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Abstract 

In some panel data studies for continuous data, the expectation of the response vari­

able of an individual (or individual firm) at a given point of time may depend on 

the covariate history up to the present time. Also, the response at a given point of 

time may be influenced by an individual random effect. This type of data are usu­

ally analyzed by fitting a linear mixed model with dynamic mean structure. When 

the distribution of the random effects and error components of the model are not 

known, the likelihood inferences can not be used any longer. As a po sible remedy, 

there exists some alternative estimation methods such as bias corrected least squares 

dummy variable (BCLSDV) and instrumental variables based generalized method of 

moments (IVGMM), which however may produce inefficient estimates. In this thesis, 

we develop a new GMM as well as a generalized quasi-likelihood (GQL) estimating 

approach and demonstrate that they perform well in estimating all parameters of the 

model, the GQL being in general more efficient than the GMM approach. 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

Panel data analysis is an important research problem in economics and biomedical 

fields, among others. In this set up, a small number of repeated responses are collected 

from a large number of independent individuals/firms/states. Let Yit be the tth 

(t = 1, ... , T) response of the ith (i = 1, ... , K) individual. Here T is usually small 

such as T = 5, and K is large, tending to infinity such asK = 100 or 200. Furthermor , 

a covariate vector is also collected from the ith individual at time point t. Let xit = 

( xitl, ... , Xitu, ... , Xitp )' be the p- dimensional covariate vector corresponding to Yit. 

Note that Yil, ... , Yit, ... , YiT along with Xit, ... , Xit, ... , Xir constitute the panel data. 

It is expected that the repeated responses Yil, ... , Yit, ... , YiT will be dynamically 

related and cause some autocorrelations among them. In this type of panel data et 

up it is of primary interest to examine the effect of the covariates on the repeated 

responses after taking the dynamic dependence of the responses into account. For 

exampl , in an economic study, one may deal with repeated unemployment rates 

(Yit) over a period of 10 years, say, as a function of the associated economic growth 

rate (xit) from the past. Here, to examine the effects of the growth rates on the 

unemployment rates, one needs to account for the dynamic dependence among the 

unemployment rates over the years. Similarly, in a biomedical field, one may study the 
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effects of certain covariates (xit) such as gender and education levels on the numb r 

of vi its to the physician by an individual over a period of several years. Here, it 

is important to accommodate the longitudinal correlations of the repeated visit in 

finding th effects of the covariates on the responses. 

Note that the panel or longitudinal data discussed above may be mod led as 

Yit = x~tf3 + "tYi,t-1 + Eit, (1.1) 

where {3 = ({31,. . . {3p)' is the effect of xit on Yit, "t is the dynamic dependence pa­

rameter relating Yi,t-1 to Yit , and Eit is an independently and identically distributed 

( iid) random error variable with mean 0 and variance a;. It i standard to use the 

notation 

iid(O 2) Eit"' , ae . (1.2) 

ote that it i more practical to assume that the distribution of Eit is not known even 

though orne authors have used the normality assumption in om economic models 

in the past. Further suppose that the response Yit is influenced by an unobservable 

random effect TJi , which is shared by all responses of the ith individual recorded over 

T periods of time. Let 

(1.3) 

AI o let Eit and TJi be independent. One may then extend the dynamic fixed model 

(1.1) to the dynamic mixed model, given by 

Yt1 x~1 {3 + a'1TJi + Eit 

Yit = x~tf3 + "tYi,t- 1 + a'1TJi + Eit, fort = 2, ... , T , (1.4) 

h */ d iid(O 2) w ere TJi = TJi a11 an Eit"' ,ae . 

It is of primary interest to fit the model (1.4) to a panel data t. This require 

the estimation of the parameters of the model, namely, {3, "f, a~, and a;. T he purpo e 

of the th i i to eek for a better, i.e more efficient estimation method as compared 
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to the existing estimation methods. Note that the consistent and efficient estimation 

of all parameters of the model (1.4), especially for u~ and u: may not be easy. Cons -

quently, some econometricians concentrated on the estimation of the so-called main 

parameters (3 and 1, and used the so-called least squares dummy variable (LSDV) 

(or covariance variable (CV)) estimation method. For example, we refer to Bun and 

Carree(2005,equation (3)and(4)) and Hsiao (2003, section 4.2, p. 71). For conve­

nience, the LSDV method is explained in brief in Chapter 2. Some other authors 

have used the so-called instrumental variables (IV) approach for the estimation of (3 

and I· For example we refer to Anderson and Hsiao (1981), Amemiya and Macurdy 

(1986), Arellano and Bond (1991), and Arellano and Bover (1995). W also explain 

this IV approach in Chapter 2. There also exists an IV based generalized method of 

moment (GMM) approach which we explain in Chapter 2 as w ll. For details of th 

GMM approach, see for example, Hansen (1982), Amemiya and Macurdy (1986), and 

Arellano and Bond (1991). 

Note that the LSDV approach does not yield unbiased and hence consistent es­

timates for (3 and I· As a remedy, Bun and Carree (2005) have examined a bias­

corrected LSDV (BCLSDV) approach for the consistent estimates of (3 and I· Thu , 

all these existing approaches, namely, BCLSDV, IV and IV based GMM are known 

to produce consistent estimates for (3 and I· It is however known that these moments 

based approaches may be inefficient. Moreover , these approaches avoid the estimation 

of the variance components, especially the estimation of u~, which may be of impor­

tance in its own right as it explains the variation of the data due to an individual s 

latent random effect. To overcome the in fficiency of the existing stimation methods, 

in the pre ent thesis, we use a slightly different GMM approach than the existing IV 

based GMM approach, not only for (3 and 1, but also for the variance compon nt 

u~ and u:. Following the suggestion of Rao, Sutradhar, and Pandit (2008), we also 

examine the efficiency performance of a generalized quasi-likelihood approach (GQL) 

for the estimation of all parameters. 
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1.2 Objective of the Thesis 

The major objectives of the thesis are as follows : (a) We develop a new GMM 

and GQL estimation approach for all parameters of the dynamic mixed model (1.4) ; 

(b) We show that the GQL approach asymptotically always produces more efficient 

estimates than the GMM approach; (c) We also examine the small sample (say, 

K= lOO) performance of the GMM and GQL estimates for a wide range of values of 

the param ters, namely for /3, 1 a~ , and a;. It is shown that while GMM produce 

unbias d e timates, it however gives inefficient e timates a compared to the GQL 

estimate . 



Chapter 2 

Estimation Methods 

2.1 Existing Estimation Methods 

2.1.1 LSDV and Bias Corrected LSDV Estimators 

The LSDV estimators of the regression parameter /3 and the dynamic depend nee 

parameter 'Y in model (1.4) can be derived by applying the least quares technique 

to a transformed model, where the transformation is achieved from (1.4) by using 

the deviations of variables from their individual-specific means . Let fA = "L.;T, Y•t, 

-. - "L,;_, Yi,t-1 f k . -. - "L.~- 1 Xit d -. - "L.;-1 fjt d f t - 1 T Yt,- 1 - T or nown Yto, xt- T , an Et- T , an or - , ... , , 

Yit = Yit- Yi, Yi, t- l = Yi,t- 1- Yi,-1, xit = Xit- Xi, Eit = Eit- Ei· We may then write th 

transformed model from (1.4) as: 

Yit = xit/3 + 'YYi,t-1 +lit, i = 1, .. . , K . (2 .1) 

ote that as opposed to the model (1.4), this model (2.1) is free from individual 

random effects 1Ji . ext, define Yi = (Yii, . . . , YiT )' , 

Xi= (iii, ... ' Xit, ... , XiT Yrxp and x; = (xi, Yi,-I) :Tx(p+1), with 

Yi,- 1 = (yiO, ... , Yi,T-1)'. ow, by applying the well known least squares method to 

5 
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the tran formed model (2.1) one obtains the LSDV estimator for ((3, 'Y) ' as 

( 
(3A ) ( /( ) - 1 /( 

A LSDV = 'L:X{Xi* 'L:X{iii 
"(LSDV i = 1 i=1 

(2.2) 

ote that in the economic literature, many authors, for example Bun and Carree 

(2005) and Hsiao (2003) have used this LSDV technique for the estimation of the 

parameters. But, it is well known that these estimators are not unbiased. As a remedy, 

Bun and Carree (2005) have done some corrections to reduce the bias. However as 

the covariances or the correlations of the data were not accommodated in such LSDV 

technique, it is most likely to give a different estimate. In the thesis, especially in 

Section 2.2, we provide some new techniques of estimation t hey are developed by 

accommodating the correlation of the data. 

2.1.2 Instrumental Variables Method 

For the analysis of the correlated data following model (1.4), some econometricians 

(Amemiya and MaCurdy (1986)) have used an instrumental variables based l ast 

squares technique. We explain this technique below in brief. 

By taking the first difference based on (1.4), one writes 

Yit- Yi,t- 1 = (x~t- x~ .t- 1 )(3 + 'Y(Yi,t- 1 - Yi ,t-2) + Eit- Ei, t - 1, fort = 3 .. . , T. (2 .3) 

Because (Yi,t-2- Yi, t-3) , (Yi ,t- 3- Yi ,t- 4), ... are correlated with (Yi,t- 1- Yi,t-2) but ar 

uncorrelat d with ( Eit - Ei,t-d, it is expected that past difference will provide som 

more information about the paremeters of the model , especially for "(. This is on of 

the main reason why (Yi ,t-2-Yi ,t-3) , (Yi,t- 3-Yi,t-4), ... are considered as instrum nt 

for (Yi,t-1 - Yi ,t- 2 ). In this approach, these instrumental variables (IV) are used to 

develop a least squares estimation technique. Thus the IV estimates of 'Y and (3 are 

given by 

( ;:: ) = 
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[~ ;_ ( (Yi,t-2 - Yi ,t-3) ) ( . _ . )] 
X L...t L...t Ytt Yt,t-1 . 

i = 1 t=3 (xit- xi,t - 1) 

These estimates are consistent. 

As far as the estimation of the remaining parameters 0'~ and 0'; is concerned , they 

are e timated by the method of moments and these IV estimates are computed as 

follows : 

A? 
0';,iv -

and 

A2 
0'1) ,iV = 

L~1 "L[=2[(yit- Yi ,t- 1)- ·)'(yi,t- I- Yi,t- 2)- (xit- x i,t- 1)',8]2 
2K(T- 1) 

"'K ( - A- -,(3A)2 A2 
0i= l Yi - /Yi,-1 - x i O"f 

K --y· (2.5) 

The instrumental variables estimators of 1, (3 and 0'; are consistent when K or T or 

both tend to infinity. The estimator of 0'~ is consistent only when K goes to infinity, it 

is inconsistent if K is fixed and T tends to infinity. Note that when true O"; ta is mall, 

a-~ obtain d by (2 .5) may be negative in some occasions. In such a case, one u es 

a-~ = 0 to avoid the negative estimation. We remark, however, that the use of a-~ = 0 

is not a proper solution, as this requires further investigation by other non-n gativ 

varianc estimation methods. 

It is noted by Amemiya and MaCurdy (1986) , Arellano and Bond (1991) , tc. that 

a ll Yi,t- 2-J j = 0, 1, .. . , are eligible instruments for (Yi,t- l- Yi,t- 2) too , because they 

sat i fy the conditions E[Yi,t-2- J(Yi,t-1- Yi,t- 2)] =/::. 0 and E[Yi,t- 2-J (Eit - Ei,t- I)] = 0. 

Consequently, similar formulas as in (2.4) and (2.5) can be developed by using Yi, t- 2-J 

in plac of (Yi,t- 2 - Yi,t- 3) , and so on, but we do not give it here for simplicity. 

2 .1.3 Instrumental Variables Based Generalized M et hod of 

Moments Estimators 

By using the property that the instrumental variables are correlated with (Yi, t- l­

Yi ,t - 2 ) and are uncorrelated with (Eit-Ei,t-d in (2.3) , one can write moment conditions 

(moment e timating equations) given by 

(2.6) 

(2.4) 



where 

0 0 

0 

0 

0 
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(2.7) 

: [(T-2)(T- 1)(p+~ )) X (T- 2) 

with qit = (Yi1 - Yio, Yi2- Yi1, . . . , Yi, t- 2- Yi,t-3, 6xD' for known Yio , where 6x~ 

[(xi2- x i1)' ... , (xir- xi,T- 1)']. In (2.6), 6ci = [(Ei3- Ei2), ... , (ciT- Ei ,T- 1)]'. Thus, 

(T - 2) (T - 1) (p + ~) number of moment equations can be constructed to solve for 

the (p +I)-dimensional 0 vector, which naturally would not yield any solution . As 

a remedy, a generalized distance function such as 

(2.8) 

is minimized with respect to 0, yielding (p + 1) equations to solve. Here <I> = 

E[l/K2 "E~1 Wi6Ei6t~W:J. The solution of these (p + 1) equations are known as 

the generalized method of moments (GMM) estimates. 

Note that in the next section , we provide a new GMM where instrumental variables 

are firstly used in a different way to construct (p+ 1) ordinary moment equations. The 

covariance matrix of the moment functions involved in the ordinary moment equations 

is then used as a weight matrix to construct a generalized distance function , which is 

different than (2.8). 
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2.2 Proposed GMM and GQL Methods 

2.2.1 N ew GMM M ethod 

ote that as oppo ed to the IV based GMM approach discussed in section 2.1.3 

in this section we first form different moment conditions than those in (2.6) and then 

minimize the proposed distance functions almost in the same way as in (2. ). To 

be specific, our moment conditions will be involved in the ordinary m thod of mo­

ments estimating equations (MMEE) for the respective parameters. In order to writ 

the MMEEs we use the following lemma to describe the basic moment properties, 

sp cifically the fir t and second order moments of the model ( 1.4). 

Lemma 1. Under the dynamic mixed model (1.4), the mean and variance of Yit 

(t = 1, ... , T) are given by 

t-1 

E(Yit) =Pit L rjx~,t-j,B, and 
j=O 

var(Y;,) = " "' = "~ {%-; r + "~% -y2
i' 

re pectively, and the auto-covariance of lag t - u for u < t, is given by 

t - 1 u - 1 u-1 

cov(Yiu Yit) = 0"~ L lj L 'l + a-; L rt-u+2
j. 

Proof: We write 

Therefore, we have 

Yit 

j=O k=O j=O 

/'Yi,t - 1 +Zit, t = 2, ... , T 

- /'(/'Yi,t-2 + Zi,t-1) +Zit 

2 
I Yi ,t-2 + /'Zi,t-1 +Zit 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 



t-u + t- u-1 + + + I Yiu I Zi,u+ 1 · · · IZi,t- 1 Zit 

t-1 t-2 + + + = I Yi1 +I Zi ,2 . . . IZi,t-1 Zit 

t-1 t-2 + I Zi1 +I Zi,2 + ... + IZi,t-l Zit 

t-1 

- L lj Zi,t-j 
j=O 

Since T/i~(O , 1) , Eit~(O, CJ;), and Tli is independent of Eit, it then follows that 

t-1 t- 1 

E(Yit) = L, lj E(zi ,t -j ) = L, 1jx~,t-jf3 
j =O j=O 

which is the same as equation (2.9), and 

t-1 

var(yit) = var(L, lj zi,t-j) 
j =O 

• ( t-1 ) 
var L, lj(x~,t-jf3 + CJTJTli + Ei,t-j) 

J=O 

var ( ( ""% 'Y; )ry,) + var(%--( <i,t-i) 

t - 1 t - 1 

CJ~(L, 1 j)2 + (J; L, 12j 

j=O j =O 

10 

(2.14) 

(2.15) 

(2.16) 

which is the same as equation (2.10). Next for u < t, it follows from (2.14) that 

t-u-1 
_ t - u + ~ j 

Yit - I Yi ,u L I Zi,t-j 
j=O 

so the covariance between Yiu and Yit is given by 

t -u- 1 

cov(Yiu , lt-uYiu + L lj Zi,t-j) 
j=O 

t - u-1 

lt-uvar(Yiu) + L ljcov(Yiu, Zi,t-j) · 
j =O 

(2.17) 

(2.1 ) 



Note that as 

u-1 

cov(Yiu, Zi,t-j) - cov( L "·/ Zi,u-j, Zi,t-j) 
j=O 

11 

cov (I: rj (x:,u - j(J + CJTJT)i + Ei,u - j), x:,t-j(J + CJTJT)i + Ei,t-j ) 
J=O 

u - 1 

L rjcov(x:,u-j(J + (JTJT)i + Ei,u- j, x:,t-j(J + (JTJT)i + Ei,t-j) 
j=O 

u-1 

L rj cov( a-TJ TJi, a-TJ TJi) 
j=O 

u-1 

.2:: ,ja-~, 
j=O 

by using (2. 16) and (2.19) in (2.18), we obtain 

( 

u-1 u-1 ) t-u-1 u-1 

CJiut ,t-u o-~(_t; ,j)2 +a-; .t; r2
j + a-; .t; rj .t; rj 

- a-; I: ft-u+2j + (J~ I: fj ( uJ;;--01 rt-u+j + t-Jt--0 1 rj ) 

j=O j=O 

t-1 u-1 u-1 

a-~ .2:: 'j .2:: 'k + a-; .2:: ,t-u+
2
j, 

j=O k=O j=O 

which is the same as the equation (2.11). 

(2.19) 

(2.20) 

Note that (J is known to be a location parameter, whereas r is a dep nd nee or 

correlation parameter, and o-~ and a-; are scale par am ters. Consequently, in th 

thesis we estimate these three types of parameters using three similar but differ nt 

est imating equations. The estimation process of (J will be explained in detail, but the 

est imation of r and a = (a-~, a-;)' will be given in brief, for there are a lot of simi­

lar ities in the theoretic deviations of their estimating equations. In order to develop 

the estimating equations for each type of parameter, we first construct a moment 

function so that its expectation involves the parameter of interest . Secondly, we con­

struct a generalized distance function and use a minimization technique to obtain th 

respectiv estimates. We also discuss the asymptotic and small sample propertie of 
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the estimates. 

GMM Estimation of j3 

To develop the GMM framework (Hansen (1982)) for the estimation of j3 involved 

in model (1.4) we first note by (2.9) that j3 is contained in the first moment of Yit 

only, for all i = 1, ... , K and t = 1, ... , T. So we first write a sample based moment 

function given by 

W1 ~ ~ t. (~ Yx,,,_i ) Yit (2.21) 

as a reflection of this fir t order moment keeping in mind that j3 is a vector parameter. 

It then fo llows that 

E(WI) 

(2.22) 

by (2.9). Secondly, we write an ordinary distance function 

(2.23) 

so that E['lj;1] = 0. 

ow to estimate (3 involved in E(W1 ) , we minimize a generalized distance function 

given by 

(2.24) 

instead of SOlving the ordinary distance function (2.23) , where C1 is a uitable p X p 

positive definite matrix, with C1 = [cov('l/JI)]-l as the optimal Choice under a clas of 

moments based estimation. ote that minimizing the distance function in (2.24) is 

equivalent to solve the estimating equation 

(2.25) 



13 

which i referred to as the GMM estimating equation for (3. In (2.25) ~ is the fir t 

order derivative of 'lj; ~ with respect to (3. Now to solve for (3, we use the Gauss- ewton 

iterative equation 

/JcMM,(r+l) = /JcMM,(r) + [~~~ cl ~'lj;/3~]-l [~'lj;/3~ Cl'lj;ll ) 
(1·) (r) 

(2.26) 

where ( )1• denotes that the expression within the square bracket is evaluated at 

(3 = /JaM M,(r), the estimate obtained for the r-th iteration. Let the final solution 

obtained from (2.26) be denoted by /JcMM· Under some mild regularity conditions it 

may be shown that asK--+ oo, 

(2.27) 

[Hsiao (2003, eqn. (3.4.2), p . 65)], where C!1 = cov('lj;1) is the true covariance matrix 

for 'lj;1 based on the true data. At the end, it follows that the covariance matrix of 

/JcMM is 

(2.2 ) 

G MM Estimation of r 

For estimation of 1 involved in model (1.4), we first note by (2.9), (2.10) and 

(2.11) that 1 is contained in the first and second moments of Yit· So we firstly write 

a moment function given by 

K T-1 

W2 = 2::: 2::: (Yit- J.l-it)(Yi,t+l - f.l-i,t+d (2.29) 
i=1 t=l 

as a reflection of the first and second order moments keeping in mind that 1 is a scale 

parameter. By taking the expectation over (2.29), we obtain 

K T-1 

E(W2) = L L cov(Yit, Yi,t+I) 
i=l t=1 

K T-1 

2:::2::: ait,t+J, 
i=l t=l 

(2.30) 
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which contains 'Y and other scale parameters by (2.11). We then write an ordinary 

distance function 

(2.31) 

so that E['I/J2] = 0, and attempt to estimate 'Y by minimizing a generalized distance 

function given by 

(2.32) 

with C2 = [var('I/J2)t 1 as the optimal choke. Note however that unlike the compu­

tation of cl in (2.24), the computation of c2 in (2.32) requires th formula for the 

fourth order moments of the responses. But, as the errors and the random effect 

in model (1.4) do not necessarily have normal distributions, one, therefore, can not 

compute C2 without knowing the true distributions of the errors and the random 

effects. 

To avoid the above distributional difficulty, we choose to minimize a 'working' 

generalized distance function, namely, 

(2.33) 

where c:;~ is a 'normality ' based variance of 'lj;2. Consequently, we solve the moment 

estimating equation 
8'1j;2 
8, c2N'I/J2 = o, (2.34) 

for 1, which can be iteratively solved by 

(2.35) 

In the fashion similar to that of (2 .27) , as K ----? oo, we obtain the asymptotic di tri­

bution of :YcMM as 

K l('faMM- -y)- N [a,K { ~(~~~
1

~2~ }], (2.36) 

where C:;1 = var('I/J2) is the true variance for 'lj;2 based on the true data. Note that 

(2.36) has a slightly different form than that of (2.27). This is because unlike for 'Y 
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estimation, in computing /3, one does not require the normality assumption for the 

errors and the random effects. Further note that if the true distributions of the errors 

and random effects were normal then C2 = C2N. T his leads to the variance of 'Yc M M 

as 
A { o'l/J2 o'lj;2 } -

1 

var(rcM M) = Or c2N Or , (2.37) 

which naturally is similar to (2 .28). 

GMM Estimation of a:= (a~, a;)' 

To develop the GMM framework for the estimation of a~ and a;, we first note 

by (2.10) and (2. 11) t hat a~ and a; are contained in the variance and covariance of 

Yit· For the estimation of these two parameters, we use the fo llowing two moment 

functions given by 
f( T 

W3 = L L (Yit- J.Lit)
2 

i=1 t=l 

and 
f( T-1 T 

w4 = L L L (Yiu - J.liu) (Yit - J.Lit) 
i = 1 u=1 t=u+1 

for a~ and a;, respectively. Since 

and 

f( T 

L l:: var(yit) 
i=1 t=l 
f( T 

l::l:: aitt 
i = l t=l 

f( T-l T 

L L L cov(Yiu, Yit) 
i=l u=l t=u+l 

f( T-l T 

2::2:: 2:: aiut, 
i=l u=l t=u+l 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

where aitt and aiut are given by equations (2.10) and (2 .11) respectively, we can now 

write two appropriate distance functions as 'lj;3 = W3- E(W3) and 'lj;4 = W4- E(W4) 
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for a~ and a;, respectively. Let 'lj/j=(1/J3 , 1jJ4)'. Since under the true model (1 .4) , the 

covariance of 1/Jj requires the fourth order moments, similar to (2.34) , we now solve 

the moment estimating equation for a = (a~, a;)' given by 

(2.42) 

where C3~ is the normality' based covariance of 1/Jj. Similar to (2.27) , as I< --+ oo, 

[ { 
a'ljJ*' a'ljJ* } -

1 
( a'ljJ*' a'ljJ* ) { a'ljJ*' a'ljJ* } -ll 

K4(&cMM-a) "'N o,K a~ c3N a: a~ c3NC3
1
C3N aa~ a~ c3N aa~ , 

(2.43) 

where C31 = cov('I/Jj) is the true variance for 1/Jj based on the true data. Note that if 

the true distributions of the errors and random effects were normal, then C3 = C3N . 

This leads to the variance of &cMM as 

(2 .44) 

2.2.2 Proposed Generalized Quasi-likelihood Estimation 

In this section we develop a generalized quasi-likelihood (GQL) approach for the 

estimation of the parameters of the model (1.4). In the GQL approach, the regression 

effects {3 will be estimated following the GQL estimating equation suggested by u­

tradhar (2003, Section 3) , where the first and second order moment of the responses 

are exploited. For the GQL estimation of the dynamic dependence parameter (I ) 

and the variance components (a~ and a;) of the model (1.4) we will follow the GQL 

estimating equations suggested by Sutradhar (2004 eqn. (3.4)) wh r the second 

third and fourth order moments of the responses are utilized. Similar to what w 

did for the GMM approach, the estimation of parameters in thi section is don in 

group : first for {3, then for{, and lastly for a = (a~, a;)'. 
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GQL E stimation of /3 

Recall that {3 is contained only in the means of responses. One may therefore 

construct a basic sufficient statistic based on the first order responses for the esti­

mation of this parameter. To be specific, let Yi = (yi1 , ... ,Yit, ... ,Yir)' be the T x 1 

vector of t he first order responses for the ith individual. Also, let /-li = E(Yi) = 

(/-lil, ... , /-lit, .. . , /-liT)' be the mean of Yi vector with /-lit = l:j:~ 'Yj x~,t- j/3 (2. 9) for all 

t = 1, ... , T . Following Sutradhar (2003, Section 3), we may then write a generalized 

quasi-likelihood (GQL) estimating equation for /3 given by 

(2.45) 

which is referred to as the GQL estimating equation for /3, where Ei = var(Yi) = 

((J'i.ut) is the T x T true covariance matrix of Yi, with O'w and O'iu.t given by (2.10) 

and (2 .11) under Lemma 1. The GQL estimator of /3 can be solved by using th 

Gauss- ewton iterative equation 

(2.46) 

Since K individuals are independent , it follows by applying the standard central limit 

theory that asymptotically ( K -+ oo), f3cQL has the multivariate normal distribution 

given by 

r.7 ~ ( [ K 8/-l~ _1 8/-li ] -l) v K(/3cQL- {3) ""N 0, K ~ 813 Ei 813, , (2.47) 

[Hsiao, 2003, eqn. 3.4.2 p. 65]. Note that the GQL estimating equation in (2.45) is 

a generalization of the QL estimating equation for independent data, introduced by 

Wedderburn (1974) [see also McCullagh (1983)]. 

GQL Estimation of 'Y 

Under the present model (1.4), 'Y is known as the dynamic dep ndence param ter. 

Since 'Y relates Yit to Yi,t-1 through the dynamic model (1.4), we write an elementary 
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sufficient statistic vector consisting of the corrected lag-1 pair-wise products of the 

responses , given by 

f i = [(Yil - /-li1)(Yi2- f..li2) , · · · , (Yiu- f..liu)(Yi ,u+1 - /-li,u+I) , · · ·, 

(Yi ,T-1 - /-li,T-I)(YiT- /-liT)]', 

assuming that f-l itS are known. It then follows that 

t- 1 t t-1 

(2.48) 

where ait,t+l = a~ L 'YJ L 'Yk +a; L ')'1+
2J by (2 .11). Following Sutradhar (2004), 

j=O k=O j=O 

we may now write the GQL estimating equation for 'Y as 

(2.49) 

where Mi = cov(j;) . Note that the derivatives of ait ,t+ 1 with respect to 'Y are given 

m Appendix A. Thus, 8A.Ufh in (2.49) is known. One may now solve (2.49) for 

/', provided that the covariance matrix of /i, i.e. , Mi is known. Note , however , 

that as the distribution of Yi = (Yil, ... , Yit, ... , YiT )' may not be known, it is then 

impossible to derive the true covariance matrix of k To solve this problem, similar 

to the estimation of 'Y by the GMM approach discussed in the last section, we, for 

convenience, pretend that Yi is normal with correct mean vector and variance matrix, 

that is , 

(2.50) 

with f..l i and L::i as in (2.45). We then compute Mi for (2.49) under this normality 

assumption (2.50). Note that this 'working' normality assumption is used only for 

the construction of the weight matrix Mi in (2.49), the distance function fi- A.i being 

the same as before as in (2.49) which was constructed without any distributional 

assumption for the data. Thus we solve the GQL estimating equation 

(2.51) 
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as a remedy to the use of the estimating equation (2.49). It is now clear that the 

elements of M iN may be computed by using the general formula for the fourth order 

moments given by 

where O'itt and O'iut are elements of the true variance and covariance matrix Ei, their 

formulas are being given by (2.10) and (2.11) , respectively. 

Let :YcQL be the solution of (2.51). It then follows that asymptotically (K ----t ), 

:YcQL has the univarite normal distribution given by 

(2.53) 

where vl has the formula 

["\"K ~M-1 M ·M - 1!&] 
L~ __ i_=_l~a~~ ___ iN ____ t __ iN~a~~~ Vi=-

["\"/( ~M-1!&]2 ~i= l a~ iN a~ 

(2.54) 

If the true distributions of the errors and random effects in model (1.4) were normal, 

the asymptotic covariance matrix V1 in (2.54) would reduce to 

(2.55) 

Note that one can also use the raw second order responses to construct an alter­

native (to (2.48)) sufficient statistic given as 

ft = [YitYi2,. · ·, YitYit,t+1, · · · , YiT-lYiT], (2.56) 

The construction of the estimating equation based on f i and ft will however be 

similar . In the next chapter, we will also use the alternative estimating equation to 

be constructed based on ft and study the properties of the estimators obtained from 

stimating equations based on both fi and ft. 
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G QL Estimation of a= (O"~, O";)' 

Under the present model (1.4), O"~ and O"; are the variances of the random ff ct 

and error components, respectively. Note that by (2.10) and (2.11) , a = (O"~, 0"
2
)' i 

seen to be involved in the variances and covariances of the responses. Consequently, 

we write an elementary sufficient statistic vector consisting of the squares and pair­

wise product of the responses , given by 

· · ·, (Yi ,T-1- f-ti,T- l)(YiT- f-tiT)J', (2.57) 

assuming that f-tits are known. The expectation of si is given by O"i = E(si ) = 
(O"iu, ... , O"itt, ... , O"iTT,O"i 12, ... , O"iu.t , .. . , O"i ,T-l ,r)', where O"itt, O"iu.t are given by (2.10) 

and (2.11), re pectively. 

Similar to the GQL estimation of 'Y, we use the normal Yi based weight matrix 

D.iN = cov(si), and solve the GQL estimating equation for a= (O"~, O";)' given by 

(2.5 ) 

Let &.cQL = (8-~ , GQL, o-;,GQL)' be the solution of (2.58). It then follows that asymp­

totically ( K --t oo) 

Kt (&.cQL- a) "'N(O, KV2), (2.59) 

where V2 is given by 

v2 = 

(2.60) 

with D.i as the true variance of si· If the true distributions of the errors and random 

effects in model (1.4) were normal, the asymptotic covariance matrix V2 in (2 .60) 



21 

would reduce to 

[ 

K 1 ] - 1 
V2 = "" oCJi D,:-1 OCJi 

~ Oa ~N 00!1 

t=1 

(2.61) 

ote that similar to the estimation of 'Y, one may like to use an alternative esti-

mat ing equation for a, based on a slightly different sufficient statistic. To be specific, 

a vector of raw second order responses s; given by 

* [ 2 2 l si = Yii> · · ·, YiT> Yi1Yi2, · · · , Yiu.Yit, · · · , YiT-IYiT, (2.62) 

can be used for such construction. In the next chapter, we use this approach as well 

for studying the properties of the estimators. Note however that using the estimating 

equation based on corrected second order responses is much simpler than using the 

estimating equation based on raw second order responses. 

As far as the derivatives used in this chapter for different GMM and GQL esti­

mating equations are concerned, we provide them in Appendix A. The computational 

formulas for cl, c2N and c3N under the GMM approach, and for MiN a.nd niN under 

the GQL approach, are given in Appendix B. 



Chapter 3 

Asymptotic Efficiency Comparison 

3.1 GMM versus GQL (Based on fi and si ) 

To examine the asymptotic efficiency of the GQL approach over the GMM ap­

proach or vice versa, we need to compute the variances of the estimators under these 

two approaches. ote that under the assumption of normal distributions , for exam­

ple , for the errors and random effects involved in the model (1.4) , these variances 

can be computed from the formulas for the covariance matrices for the estimators 

under both GMM and GQL approaches given in Chapter 2. To be specific , the vari­

ances of the components of /JcMM = (/JJ,GMM ,/J2,GMM) 1 and /JcQL = (/Jl ,GQL ,/J2,GQL)' 

can be found from the leading diagonal of the asymptotic cov(/JcMM) in (2 .28) and 

cov( /JcQL) in (2 .47), respectively. Similarly, the asymptotic variance of :YcMM and 

:YcQL are given directly by var( :YcM M) in (2.37) and var( :YcQL) in (2.55) , respectively. 

Next, the asymptotic variances of the components of &cMM = (8-~ ,GMM > a-;,GM M)' and 

&cQL = (8-;,GQL > a-;,GQL)' are found from the leading diagonal of the var(&cMM) in 

(2.44) and var(&cQL) in (2.61) , respectively. 

In order to have a quantitative idea on the efficiency comparison, we have done an 

empirical study and computed the asymptotic variances under both GMM and GQL 

approaches , as described above. As far as the parameters of the model are concerned , 
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we have chosen 

K = 1000,p = 2,T = 6; 

{31 = 0.5 or 0.1 , fJ2 = 0.5; 1 = ±0.8, ±0.3, 0.01 ; 

a~ = 0.5 or 1.0, and a~ = 1.0, 
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and for the p = 2-dimensional covariates for 1000 individuals over a period of 6 time 

points we have chosen 

with P(xitl = 1) = 0.4 

otherwise 

for all i = 1, ... , 1000 and t = 1, ... , 6 · and 

- 1.0 fori = 1, ... , K/4 ; t = 1, 2 

0.0 for i= 1, ... ,K/4; t = 3,4 

1.0 for i= 1, ... , K /4; t = 5, T 

tjT for i= K/4 + 1, ... , 3K/4; t=1,T 

0. 0 for i = 3K /4 + 1, ... , K; t = 1, 3 

1.0 fori = 3K/4 + 1, .. . , K ; t = 4, T 

The asymptotic variances computed by using the above covariates and associated 

parameters are reported in Table 3.1 when {31 = {32 = 0.5 and in Table 3.2 when 

{31 = 0.1 and {32 = 0.5. 

3 .2 GMM versus GQL (Based on ft and si ) 

ote that as opposed to the GMM approach, GQL approach is constructed based 

on suitable distance functions , for all individuals i = 1, ... , K . For the development 

of the GQL approach in Chapter 2, we have mainly used the basic statistics fi (2.4 ) 

and si (2.57) to con truct the necessary distance functions . ote however that thes 
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statistics are based on corrected second order responses by assuming that the param­

eters involved in them are known. While this approach appears to be reasonable, 

especially because the estimation is done by iteration, in this section, we provide the 

GQL estimating equations by avoiding parametric functions from the basic statistics. 

Thus, as mentioned in the last chapter~ we consider the basic statistics ft (2.56) and 

si (2.62) to construct the distance functions leading to the GQL estimating equa­

tions, especially for 1 and a = (u;, u;)'. We however caution that the computation 

for the formulas for necessary third and fourth order moments may be cumbersome 

as compared to those under the corrected response based GQL approach. 

Since the GMM estimating equations for any parameters, as well as the GQL 

estimating equation for {3 do not require any direct use of basic statistics such as ft 
and si, in this section we simply discuss the GQL estimating equations for 1 and a 
to be constructed based on ft and si. Note that we will refer to this ft and si based 

GQL approach as GQL* approach. Similar to the f i and si based GQL estimating 

equations for 1 and a, the GQL* estimating equations for 1 and a are given by 

and 

respectively. In (3.1), 

.Ai = E(ft) 

K [}).._*' "'"'_i M~-1(!~- .A~) = 0 
L... O"' lN t t ' 
t=l I 

K f} *' 
"'"' (Ji r'l* -1 ( * *) 0 L.,. - 8 H iN 8 i - (Ji = ' 
i= l a 

(3.1) 

(3.2) 

= (uil2 + /li l/1i2, ... , O"it,t+ J + /1i t/1i,t+ 1, ·. · O"i,T-1,T + /li ,T-1/liT)', 

where !lit and <Tiut are as given in (2.9) and (2.11), respectively, and Mtiv is the 

pretended normal Yi based cov(ft). Similarly, in (3.2), 

(.A ·11 · · · .A ·rr .A ·12 · · · .A · t · · · .A · T 1 r)' 't ) ) 't ) 1. ) ) lU ) ) t, - 1 
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and DiN is the pretended normal Yi based cov(s;). 

Let .YcQL· and ficQL· be the solutions to (3.1) and (3.2), respectively. Now, by 

using a similar approach for the computation of the variances of 'Y and & under the 

GQL approach, the variances of 'YcQL· and ficQu are given by 

and 

cov( 'YcQL·) = F< a>) *_1 a>.• ' 
L:i=l ~MiN 7h 

K I -1 

( ~ ) [~ aa; ()*- 1 aa;] 
cov O!GQU = f=r an ~'iN 8n' I 

(3.3) 

(3.4) 

respectively. The derivatives needed for (3.3) and (3.4) are found in Appendix A, and 

the computational formulas for MtN and n;N are found in App ndix B. 

It is cl ar from Tables 3.1 and 3.2 that var(Pu), for u = 1, 2, under the GQL 

approach are uniformly smaller than the corresponding variances under the GMM 

approach. In some occasions, the GMM approach may perform very poorly producing 

estimates with v ry low efficiency. For example, when /31 = /32 = 0.5, 'Y = 0.8, a~ = 
0.5, and a~ = 1.0, the GQL estimates of /31 and /32 are respectively 6.88°~~~50 4 = 457. 5 

and 5 . 19°~~~90_4 = 267.82 times more efficient than the corresponding GMM estimates. 

Also, it is clear from Tables 3.1 and 3.2 that var(a~) and var(a;) under the GQL 

approach are uniformly smaller than the corresponding variances under the GMM 

approach. For example, for the above selected parameter values, the GQL estimate 

of a~ is u~~ : ~:~=~ = 1.27 times more efficient than the corresponding GMM estimate· 

d ~ 2 . 2.40 x lo.o- 3 6 08 t' . ffi . h h d' ~ 2 a.n a ,,GQL 1s 3.95 x lo.o 4 = . 1mes more e c1ent t ant e correspon mg a ,,GMM · 

As far as the estimation of the dynamic dependence parameter 'Y i oncerned, th 

GQL approach, in general, appears to produce estimators with smaller variances than 

the GMM approach. To be specific, only in a. few cases GMM appears to produce 

estimator for "f , with smaller variance t han the GQL approach. For xampl , wh n 

/31 = /32 = 0.5 , 'Y = - 0.8, a~ = 0.5, and a; = 1.0, the GMM estimate of 'Y is 

~:~~ ~ :~ :~- : = 1.21 times more efficient than the corresponding GQL e timate. But in 

most of the case the GQL performs better than the GMM approa h. For example, 



26 

when {31 = {32 = 0.5 , 1 = 0.01, a~ = 1.0, and a; = 1.0, the GQL estimate of r is 

~:~~~ :~:~-: = 2.90 times more efficient than the corresponding GMM estimate. 

Note that in some cases, the GMM and GQL approache produce negative vari­

ances, with the GMM approach b ing worse. These cases are indicated by '-'. This 

happens when the weight matrix in the estimating equations is not positive definite 

due to the sel ction of the values for the cova.riates . But, it does not appear to be a 

seriou problem as in most of the cases, the variances are found to be positive. 

Next, the variances of the GQL* estimators are also reported in the same Tables 

3.1 and 3.2. As mentioned before, the purpose of using the GQL* approach is to 

examine whether the raw responses based e timation works better than the corrected 

responses based GQL approach, ever though GQL* approach is computationally more 

cumbersom . It is however found from the results in Tables 3.1 and 3.2 that thes 

approaches are highly competitive to each other. This is becau e, (1) GQL and GQL* 

are the arne in theory for the estimation of {3; (2) the GQL* appears to be uniformly 

better than the GQL approach in estimating the dynamic dependence parameter T 

(3) but GQL* performs worse than the GQL approach in e timating a~ ; and (4) for 

the remaining a; parameter, both approaches appear to be competitive, GQL being 

slightly better. Note that in summary, we, however, recommend the use of the GQL 

approach as compared to the GQL* approa h because of its computational simplicity. 
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Table 3.1: A ymptotic variances of the G fM and GQL estimators for the parameters 
of the dynamic model (1.4) for a~ = 1.0 and selected true values of 'Y and a~ when 
(31 = !32 = 0.5. 

Asymptotic variances 
a-2 

!) I Method Var({3J) Var(f32) Var(i ) Var(a~) Var(a; ) 

0.5 -0.8 GQL 6.88x Io.o-4 5.19x Io.o- 4 1.02 x w.o-4 8.89x 10.0- 4 3.95 x Io.o- 4 

GQL* 6.88 x 1o.o-4 5.19 x lo.o- 4 8.28x Io.o- 5 1.29x lO.o- 3 

GMM 0.234 .46x 10.o- 5 1.o5 x w.o-3 1.04 x Io.o- 3 

-0.3 GQL 6. 8x lo.o- 4 5.19 x lo.o- 4 1.78 x w.o-4 . 9x lo.o- 4 3.95 x Io.o- 4 

GQL* 6.88x 10.0- 4 5.19x lo.o- 4 9.99x 10.0- 5 1.19x lo.o- 3 4.29 x lo.o- 4 

GMM 6.54 x Io.o- 3 2.17x l o.o- 4 9.08 x lo.o- 4 4.57x lo.o- 4 

0.01 GQL 6.88x Io.o- 4 5.19x 10.o- 4 1.8 x Io.o- 4 8.89 x Io.o- 4 3.95 x 1o.o- 4 

GQL* 6.88 x Io.o- 4 5.19x lo.o- " 7.02 x Io.o- 5 1.2ox Io.o- 3 4.28 x Io.o- 4 

GMM 3.81 x 1o.o- 3 7 .53 x Io.o- 3 3.29x Io.o- 4 9.0o x Io.o- 4 4.oox 10.0- 4 

0.3 GQL 6.88 x 1o.o- 4 5.19 x lO.o- 4 1.68x 10.0- 4 8.89 x lo.o- 4 3.95 x w.o-4 

GQL' 6. x lo.o- 4 5.19 x lo.o- 4 2.84 x Io.o- 5 1.20 x 10.o- 3 3.93 x Io.o- 4 

GMM 0.142 0.153 2.97x 10.0- 4 9.09x lo.o- 4 4.60 x lo.o- 4 

0. GQL 6.88 x Io.o- 4 5.19x to.o- 4 .02x1o.o- 5 . 9x 10.0- 4 3.95 x w.o-4 

GQL' 6.8 x Io.o- 4 5.19x 1o.o- 4 1.27x 1o.o-6 1.2ox 1o.o- 3 .99 x 1o.o- 4 

GMM 0.315 0.139 9.14x 1o.o- 5 1.13 x 1o.o- 3 2.40 x Io.o- 3 

1.0 -0.8 GQL 7.43 x 1o.o- 4 5.55 x Io.o- 4 9.84x 10.0- 5 2.72 x lO.o- 3 3.98 x 1o.o- 4 

GQL* 7.43xlo.o- 4 5.55 x 1o.o- 4 3.11 x 10.0- 5 3.28 x 1o.o- 3 3.76 x 10.0- 4 

GMM 0.251 8.63 x Io.o- 5 2.99 x 10.0- 3 1.09 x 1o.o- 3 

-0.3 GQL 7.43 x 1o.o- 4 5.55 x 1o.o- 4 1.10 x 1o.o- 4 2.72 x Io.o- 3 3.98 x 1o.o- 4 

GQL" 7.43 x 1o.o-4 5.55 x 10.0- 4 5.86x 1o.o- 5 3.27 x Io.o- 3 4.30 x w.o-4 

GMM 7.26x 1o.o- 3 3.44 x w.o-4 2.75 x 1o.o- 3 4.61 x w.o-4 

0.01 GQL 7.43 x 1o.o- 4 5.55 x 1o.o- 4 1.75x 1o.o- 4 2. 72 X 10.0- 3 3.9 xw.o-4 

GQL* 7.43 x 1o.o- 4 5.55 x 1o.o- 4 3.17x lO.o- 5 3.27x IO.o- 3 4.22 x w .o- 4 

GMM 4.28 x 1o.o- 3 7.86 x 10.0- 3 5.07x 1o.o- 4 2.73x 10.o- 3 4 .oo x w.o-4 

0.3 GQL 7.43 x 1o.o- 4 5.55 x 1o.o- 4 1.49x 1o.o- 4 2.72 x 10.0- 3 3.98 x 1o.o- 4 

GQL* 7.43 x 1o.o- 4 5.55 x IO.o- 4 1.01 x 1o.o- 5 3.27 x 1o.o- 3 3.95 x 1o.o- 4 

GMM 0.134 0.144 3.66x 1o.o- 4 2.75x 10.0- 3 4.75 x Io .o- 4 

0.8 CQL 7.43 x 1o.o- 4 5.55 x Io.o- 4 6.13 x Io.o- 5 2. 72 x 10.0- 3 3.9 x Io.o-4 

GQL* 7.43 x lo.o- 4 5.55 x 10.0- 4 3.23x 10.0- 7 3.24 X 10.0- 3 4.09 x Io.o-5 

GMM 0.300 0.133 9.24 X 10.0- 5 3.12 x 1o.o- 3 3. 77 x 1o.o- 3 
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Table 3.2: A ymptotic variances of the GMM and GQL estimators for the parameters 
of the dynamic model (1.4) for a} = 1.0 and selected true value of 1 and a~ when 
f3t = 0.1 and fJ2 = 0.5. 

Asymptotic variances 
a2 

!) 

"' 
Method Var(.81) Var(,82) Var(i) Var(a~) Var(a~) 

0.5 -0.8 GQL 6.88 x Io.o- 4 5.19x lo.o- 4 1.02x 10.0-4 8.89 x w.o- 4 3.95 x Io.o- 4 

GQL* 6.88 x lo.o- 4 5.19xlo.o- 4 7.26 x lo.o- 5 1.03 x Io.o- 3 4.05 x lo.o- 4 

GMM 8.29 x lo.o-3 8.54 X 10.0- 5 1.05x 10.0- 3 1.04 x 10.0- 3 

-0.3 GQL 6.8 x lo.o- 4 5.19xlo.o- 4 1.78x 10.0- 4 . 9x 10.0- 4 3.95 x 1o.o- 4 

GQL* 6.88 x to.o- 4 5.19x10.o- 4 1.01 x w.o- 4 l.05 x lo.o-3 4.23x 10.0-4 

GMM 2.14 x 1o.o- 4 9.0 x lo.o- 4 4.57x lo.o- 4 

0.01 GQL 6.88x lo.o- 4 5.19xlO.o- 4 1.8 x lO.o- 4 8. 9x Io.o- 4 3.95 x Io.o- 4 

GQL* 6.88 x to.o- 4 5.19xlO.o- 4 6.96 x IO.o- 5 1.05 x 1 o.o- 3 4.24 x 10.o- 4 

GMM 1.22x to.o- 3 6.22x lO.o- 3 3.29x JO.o- 4 9.oo x 1o.o- 4 4.0o x 1o.o- 4 

0.3 GQL 6.88x to.o- 4 5.19x1o.o- 4 1.68x IO.o- 4 . 9x lo.o- 4 3.95 x 10.0- 4 

GQL* 6.88x to.o- 4 5.19x 1o.o- 4 2.79x 10.0- 5 1.05x 10.0- 3 4.17 x 1o.o- 4 

GMM 1.19x to.o-2 0.132 2.96x IO.o- 4 9.09 x 10.0- 4 4 .6o x 1o.o- 4 

0.8 GQL 6. x lo.o- 4 5.19x 1o.o- 4 8.02x 10.0- 5 8. 9x 10.o- 4 3.95 x 1o.o- 4 

CQL* 6.8 x w.o- 4 5.19x lo.o- 4 1.23x Io.o- 6 l.05 x 1o.o- 3 4.62 x 10.0- 4 

GMM 2.11 x 1o.o- 2 0.162 9.08x 10.0- 5 1.13 x w .o- 3 2.40x Io.o- 3 

1.0 -0.8 GQL 7.43 x lo.o- 4 5.55xlo.o- 4 9. 4x IO.o- 5 2.72xlo.o- 3 3.98 x 1o.o- 4 

GQL* 7.43 x lo.o- 4 5.55x lo.o- 4 4.73 x 10.0- 5 2.99 x lo.o- 3 3.87 x Io.o- 4 

GMM 8.86x lo.o- 3 8.60x 10.0- 5 2.99x w .o- 3 1.09 x w .o- 3 

-0.3 GQL 7.43 x Io.o- 4 5.55x10.o- 4 1.70x IO.o- 4 2.72 x to.o- 3 3.98 x 1o.o- 4 

GQL* 7.43 x lo.o- 4 5.55x to.o- 4 5.78x 10.0- 5 3.01 x to.o- 3 4.27 x to.o- 4 

GMM 3.41 x w .o- 4 2. 75 X 10.0- 3 4.61 x 1o.o- 4 

0.01 GQL 7.43x lo.o- 4 5.55 x 10.0- 4 1.75x 10.0- 4 2.72 x lo.o- 3 3.9 x 1o.o- 4 

GQL* 7.43xlo.o- 4 5.55xlo.o- 4 3.0 x w .o- 5 3.01 x 1o.o- 3 4.2 x w.o- 4 

GMM 1.72x lo.o- 3 6.53 x 1o.o- 3 5.07x IO.o- 4 2.73x10.o- 3 4 .oo x w.o- 4 

0.3 GQL 7.43x to.o- 4 5.55 x lo.o- 4 1.49 x w.o- 4 2.72x 1o.o- 3 3.9 x w.o- 4 

GQL* 7.43 x 1o.o- 4 5.55 x lo.o- 4 9.30x 10.0- 6 3.01 x 1o.o- 3 4.23 x 10.o- 4 

GMM 1.22 x 1o.o- 2 0.124 3.66 x 10.0- 4 2. 75 X 10.0- 3 4.75x lO.o- 4 

0. GQL 7.43x lo.o- 4 5.55x 10.0- 4 6.13x 1o.o- s 2.72 x 10.o- 3 3.9 x lo.o- 4 

GQL* 7.43x 1o.o- 4 5.55x 1o.o- 4 3.24 x 1o.o- 7 3.0I x w .o- 3 4.3 x 1o.o-4 

GrvlM 2.24 x 1o.o- 2 0.154 9.23 x 10.0- 5 3.12 x 1 o.o- 3 3. 77 x w .o- 3 



Chapter 4 

Relative Performances of the GQL 

and GMM Approaches: A 

Simulation Study 

In this chapter we construct a simulation study to examine the small sample 

behavior of the GMM and GQL estimating equations discussed in section 2.2 , forth 

estimation of the parameters {3, "f, a~ and a; involved in the mod 1 (1.4). For thi 

purpose, we first generate data y0 , . . . , Yit , .. . , YiT for i = 1, . .. , I< and t = 1, . .. , T, 

by (1.4) in ach of 500 or more simulations, using the same design parameters and 

covariate as in Chapter 3 (see section 3.1 for details) except that we now con ider 

tot al number of individuals as I< = 100, whereas in the asymptotic variance study in 

Chapter 3 K was considered to be I< = 1000. 

4.1 Estimation of (3 When Other Parameters Are 

Known 

Recall from section 2.2 that the GMM and GQL estimates of f3 were obtained by 

using the iterative equations (2.26) and (2.46), respectively. We apply these equations 

29 
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to the generated data in a given simulation and obtain the GMM and GQL estimates 

for {3 . The simulation is repeated for 1000 times . We then compute the simulated 

mean (SM) and the simulated standard error (SSE) of these 1000 estimates for each 

of the two components {31 and {32. These simulated means and standard errors are 

reported in Tables 4.1 and 4.2 for both GMM and GQL approaches. We also computed 

the simulated mean squared errors (SMSE) by using, for example 

A A 2 2 A 

SMSE({31 ,GMM) = (f3l ,GMM- {31) +SSE (f3J,GMM ) , ( 4.1) 

where 
"'1000 {3A (s) 

{3-;; _ L..s=1 1,GM M 
l ,GMM- 1000 (4.2) 

and 
"'1000 ({3A (s) {3-;; )2 

SSE2({3A ) = L..s= l l ,GMM- 1,GMM 
1,GMM 1000 (4.3) 

Th computed SMSE's are reported in the same Tables 4.1 and 4.2. We have al o 

computed and reported the estimated standard errors (ESE) for both of {31 and !J2. For 

th computation of the ESE under the GMM approach, for example, we evaluate the 
A { 8 '1/J / ~}-1 A cov( f3cMM) = ~C1 813! by (2.28) in a given simulation by using {3 = f3cMM· We 

then take the average of 1000 simulated diagonal elements of this estimated covariance 

matrix. These averages represent the ESE of {31,cMM and !J2,GMM· In a similar way, 

we obtain the ESE for the GQL estimates by using the covariate matrix cov(!JcqL) = 

[ 
I< ~ - I£!.&) -1 . ( ) L:i= L 813 E i 813, as m 2.47 . 

It is clear from Tables 4.1 and 4.2 that the GQL approach uniformly outp rform 

th GMM approach in the estimation of f3u, for u = 1, 2. To be specific , GQL produces 

estimates of {31 and {32 , with smaller biases, SSE and SMSE, than those of th GMM 

approach. For example, for the estimation of {31 = {32 = 0.5 when 1 = 0.8, 0'~ = 1.0 

and 0'; = 1.0, GQL produces zero bias for {31 as compared with the bias 0.039 by 

GMM and for {32 , GQL has a smaller bias 0.002 as compared with the bias 0.013 

by GMM. Furthermore, for {31 , the SSE under the GMM is 8 . 54°~~~~0 2 = 2.506 time 

of the SSE under the GQL, and the SMSE under the GMM is ~ : ~~ ~ ~~ : ~ - ~ = 6.502 

times of the SMSE under the GQL. Similarly, for {32, the SSE under the GMM is 
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Table 4.1 : The simulated GQL and GMM estimates for /31 and /32 under the dynamic 
model (1.4) with true values as /31 = /32 = 0.5; when [, O"~ and O"~ (a~ = 1.0) ar 
known. 

Quantities 
2 

"' 
Method SM SSE ESE SMSE a,z 

0.5 -0. GQL fJJ 0.500 8.26 x 1o.o- 2 8.29 x 10.o- 2 6.83 x 10.o- 3 

(32 0.501 7.llx1o.o-2 7.18x1o.o- 2 5.06 X 10.0- 3 

GMM fJJ 0.494 0.125 0.137 1.57 x 10.o- 2 

(32 0.475 0.131 0.13 1.77x 1o.o- 2 

-0.3 GQL fJJ 0.500 .26 x 10.0- 2 8.29 x 10.0- 2 6. 3x 1o.o- 3 

(32 0.501 1.11 x 1o.o- 2 7.18x 1o.o- 2 5.06x 10.0- 3 

GMM fJJ 0.465 8.70 x 1o.o- 2 9.53 x 10.0- 2 8. 3x 1o.o- 3 

(32 0.4 0 9.49 x 1o.o- 2 9.87x 10.0- 2 9.40x 1o.o- 3 

0.01 GQL fJJ 0.500 8.26 X 10.0-2 8.29x 10.0- 2 6. 3x 10.o- 3 

(32 0.501 7.11 x 1o.o-2 7.18 x 10.o- 2 5.06 x 1o.o- 3 

GMM (31 0.472 9.39 x 1o.o- 2 0.105 9.60 x 1o.o- 3 

(32 0.483 9.56 X 10.0-2 9.89x Io.o- 2 9.42 x 1o.o- 3 

0.3 GQL fJJ 0.500 8.26x 1o.o- 2 8.29x 10.0- 2 6.83x 1o.o- 3 

(32 0.501 1.11 x w.o-2 7.18x 1o.o- 2 5.06 x 10.0- 3 

GMM (31 0.473 0. 113 0.129 1.34 x 1o.o- 2 

(32 0.489 0.102 0.107 l.05 x 10.0- 2 

0. GQL fJJ 0.500 8.26 x 10.0-2 8.29 x 1o.o- 2 6.83 x Io.o- 3 

(32 0.501 7.ll x 10.0- 2 7.18x 1o.o- 2 5.06 x 10.0- 3 

GMM fJJ 0.462 0.165 0.200 2.87 x 10.0- 2 

(32 0.514 0.152 0.174 2.32 x 1o.o- 2 

1.0 -0.8 GQL fJJ 0.500 8.54 x w.o- 2 8.62 x 1o.o- 2 7.29 x 1o.o- 3 

(32 0.502 7.37xw.o- 2 7.43 x Io.o- 2 5.43 x Io.o- 3 

GMM fJJ 0.494 0.128 0.140 1.64 x 1o.o- 2 

(32 0.475 0.141 0.148 2.04 x 1o.o- 2 

-0.3 GQL fJJ 0.500 8.54 x Io.o- 2 8.62 x 10.0- 2 7.29 x lo.o- 3 

f32 0.502 7.37 x 1o.o- 2 7.43 x 10.0- 2 5.43 x 10.0- 3 

GMM fJJ 0.464 9.71 x Io.o-2 0.107 l.07 x 1o.o- 2 

f32 0.479 0.115 0.119 1.37 x 1 o.o- 2 

0.01 GQL fJI 0.500 .54x10.o- 2 8.62x 10.0- 2 7.29 x 1o.o- 3 

(32 0.502 7.37 x 1 o.o- 2 7.43 x 10.0- 2 5.43 x 10.0- 3 

GMM fJJ 0.471 0.113 0.12 1.35x 10.0- 2 

(32 0.4 3 0.11 0.121 1.42 x w.o- 2 

0.3 GQL fJJ 0.500 8.54 x 1 o.o- 2 8.62 x 10.0- 2 7.29 x 10.o- 3 

(32 0.502 7.37x1o.o- 2 7.43 x 10.o- 2 5.43 x lo.o- 3 

GMM fJJ 0.473 0.141 0.164 2.06 x Io.o- 2 

(32 0.488 0.127 0.133 1.63x 1o.o- 2 

0.8 GQL fJJ 0.500 8.54 x w.o- 2 8.62 x 1o.o- 2 7.29 x 1o.o- 3 

(32 0.502 7.37 x w.o- 2 7.43 x 1o.o- 2 5.43 x lO.o- 3 

GMM fJJ 0.461 0.214 0.262 4.74 x lo.o- 2 

(32 0.513 0.198 0.226 3.94 x 1o.o- 2 
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Table 4.2: The simulated GQL and GMM estimates for {31 and {32 under the dynamic 
model (1.4) with true values as {31 = 0.1, fJ2 = 0.5; when / , 0'~ and 0'~ (0'~ = 1.0) are 
known. 

Quantities 
0'2 I Method SM SSE ESE SMSE 

!1 
0.5 -0.8 GQL {31 0.100 8.26x 10.0 2 8.29x 1o.o- 2 6.83 x 10.0 3 

f32 0.501 7. ll x 1o.o-2 7.18x l o.o-2 5.06xlO.o-3 

GMM {31 9.10 x 1o.o- 2 0.123 0.137 1.58x lO.o- 2 

f32 0.479 0.131 0.139 1.77x1o.o-2 

-0.3 GQL {31 0.100 8.26x 1o.o-2 8.29 x 1o.o-2 6.83x 1o.o-3 

{32 0.501 7.11 x 1o.o-2 7.18x1o.o- 2 5.06x 10.0- 3 

GMM {31 9.84 x 1o.o-2 8.10 x w.o- 2 9.53 x 10.0-2 7.57x 10.0-3 

!32 0.474 9.49x lO.o-2 9.87x Io.o- 2 9.69 x 1o.o-3 

0.01 GQL f31 0.100 8.26x lO.o- 2 8.29x 1o.o- 2 6.83x 10.0-3 

!32 0.501 7.11xlO.o-2 7.18x 1o.o- 2 5.06x 10.0-3 

GMM f31 0.105 9.39xlO.o- 2 0.105 8.83x 1o.o-3 

f32 0.474 9.56 x l o.o-2 9.89x 1o.o-2 9.80xto.o- 3 

0.3 GQL {31 0.100 8.26x lO.o- 2 8.29 x 1o.o-2 6.83 x 1o.o-3 

f32 0.501 7.11 x lO.o-2 7.18x 1o.o- 2 5.06x 1o.o-3 

GMM {31 0.109 0.113 0.129 1.28x 1o.o- 2 

{32 0.475 0.102 0.107 l.09 x lO.o-2 

0.8 GQL {31 0.100 8.26xlO.o-2 8.29 x 1o.o- 2 6.83x 1o.o-3 

!32 0.501 7.11 x l o.o- 2 7.18 x 1o.o- 2 5.06x 1o.o-3 

GMM {31 0.109 0.165 0.200 2.73 x 1o.o- 2 

{32 0.482 0.152 0.174 2.33 x 1o.o- 2 

1.0 -0.8 GQL {31 0.100 8.54 x w.o- 2 8.62 x 1o.o- 2 7.29 x 10.0- 3 

{32 0.502 7.37 x1o.o- 2 7.43 x 1o.o- 2 5.43x 1o.o- 3 

GMM {31 9.08 x 1o.o- 2 0.128 0.140 1.65x 10.0- 2 

f32 0.478 0.141 0.148 2.04 x 1o.o- 2 

-0.3 GQL {31 0.100 8.54 x 1o.o- 2 8.62 x w.o- 2 7.29 x 1o.o- 3 

{32 0.502 7.37x lO.o-2 7.43 x 1o.o- 2 5.43x 1o.o- 3 

GMM {31 9. 79 x 1o.o- 2 9.71xlO.o-2 0.107 9.43 x 10.0- 3 

f32 0.473 0.115 0.119 1.40x 10.0-2 

0.01 GQL f31 0.100 8.54 x 1o.o- 2 8.62x lO.o-2 7.29 x 1o.o-3 

f32 0.502 7.37x 1o.o- 2 7.43 x lO.o- 2 5.43x1o.o-3 

GMM fJI 0.104 0. 113 0.128 1.27x 10.0-2 

{32 0.4744 0. 118 0.121 1.45 x 1o.o- 2 

0.3 GQL {31 0.100 8.54 x 1o.o- 2 8.62 x 10.0- 2 7.29 x lO.o- 3 

f32 0.502 7.37 x 1o.o- 2 7.43 x 10.0-2 5.43x to.o-3 

GMM {31 0.109 0.141 0. 164 1.99x 1o.o-2 

f32 0.475 0.127 0. 133 1.68x 10.0-2 

0.8 GQL {31 0.100 8.54 x 1o.o- 2 8.62 x 1o.o- 2 7.29x Io.o-3 

f32 0.502 7.37 x lO.o- 2 7.43 x Io.o- 2 5.43 x Io.o- 3 

GMM f31 0.107 0.214 0.262 4.60x Io.o-2 

!32 0.481 0.198 0.226 3.96xlO.o-2 
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7 .37°/1~80 2 = 2.687 times of the SSE under the GQL, and the SMSE under the GMM 

approach is ~:~~=:~:~-; = 7.256 times of the SMSE under the GQL. 

As far a the performance of the ESE i concerned, ESEs appear to be close to 

the corresponding SSEs under both GMM and GQL approaches, the closeness under 

the GQL approach being much better than under the GMM approach. For example, 

for the above selected parameter values, the SSE(~1 .cQL) is 8.54 x 10.0- 2 and the 

ESE(~1 .cQL) i .62 x 10.0- 2 , which are very close to each other as compared to 

SSE(~I ,GMM) = 0.214 and ESE(,81,cMM) = 0.262. Similar result hold for ~2 under 

both GM I and GQL approache . 

4. 2 Estimation of {3 and r When O"~ and O"; Are 

Known 

Given that the simulation results in section 4.1 show that the GMM and GQL ap­

proaches are performing well for /3 estimation, GQL being better than GMM we now 

include one more parameter 'Y and estimate /3 and 'Y together under 1000 simulations 

where CT~ and CT~ are still assumed to be known. 

For estimation of {3 and 'Y under the GMM approach, we use the it rativ equation 

(2.26) for /3, ru1d (2.35) for 'Y· Similarly, for the GQL estimates, we use the iterative 

equation (2.46) for /3 , and the iterative equation for "( given by 

[
I< .Q\1 .!:~\ ]-1 [K .!:l\1 ] 

A A Ul\i - 1 Ul\i Ul\i -1 
'YGQL,(r+ l } = 'YGQL,(r) + L BMiN B ~ BMiN (Ji - .-\,) ' 

t= l 'Y 'Y (r ) •=1 'Y (r} 

(4.4) 

where f i i 

section 2.2. 

given in (2.4 ), and .-\i, MiN are given for the GQL estimation of 'Y in 

The SM, SSE, ESE and SMSE for ~ and i' under both GQL and GMM are given 

in Tables 4.3-4.4. Note that even though we estimate /3 and "( , the performance 

of the GMM and GQL estimates for /3 remains the same as in section 4.1 where 

/3 was estimated assuming 'Y known. We now interpret the performance of these 

approache for 'Y e timate. From these tables, we can see that in most cases, GQL 
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Table 4.3: The simulated GQL and GMM estimates for (J and 'Y under the dynamic 
model (1.4) with true regression parameter values as {31 = {32 = 0.5 and selected true 
values for '-y; when a~ and a; (a; = 1.0) are known. 

Quantities 
u2 'Y Method SM SSE ESE SMSE 

!1 
0.5 -0.8 GQL fJI 0.500 8.28x 10.0 2 8.29x 10.0 2 6.86 x 10.0 3 

!32 0.501 1.21 x w .o-2 7.18x w.o- 2 5.20x 10.0- 3 

'Y -0.798 3.96 x 1o.o- 2 2.72 x 10.o- 2 1.5 x lo.o- 3 

GMM fJI 0.495 0.135 0.129 1.83 x 1o.o- 2 

!32 0.505 0.114 0.11 1.30x 1o.o- 2 

'Y -0.793 4.01 x 1o.o- 2 3.91 x 1o.o- 2 1.66 x w.o-3 

-0.3 GQL (31 0.500 8.30x 10.0-2 8.29x 10.0- 2 6. 8x w .o- 3 

(32 0.501 7.3 x 1o.o- 2 7.18x 1o.o- 2 5.45 x 1o.o- 3 

'Y -0.300 4.91 x lO.o- 2 5.29 x lO.o- 2 2.41 x 1o.o- 3 

GMM fJI 0.496 9.28x10.o- 2 9.05 x 10.0- 2 .63 x 1o.o- 3 

!32 0.501 8.59x IO.o- 2 8.44 x w.o- 2 7.38 x 10.o- 3 

'Y -0.300 4. 4xlO.o- 2 4.72x 10.0- 2 2.35 x 1o.o- 3 

0.01 GQL fJI 0.500 8.30x 10.0-2 8.29 x 10.0- 2 6. 9x lO.o- 3 

!32 0.503 7.62 x 1o.o- 2 7.18x 1o.o- 2 5. 1x 1o.o- 3 

'Y 6.99x 1o.o- 3 5.60x IO.o-2 6.85 x 10.0- 2 3.14 x w.o-3 

GMM (31 0.49 0.102 9.91 x 1o.o- 2 1.03 x 10.o- 2 

(32 0.503 9.05 x 10.0- 2 8.49x lO.o- 2 .21 x 10.0- 3 

'Y 4.83 x w.o- 3 5.55 X 10.0- 2 5.41 x lO.o- 2 3.11 x 1o.o-3 

0.3 GQL !31 0.500 .31x 1o.o- 2 8.29 x 10.0- 2 6.90 x 1o.o-3 

!32 0.504 7.84 x 10.o- 2 7.18 x 1o.o- 2 6.16 x 10.0- 3 

'Y 0.294 5.45 x 10.o-2 7.05 x 10.0- 2 3.oox 1o.o- 3 

GMM (31 0.500 0.124 0.121 1.54 x w .o- 2 

!32 0.505 0.100 9.16x 1o.o- 2 1.01 x w.o- 2 

'Y 0.292 5.60x IO.o- 2 5.43x 1o.o- 2 3.20x 1o.o- 3 

0. GQL (31 0.500 .30 x IO.o- 2 8.29x 10.0- 2 6. 9x 1o.o- 3 

(32 0.505 7.76 x 1o.o- 2 7.1 x w.o- 2 6.04 x 1o.o- 3 

'Y 0.796 3.34 x w .o- 2 3.69 x Io.o- 2 1.14x l0.0- 3 

GMM !31 0.500 0.183 0.177 3.35 x 1o.o- 2 

!32 0.50 0.155 0.146 2.42 x Io.o- 2 

'Y 0.791 4.47 x IO.o- 2 4.31 x 1o.o-2 2.01 x w.o- 3 

1.0 -0.8 GQL (31 0.500 8.56 x IO.o- 2 8.62 x 10.0- 2 7.33x IO.o- 3 

(32 0.502 7.48 x 10.0-2 7.43 x 1o.o-2 5.60x lO.o- 3 

'Y -0.800 4.45 x 1o.o- 2 2.04 X 10.0- 2 1.9 x w .o- 3 

GMM fJI 0.495 0.13 0.132 1.92 x w .o- 2 

(32 0.505 0.122 0.126 1.4 x w .o- 2 

'Y -0.794 3. 6x lO.o- 2 3. 76 x 10.0- 2 1.53x 10.0- 3 
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(Table 4.3 contd .... ) 

Quantities 
u2 'Y Method SM SSE ESE SMSE 

!1 
-0.3 GQL (31 0.500 .57x 10.0 2 8.62x 10.0 2 7.35 x 10.0 3 

(32 0.502 7.69 x 1o.o-2 7.43 x w .o- 2 5.92xw.o-3 

'Y -0.301 5. 9x 1o.o- 2 6.23x 1o.o- 2 3.47x 10.o- 3 

GMM (31 0.495 0.105 0.103 1.11 x 1o.o-2 

(32 0.501 0.102 0.101 l.05 x 1o.o-2 

'Y -0.302 5.46x IO.o-2 5.29 x 10.0- 2 2.99x1o.o- 3 

0.01 GQL (31 0.500 8.58x 1o.o- 2 8.62 x 1o.o- 2 1.37 x 1o.o- 3 

(32 0.504 7.93 x 10.0-2 7.43 x lO.o- 2 6.30 x IO.o- 3 

'Y 4.76x 1o.o- 3 6.36 x 1o.o-2 8.46 x w.o- 2 4.07x 10.0- 3 

GMM (31 0.497 0.124 0.121 1.54 x w .o-2 

(32 0.503 0.109 0.103 1.19x 1o.o-2 

'Y 2.41 x 10.o- 3 6.27 x 1o.o- 2 6.08x 1o.o- 2 3.99x 1o.o- 3 

0.3 GQL (31 0.500 8.59 x 1o.o- 2 8.62 x w.o- 2 7.37x10.o-3 

(32 0.505 8.04 x w .o- 2 7.43 x 1o.o- 2 6.49 x 1o.o- 3 

'Y 0.294 5.49 x 10.0- 2 7.84 x lO.o- 2 3.05 X 10.0- 3 

GMM (31 0.499 0.157 0.154 2.46 x 1o.o- 2 

(32 0.505 0.121 0.113 1.48x lo.o- 2 

'Y 0.290 5.96 x 10.0- 2 5.76x 10.0- 2 3.65 x w .o- 3 

0. GQL (31 0.500 8.58x10.o-2 8.62 x w .o- 2 7.36 x 10.o- 3 

(32 0.504 7. 1x 10.o-2 7.43 x 10.o- 2 6.11 x 10.o- 3 

'Y 0.797 2. 5x1o.o-2 3.28x 10.0- 2 8.19 x w.o-4 

GMM (31 0.500 0.238 0.232 5.64 x 1o.o- 2 

(32 0.50 0.19 0.190 3.93 x 10.0-2 

'Y 0.791 4.53x lo.o- 2 4.36x 10.0- 2 2.13 x w .o- 3 
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Table 4.4: The simulated GQL and GMM estimates for {3 and 'Y under the dynamic 
model (1.4) with true regression parameter values as {31 = 0.1, {32 = 0.5 and selected 
true values for"/ ; when O"~ and O"~ (ll~ = 1.0) are known. 

Quantities 
u2 I Method SM SSE ESE SMSE 

!1 
0.5 -0.8 GQL {31 9.97x lO.o- 2 8.28x lO.o- 2 8.29 x lO.o- 2 6.86 x 1o.o- 3 

!32 0.501 1 .2o x 1o.o- 2 7.18x 1o.o- 2 5.18xlO.o-3 

I -0.797 3.96 x w .o- 2 2. 72 x 1o.o- 2 1.57x lO.o- 3 

GMM f3l 9.35 x 1o.o- 2 0.134 0.129 1. o x w .o-2 

!32 0.505 0.114 0.118 1.30x lO.o-2 

I -0.793 4 .o1 x 1o.o- 2 3.91 x w .o- 2 1.66x lO.o-3 

-0.3 GQL f3l 9.99x 1o.o- 2 8.30x 10.0- 2 8.29x lO.o- 2 6. x 1o.o- 3 

{32 0.501 1.32 x w .o- 2 7.18x lO.o- 2 5.36x lO.o-3 

I -0.299 4.91 x 1o.o- 2 5.29x 1o.o- 2 2.41 x lO.o- 3 

GMM {3! 9.73 x 1o.o- 2 9.28x 1o.o- 2 9.05 x 1o.o- 2 8.61 x 1o.o- 3 

!32 0.500 8.49 x 1o.o- 2 8.44x 1o.o- 2 1.21 x 1o.o- 3 

I -0.300 4.84 x 1o.o- 2 4.12 x w.o- 2 2.35 x 1o.o- 3 

0.01 GQL f3l 9.99 x lO.o- 2 8.30 x w.o- 2 8.29x 1o.o- 2 6.89x 1o.o-3 

!32 0.502 1.48 x 1o.o- 2 7.18 x lO.o- 2 5.60x lO.o-3 

I 7.00x1o.o-3 5.59 x w .o-2 6.85 x w.o- 2 3.14 x 1o.o-3 

GMM {3! 9.83x 10.o- 2 0.102 9.91 x 1o.o- 2 l.03 x 1o.o- 2 

{32 0.502 8. 6x 1o.o- 2 .49x 1o.o- 2 7.86x10.o- 3 

I 4.88x lO.o- 3 5.55 x 1o.o-2 5.41 x w.o- 2 3.11 x 1o.o- 3 

0.3 GQL {3! 9.99 x 10.o- 2 8.31 x w .o-2 8.29 x w .o- 2 6.90 x lO.o- 3 

!32 0.504 1.57 x w.o- 2 7.18x lO.o- 2 s. 75 x w .o- 3 

I 0.294 5.45x10.o- 2 7.05 x 1o.o- 2 3.00 x lO.o- 3 

GMM !31 9.84 x w .o- 2 0.124 0.121 1.53x lO.o- 2 

!32 0.504 9.74 x lO.o- 2 9.16 x w.o- 2 9.51 x w.o-3 

I 0.292 5.60x lO.o- 2 5.43 x 1o.o- 2 3.20 x w .o-3 

0. GQL f3l 9.99 x w .o- 2 .30x 1o.o- 2 8.29x 1o.o- 2 6. 8xlO.o-3 

!32 0.503 7.39 x lO.o- 2 7.1 x 1o.o- 2 5.47x 10.o- 3 

I 0.796 3.34 x 1o.o- 2 3.69 x w .o- 2 1.14 x 1o.o- 3 

GMM f3l 9.63 x w.o- 2 0.183 0.178 3.33 x w .o- 2 

!32 0.506 0.153 0.146 2.34 x w.o- 2 

I 0.791 4.47x lO.o- 2 4.31 x 1o.o- 2 2.07x 1o.o- 3 

1.0 -0.8 GQL f3I 0.100 8.56 x 1o.o- 2 8.62 x 1o.o- 2 7.33 x lO.o- 3 

!32 0.502 7.47x 10.0- 2 7.43x 10.0- 2 5.59 x 1o.o- 3 

I -0.799 4.44 x 1o.o- 2 2.04 x 1o.o- 2 1.97x 1o.o- 3 

GMM {3! 9.34 x Io.o- 2 0.137 0.132 1. xlo.o- 2 

!32 0.505 0.121 0.126 1.47x lO.o- 2 

I -0.794 3. 6x 1o.o- 2 3.76x 1o.o- 2 1.53x 1o.o- 3 
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(Table 4.4 contd ... . ) 

Quantities 
172 I Method SM SSE ESE SMSE 

!1 
-0.3 GQL f31 0.100 .57 x 10.0 2 8.62 x 10.0 2 7.35x 10.0 3 

fJ2 0.502 7.64x1o.o- 2 7.43 x 1o.o- 2 5. 4x 10.o- 3 

I -0.301 5.89 x 1o.o-2 6.23 x 1o.o- 2 3.47x 10.0- 3 

GMM (31 9.68x Io.o- 2 0.105 0.103 1.11 x 10.o- 2 

fJ2 0.501 0.101 0.101 1.02 x 10.o- 2 

I -0.302 5.46x 10.0- 2 5.29x 1o.o- 2 2.99 x 10.0- 3 

0.01 GQL (31 0.100 8.58x 10.0- 2 8.62 x 1o.o- 2 7.35 x 1o.o- 3 

fJ2 0.503 7.79 x 1o.o- 2 7.43x 10.0- 2 6.08 x 1o.o- 3 

I 4.75x lo.o- 3 6.36 x 10.o- 2 8.46 x w .o- 2 4 .o7 x 1o.o- 3 

GMM (31 9. 78x 1o.o- 2 0.124 0.121 1.54 x 1o.o- 2 

(32 0.502 0.107 0.103 1.14 x Io.o- 2 

I 2.46x Io.o- 3 6.27 x 1o.o- 2 6.08 x 10.o- 2 3.99 x 1o.o- 3 

0.3 GQL (31 0.100 .58x1o.o- 2 8.62 x w .o- 2 7.35 x 1o.o- 3 

fJ2 0.504 7.82 x Io.o- 2 7.43 x Io.o- 2 6.13 x 10.0- 3 

I 0.294 5.49 x 1o.o- 2 7.84 x w.o- 2 3.06 x 1 o.o- 3 

GMM (31 9. 78x 10.0- 2 0.157 0.154 2.45x Io.o- 2 

fJ2 0.504 0.119 0.113 1.41 x Io.o- 2 

I 0.290 5.96 x 1o.o- 2 5.76 x 1o.o- 2 3.65 x Io.o- 3 

0.8 GQL (31 0.100 .56 x 10.o- 2 8.62 x 1o.o- 2 7.33 x 1o.o- 3 

fJ2 0.503 7.56 x 10.0- 2 7.43 x IO.o- 2 5.73 x lo.o- 3 

I 0.797 2. 5x1o.o- 2 3.2 x 10.o- 2 8.19x lo.o- 4 

GMM (31 9.58x 1o.o- 2 0.237 0.232 5.63 x 1o.o- 2 

(32 0.505 0.196 0.190 3.85 x 10.o- 2 

I 0.791 4.53 x 10.o- 2 4.36 x 10.0- 2 2.13x lo.o- 3 
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produces smaller biases than those under the GMM approach. For example, for the 

estimation of (31 = (32 = 0.5, 1 = 0.8 when a~ = 1.0 and a; = 1.0, GQL produces 

a smaller bias 0.003 for 1 as compared with the bias 0.009 by GMM. However, it is 

clear that the GMM and GQL appear to be very competitive when SSE and SMSE 

are concerned. For example, for the above selected parameter values, the SSE under 

GMM is ~:~~~~~:~-; = 1.590 times of the SSE under the GQL approach, and the 

SMSE under GMM is ~:~~~~~:~-: = 2.601 times of the SMSE under GQL. For another 

parameter set where (31 = (32 = 0.5, 1 = -0.8, a~ = 1.0, and a; = 1.0, the SSE 

under GQL is ~::~~~~:~-~ = 1.153 times of the SSE under the GMM approach, and 

the SMSE under GQL is ~:;~~~~:~-: = 1.294 times of the SMSE under GMM. 

As far as the performance of the ESE is concerned, ESEs appear to be close to the 

corresponding SSEs under both GMM and GQL approaches. For example, for the 

above selected parameter values where 1 = 0.8, the SSE(i'cQL) is 2.85 x 10.0- 2
, and 

the ESE( ..YcQL) is 3.28 x 10.0- 2 , which are very close to each other. Similar results 

hold for i'cM M. 

4.3 Estimation of All Parameters 

As all parameters are supposed to be unknown in practice, we now consider this 

important situation. We estimate (3 and 1 using the equations mentioned in section 

4.2, but for the estimation of a = (a~, a;)', we use the iterative equation given by 

[
a'!f;*' a'!f;* ] -

1 
[a'I/J*' ] 

frGMM,(r+1) = frGMM,(r) + a~ C3N aa~ (r) a~ C3N'I/J; (r) 
(4.5) 

under the GMM approach; and 

[ 

f{ !:! 1 !:! ] -1 [ K !:J 1 ] 
A A '""" uai _ 1 uai '""" uai _ 1 ( ) 
acQL,(r+l) = acQL,(r) + L..- aa D iN aal L..- aa DiN Si - ai 

t = l (r) t = 1 (r) 

(4.6) 

under the GQL approach. 

The GMM and GQL estimates for all parameters along with their SSE, ESE and 

SMSE based on 500 simulations are given in Tables 4.5-4.8. The estimates of (3 and 1 
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appear to be similar to those given in Tables 4.3-4.4. We now interpret the estimates 

of a. From these tables, it is clear that GMM and GQL are very competitive in 

estimating a. For example, for estimation of a~ for the selected parameter values 

(31 = 0.1 , (32 = 0.5, -y = - 0.8 with a~ = 0.5 and a~ = 1.0, GQL produced a bias 0.004, 

which is smaller than the bias 0.029 by GMM, the SSE(a~,GMM) is ~:i~: = 1.086 tim s 

of the SSE(a~,GQL) , and the corresponding SMSE under GMM is ~:~~~ t~:~-~ = 1.275 

times of the SMSE under GQL. Another example to show that GQL appears to be 

better than GMM is for estimation of a~. For the selected parameter values (31 = 0.1 

(32 = 0.5, "( = 0.8 with a~ = 1.0 and a~ = 1.0, GQL produces a smaller bias 0.009 

than the bias 0.104 by GMM, the SSE under GMM is 7 .64°~;~70_2 = 3.887 times of 

the SSE under GQL, and the SMSE under GMM is ;:~~~~~:~=~ = 16.678 times of the 

SMSE under GQL. On the other hand, in some cases, GMM appears to be better than 

GQL. For example, for the select d parameter values (31 = (32 = 0.5, "( = 0.3 with 

a~ = 1.0 and a~ = 1.0, for a~ , GMM produced a smaller bias 0.131 compared with 

the bias 0.299 by GQL, the SSE(a~,GQL) is ~:;o~ = 2.689 times of the SSE(a~,GMM ), 

and the SMSE under GQL is 2 .83°~11~10 2 = 6.042 times of the SMSE under GMM. For 

a~ , GMM produced a bias 0.005 which is smaller than the bias 0.081 by GQL, the 

SSE under GQL is 6.74°~11~~0_2 = 2.374 times of the SSE under the GMM approach, 

and the SMSE under GQL is ~:;~~~~r~ = 7.024 times of the SMSE under GMM. 

In summary, GQL was found to be better than GMM in estimating the regression 

effects (31 and (32. The approaches were found to be competitive for the estimation 

of -y, a~ and a;. Note however that all these GMM results reported in Tables 4.5 to 

4.8 were obtained by using initial values clos to the true parameter values whereas 

the GQL approach was not sensitive to the selection of the initial values. This is a 

serious technical limitation for the GMM approach, as in practice, one does not have 

any idea about the true values. This observation along with th fact that GQL has 

performed very well for (3 estimation and it was extremely competitiv to GMM for 

-y and a e timation, suggest that one prefer GQL over the GMM approach. 
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Table 4.5: The simulated GQL and GMM estimates for all parameters under the 
dynamic model (1.4), with true {31 = {32 = 0.5 and selected true values for /, a~= 0.5 
and a;= 1.0. 

Quantities 
I Method SM SSE ESE SMSE 

-0.8 GQL !31 0.495 8.48xl0.0 2 8.24x10.0 7.22 x 10.0 3 

!32 0.505 7.15x1o.o-2 7.14x 1o.o- 2 5.14 x 1o.o- 3 

I -0.800 3.82 x w.o- 2 2.11 x 1o.o- 2 1.46x 1o.o-3 

u2 0.504 0.105 9.63 x 1o.o-2 1.1ox 1o.o-2 

u~ 0.990 6.30 x w.o- 2 6.28 x 10.0-2 4.07x lO.o-3 
£ 

GMM !31 0.480 0.138 0.128 1.94x lo.o-2 

!32 0.509 0.114 0.119 1.30x lO.o-2 

I -0.817 4.59 x 1o.o- 2 3.84x 10.0- 2 2.39x 10.0-3 

2 0.529 0.114 0.107 1.39x 10.0- 2 
u~ 

0.938 5.69 x 1o.o-2 9.81 x w.o-2 7 .o2 x 10.o- 3 u, 

-0.3 GQL !31 0.495 8.50 x 10.o- 2 8.24 x w.o-2 7.26xlO.o-3 

!32 0.506 7.32 x 10.0- 2 7.14 x 1o.o-2 5.38 x 1o.o- 3 

I -0.302 4.95x10.o-2 5.28x 10.0- 2 2.45 x 10.o- 3 

u2 0.506 0.111 9.67x 10.0- 2 1.23x 10.0- 2 

u~ 0.989 6.34 x 10.o-2 6.27 x 1o.o-2 4.14 x 10.o- 3 
• 

GMM !31 0.492 9.40x10.o- 2 9.00 x 10.0- 2 8.91 x 10.o- 3 

!32 0.502 8.39 x 1o.o- 2 8.40x 1o.o- 2 7.04 x 1o.o-3 

I -0.298 4.86 x 1o.o-2 4.73x 10.0-2 2.37 x 10.0- 3 

u2 0.497 0. 106 9.59 x 1o.o- 2 1.12 x 1o.o- 2 

u~ 0.992 6.24 x 10.0-2 6.73 x 10.0-2 3.95 x 10.o-3 

• 
0.01 GQL f3J 0.495 8.52 x 1o.o- 2 8.24 x 10.0-2 1.28 x 1o.o- 3 

{32 0.500 7.48 x 1o.o-2 7.14x 1o.o-2 5.59x 10.0-3 

I 2.24 x 10.0- 2 5.40 x 1o.o- 2 6.82 x 1o.o- 2 3.07 x 1o.o-3 

u2 0.487 0.103 9.41 x 1o.o- 2 1.01 x 1o.o- 2 

u~ 0.995 6.40 x 10.o- 2 6.30x 10.0-2 4.12 x 1o.o-3 
• GMM !31 0.492 0.102 9.85 x 1o.o- 2 1.04 x 1o.o- 2 

!32 0.498 8.85 x 10.0- 2 8.40x 10.0-2 7.84x IO.o-3 

I 2.15 x IO.o- 2 5.26x10.o- 2 5.39xiO.o-2 2.90xiO.o-3 

2 0.483 0.101 9.35 x iO.o-2 1.o6 x 10.0- 2 
u~ 

0.997 6.37 x 10.o-2 6.33 x 1o.o-2 4.07 x IO.o- 3 u, 

0.3 GQL !31 0.496 8.51 x 10.0-2 8.24x 1o.o-2 7.26 x iO.o- 3 

!32 0.486 7.65 x IO.o-2 7.15xiO.o- 2 6.05 x IO.o- 3 

I 0.335 5.61 x 1o.o-2 6.74x 10.0- 2 4.37x 10.0-3 

u2 0.448 9.88x 1o.o- 2 8.88 x IO.o-2 1.25x IO.o- 2 

u~ 1.008 6.82 x 10.0- 2 6.39x 10.0-2 4.7lxiO.o-3 

• GMM {31 0.486 0.123 0.119 1.528x 1o.o- 2 

!32 0.484 9. 77 x IO.o- 2 8.98x 10.0-2 9.81 x IO.o-3 

I 0.333 5.22xiO.o- 2 5.32 x 10.0- 2 3.81 x w .o-3 

u2 0.446 8.19 X 10.0-2 8.85 x 10.0-2 9.65 X 10.0- 3 

u~ 0.997 6.66 x Io.o- 2 6.90x 10.o-2 4.45xiO.o-3 
f 
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(Table 4.5 contd .. .. ) 

Quantities 

'Y Method SM SSE ESE SMSE 
0.8 GQL /31 0.495 8.47x l0.0 2 8.24 x 10.0 2 7.20x l0.0 3 

/32 0.494 8.17x 1o.o- 2 7.14 x 1o.o- 2 6. n x w.o-3 

'Y 0.812 4.94 x 10.0- 2 3.61 x w.o- 2 2.58x IO.o- 3 

a2 0.477 0.149 9.40 x 1o.o-2 2.26x IO.o- 2 

a~ 1.001 7.31 x 1o.o- 2 6.35 x 10.0- 2 5.34 x 1o.o- 3 
< 

GMM /31 0.469 0.172 0.167 3.05 x 10.0- 2 

/32 0.456 0.153 0.144 2.52 x 1o.o- 2 

'Y 0.853 4.49 x 1o.o-2 4.17x lO.o- 2 4.84x 1o.o- 3 

a2 0.396 6.17x 1o.o- 2 9.32 x w.o- 2 1.45x 1o.o- 2 

a~ 0.901 0.207 0.172 5.25x 1o.o- 2 
< 
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Table 4.6: The simulated GQL and GMM estimates for all parameters under the 
dynamic model (1.4), with true {31 = {32 = 0.5 and selected true values for "(, a~ = 1.0 
and a;= 1.0. 

Quantities 
'Y Method SM SSE ESE SMSE 

-0.8 GQL {31 0.496 8.82 x 10.0 2 8.58 x 10.0 7.79 x 10.0 3 

f32 0.506 7.42 x 10.o- 2 7.39 x 10.0- 2 5.54 x 1o.o- 3 

'Y -0.801 4.44x 10.0- 2 2.05 x 1o.o- 2 1.97x 10.o-3 

2 1.005 0.184 0.168 3.38 x 10.0- 2 
0"~ 

0.991 6.33 x 10.o- 2 6.28 x 1o.o- 2 4.09 x 1o.o- 3 u, 
GMM {31 0.485 0.141 0.131 2.o2 x 1o.o- 2 

{32 0.507 0.120 0.126 1.45 x 1o.o- 2 

'Y -0.807 4.58 x 10.o- 2 3.12 x 1o.o- 2 2.16 x 1o.o- 3 

a-2 1.021 0.188 0.177 3.56 x 1o.o- 2 

0"~ 0.960 5.94x 10.0- 2 0.102 5.15 x 1o.o- 3 
f 

-0.3 GQL {31 0.496 8.86 x 1o.o-2 8.60x 1o.o-2 7.86 x 1o.o- 3 

f32 0.499 7.53 x 10.o-2 7.41 x 10.o- 2 5.67 x 1o.o- 3 

'Y - 0.282 5.69 x 1o.o- 2 6.27x 1o.o-2 3.58 x 10.0- 3 

0"2 0.972 0.170 0.163 2.99 x 1o.o- 2 

0"~ 0.996 6.30 x 1o.o- 2 6.31 x 10.0-2 3.99 x 1o.o- 3 
f 

GMM {31 0.493 0.107 0.102 1.15x1o.o- 2 

{32 0.493 9.86 x 10.0- 2 9.85 x 1o.o-2 9.78x 10.o- 3 

'Y -0.272 5.02 x 1o.o- 2 5.28x lO.o-2 3.32 X 10.0- 3 

a-2 0.945 0.162 0.160 2.92 x w.o-2 

0"~ 1.014 6.26 x 1o.o-2 6.82 x w.o-2 4.12x lO.o- 3 
f 

0.01 GQL {31 0.499 8.94 x 1o.o- 2 8.68x lO.o- 2 8.00x 10.0- 3 

{32 0.466 7.4l x lo.o- 2 7.49x 10.0-2 6.62 X 10.0- 3 

'Y 0.105 5.69 x 1o.o- 2 7.87 x w.o- 2 1.23x lO.o- 2 

0"2 0.811 0.130 0.141 5.25 x w .o- 2 

0"~ 1.032 6.11 x 10.o- 2 6.54 x 1o.o-2 5.55 x 1o.o- 3 
f 

GMM {31 0.490 0.125 0.121 1.56x 10.0- 2 

{32 0.492 0.105 0.101 1.11 x 1o.o- 2 

'Y 3.44 x 1o.o- 2 5.08 x 1o.o- 2 6.01 x lO.o-2 3.18 X 10.0- 3 

0"2 0.938 0.147 0.158 2.55 x 1o.o- 2 

0"~ 1.003 6.38 x 1o.o- 2 6.38x lO.o- 2 4.08 x 1o.o- 3 
f 

0.3 GQL {31 0.498 9.03 x 10.o- 2 8.75 x 10.0- 2 8.16 x w.o-3 

f32 0.438 0.102 7.58 x 1o.o- 2 1.43 x w.o- 2 

I 0.425 0.122 6.65 x w.o- 2 3.05 x 1o.o- 2 

0"2 0.701 0.285 0.131 0.171 
0"~ 1.081 0.160 6.91 x w.o- 2 3.21 x 1o.o- 2 

f 

GMM {31 0.483 0.156 0.152 2.46x lO.o- 2 

f32 0.476 0.117 0.110 1.42 x w.o-2 

'Y 0.346 5.04 x 1o.o- 2 5.56x lO.o- 2 4.63 x lO.o- 3 

0"2 0.869 0.106 0.148 2.83 x lo.o- 2 

0"~ 0.995 6.74 x 10.0- 2 7.09x 10.o- 2 4.57 x lO.o- 3 
f 
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(Table 4.6 contd .... ) 

Quantities 

'Y Method SM SSE ESE SMSE 
0.8 GQL (31 0.498 8.85 x 10.0 2 8.61 X 10.0 2 7.84x 10.0 3 

/32 0.486 8.42 x 1o.o- 2 7.43 x 1o.o- 2 7.29x 1o.o- 3 

'Y 0.823 4. 79 x 1o.o- 2 3.22 x w.o- 2 2.85x 10.0- 3 

a2 0.906 0.245 0.156 6.86x 10.0- 2 

a~ 1.013 9.12 x 1o.o- 2 6.43 x 10.0- 2 8.49x 1o.o- 3 
• 

GMM /31 0.482 0.231 0.225 5.37x 1o.o- 2 

/32 0.480 0.196 0.189 3.89x 1o.o- 2 

'Y 0.825 4.42 X 10.0- 2 4.29x 10.0- 2 2.56x 10.0- 3 

a2 0.902 8. 78 x w.o- 2 0.161 1.73x 1o.o- 2 

a~ 0.897 0.297 0.195 9.86x 1o.o- 2 

• 
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Table 4.7: The simulated GQL and GMM estimates for all parameters under the 
dynamic model (1.4), with true (31 = 0.1, (32 = 0.5 and selected true values for "( , 
a~ = 0.5 and a; = 1.0. 

Quantities 

'"Y Method SM SSE ESE SMSE 
-0.8 GQL !31 9.52 x 10.0 2 8.48 x 10.0 2 8.24x 10.0 2 7.22 x 10.0 3 

fh 0.505 7.14 x 10.0-2 7.14 x 10.o- 2 5.12 x 1o.o- 3 

'"Y -0.800 3.82 x 1o.o- 2 2.7l x 10.o- 2 1.46 x 10.o- 3 

(T2 0.504 0.105 9.63 x 10.0-2 1.09 x 1o.o- 2 

(T~ 0.990 6.30 x 1o.o- 2 6.28x 10.0- 2 4.07 x 1o.o- 3 
f 

GMM !31 8.88 x 10.0- 2 0.135 0.128 1.83 x 10.o- 2 

!32 0.507 0.113 0.119 1.29x 10.o-2 

'"Y -0.817 4.60 x 1o.o- 2 3.84 x 10.0- 2 2.34 x 10.o- 3 

(T2 0.529 0.114 0.107 1.39x 1o.o- 2 

(T~ 0.938 5. n x 1o.o- 2 9.80 x 10.0- 2 7.ll x 10.o- 3 
f 

-0.3 GQL !31 9.53 x 10.0-2 8.51 x 10.o- 2 8.24 x 1o.o- 2 7.26 x 1o.o- 3 

!32 0.506 7.26x 10.0- 2 7.13x 1o.o- 2 5.31 x 1o.o- 3 

'"Y -0.302 4.95 x 10.0- 2 5.28 x 1o.o-2 2.46 x 10.0- 3 

(T2 0.506 0.111 9.67 x 10.0- 2 1.23x 1o.o- 2 

(T~ 0.989 6.34 x 1o.o- 2 6.27 x 1o.o- 2 4.14 x 1o.o- 3 
f 

GMM f3i 9.29 x 10.0- 2 9.39x 10.0-2 9.oo x 10.0- 2 8.88 x 1o.o- 3 

!32 0.502 8.30 x 1o.o- 2 8.40x 10.0- 2 6.89 x 10.o- 3 

'"Y -0.298 4.87x 1o.o-2 4.73 x 10.o-2 2.38 x 1o.o- 3 

(T2 0.497 0.106 9.59 x Io.o- 2 1.12 x 1o.o- 2 

(T~ 0.992 6.24 x Io.o- 2 6.73 x IO.o- 2 3.96 x 1o.o-3 
f 

0.01 GQL !31 9.56 x 10.0- 2 8.52 x Io.o- 2 8.24 x 10.0- 2 7.28 x 1o.o- 3 

!32 0.501 7.34 x Io.o- 2 7.14 x Io.o- 2 5.38x IO.o-3 

'"Y 2.25 x 10.o- 2 5.41 x w.o- 2 6.82 x 10.o- 2 3.08 x 10.0- 3 

(T2 0.487 0.103 9.41 x 1o.o-2 l.07 x 1o.o- 2 

(T~ 0.994 6.40x Io.o-2 6.30 x 1o.o- 2 4.12 x 1o.o- 3 
f 

GMM !31 9.37 x 10.0-2 0.102 9.85 x 10.0- 2 1.04 x Io.o- 2 

!32 0.499 8.68x 10.0-2 8.40 x Io.o-2 7.54 x Io.o- 3 

'"Y 2.17x lo.o- 2 5.26 x 10.0- 2 5.39 x Io.o- 2 2.91 x Io.o- 3 

(T2 0.483 0.101 9.35 x 10.o- 2 1.06 x 1o.o- 2 

(T~ 0.997 6.37 x 10.0-2 6.33 x 10.o- 2 4.07 x 10.0- 3 
f 

0.3 GQL !31 9.62 x 10.0-2 8.51 x 1o.o- 2 8.24 x 10.0-2 7.26 x Io.o- 3 

!32 0.491 7.35 x Io.o- 2 7.15 x w .o- 2 5.49 x 10.o- 3 

'"Y 0.335 5.59 x Io.o- 2 6.74x 10.0-2 4.37 x 10.0- 3 

(T2 0.448 9.80 x Io.o- 2 8.87x IO.o-2 1.23 x Io.o- 2 

(T~ 1.008 6.80 x 10.o-2 6.39x 10.0- 2 4.69 x 10.0- 3 
f 

GMM !31 9.40x Io.o- 2 0.123 0.119 1.51 x 1o.o- 2 

!32 0.488 9.52x 10.0- 2 8.98 x Io.o- 2 9.19x lo.o- 3 

'"Y 0.333 5.22 x 10.o- 2 5.32 x 1o.o- 2 3.82 x lO.o-3 

(T2 0.446 8.18x 1o.o-2 8.85 x lO.o- 2 9.65 x Io.o- 3 

(T~ 0.996 6.66 x w .o- 2 6.90 x 1o.o- 2 4.45 x lO.o- 3 
f 
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(Table 4.7 contd .. .. ) 

Quantities 

'Y Method SM SSE ESE SMSE 
0.8 GQL f31 9.54 x l0.0 2 8.46x l0.0 2 8.24 x 10.0 2 7.18x 10.0 3 

{32 0 .499 7.45 x 1o.o- 2 7.14 x 1o.o- 2 5.55x 1o.o- 3 

'Y 0.812 4.92 x 1o.o- 2 3.62 x w.o- 2 2.55x 10.0- 3 

a2 0.477 0.147 9.39x 10.0- 2 2.22 x w.o- 2 

a:! 1.001 7.29 x 1o.o- 2 6.35 x w.o- 2 5.32x IO.o- 3 
f 

GMM {31 9.80 x 10.0-2 0.172 0.167 2.97x 10.0- 2 

f32 0.465 0.151 0.144 2.39x 1o.o- 2 

'Y 0.853 4.49 x 1o.o- 2 4.17 x w .o- 2 4.84 x 1o.o- 3 

a2 0.397 6.18 x 1o.o- 2 9.32 x lO.o-2 1.45 x 1o.o- 2 

a~ 0.900 0.207 0.172 5.28x 1o.o- 2 
f 



------ - - ------------------ ---------- --
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Table 4.8: The simulated GQL and GMM estimates for all parameters under the 
dynamic model (1.4), with true (31 = 0.1, /32 = 0.5 and selected true values for "/, 
a~ = 1.0 and a; = 1.0. 

Quantities 
I Method SM SSE ESE SMSE 

-0.8 GQL (31 9.59 x 10.0 2 8.82x 10.0 2 8.58 x 10.0 2 7.79 x 10.0 3 

!32 0.506 7.41 x 1o.o-2 7.39 x 10.0- 2 5.52 x 10.0-3 

I -0.801 4.44 x 10.o- 2 2.05 x 1o.o-2 1.97x 10.o- 3 

u2 1.005 0.184 0.168 3.38 x 1o.o- 2 

u~ 0.991 6.33 x 1o.o- 2 6.28 x 1o.o- 2 4.08x 10.0-3 
f 

GMM (31 8.93 x 1o.o- 2 0.138 0.131 1.92 x 1o.o- 2 

(32 0.506 0.120 0.126 1.44 x 1o.o-2 

I -0.807 4.59 x 1o.o- 2 3.72x 10.0- 2 2.16 x 1o.o- 3 

u2 1.021 0.188 0.177 3.57 x 10.o- 2 

u~ 0.959 5.96 x 10.0- 2 0.102 5.20x 10.0-3 
< 

-0.3 GQL (31 9.61 x 1o.o- 2 8.85 x 1o.o-2 8.59 x 1o.o- 2 7.85x10.o-3 

!32 0.500 7.48x 1o.o-2 7.41 x lO.o- 2 5.59x10.o- 3 

I -0.282 5.73x 10.0-2 6.27x 10.0-2 3.62 x 10.o- 3 

(52 0.971 0.171 0.163 2.99x lO.o- 2 

u~ 0.995 6.30x 10.0- 2 6.31 x w.o- 2 3.99x 10.o-3 
f 

GMM (31 9.28 x 10.0-2 0.107 0.102 1.15 x 10.o- 2 

!32 0.495 9. 78 x w.o- 2 9.85 x 1o.o- 2 9.58x 10.0- 3 

I -0.272 5.05x 10.0- 2 5.28x 10.0- 2 3.35 x 1o.o- 3 

(52 0.945 0.162 0.160 2.92 x 1o.o-2 

u~ 1.014 6.27x 10.0- 2 6.82 x Io.o-2 4.12 x 1o.o-3 
f 

0.01 GQL (31 9.78 x lO.o- 2 8.94x lO.o-2 8.67x Io.o-2 8.oo x w.o-3 

(32 0.473 7.26 x 10.o- 2 7.49 x 10.0-2 5.99 x 1o.o-3 

I 0.105 5.71 x w .o-2 7.88x 1o.o- 2 l.22 x 1o.o-2 

u2 0.811 0.131 0.141 5.27x 10.0- 2 

u~ 1.03 6.10 x w.o- 2 6.54 x 1o.o-2 5.49x 1o.o-3 
f 

GMM (31 9.37 x 1o.o- 2 0.125 0.121 1.56 x 10.o- 2 

(32 0.498 0.104 0.102 1.o8 x 10.o- 2 

I 2.25 x 10.o- 2 4.94 x w.o- 2 6.05 x w.o- 2 2.59x 10.0- 3 

(52 0.962 0.154 0.161 2.50x 10.0- 2 

u~ 0.999 6.38 x 10.o-2 6.35 x w.o-2 4-.07x10.o- 3 
< 

0.3 GQL (31 9.94 x 10.o-2 8.98x 10.0- 2 8.67 x w.o-2 8.06x 10.0-3 

!32 0.464 7.75 x 10.o- 2 7.50x lO.o- 2 7.33 x 10.o- 3 

I 0.408 7.76 x 10.0-2 6.78x 10.0-2 l.76x 10.o- 2 

(52 0.734 0.181 0.131 0.104 
u~ 1.055 0.105 6.11 x w.o-2 1.41 x 1o.o- 2 

< 
GMM f3I 9.40x 10.0- 2 0.157 0.153 2.45x 10.0-2 

(32 0.493 0.116 0.112 l.35 x 1o.o-2 

I 0.322 4.88x 1o.o- 2 5.65 x w.o- 2 2.86 x 1o.o- 3 

u2 0.926 0.114 0.156 l.86 x 1o.o-2 

u~ 0.998 6.70x 1o.o- 2 7.00x 1o.o-2 4.50 x Io.o-3 
f 
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(Table 4.8 contd .... ) 

Quantities 

'Y Method SM SSE ESE SMSE 
0.8 GQL (31 9.70 x 10.0 2 8.84xl0.0 2 8.61 x 10.0 2 7.82x l0.0 3 

(32 0.495 7.60x lO.o- 2 7.42 x 1o.o- 2 5.79x lO.o- 3 

'Y 0.822 4.16x 10.0- 2 3.22 x lO.o- 2 2.19x 1o.o- 3 

(]'2 0.913 0.230 0.157 6.05 x 1o.o- 2 

(]'~ 1.009 7.64 x lO.o- 2 6.40x 10.0- 2 5.93x 10.0- 3 
< 

GMM f31 9.54x 10.0- 2 0.232 0.225 5.37x lO.o- 2 

(32 0.484 0.194 0.189 3.81 x 1o.o- 2 

'Y 0.825 4.42 x w.o-2 4.29 x w.o- 2 2.56x lO.o- 3 

(]'2 0.902 8.79x 10.0- 2 0.161 1.74x lO.o- 2 

(]'~ 0.896 0.297 0.195 9.89x 1o.o- 2 
< 



Chapter 5 

Concluding Remarks 

In this thesis, we have provided two inference techniques to analyze continuous 

panel data by fitting a linear dynamic mixed model with dynamic mean structure. 

Our interest is to estimate the model parameters , namely, the regression parameter 

({3), the dynamic dependence parameter (r), the variances of the individual effects 

(a~) and the variance of random error terms (a;). We explained some existing estima­

tion methods briefly in chapter 2, such as the least squares dummy variable (LSDV), 

bias-corrected LSDV, and instrumental variables based generalized method of mo­

ments (IVGMM). The proposed two inference techniques, namely, the GMM as well 

as a generalized quasi-likelihood estimating approach (GQL) , a.re given in the same 

chapter. Note that some of these existing estimation methods may involve either 

first differencing the dynamic panel data model or subtracting the individual-specific 

means, which eliminates the unobservable individual specific effects during the pro­

cess. Therefore , it is impossible to estimate the variance of the individual specific 

effects. Unlike these existing methods, our new GMM and GQL estimation methods, 

although based on instrumental variables as well, however, performed well to estimate 

the variance component of the individual effects. 

In chapter 3, we compared the asymptotic efficiency of the proposed GMM and 

GQL estimation methods. It was demonstrated that the GQL outperforms GMM 

uniformly for the estimation of the parameters f3, a~ and a;. For the estimation 
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of the dynamic dependence parameter"(, the GMM approach was found to perform 

better than the GQL approach in a few cases. 

In chapter 4, we examined the relative performances of the GQL and GMM ap­

proaches through a small sample simulation study. It was found that the GQL outper­

forms GMM for the estimation of t he regression parameter (3, but the two approaches 

appear to be very competitive for t he estimation of the other parameters, "(, a~, and 

a;. However, we found that the GMM has a serious technical limitation as its itera­

tive equations required the initial values to be very close to the true parameter values 

to yield converged estimates. This is however impractical, as in practice, it is difficult 

to consider such initial values. 

In summary, although the GMM estimation approach is widely used in estimating 

the parameters of the linear panel data models, it is however demonstrated in the 

thesis that the GQL estimation approach is a more efficient and reliable approach than 

the GMM approach. Consequently, we recommend the GQL approach in practice for 

the analysis of the linear dynamic mixed models based panel data. 



---------
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Appendix A 

Formulas for the partial derivatives : The following formulas are used to compute 

the partial derivatives needed for the GMM, GQL and GQL* estimating equations. 

I< T t-1 t-1 

L 2::::(2:::: /jXi,t-j)(L: /jX~,t-j ) , 
i=1 t=1 j =O j=O 

0, 

I< T - 1 t - 1 t-1 

""' ""' ( ""' · j-1 I f3 ""' j ~ ~ ~ J/ xi,t -j ~I Xi,t-j 
i=1 t=1 j=1 j=O 

t-1 t - 1 

""' j I f3 ""' · j-1 ) + ~I xi,t-i ~ Jl xi, t-i , 
j=O j=l 

I< T-1 t - 1 t t-1 t 

I: I: [a~ (2:::: 'j I: k~k- 1 + I: j,j-1 I: l) 
i=1 t=1 j=O k=1 j=l k=O 

t-1 

+a; 2::::(1 + 2j)r2i], 
j=O 

t= 1 j=O 

T-1 T u-1 t-1 

K I: I: (2:::: ,k)(L: ri), 
u=l t=u+J k=O j=O 

T t-1 

KLL I 2
i, 

t = l j=O 

T-1 T u- J 

J{ L L L lt-u+2j' 

u=1 t=u+1 j=O 

t - 1 

L lj Xi,t -j) 

j=O 

t-1 t t - 1 t 

a~(L: hj-1 I: 'k +I: ' j I: k~k- J ) 
j=1 k=O j=O k=1 

t-1 

+a; 2:::: (1 + 2j)r2
i, 

j=O 

(a. l ) 

(a.2) 

(a.3) 

(a.4) 

(a.5) 

(a.6) 

(a.7) 

(a.8) 

(a.9) 

(a.lO) 



a a itt 
a a; 

a>-it,t+l 

8"( 

t-1 a u-1 
"" 2 . aiut - "" t-u+2j L.., "fJ, -- - L.., 'Y ' 
j = O 8a'; j = O 

t t - 1 
8a·t t+J "" · '-J I (3 "" · j - 1 I (3 

t ' + P,it L.., J'YJ xi,t+l- j + P,i,t+l L.., J'Y x i ,t -j ' 
8"( j = l j = l 
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(a.ll) 

(a.l2) 

(a.13) 

(a.l4) 

(a.l5) 

(a.l6) 



52 

Appendix B 

Formulas for Variances and Covariances : The following are used to compute 

the variances and covariances needed for normality based GMM, GQL and GQL* 

estimating equations. 

Under the normality assumption, the following two formulas 

E [(Yiu- f.Liu)(Yie- f.Lil)(Yit- /-Lit)]= 0, 

and 

are used to give necessary third and fourth order moments. 

K T T u-1 t-1 

L L I.:J~= ')'jXi,u- j)O"iut( L ')'jX~,t-j) 
i=1 u=1 t=1 j=O j=O 
!( T-1T-1 

L L L (O"iutO"iu+l,t+1 + O"iu,t+lO"iu+1,t) 
i=1 u=1 t=1 

K T-1 T - 1 t-1 

L L L f.LitO"iu,u+1 (L 'Yj Xi,t-j) 
i=1 u=1 t=1 j=O 
-E(W1)E(W2) 
I< T - 1 T T 

L:[2 L: L: (O"iuuO"itt + 2a-?ut) + 3 L: O"?u 
i = 1 u=l t = u+1 t=1 

T 

- (L: a-itt) 2l 
t=1 

I< T - 1 T T-1 T 

L [L L L L (O"iutO"iml + O"iu!O"itm + O"iumO"itl) 
i= l u=1 t=u+1 1=1 m=l +1 

T-1 T 

(b.l) 

(b.3) 

(b.4) 

(b.5) 

(b.6) 

-(L L O"iut)
2

] (b.7) 
u=1 t=u+1 

K T T - 1 T 

L:[L: L: L: (a-iu!O"itt + 2a-iutO"itl) 
i=1 t=1 u= 1l=u+1 

T T-1 T 

-(L:O"itt)(L: L: O"iul)J (b.8) 
t=l u=1 l=u+l 



var[(Yit 

cov[(Yiu 

var[(Yit 

var[ (Yiu 

cov[ (Yiu 

cov[ (Yiu 

cov[(Yiu 

var(YitYi,t+l) 

/-Liu)2
, (Yit - /-Lit) 2

] = 2alut 

/-Liu)2
, (Yit- J.Lit)(Yil- /-Lit)] = 2aiutaiul 

+J.LiuJ.Litaiu+l ,t+l + f.Liu+lJ.Litaiu,t+l + /-Liu+ l/-Lit+l aiut 

var(Ylt) = 2altt + 4J.Lltaitt 

( ) 
2 2 2 2 var YiuYit aiut + aiuuaitt + 1-Liuaitt + 1-Litaiuu + /-LiuJ.Litaiut 

cov(Ylu, Ylt) 2alut + 4J.Liu/-Litaiut 

cov(ylu, YitYit) 2aiutaiul + 2J.Liu/-Litaiul + 2J.Liuf.LiWiut 
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(b.9) 

(b.lO) 

(b.ll) 

(b .l2) 

(b.13) 

(b .l4) 

(b.15) 

(b .16) 

(b.l7) 

(b.18) 

(b.19) 

(b .20) 

(b .21) 

(b .22) 
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