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ABSTRACT

Two models are studied in this work; a periodically fo :d Droop model for phyto-
plankton growth with two competing specit in a chemostat and a time-delayed SIR
epidemic model with dispi .

For t! competition model, both uniform persistence and the existence of periodic
coexistence state are established for a periodically forced Droop model on two phy-
toplankton species competition in a chemostat under some appropriate conditions.
N ‘cal simulations 1 biological data are | sented as well to illustrate the
main result.

The global dynamics of a time-delayed model with populal 1 dispersal between
two patches is also invest ted. ..r a general class of birth functions, persistence
theory is : plied to prove that a disease is persistent when the basic reproduction
number is greater than one. It is also shown that the disease will die out if the
basic reproduction number is less than one, provided that the invasion intensity is

not strong. Numerical " aulations a presented using some typical birth functions




iii

from biological literature to illustrate the main ideas and the levance of dispersal.




ACKNOWLEDGEMENTS

I would I :to thank my supervisor Dr. Xiaogiang Zhao for his guidance and instruc-
tion throughout my masters prc am. His insights and sugg  ons were essential in
the development of my thesis. I'm especially grateful for the time he spent reading
my work and helping me to improve upon it.

I wou! also like to thank the many professors in the Department of Mathematics
and Statistics who have instructed me over the years and guided my education in
mathematics.

Finally, I would like to t! 1k my family and friends for their encouragement
throughout my studies. In particular, my sincere thanks gc  to Shannon Sullivan

who assist  me in formatti: this thesis.




TATLE OF CONTENTS

1. Introduction . . . . . . . . .. .. 1
2, Preliminaries . . . . . . . . . 4
3. A two-species periodic Droop model . . . . ... . ... . . ... .. 14
3.1 Overview . . . v v it e e e e e e e e e e e e e e e e e e e e e 14
3.2 Themodel . . . . . .. . . @ i i i i i i i i i ittt i e . 16
3.3 Uniform persistence . . . . . . . . . ... . ... 19
3.4 _mulations . . . . 0ttt e e e et e e e e e e e e e e e e e e 27
3.5 Discussion . . . . . . i it e e e e e e e e e e e e e e e e e e e 33

A tin -delayed epid¢ ic »del with dispersal . . . . . . . . . . .. 37
4.1 Overview . . . . . . i e e e e e e e e e e e e e e e 37
42 Themodel . ... ... ... ... . ..o 39
4.3 Threshold dynamics . .. .. ... ... ... ... .. ... 45



Table of Contents

4.4 xamples

------------------------------

vi



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.2

4.3

4.4

+13T OF FIGURES

u=0.25, N1+ t........ e e e e e e e e e e e 32
=025, N2vst. . ... ... ... ... ... ... 32
=025, Qlvst. ...... ... .. 32

VD25, Q2 st L e 32

VD25, S st e 33

o255, N1 vs N2 .. o 33

V2L, NI wst . oo, 34

V2L, N2 vwvst. oo oo o, 34

Vo028, Nlwvst. ..o e e, 34

v 3 N2vwst. oo 34

d=0.5,Plvst ............. .. ... ... 69

C D5, P2vst ... 69

¢ 5 Plvst Lo, 69




L1sT OF FIGURES viii
45 d=05,Plvst ...... ... ... ... .. ... ... 70
46 d=05,P2vst ........... ... ... 70
4.7 d=5Plvst ......... . ... .. 70
48 d=5,P2vst .......... ... .. ... 70
4.9 =05, Plvst .. ... ... ... 72
410 =05,P2vst . ... 72
411 d=5,Plvst . ........... ... 72
412 =5,P2vst ...... ... .. 72
413 ¢ )5, Plvst ... 74
414 d=05,P2vst .. ... ... . ... i
415 d=5,Plvst . ... ... ... .. ... 74
416 d=5,P2vst . .......... ... ... .. 74
4.17 0.5, Plvst . ... .o 75
4.18 =0.5,P2vst . T, 75
419 d=5,Plvst . ....... ... .. .. 75

420 ¢ P2 bt .. -




1. INTRODUC.ION

This thesis is a study of two models using dynamical systems theory. One is the
periodic Droop model for phytoplar ton growth in a lake environment; two species
competing for nutrients is the main consideration here. The other is an epidemic
model where the population can tra  between patches (e.g. cities, countries, etc)
and a time delay is incorpora  to better describe the length of time that an infected
person is ifectious. The application of persistence theory to each of these is the
common thread in this work.

..le main concepts in this thesis are uniform persistence and basic reproduction
numbers. In biological terms, uniform persistence means that the size of a population
or ther important biolc cal quantity will not decrease to ze over time. This is a
very useful result because the possibility of extinction is an import. t characteristic
of a biological model. This is true in the case of population mod  where extinction is
typically not the desired outcon 1in the case ol sidemic models where extinction

of the dise :is the best case. The b. c reproduction of an epic nic model is a very
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important threshold-type value; it is the expected number of new infections caused
by one typical infected person. This means that when this qu tity is less than one,
the disea  will die out in t} long term and when it is greater than one, the infection
will be persistent.

A typical goal in the appli ion of dynamical systems theory to a real-life prob-
lem is to determine conditior under 1ich biologically relevant states are globally
asymptotically stable. This is often difficult to prove for nor near systems as the
dimension becomes higher or the equations become more complicated, which is a
consequence of analyzing more ri istic mathematical models. Un >rm persistence
is not as strong but its appli  ion still provides us with important information: the
conditions under which biologically important quantities will remain positive for all
time. Frc a mathematical vi _ oint, this is another type of global analysis since,
like global  ymptotic stability, it applies to all solutions in our « ined interior. From
the theory « persistence we also have that uniform persistence implies the existence
of a coexistence s e inside an interior global attractor, which is a very nice result
in applications.

This th sisorganized in the following way. In chapter two, important definitions
and theorems are provided for « h of the following chapters. Next, the periodic

Droop model is described with reference to ear] - works. Conditions under which
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uniform ‘rsistence is guarant: = are established and simulations are presented to
illustrate the coexistence phenon 1 Fiui ly, chapter 4 is devoted to the time-
delayed epide " moc with disper Tl prior work where tt  was first studi

is reviewed, including the derivation of the time-delay model. The generalization of
the earlier results, including t! case when the infected population is persistent, are
proven a1 simulations are ven to explore the effect of dispersal on the spread of

infections.




2. PRELIMINARIES

In this thesis, there are many definitions and theory that are needed in the following
chapters. Some of these are not very well known so the purpose of this section is
to set the  mework for the results that are derived and proved in the remaind
of this work. Many of these are found in a more abstract setting and, as such, are
usually only found in some published papers. In that way, this section also serves as
an overview of the work that precedes and motivates the topics in this thesis.

F t  need to define what is meant by a periodic semiflow (s [26]).

Definition 2.1 Let X be a complete metric space with metric d, and let p > 0. A
family of mappings T(t) : X X, t 20, is called a p-periodic semiflow on X if it
has the following properties:

(1) T(0) = I, where I is the identity on X;

(2)T(t+ =T(t)oT(p), Vt 20

(8) T(t)x is continuous in (t,z) € [0,00) X X.

This a atural step frc  the definition of an autonomous semiflow. If property



Preliminaries 5

(2) holds for any p > 0 rather tI . a fixed period, then T(t) is called an autonomous
semiflow.

Next we recall the definition of a Poincaré map.

Definition 2.2 Let . t) be a p-periodic semiflow on a complete metric space X.

Then P :=T(p) is called the Poincaré (or period) map associated with T'(t).

Note that the existence, uniqueness and stability of the fixed points of a period
map are equivalent to those ~ the p—periodic solutions of its associated periodic
semiflow.

We will now give a precise mathematical definition of uniform persistence (see
[26]). For the following definitions, we assume that X is a complete metric space. Let
f: X — X be acontinuous map 1 Xy C X be an open set. Define X := X \ Xo

and M; {r€dXy: fM(x)ed ,, n>0}

Definition 2.3 A map f: X — X is said to be uniformly persistent with respect to

Xo if there exists an n >0 ch that

liminfd(f"(z),0Xo) > n for all x € X,.

n—00

Here, the 00X, is not to 1 confused with the boundary of X. In applications,

0Xo will 0 :n be only a part of the boundary because usually we are concerned with
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quantities such as population ren ning positive for all time. For continuous-time

dynamical systems, there is an analogous definition.

Definition 2.4 A periodic semiflow T(t) : X — X is said to be uniformly persistent

with respect to Xy if there ezists an n > 0 such that
' 7 fda\t)z,0Xo) > n for all z € X,.

Persistence theory is a ll-developed area of dynamical systems research and, as
such, the are many theorems for  ablishing that property in a variety of settings
and for many types of equations. We will make use of one in particular that shows

that the set 80X, is repelling. First, however, we1 1 a few more concepts.

Definitic 2.5 A continuous mapping f : X X is said to be point dissipative if

there 1s a >unded set By in X such that ™, attracts each point in X.

We remark that point d ipative and ultimately bounded are equivalent. The
following are discrete-time and  tinuou ime ilts for the existence of a global

attractor.

Lemma 2.6 If f: X — s completely continuous and point dissipative, then there

is a connected global at  :tor A that attracts each bounded set in X.
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Lemma 2.7 If there is a t, > 0 such that the semiflow T(t) : X — X is completely
continuous for t > t; and point dissipative, then there is a global attractor A that

attracts each bounded set in X.

Definition 2.8 Let f: X — X and B C X be a nonempty invariant set. B is called
internally chain transitive if i following condition holds: for a,b € B and any e > 0,

there is a finite sequence xy,+ , Ty (m > 1) in B with z; a,z, = b such that

d(f(.’L'i),.’Ei+1) <e, 1 <1 <m—1.

A natural example of an in  1ally chain transitive is the omega limit set of any
precompact (i.e., its closure is c¢c pact) positive orbit. The proof of this is given
in [26]. The notation w(z) will be used throughout this work to note the omega
limit set « a point z. With that, we w state the theorem on stroi repellers, which

is important in this thesis.

Theorem 2.9 Assume that
(v:) f(Xo) - Xo and f he gle™ "~ actor A;
(C2) There exists a finite st _ M = {M, -+, M} of disjc , compact and
isolated 1 1iriant sets in 0 Xy such that
(1) Uzempw(z) C L7 M;;

(2) no subset of M forms a cycle in 0Xy;
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(8) M; is isolated in X;
(4) We(M;) N Xo =0 for each 1 <1 < k. Then there exists a § > 0 such that for

any compact internally chain transitive set L with L ¢ M; for all 1 <1 < k, we have

inf e d(z,0X,) > 6.

In our application of this theorem, we take L = w(z) for any = € Xy. As a direct
consequence, the map f is uniformly persistent with respect to X,. It is natural to
expect that under uniform p  stence there will also be a fixed point in Xy. The

following theorem from [26] gives the conditions under which this is true.

Theorem 2.10 Assume that X is a closed subset of a Banach space E, and that X,
ts a conver and relatively open subset in X. Let f: X — X be a continuous map
with f(Xo) ~ Xo. Assume that

(1) f: X X is point dissipative;

(2) f is completely continuous;

(8) f is uniformly persistent with respect to Xo.

Then there exists a global attractor Ag for f in Xo that attracts strongly bounded sets

in Xo, and f has a fized point o € Ap.

These theorems have continuous-time analogues for the mo part but, since the

chemostat .odel has a periodic forcing t for its nutrient inflow, we will use the
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period or Poincaré map extensively in the analysis of the odel. The following
theorem (from [26]) gives the conditions under which uniform persistence of a given

periodic semiflc  is equivalent to that of its associated Poincaré map.

Theorem 2.11 Let T'(t) be an p—periodic semiflow on X with T(t) Xy, C Xo, ¥Vt 2> 0.
Assume that P = T(p) satisfies the following conditions:

(1) P is point dissipative in X,

(2) P is compact.

Then uniform persistence of P with respect to Xy tmplies that of T(t) : X — X.

The following Lemma comes from [17, Proposition 1.1], which is used for a single-

species model in a chemostat.

Lemma 2.12 Assume S*(t) non-negative p—periodic function and suppose that
Q) 2 Qumin >0, Vt > 0. We furti  assume that the functions ; 2) and p(S, Q@)
have the following properties

(1) 1(Qmin) =0, #(Q)>0, V7 Qmun;

(2) p(0,Q) =0, 3£>0, <0

Then the « wation @' = p(S*(t),Q) — u(Q)Q has a unique p—periodic solution Q*(t)

to which a solutions are attracted.

In addition, with more than one species in the chemostat, the following theorem
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from [26] is useful.

Theorem 2.13 Let P be the Poincaré map associated with the  -periodic system u} =
fi(tau) = fl(t +P;u), 1 S i S n, where u (uh'" 1un) € R:- and f = (fl, ’.fn)
is continuous. Assume that th.  exists some 1 <1i < n and a continuous p— periodic

function Fi(t,u) such that fi(t,u) > u;Fi(t,u), Vt > 0, u € R}. Further assume that

u'(t) = (ui(t), -+ uig (8),0,uipy (8), -+ s un(?)

is a p—periodic solution with uj(0) > 0, V1 < j < n, j # i, and u*(t) satisfies

JE Fi(t,ur(t))dt > 0. Then there exis a & > 0 such that

limsup d(P™(u),u"(0)) > 4§, Vu € int(R}).

n—soo

We now turn our attention tor 1lts needed for the time-delayed epidemic model
with disp sal. It is natural fr. 1 an epidemiological viewpoint that a model has a
unique di:  se-free equilibrium. The theory of cooperative systems is very useful here
and, for an autonomous syst  of C~ s, the following theorem (adapted from [24,

Corollary 3.2]) is used to establish this.

Definition 2.14 Let f : RT — R" be a continuously differentiable map. If every

off-diagonal element of D f(z) is nonnegative, then f is called a cooperative map.
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Theorem 2.15 Let f: R} — R" be a continuously different le map. Assume that
(1) f is cooperative on R} and Df(z) is irreducible for every z € R%;

(2) f(0) 0 and fi(x) >0 forallze ' with =0,i=12,--- n;

(3) f is strictly subhomogeneous on R%, i.e., for any a € (0,1) and any z >> 0,
flaz) > af(z).

If the stability modulus satisfies s(Df(0)) > 0 and solutions of 2’ = f(z), z €
R"™ are ultimately bounded, then 1is system admi a unique comj entwise-posttive

equilibriv.  z* that is globally  wnptotically stable in R% \ {0}.

The continuous-time a1 ogue of the earlier abstract theorem on strong repellers
is not suited for the practical persistence of a t 2-delay system e to the use of
the distance in the space of functions. Another theorem ( [19, - .aeorem 3]) is needed
for that. First, however, we need to define what is meant by a ge ralized distance

function.

Definition 2.16 A continu.  function p: X - R, is called generalized distance
Junction ; - the autonomous wT(t): X - X if p(T(t)z) > 0, Vt > 0 and

either p(z) = 0 with x € Xg or p(z) > 0.

Theorem 2.17 Let p(x) be a generalized distance function for  autonomous semi-

flow T(t) : X — X. Assume that
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(C1) T(t)Xo C Xo, V¢ >0, and T(t) has global attractor A on X;
(C2) There exists a finite sequence M {My,--- My} of disjoint, compact and iso-
lated in1 -ant sets in 8X, such that
(1) Ugemw(z) CU* M;;
(2) 1. subset of M forms a cycle in 8X,;
(3) M; is isolated in X ;
(4) We(M;) N p~1(0,00) = O for each 1 < i < k.
Then there exists a § > 0 such that for any compact internally ch.  transitive set L

with L ¢ M; for all 1 < i < k, we have minge p(z) > 6.

As before, we take L = w(z) for any z € X, and then have uniform persistence
with respect to Xg. One final result is needed before we move on to the analysis of
the forced roop )del with competition. The following is a perturbation theorem

( [20, Theorem 2.2]) for a continuous-time case.

Theorem 2.18 Let T)(t) : X — X be an autonomous semiflow parameterized by
A€ A andU C X. Let (z9,X) € U x A, Bx(x0,0) C U for some 6 > 0 and assume
that D;T(z,t,\) exists for (z,t,\) € Bx(z,d) x [0,00) X A and for each fizxed t > 0,
D,T(z,t, is continuous on Bx(zo,6) X A. Suppose that Tao(t)zo = z¢ for allt > 0,
U(t) := DTy, (t)zo defines a strongly continuous semiflow with p(U(t))  exp(—wt)

with w > 0, and limy .o Ta(¢)z o for each z € U. In addition, suppose that
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(1) For each A € A, there is a subset By of U such that fore hzeU, Ta(t)z € B,

for all large t.

(8) Usea (s)By is compact in U for some s > 0.

Then there exists an ¢¢ 0 and a continuous map T : Ba(Ag,«  — U such that

Z(Xo) = zo, TH(t)E(A) = 2(A) fort >0, and

tlim Tht)x=%2(N), VzeU le Ba(Xo, €)-



3. A TWO-¢ CIES PERIODIC DROOP MODEL

“1 Overview

A chemost model characteriz the growth of organisms in a lake environment (see,
e.g., [18]). The Droop model [6,7] of phytop 1kton growth is essential in theoretical
phytoplankton ecology. Thisis idenced in the book by Nisbet and Gurney [14] and
papers such as those by Morel [13], Grover [8,9] and the references therein. The Droop
model takes into consiC ation that phytoplankton cells store 1t mt and that the
growth rate depends on the » | :rient. Algae can uptake nu ent in excess of
current needs and continue to ‘ow during nutrient poor conditions. These nutrients
are supplied from an exter1 r« Tvoir; in several earlier works, this concentration is
assumed  be constant. Following the work of Pascual [15] d Smith [16,17], we
consider a general model with two competing species of phytoplankton with nutrient
concentra m inflow varying periodically with time.

The system consists of five ordinary differential equations, one for each of the
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stability of periodic solutions. In addition, a 4—dimensional limiting system is used
to produce results for the original system. This is achieved by using the theory of
chain transitive sets which allow us to prove that properties of the limiting system
are valid for the 5—dimensional system. The existence of a positive periodic solution
and uniform persistence of the phytoplankton populations are proved by appealing to
the theory of uniform persistence. Thus, the main result is coexistence of two species
in spite of competition for a limited resource.

In the following section, the model and its limiting system are presented. In the
third section, the main results ares :ed and proved. Section 4 provides an illustrative
example through numerical simulations. The numerical solutions exhibit the behavior
as suggested by the theory using functions and parameters from biological literature
in the general model. The last ction ‘ves a brief discussion of the main results and

their biological implications.

3.2 The moc

Let N;, N, be population biom.  concentrations of two species of phytoplankton,
Q1,Q: be the cell quota for each species and S be the ambient nutrient concentration

in the che ostat. The following is an extension of the general ..roop model to two
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competing species of phytoplankton:

N{ = Ni(u(Q;) — D)
Q: =pi(S,Qi) — m(Q)Q:, 1+ 1,2 (3.1)

2
S =D(S°(t) - 8) = N Nipi(S, Q)),

where 5 > 0,N; 2 0,Q; > Qiyn, @ = 1,2 and S°(t) = S°(t + p) > 0O for some
period p > 0. We assume that for i 1,2, g(-) and pi(-,-) s sfy the following the

conditions.
(Hl) :ut( irn'n) 0, ,U:(Q-,) > Oy VQl h :.nin'

(H2) pi(0,Q:) =0, 3& >0, ~_ <0,VQ; 2 Qi

Let

X = {(Nl,Ql,Nz,C S)ERi : QiZQi 121’2}

min?
It is easy ) show that X is p tively invariant for (3.1). For N, = 0 in the last

equation « (3.1) we ha

S D(8°(t) - S). (3.2)

This linear equation has a unique globally attractive positive periodic solution S =

S*(t) = S*(t p) > 0 which describes the amount of nutrient in the phytoplankton-
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free chemostat. Putting S S*(¢) in the second equation of (3.1) results in

Q pi(SU(1), Q) — mi(Q)Qs. (3.3)

By Lemma 2.12, this scalar  uation has a unique globally att  tive periodic solution

Qi = Qi(t) = Qi(t + p) > @'y, Further, any solution of (3 v h initial value in
X exists globally on [0, c0).

For convenience, we v e t| time-average of a p—periodic function as

(F(1) =p! / " i),

Let Z = 5"(t) = S— QN1 —  N;. Then (3.1) becomes the following system:

N{ = Ni(:(Q:) — D)

Q: = p,,(S*(t) Nl - Q2N2 - 27 Q‘L) - ;u'i(Qi)Qi, 1= 1!2 (34)

Z' =-DZ
with initial values in the domain

2

Y= {(Nl,QlaNQ,Q%Z)e :. : Qi = :m'-m (4 1,2, ZQIN,‘FZSS*(O)}
i=1

Note that S(t) = S*(t)  Qi(t)Ni(t) — Q2(t)No(t) — Z(t) shoul be nonnegative

in order to remain biologically relevant. Indeed, if there exists a £y s h that S *(to) —
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Q1 (to)N1(to) — Q2(to) No(to) — Z(to) = 0, then

S'(to) (S$* = Q1N1 — Q2Ny — Z)(to)

D(S° = 8" + QN1 + Q2Na + Z)(to) = DS(ty) > 0,

which implies that S(t) > 0 for all ¢ ~ 0.
Clearly, Z(t) — 0 as t — oo. By integrating the equation for NV, it is clear that
Ny > 0 for all ¢ > 0. The equation for @Q;, along with (H1) and (H2) imply that

Q; > Q' for all t > 0. Therefore, solutions of (3.1) are ultimately bounded on X.

min

By putti ; Z =01in (3.4) we arri  at the following periodic limiting system

N =Ni(u( )—D)

Q. p(S*(t) = T N - QaNy, Qi) — pi(Qi)Qi 1 1,2, (3.5)
with initial values in the domain

2
Q= {(N1,Q1, Ng, Q2) ERY & Qi > Qrayny 1 =1,2, ZQ;‘Ni < S*(0)}.

3.3 Uniform persistence

In this section, we first prove unif persistence for the limiting system (3.5), and

then lift this result to the model system (3.1).
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We s rt by considerit the following 2-dimensional system

N N(u(@Q) - D)

Q" =p(5°(t) - QN,Q) - u(@Q)Q. (3.6)

By [17,P1 )osition 1.3] and the theory of asymptotically periodic s 1iflows (see [25]),

we have following result.

Lemma 1 Let Q*(t) be the un _ e positive p-periodic solution of ~ = p(S*(t),Q)—

w(@)Q. . (u(Q*(t))) < D, then all solutions (N(t),Q(t)) of I 8) satisfy
limy—oo [(N(£), Q(t)) — (0,Q*(t))] = 0. If, instead, (u(Q*(t))) > D holds, then there
exists a unique positive p—; ic solution (N(t),Q(t)) and lim;_ [(N(t), Q(t)) ~

(N(t),Q(t))] = 0 for all solv ms (N(t),Q(t)) of (3.6) with N(0) > 0.
Assun that
(AO) {w( *(t)) > D, i=1,2.

Then Lemma 3.1 implies that there exists a glol ™ r attractive positive p-periodic
solution (N;(t), Qi(t)) of (3.6) with = u; and p = p;, i = 1,2, respectively,

Let Q%(t) be the unique p—periodic solution of

Q) p(ST(t) = No(B)Qa(1), Q1) e (@Q1)Q1,
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Theore1 3.2 Assume that (A0), (A1) and (A2) hold. Then system (3.5) admits a
positive periodic solution, and Ny(t) and Ny(t) are uniformly persistent with respect to
0y int  sense that there is ann > 0 such that for any (N,(0), @1(0), N2(0), @2(0)) €

Qg, the solution (N, (t), Q1(t), No(t), Q2(t)) of (3.5) satisfies

liminf N;(t) > n, Vi=1,2.

t—o00

Proof. We apply the uniform pe stence theorem for discrete-time dynamical sys-

tems. Define the Poincaré map P : Q) — Q for (3.5) by

P(N:(0),@1(0), N2(0), Q2(0)) = (N1(p), @1(p), Na2(p), Q2(p))-

Clearly, P(Q) C . Since lutions of (3.5) are ultimately bounded, P is point dissi-
pative and compact. Let Mg {(0,Q1(0),0,@3(0)}, My {(N1(0),3:(0),0,Q5(0))}
and M, = {(0,Q}(0), N2(0),Q2(0))}. Note that all M;, j = 0, 1,2, are fixed points
of P, and are pairwise disjoint, compact and isolated invariant sets for P in 9.

In the case where Ny(0) 0 and N(0) > 0, we have N;(t) = 0 and N,(t) >

0,Vt > 0. Further, (Q:1(t), Na(t), Q2(t)) satisfies
Q1 ;(ST(t) ~ Q2Ng, Q1) — i (Q1)
Ny M 'Q)-D)

Q3 = p2(S*(t) — Q2N2, Q2) — p2(Q2)Q2.
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Since (u2(@5(t)) > D, by Lemma 3.1 we have that
lim [(Va(t), Qo(6)) ~ (Fa(t), Ga(t))] = 0.

By Lem:  2.12 and the theory of asymptotically periodic  niflows (see [25]), we

further obtain lim;_..,(Q;(t) — @}(t)) = 0. Note that

Pn(O)Ql(O)7N2(0)’Q2(O)) = (O)Ql(np):NZ(np))Q2(7 )

It then follows that

lim P™(0, ~(0), N2(0), Q2(0)) = (0, Q;(0), N2(0), Q2(0)).

n~—oo

In the case where N1(0) 0Oand No( =0, we have Ni(t) =0 d Nyp(t) =0,Vt > 0.
Thus,

L £7(0,61(0),0,7>(0))  (0,Q1(0),0,Q5(0)).

n—
For the case where where Np(0) = 0, we have similar observations. Consequently,

P : Q — Q has the property that
U. rQouJ(CL') — M() U M1 U M2.

It is easy to see that no cycles among My, M, and M; exist in 0. Next, we essentially
apply Theorem 2.13 which comes from (26, Lemma 5.1.1]. Each M; gives rise to a

periodic s¢ 1tion with at least one component that is identically zero. By (A0), (A1)
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and

Yo := {(M,Q1,N2,@2,2) €Y : Ny >0, N, >0}

with 6X0 = X\Xo and a)/() = Y\}/b
In the proof of the following theorem, we use (3.4), which is equivalent to (3.1),

for conver ‘'nce.

Theorem 3.3 Assume that (A0), (A1) and (A2) hold. Then system (3.1) admits
a positive periodic solution, and there is an n > 0 such that for any initial value

(N1(0),Q1(0), No(0), @2(0), 5(0)) € Xo, the corresponding solution of (3.1) satisfies
litm inf N;(¢) >n, ¢ 1,2

Proof. Let w := @ x {0} be the om« . limit set for any point corresponding to the
Poincaré map of (3.4). ' W internally chain transitive set as a consequence.
It follows from the definition of internally chain transitive sets that & C R* is an
internally chain transitive set for tI Poincaré map P of (3.5) on 2. In order to use
Theorem 2.9 with L  ©,- m first verify that & ¢ M, for j 0,1,2.

First, assume by way of contradiction that ® C M;. The © = My and w =

MyU {0}. Let P,: Y — Y for (3.4) be defined by

P (N1(0), @1(0), N2(0), Q2(0), Z(0))  (Ni(p), Qi(p), Na(p), Q2(p), Z(p))-
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Since
(N1(np), Qi(np), Nao(np), ~ (np), Z(np)) - w = x {0} as n — oo,
it follows that there exists an n > 0 such that
liﬂgf Ni(np) > n, Iiﬂg}f No(np) > 7.

This implies that the map P, : Y — Y is uniformly persistent with respect to
(Yo, 0Yy). By Theorem 2.11, it then follows that the periodic system (3.4) is uniformly
persistent with respect to (Yp,0Yp). As in Theorr 3.2, Theorem 2.10 implies that
(3.4) admits a positive periodic solution. Since system (3.1) and (3.4) are equivalent,

this completes the proof. O

3.4 Simulations

As stated earlier, the ¢ litions (A0),(Al) and (A2) are requ :d for the coexistence
of two phytopla " Son spt The condition (A0) is required for e survival of any
phytoplankton in the system since these i1 ualities are used in the single species
case. Ass e that (AQ) is satisfied. In the competition case, (A1) and (A2) are both
required  coexistence. If only one of the conditions (A1) and (A2) is satisfied, then
numerical mulations suggest that one species will win the competition and the other

will die out in the long term. The inequality (Al) corresponds t the first species
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while (A2) corresponds to the second. In the following simulations, the adjustment
of the dilution rate will change which of these inequalities are valid.
In order to perform numerical s 1ulations, we will need to choose a specific case

for the general model. The usual choice for u in the literature, satisfying (H1), is

Qmin
Q

Q) = pm(1l — )-

Exam; s of the function p are often independent of Q and a common choice
(which satisfies (H2)) is

S
,D(S, Q) pmaz(Q)mv

A N—Q, .
maz(@) = P — (p" — P -.
P ( Wmaz — Qmin

This equation is most often simplified by assuming that p"* = p!  p,.. It is then
independent of Q. Under this assumption we can write equation (3.1) as

1 .
N N, (1 = =22) — D)

" h
2 .
Ny = Np(ul (1 - &’l) - D)
1 S N T _ .
Ql = Pm (D + Arl) iu’m(Ql rlm'n) (’37)

S
@ = (5ig ) - @~ Qi

S
Orpy _ @y _ Al _ 2
DSt = 5) = puli (S+K1> PrdVz <S+Kg>'

“
I




3.4 SIMULATIONS 29

. L. . . — Lol _ 2 _
By non-dimensionalizing this system with N} = ]\/IQ—;}?&, N, = NQQ—,'\,";m, Q= 5?‘—,

min

Q; = 5@?—, S = % and ¢ pl t, we arrive at the following system:

1
N =N [1-—=——u
: ( O )

1
Ny =uNy (1= =) —uN,
2 = h "’( Q2> :

@ =Li(50g) - Qi+ (39

IS
@ (e} )

S S
/ e 0 —_— —_ _ —_ S I No.
S U(S (t) S) Ll (S 1) N1 Lz[\,u <S [\") Vg

Note that 1c bars have been left out and the variables re-labeled for convenience.

The phase space which is biologically relevant is
{(NlanaNZaQZ)S) ]R5 : S>01 Ni>0; Q‘i> 7’:172}a

which is positively invariant. The forcing function S°(¢) has been scaled by a factor

of K; and the dimensionless equations have the following parameters

2 1
_ D _ Hm K K L Pm e
u = . ,u’ - 1 K ] 1 1 1 1 Z 2 b}
Hm Em 1 Em min Mm% min

As in [15], for given species of phytoplankton, the parameters L, Lo, K and p can
be determined from the biological literature (see, for example, [5]), with appropriate
ranges dictated by experimental uncertainty. The dilution rate u is under experimen-

tal control and u < 1 should 1 chosen so that the maximum growth rate exceeds
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the dilutic  for at least one phytoplankton species. The nutrient input, given by the
p-periodic forcing function S°(¢), is also under experimental control.

The function S°(t) is a proportion of the half saturation constant K,. Thus, a
typical function S°(¢) must lie between 0 and 2; we choose S°(t) = 1+ 0.9 sin(sz1)
for this purpose (that is, a period of 50 time units). The dilution rate parameter u
will be varied. Parameter sets from [5] for the species Thalassiosira pseudonana and
Skeletonema costatum when the limitihn  nutrient is Silica are used. The maximum
growth rate for Thalassiosira pseudonanais p),  2.75 and for Skeletonema costatum
is pfn = 2.88. The half-saturation constants are X, = 5.2 and K, = 1.3. The
growth rate is given per ¢ r and half-saturation constants are in micro moles per litre.
These units are not very important since we only need the dimensionless parameters,
1= 1.05and K = 0.25. ...e specics are characterized by L, 3.4 and L, 1.1.

In the following figures, the transient time in these figures is 10000 units to allow
for the solutions to converge to a solution. The initial conditions used are Ny(0) =
0.8, No(0) 0.6, @:(0) 1.1, @2(0) = 1.2 and S(0) = 0.7. Since the theory ensures
that the properties of the solution are independent of initial conditions, it is only
important to choose initial ¢ a from the positively invariant t described earlier.

Using symbolic software such as Maple, we can check whether the inequalities

(A0),(Al) and (A2) are satisfied for a given u. This is achieved by finding a numerical
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more dilute environment than Skeletonema costatum even though it is not the stronger

competitor for low dilution rates.

3.5 Discussion

In this prc ct, a periodic Droop model for two phytoplankton specics competition in
a chemostat was analyzed in detail. The species compete for a single, limiting resource
in an environment where nutrient is added to chemostat by way of a periodic forcing
function. The model was analyzed in general, without specifying functions for the

growth and uptake rates. There were, however, monotonicity conditions imposed on

08
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these functions to make the model appropriate in the biological sense. It is known
that in the single species case a threshold condition, u(Q@*(t)) > D, is required for
the global stability of the unique periodic orbit. The model with two species requires
that this condition holds for cach species (u;(Q(¢)) > D,i = 1,2) as a nccessary
condition for survival of either species. Analysis of the competitive model reveals
that there are two other threshold conditions, one associated with each species, and
that each of these is required for the uniform persistence of bo  species. In addition,
our numerical simulations suggest that each inequality by itself allows for a case where
one species survives and the other dies out due to the competition. A proof of this
assertion would be a natural step in followup work.

The numerical simulations in this work were achieved by using biological data
for the phytoplankton spec  Thalassiosira pseudonana and Skeletonema costatum
to make the model concrete. As expected frc the theory, we found p ameter
ranges where each species dominated the competition and a range when there was
cocxistence. It was particularly interesting that for low dilution rates Skeletonema
costatum dominated the ¢ petition  le only Thalassiosira pseudonana persisted
for higher dilution rates and coexistence occured for modera dilution rates. The
conclusion drawn here is that while a species may be a superior competitor it may

not be better at surviving at higher rates of dilution. This shows how the ability to




-
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compete against another species of phytoplankton is a separate characteristic from
its survival capability in increasingly dilute environments.

This work suggests that, for additional species, an analc Hus result may be ob-
tained. The details of this could be investigated in the future. Also there are a
number « parameters in the model which could be varied in time instead of, or in
addition to, the nutrient inflow S°(¢). For example, the dilution rate or the volume of

the chemostat itself is suggested in [17]. These ideas are left for future investigation.



4. A TIME-DELAYED EPIDEMIC MODEL WITH

“ISPERSAL

4.1 Overview

The dyna ics of infectious dis s is an important research arca in mathematical
epidemiology. Some commonly studied types are SIR models where a disease spreads
through contact and a population is divided among three classes:  sceptible, infec-
tive and recovered. In many udies, the goal is to understand the key factors in
disease transmission (see, for e ple, [2,3,10]) and this often includes (but is not
limited to) determining a thr 10ld conditi  for the persistence and extinction of the
disease. The basic reproduction number, Ry, is the expected numb  of new infected
individuals om one typical infected individual. Hence, Ry is a threshold: the disease
goes extinct when Ry < 1; while it persists in the population when Ry > 1.

Many diseases such as influenza, measles and sexually transmitted diseases are

easily spread between countrics, regions or cities due to travel. This population
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dispersal is an important aspect to consider when studying the spread of a disease.
We consider a disease transmission model with population dispersal among n patches,

as in papers such as [1,22]. As in [4], the population demographic is described by
N'= B(N)N — uN,

where NV is the size of a population, B(/N) is the birth rate of the population and p
15 i1ts death rate.

Often the duration of an infectious period is described by an exponential distribu-
tion. It is more realistic to assume that individuals have a constant length of infection
7. This new feature of the standard patch model is studied in [23] using a typical
example of the function B(N) found in biological literature. In that work, B(N)N is
a linear function which simplifies the analysis. Our purpose in 2 current paper is to
extend the results in [23] to the general function . N) and numerically investigate
the impact of the other typical functions (where B(N)N is nonlinear) on the basic
reproductli  numk

In the following section, the model is established and prelimin. ts: given.
Section 3 is devoted to establishing the basic reproduction number for the model with
the general irth rate function and the proofs of the associated thre: old-type results.
In the fourth section, we use numerical simulations for some typical functions B(N)

to illustrate the effect of dispersal. The last section gives a discussion of the main
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results and the examples.

4.2 The model

In this section, we present an epidemic model with population dispersal and infection
period, which is based on [23].

Let S;, I, and R; denote the density of susceptible, infective and recovered indi-
viduals in patch ¢. The population size, V;, is therefore given by N; S, + I, + R;

and we assume that the demographic structure is described by

dNi(t)
dt

= By(N;(1))Ni(t) — paNi(2),

where B; is the per capita birth rate and g; the per capita death rate. Birth rate

functions satisfy the following conditions:

(B1) By(N:) >0, ¢ =1,2.

(B2) B;j(N;) is continuously d...crentiable with BI/(N;) <0, i =1 "~

(B3) ;> Bi(c0), i 1,2

When the patches are con1  ted, the dynamics of disease transmission is described
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by
%f?l = Bi(Ni(0))Ni(t) = (1 + d1)S1(8) = kiSi(0)11(2) + d2Sa(2),
% = Ba(Na(t))Na(t) — (2 + d2)Sa(t) = kaSa(t) Ia(t) + d1Si(2),
L KuSON( ~ (s + 30+ 8L + bt
e RuSOR®) — (ka7 + o) a(t) + BTy (), m
‘iﬁ‘ = nhi(t) = (o + ) Ra(t) + 2 Ra(2),
% Yalo(t) — (2 + c2) Ra(t) + c1 Ra(8),

where k; is the disease transmission coeflicient and ; is the recovery rate of infected
individuals, with ¢ = 1,2. Mig .ion of susceptible individuals from the first patch to
the second is given by d; while migration from the second patch to the first is given
by d,. Similarly, by, by and ¢, ¢y describe the migration of infective individuals and
recovercd individuals resp  tively.

Since we assume that the length of infection for all infectious dividuals is the
constant 7, let a be the infection age and let I;(a,t) be the dens - of infected in-
dividuals at time t with respect to infection age a in the ith patch. Assuming that
the number of individuals recovered due to treatment per unit  proportion to the

number of infectious individua then the force of infection in  :ch 7 at time ¢ is

kfi/ Ii(a,t)da
0
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and (4.1) can be written as

as
d—tl = Bi(Ni(£))Ni(t) — (1 + d1)Si(t) = M (8)Si(t) + daSa(t),
aS,
oy = Bg(ng(t))le(t) - (IUQ + dg)Sg(t) - /\2(”52(0 + dlSl(f),
orI AT
=L + ‘ L (p1+71+b1)11(a t)+b212(a t) 0<(LST
dt aa
ol I
—2 + b:—"([L2+T2+b2)]2((l,t)+b111(a,t), 0<a§r (42)
dt da
AR, T
= m/ L(a,t)da + I(7,t) = (g1 + c1) Ri(t) + caRa(t),
dR
Tt2 = / a f da+12(7' t) (lur)—i-C))Rz( )+C1R1( )

]l(ovt) = /\L(t)Sz(f)v ‘= 1327
with initial conditions given by

S5(0)=5">0 R(0)=R">0, i=1,2,

Li(a,0) = fi(a) >0, 0<a<rT, i=1,2

Let P,(t) = [] Ii(a da be the total density of infected members at time ¢ in the
ith patch. Set V(a,t) [Ii(t—a,t)for0<t—a<7and V(a,t) (Vi(a,t),Va(a,t))?,
where T represents the transpose of a vector. Then V satisfies

OV (a, t)

T BV(a,t), a“ "t "a+r, (4.3)
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where

—p — T — by by

by —ly — Ty — by

Integrating (4.3) from a to t, we have
V(a,t) exp(B(t—a))(1(0,a),12(0,a))", a<t<a+r,
and therefc
I(a,t) = V(t — a,t) = exp(Ba)([1(0,t — a), ,(0,t —a))", a< T
We define (b;;(a)) := exp(Ba) and Q;(¢) := k;S:(¢)P,(t). Then it follows from (4.2)
that
Ii(a,t) = bu(a)Qi(t — a) + bi2(a)Qa(t — a),
I(a,t) = bn(a)Qi(t a)+ bn(a)Qa(t - a) (4.4)

fort>7>a.

Integrating (4.4) from 0 to 7, we get

Pi(t) /07 byy (t—a)da [JT bi2(a)Qe(t —a)da, t>T,
P(t) = /OT b1 (t  a)da /T bpa(a)Qa(t — a)da, t >,

0

which is equivalent to

P(t) = /(;T exp(Ba)Q(t — a)da = / exp(B(t — $))Q(s)ds, t> T, (4.5)

t—7
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where P(t) = (Py(t), P(1))7 and Q(t) = (Qy(t), Q2(£))T.
It then follows that
dP
T Q(t) —exp(BT)Q(t —7) + BP(t), t>r
Define

Yi(t) =i Pi(t) + b (T)Q1(t — 7) + bia(T)Qa(t — 7), i=1,2.

Then we arrive at the following time-delayed model:

DL = BVEIN - ()0 - Qi) + BS,(0),

D BNADINA(E) ~ (2 + d)So(1) — Qul) + i Si(1),

%11_1; = Q(t) —exp(B7)Q(t — 7) + BP(t), (4.6)
T2 w0 RO+,

SR = ()~ G+ R0+ R,

Ni(t) = S(t)+Ri(t)+ P(t), « 1,2

for t > 7. By (4.5), we require that initial functions satisfy the following condition

P(r) = /OT exp(B(7 — 5))Q(s)ds.

Equation (4.6) is an autonomous functional differential equation systemn defined on

C([0,7],R%). After a time translation, we will consider, without loss of generality,
+ g
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(4.6) on C{[-7,0],R%) under the condition

0
P(0) = [ exp(~B(s)Qs)ds.

The we posedness of system (4.6) and the positivity of its solutions were con-
sidered in [23]. Assume that each B;(N;)N; extends to a C' function G;(N;) on
[0,00) with G;(0) > 0. Let u(t) (S(¢),P(¢), R(t)) be a continuous function from
[—7,0) to RS for some o > 0. For each t € [0,0), we define u; € C([-7,0],RS) by

w,(s) =u(t+ s) for all s € [—7,0]. Set
0
X = {(S,P,R) € C([-7,0,R%) : P(0) =/ exp(—Bs, s)ds}.

By the standard theory of functional differential equations { » [11]), for any ¢ €
C([=7,0],RY) there exists a unique solution u(t, ¢) of system (4.6) satisfying ug = ¢,
which is defined on its maximal interval of existence [0, 0,).

We first observe that X is positively invariant. Define
t
W(t) := / exp(B(t  5))Q(s)ds, Vte|[0,04).
t—7
It follows that

=Q(t) =xp(BT)Q(t—7)+BWI(t), Vtel0a,),

and

w(@ =B(P(t) - W(1)), Vtel0,0,).
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Since ¢ € X, we have P(0) = W(0) and hence,
P(t) — W(t) = exp\uo ) (P(0) —W(0)) =0 V€ [0,04).

This means that

P(t) = /:— exp(B(t — s))Q(s)ds = /_ exp(—=B(s))Q(t + s)ds Vi e [0,0,). (4.7)

By (4.7) and the differential equations for S(t), Sa(t), Ri(t), Ra(t), it follows that for

any ¢ € X, u(t,¢) is (componentwise) nonnegative on [0, 0,), and u,(¢) € X for all

t e [O, U(b)-

4.3 Threshold dynamics

In addition to (B1)-{B3), we further make the following assumptions on B;(V;).

(H) pi, ky, by, @ = 1,2 are positive constants; d; and ¢; arc nonnegative constants for

P12

Define
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Lemma 1 Let (H) hold. Then there exists an L* such th  for any L > L* the
set Xy, is positively invariant for solution maps of  6), and every solution u(t, ¢) of

(4.6) with ¢ € X eventual’ enters into [0, L]°.

Proof. By (4.6), we have

dN

Ttl = (By(N) — 1)Ny — dy Sy + d2S2 — by Py + b — ¢ Ry + o Ry,
dNs

T (Ba(N2) — po)Ng —daSo + d1S1 ba Py + 01 Py — o Ry + | Ry

Let N = N+ N,. Since B (/V)) is continuous and p; > Bi{00), there exists an L such
that py > By(Ny) forall Ny > L;. S larly, there exists an Ly such that gy > By(Ns)
for all No > Lp. Set L* Ly + Ly, and m := min{B,(L*) — u, Bo(L*) — w2} < 0.

Therefore,

d . .
E(Nl + Ny)  (Bi(Ny) — )Ny + (Bo(N2) — pp) N <mN, YN > L

Thus, the standard comparison theorem completes the proof. O

Let ®(¢t) : X — X be the solution semiflow associated with (4.6). This means
that ®(t)¢ = u(¢), ¢ € X, t > 0. y Lemma 4.1, solutions of (4.6) arc ultimately
bounded : d uniformly bor led. It then follows that the miflow ®(t) is point
dissipative on X and ®(t) : X — X is compact for each ¢t > 7. By Lemma 2.7, ®(t)

admits a global attractor that attracts every bounded set in .X.
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In order to find the disease-free equilibrium, which is needed for the basic repro-

duction number, we consider

dS

d_tl (51)51 - (m + dl)Sl + szz,

dS,

P B(82)S; — (p2 + d2) Sz + di.S). (4.8)

Let F : R?2 — R? be defined by the right-hand side of (4.8) and S = (S, S,). Clearly,
F is continuously differentiable and £(0) = 0. Recall that G;(N;) = B;(N;)N,,VN; >

0, 2 = 1,2. Then the Jacobian DF(S) is given by

G1(51) = (w1 + di) dy
DF(S)=
d, G3(52) — (12 + da)
Since the off-diagonal elements of DF(S) ¢ positive, F is cooperative for every

S € R%. Note also that DF(S) is irreducible. Let o € (0,1) and S € int(R2). Then

the following holds
(,YBl<a»91)Sl — a(pl 1,1)51 + d2a52 > a[BI(Sl)Sl — (,Ufl + d])Sl + ngQ],

aBQ<(,YSQ)SQ - a(/,l,'g + d2)82 + dlasl > a[Bg(Sg)Sg — (/1,2 + dQ)SQ + dISI].

Thus, F'is strongly subhomogeneous on Ri.
Recall that the stability modulus of a square matrix M, denoted by s(M), is
defined by

s(M) := max{Re\ : A is an eigenvalue of M}.
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In order for (4.8) to admit a positive equilibrium, we need to assume that
(B4) s(DF(0)) > 0.

By Lemma 4.1, as applied to the constant initial data ¢(6) = 3(0),0,0), V¢ €
[—7,0], solutions of (4.8) are ultimately bounded. It then follows fromm Theorem 2.15
that (4.8) admits a unique positive equilibrium S* = (S},.53) and that S* is globally
asymptotically stable for S € R2 \ {0}. Thus, Ey = (57,53,0,0,0,0) is a disease-frec
equilibrium of (4.6).

As in [23], we first determine the basic reproduction number, which is the average
number of secondary cases an infected individual will cause in a population. Assume
that the population is near the disease-free equilibrium Ey. Then it follows from (4.7)

that

Pl(f) = 1\15;/ bll((l)P](t - (Z)d(l + kgS;/ blg((l)pz(t - a)(ia,
0 0

P(t) = kiS} /OT bo1(a) Py (t — a)da + k2 S, /OT bay(a)Ps(t — a)da. (4.9)

Set

U ICIS; Jo b“(a)da sz; fOT blz(a)da
kISf fOT bgl(a)da /{:252" fOT bgg(a)da

Since U is a positive matrix, its spectral radius p(U) is a simple cigenvalue with

a positive eigenvector (see, e.g., [18]). Let v/(a) = (¥, ¥2)7 be an initial distribution
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of infected members in the patches during the infection period, where 9, and ¥, are
constants. Set
kSt 0
0 koS3

Thus, Fy is the rate of infectious individuals in the two patches. In [23], it was
concluded that b;;(a) is the probability that an infective person initially in patch j at
infection age zero is in patch 7 at infection age a. Then Uy = " exp(Ba)Fida gives
the number of infected individuals in the patches at the end of an infection period.
As in [21,23], U is called the next infection matrix and p(U) d' ned as the basic
reproduction number Ry of (4.8).

Our first result shows the uniform persistence of the disease if > 1. The proof

of this theorem from [23] is modified here and a form for the function B;(N;) is not

assumed. Instead, the function G;(V;) = B;(N;)N; is used.

Theorem 4.2 Let (H) hold. If Ry > 1, then the disease is uniformly persistent in the
sense that there is a positive n 1 € such that for any ¢ € X with $3(0) > 0 and
#4(0) > 0, the solution (S(¢t, ¢), P(¢,¢), R(¢t, @) of ({.6) satisfies liminf, .o, P;(t, &) >

e, 1=12.

Proof. As in [23], we use persistence theory. We established earlier that the solution
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Set

U. = kl(SI - 6) fOT b“(a)da kz(SE — 6) fOT blg(a)da
ki(St =€) [y ba(a)da ky(S3 —€) [ br2(a)da

Since p(U,) is continuous in €, we can restrict € > 0 small enough such that U, is

positive and p(U,) > 1. Now consider the following system:

du

El‘ = Bi(uy +nuy — (u1 + di + kin)uy (t) + dyus(t),

du

d—t2 = Bg(’ltz + I’])’LL2 et (Ng + dz + k‘zT))Uz(f) + dlul(t), (410)

where 7 > 0 is a small number. Arguing as before, (4.10) satisfies the conditions of
Theorem 2.15 and, as such, it admits an equilibrium (u}(n),u}(n)) which is “obally
asymptotically stable. Moreover, since this system is a perturbation of (4.8), we have
that (uj(n),us(n))  (S7,S5;) asp — 0. By the implicit function theorem, we choose
n = n(e) > 0 small enough  that u(n) > S —¢, i = 1,2. It follows that every
positive solution (u;(t),uq(t)) of (4.10) satisfies u;(¢) > Sf —e, i = 1,2 for all large ¢.

We define

M =71+ L(byy . kv +bia(7)ks), 1 = 1,2,

and consider

A ()

at
dra (1)

at

5]\/11 — (;1,1 31>U)1 + CoWy,

5]%;3—(u2+02)w2+c1w1. (41])
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This is a linear, nonhomogeneous system. The origin is globally asymptotically sta-
ble for the corresponding homogeneous system and it is easy to show that the par-
ticular soh on of (4.11) is a constant which tends to zero as § — 0. Therefore,
(4.11) has a globally asymptotically stable equilibrium (w}(d), w3 (4)) which satisfics
(wi(6),w;(d)) — (0,0) as 6 — 0. Thus we can fix § with 0 < § < I such that

*

w;

(0) < #,i = 1,2, Tt then follows that every positive solution of (4.11) satisfics
w;(t) < %, i =1,2 for large t. We now have the following claim.
Claim. limsup,_, ., max{Pi(¢, @), Pa(t,¢)} > ¢ for any ¢ € X,.

Assume, by way of contradiction, that the claim does not hold for some ¢ € Xj.

Then Pi(t) := Pi(t,¢) < § < 2

7, © = 1,2 for all large t. Since solv ons of (4.6) are

ultimately bounded, we have that Q;(f) < k;5;(t)0 < kL8 < k,Ln, i = 1,2 for large

t. It then follows that (t) < dM;, i=1 " forla ¢, and hence

t
dﬁ;lt( ) S 6.&[1 — (Ml + C1)R1 + CQRQ,

2 (1
%zt() < 6My — (2 + c2)Re + ¢ Ry

By the comparison theorem for cooperative systems (see, e.g., [18]), we have R;(t) <

wi(t) < 2, ¢ = 1,2 for large ¢t. It follows that for all large ¢,

Nt < Si(t)+n, ¢ 1,2
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and

Bi(N;(£))Ni(t) > Bi(Si(t) + n)Si(¢), i=1,2.

Thercfore, we see that for la ¢,

dS
—dt—l > By(Si+n)S1 — (p1+di kn)Si(t) + daSa(t),

ds

d—f > By(Sy +n)Sa — (g + dy + kan)Sa(t) + dy.Si(2). (4.12)

By the comparison theorem, it follows that S;(¢t) > w;(t) > Sf — ¢, i = 1,2, for all

large t. Thus, (4.5) implies that there is a #; > 0 such that for all t > ¢,

P(t) > kl(Sf—6)/0Tb“(a)P1(t—a)da
ka(S] — € /0 bi2(a) Po(t — a)da,

Py(t) > k(S —¢) /T bay (a) Py (t — a)da +

ko(S; — €) /OT baa(a) Py (t — a)da. (4.13)

Let v = (v1,v9)" be a positive right eigenvector of U, with respect to p(U,).
Choose ! > 0 small enough such that lv; < min{P;(t) : ¢t <t <tg+7}fori=1,2.

Then the following inequality is true:
l'Ui < B(t), 1= 1,2, Yt > to. (414)
To see this, we set

t, = 1nf{t € [to,OO) . l’Ul = P1 (f) or l'UQ = Pz(t)}
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Clearly, t; > to + 7. Then lv; < Pi(t), i = 1,2, for to < t < t; and lv; = Pi(t;) or

lvg = Po(t,). But, we see from (4.13) that

Pi(t) > k(ST - c‘)lvl/ bir(a)da + ko (S5 — e)lv2/ bip(a)da = p(Ug)lvy,
0 0

Py(t) > ki(S] — e)lyy / bor(a)da + k2S5 — e)lv2/ boo(a)da = p(U)lva,
0

0

which contradicts lv; = Pi(t;) or lva  Py(t;). Thus, (4.14) holds.

Now st oose that for men ™ 1,
PN U < P(t), i=1,2, Vt>ty+ (n— 1T (4.15)
We want to prove that
p"(Ulv; < P(t), i=1,2, Yt>ty+nT (4.10)
By (4.13) 1d (4.15) we have that
Pt (U, < P(to+nT), i =1,2,

If (4.16) does not hold, then there is a t; > to + n7 such that p"(U)lv; < Py(t), 1 =

1,2, for to + nT > t < ty, and p"(U)lv; = Pi(ty) or p"(U)lve = Py(t2). By (4.13)
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and (4.15) it follows that for t € (tq + nr, ta],

Pi(t) > k(ST —e)p" (Ul /OT bi1(a)da
(55 = 9" (Ulas [ bala)da = (Ui,
Py(t) > k(ST —e)p" (Ul /OT bo1(a)da
+ko (S5 — €)™ (U )y /OT baa(a)da = p"™ (U,
which contradicts p™(U)lv, = Py(ty) or p"(U)lvy = Py(ty). By induction, we con-

clude that (4.16) holds for all n > 0. Since p(U,) > 1, we obtain

tlim P(t) > lim p™(U,)lv; = oo,

n—oo
a contradiction. ..iis proves our cla

Define p: X — R, by

p(¢) = min{p3(0), ¢4(0)} V¢ € X.

It is easy to see that X, = p71(0,00) and 80X, = p~!(0). Note that p is a generalized
distance function for the semiflow ®(t) : X — X. Clearly, any forward orbit of ®(t)
in My converges to £y. By our claim, we see that Ey is an isolated invariant set
in X, and that W*(Ey) N Xy = 0. ..y Theorem 2.17 (sce also [26, Theorem 1.3.2}),
we conclude that there exists § > 0 such that min{p(¥) : ¢ € w(¢)} > 4 for
any ¢ € Xo. This implies the uniform persistence of solutions  system (4.6), as

required. 0
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Next we show that the disease dies out if Ry < 1, provided that there is only a

small invasion.

Theorem 4.3 Let (H) hold. If Ry < 1, then for every L > L*, there exists a
¢ ((L) > 0 such that for any ¢ € Xy with (¢3(0), ¢4(0)) € [0,¢]?, the solution

(S(t,¢),P(t,0),R(t,¢)) of (4.6) converges to Ey ast — oo.

Proof. Let L > " be given. By Lemma 4.1 and its proof, X is positively invariant

for the solution semiflow of (4.6). We then have
(S(¢,9),P(t,¢),R(t,¢)) € [0,L]°,Vt > 0,4 € Xy, (4.17)

Set

> k(S +€) f) bi(a)da ka(Ss +€) [ bia(a)da
kl(S; 6) fOT bgl(a)da k'z(‘n. + E) fOT bgg((l)da

By the continuity of the spectral radius of V. with respe to €, we can restrict

¢ > 0 small enough such that p(V,) < 1. Now consider the following system:

mldtﬂ = Bi(ur(t))(ui(t) + &) — (w1 + di)ur(t) + daua(t),
d’u(;t(t) B2(U2(t))(U.2(t) + £1) - (/,Lg -+ d2)zl2(t) + dl'u](t)- (418)

This cooperative system is a perturbation of (4.10). According to Theorem 2.18, for

a small number & > 0, th system has a obally asymptotically stable equilibrium
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(u1(61), u2(&1)) with the property (ui(€1),uz(&2)) — (St, S3) as & — 0 for all positive
solutions. Thus, we can choose a large number Ty = Ty(L) > 0 such that, for any
solution (u;(t), ua(t)) of (4.18) with (u1(0),u2(0)) € [0, L]?, we have u,(t) < S* + ¢,
t=1,2,f allt> T Similarly, we can select a small number & > 0 and a large

number Ty = T,(L) > 0 such that for any solution (w:(t),w,(t)) of the system

dwh(f,)
T = & — (u1 + cn)wi(t) + cows(t),
Ana (1)
o = G (et cun(t) + erwn () (4.19)

with (wi(( w2(0)) € [0, L]?, v have w;(t) < &,/2,i=1,2, for all t > T.
Let v = (v;,v2)" beap ti right eigenvector of V, associated with p(V,). Choose

£3 > 0 sm¢ cnough such that
E3(rivi + b (T)k1Luy 4 bo(T)koLvg) < &, Eui < &/2, i=1,2. (4.20)

Let Ts = .5(L) max{Th,T>} + 7 and W := diag(k;L, k;L). Then there exists
¢ = ¢(L) > 0 such that for every solution (P;(t), Py(t)) of the linear system

aP(t)
— =W+ BPW), t20,

with (P (C P(0)) € [0,¢]%, we have Pi(t) < &ui, i 1,2, for all t € [0,2Ts). For a

given ¢ € X with (¢3(0), $4(0)) € [0,¢]?, we let

(S(t), P(t),R(t)) = (S(t,¢), P(t,¢), R(t, ).
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By (4.6) and (4.17), we then have

%ﬁt) < (W + BYP(),¥t > 0.

Since P(0) € [0,¢]?, the comparison principle implies that

P(t) < &, VEE[0,2T3), i=1,2. (4.21)

We further claim that (4.21) holds for all ¢ > 0. If the claim is not true, then there
exists a Ty = Ty(¢) > 2T3 such that Pi(t) < &u; for 0 < ¢ < Ty,i = 1,2, and

Pi(Ty) = & for j =1 or j = 2. It follows from (4.6) and (4. ) that

AR ()
e < & — (p + ) Ri(t) + caRa(t),
AdRa(t
O < 6 o+ eBalt) + el Ri(0) (4.22)

for 7 <t ~ T,. By the comparison principle and the properties of system (4.19), we

have R;(t) < &/2,i= 1,2, for all t € [T3,T4]. It follows from (4.6) that

dSC';t(t) < Bi(SuO))(Si(t) + &) — (w1 + i) Si(8) + daSa(t),
Ej‘cj;:f\ < Bo(Sa(8))(S2(t) + &) — (o + d2)Sa(t) + d,Si(t), (4.23)

for all ¢ € [T3,Ty]. By the comj ison principle and the properties of system (4.18),

we obtain S;(t) < Sf +e€, Vt € [T5+.,,Ty],¢ = 1,2. Hence, (4.7) implies that for any
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t € [2T3, Ty}, there hold
bll(a)Pl(t — a)da +

T

b]z(a)Pg(t - a)da,

P](t) < kl(Sr"'E)
k:z(S; +€)

B < k(S o [ ba(a)Pilt - a)da+

T

kg(Ss + E) bgg (a)Pg(t — a)da, (—124)

S— S o S—,

It then follows that

Py(t) < k(ST + €)&svy [y bua)da + k2(S5 + €)&svz [ bia(a)da = p(V,)&su,

Py(t) < kl(Sl* €)€3v) fOT bo1(a)da + k‘2(55 + €)&3v; fOT baz(a)da = p(Ve)&sua,
for all t € [2T5,Ty]. Since p(Ve) < 1, we obtain P;(Ty) < ¢ f  j = 1,2, which
contradicts Pj(Ty) = &v; for j =1 or j = 2. This shows that B(t) < &, @ = 1,2,
for all £ > 0, and hence (4.24) holds for all ¢t > 273. By an induction argument similar
to that in the proof of Theorem 4.2, it follows that Pi(¢) < p™ )&, Vit > 2T5 + nr,
n > 0,1 1,2, which implies that lim; ., P;(t) = 0, 1 = 1,2. By the theory of
chain transitive sets (see, e , [26, Theorem 1.2.1]), as argued in [22, Theorem 2.2,

we further obtain that (S)(t), Sa(t), Ri(t), Ra(t)) — (S5,55,0,0) as t — o0. O



4.4 EXAMPLES 60

4.4 Examples

In this section, we analyze the effect of population dispersal on the spread of the
disease. In doing this we must consider the behavior of the di ise when the patches
are isolated and compare this to when they are connected. In epidemiology the basic
reproduction number Ry characterizes this disease spread; if Ry > 1 then the disease
will persist and if By < 1 the infection will die out in the long term. Therefore, for
a given model, we can calculate a basic reproduction number as if the patches were
disconnected and we can calculate the actual reproduction number when the dispersal
parameters (b;, ¢;, d;) are nonzero.

First we consider the disconnected system:

DL = BNON - S Q)
T2 Qe e Que ) — e+ A,

% = nPU() 4 e BTt — 1) — R (8), (4.25)
Ni(t) = (t)+ Ri(t) + Pi(t),t >0,

0
PO = [ emrmiqus)as,

-7
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and

ds
d_t2 Bay(Na)Na — 1155:(t) — Qa(2),
AdPs(t .
at ) = ( t)— e WATITQN(t — 1) — (g + 13) Pa(t),
dR
O nBD) + eIt 7) — paRa(t), (4.26)

Na(t) Sy(t) + Ra(t) + Pa(t), t >0,

0
Py(0) = / elh2t72)50)) (5)ds.

As in the proof of Lemma 4.1, by the properties of B;(N;), there exists a unique
L; > 0 such that B;(L;)  p;. Therefore, Ey;, = (L;,0,0), i = 1,2, is the diseasc-free
equilibrium for patch i. Let Rp; be the basic reproduction number for patch i. By

similar arguments as those for model (4.6), it then follows that

T 1 —exp(—(1: + 72N
Ry; = kis&/ e_(l‘i‘l'Ti)ada — kiLig—‘ﬂI)(f " AT
0 (i +1i)

and that Ry > 1 implies that the disease is uniformly persistent in the isolated patch

t. The ne result shows that, for an isolated patch, the dise: : dies out if Ry; < 1.

Theorem 4.4 Let the two patches be isolated. Then the disease-f : equilibrium Ejy,

is globally attractive if Ro; < 1.

Proof. We consider patch 1 since the proof for patch 2 is similar. It follows from



4.4 EXAMPLES 62

(4.25) that

dN,

—= = (Bi(V1) = ) (1),

for an isoli :d patch. Therefore, as in the proof of Lemma 4.1 and as noted earlier,

Ni(t) - L, as t — oc. (4.27)

Since Rp; < 1, we can choose ¢ > ( small enough such that

kil + 6V = —
RS, = Mz exp(=(u+r)r) (4.28)
M1+ T

We can choose t > 0 large cnough such that
Si(t) < Ly+¢€ for t >¢

Since

t 0

Pi(t) = / e~ (BitTi)(t—s) ~ (s)ds = / e(‘“”‘)’Ql(t + s)ds, vt > 0,
[ ks —

it follows that

Py(t) < ki (S, + e)/ e"MATap (4 g)da, Vt>t4T.
0

Fix a o > 0 such that Pi(t) < . fort+ 7 <t < t+27. By 1 induction argument

similar to that in the proof of Theorem 4.3, it follows that

Pl(t) < (Ral)ylﬁv\/t 2> f+ (n‘ + I)T,TL > 0.
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Since R, < 1, we have Pi(t) — 0 as t — oo. By using the theory of chain transitive

sets, we further obtain that (S,(t), R,(¢)) — (L1,0) as t — oo. O

In order to perform numerical si 1lations, we must choc  a specific birth func-

tion. The following birth rate functions are found frequently in bhiological literature:
(C1) Bi(N,) = Hie="™ with A, > 0,H; > 0.

(02) BL(Ni) q-_fﬁm; with pi > O,Qi > 0,m; > 0.

(C3) Bi(N:) = 4+ + H; with A; > 0, H; > 0.

In [23] the birth rate function (C3) is used both in the proofs of the theorems in
the previe . section and in the numerical examples. Those simulations suggest that
dispersal is often very imp« wnt. ° ere are cases where different levels of dispersal
cause “switches” in Rg being le  than or larger than one. There are even cases where
low and high dispersal have Ry > 1 while a moderate dispersal has Ry < 1. This may
be due to the birth rate function; since ~ (V;)V; = A; + H;N; is a linear function,
the number of births 1s propc  »al to the1  ber of individuals with no saturation.

The function G;(N,;) = B;(N;)N; behaves differently for large N; in cases (C1),(C2)
and (C3). or (C3), G;(N,) is unbounded. For (C1), G;(N,) tends1  zero as N; — o0.

And for (C2), G;(NV;) tends to t] constant p; when we take m; = 1. Depending on
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the type of function used, it can lead to significant changes in the numerical modeling

of a population.

In this project, we use the birth rate functions (C1) and (C2) for simulations.

The objective is to find some interesting and representative dynainical behavior over

several examples. It is also important to pay careful attention to the dispersal pa-

rameters since they characterize the patch environment. First, however, consider the

following systems:

dS)

dt
AP\ (F)
W

dR,

at

Ny(t)

P (0)

H\N (8)e™ "™ — 11 8i(8) = Qu (),

Qi(t) — e™HTQ (8 = 7) = (11 + 1) Pi(8),

rP(t) +e IO (t—7) — R ), (4.29)
Si(t) + Ri(t) + Pi(t),t >0,

0
/ e(“1+’1)3Q1(s)ds,

-7
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and

dd_stvz = HQNQ(t)e_AZNZ - /1252“) - QQ(t)v
I‘an t
at(—) = Qu(t) — e Wt Qu(t — 1) — (1 + 75) Pa(t),
% = TQP‘Z(t) + 6_(”2+7.2)TQ2(t - T) - ,U‘?RQ(t)7 (430)

]VQ(t) = Sz(t) + Rz(t) -+ Pg(t),t 2 O,

0
P(0) = / el 423y, (s)ds.

—T
Systems (4.29) and (4.30) are isolated patches; that is, there is no dispersal be-
tween the patches. With the birth function (C1), the disease-free equilibrium for
each is given by £y = (55,,0,0) and Ep = (55,,0,0), where S3, = ;,1—1111(111/N1),

Sgp = tln(Hg/,ug). Thus, the I ic reproduction number is given by:

Roi =" <H> T (4.31)

Fi A + 7“1')

In the following examp comparisons are made between the disease behavior in
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the isolated patches and in the connected system:

dd_*s;l Hi Ny (£)e ™ — () + d))S1(t) — Q1 (t) + daSa(t),

% = Q(t) - exp(Br)Q(t — 7) + BP(), (4.32)
O = )~ (1 + e B(D) + ool

dRa

S = (t) = (g2t ) Ba(t) + el Ra(b),

In these examples, we fix Ay = 0.2, 4, = 0.3,H; = 2.6,H, = 2.0. As in [23],
we take the delay 7 = 1, the constant death rate to be yu; = ps = 0.2 and the
treatment rates to be r; 7o = 0. The parameter ¢;, which is the dispersal rate of
recovered individuals between the patches, is negligible since we assume that recovered
individuals do not travel very much (in comparison to the rest « the population) after
their recovery. Thus, we set ¢; = ¢; = 0. However, for the susceptible and infective
patches, set d; = dy = d and b, = b, = 0.01d. ..is means that individuals travel
between the patches but that 99 percent of infected individuals caunot travel to
screening and regulations while the other one percent represents the failure of control
strategies. The parameter k; is the force of infection in patch i and we adjust both

k; and d in the  simulations. The initial data used here is: S;(0) = 1.5,5,(0) =
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1.2, R,(0) = 0.5, R3(0) = 0.3, P,(#) = 0.8, P(f) = 0.6 for § € [—7,0]. We note that
the long-term behavior of these solutions does not change when many other (positive)
initial data is used.

Fzample 1: k) = 0.05, k; = 0.05

The reproduction numbers for the isolated patches can be casily calculated by
formula (4.31). We have that Rqy = 0.581 and Ry = 0.348. Each is below 1 so the
disease will die out over time and the disease-free equilibriums Ey; and Fy, are globally
asymptotically stable. From an epidemiological standpoint, 1 > Ry, > Ry, means
that the disease will last lo1 >r in patch 1 than in patch 2. This is explained by the
parameters of the birth rate functions; in patch 1 the per capita birth rate is higher
than in patch 2. When these patches are connected, the disease-free cquilibrium
(Sy,S3) and Ry can be calculated numerically. For d = 0.5, we find that (S7,S3}) =
(11.25,9.58) and that Ry  0.509. This means that the disease will die out, which
is reasonable given that the disease does not persist in either patch by itself and the
force of infection is low.

For d = 5, a much higher dispersion, Ry = 0.478 whic is a little lower but
not much different. There is a change in value of the disease-free equilibrium; now,
(St,S;) = (10.64,10.41) and this is reasonable due to the large increase in dispersal

between the patches. This change, however, is not very significant since we are much
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more concerned with the basic reproduction number. In this case, the disease does
not persist in isolated patches and does not persist when the patches are connected.
This is a fairly typical result, observed here for both low and high levels of dispersal.
See Figures 4.1-4.4 for plots of P, v 1s ¢t for both levels of dispersal.

Fxample 2: k; = 0.05,k, ).13

Here the disease transmission coeflicient k;  larger than in our first example.
This means that the dise : spreac 1more easily in patch 2 than in patch 1. This
is reflected by the reproduction numbers; Ry; = 0.581 and Ry, = 0.904. Thus, the
discase will not persist in eit]  patch. For the connected system, however, Ry = 1.13
when d = 0.5. Here, dispersal facilitates persistence and from Figures 4.5 and 4.6, the
relative levels of infected individuals is quite small. Note that the size of the infected
population converges to a constant fairly quickly.

For d = 5, Ry = 1.20 which is not much of a change. But the size of the infected
populations in each patch own considerably (see Figures 4.7 and 4.8). This
result shows that dispe 1« . al :ase to ¢ ist when it would not in cach
isolated patch. However it app: s that, for this choice of birth rate function, the
value of d is not very impor .

Erample 8: ky = 0.13, ky = 0.0

In this example, Ry = 1.51 and Ry, = 0.348. The introduction of low dispersal,
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d = 0.5, yields Ry = 1.32. In this case, dispersal promotes persistence of the disease.
For d = 5, the reproduction number Ry = 1.22 and although it has decreased, it is
still larger than one. As in the previous example the size of the epidemic populations

in cach patch has grown significantly with the la: >r value of d (see Figures 4.9-4.12).

It appears that dispersal does not affect Ry very much but does affect epidemic

population sizes for the birth rate function (C1). We now consider (C2).

1S . .

S__l. = — ([tl +(11)Sl(t)—Q1(t)+d.2'52(t)1

dt Q1+ 1Y)

dSz . ™ .

_d_t_ = 0+ v Mo + dg)S'z(t) Q2(t) + dlSl(t)v

dP o
_(_12_ = Q(t) — exp(B’r)Q(t — T) + BP(f), (433)
dR.

v (t) = (1 + er) Ri(t) + caRa(2),

R
S = ) = (et ) () + eaRalh),

Ni(t) = Si(t) + Ri(t) + B(t), i=1,2

Then S5, = — Sy, = 22 — g, and the basic reproduction nun cr is given by:
o1 = ., T dH P20 = g, T

(1 — exp(—(ps + 7";‘)7)). (4.34)

Roi = ki(ps — qupus
(P — qisa) PRy

We now look at twoexi > . Setpy=16,po=¢ ¢ I

Frample 4: ky = 0.10, k; = 0.10
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Here we have the same force of infection in each patch. The reproduction numbers
for the isolated patches are Ry, = 0.634 | Rgy = 0.363. Therefore, patch 1 is not as
good as patch 2 from an epidemiological standpoint. The disease does not persist in
either patch, though, since each reproduction number is less than one. When d = 0.5,
the reproduction number for the connected system is Ry = 0.518. If the dispersal is
increased  ;nificantly, for example d = 5, then we have Ry = 0.499. As in cxample
1, there is not much of a char . In fact, for d = 0.5, (S}, S;) = (5.72,5.29) and, for
d =5, (57,5;) = (5.53,5.48). This is similar to the first example because a higher
dispersion seems to lead to the equilibriums of each patch becoming closer to equal
as dispersion increases. This is illustrated in Figures 4.13-4.16.

Erample 5: ky = 0.20,k, = 0.10

Now the force of infection in | .ch 1 is twice that of patch 2. Without dispersal,
Ro1 1.27 and Rpy = 0.363 » the disease is persistent in one patch and not in the
other. Introducing a low level of dispersion, d = 0.5, the overall reproduction number
is Ry = 1.04. . ais means that the disease is persistent but the s : of the endemic
populations may be quite . 1all. See, for example, . .gures 4... and 4.18.

To contrast this, we find that a high dispersal, d = 5, « 1ses a major change.
Now Ry = 0.980 and through numerical simulations, we confirm that the disease will

die out over time. The convergence is slower since the value of Ry is so close to one.



4.4 EXAMPLES

T T
008
006 F
[ ]
0
ot
"
100 150 20
Fig. 4.13: d=0.5, P1 vs t
T T T —
008 |
006
004
o0 r 9
0
s
il S0 m Rl 20

Fig. 4.15: d=5, P1 vs t

74

T T L
0+ E
o6
U
002 + 4
8 :_ | | |
0 50 [ 150 0
Fig. 4.14: d=0.5, P2 vs t
o0 -
006 P
M -
ne -
0 F | l
0 50 100 150 p:LH

Fig. 4.16: d=5, P2 vs t



4.4 EXAMPLES

0085

0.08

0075

047

0065

0.06

(055

[N

000

£.0008

00008

0001

T T T - ]
i ]
—_ —_— - e 1
0 00 1000 1500 2000
Fig. 4.17: d=0.5, P1 vs t
1 1 1 1 It 1 1 L
It S0 100015 2000 2500 ope 3500 40000 4500

Fig. 4.19: d=5, P1 vs t

00008

0.0004

0.0003

00002

0,000t

00001

0.001

(.0008

-0.0005

D001

75
T T T
| ]
S— A 1 1
f SO0 1000 1500 3000
Fig. 4.18: d=0.5, P2 vs t
T T T T - I
i 1 I i 1 1 1 1
0 500 15002000 1500 3000 JsE0 4o 450

Fig. 4.20: d=5, P2 vs t



4.5 DISCUSSION 76

Figures 4.19 and 4.20 illustrate this phenomenon.

4.5 Discussion

In this project, we analysed an epidemic model proposed in [23] to simulate the dy-
namics of disease transmission when the population is dispersed among patches. This
model, which incorporates a constant infection period, uses dispersal to represent the
movements of people by travel or migration from different cities, regions or coun-
tries. Using the assumptions that the death rates, disease transmission cocfficients,
the treatment rates and the m ation rates are constant for infected individuals, this
model becomes a time-delayed differential system. As in [23], we define the basic
reproduction nuinber.

This model uses the s 1dard nonlinear birth function B(N) discussed in [1]. We
have proven that for two patches the disease is uniformly persistent if By > 1 and the
disease cannot invade if Ry < 1, provided that the invasion intensity is not strong.
The choice of the functic 'N)N for numerical simulations is very important; here,
we use two common nonlii i birth functions different from the simulations in [23]
where B(N)N = A+ HN, a linear function. Examples 1 through 3 suggest that
dispersal is not very significant when the birth function B(N) = Hexp(—AN) is

used since only small changes in the reproduction number is shown th low and high
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dispersal rates. Examples 4 and 5 st zest that dispersal is s 1ewhat significant for
models where B(N) = ﬁ—NN. Indeed, the last example shows a case where larger levels
of dispersal cause the disease to go extinct. In [23] examples are used to illustrate
that dispersal can both help eliminate or promote disease transmission, so this agrees
with those conclusions.

In [23], the linearity of B(/V)N allowed for an explicit calculation of the disease-free
equilibrium. This simplified the numerical simu .ions and made it casier to plot Ry
versus d. For more complicated birth rate functions, these more illustrative techniques
are more difficult (and sometimes impossible) to employ. 1n future work, it would be
interesting to expand on the simulations here with the other birth functions. From

a theoretical standpoint, future work could include an age-structure in this model

through death rates, infection force or migration rates.
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