr.)Rr.(t). 

Consider the linear system 
dw(t) dt = Mq (t)w(t). 
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By [102, Lemma 2.1], it follows that there exists a positive, T-periodic function v(t) 

such that w(t) = e9tv(t) is a solution of system (3.7), where e = ~ lnp(<I>M,(T)). 

Since p(<I>M,
1 
(T)) > 1, 8 is a positive constant. We have w(t)--+ +oo as t--+ oo. On 

the other hand, since <I>(t)'ljJ E X 0 , Vt ~ 0, there exists an integer N0 ~ N2 and a real 

number fi > 0 such that 

By the standard comparison theorem [80, Proposition 1.1 and Remark 1.2], we have 

(Ev(NoT + t) 1 lv(NoT + t), Er.(NoT + t), !,..(NoT+ t), Rr.(NoT + t)) ~ fjw(t), Vt ~ 0. 

This implies that 

a contradiction. 

Define 

lim /(Ev(t), lv(t), Er.(t), J,..(t), Rr.(t))/ = oo, 
t-+oo 

Ma:={¢ E 8Xo: pn(¢) E 8Xo, n ~ 0}, 

D1 := {¢EX: ¢;(0) = 0, ViE {2,3,5,6, 7} }, 

D2 :={¢EX:¢;= O,Vi = 1,2,3}. 
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In the case where 0 is an equilibrium of (3.2), we claim that Ma = D1 U D2 . We first 

prove that D1 U D2 C Ma. For any 'lj; E D2, it is easy to see that ui(t, 'lj;) = 0 for 

i = 1, 2, 3. Hence, D2 c Ma. For any 'lj; E D1 , we can define V(t) E C(IR+, IR~) such 

that Vi(t) = 0, Vt 2: 0 fori= 2, 3, 5, 6, 7. Let V1 (t) satisfy the following equations: 

dd?) ~ b ( t- T, t ,P;(t - 7)) exp [ -l. d,(ry)dry]- d.(t)Vj (t) for 0 ,; t ,; T, 

d~?) = b(t- T, V1(t- r)) exp [ -l~r d1(77)dry] - dv(t)Vt(t) fort 2: T, 

with V1(0) = 'lj;1 (0). Letting V4 (t) be the solution of the equation: 

Then V(t) is a solution of system (3.1) through 'lj; . By the uniqueness of the solution, 

we have u(t, 'lj;) = V(t), Vt 2: 0, and hence D 1 C Ma. To prove this claim, it then 
3 

suffices to show MaC D1 U D2. For any 'lj; E 8Xo \ (D1 U D2), we have 2::: '1/;j(O) > 0, 
j=l 

3 
and hence lim I 2::: u1(t, 'lj;)- N:(t)l = 0. From (3.1a), there exists a t0 > 0 such that 

t-+oo j=l · 

u1(t,'lj;) > 0 for all t > t0 . It is easy to see that u4(t, 'lj;) > 0 for all t > 0 from (3.1d). 

It then follows from (3.1b-3.1c) that if 'lj;2 (0) > 0, then u2 (t, 'lj;) > 0 and u3 (t, 'lj;) > 0, 

Vt > 0. In view of (3.1c,3.1e-3.1g), we see that if 'lj;3(0) > 0, then u1(t, 'lj;) > 0, 

Vj E {3, 5, 6, 7}, Vt > 0. Moreover, if 'lj;5 (0) > 0 or 'l/J6(0) > 0, then u1(t, 'lj;) > 0, 

Vj E {6, 7} and Vt > 0, which can be deduced from (3.1e-3.1g). If 'lj;7(0) > 0, then 

(3.1b) and (3.1c) imply that u2 (t,'I/J) > 0 and u3 (t,'lj;) > 0 for all t > t0 . Therefore, 

we have u(t, '1/J) E Xo, Vt > to. This implies that for any '1/J E 8Xo \ (Dt U D2), we 

have some n with nT > t0 such that p n('lj;) rf_ 8X0 , and hence MaC D1 U D2. It then 

follows that M1 and M2 are disjoint , compact and isolated invariant sets for P in Ma, 

and Aa := u i>EMa w(¢) = {Mt, M2}. Further, no subset of {Mt, M2} forms a cycle in 
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Ma (and hence in 8X0 ). In view of the two claims above, we see that M1 and M2 are 

isolated invariant sets for Pin X, and ws(Mi) n X 0 = 0, Vi = 1, 2, where ws(Mi) is 

the stable set of Mi for P. 

In the case where 0 is not an equilibrium of (3.2), we can show that Ma = D 1 in 

a similar manner. It then follows that { M2 } is the only compact invariant set for P 

in Ma, and hence we need only choose i = 2 in the above argument. 

By the acyclicity theorem on uniform persistence for maps ( see Theorem 1.2.2 

or [105, Theorem 1.3.1 and Remark 1.3.1]), it follows that P : X -? X is uniformly 

persistent with respect to X 0 . Thus, Theorem 1.2.3 implies that the periodic semiflow 

<I>(t) : X -? X is also uniformly persistent with respect to X0 . It then follows from 

Theorem 1.2.6 (see also [106, Theorem 3.1]) that system (3.1) admits aT-periodic 

solution <I>(t)¢* with¢* E X 0. 

By Theorem 1.2.6, with p(x) = d(x, 8X0 ), it then follows that P: Xo-? Xo has a 

compact global attractor A0 . Since A0 = P (Ao) = <I>(T)A0 , we see that ¢i(O) > 0 for 

all i = 2, 3, 5, 6, 7. This implies that ¢i(O) > 0 fori= 1, 4 from the invariance of A0 . 

Let Bo:=Ute[o,T] <I>(t)Ao, then 7/Ji(O) > 0 for all 7/J E Bo, i E [1, 7]. Moreover, Bo C Xo 

and lim d(<I>(t)¢, B0 ) = 0 for all ¢ E X0 . Define a continuous function p : X -? IR+ 
t-+oo 

by 

p(¢) = 1Ti~7{¢i(O)}, V¢ EX. 

Since B0 is a compact subset of X 0 , we have inf p( ¢) = min p( ¢) > 0. Consequently, 
<!>EBo <!>EBo 

there exists 'f/ > 0 such that 

lim infmin(Sv(t, ¢), Ev(t, ¢), lv(t, ¢), Sh(t, ¢), Eh(t, ¢), h(t, ¢), Rh(t, ¢)) 
t--oo 

= lim inf p(<I>(t)¢) ~ 'fl, V¢ E Xo . 
t-+oo 

In particular, lim inf min(<I>(t)¢*) ~ 'f/, and hence ui(t, ¢*) > 0, 1 ~ i ~ 7, for all 
t-+oo 
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t 2 0. This implies that u(t, ¢*) is a positive T-periodic solution. • 
Applying Theorem 1.3.1, we know that the disease-free periodic state is locally 

stable when R 0 < 1 and is unstable when R 0 > 1. Next we show that the disease 

dies out if R 0 < 1, provided that there is only a small invasion. For every K > 0, 

denote XK = C([-r, O], [O,KF), then we have the following result. 

Theorem 3.3.2 Let (A) hold. !fRo< 1, then for every K > max{h0 , ~},there ex

ists a ( = ((K) > 0 such that for any¢ E XK\M1 with (¢2(0),¢3 (0),¢5 (0) ,¢ 6 (0),¢7(0)) 

E [0,(]5 , the solution of system (3.1) through¢, u(t,¢), satisfies 

lim llu(t,¢)- (N;(t),O,O,N~,O,O,O)II = 0. 
t-+oo 

Proo[ Let K > max{h0 , ~} be given. By Lemma 3.2.1 and its proof, XK is 

positively invariant for the periodic solution semiflow of (3.1). We then have 

CI>(t,¢) E [O,Kf, 'Vt 2 0,¢ EX£. 

Let NI,(t)= 

-(dv(t) +a) 0 0 c{J(t) Nh~t)~• ca {3 ( t) Nitt)~e 
h- h-

a -dv 0 0 0 

0 d{J(t) -(PE + dh) 0 0 

0 0 PE -(pr + 8h + dh) 0 

0 0 0 PI -(pn + dh) 

It fo llows from Theorem 1.3.1 that R 0 < 1 if and only if p(CI>F-v(T)) < 1. By · 

the continuity of solutions with respect to parameter E, we see that lim CI> M (T) = 
f-+0+ ' 

CI> F- v (T). Moreover, we have lim p( CI> M (T)) = p( CI> F- v (T)) from the continuity of 
f-+0+ ' 

the spectrum for matrices [46, Section II.5.8]. Thus, there exists an E > 0 such that 

p(CI>!Vt,(T)) < 1. 
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Now consider the following equations: 

dw~F) = b(t- T, w1(t- T.)) exp [ -l~r dJ(77)d77] - dv(t)wl(t), 

dw;F) = Ah- dhw2(t)- oh6· 
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We can choose small 6 > 0 and large T1 = T1 (K) > 0 such that for any solution 

(WI (t), w2(t)) with (WI (0), w2(0)) E [0, K]2, we have 

Without loss of generality, we can set T1 = nT for some positive integer n. 

Let /.l = ~lnp(<I>M.(T)), it then follows from Lemma 2.1 in [102] that there exists 

a positive, T-periodic function v(t) such that eJ.l.tv(t) is a solution of x'(t) = Mf(t)x(t). 

Choose 6 > 0 such that 6vi(t) < 6 for all t ~ 0, i E {1, 2, 3, 4, 5}. For every solution 

u(t, ¢)of the system (3.1) through¢, if we denote u(t, ¢) = (u2(t , ¢), u3 (t, ¢), u5(t, ¢), 

u6(t, ¢), u7 (t, ¢)f, then there exists a ( = ((K) > 0 such that 

provided that ¢i(O) < (fori= 2, 3, 5, 6, 7. 

We further claim that (3.8) holds for all t ~ 0. If this claim is not true , then 

there exists a T2 = T2(¢) > T1 such that ui(t, ¢) < 6 vi(t) for i E [1, 5], 0 ~ t < T2 

and ui(T2, ¢) = 6vi(t) for some j E [1, 5] . Then for T1 ~ t ~ T2 , we have d~~t) ~ 

Mf(t)u(t). By the standard comparison principle, we have u(t, ¢) ~ eJ.l.(t-Tll6v(t

TI) = eJ.l.(t-Tt)6v(t- nT) = eJ.l.(t-Td6v(t) for T1 < t ~ T2. Since J.L < 0 and t > T1, we 

have ui(t, ¢) < 6vi(t) fori E [1, 5], a contradiction. This implies that (3.8) holds for 

all t ~ 0, and u(t, ¢) ~ eJ.l.(t-T1 )6v(t) for all t ~ T1 , which implies that lim u(t, ¢) = 0. 
t-oo 

By the theory of chain transitive sets (see, e.g., [105, Theorem 1.2.1]) , as argued in 
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Theorem 2.4.1, we further obtain that lim (Sv(t)- N:(t)) = 0 and lim Sh(t) = Nh. 
t-.oo t-.oo 

• 
The following theorem shows that when the disease-induced death rate is equal 

to zero, the infection will be cleared from the population if R 0 < 1. 

Theorem 3.3.3 Let (A) hold. If R 0 < 1 and 6h = 0, then the disease-free periodic 

state of the system (3. 1} is globally asymptotically stable with respect to C([ -T, 0], IR:)\ 

{(O,O,O,Nh,O,O,O)}. 

Proof. As argued in Theorem 3.3.2, there exists an E > 0 such that p( <I> M, (T)) < 1. 

If 6h = 0, the whole human and mosquito populations admit the following two 

equations: 

dN;/t) = Ah- dhNh(t) , 

dN;r = b(t - T, Nv(t- T)) exp [ - 1~.,. dJ(1J)d1J] - dv(t)Nv(t) . 

Therefore, there exists T3 = T(t:) > 0 such that 

Thus, when t 2': T3 , we have 

dE;t(t) :::; -dv(t)Ev(t) + c/](t) Ni~t~~< h(t) + c/](t)aNj/~~< Rh(t ), 
h h 

dldit) = aEv(t)- dv(t) lv(t), · 

dE:?) :S d/](t)lv(t) - psEh- dhEh, 

dl~ft) = PEEh- Pih- dhh, 

dR:P) = Pih- PRRh- dhRh. 

By [102, Lemma 2.1], there exists a positive, T-periodic function v(t) such that 

w(t) = e8tv(t) is a solution of w'(t) = M,(t)w(t), where e = ~ lnp(<I>M',(T)). Clearly, 
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e < 0. Since the positive, T-periodic function v(t) is bou-nded, we see that w(t) ---+ 0 

as t ---+ oo. Using a comparison argument similar to that in the proof of claim 2 of 

Theorem 3.3.1, as applied to (3.8), we have 

lim (Ev(t), Iv(t), Eh(t), h(t), Rh(t)) = (0, 0, 0, 0, 0) . 
t-oo 

It then follows from the theory of asymptotically periodic semifiow [105, Theorem 

3.2.1] that 

lim (Sv(t)- N:(t)) = 0 and lim Sh(t) =Nit . 
t-oo t-+oo 

This completes the proof. • 

Remark 3.3.1 We can further show, using the perturbation theory of a globally stable 

fixed point (see (82, Theorem 2.2}) to the Poincare map of the system (3.1), the above 

result still holds for R-0 < 1 and oh > 0, but is sufficiently small. 

3.4 A case study 

In this section, we first validate the model against the malaria transmission cases in 

KwaZulu-Natal Province, South Africa. Epidemic malaria in South Africa is mainly 

caused by Plasmodium falciparum species and transmitted by the Anopheles arabien

sis and Anopheles funestus. The transmission of malaria occurs in three northeastern 

provinces of the country with low altitude, including Mpumalanga, KwaZulu-Natal 

and Limpopo [30] . In the highlands, climatic conditions, such as temperature, affect 

the development of mosquitoes and malaria parasites. Since temperatures during the 

preceding summer and current spring are significantly associated with malaria trans

mission in South Africa [21], we focus on the discussion of the temperature effects on 

the malaria transmission. To do this, we should evaluate the temperature-dependent 
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coefficients (b(t, Nv(t)), dv(t), {3(t) and dJ(t)) and the temperature-independent (con

stant) coefficients for our mathematical model. 

3.4 .1 Parameter estimates 

First, we estimate the temperature-independent parameters. Note that Chitnis et.al. 

[16] determined some realistically feasible constant parameters for the malaria trans

mission model we refer the reader to their work and references therein and list values 

of some constant parameters for the malaria model (3.1) in Table 3.2. 

Dimension Value Reference 

T Month 12/ 30.4 [31] 

d,. Month- 1 1/ 49.1/ 12 Estimated 

a Month- 1 2.523 [16] 

PE Month- 1 3.04 [16] 

PI Month- 1 0.0159 [16] 

PR Month-1 0.01672 [16] 

c Dimensionless 0.2 [16] 

d Dimensionless 0.011 [16] 

a Dimensionless I [16 ,69] TO 

A,. H uamns x Month - I 15997.99 Estimated 

8,. Month- 1 2.8 X 10-3 [16] 

Table 3.2: Values for constant parameters for the malaria model (3.1) . 

Estimate of dh and Ah: According to the 2002 World Health Report [99] , we suppose 

that the life expectancy for South Africa is 49.1 years, and we choose 

1 
dh = 

9 1 2 
= 1.697% Month- 1

. 
4 . X 1 
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In the South Africa census for 2001, the total human population for KwaZulu-Natal 

Province is 9,426,017. Hence, the recruitment rate Ah for KwaZulu-Natal Province 

can be calculated by 

Ah = dh x 9426017 = 15997.99 Humans x Month- 1
. 

Next, we use the monthly mean temperatures and relationship between temper

ature and death rate, and biting pattern to determine the temperature-dependent 

parameters dJ ( t) , dv ( t), (3( t) and b( t, Nv ( t)). In this case study, we take July 1 as the 

starting point. 

The monthly mean temperature for KwaZulu-Natal Province: Using the reported 

monthly mean temperature [67] for Durban International Airport in KwaZulu-Natal 

Province, from July 1999 to April 2007, we can calculate the average monthly tern-

perature for KwaZulu- atal Province, as shown in Table 3.3. 

Month Jul Aug Sep Oct Nov Dec 

Temperature 16.66 18.34 17.22 20.8 22.1 23.46 

Month Jan Feb Mar Apr May June 

Temperature 23.82 25.32 23.52 20.24 19.1 16.84 

Table 3.3: Monthly mean temperature for KwaZulu-Natal Province (in °C). 

Estimation of f3(t): It follows from [51] that the temperature dependence of the dura

tion of the gonotrophic cycle (i.e, the duration period for oviposition) can be expressed 

as shown in Table 3.4. 

Using Mathematica software, the best fitted curve for the duration of the mosquito 
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Temp. 15°C 20°C 23°C 25°C 27°C 29°C 31 oc 33°C 35°C 

Time 12.8 6.4 5.1 3.5 3.3 2. 7 2.1 2.4 2.3 

Table 3.4: Mean times to oviposition (in days) in the corresponding temperature. 

gonotrophic cycle is given by 

107.204 - 13.3523 * C + 0.677509 * C2 
- 0.0159732 * C3 + 0.000144876 * C4 day 

Here, C is the temperature in Celsius. Hence, the temperature-dependent contact 

rate per unit t ime can be expressed as the reciprocal of this period, that is 

k(C) = 
30

.4 M n h- 1 

107,204 - 13.3523C + 0.677509C2 - 0.0159732C3 + 0.000144876C4 
0 

t . 

Using the corresponding mean temperature of each month, we can fit the biting rate 

in KwaZulu-Natal Province by 

(J(t) = 5.1492- 1.83692cos(0.523599t)- 0.175817cos(l.0472t) 

-0.166233 cos(l.5708t) - 0.16485 cos(2.0944t) - 0.17681 cos(2.61799t) 

-1.37079 sin(0.523599t) + 0.296267 sin( l.0472t) + 0.2134 sin(l.5708t) 

- 0.295228 sin(2.0944t) - 0.201712 sin(2.61799t) Month-1
. 

Estimation of dv(t): The temperature-dependent adult mortality rate for mosquitoes 

dv(t) can be approximated by [75,86]: 

- - ( C - 278° K) dv(C) = 3.04 + 29.564exp -
2

.
7035 

Month- 1
, 

where C is the temperature in absolute degrees (Kelvin, equal to 273.15 plus °C) in 

the range 278° K ::; C ::; 303° K. Hence, the mortality rate for adult mosquitoes dv(t) 
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in KwaZulu-Natal Province can be approximated by 

dv(t) = 3.18293 + 0.135362cos(0.523599t) + 0.02495cos(1.0472t) 

+0.01925 cos(l.5708t) + 0.0358 cos(2.0944t) + 0.00548754 cos(2.61799t) 

+0.0904893 sin(0.523599t) + 0.0338905 sin(l.0472t) - 0.00476667 sin(1.5708t) 

+0.0235848 sin(2.0944t) + 0.042194 sin(2.61799t) Month -l. 

Estimation of dJ(t): The larvae mortality rate for mosquitoes dJ(t) per month (Month-1) 

can be expressed as an empirically function of temperature [61, 86]: 

- 30.4 -1 

dJ(C) = -4.4 + 1.31C - 0.03C2 Month . 

Here, C is the temperature in Celsius. Therefore, the immature mosquito mortality 

rate in KwaZulu-Natal Province dJ(t) can be approximated by 

dJ(t) = 3.16738 + 0.0827969 cos(0.523599t) + 0.0154833 cos(l.0472t) 

+0.0353 cos(1.5708t) + 0.0316 cos(2.0944t) - 0.00504691 cos(2.61799t) 

+0.0424931 sin(0.523599t) + 0.063191 sin(l.0472t) - 0.00361667 sin(l.5708t) 

+0.00502294 sin(2.0944t) + 0.0463902 sin(2.61799t) Month- 1
. 

The discrete data and its corresponding fitted curves for f3(t), dv(t) and dJ(t) are 

shown in Fig. 3.2. 

Estimation of the mosquito birth function: We suppose that the egg-deposition rate 

is a linear function of the biting rate (scaled reciprocal of the gonotrophic cycle), i. 

e., b(t,N) = b(t) = J.L x {J(t) Mosquitoes x Month-1
, where p, is a positive constant 

number. We estimate p, = 5 x 9426017 to make sure that when there is no disease, 

the stable mosquito population remains about 2.5 times more than that of the human 

population. 
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Figure 3.2: Fitting curves for ,6(t), d,(t) and dJ(t). 
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3.4.2 Model validation 

The model was simulated in MATLAB software using the fourth-order Runge-Kutta 

method. For the period from August 2003 to January 2005, we use the following 

initial values: Sv(O) = 11277924, Ev(O) = 443, l v(O) = 1452, Sh(O) = 9384291, 

Eh(O) = 82, h (O) = 12000 and Rh(O) = 450. 

(a) 

(b) 

Figure 3.3: The monthly reported cases against the model predicting cases. 

For the period from October 2005 to October 2006, people became more conscious 

about the malaria disease in response to the severity of malaria. Humans can im

plement some personal protection methods to reduce vector-host contacts, e.g., by 
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using bed nets. To account for this prevention, we use fi(t) = (1 - q){3(t) to replace 

{3(t) in our malaria system (3.1). Here, q denotes the efficiency of intervention mea

sures. Suppose in 2005-2006, q=30%. Setting the initial value as Sv(O) = 13530844, 

Ev(O) 450, Iv(O) = 1500, Sh(O) = 9313894, Eh(O) = 25, h(O) = 9000 and 

Rh(O) 300, we get Fig. 3.3, which shows the comparison between the monthly 

reported malaria cases [23] and model predicting cases for KwaZulu-Natal Province. 

3.4.3 Basic reproduction ratio Ro 

Using Lemma 1.3.2, we can numerically compute the basic reproduction ratio R 0 . For 

the endemic period from August 2003-January 2005, with less intervention measure, 

we get R 0 = 1.1713. For the October 2005- 0ctober 2006 epidemic period, some 

personal protection measures were introduced and the contact rate {3(t) became fi(t) = 

(1 - 30%){3(t). Then, Ro = 0.8199 for this period. Fig. 3.4 shows the long-term 

behavior .of the infectious human population when R 0 > 1 and R 0 < 1. These 

simulations are consistent with our theoretical results in the previous section. 

3.4.4 Sensitivity analysis of R 0 

In order to reduce the malaria induced human mortality and morbidity, it is necessary 

to know the relative importance of the different factors responsible for its transmission. 

Initial disease transmission is directly related to R 0 . In this subsection, we will analyze 

the relationship between 'Ro and some coefficients in our model (3.1). 

Prolonging the duration of the immature state: Our numerical analysis (Fig. 3.5) 

shows that the larger r is (the longer the immature stage is), the smaller the repro

duction ratio becomes. Hence, we can prolong immature duration (via medical drugs 
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Figure 3.4: Time series of infectious host population when Ro > 1 and Ro < 1. 
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or control measures) to control malaria. For example, to eradicate disease for the 

epidemic period August 2003-January 2005, we should keep T > To = 14.96 days. 

0.7 

o.e,L2 -~14-11-lau-_0-1~6 ---'-,S--20'----~22 _ ___j24 

Maturation poriod (days) 

Figure 3.5: Relationship between R 0 and T. 

0.7 

O.~ 0.05 0.1 q_O 0.2 0.25 0.3 0.35 0.4 
Prevention rate q 

Figure 3.6: Relationship between R 0 and q. 

Prevention of host-vector contact: To simulate the effect of keeping humans from 

mosquito bites causing the disease tr{insmission, we replace {3(t) with ~(t) = (1 -

q){3(t) in our model. Then Figure 3.6 shows the relationship between intervention 

efficiency q and basic reproduction ratio, R 0 . It admits our analytic result that Ro is 
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in scale with (1- q). Moreover, this figure shows that we should keep q > q0 = 14.5% 

to control malaria transmission for August 2003-January 2005 epidemic period. 

Global warming effects on R 0 : To simulate the effect of global warming, by the in

creasing temperatures, we change the corresponding periodic temperature-dependent 

coefficients !3(t), dv(t), dJ(t) and b(t, Nv(t)). Using Lemma 1.3.2, we can calculate 

the correspondence R 0 for each increasing temperature. Fig. 3.7 shows the effects of 

increasing temperature, 8, on R 0 . 

1.2 

·~ 
~ 0.8 

0 .7 

0.5 1 \delta 01 .5 2 
Global waiTnlng degrees ("C) 

2.5 3 

Figure 3.7: Relationship between R 0 and 8. 

For the malaria epidemic period October 2005- 0ctober 2006, if the temperatures 

have risen by 1 °C, then R 0 will grow to 0.9596. If the temperatures have risen by 

8 > 80 = 1.3°C, then R 0 will larger than 1, which means that malaria resurgence 

happens. 
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3.5 Discussion 

In this chapter, we have presented and analyzed a mathematical malaria model, 

which was motivated by the compartmental models in [15, 68, 69]. The modifications 

essentially address the age-structure of mosquitoes and the seasonal climate effects 

on malaria transmission. Such a model provides a baseline against which climate 

change scenarios (e.g., global warming) can be evaluated in the long term. From 

the theoretical point of view, we have figured out the basic reproduction ratio and 

showed that the infection will be cleared from the population provided there is only 

a small invasion. Moreover, the disease free periodic state is globally asymptotically 

stable if the disease induced death rate is sufficiently small and 'Ro < 1, which is very 

important for epidemiologists (and even for entomologists) to control a disease. 

Although, 'Ro has been evaluated for some autonomous malarial models (in homo

geneous environments) using the next generation matrix/operator approach presented 

in [25,91] (see also [16,53,70] for some examples), there is little work on estimating the 

basic reproduction ratio for malaria in the periodic time-dependent environment. Our 

work shows that 'Ro provides an index of transmission intensity, and good estimates 

of malaria transmission intensity are necessary to compare and interpret malaria in

terventions conducted in different places to objectively evaluate options for malaria 

control. The prospects for the success of malaria control depend, in part, on the basic 

reproductive number for malaria, 'R0 [79]. 

For our model, we picked feasible temperature-dependent coefficients for modeling 

malaria cases in KwaZulu-Natal Province, South Africa. The basic reproduction 

ratios of the model are computed numerically for two disease periods. For the October 

2005-0ctober 2006 period, since 'Ro = 0.8199 < 1, the disease will be contained 



3.5 DISCUSSION 81 

eventually in KwaZulu-Natal Province if people keep human-mosquito contact with 

efficiency q = 30% while all other coefficients stay the same. This trend is consistent 

with the field data, since the total cases are 4193, 1999, 1389 and 491 for July 2003-

June 2004, July 2004- June 2005, July 2005-June 2006 and July 2006- March 2007, 

respectively. 

In this chapter, we numerically simulated the effect of personal protection mea

sures on the basic reproduction ratio (Fig. 3.6). The result predicts that if people in 

KwaZulu-Natal Province keep intervention efficiency q > 14.5%, the disease will even

tually be controlled and eliminated from the population. Our numerical simulation in 

Fig. 3.5 indicates that an increase of the preadult duration (via medical drugs or con

trol measures) could reduce the basic reproduction ratio 'R0 . It is a vector-based idea 

for combating malaria transmission to prolong the immature duration of mosquitoes. 

Moreover, our model can be used to simulate the effects of other malaria control 

methods. For example, to analyze the effect of lowering the adult mosquito lifespan 

on 'R-0 , we just need to simulate 'R0 against the increased dv(t). Our mathematical 

modeling and the threshold parameter no can provide a quantitative framework for 

strategic planning, as noted in [35]. 

Global atmospheric temperatures are presently in a warming phase that began 

250-300 years ago and rising temperatures are likely to continue. It is predicted that 

the average global surface temperature could rise 0.6- 2.5°C in the next 50 years, and 

1.4°C to 5.8°C by the year 2100 [18]. The climate-induced changes in the potential 

distribution of malaria were simulated in Fig. 3.7, which shows that if the tempera

tures have risen by t5 > t50 = 1.3°C, the basic reproduction ratio will grow from 0.8199 

to be greater than 1 and malaria will reenter KwaZulu-Natal even if people protect 

themselves from biting with efficiency q = 30%. 
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Since the temperature scenarios can be derived from global climate models (GCMs) 

(e.g., the modeling experiments completed by the Hadley Center [45]), our model in 

this chapter may provide an early warning system for malaria risk. 
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Chapter 4 

The Periodic Ross-Macdonald 

Model with Diffusion and 

Advection 

4.1 Introduction 

Mathematical models have long provided important insight into the malaria dynam

ics and control [5]. The earliest model of malaria transmission is the Ross-Macdonald 

model, which captures the essentials of the transmission process. Much has been done 

based on this classical model (see, e.g., [6,53,74] and references therein). The classical 

Ross-Macdonald model is highly simplified. One omission is the temporal heterogene

ity in the distribution of mosquito populations and human biting rate. Transmission 

and distribution of vector-borne diseases are greatly influenced by environmental and 

climatic factors. Seasonality and circadian rhythm of mosquito populations, as well 

as other ecological and behavioral features, are strongly influenced by climatic factors 
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such as temperature, rainfall, humidity, wind, and duration of daylight [44, 71, 78]. 

Since the climate change induces the change of the population dynamics and biting 

pattern of the mosquito vector, the malaria cases may significantly increase due to 

climate change [62, 71, 108]. Another omission is the spatial movements of reserJoirs 

and vectors. Spatial dispersal of mosquitoes and reservoirs has also contributed to the 

spread of mosquito-borne diseases [52,63,87]. Moreover, modern transport facilitates 

the movement of human and disease vectors, which may play a role in the global dis

semination of malaria [76, 87]. To plan and implement effective control measures, we 

should understand the spatial-temporal distribution of risk for malaria infections [78]. 

To address these two omissions, we propose a reaction-diffusion-advection malaria 

model in a periodic environment. 

As in the classical Ross-Macdonald model, the adult female mosquito and human 

populations are divided into two epidemiological categories: the susceptible class and 

infectious class. We assume the total density of human and mosquito population 

at any point x and time t are H and M(t), respectively. Let the spatial density of 

infectious humans and vectors be h(t, x) and v(t, x), respectively, then the density of 

susceptible humans and susceptible mosquitoes are H- h(t, x) and M(t) - v(t, x). 

Suppose the mortality rate of the humans and mosquitoes are dr. and dv(t), respec

tively. Assume a(t) is the mosquito biting rate, that is, a(t) is the aver~ge number of 

bites per mosquito per unit time at timet. Based on the fact that the total number 

of bites made by mosquitoes is equal to the total number of bites received by humans, 

the average number of bites per human receives per unit time at time t is a(t)::(t). 

Suppose the transmission probabilities from infectious vectors to humans and from 

infectious humans to vectors are denoted by b and c, respectively. Thus, the infection 
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rates per susceptible human and susceptible vector are given by 

a(t)M(t) v(t, x) a(t)b h(t, x) . 
b H M(t) = H v(t, x) and a(t)c-;r-, respectively. 

To take into account climate effects on mosquito development, we further assume that 

M(t), dv(t) and a(t) are positive and periodic functions with the same period being 

w = 365 days. 

To describe the random movement of humans and mosquitoes, we use Fick's 

law to model the diffusion for simplicity. The diffusion coefficients for humans and 

mosquitoes are Dh and Dv, respectively. To account for the wind advection to the 

mosquito dispersal, we use g to denote the constant velocity flux. We will always 

assume that the advection points to the right. 

Combining the viral dynamics and dispersal process together, we then have the 

following mathematical model on malaria dispersal: 

{ 

8hbtt,x) = a(t)bH-~t,x)v(t, x)- dhh(t, x) + Dh 82~~~x)' 

avb~,x) = a(t)ch(~x) (M(t)- v(t, x)) - dv(t)v(t, x) + Dv 82~~tt) - g :xv(t, x). 
(II) 

This chapter is devoted to the study of the asymptotic behavior of system (4.1) in 

both unbounded and bounded spatial domains. In section 4.2, we prove the existence 

of the rightward and leftward spreading speeds c~ and c:_, and their coincidence with 

the minimal wave speeds for monotone periodic traveling waves in the right and left 

directions. In section 4.3, we establish a threshold result on the global dynamics of 

system ( 4.1) in a bounded domain n C !Rn. Section 4.4 presents some numerical 

simulations to illustrate our analytic results. The chapter concludes with a brief 

discussion in section 4.5 . 
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4.2 Spreading speeds and traveling waves 

In this section, we study the spatial dynamics of system ( 4.1) in terms of spreading 

speeds and traveling waves. 

4.2.1 The periodic Ross-Macdonald model 

We first study the global dynamics of the following periodic version of Ross-Macdonald 

model: 

{ 

d~~t) = a(t)bHj;(t)v(t)- dhh(t), 

d~~t) = a(t)c~(M(t)- v(t))- dv(t)v(t). 

We can rewrite system ( 4.2) as 

dy 
dt = G(t, y) 

with y= ( h(t) ) ' G(t, y) = ( a(t)bH-;t Y2- dhYl ) . Denote ][)) .-
v(t) a(t)cljj(M(t)- Y2)- dv(t)y2 

{(t,y): 0 :S y :S y(t),t 2': 0} with y(t) = ( H ) and La = max{H,maxM(t)}. 
M(t) t~a 

Let ][))t := {y: 0 :S y :S y(t)}. Clearly, ][))a= {(h ,v): 0 :S h :S H,O :S v :S M(O)}. 

Lemma 4.2.1 For any (h(O), v(O)) E [0, l] x [0, l] with l 2': La, system (4 .3} has a 

unique solution (h(t), v(t)) E [0, l] x [0, l] through (h(O), v(O)), Vt 2': 0. Furthermore, 

(h(t), v(t)) E ][))t, Vt 2': 0, whenever (h(O), v(O)) E ][))a . 

Proof. Since for all y 2': 0, G(t, y) is continuous and locally Lipschitzian in y in any 

bounded set, there is a unique solution for system (4.3) through (h(O), v(O)) E [0, l] x 

[0, l] . It then follows from [80, Remark 5.2.1] that for any initial value (h(O), v(O)) E 

[0, l] x [0, l], the unique solution (h(t), v(t)) admits 0 :S h(t) :S l, 0 :S v(t) :S l on 
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its maximal interval of existence. Hence, all solutions exist globally. Using a similar 

argument, we can further get the second statement. • 

ote that (0, 0) is an w-periodic solution of (4.3), and the corresponding linearized 

system for ( 4.3) is 

dz [ -dh a(t)b l - = DyG(t, O)z = z. 
dt -Jia(t)M(t) -dv(t) 

Using the notations in section 1.3, we set F(t) = [ 
0 

fia(t)M(t) 

a(t)b l · 
0 

and V(t) = 

[ 
dh 0 l . Then we can rewrite system (4.4) as 
0 dv(t) 

d~~t) = (F(t)- V(t))z(t). 

Assume Y(t,s), t ~ s, is the evolution operator of the linear-periodic system 

dy 
dt = -V(t)y. 

That is, for each s E lR, the 2 x 2 matrix Y ( t, s) satisfies 

d 
dt Y(t, s) =-V(t)Y(t, s), Vt ~ s, Y(s, s) = I, 

where I is the 2 x 2 identity matrix. 

Let Cw be the Banach space of all w-periodic functions from lR to IR2
, equipped with 

the maximum norm. Suppose¢> E Cw is the initial distribution of infectious individu

als in this periodic environment, then F(s)¢>(s) is the rate of new infections produced 

by the infected individuals who· were introduced at times, and Y(t, s)F(s)¢>(s) rep

resent the distribution of those infected individuals who were newly infected at time 
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s and remain in the infected compartments at timet fort ~ s. Hence, 

7/J(t) = 1~ Y(t, s)F(s)¢(s)ds = 100 

Y(t, t- a)F(t- a)¢(t- a)da 

gives the distribution of accumulative new infections at time t produced by all those 

infected individuals ¢(s) introduced at previous time. As in section 1.3, we define the 

next infection operator L : Cw ----> Cw by 

(L¢)(t) = 1oo Y(t, t- a)F(t- a)¢(t- a)da, 'it E IR, ¢ E Cr . 

Then the basic reproduction ratio is R 0 := p( L), the spectral radius of L. 

Let p be the principal Floquet multiplier of the linear system ( 4.4) . According to 

Theorem 1.3.1, R 0 > 1 ( < 1) if and only if p > 1 ( < 1). We further have the following 

result on the global dynamics of system (4.2). 

Lemma 4 .2.2 The following statements are valid: 

(i) If R 0 > 1, then system (4.2) admits a unique positive w-periodic solution 

(h*(t), v*(t)), and it is globally asymptotically stable for (4.2) with initial values 

in IIJ)o \ {0}; 

(ii) If Ro ::; 1, then (0, 0) is globally asymptotically stable for system (4.2) in IIJ)o. 

Proof. Let Yt(Yo) = y(t, Yo) be the solution map of system ( 4.2) through Yo· Denote 

X(t) = t(Yo) and A(t) = Dy(G(t, y(t, Yo))). Then, X (t) = (xij(t))2x2 satisfies 

X'(t) = A(t)X(t), X(O) =I. 

Since !JJ3; ~ 0, i =/: j, 'i(t, y) E IIJ), then x~k(t) ~ aii (t )xik(t), 'it~ 0 and i, k E {1, 2}. If 

t0 ~ 0 and Xik(to) > 0, it then follows that Xik(t) > 0 for all t ~to. Since Xii (O) = 1, 
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we have Xii(t) > 0, \::It ~ 0, i = 1, 2. We further prove that Xij(tij) > 0 for some 

tij E [0, w], Vi i= j, and hence Xij(t) > 0, \::It ~ w, i i= j. Assume, by contradiction, 

that there is an element Xij(t) = 0 for all t E [O,w] with i,j E {1, 2} and i i= j. Then 

2 

0 = x~j(t) = .L:aa(t)xlj(t) = aij(t)xjj(t), \::It E [O,w]. 
l=l 

Since Xjj(t) > 0, it then follows from the above equality that ai1(t) = 0, \::It E [O,w]. 

Note that 

At= ( _a~)>2(t,yo)-dh awb(1-y1(t ,y0 )) ) 

( ) a(t)c a(t)c ( ( · 
H (M(t)- Y2(t, Yo)) - H Y1 t, Yo)- dv t) 

If a12(t) = 0, \::It E [O,w], then Yl(t,yo) = Hand dy1 ~~·Yo) = -dhy1(t,yo). Since 

dy1 ~~·Yo) = 0 while -dhy1(t,y0 ) = -dhH, we get a contradiction. If a21(t) = 0, 

\::It E [0, w], then Y2(t, Yo) = M(t) and dy2 ~~,yo) = -dv(t)y2(t, Yo), which contradicts the 

periodicity of M(t). Thus, we get t-(Yo) » 0, t ~ w. Furthermore, if Y2, Y3 E lillo 

satisfy Y2 < y3, then for all t ~ w, we have 

1
1 8yt 

Yt(Y2)- Yt(Y3) = ~(Y2 + r(y3- Y2))(y3- Y2)dr » 0. 
o uyo 

Hence, we have Yt(Y2) « Yt(Y3), \::It ~ w, and in particular, Yw is strongly monotone. 

It is easy to check that the following two conditions hold for system (4.3): 

(B1) G(t, y) ~ 0 for every (t, y) E IIll with Yi = 0, i = 1, 2; 

(B2) For each t ~ 0, y E IIllt. G(t, y) is strictly subhomogeneous on y in the sense 

that G(t, ay) > aG(t, y), \:fy E IIllt andy» 0, a E (0, 1). 

Using the same proof as in [105, Theorem 2.3.4], as applied to the Poincare map 

associated with system (4.2) on lillo (see, e.g., [105, Theorem 3.1.2]), we see that two 

statements are valid. • 
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4.2.2 Spatial dynamics 

In the rest of this section, we always assume that R 0 > 1. According to Lemma 4.2.2, 

there exist two periodic solution, (0, 0) and u*(t) = (h*(t), v*(t)), for the spatially 

homogeneous system (4.2). We will consider system (4.1) with initial conditions 

0 :S h(O,x) = ¢1(x) :S H, 0 :S v(O,x) = ¢2(x) :S M(O), Vx E R @ 

Let X be the set of all bounded and continuous functions from ~ to ~2 and 

X+ = {¢ E X : ¢(x) ~ 0, Vx E ~}. Clearly, any vector in ~2 can be regarded 

as a function in X. For u = (u1,u2), w = (w1,w2), we write u ~ v (u » v) 

provided ui (x) ~ vi(x) (ui(x) > vi(x)), Vi = 1, 2, x E ~. and u > v provided 

u ~ v but u f= v. For any r » 0, we define [O,r] := {u E ~2 
: 0 ::; u :=; r } 

and Xr := { u E X : 0 ::; u ::; r }. We equip X with the compact open topology, 

i.e., um ---4 u in X means that the sequence of um(x) converges to u(x) as m ---4 oo 

uniformly for x in any compact set in R Define 

oo max lu(x)l 
llullx = L lxl

9 
2

k , Vu E X, 
k=l 

where 1· 1 denotes the usual norm in ~2 • Then (X, 11· 11) is a normed space. Let d(·, ·) 

be the distance induced by the norm II · II· It follows that the topology in the metric 

space (Xr. d) is the same as the compact open topology in Xr. Moreover, Xr is a 

complete metric space. 

Let lE := {(t, ¢) E [0, oo) x X+ : ¢ ::; y(t)} be the subset of [0, oo) x X+ and 

lEt := {¢EX+ : (t, ¢) E lE} = Xy(t ), where y(t) = ( H ) . Assume Y is the set 
M(t) 

of all bounded and continuous. functions from~ to~. Let S1(t) and S2 (t) be the 
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solution semigroups on Y generated by two equations 

and 

respectively. Then 

Note that the equations 

aul 82
ul at = Dh ax2 - dhu1 , 

admit evolution operators T1 (t, s) and T2(t , s) on Y, respectively. Indeed, T1 (t, s) and 

T2(t, s) can be defined as follows: 

Define B : lE --+ X by 

T1(t, s)¢1 = e-dh(t-s)S1(t- s)¢1, 

T2(t, s)¢2 = e- 1: dv(r)dr S2(t- s)¢2. 

( 

a(t)bH-tl(x)¢2(x) ) 
B(t, ¢) (x) := , V(t, ¢) E lE, x E JR. 

a(t)c"'1}t)(M(t) - ¢2(x)) 

Let u1(t,x) = h(t,x) and u2 (t,x) = v(t,x). Then (4.1) becomes 
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Integrating two equations of system (4.7) together with (4.5), we have 

{ 

u1(t,·,¢) =Tt(t, 0)¢1 + f~Tt(t,s)Bt(s,u(s))ds , 
u2(t, ·, ¢) = T2(t, 0)¢2 + fo T2(t, s)B2(s , u(s))ds. 

It follows that system ( 4. 7) can be written as an integral equation 

u(t, ·, ¢) = T(t, 0)¢ +it T(t, s)B(s, u(s))ds, 

whose solutions are called mild solutions to system (4.7). 
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Definit ion 4.2.1 A function u(t, x) is said to be an upper (a lower) solution of (4. 7) 

if it satisfies 

u(t) 2:: ($.)T(t, O)u(O) +it T(t, s)B(s, u(s))ds. 

Theoreq1 4 .2.1 For any¢ E Xy(O)• system (4. 7) has a unique mild solution u(t, ·, ¢) 

= (ut(t, ·, ¢), u2(t, ·, ¢)) E Xy(t) with u(O, ·, ¢) = ¢ E Xy(o), Vt 2:: 0, and u(t, x, ¢) 

is a classical solution when t > 0. Moreover, if y(t, x) and u(t, x) are a pair of 

lower and upper solutions of system (4. 7), respectively, with y(O, ·) :::; u(O, ·), then 

y(t, ·):::; u(t, ·), Vt 2:: o. 

Proof. We first show that B is a quasi-monotone map from E to X in the sense that 

lim d('!j;- ¢ + k[B(t, '!j;)- B(t, ¢)]; :%:+) = 0, 
k-+O+ 

for all 'lj;, ¢ E Xii(t) with ¢(x) :::; '1/;(x), x E R In fact, for any '1/;, ¢ E Xg(t) with 
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¢(x) :::; 1/J(x), we have 

Thus, for any k 2:0 satisfying i > max{~bM(t),a(t)c}, we have 
O~t~w 

'ljJ- ¢ + k[B(t, 1/J)- B(t, ¢)] 2: 0, 
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and hence, (4.11) holds. By [65, Corollary 5] with v+(t, x)= u(t, x, y(O)), v- (t, x) = 0, 

system (4.7) has a unique solution u(t, ·, ¢) on [0, oo) for any¢ E lEo and u(t , ·, ¢ ) E 

Xg(t), \:ft 2: 0. It follows from [65, Theorem 1] that u( t, x, ¢) is a classical solution if 

t > 0. Moreover, the comparison principle holds for the lower and upper solutions . 

• 
To study spreading speeds and traveling waves for system (4.7), we define a family 

of maps { Qt}t~o from Xg(o) to Xg(t) by 

Qt(<P)(x) = u(t,x,¢) = (u1(t,x,¢),u2(t,x ,¢)), \:ft 2:0, x E IR, 

where u(t, x, ¢) is the mild solution of system (4.7) with u(O, ·, ¢) = ¢. We then have 

the following observation. 

Lemma 4.2.3 The following two statements hold for the solution map Qt : Xg(o) -+ 

Xg(t): 
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(1} Qt[Xy(o)] is precompact in Xy(t) for all t > 0. 

{2} { Qdt>o is an w-periodic semifiow in the sense that 

(i} Qo(v) = v, 'Vv E Xy(O)· 

(ii} Qt+w [v] = Qt[Qw(v)], 'Vt 2: 0, V E Xy(O). 

(iii} Q(t, v) = Qt(v) is continuous in (t, v) E ~+ x Xy(O) with respect to the 

compact open topology. 

Proof. It is easy to see that (2)(i) and (ii) are satisfied for the solution map associated 

with the periodic system. To prove the remaining parts, we just need to show that 

T(t , s) is compact whenever t > s 2: 0, and then use a same argument as in [64, 

Theorem 8.5.2] to prove that (1) and (2)(iii) hold. 

In fact, we can write T1 ( t, s) and T2 ( t , s) explicitly as follows: 

For any ¥ M := { ¢ E ¥ : 0 :::;; ¢(x) :::;; M, 'Vx E ~} with M > 0, it is easy to see that 
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T1 Y M c Y M. Moreover , for any ¢ E Y M and x1 , x2 E JR, we have 

-dh(t-•) -~ _ __L 
where g(~) = ev'41rDht · M JR le 4 

h
1 

- e 40
h

1 ldy. Clearly, ~~g(~) = 0. Therefore, 

T1 Y M is a family of equicontinuous functions. It then follows from Arzela-Ascoli 

theorem and a standard diagonal argument that T1 Y M is precompact with respect 

to the compact open topology. Thus, T1 is compact. Similarly, we can prove T2 is 

compact. • 

Lemma 4.2.4 Qw is subhomogeneous and monotone from X 17(o) to Xy(O)· Moreover, 

for any¢ E Xg(O) with¢> 0, u(t, x, ¢) » 0 for all t > 0, x E JR. 

Proof. For any¢ E Xv(o), let u(t, x, ¢)be the solution of system (4.7) with u(O, x, ¢) = 

¢(x) for x E JR. Since B(t, ¢) is strictly subhomogeneous in ¢, V(t , ¢) E JE, then, for 

any k E [0, 1], we have 

ku(t, x, ¢) = kT(t , 0)¢ + k 1t T(t, s)B(s, u(s))ds 

T(t, O)(k¢) + 1t T(t, s)[kB(s, u(s))]ds 

< T(t, O)(k¢) + 1t T(t, s)[B(s, ku(s))]ds. 
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Hence, ku(t, ·,¢)is a lower solution of system (4.7) with initial value k¢. By Theorem 

4.2.1, we then have ku(t, x, ¢) :::; u(t, x, k¢) for t 2: 0, i.e., Qt(k¢) 2: kQt(<P). Thus, 

Qt is subhomogeneous. 

By Theorem 4.2.1, {Qth~o is a periodic monotone semiflow from Xy(O) to Xg(t)· 

Since for any t > 0, u(t, x, ¢) satisfies 

8u1(t,x,¢) 

8t 
8u2(t x, ¢) 

8t 

It then follows from [92, Theorem 5.5.4] that ui(t, x, ¢) > 0 for all t > 0, x E IR 

whenever ui(O, ·, ¢) = <Pi > 0. Since ¢ > 0, we have ¢ 1 > 0 or ¢2 > 0. Without 

loss of generality, we assume that ¢ 1 > 0. Then u1 ( t, x, ¢) > 0, Vx E IR, Vt > 0. By 

contradiction, suppose u2 (t0 , x0 , ¢) = 0 for some t0 > 0 and x0 E JR. It then follows 

that u2 (t, x, ¢) = 0, Vt E [0, t0], Vx E JR. Since the second equation of system (4.7) 

implies 

0 = a(t)c u1(t:, ¢) M(t), Vt E [0, to], Vx E IR, 

we get a contradiction. Therefore, for any ¢ E X17(o) with ¢ > 0, u(t, x, ¢) » 0 for all 

t > 0, X E JR. • 

To use the theory of spreading speeds and traveling waves developed in [56, 57] 

(see section 1.4), we need to verify that hypotheses (A1)-(A5) hold. As noted in the 

remark of section 1.4, we can replace hypothesis (A1) with the following one without 

reflection invariance: 

(A1)' Ty[Q[u]J = Q[Ty [u]J, Vy E IHI. 

Then, the following lemma holds. 
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Lemma 4.2.5 The Poincare map Qw satisfies all hypotheses (AJ)', (A2)-(A5) with 

/3 = u*(O) and Qt satisfies (Alj' and (A4) for any t > 0. 

Proof. If u(t, x) is a solution for system (4.7), then u(t, x + y), Vy E IR, is also a 

solution, and hence (A1)' holds. (A2) and (A3) come from Lemma 4.2.3. (A4) follows 

directly from the comparison principle in Theorem 4.2.1. 

Let CJw = Qwl[o,u•(o)jR2 • Then Qw : IDlo - IDlo is the Poincare map generated 

by (4.2). Note that (4.2) has a positive w-periodic solution u*(t) which is globally 

asymptotically stable in 1Dl0 \ {0} . We see that CJw has only two fixed points 0 and 

u*(O) in 1Dl0 • Thus, by the Dancer-Hess connecting orbit lemma (see Theorem 1.1.1), 

it follows that there exists a strictly monotone full orbit { an}~oo C IDlo connecting 0 

to u*(O) and a; < ai+1 for all i E Z. Since CJw is strongly monotone from the proof 

of Lemma 4.2.2, then a;+l = CJw(a;) « Qw(ai+1) = ai+2 for any i E Z. Therefore 

a; « ai+1 for any i E Z. This implies that (A5) holds for Qw. • 

According to Theorem 1.4.3 and [97, Theorem 6.1], the map Qw admits a rightward 

spreading speed c:f. and a leftward spreading speed c~. Let r + (J.t) and r _ (J.t), respec

tively, be the spectral radiuses of the Poincare maps associated with the following 

two linear ordinary differential systems: 

and 

{ ~ = dt 

dih(t) 
dt 

a(t)bil2(t)- dhilt(t) + Dh~-t2ilt(t), 
a(t)cM(t) u~t) - dv(t)u2(t) + Dv~-t2il2(t) + 91-til2(t), 

{ 

du~t(t) = a(t)bu2(t) - dhilt(t) + Dh~-t2ilt(t), (
4

.
13

) 

du:?) = at) cM(t)ilt (t)- dv(t)u2(t) + Dv~-t2il2(t)- 9J.til2(t), 

where 1-L ~ 0 is a parameter. It then follows from the Krein-Rutman Theorem (see, 

e.g., [42, Theorem 7.2]) that r±(J.t) > 0. We further have the following computation 

formulas for c±. 
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Proposition 4 .2.1 c± = inf lnr±(l'). 
!'>0 I' 
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Proof. Let (ih(t, u0 ), u2(t, u0 )) be the solution of system (4.12) satisfying (u1(0, u0 ), 

ii.2(0, ii.o)) =ii.o E JR.2 . It is easy to see that 

is a solution of the following linear parabolic system: 

{ 

8ut(t,x) = a(t)bu (t x) - d u (t x) + D 82ut(t,x) 
8t 2 ' h 1 ' h 8x2 ' ( 4.14) 

8u2(t,x) _ ~ M(t) (t ) d (t) (t ) D 8
2
u2(t,x) 8 (t ) at - H C U1 , X - v U1 , X + v ax2 - g ax U2 , X . 

Let {Mth~o be the solution map associated with the system (4.14). Then we have 

Therefore, Bt is also the solution map of the linear differential equations ( 4.12) on 

IR.2 . By [102, Lemma 2.1], there exists a positive w-periodic function w(t) such that 

v(t) = eA+(I'ltw(t) is a solution of (4.12), where .X+(fL) = ~ ln r +(fL). Thus Bt(w(O)) = 

eA+(!')tw(t), and by thew-periodicity of w(t), it follows that B~(w(O)) = eA+(I')ww(O). 

This implies that eA+(!')w is the principal eigenvalue of B~ with the positive eigen

function w(O) . Define the function 

<P+(fL) := _!_ ln(eA+(I'lw) = >-+(fL)w = ln r +(fL)' 'I![L > 0. ( 4.15) 
{L {L {L 

When fL = 0, system (4. 12) reduces to system (4.4). Since R 0 > 1, we haver +(0) > 1. 

Hence, condition (C7) in [57] (see also section 1.4) is satisfied. Now we prove that 

<P+(oo) = oo. Since v(t) = eA+(I')tw(t) is a solution of (4.12), we have v~(t) ~ 

(Dh{L2 - dh)v1(t). It then follows that 

w~ (t) 2 - ( ) ~ (DhfL - dh - .X+(fL)) . 
W1 t 
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Integrating the above inequality from 0 tow, we obtain 

1w w' (t) 
0 = ___!_( ) dt ~ (Dh~-t2 - dh- >.+(~-t) )w, 

0 Wt t 

and hence <f>+(~-t) = >.+~)w ~ (D,JJ~-d,.)w, which implies that <f>+(oo) = oo. Thus 

<f>+(~-t) attains its minimum at some finite value ~-t* · Since the solution of system 

(4.7) u(t, x, ¢>)is a lower solution of the linear system (4.14), we have Qt[¢>] ~ Mt[¢>], 

\1¢> E Xu·(o), t ~ 0. It then follows from Theorem 1.4.2 that c~ ~ inf <f>+(~J.) . Note 
JJ>O 

that the reflection invariance property is assumed in [57] for Mt and Qt in (A1), but 

this property is not needed in the proof of Theorem 1.4.2. 

For any 11- > 0, let r~(~-t) be the spectral radius of the Poincare map associated 

with the following differential system: 

{ 
du~?) = (1- c)a(t)bU2(t)- dhu1(t) + Dh~-t2ilt(t), 
du:?) = (1- c)~cM(t)u1 (t)- dv(t)u2(t) + Dv~-t2il2(t) + 911-il2(t). 

( 4.16) 

Let {Mf}t~0 be the solution map associated with 

{ 

autJ:,x) = (1- c)a(t)bu2 - dhul + Dh a;x~1 , r;;-:;-:?1 

l±J2J 
8u2(t,x) - (1 )~ M(t) d (t) D a2~2 a at - - € H C Ut - v Ul + v ax - g ax U2. 

By the continuous dependence of solutions on initial conditions, it follows that for 

any c E (0, 1), there is a sufficiently small T/ E JR2 and T/ » 0 such that the 

solution w(t, ry) of the periodic system (4.3) with w(O, ry) = T7 satisfies w(t, Tt) ~ 

€ · (H,mino::;t$w{M(t)}f, \It E [O,w]. Thus, the comparison principle (Theorem 

4.2.1) implies that 

u(t, x, ¢>) ~ w(t, ry) ~ c · (H, min { M(t)} f, Vx E JR, ¢> E :%:'7, t E [0, w]. ( 4.18) 
0$t$w 

Since Qt ( ¢>) is an upper solution of linear system ( 4.17) for t E [0, w], ¢> E :%:'7, we have 
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In particular, M~(¢) :::; Qw(¢), V¢ E X17 • Define the function 

if..< ( ) . = ln r~ (.u) 
'¥+j.L. ' 

J.L 

By a similar analysis and [57, Theorem 3.10 (ii)], we have inf <f>~(J.L):::; c~:::; inf <f>+(J.L), 
~>0 ~>0 

Vc: E (0, 1). Letting c -t 0, we obtain c~ = inf <f>+(J.L). 
~>0 

Let w1(t,x) = h(t, -x) and w2(t,x) = v(t, -x), we get 

If we denote c~ as the leftward spreading speed of system (4.7), then c~ is the 

rightward spreading speed of system (4.21). As argued for (4.7), we then have 

c• = inf lnr-(~) . • 
- ~>0 ~ 

Lemma 4.2.6 c~ + c~ > 0. 

Proof. If we define r(J.L), J.L E IR, as the spectral radius of the Poincare map of ( 4.12), 

then r +(J.L) = r(J.L), VJ.L;::: 0, and r -(J.L) = r( -J.L), VJ.L;::: 0. It follows from Lemma 1.4.1 

(see also [57, Lemma 3.7]) that r(p,) is log convex on JR. Thus, for all J.L1 , J.L2 E lR and 

() E (0, 1), we have 

Let f./,1 and J.L2 be two positive numbers such that inf lnr+(~) = lnr+(~i) and inf lnr-(~) = 
~>0 ~ ~I ~>0 ~ 
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lnr-(J.L2). Choosing 8 = __i!:L_ we then obtain 
J.L2 J.Li+J.L2' 

c~ +c~ 
. f ln r + (~L) . f ln r _ (IL) =m +m 
J.L>O IL J.L>O 1L 
ln r +(ILl) ln r_(IL2) = + _ ___:.:..._:_ 

1L1 1L2 
ln r(ILl) ln r(- IL2) = + _...;__:.......:.. 

1L1 1L2 

= ILl + IL2 [8 ln r(~LI) + (1- 8) ln r( -~L2)] 
ILliL2 

~ ILl+ IL2 ln r(8~L1 - (1- 8)~L2 ) = ILl+ IL2 ln r(O). 
ILliL2 ILliL2 

ote that Ro > 1 implies r(O) > 1. Thus, we have c~ + c~ > 0. • 
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The following result shows that~ and c~ are the rightward and leftward spreading 

speeds for system ( 4. 7), respectively. 

Theorem 4.2.2 Let c± be defined as in Proposition 4.2.1. Then the following two 

statements are valid for system {4. 7): 

{i) If¢ E Xu·(o) and </J(x) = 0 outside a bounded interval, then lim u(x, t, ¢) = 
t-<oo,x~ct 

c• c• 
0 for all c > ::±., and lim u(x, t, ¢) = 0 for all c > --=-. 

w t--+oo,x~-ct w 

{ii) For any c and d satisfying -c: < -c' < c < :.±., we have lim (u(x, t, ¢)-
w w t-<oo,-c't~x~ct 

u*(t)) = 0 for all¢ E :Xu• (o) with¢> 0. 

Proof. Statement (i) is a consequence of Lemma 4.2.5, [97, Theorem 6.1] and the 

proof of [56, Theorem 2.1 (i)]. For the last statement, since Qt is subhomogeneous 

by [56, Theorem 2.1] (see also Theorem 1.4.3), ra can be chosen to be independent of 

a» 0. Thus, we can write ra as f'. For every¢ E Xu•(o) with¢> 0, it then follows 

from Lemma 4.2.4 that Qt(<P)(x) » o·, Vx E IR, t > 0. Fix a to = w > 0, then there 

is a vector a » 0 such that u(w, x, ¢) ~ a for x on an interval of length 2f'. Taking 
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Qw(¢) as a new initial date, it then follows from Lemma 4.2.5, [97, Theorem 6.2] and 

the proof of [56, Theorem 2.1 (ii)] (see also Theorem 1.4.3) that statement (ii) is also 

valid for all ¢ E Xu•(o) with ¢ > 0. • 

We say that W(t , x- ct) is a rightward periodic traveling wave of thew-periodic 

semi:ftow { Qt}t~o if the vector-valued function W(t, z) is w-periodic in t and Qt[W(O, · )](x) = 

W(t, x - ct), and that W(t, x - ct) connects (3(t) to 0 if W(t, -oo) = (3(t) and 

W(t, oo) = 0. A leftward periodic traveling wave V(t, x + ct) can be defined for the 

w-periodic semifiow { Qt}t~o in a similar way. 

The existence and non-existence of periodic traveling wave solutions are conse

quences of Lemma 4.2.5 and Theorem 1.4.4 (see also [56, Theorem 2.2 and 2.3]). 

Theorem 4 .2.3 Let c± be defined as in Proposition 4 .2.1. Then the following state

ments are valid: 

(i) For every c ~ c~/w, system (4. 7) has a traveling wave solution U(t, x - ct) 

connecting u*(t) to 0 such that U(t, s) is continuous and nonincreasing ins E IR, 

and for any c < c~/w, system (4 . 7} admits no traveling wave solution U(t, x-ct) 

connecting u*(t) to 0. 

(ii} For every c ~ c*_/w, system (4,. 1} has a traveling wave solution V(t, x + ct) 

connecting 0 to u*(t) such that V(t , s) is continuous and nondecreasing ins E IR, 

and for any c < c*_/w, system (4 . 7} admits no traveling wave solution V(t , x+ct) 

connecting 0 to u*(t). 
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4.3 Threshold dynamics in a bounded domain 

In this section, we consider system (4.1) on a bounded spatial domain 

aul(t,x) = a(t)bH-ul u - d u + D a2'21 at H 2 h 1 h ax ' 

au~:·x) = a(t)c]t(M(t) - u2) - dv(t)u2 + Dv a;:22 
- g :x U2, 

Biui = 0 on (0, oo) X an, i = 1, 2, 

ui(O, x) = 1/Ji(x), i = 1, 2, 

where n. c JRN ( N :2: 1) is a bounded domain with boundary an of class C1+8 

(0 < fJ:::; 1), either Biui = ui or Biui = ~ + ai(x)u for some nonnegative function 

ai E C1+11 (an, IR), :n denotes the differentiation in the direction of outward normal 

n to an. 
Let N < p < oo be fixed and W = LP(n) . For each (3 E (~ + fip, 1), let X.f be 

the fractional power space of LP(n) with respect to ( -6, Bi) (see, e.g., [41]). Then 

W f3 := xf .x x.g is an ordered Banach space with the positive cone Wt consisting of 

all nonnegative f~nctions in Wf3, and Wt has nonempty interior int(Wt). Moreover, 

W f3 c Cl+m(n) with continuous inclusion form E [0, 2(3- 1 - %) (see, e.g., [42]). Let 

II · llf3 be the norm on W {3· It then follows that there exists a constant K f3 > 0 such 

that 11</>lloo := maJ< i(¢t(x), ¢2(x))i:::; Kf31 1¢11f3, for all¢> E Wf3. 
xEfl 

Denote W g(t) : = { ¢> E W f3 : 0 :::; ¢( x) :::; y( t)}, by a similar argument as in the 

previous section, we can write system (4.22) as an integral equation with u(O, ·) = 

¢> E Wg(O}· It then follows from [65, Corollary 5] that the system (4.22) has a unique 

solution u(t, ¢>) E Wy(t) on [0, oo) with u(O, ¢>) = ¢> E Wg(o), and the comparison 

principle holds for system (4.22). 

Define a family of maps {Qth~o from Wg(o) to Wg(t) by Qt(<l>)(x) = u(t,x, ¢>), 

\::1¢> E Wg(o), X E n, t ~ 0. Then {Qt}t~O is a monotone w-periodic semiflow from 
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Wy(O) to Wy(t)· Moreover, we can show that {Qth~o is strongly monotone fort 2: w 

by similar arguments as in the proof of [80, Theorem 7.4.1 and Corollary 7.4.2]. Since 

Qw : Wy(O) ----+ Wy(O) is compact (see, e.g., [42]), it then follows from Theorem 1.2.1 

that the following lemma holds. 

Lemma 4.3.1 The Poincare map Qw admits a global attractor on Wy(O) · 

Consider the following linearized system of system ( 4.22) 

! 
au.I(t,x) (t)b- d - + D ~ at =a u2- hui h!JX2• 

au.2 (t,x) = 9:S!:lcM(t)u - d (t)u + D a2~~ - g~u at H I v 2 v ax ax 2, 

B iui= O on (O,oo)x8D., i=l,2. 

Similarly, we can show that the solution u(t,x,¢) exists for all¢ E W 13 and the 

comparison principle holds for (4.23). Define the Poincare map of system (4.23) 

PI: w/3----+ wf3 by PI(¢)= u(w, ·,¢)for all¢ E w/3 . Then PI is compact. Moreover, 

P1 is strongly positive by . the standard parabolic maximum principle (see, e.g., [80, 

Theorem 7.4.1]) . Let r 1 = r(P1) be the spectral radius of P1. By the Krein-Rutman 

theorem (see, e.g., [42, Theorem 7.2]), it follows that r 1 > 0 and P1 has an eigenfunc

tion ¢ E int(WS) corresponding to r1, that is, P1 ( ¢) = r1 ¢. 

Lemma 4.3. 2 Let ,.\ = - ~ In r 1 . Then there exists a positive w-periodic function 

ii(t, x) such that e- >.tii(t, x) is a solution of system (4.23}. 

P roof. Let u(t,x,¢) be the solution of system (4.22) through¢. Denote ii(t,x) = 

e>-tu(t, x, ¢), then ii(t, x) » 0 for all (t, x) E (0, oo) X n. Substituting u(t, x, ¢) = 

e->-tv( t, x) into ( 4.23), we obtain the following linear periodic system with parameter 
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>.: 

{ 

aih~:·x) = >.iii(t, x) + a(t)bii2(t, x)- dhiii(t, x) + Dh a2~~~,x), 
av2(t,x) _ ~ M(t)- (t ) (, d (t))- (t ) D a2v2(t,x) a - (t ) at - H C VI ' X + /\ - v V2 ' X + v 8x2 - g 8x V2 ' X ' 

( 4.24) 

for all (t, x) E (0, oo) x 0. Thus, ii(t, x) is a solution of thew-periodic system (4.24) 

with Biiii = 0 on 80 and ii(O, x) = ;fi(x) for all x E 0. Since PI(¢) = ri¢ and 

e>-wri = 1, we have ii(w,x) = e>-wu(w,x,;fi) = e>-wH(;fi)(x) = e>-wri;fi(x) = ;fi(x) = 

ii(O, x). Therefore, the existence and uniqueness of solutions of ( 4.24) imply that 

ii(t, x) = ii(t + w, x), \It 2: 0, x E 0, and hence, ii(t, x) is an w-periodic solution of 

(4.24) and e->-tv(t,x) is a solution of (4.23). • 

Theorem 4.3.1 For any ¢ E Wg(o), let u(t, x, ¢) be the solution of system (4.22) 

with u(O, x, ¢) = ¢(x) for all x E 0. Then the following two statements are valid: 

(i) If ri < 1, then lim llu(t, ·, ¢) 1113 = 0 for all ¢ E Wg(o). 
t->oo 

(ii) If ri > 1, then system (4.22) admits a unique positive w-periodic solution 

u*(t, x) and lim llu(t, ·, ¢)- u*(t, ·) 1113 = 0 for all¢ E Wg(o) \ {0}. 
t->oo 

Proof. In the case where ri < 1, we have ). = -~In ri > 0. Then the following 

inequalities hold: 

{ 

aui(t,x) < a(t)bu (t x) - d u (t x) + D 82u1(t,x) . 
8t - 2 , h 1 , h ax2 , ( 4.25) 

au2(t,x) < ~ M( ) (t ) d (t) (t ) D 8
2
u2(t,x) a (t ) at _ H C t U1 , X - v U2 1 X + v ax2 - g ax U2 1 X . 

Let u(t,x,¢) be the solution of (4.23) through¢. Then the comparison theorem 

implies that u(t,x,¢)-:::; u(t,x,¢), \It 2: 0, X E n. Since for any¢ E Wg(O)• we can 

choose ( > 0 such that ¢ -:::; (¢. Hence, 0 -:::; u(t, x, ¢) -:::; u(t, x, (¢) = (e- Mii(t, x ). 

Since lim llu(t, ·,(¢)lloo = 0, we have lim llu(t,·, ¢) ll oo = 0. Next, we show that 
t-+oo t-+oo 
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lim llu(t, ·, ¢)1113 = 0. Let w(¢) be the omega-limit set of the orbit {Qnw(¢)}n~l with 
t-+oo 

respect to the II · 1113 norm. It suffices to show that w( ¢) = {0}. For any given 

'!jJ E w(¢), there exists a sequence {ni} such that Jim II Qn,w(¢) - '!/Ji113 = 0, and 
ni-+oo 

hence, lim iiu(niw, ·, ¢)- '1/JIIoo = 0. Thus, lim iiu(niw, ·, ¢)iloo = 0 implies '1/J = 0. n, --+oo n1 -+oo 

In the case where r1 > 1, we have >. < 0. Let Wo = { ¢ E Wy(O) : ¢ -=/= 0}, 

8W0 = Wfi(O) \ W0 = {0}. Note that for all ¢ E W0 , the solution u(t, x, ¢) » 0 for 

all t > 0, X E n. It follows that Qnw(Wo) c Wo for all n > 0. Clearly, Qt(O) = 0 for 

all t ~ 0. We now prove the following claim. 

Claim. Zero is a uniform weak repeller for W 0 in the sense that there exists 80 > 0 

such that lim sup II Qnw(¢) 1113 ~ 8o for all¢ E Wo. 
n-+oo 

We consider the following linear system: 

8uj(t,x) = (t)bH-e c(t ) _ d c(t ) + D 8
2
uj(t,x) 

8t a H U2 ' X h Ul ' X h 8x2 ' 

au~:·x) = a(t)c(M(t)- c:) uj~,x) - dv(t)uHt, x) + Dv 82~~(;,x) - g :X u~(t, x), 

Biuf = 0 on (O,oo) X an, i = 1, 2, 

ui(O, x) = cPi(x), x E Sl, i = 1, 2. 

(4.26) 

Let uc(t,x,¢) be the solution of system (4.26) with uc(O,x,¢) = ¢(x). Define the 

Poincare map of system (4.26), P~;: : W ---t W, by P~;:(¢) = uc(w, ·, ¢). Let r~;: = r(P~;:) 

be the spectral radius of Pf . Since r 1 = r(P1) > 1, there exists a sufficiently small 

positive number c:1 such that r~;: > 1 for all c: E [0, c:1). Fix an c: E [0, c: 1). Then there 

exists some 8 > 0 such that l!uc(t, ·, ¢)iloo < c: for all t E [O,w] whenever ll¢iloo < 8. 

Let 80 = K
8 

• Suppose, by contradiction, that lim sup 11 Qn(¢o)ll13 < 8o for some 
. a n-+oo 

¢o E Wo. Then there exist no > 0 such that I! Qnw (¢o)lloo :::; KI311Qnw(¢o)ll13 < 8 for 

all n ~ n0 . For any t ~ n0w, we can rewrite t = nw + t' with n ~now and t E [O,w]. 
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Therefore, we have 

and u(t, x, ¢0 ) satisfies the following system 

ot - H 2 , h 1 , h ox2 , 

{ 

oui(t,x) > a(t)bH-ou (t x) - d u (t x) + D o2ui(t,x) 

ou~:·x) 2: a(t)c(M(t)- c) u 1 ~,x) - dv(t)u2 (t, x) + Dv 02~~4,x) - g fx u2(t, x), 

(4.27) 

for all t 2: n0w, x E n. Let ;fie be the positive eigenfunction of Pe associated with 

re and >.e = -~In re < 0. Then by Lemma 4.3.2, there is a solution ue(t, x,e) = 

e->.,tve(t, x), with ve(t, x) a periodic positive function. Since u(t, x, ¢0) » 0 for all 

t > 0, x E n, there exists 'r1 > 0 such that u(n0w, x, ¢0 ) 2: 'rle· By ( 4.27) and the 

comparison principle, we have 

Since >.. < 0, it then follows that u(t, x, ¢0) is unbounded, a contradiction. This 

proves the claim. 

By the claim above, Qw is weakly uniform persistence with respect to (W0 , 8W0). 

Since Qw admits a global attractor on Wy(o), it follows from [105, Theorem 1.3.3] that 

Qw is uniformly persistent with respect to (W0 , 8Wo) in the sense that there exists 

81 such that lim inf IIQ~(¢)11.e 2: 81 for all¢ E Wo. ote that Qw is compact, point 
n--+oo 

dissipative and uniformly persistent. It follows from Theorem 1.2.6 (or [105, Theorem 

1.3.6]) that Qw : W0 -+ W0 admits a global attractor A0 and has a fixed point ¢ in 

A0 . Since Qw is strongly monotone semiftow on Wo, we have Ao = Qw(Ao) » 0, and 

hence¢» 0. 

By a similar argument as in the Lemma 4.2.4, it is easy to see that for each t > 0, 

Qt is strictly subhomogeneous. Then [103, Lemma 1] implies that Qw has at most one 
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fixed point in W0 . Moreover, it follows from Theorem 1.1.2 that A0 = {¢} . Thus,¢ 

is globally attractive in Wo for Qw. 

Let u(t, x, ¢) be the solution of system (4.22) with u(O, x, ¢) = ¢(x) for all x En. 
Since ¢ is a fixed point of Qw and is globally attractive in W0 , we see that u(t, x, ¢) 

is an w-periodic solution of system (4.22) which attracts all solution of (4.22) in W0 . 

That is, lim llu(t, ·, ¢) - u(t, ·, ¢)1113 = 0, V¢ E Wo. Thus, u*(t, x) := u(t, x, ¢) is the 
t--<00 

desired w-periodic solution. • 

4 .4 Numerical simulations 

To numerically illustrate our analytic results, we study the malaria cases in KwaZulu

Natal province in South Africa. 

4.4.1 Model coefficients and t he basic reproduct ion ratio 

We choose H = 109 humans/ km, dh = 49. 1 ~ 365 day-1 . As estimated in chapter 

3, the mortality rate for adult mosquitoes dv(t) in KwaZulu- atal Province can be 

approximated by 

2n 4n 
= 0.1047 + 0.00445 cos( 

365 
t) + 0.00082 cos( 

365 
t) 

6n 8n lOn 
+0.00063 cos( 

365 
t) + 0.00118 cos( 

365 
t) + 0.00018 cos( 

365 
t) 

2n 4n . 6n 
+0.00298 sin( 

365 
t) + 0.00112 sin( 

365 
t) - 0.00016 sm( 

365 
t) 

8n . 10n 
+ 0.00078 sin( 

365 
t) + 0.00139 sm( 

365 
t) day-1

. 

The biting rate per unit time of mosquitoes in K waZulu- atal Province can be 
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fitted by 

a(t) 
2~ 4~ 

= 0.16938- 0.06043cos(
365

t)- 0.00578cos(
365

t) 

6~ 8~ 10~ 
+0.00547 cos( 

365 
t) - 0.00542 cos( 

365 
t) - 0.00582 cos( 

365 
t) 

0 2~ 0 4~ 0 6~ 
-0.04509 sm( 

365 
t) + 0.00975 sm( 

365 
t) + 0.00702 sm( 

365 
t) 

-0.00971 sin( ::s t) - 0.00664 sin(~~; t) day-1
. 

Suppose the mosquito density M(t) = 20 x H x a(t) mosquitoes/ km, a linear 

function of the biting rate, such that the average mosquito density is about three 

times as that of the human density. The proportions of infected bites on humans and 

mosquitoes that produce an infection are b = 0.011 and c = 0.2. For illustration, we 

choose Dv = 1.25x IQ-2 km2 /day, Dh = 1 km2 /day and g = 5.0x 10-2 kmjday. Using 

the method introduced in [95] (see also section 1.3), we can numerically compute 

the basic reproduction ratio Ro = 7.04. Fig. 4.1 shows the variation of the basic 

reproduction ratio R 0 as a function of the mosquito density and mosquito biting 

rate. 

4.4.2 The averaged system 

For a continuous periodic function p(t) with the period w, we define its average as 

11w [p] := - p(t)dt. 
w 0 

Then, the time averaged autonomous system for ( 4.1) can be represented as 

{ 

ah~~,x) = r;}b(H- h)v- dhh + Dh~, 
8v(t,x) = ~c([M]- v)h- [d ]v + D 82v - gav 

8t H v v {h'i 8x ' 
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Figure 4.1: Graph for the basic reproduction ratio R 0 . Here the biting rate is pa(t) and the whole 

mosquito density is kM(t). 
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where [a] = 0.1694 day-I, [dv] = 0.1047 day-I, and [M] = 369.292 mosquitoes/kin. 

Consider the linear autonomous system: 

{ 
dv.~p) = [a]bu2(t)- dhu1(t) + DMt2i11(t), 

du:p) = Wc[M]u1(t)- [dv]i12(t) + DvJ.L2U2 (t) + 9J.LU2(t ), 

where J.L ;::: 0 is a parameter. Note that the fundamental solution matrix of system 

(4.28) is eA(~-L)t with 

A(J.L) = 

Thus, the spectral radius of the time one map associated with system ( 4. 28) is e>-(1-'l, 

where A(J.L) is the spectral radius of the matrix A(J.L) , that is, 

>.(J.L)=~(DhJ.L2 - dh + DvJ.L2 + gJ.L- [dv] 

+V(D,.p,2 - dh + DvP,2 + gp,- [dv])2 - 4[(Dhp,2 - dh)(DvP,2 + gp,- [dv])- [aJ2~[MJJ) . 
Hence, c~ = inf 1" eA<~<> = inf ~. Let J.L* be the positive root of ( ~ )' = 0. Then the 

!-'>0 1-' !-'>0 1-' 1-' 
rightward spreading speed for the time-averaged autonomous system is c~ = >.~tfl. 

Similarly, we can obtain the leftward spreading speed c. Two spreading speeds can 

be numerically computed as~= 0.0884 km/day and c~ = 0.0866 km/day. 

4.4.3 The periodic system 

For the periodic system, using Proposition 4.2.1, we can numerically get c~ = 0.1019 

km/ day and c~ = 0.0996 km/day. This implies that the spreading speeds of the 

t ime-averaged autonomous system underestimate the real spreading speeds. Fig. 4.2 

shows a plot of the spreading speed c~ and c~ as functions of the advection velocity 

g. The downstream spreading speed increases with advection velocity, while the 

upstream spreading speed decreases with advection velocity. Fig. 4.3 indicates that 
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the rightward spreading speed c~ and leftward spreading speed c~ both increase with 

human diffusion coefficient Dh· 

·~ 

0.3,---~----....---------, 

0.25 

0.2 
Rightward sp~ ::~, ' 

' 
0.15 

' ' ' 

' ' 

' ' 

0_ 1~ Loftwo7odlngspood 

----L __ _J 
O.OSOL_ _ _.0.-5 -----'1--....&.1 5--~2--2.~5-____J 

Advoc1Jon YOioci1y (g) 

Figure 4.2: Leftward and rightward spreading speeds 

as functions of the advection velocity g. 
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0.18 
Rightward lpfOad!OQ apeod 
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.~ 0.12 
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Leftward spreading speed 

0·'1'=-.5----'---~1.5::-----:----2::'::.5r--~ 
Oh 

Figure 4.3: Leftward and rightward spreading speeds 

as functions of Dn. 

To simulate the spatial spread of malaria, we discretize system ( 4.1) by the dif

ference method on a finite spatial interval [-L, L] with the Neumann boundary con

dition, where L is sufficiently large. Figs. 4.4 and 4.5 show numerical plots of the 
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solution through the initial condition 

( 

0, if JxJ ~ 50 

h(O, x) = ~(100- JxJ), if 50~ JxJ ~ 100 , 

0, if JxJ ~ 100 

3 
v(O, x) = '2 x h(O, x). 

The inf ctious host and vector spread in both direction with a bias towards down-

stream. 

120 

~100 
i' 80 

! 60 

~ 40 

~ 20 

s 0 
4000 

400 

Figure 4.4: The spread of infectiou host. Th top plot how the density of infectious host at 

different times t year, with t = 1, 2, 3, 4, 5, 6, 7, , 9 re pectively. 
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400 

Figure 4.5: T he spread of infectious vector. The top plot shows the den ity of infectious vector at 

different t imes t year, with t = 1, 2, 3, 4, 5, 6, 7, , 9 respectively. 
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To get rightward traveling waves, we choose the ini tial condition as 

Jl 

! 
220 

h(O,x) = v(O,x) = ~be~o- x), 

0, 

The evolution of the solution is shown as in Fig. 4.6. 

120 
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~ 60 

~ 60 

a •o 
i 20 

0 
1500 

0 ·200 

0 ·200 

if X :S - 1~0 

if lxl :::; 1~0 

if X > 100 
- 3 

200 

200 

Figure 4.6: The rightward periodic traveling waves observed for two components. 

115 

To simulate the global dynamics of system ( 4. 1) on a bounded domain, we choose 
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the following initial condition 

7TX 
h(O,x) = v(O,x) = 100 x cos(

2
L), 

and the Dirichlet boundary condition 

h(t, -L) = h(t, L) = v(t, -L) = v(t, L) = 0. 

The evolution of the solution is shown in Fig. 4.7 for L =50. It indicates that in this 

case the disease persists in the host and vector populations. 

4.5 Discussion 

In this chapter, we analyzed a periodic Ross-Macdonald type model with diffusion 

and advection to account for the movement of host and vector population and the 

easonal fluctuation of mosquito dynamics. For the spatially homogeneous system, 

we determined the basic reproduction ratio R 0 , and proved that R 0 is a threshold 

value for the malaria transmission in a periodic environment. This implies that the 

disease dies out when Ro ~ 1; while the disease can invade the population when 

R 0 > 1. In order to study the spatial propagation of malaria, we should consider the 

spatially inhomogeneous system in the case where R 0 > 1. 

In the case of the unbounded domain, the risk of invasion can be described in 

terms of spreading speeds and periodic traveling waves. In this case, we obtained the 

existence of the leftward and rightward spreading speeds, and showed that they coin

cide with the minimal wave speeds for monotone traveling waves in the left and right 

directions, respectively. To control the disease, we should use physical or chemical 

strategies to reduce the values of the rightward and leftward spreading speeds, c±, as 

close to zero as possible. As shown in Proposition 4.2.1 , the spreading speeds depend 
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Figure 4. 7: The evolution of two components when L = 50. 
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on parameters in the model, which permits the assessment of control strategies. Nu

merically, we studied how advection increases the rightward spreading speed, whereas 

decreases the leftward spreading speed. Since human movements are the source of 

long-distance transmission of malaria, numerical simulations were also performed to 

investigate the effect of human movements on disease propagation. Both the right

ward and leftward spreading speeds increase with diffusion coefficient for humans, 

which means that global traffic networks may deteriorate malaria situation. In the 

case of the bounded domain, we established a threshold result on the global attrac

tivity of either zero or a positive periodic solution. Biologically, this result shows that 

malaria disease stabilizes at a unique positive periodic solution when the zero solution 

is linearly unstable; while it dies out when the zero solution is linearly stable. 

Several authors have used reaction-diffusion systems to study the spatial dynamics 

of vector-borne diseases (see, e.g., [32, 52]). The authors of [52] proposed a reaction

diffusion system to describe the spatial spread of West Nile virus, and simplified their 

original model as the following one under some reasonable assumptions: 

{ 
o/}f = avf3wf/;(Av- Iv)- dvfv + c 8;~r, 
~ {3 Na-Ia [ J + D82

If-
8t = a R R N R V - 'Y R R 8x , 

where Av, N R are constant. Further, they proved the existence of traveling waves and 

calculated the spreading speed for system (4.29), and also showed that the spreading 

speed for system ( 4.29) is an upper bound for that of the original model, provided 

that the spreading speed for the latter exists. We should mention that the techniques 

in our current chapter can be employed to study spreading speeds and traveling waves 

for the time-periodic version of system ( 4.29) and other cooperative type vector-borne 

diseases models with temporal and spatial heterogeneities. 
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Chapter 5 

A Reaction-Diffusion Malaria 

Model with Incubation Period in 

The Vector Population 

5.1 Introduction 

According to etiological literature, mosquitoes may spend a period of time during 

which they can not transmit the disease to humans after taking an infected blood 

meal, which is the extrinsic incubation period (EIP) . This incubation period varies 

from 10 to 14 days [13, 47], which is long compared with the longevity of the adult 

mosquito (within 12 days [13]) . These infected mosquitoes that survive the incuba

tion period will remain infectious for the rest of their lives. Thus, EIP may greatly 

influence the number of infected mosquitoes that live long enough to become infec

tious. On the other hand, spatial heterogeneity, spatial movement of human and 

vector populations may be important for the malaria dynamics (see, for instance, 
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chapter 4 and [20,87]). It is therefore necessary to study the impacts of the EIP and 

the spatial heterogeneity on the transmission of the malaria parasite [78] . 

In this chapter, we modify the standard Ross's malaria model [73] to incorporate 

the extrinsic incubation period and human and vector movements in spatially hetero

geneous environments. However, the modeling process is not trivial since mosquitoes 

may not stay at the same location in space during the incubation period, which in

volves a delay term with spatial averaging on the whole spatial domain [12, 33]. Our 

analysis suggests that the model admits a basic reproduction ratio R 0 and it serves as 

a threshold parameter for disease persistence. Moreover, we show that the risk based 

on the model with spatially averaged parameters may significantly underestimate the 

transmission intensity. 

The rest of this chapter is organized as follows . The next section presents the 

model, which turns out to be a nonlocal and time-delayed reaction-diffusion system. 

The basic reproduction ratio and mathematical analysis are established in Sections 3. 

Section 4 is devoted to the study of the model with spatially independent parameters. 

Some carefully designed numerical simulations and a discussion section complete the 

chapter. 

5.2 Model formulation 

The model is based on monitoring the temporal and spatial dynamics of host (the 

human) and vector (the adult female mosquito) densities. We develop a spatial model 

for malaria infection by ignoring superinfection, immunity and clinical death (see, e.g., 

[5, 78]). The human population is divided into two epidemiological classes: susceptible 

(Sh) and infectious classes (h). Assume that the density of total human population 
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Nh(t,x) = Sh(t,x) + h(t,x) is described by a logistic population growth law, and 

that all populations perform an unbiased random walk. Thus, we have the following 

reaction-diffusion equation, 

where 6. is the usual Laplacian operator. The diffusion coefficient Dh and the natural 

growth rate bh for humans are supposed to be positive constants while the carrying 

capacity K(x) is a positive function of location x, allowing for the diversity in habi

tats. Let n be a spatial habitat with smooth boundary an. We assume that all 

populations remain confined to the region n for all time, and we supplement the 

Neumann boundary condition to the above equation 

oNh on = 0, Vt > 0, X E an, 

where :n denotes the differentiation along the outward normal n to an. It easily fol

lows that the above reaction-diffusion equation admits a unique positive steady state 

H(x) such that lim Nh(t, x) = H(x) for all solutions with nonnegative and nonzero 
t~oo 

initial data (see, e.g., [105, Theorem 3.1.5 and the proof of Theorem 3.1.6]). Biologi-

cally, we may suppose that the total human density at location point x stabilizes at 

H(x), that is, Nh(t, x) = H(x), "it~ 0. 

Human acquire malaria through effective contact with infectious mosquitoes. For 

the disease transmission term, we take into account the conservation of bites, that is, 

the total number of bites made by mosquitoes equals to the number of bites received 

by host at a fixed habitat x (see, e.g., [9]). Thus, we suppose the force of infection at 

location x and time t is given by 

{J( )Sh(t,x) 1 (t ) = {J( )H(x)- h(t,x) 1 (t ) ' 
c X H(x) m , X c X H(x) m , X , 
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where c is the transmission probability per bite from infectious mosquitoes to sus

ceptible humans, {3(x) is the habitat dependent biting rate of female mosquitoes, and 

Im is the density of infectious female mosquitoes. This cross-infection between hosts 

and vectors is modeled as mass-action mechanism normalized by host-density, see, 

e.g., [9, 98]. It then follows that the density of infectious human population can be 

described by 

oh(t, x) c{3(x) ~ 
ot = Dh6.h (t, x) + H(x) (H(x) - h(t, x) )Im(t, x) - (dh + p)h(t, x), ~ 

where dh is the human natural death rate, and p is the recovery rate, i.e., 1/ p is t he 

human infectious period. 

The susceptible adult mosquito population is increased via the recruitment of 

aquatic mosquitoes, and diminished by infection and by natural death at a rate dm. 

Suppose that J.L(x) denotes the habitat dependent recruitment rate at which adult 

female mosquitoes emerge from larval. As in [39, 78], here we assume that the emer

gence of adults is not explicitly liriked to the density of adult mosquitoes. Moreover, 

the force of infection for mosquito population is 

b{3(x) 
H(x) Sm(t, x)h(t, x), 

where b is the transmission probability per bite from infectious humans to susceptible 

mosquitoes. Thus, the dynamics of susceptible adult mosquitoes can be described by 

To incorporate an extrinsic incubation period (EIP) into Ross's model [73], the 

infected mosquito population is divided into two epidemiological categories: latent 

(Em) and infectious (Im) classes. Since these latent mosquitoes can fly around during 
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the incubation period, we should carefully formulate this process. To achieve this , we 

introduce an infection age variable a and let y(t, a, x) be the density of the mosquito 

population with infection age a at timet and habitat x . Using the standard met hod 

on describing age structured population with spatial diffusion (see, e.g., [33] and 

references therein), we get 

ay(t,a,x) ay(t,a,x) _ D A ( ) _ d ( ) 
at + aa - muY t,a,x mY t,a,x , 

where Dm is the mosquito diffusion coefficient and dm is the mosquito death rate. 

Suppose that r is the average incubation period, we then have 

Em(t , x) = 1r y(t , a, x)da, 

and 

Im (t, x) = 100 

y(t, a, x)da. 

Integrating both sides of equation (5.3) from 0 tor, and from r to oo, we obtain 

a Em ( t) X) ( ) ( ) . ( ) ( ) at = Dmi:::.Em t, X - dmEm t, X - y t, r, X + y t, 0, X ) 

and 

respectively. Biologically, we assume that y(t , oo, x) = 0. Since the recruitment of 

newly infected mosquitoes (y(t, 0, x)) is due to the contact of susceptible mosquitoes 

and infectious humans, it follows that 

b{3(x) 
y(t, 0, x) = H(x) Sm(t, x)h(t , x). 
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It is then necessary to determine y(t, r, x), which can be done by the integration along 

characteristics. Let v(r,a,x) = y(a+r,a,x), with r ~ 0. Then we have 

av(r,a,x) = [8y(t,a,x) + 8y(t,a,x) l 
aa at aa t=a+r 

= Dmb..y(a + r, a, x) - dmy(a + r, a, x) 

= Dmb..v(r, a, x)- dmv(r, a, x), 

v(r, 0, x) ~f:{sm(r, x)h(r, x). 

Regarding r as a parameter and integrating the last equation, we obtain 

v(r, a, x) = e-dma 1 f (Dma, x, y) ~~~? Sm(r, y)h(r, y)dy, 

where r is the Green function associated with b. and the eumann boundary condi

tion. Since y(t, r, x) = v(t- T, T, x), Vt ~ r, we can derive the formula for y(t, r, x): 

y(t, T, x) = e-dmr 1 r (DmT, x, y) ~~~? Sm(t- T, y)h(t- T, y)dy , Vt ~ T. 

It then follows that 

aEa~t,x) = Dmb..Em(t, x)- dmEm(t, x) + ~~:? Sm(t, x)h(t, x)- @}) 

e-dmr 1 r(DmT, x, y) ~~~? Sm(t- T, y)h(t- T, y)dy, t ~ T, 

and 

81[N'x) = Dmb..Im(t, x ) - dmlm(t, x) + ([[) 

e - dmr 1 r(DmT, x, y) ~~~? Sm(t- T, y)h(t- T, y)dy, t ~ T. 

Consequently, we have a full model (5.1), (5.2), (5.4) and (5.5) subject to the 

Neumann boundary condition. Since system (5. 1), (5.2), (5.4) and (5.5) is an au

tonomous system, we may assume that the starting time is 0 and the initial data is in 
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C([-T, OJ, IR!J ote that Em can be determined if h, Sm, and Im are known. It then 

suffices to study the following nonlocal and time-delayed reaction-diffusion system 

au~:·x) Dh6u1(t, x) + ~i:? (H(x)- u1(t, x))u3(t, x)- (dh + p)u1 (t, x), 

au~:·x) = Dm6 u2(t,x) + J.t(x) -lf:f:?u2(t,x)u1(t,x)- dmu2(t,x), 

auaJ:·x) = Dmb..u3(t, x)- dmu3(t, x) 

+e-dmr J0 f(DmT,x,y)lf:f~?u2(t- T,y)ul(t- T,y)dy, 

~ = 0, Vx E 8f2, t > 0, i = 1, 2, 3, 

where u(t, x) = ( u1 (t, x), u2(t, x ), u3(t, x) f = (h(t, x), Sm(t, x) Jm(t, x) )T. 

5.3 Threshold dynamics 

In this section, we define the basic reproduction ratio R 0 and show that R 0 is a 

threshold index to determine the disease invasion. We start with some basic properties 

for system (5.6). 

Let X := C(D, IR3 ) be the Banach space with the supremum norm IJ · IJx. For 

T ~ 0, define C = C([-T,O],X) with the norm 11¢11 = maxee[-r,OJ II¢(B)IIx· Then, 

C is a Banach space. Define x+ := C(D, IR!) and c+ := C([-T, OJ, x+), then both 

(X, x+) and (C, c+) are strongly ordered spaces. Given a function u : [-T, a) -+ X 

for a > 0, define Ut E C by Ut(B) = u(t +B) , {;1 E [-T, 0]. Let XH and CH be the 

subsets in X and C defined by 

and 

respectively. 
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Let Y := C(O,JR) andy+ := C(O,JR+)· Suppose that T1(t), T2 (t): Y -t Y, 

t 2:: 0, are the strongly continuous semigroups associated with Dhb. - (dh + p) and 

Dmb.- dm subject to the Neumann boundary condition, respectively. It then follows 

that for each t > 0, 7i(t) : Y -t Y, i = 1, 2, is compact and strongly positive (see, 

e.g., [80, Section 7.1 and Corollary 7.2.3]). Clearly, for any t.p E Y, t 2:: 0, 

and 

T2 (t)t.p(x) = e-dmt in r (Dmt, x, y)t.p(y)dy. 

Moreover, T(t) = (T1(t), T2 (t), T2 (t)): X -t X, t 2:: 0, is a strongly continuous semi

group. Let Ai : D(A) -t Y be the generator of 7i, i = 1, 2. Then T(t) : X -t X 

is a semigroup generated by the operator A = (A1 , A2 , A2) defined on D(A) = 

D(AI) X D(A2) X D(A2) . 

Define F = (F1 , F2, F3): CH -t X by 

c/3(x) = H(x) (H(x)- ¢>1(0,x))¢>3(0,x), 

b/3(x) 
= 11-(x) - H(x) ¢>2(0, x )¢>1 (0, x), 

e-dmT in r(DmT, X, y) ~~~? cP2( -T, y)¢>1 ( -T, y)dy, 

'Vx E n, ¢> = ( ¢1' ¢2, cP3)T E CH. Then system (5.6) can be rewritten as the following 

abstract functional differential equation: 

t > 0, 
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Let {3 = max,6(x) and if= mi~ H(x). For any¢ E CH and k ~ 0, we then have 
xEfl xEl1 

and 

· [ c,8(x) ] H(x) - (¢1(0,x) + kF1(¢)(x)) = (H(x ) - ¢1(0,x)) 1- k H(x) ¢3(0,x) . 

This implies that 

lim -k
1 

dist(¢(0) + kF(¢), XH) = 0, V¢ E CH. 
k-+O+ 

It then follows from [65, Corollary 4] (see also [100, Corollary 8.1.3]) that for each 

¢ E CH, there exists a unique non-continuable mild solution u(t, ¢) on (0, 0'¢ ) with 

u0 = ¢ . Moreover, u(t, ¢) E XH for all t E (0, a¢) and u(t, ¢) is a classical solution of 

(5.6) for t > r. 

For the scalar reaction-diffusion equation 

aw(t, x) !C"n1 
at = D!J.w(t, x) + g(x)- dw(t, x), t > 0, X En, ~ 

ow an= 0, X E 80, 

where D > 0, d > 0, and g(x) is a continuous and positive function on 0, we have 

the following observation. 
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Lemma 5.3.1 Equation (5.9} admits a unique positive steady state w* which is glob

ally attractive in'¥. Moreover, if g(x) = g, 'Vx ED, then w* = ~· 

Proof. Denote g = mip.g(x) and g = m~t?Cg(x). It is easy to see that for any 
xEn xEn 

7/J E C(O, IR+), (5.9) has a unique solution w(t, 7/J) on [0, oo) with w(O, 7/J) = 7/J . Let 

P(t) be the solution semifiow associated with (5.9), that is, P(t)'lj; = w(t, 7/J). By the 

standard comparison arguments, it then follows that for any 7/J E Y, the omega limit 

set w ( 7/J) satisfies 

w('I/J) c { cp: ~ ~ cp ~ ~}. 
Again, by the comparison principle, we have P(t)cp » P(t)'lj;, 'Vt > 0, whenever 

cp > 7/J. Note that f(x, w) := g(x) - dw is strictly subhomogeneous in the sense that 

f(x, aw) > af(x, w) for any a E (0, 1) and w » 0. By a similar argument as in [29, 

Theorem 2.2], we see that P(t)'lj; is strictly subhomogeneous, i.e., P(t)a'lj; > aP(t)'lj; 

for any a E (0, 1) and 7/J » 0. It then follows from Theorem 1.1.2 that P(t) has 

a positive equilibrium w*(x) such that w('I/J) = w* E Y, 'r/7/J E Y. In particular, if 

g(x) =: g, Vx ED, then w* = ~· • 

The following result shows that solutions of system (5.6) exist globally on [0, oo) 

and converge to a compact attractor inCH. 

Theorem 5.3.1 For any ¢ E CH, system (5.6) has a unique solution u(t, ¢) on 

[0, oo), and the solution semifiow <P(t) = utO : CH ---+ CH, t 2: 0, has a global 

compact attractor. 

Proof. Let jl = maxp.(x). By Lemma 5.3.1, £:: is globally attractive in Y for the 
xEn 

scalar parabolic equation 

{ 

aw~~,x) = Dm6.w(t, x) + jl- dmw(t, x), x E 0, 

~~ = o, x E an, t > o. 

t > 0, 
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Since the second equation of system (5.6) is dominated by equation (5.10), the 

standard parabolic comparison theorem (see, e.g., [80, Theorem 7.3.4]) implies that 

u2(t, ¢) is bounded on [0, a<tJ Thus, there exists a positive number Q such that the 

third equation of system (5.6) is dominated by the equation 

{ 

aw~~,x) = Dmb.w(t , x)- dmw(t, x) + Q, x E 0, t > 0, 

~~ = o, x E an, t > o. 

Again, from Lemma 5.3.1 and the comparison principle, u3 (t, ¢)is bounded on [0, a¢) · 

It then follows that u(t,¢) = (u1(t,¢),u2 (t,¢),u3(t,¢)f is bounded on [O,a¢), and 

hence a¢ = +oo for each ¢ E CH. Therefore, system (5.6) defines a semiflow <I>(t): 

CH ~ CH by 

(<I>(t)¢)(8, x) = u(t + B, x, ¢), VB E [-T, OJ, x E 0. 

For any fixed¢ E CH, we have some t 1 (¢) such that u2 (t,¢):::; 2£;; when t > t1 , 

and 

{ 

au3a~,x) :::; Dmb.u3(t, x)- dmu3(t, x) + 2e-dmr f;;bi3, X En, t > tl, 

~=0, xE80, t>t1 . 

It then follows from Lemma 5.3.1 that there is a t2 (¢) > t1 such that u3 (t, ¢) < 

4e-dmr -j}bi3, Vt > t2 . Therefore, the solution semiflow <I>(t): CH ~ CH is point 
m 

dissipative. Moreover, <I>(t): CH ~ CH is compact for each t > T by [100, Theorem 

2.1.8]. Thus, [37, Theorem 3.4.8] implies that <I>(t): CH ~ CH, t ~ 0, has a global 

compact attractor. • 

The following result is a consequence of the comparison principle for scalar parabolic 

equations. 
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Lemma 5.3.2 Let u(t, x, ¢) be the solution of system (5.6} with u0 = ¢ E CH· 

If there exists some to 2 0 such that ui(to, ·, ¢) t 0, for some i E {1, 3}, then 

ui(t, x, ¢) > 0, \:It > t0 , x E 0. Moreover, for any¢ E CH, we have u2(t, x, ¢) > 0, 

\:It> 0, x E 0 and liminfu2 (t,x) 2 d 'lb.8 uniformly for x E 0, where (J = max{3(x) 
.J.-->00 m xEI"i 

and p = mi!lJL(x). 
xEO 

Proof. It is easy to see that u1(t,x ,¢) and u3(t ,x,¢) satisfy 

! 
au~:·x) 2 Dmt::.ul(t,x)- (dh + p)u1(t,x), 

au~:·x) 2 Dmt::.u3(t, x)- dmu3(t, x), 

~ = ~=0 xE an. an an , 

If ui(t0 , · , ¢) t 0 for some t0 2 0, i E {1, 3} , it then follows from the comparison 

principle that ui(t, x, ¢) > 0 for all t > t0 , x E 0. 

Let v(t, x, ¢) be the solution of 

! 
av~t) = Dm6.v(t, x) + P,- (b(J + dm)v(t, x), 

av = 0 X E an an ' , 
v(O,x) = ¢(0,x). 

Then we have u2(t, x, ¢) 2 v(t, x, ¢) > 0, \:It > 0, x E 0. Furthermore, by Lemma 

5.3.1 and the comparison principle, lim inft__.oo u2(t, x, ¢) 2 b/3fdm uniformly for x E 0 . 

• 
In order to define the basic reproduction ratio, we should first find the disease

free equilibrium (infection-free steady state). By letting the densities of the diseased 

compartments (u1 and u3) be zero, we get the following equation for the density of 

susceptible mosquitoes, 

{ 
aw~~,x) = Dm6.w(t, x) + JL(x) - dmw(t, x), t > 0, x En, ~ 

~ 
~~ = o, x E an. 
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By Lemma 5.3.1, it is easy to see that equation (5.12) has a positive steady state m•, 

which is globally asymptotically stable. Linearizing system (5 .6) at the disease-free 

equilibrium (0, m•, Of, we get the following time-delayed nonlocal and cooperative 

system for the infectious compartments: 

W DhD.w1(t, x) + c~~:~h(x)w2(t, x)- (dh + p)w1(t, x), 

~ = DmD.w2(t, x)- dmw2(t, x) 

+e-dmT In r(Dmr, X, y) 'tf~?m(y)wl (t- r, y)dy, 

~ = ~ =0 'Vx E an 
8n 8n ' ' 

with h(x) = H(x) and m(x) = m•(x). 

Before defining the basic reproduction ratio, we need to study the following linear 

nonlocal and cooperative system 

W = DhD.w1(t,x) + ~f;}h(x)w2(t,x)- (dh + p)w1(t,x), 

~ = DmD.w2 (t, x)- dmw2(t, x) 

+e-dmr In f (Dmr, x, y) 'tf~}m(y)wl (t, y)dy, 

~ - ~ = 0 wx E an 8n - 8n ' v H, 

with h(x) > 0, m(x) > 0, 'Vx E 0. 

Substituting w1(t, x) = e>.t'lj;1(x) and w2(t, x) = e>.t'lj;2(x) into (5. 14), we obtain 

the following nonlocal eigenvalue problem 

A.'I/J1(x) = Dhb.'I/J1 (x) + ~t:}h(x)'lj;2(x) - (dh + p)'I/J1(x), x En, 

A.'I/J2(x) = DmD.'I/J2(x) - dm'I/J2(x) 

+e-dmr Inf(Dmr,x,y)'tt~?m(y)'I/Jl(y)dy, X En, 

~ = ~ = o, x E an. 

By a similar argument as in [80, Theorem 7.6.1], it follows that (5.15) has a 

principal eigenvalue >..(h, m) with a positive eigenfunction. 
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Define IE := C([-T, 0], Y) xY and JE+ := C([-T, 0], y+) x y+ . For any 7/J E JE+\ {0}, 

let w(t , 7/1), t ~ 0, be the solution of the system (5.13). We claim that wi(t, 7/;)(x) > 0 

for all X En and t > T, i = 1, 2. Indeed, if 7/11(0, ·) t= 0 or 7/12 t= 0, then the parabolic 

maximum principle implies that w1(t, 7/; )(x) > 0 and w2(t, 7/; )(x) > 0 for a ll x E 80, 

t > T. If there is a (}0 E (O ,T) such that 7/;1(-80 , ·) :1= 0, then we can show that 

w2(T- (}0 , 7/;) :1= 0 as follows. Suppose, by contradiction, that w2(T- 80 , 7/1) = 0, then 

aw2 (r-l1o ,x) _ -dmr r f(D ) b/3(y) ( ) · ' · ( (} )d 0 w E n at - e Jn mT,x,y H(y)m y 'f/1 - o,Y y > ' vX H. 

Since w2(t, 7/1) ~ 0, t ~ 0, and w2(T- Bo, 7/;)(x) = 0, Vx E 0, then aw2 (-;l1o,x) ::::; 0, 

which is a contradiction. Thus, we have w2(t, 7/J )(x) > 0, Vt > T- Bo, X En. It then 

follows that Wt(t, 7j; )(x) > 0, Vt > T- Bo, X En. 

By similar arguments as in [90, Theorem 2.2], we have the following result for the 

nonlocal eigenvalue problem corresponding to (5.13): 

Dh.6.1/J1(x) + ~f;jh(x) 7/J2(x)- (dh + p)7/Jt(X), X E 0, 

Dm.6.1/J2(x) - dm1/J2(x) 

+e-dmre-Ar j0 f(DmT,x,y)t~~?m(y)7/JI(y)dy, X E 0, 

~ = ~ = 0, X E 80. 

Lemma 5.3.3 There exists a principal eigenvalue J..(h, m, T) of (5.16) associated with 

a strongly positive eigenvector, and for any T ~ 0, J..(h, m, T) has the same sign as 

)..(h,m). 

Next, we use the same idea as in [96] to define the basic reproduction ratio for 

system (5 .6). Assume that both human and mosquito populations are near the disease 

free equilibrium (0, m*, Of. Let ( 7/;1 (x) , 7/;2 (x) f be the spatial distribution of initial 

infective humans and mosquitoes, and assume that the temporal distribution of this 
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initial data is homogeneous. From system (5.14), with h(x) = H(x), m(x) = m•(x), 

we then see that S(t)'l/; := (T1(t)'l/;1, T2(t)'l/;2f represents the remaining distribution of 

infective humans and mosquitoes at timet > 0. Let V be the positive linear operator 

on Y x Y defined by 

V('l/;)(x) = (Vt('l/J)(x), V2('1/;)(x)), V'l/; E Y x Y, x E 0, 

where 

Vi('l/J)(x) = c(J(x)'l/;2(x), 

and 

V2('1/;)(x) = e-dmT 1 r(DmT, X, y)m•(y) ~~~? '1/Jl(y)dy. 

Then, V(S(t)'l/;) is the distribution of newly infected humans and mosquitoes at time 

t. It follows that 

L('l/;) := 1= V(S(t)'l/;)dt = V (1= S(t)'l/;dt) 

represents the distribution of the total infective humans and mosquitoes produced 

during the infection period, and hence, L is the next infection operator. We define 

the spectral radius of L as the basic reproduction ratio, that is, 

Ro := r(L) . 

for model (5.6). 

By the general results in [89] and the same arguments as in [96, Lemma 2.2], we 

have the following observation. 

Lemma 5 .3.4 R 0 - 1 has the same sign as )..(H, m•). 
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By this lemma, combined with Lemma 5.3.3, we see that 'Ro is a threshold pa

rameter for the stability of the the zero solution for system (5.13) with h(x) = H(x) 

and m(x) = m*(x) . 

ow we are in a position to prove the main result of this section, which indicates 

that no is also a threshold index for disease persistence. 

Theorem 5.3.2 Let u(t,x ,¢) be the solution of (5.6} with u0 = ¢ E CH. Then the 

following two statements are valid: 

(i) If 'Ro < 1, then the disease free equilibrium (0, m•' o)T is globally attractive. 

( ii) If 'Ro > 1, then system ( 5. 6) admits at least one positive steady state u * ( x), and 

there exists an rJ > 0 such that for any¢ E CH with ¢i(O, ·) ¢ 0 fori= 1, 3, we 

have 

liminfui(t,x) ~ rJ, Vi= 1,2,3, 
t-+oo 

uniformly for all X E 0. 

Proof. (i) In the case where 'Ro < 1, we have >.(H, m*) < 0. Since 

lim >.(H, m* +E) = >.(H, m*) < 0, 
f-+0 

there is an Eo > 0 such that >.(H, m* +Eo) < 0. For fixed Eo > 0, by Lemma 5.3.1, 

there exists to= to(¢) such that u2(t, x) :::; m*(x) +Eo, \::It~ to, X En. Therefore, for 

all t ~ t0 , we have 

!
~< 

8t -

8ua(t,x) < 
8t -

Dhb.u1(t,x) +c,6(x)u3(t,x)- (dh + p)ui (t,x), 

Dmb.u3(t, x)- dmu3(t, x) 

+e-dm-r fn f(DmT, x, y) 1/~~? (m*(y) + Eo)ul (t - T, y)dy. 
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By Lemma 5.3.3, ">.(H, m* +Eo, T) < 0 and there is a strongly positive eigenfunction 

'lj;0 corresponding to ">.(H, m* +Eo, T). It then follows that the linear system 

av~:·x) = Dhb.v1 + c{3(x)v2- (dh + p)vi , t > 0, X E 0, 

av2J:·x) = Dmb.V2 + e-dm7' In r(DmT, x, y)~f~? (m*(y) + Eo)vi(t- T, y)dy 

-dmV2 1 t > 0, X E 0, 

~ ~ = o, x E an, 

admits a solution v(t, x) = e>.(H,m·+Eo,-r)t'lj;0 (x). Since for any given ¢ E CH, there 

exists some a> 0 such that (u1(t, ·, ¢) , u3(t, ·, ¢)f :::; av(t, ·), Vt E [to-T, to]. By the 

comparison principle, it follows that 

(u (t x "') u (t x "'))T < ae>.(H,m•+•o,-r)t.,, (x) \ft > t 1 1 1 'f' 1 3 I I 'f' - 'f'O I - 0' 

Thus, lim(ul(t,x,¢),u3(t,x,¢)f = 0 uniformly for X En. Then, the equation for 
t-+oo 

u 2 is asymptotic to the following reaction-diffusion equation 

{ 

aw~,x) = Dmb.w(t , x) + J.L(x)- dmw(t, x), 

w(t,x) _ O 
8n - · 

By the theory for asymptotically autonomous semiftows (see [88, Corollary 4.3]), we 

have 

lim u 2 (t, x, ¢) = m*(x) 
t-+00 

uniformly for X E 0. 

(ii) In the case where R 0 > 1, we have >. (H , m*) > 0. It then follows from Lemma 

5.3.3 that ">.(H, m•, T) > 0. Let 

and 
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Note that for any</> E Wo, Lemma 5.3.2 implies that ui(t, ·, </>) > 0, i = 1, 3, Vx E f2, 

t > 0, that is, <ll(t)W0 C W0 . Define 

Ma := {</> E 8Wo: <ll(t)¢ E 8Wo, t ~ 0}. 

Let w(</>) be the omega limit set of the orbit -y+(¢) := { <ll(t)¢ : Vt ~ 0}, and set 

M = (O,m*,O)T. For any given 'lj; E Ma, we have <ll(t)'l/; E 8W0 , Vt ~ 0. It then 

follows that for each t ~ 0, either u1(t, ·, '1/;) = 0 or u3(t, ·, '1/;) = 0. In the case where 

u1(t, ·,'I/;)= 0 for all t ~ 0, we see from Lemma 5.3.1 that lim u2(t,x, 'lj; ) = m*(x) 
t-oo 

uniformly for X E n. In view of the U3 equation in (5.6), we see that lim u3(t, x, 'lj;) = 0 
t-->oo 

uniformly for X E n. In the case where ul (to,·, '1/;) ¢ 0 for some to ~ 0, Lemma 5.3.2 

implies that ul (t, x, '1/;) > 0, Vt > to, X E n. Thus, we have u3(t, ·, 'lj;) = 0, Vt ~ to. 

In view of the u1 equation in (5 .6), we see that lim u1 (t, x, 'lj;) = 0 uniformly for 
t-->oo 

X E n. By the U2 equation and the theory of asymptotically autonomous semiflows 

(see [88, Corollary 4.3]), it then follows that lim u2(t, x, '1/;) = m*(x) uniformly for 
t-->oo 

x E 0. Thus, we have w('lj;) = {M}, V'lj; E Ma. 

Since >..(H, m*, T) > 0, there exists a sufficiently small positive number 80 such 

that >..(H- 80 , m*- 80 , T) > 0. We now prove the following claim. 

Claim. M is a uniform weak repeller for W0 in the sense that 

lim sup ll<ll(t)(¢)- Mil ~ 8o for all¢ E Wo. 
t ..... oo 

Suppose, by contradiction, that lim sup II<I~(t)(¢o)- Mil < 8o for some ¢o E Wo. 
t ..... oo 

Then, there exists t1 > 0 such that u1(t, x, ¢o) < 8o and u2(t, x, ¢o) > m*(x) - bo, 

Vt ~ t1 , x E 0. Hence, u(t,x,¢0 ) satisfies 

!
~ 

8t 
8u3(t,x) 

at 

> Dh6u1(t,x) + ~f;?(H(x)- 8o)u3(t,x) - (dh + p)u1(t,x), 

> Dm6u3(t, x) - dmu3(t, x) 

+e-dmT fn r(DmT, x, y) 1:f~{ (m*(y) - 8o)u1 (t- T, y)dy, 
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for all t > tl, X E n. Let 'Po be the positive eigenfunction associated with 5.(H -

80 , m* - 80 , r). Then the linear system 

av~~:·x) = Dhb.~1 + 1/f:?(H(x)- 8o)v2- (dh + p)vl, 
8v2(t ,x) = 

8t Dmb.V2- dmv2+ 

e-dmr fn r(DmT, x, y)tf~? (m*(y) - 8o)vl(t- T, y)dy, 

t; ~ = o, x E an. 

admits a solution v(t,x) = e~(H-oo,m•-oo,r)tcp0 (x). Since u(t,x, ¢0 ) » 0 for all t > 0 

and X E fl, there exists~ > 0 such that (ul(tl 1 X,</Jo),u3(tl,x,¢o))T 2:: ~v(t,x), 

Vt E [tl - T, tl], X E n. According to (5.17) and the comparison principle, we have 

Since 5.(H -80 , m* -80 , r) > 0, it follows that u(t, x, ¢0 ) is unbounded, a contradiction. 

This proves the claim. 

Define a continuous function p : C H -+ JR+ by 

p(¢) = min{min¢I(O, x), mi!1 ¢3(0,x)}, V¢ E CH. 
xEll xE!1 

Clearly, p-1 (0, oo) c W0 . By Lemma 5.3.2, it then follows that p has the property 

that if p(¢) = 0 and ¢ E W0 or p(¢) > 0, then p(iP(t)¢) > 0 for all t > 0. Thus, pis 

a generalized distance function for the semiftow iP(t) : CH -+ CH (see Theorem 1.2.4 

or [83]). Note that any forward orbit of iP(t) in Ma converges to M . Moreover, the 

claim above implies that M is isolated inCH and W 8 (M) n Wo = 0, where W 8 (M) 

is the stable set of M. Further, there is no cycle in Ma from M toM. It then follows 

from Theorem 1.2.2 (see also [83, Theorem 3]) that there exists an rJ > 0 such that 

min{p('llt) : 'litE w(¢)} > rJ for any ¢ E W0 . Hence, 

lim inf ui(t, x) 2:: TJ, i = 1, 3, 
t-oo 
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uniformly for all X E n. Further, it follows from Lemma 5.3.2 that we can choose TJ 

small enough such that liminfu2(t,x) 2:: TJ uniformly for all xE D. Thus, the uniform 
t ..... oo 

persistence stated in the conclusion (ii) holds. By Theorem 1.2.4, <I>(t) : W 0 ---+ W0 has 

a global attractor A0 . It then follows from Theorem 1.2.5 that <I>(t) has an equilibrium 

u* E W0 . Clearly, Lemma 5.3.2 implies that u*(x) is a positive steady state of (5.6) . 

• 

5.4 Global attractivity 

In this section, we consider the reaction-diffusion system (5.6) in the case where f3(x), 

H(x) and J..L(x) are positive constants, that is, 

8u,(t,x) = Dhb.u1(t,x) + ~(H- u1(t,x))u3(t,x)- (dh + p)u1(t,x), 8t 
8u2(t,x) = Dmb.u2(t,x) + j.l- ~u2(t,x)u1(t,x)- dmu2(t,x), 8t 

8u3(t,x) = Dmb.u3(t , x)- dmu3(t, x) (5.18) 
8t 

+e-dmT In r(DmT, x, y)~u2(t- T, y)ul(t- T, y)dy, 

~ = 0, Vt > 0, x E 80., i = 1,2, 3. 8n 

By a similar argument as in [96, Theorem 2.1], we can show that the basic reproduc

tion ratio R 0 equals the spectral radius of the following 2 x 2 matrix 

cf3..l ) dm 

' 0 

and hence, we have the following formula for R 0 (see also Appendix in this chapter). 

Lemma 5.4.1 For system (5.18), the basic reproduction ratio 

Ro = 
1 J..l b(3 1 c(3- X e-dmT__ . 

dm dm H ( dh + P) 
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In addition to the threshold result in Theorem 5.3.2, we are able to prove the 

global attractivity of the positive steady state under some appropriate conditions. 

Theorem 5.4.1 Let u(t, x, ¢) be the solution of {5.18} with u0 = ¢ E CH. Then the 

following three statements are valid: 

{i) If R o < 1, then the disease free equilibrium (0, £;;, O)T is globally attractive. 

{ii} If R 0 > 1, then system {5.18) admits at least one positive steady state u*, and 

there exists anT}> 0 such that for any¢ E CH with ¢;;(0, ·) "¥ 0 fori= 1, 3, we 

have lim inf ui(t, x) ~ T}, 'Vi= 1, 2, 3, uniformly for X E fl . 
t-+oo 

{iii) !fRo> max{1, jf!;}, then the system {5. 18} has a unique constant steady state 

u* = (u~, u2, ujf such that for any¢ E CH with ¢1(0, ·) "¥ 0 and ¢3 (0, ·) ¢ 0, 

lim u(t, X,¢) = u* uniformly for X E fl. 
t-+oo 

Proof. It is easy to see from the proof of Theorem 5.3.1 that the set 

·- { . 2j.t · -dmT J.t - } A.- u E CH . u2(e, x)~ dm' u3(t9, x) ~ 4e d;. b[J, 'VfJ E [-T, 0], X En 

is positively invariant for the solution semifiow <P(t) and every forward orbit enters 

into A event ually. Therefore, we will study the dynamics of (5.18) on A. Conclusions 

(i) and (ii) follow directly from Theorem 5.3.2. To prove (iii), we use a fluctuation 

method, which was developed in [90] for a nonlocal, delayed and diffusive predator

prey model (see also [107] for this method). 

Since R 0 > 1, there is a unique constant endemic equilibrium u* = (uj,u2,uj)T 

with 
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e-dmT b{J 
d • • • 

an u3 = ~ Hu1u2 . 

For notational simplicity, we denote 'Y = ct and 7' = bff. We choose a sufficiently 

large number k > 0 such that the function ku1 - ( dh + p )u1 + 'Y( H- u1 )u3 is monotone 

increasing in u1 for all (u1,u3)T E [O, H] x [0,4e-dmr;fo-bf3] . It then follows that 
m 

Ut(t,x) = e-kt In r(Dht,x,y)ut(O,y)dy + 1t e-ks In r(Dhs ,x,y) 

[ku1(t- s, y)- (dh + p)u1(t- s, y) + 'Y(H- u1(t- s, y))u3 (t- s, y)]dyds. 

Let 

ur:'(x) := limsupui(t,x), Uioo(x) := liminfui(t,x), i = 1, 2,3. 
t-->oo t-->oo 

By the uniform persistence of (5.18), there exists an 77 > 0 such that 

ur:' 2 Uioo 2 ,.,, Vx En, i = 1,2,3. 

Using Fatou's lemma, we then get 

uf(x) :::.; 1oo e-ks In r(Dhs , x, y)[ku~(y)-
(dh + p)u~(y) + 'Y(H- u~(y))u~(y)Jdyds. 

Let 

ar:' := supuf(x) and aioo := inf Uioo(x). 
xEO xEO 

Clearly, af 2 aioo 2 77 and a100 :::.; af :::.; H. Since fn r(Dhs, x, y)dy = 1 for all 

x E 0, s > 0, we have 

af :::.; 100 

e-ks [ka~- (dh + p)a~ + 'Y(H- a~)a~]ds 

= ~[ka~- (dh + p)a~ + 7(H- a~)a~], 
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and hence, 

0:::; -(dh + p)af + 1(H- af)aJ'. 

Similarly, we have the following inequality, 

Using the second and third equations of (5 .18) , with arguments similar to those above, 

we further obtain 

0 < I 00 d 00 f.t - I arooa2 - ma2 , 

0 > j.t - /
1 afa2oo - dma2oo, 

0 < e-dmr 1'a'fa'r- dmaJ', 

0 > -dmr I d 
e I arooa2oo - ma3oo· 

Inserting (5.23) into (5.19), we have 

Similarly, combining (5.24) with (5.20) , we obtain 

e-dmr 

0 2: - (dh + p) + 1(H- aroo)d:-/
1
a2oo· 

Inserting (5.21) and (5.22) into (5.25) and (5.26), respectively, we get 

and 

(5.21) 

(5.22) 

( 5.23) 

(5.24) 
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It then follows that 

and 

Thus, we have 

I -dm'T" 00 + I (d + )d < I -dm'T" + I OO(d + )d 'Y''f e J.i.Ql "'aloo h p m - "("( e J.Laloo "'al h p ffi! 

and hence, 

("t"('e-dmrf..L- "f1(dh + p)dm)(a'f'- aloo):::::; 0. 

Since 'Ro > {fl, that is, "("(1 
e-dmr J.L - "(1 

( dh + p )dm > 0, we must have af = aloo· 

Moreover, we see from (5.21-5.24) that af = a200 and a3 = aaoo· It then follows 

that 

lim u(t,x,¢) = (a'f',a2,a3?, Vx E 0. 
t->oo 

ow we prove lim u(t, X,¢) = (af, af, a3f uniformly for all X E n. For any 
t-->00 

1/J E w(¢), there exists a sequence tn ---+ oo such that <I>(tn)¢---+ 1/J in CH as n---+ oo, 

and hence, 

lim u(tn + B, x, ¢) = 1/J(O, x) 
t-oo 

uniformly for (B, x) E [-T, 0] X n. In view of (5.29), we have 1/J(B, x) = (af, af, aJ'f, 

\f() E [-T, 0], X En. This implies that w(¢) = (af, af, aJ'f. Since w(¢) is invariant 

for <I>(t), it follows that (af, af, a3f is a positive constant equilibrium of system 

(5.18), and hence, (af,af,a3f = u*. • 
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To finish this section, we remark that every solution of the time-delayed differential 

system 

du1 ( t) 
dt 

du2(t) 
dt 

du3(t) 
dt 

c(J 
= H (H- u1(t))u3(t)- (dh + p)u1(t), 

b(J 
/1-- H u2(t)u1(t)- dmu2(t), 

= -dmu3(t) + e-dmr~u2(t- r)u1(t- r), 

is a spatially homogeneous solution of the time-delayed reaction-diffusion system 

(5.18). Thus, three statements in Theorem 5.4.1 are also valid for system (5.30). 

5.5 Numerical simulations 

In this section, we implement numerical simulations in order to show how to derive 

some epidemiological insights from our analytic results. 

· For the sake of convenience, we concentrate on one dimensional domain n, which 

can be taken, without loss of generality, to be (0, 1r). Here, we adapt some parameter 

values from [78] by choosing the transmission probabilities b = c = 0.5. Moreover, we 

suppose that the life expectancy of adult mosquitoes and the incubation period are 

10 days. Then we have dm = 0.1 day-1 , and T = 10 days. Further, we set p = 0.01 

day- 1 by assuming the average human infectious period is 100 days. As pointed out 

in [78], these values are roughly consistent with Anopheles gambiae. For illustration, 

we choose dh = 365~ 70 day- 1, Dm = 1.25 x 10-2 km2 · day-1 , Dh = 1 km2 · day-1 

and allow other coefficients vary spatially. To describe the spatial heterogeneity on 

domain n, we suppose two ends are rural areas and the middle point of n is the 

urban area. Biologically, the human population density is higher in urban area while 

the anopheline species density and the likelihood of malaria transmission are lower in 
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urban than rural areas with transmission lowest in central urban areas [72]. Hence, 

we choose the following location-dependent parameters {J(x) = 0.1(1.1 + cos(2x)) , 

H(x) = 100(1.1- cos(2x)) and p.(x) = 20(1.1 + cos(2x)) day- 1 as an example. 

To compute the basic reproduction ratio 'R0 , we use the orthogonal projection 

method in the computation of eigenvalues for compact linear operators (see, e.g., [14, 

Section 3.1]). Our numerical scheme is shown in the appendix section of this chapter. 

For this set of parameters, the basic reproduction ratio can be computed numerically 

and 'Ro = 3.0611. If we consider system (5 .18) by setting {J(x) = 0.3, H(x) = 100 and 

p,(x) = 20, then Lemma 5.4.1 implies R0 = 1.4890, which is significantly less than 

no. This means that the spatially averaged system may be highly underestimating 

the disease burden. 

In order to simulate the long-time behavior of system (5.6), we discretize it by the 

difference method on (0, 1r). Our numerical scheme for the nonlocal and time-delayed 

reaction-diffusion model (5.6) was motivated by that given in [55, Appendix]. Figure 

- 5.1 shows numerical plots of two diseased compartments, u1 (t , x) and u3 (t,x), with 

the initial data 

( 

20- cos2x l 
u(e, x) = 140- 5cos2x , VeE [-T, 0], X E [0, 1rj. 

19 - 2cos2x 

It indicates that the disease persists in host and vector populations in this case. 

To investigate the sensitivity of no on model parameters, we have the following 

two graphs (Figure 5.2) indicating the plots of no as functions of Dh and T . It 

seems the disease cannot be contained solely by extending the incubation period with 

chemical measures. 

To estimate the spatial heterogeneity effect on the disease risk 'R0 , we take the 
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Timet Location x 

Time t Location x 

Figure 5.1: Long term behavior of t he diseased compartments. 
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Figure 5.2: 'R0 as functions of Dh and T . 
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variation of human distribution H(x) for example. As more and more people leave 

villages and farms to live in cities, the distribution of whole human density will change, 

and urbanization may have impact on malaria risk. Set H(x) = 100(1.1- <5 cos(2x)), 

with <5 E [0, 1] being a parameter. Note that when <5 = 0, humans distribute evenly 

in space (H(x) = llO, Vx E D), as <5 changing from 0 to 1, more and more people 

leave the rural areas (near x = 0 or x = 1r) and accumulate at the urban area 

(around the middle point of n, i.e. , X= ~). However, the total human density on n 
remains unchanged since the spatial average of H(x ) does not change for all <5 E [0, 1]. 

Thus, we can use <5 E [0, 1] to describe the urbanizing process. Figure 5.3 shows the 

relationship between R 0 and <5. 

3.2 .---.....-----.----,-------,.------, 

2.8 

r:L' 
.g 2.6 
!!' 
c: 
~ 2.4 

l 2.2 

·~ 2 
~ 

1.8 

1.6 

Figure 5.3: Relationship between R 0 and <5. 

It indicates that urbanization may increase or decrease malaria risk depending on 

other model parameters. However , rapid urbanization may deteriorate the disease 

burden. 
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To simulate the efficiency of spatial control strategies, we take vaccination pro

grams for example. Suppose that the unvaccinated population distribution for a 

vaccination program is h(x), then the model with the vaccination program can be 

modified from our earlier model (5.6) as follows: 

8ut(t,x) _a_t_ 

8u2(t ,x) 
at 

8u3(t ,x) 
at 

= 

= 

Dht::.u1(t,x) + C:f;{(h(x)- u1(t,x))u3(t,x)- (dh + p)u1(t ,x) , 

Dmt::.u2(t, x) + f-t(x)- ~{;{u2(t, x)u1(t, x)- dmu2(t, x), 

Dmt::.u3(t, x)- dmu3(t, x) 

+e-dmr In r(DmT, x, y) ~{~{u2(t- T, y)ul (t- T, y)dy, 

~ = 0, 'ix E 80., t > 0, i = 1, 2, 3. 

Using the same idea as in section 3, we can define the basic reproduction ratio for sys

tem (5.31). Assume that we have two vaccination programs, program 1 and program 

2, which are shown in Figure 5.4. 
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Figure 5.4: Two vaccination programs. 



5.6 DISCUSSION 

The unvaccinated population distribution for program 1 is 

1 
h1(x) = 2 x 100 x (1.1-cos2x), 

while that for program 2 is 

{ 

0. 7036 X 100, 
h2(x) = 

0.7036 x (100- cos2x), 

if:!!:< X< 3.,. 4- - 4, 

if x > 3.,. or x < :rr:. 
- 4 - 4 
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In program 1, people living in the rural areas have the same opportunity to get vacci

nated (half of the rural and urban populations is vaccinated). In program 2, people in 

urban area are easier to get access to the vaccination than those in rural areas. Note 

that the spatial average of h1(x) and h2(x) are same, being 55. This implies that 

the numbers of vaccinated population in these two vaccination programs are same. 

Numerical computation shows that the basic reproduction ratio corresponding to the 

first vaccination program is 2.1645 and that to the second program is 2.4979. Thus, 

the first spatial vaccination strategy seems to be more efficient. 

5.6 Discussion 

As pointed out in [40], the magnitude of 'Ro can be used to gauge the risk of an 

epidemic or pandemic in emerging infectious disease. Our result shows that this risk 

may be highly underestimated if we do just consider the model with spatially aver

aged parameters. By numerically calculating the basic reproduction ratio, our work 

suggests that spatial heterogeneity does strongly affect 'R0 . As shown in Fig. 5.3, if 8, 

an index describing urbanization process, varies from 0 to 1, then the corresponding 

basic reproduction ratio changes from around 1.5 to 3.0, about two folds. It is worth 

for the field workers to determine those habitat-dependent parameters in the model. 
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With regard to application, the threshold result suggests that we should use chem

ical or physical strategies to reduce the value of R 0 to be less than unity. As shown in 

the definition of the basic reproduction ratio, R 0 also depends on spatial parameters 

in this model, which permits the assessment of spatial control strategies. Perhaps 

the most useful part of this framework would be to design an efficient spatial allo

cation of financial resources for malaria control. For example, Figure 5.4 shows two 

vaccination programs, and the numerical computation of R 0 suggests that the first 

vaccination program is more efficient than the second one. In field work, with accu

rate spatial-dependent parameters, appropriate spatial vaccination strategies should 

be designed in the most efficient way. Analogously, we can study the effects of spatial 

insecticide treated nets (ITN) distribution and spatial indoor residual spraying (IRS) 

on the basic reproduction ratio. 

5. 7 Appendix: N um erical computation of R 0 

In order to compute the basic reproduction ratio R 0 , we use the orthogonal projection 

method in the computation of eigenvalues for compact linear operators (see, e.g., [14, 

Section 3.1]). 

From the definition of R 0 , we have R 0 = r(L), where Lis define as 

L(¢) := 1oo V(S(t)¢)dt = V 1oo S(t)¢dt 

where S(t) is the positive linear operator on Y x Y given by 

with 
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and 

T2(t)¢2(x) = e-dmt In f(Dmt, x, y)¢2(y)dy. 

V is the positive linear operator on Y x Y defined by 

V(¢)(x) = (Vl(¢)(x), V2(¢)(x)), V¢ E Y x Y, xED, 

with 

vl ( ¢ )(x) = c{3(x )¢2(x ), 

and 

V2(¢)(x) = e- dmT 1 r (DmT, x, y)m*(y) b{J:) ¢1(y)dy. 

To compute R 0 , we ·need to determine all of A and cp* such that Lcp* = Acp*. Since 

L is compact, we have R0 = sup{j.Xj}. For convenience, we concentrate on a one 

dimensional domain n, which can be taken, without loss of generality, to be (0, n). 

It then follows that 

1 2 00 

r (t, x, y) =- +- I::e-n
2
tcasnxcasny. 

7r 7r n=l 

For every f E C([O, n], IR), f has the Fourier cosine series 

00 

ao """ f(x) = 2 + ~ ancosnx, 
n=l 

with an = ~ J01r f( x)cos(nx)dx, n = 0, 1, 2, .:. Therefore, for any cp* = (cpr, cp2)r, cpi 

and cp2 can be expanded as Forier cosine serieses, 

00 

• . ao """ cp1 = 2 + ~ ancosnx, 
n=l 

and 
00 

• Ao """ A 'P2 = 2 + ~ nCOSnX. 
n=l 
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We first compute 

L ( ancosnx ) . 
Amcosmx 

Since 

S(t) ( ancosnx ) 
Amcosmx 

by the orthogonality of the sine and cosine functions (see page' 549 in [10]), we have 

the following formulae. 

If n = 0 and m = 0, then 

If m =f. 0 and n =f. 0, then 

( 
ancosnx ) 

S(t) 
Amcosmx 

Thus, for all m, n EN, we obtain 

( 
ancosnx ) 

S(t) 
Amcosmx 

and therefore 

1
00 

( ancosnx ) ( S(t) dt = 
o Amcosmx 

ancosnx 
(dn+P)+n2Dh 

Amcosmx 
dm+m2Dm 

) 
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Consequently, we get 

In view of 

we proceed in two steps. 

First step: Compute L ( ~ ) . 

It follows from (5.32) that 

=L 2 + l:L n , 
( 

£ll ) oo ( a cosnx ) 

~ n=l Ancosnx 
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Suppose we can express the following functions into Fourier Cosine serieses such 

that 

c{3(y) 

and e-dmr b,B(y) m* (y) 
H(y) 

00 

= ~ + l: {3icosiy, 
i = l 
00 

= ~ + l: bicosiy. 
i=l 
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Then we have 

= 

( 
ancosnx ) 

Second step: Compute L . 
Ancosnx 

According to (5.32), we have 

The first element of (5.33) can be expressed as 

00 

( ~o + L: /3i co six) d +An~ 0 cosnx 
i= l m m 

00 

= f3o Ancosn:z: + A~ "\" /3 ·cosixcosnx 
2 dm+n2Dm dm+n Dm L.i ' 

•=1 
00 

f3o Ancogn:z: +.!. A~ (L: f3icos(i + n)x 
2 dm+n Dm 2 dm+n Dm i=l 

n -1 oo 
+ L: f3icos(n- i)x + L: /3icos(i- n)x + f3n)· 
~1 ~l+n 
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The second element of (5.33) turns out to be 

00 00 

an f'TI' (Qo_ + '\"' b·cosiy)[.! + 1 '\"' e-j2DmTCOSJ.XCOS)·y]cosnydy 
(d,. +p)+n2 D,. Jo 2 6 t 71' 71' 6 

t=1 )=1 
00 

an ( f'TI' Qo. .!cosnydy + f'TI' Qo.l '\"' e-j
2 DmT COSJ.XCOSJ.YCOSnydy 

(d,. +p)+n2 D,. Jo 2 71' Jo 2 71' 6 
J=1 

00 00 00 

+ J011' ~ 2:: bicosiycosnydy + J011'(~ 2:: e-PDmrcosjxcosjy)(2: bicosiy)cosnydy) 
i=1 j=1 i=1 

= an (0 + !!o.e-n2 DmT cosnx + Qu (dn+P)+n2D,. 2 2 
00 00 

+ J011'(~ 2:: e-j
2
Dmrcosjxcosjy)(2: bicosiy)cosnydy). 

Since 

it follows that 

j=1 i=1 

00 00 

~ 2:: e-j
2
Dmr cosjxcosjy)(2: b;cosiy) 

j=1 i=1 
00 00 

~ 2::(2:: b;cosiycosjy)e-12Dmrcosjx 
j=1 i=1 
00 00 j-1 

~ 2:: (2:: ~cos(i + j)y + 2:: ~cos(j- i)y 
j=1 i=1 i=1 

00 

+ 2:: ~cos(i- j)y + ~)e-12Dmrcosjx, 
i=j+l 

00 00 

J0rr(~ 2:: e-1
2
Dmrcosjxcosjy)(2: bicosiy)cosnydy 

j=1 i=1 
n-1 
2:: ~~~e-12Dmrcos(jx) (i + j = n) 
i=1 

00 

+ 2:: ~~~e-j2Dmrcos(jx) (j- i = n) 
i=1 
00 

+ 2:: ~~~e-j2Dmrcos(jx) (i- j = n). 
j=1 

Thus, the second element becomes 
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Therefore, we obtain 

( 
cpi ) ( ~ ) 00 

( ancosnx ) L =L +L:L 
cp2 ~ n=l Ancosnx 

( 

00 ) 

~(130 + '""" a cosix) 2dm 2 W 1-'t 
i=l 

00 
~!?Jl ~ -j2 Dm-r · 
2(dn+P) 2 + 2(dn+P) j~ e bjCOSJX 

oo n-1 
f3o Ancognx + l A~ (L: (Jicos(i + n)x + '""" (Jicos(n - i)x 
2 dm+n Dm 2 dm+n Dm W 

i=l i=l 
00 

+ I: (Jicos(i- n)x + fJn) 
i=l+n 

00 

+ I: 
n=l 

On the other hand, we have 

~ + f: ancosnx ) ( 1n * ) 
n=l -L rl 
00 -

~ + I: Ancosnx 'P2 
n=l 

Comparing the coefficients, we obtain the following equalities: 

Ao fJo A1 ~ 1 A+t 
2d {J1cosx + 2 d 2 D cosx + ~ -2 d ( . )2D (Jicosx + 

m m + 1 m i=l m + 2 + 1 m 

00 
1 An L -
2 

d 2 D fJn+1cosx = .\a1cosx, 
n=l m + n m 
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2 
Ao f3o A3 ~ 1 A3-i 

2dm f33cos3x + 2 dm + 32 Dm cos3x + 8 2 dm + (3 - i)2 Dm (3;cos3x + 

~ 1 Ai+3 ~ 1 An ( ) 
L, -

2 
d ( . 

3
)2D (3;cos3x + L, 2 d 2 D f3n+3cos 3x = >.a3cos3x, 

i=l m + 'L + m n=l m + n m 

m-1 
Ao f3o Am ~ 1 Am-i 

2d 
f3mcosmx + -

2 
d 2 D cosmx + L, -2 d ( _ .)2 D f3icosmx 

m m + m m i=l m + m '/, m 

oo A oo 1 A ~1 ~ ~ n + L, - (. )2D (3;cosmx + L, -2 d 2D f3n+mcosmx = >.amcosmx, 
i= l 2 dm + 'L + m m n=l m + h m 

Moreover, we have 

00 . 

~ bn+l -12DmT an - ' A + L, - 2-e cosx (d ) 2D - /\ 1cosx , 
n=l h + p + n h 
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00 

~ bn+m -m2Dmr an + ~ - 2- e (d ) 2D cosmx = A.Amcosmx, 
n=l h + p + n h 

Our next step is to determine the matrix 

such that 
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From the above equalities, we have J = (J1 , J2 ) with 

_!_{& 
dm 2 

b. 
dm 

.82 
dm 

J1 = b._ 
dm 

.Bn 
dm 

and 

1 {!J_ 
dm+12Dm 2 

1 {jz 
dm+22Dm 2 

__ 1_{&. + .Bit! 
dm+Dm 2 2(dm+Dm) 

,13, 1 + .132±1 1 
dm+22 Dm 2 2 dm+22Dm 

.131 + .B! t2 
2(dm+Dm) 2(dm+Dm) 

.Bo 1 + .132±2 1 
dm+22Dm 2 2 dm+22Dm 

.132 + .131±3 
2(dm+Dm) 2(dm+Dm) 

,13, 1 + /ht3 1 
dm+22Dm 2 2 dm+22Dm 

.Bn I + .B!±n 
2(dm+Dm) 2(dm+Dm) 

.Bn-2 1 + .82tn 1 
dm+22Dm 2 2 dm+22Dm 

-:--!,.-.,,...-- .Bm 
dm+m2Dm 2 

.Bm-1 + .Bltm 
2(dm+m2Dm) 2(dm+m2Dm) 

.Bm 2 + .132tm 
2(dm+m2Dm) 2(dm+m2Dm) 

.Bm-3 + .Batm 
2(dm+m2Dm) 2(dm+m2Dm) 

Moreover, we obtain that K = (K1, K2) with K1= 

I .!!.11 
(dn±P) 2 

rcrf:tpye-DmT 

~e-22DmT 

159 
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and 
1 !!m. 

(dh+P)+m2Dh 2 
bm-le-DmT bl+me-l2Dmr 

2((dh+P)+m2Dh) + 2((dh+P)+m2Dh) 
bm 2e-22Dmr b2tme-22Dmr 

2((dh+P)+m2Dh) + 2((dh+P)+m2Dh) 

Hence, we have 

J f3j-1 d J. . _ .Bii-jl + .Bi+j-2 Vi >_ 2, 
1
j = 2(dm + (j - 1)2 Dm) an 11 

- 2(dm + (j- 1)2 Dm)' 

and 

K 
- bj-1 e - (i-1)2Dmr[bli-jl + bi+j- 2] . 

1j- 2((dh + p) + (j- 1)2Dh) and Kij = 2((dh + p) + (j -1)2Dh)' Vz;::: 2. 

By matrices J and K, we can write out the matrix LM· Since lim r(LM) = r(L) , 
M-oo 

using Matlab, we can get spectral radius of LM, which can be used to approximate 

r(L). 

Remark: In the case where all parameters are spatially-independent, i.e., ,B(x) = ~o, 
and e-dmTb,B(x)m*(x) = £a. Vx E n we have 

H(x) 2' ' 

( 

tn* ) ( T + f ancosnx ) ( L ..,..1 = L ~1 = >. 
'P2 ~ + 2:::: Ancosnx 

n=1 

T + ~1 ancosnx ) 

~ + 2:::: Ancosnx 
n=1 

Therefore, the following equalities hold 

...&L .Bo 
2dm 2 

.Bo A~ 
2 dm+nDm 

~!!a. 
2(dh+P) 2 

= 

= 

). !!D. 
2 ' 

>.an, n= 1, 2,3··· 

). .:1.a. 
2 ' 

>.An,n=1 , 2,3·· · . 
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Solving these equations, we then obatin 

A=± 

It follows that 

r(L) = 

which is consistent with Lemma 5.4.1. 
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Chapter 6 

Conclusions and Future Work 

This chapter presents the main conclusions of this thesis and the future work. First, 

we summarize the main results. Then we suggest some future research directions. 

6.1 Research summary 

Each year, approximately 2.2 billion people are affected by Plasmodium falciparum 

malaria worldwide, claiming about 515 million endemic cases [85]. Hence, there is an 

essential need for more information on the spatial and temporal patterns of disease 

burden, distribution and control strategies. Human malaria is caused by parasites 

belonging to the genus Plasmodium, which can be transmitted by several species of 

female anopheles mosquitoes. Since the pioneering work of Ronald Ross [73], who 

proved that mosquitoes transmit malaria and presented the first mathematical model 

for the disease, modeling of malaria has flourished (see, e.g., [5,28,49,66, 70, 74] and 

references therein) . 

Mathematical models can provide an important approach to understanding risk 
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and planning for disease control in heterogeneous environments, especially when the 

models are based on the ecology of the local vector populations and a sound under

standing of the entomological parameters relevant for transmission ( [47,48]). In this 

work,. we have presented four epidemic models in the presence of spatial or temporal 

heterogeneity, with malaria transmission as our main topic. 

To address the impact of seasonal fluctuations on disease transmission, we inves

tigated the dynamics of a time-delayed P.eriodic SIS epidemic model in chapter 2. We 

first considered a periodic single-species population model with time-delayed, and 

obtained four sets of conditions to ensure that the population will stabilize eventually 

at an oscillating state. When the disease invades the population and susceptibles 

contact infectives under the standard incidence law, we found an explicit formula for 

Ro in the form of the division of the average contact rate and the mass of the aver-' 

age disease induced death rate, disease recovery rate and death rate. FUrthermore, 

we showed that there exists an endemic periodic solution and the disease remains 

endemic when R 0 > 1, and the disease dies out when R 0 < 1. In order to eradicate 

such a disease, we should decrease the average contact rate, or increase the average 

disease recovery rate to make R 0 < 1. 

Motivated by the compartmental models in [15, 68, 69], we formulated a mathe

matical malaria model in chapter 3 to address the age-structure of mosquitoes and the 

seasonal climate effects on malaria transmission. Our work shows that the prospects 

for the success of malaria control depend, in part, on the basic reproductive number 

for malaria. For our time-delayed and periodic model, we successfully defined the 

basic reproduction ratio, which can be numerically computed. This project allows us 

to study the trends of malaria risk associated with global warming. 

To study the possible impact of the mobility of humans and mosquitoes on malaria 
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transmission, we proposed a periodic Ross-Macdonald type model with diffusion and 

advection in chapter 4. For the periodic model without diffusion and advection, 

we showed that the basic reproduction ratio serves as a threshold parameter for 

disease transmission. In the appearance of diffusion and advection, we established 

the existence of the leftward and rightward spreading speeds and their coincidence 

with the minimum wave speeds in the left and right directions, respectively. For the 

model in a bounded domain, we obtained a threshold result on the global attractivity 

of either zero or the positive periodic solution. 

It is widely known in malariology that spatial heterogeneity and extrinsic in

cubation period (EIP) of the parasite in infected mosquitoes may affect the malaria 

transmission while the movement of human and mosquito populations leads to malaria 

spread. To understand the effects of these factors on malaria epidemic, we formulated 

and analyzed a nonlocal and time-delayed reaction-diffusion model in chapter 5. For 

this mathematical model, we derived a biologically meaningful threshold index, the 

basic reproduction ratio n0 . The basic reproduction ratio for this model is charac

terized as the spectral radius of the next generation operator and can be numerically 

calculated. Mathematically, we showed that no = 1 defines a threshold. The disease 

will not invade if no < 1 and the disease becomes established in a previously unin

fected populations if no > 1. For the model with spatially independent parameters, 

no can be explicitly calculated. Using a fluctuation method· developed in [90], we got 

a set of sufficient conditions to guarantee that the disease will become established and 

stabilize at a unique spatially-homogeneous steady state. In particular, if 'Ro > 1 is 

large enough, the positive steady state is globally attractive. This work allows us to 

design an optimal spatial control strategy. 

In summary, we have created a framework to study the malaria transmission which 
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allows temporal or spatial variations. The framework permits the early warning 

system (e.g., forecasting the malaria risk with global warming in chapter 3) and 

assessment of spatial control strategies (e.g. spatial vaccination program in chapter 

5). 

6.2 Future work 

Inevitably and perhaps encouragingly, there are several issues remaining worthy to 

study, both in terms of model analysis and construction. In this section, we enumerate 

some of these possible direCtions. 

6.2.1 Global stability of the disease-endemic state 

Although we have shown in chapter 3 that there exists at least one positive periodic 

state (disease-endemic state) when the basic reproduction ratio is greater than unity. 

What we were not able to accomplish in this work was the uniqueness, multiplicity, 

and stability of positive periodic solution for the model. 

In chapter 5, it was shown in Theorem 5.3.2 that there exists a positive steady 

state for system (5.6) when R 0 exceeds unity, its uniqueness and global attractivity 

still remain open. We expect to get some appropriate conditions as in Theorem 5.4.1 

to guarantee the global attractivity of the positive steady state for system (5.6) when 

Ro > 1. 

6.2.2 Bifurcation analysis of periodic models 

As noted in chapter 3, the disease will die out if R 0 < 1, provided that the invasion 

intensity is not strong. However , this case may not happen when the invasion intensity 
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is strong. It was shown, even for some autonomous malaria models, that the stable 

disease free equilibrium coexists with a stable endemic equilibrium when 1?.,0 < 1 [66]. 

If the backward bifurcation exists, the solution through some suitable initial data 

may converge to the stable endemic equilibrium even R 0 < 1. This phenomenon is 

called backward bifurcation (see, for instance [36, 77, 93] and the references therein for 

further discussion on backward bifurcation). In this scenario, the classical requirement 

of reducing basic reproduction ratio to be less than unity becomes only a necessary, 

but not sufficient condition, to control the disease. Bifurcation analysis of the periodic 

malaria models-presumably using the framework in [50] and other analytical results

is a desirable next step to enhance the mathematical understanding of epidemical 

models. 

6 .2.3 Sophistication of HIV-malaria co-infection dynamics 

As pointed out in [1], it has been shown that HIV increases the risk of malaria infection 

an<;i the development of clinical malaria, while malaria induces HIV- 1 replication in 

vitro and in vivo. Dual infection with HIV and malaria fuels the spread of both 

diseases in sub-Saharan Africa [1, 11]. It may be important to incorporate HIV

malaria coinfection into models, which always turn out to be high dimensional systems 

(see, e.g., [1, 66]). The model analysis would be mathematically challenging and the 

complex dynamics may be biologically interesting. 

6.2.4 Incorporation of additional drug-resistant phenomena 

Antimalarial drugs are used for malaria treatment. However, the efficiency of anti

malarial drugs has been decreasing dramatically over the past few decades, due to the 
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emergence of drug-resistance. Malaria parasites have demonstrated some level of re

sistance to almost every anti-malarial drug currently available, significantly increasing 

the cost and complexity of achieving parasitological cure [8]. Currently, antimalar

ial drug resistance becomes a major public health problem hindering the control of 

malaria. Moreover, population movement (spatial heterogeneity) has introduced re

sistant parasites to areas previously free of drug resistance [7]. The models in this 

thesis would be augmented with the inclusion of drug-resistance phenomena, such as 

those in [4, 7, 28]. 
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