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Abstract 

A low power propeller based propulsion module has been developed to complement 

the buoyancy ngin of a 200 m Slocum electric glider. This device is introduced to 

allow new behaviours such as horizontal flight and faster ov rall speeds to expand 

the existing operational envelope of underwater gliders. The design goal is to match 

typical horizontal glider speeds of 0.3 m/s while minimising the impact of the module 

on the performance of the unmodified glider. After careful selection of the propeller 

and motor candidates the stand-alone propulsion module has been te ted in a small 

flume tank to verify the system's performance. Since the desired flight trajectory is 

restricted to the horizontal plane the validity of a previously published hydrodynamic 

model of the glider at zero angle of attack was verified by conducting drag measure­

ments at various flow velocities at full scale in a larg r flume tank. Self propulsion 

tests were also performed to establish the performance of the glider with the new 

propulsion module in a larger flume tank and in a towing tank. Open water tests 

were performed in a large test tank to show the stability of th platform for horizontal 

flight. The results from these tests show that the new propulsion module is capable of 

driving the vehicle horizontally while matching the performance of the conventional 

glider. 
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Chapter 1 

Introduction 

1.1 Literature Review 

1.1.1 Underwater Gliders 

The conception of underwater gliders was initially motivated by the s ientific driv 

to better under tand the subsurface layers of the world' oceans. This desire was 

shown through initial development of ocean floats by Stommcl and Swallow [4], [5] . 

These floats , through many iterations, develop d into the Auton mou Lagrangian 

Circulation Explorer (ALACE) floats as a part of the world oc an ir ulation proj ct 

[6], [7]. Slightly before this, Dougla Webb who had been h avily involved in th 

float d velopment, conceived the original concept for an und rwater glider as a typ 

of controllabl profiling float. Di cu sions of this concept with Henry Stommelled to 

their vision of the glider's role in oceanographic research as a portrayal of a future 

world control centre for gliders [8] . 

Several y ar later the first revision of what later became t.he Slocum glider was 

developed as a variation of a profiler with controllable fins which allowed for gliding 

1 



CHAPTER 1. INTRODUCTION 2 

motions and therefore, a horizontal motion component in addition to the vertical 

motion component [9]. Webb's original plan was to develop a glider with a thermal 

engine, capable of harnessing the sharp temperature gradient found in much of the 

oceans to cause buoyancy differences large enough to sustain gliding motion [10]; 

however, due to the complicated nature of the thermal engine, electric versions of 

the Slocum gliders were developed to expedite product development [11], [12], [13]. 

Concurrent to this development, other notable gliders were developed including the 

Spray glider at the Scripps Institute for Oceanography and the Sea Glider at the 

University of Washington [14], [15]. The Spray glider was originally developed as an 

autonomous profiling float and the Seaglider as a virtual mooring capable of long term 

monitoring of critical locations. These three gliders were the first commercially avail­

able underwater gliders and several articles can be found that outline and compare 

their abilities [16], [17], [18], [19], [20]. 

A number of other underwater gliders have been developed for research and de­

velopment purposes. One of the earliest of these gliders was the ALBAC vehicle 

designed at University of Toyko [21], [22]. This vehicle uses a drop weight to glide 

to a maximum depth of 300m where the vehicle releases the drop weight and glides 

back to the surface. Another glider project at this lab is a simple machine based Mini 

Underwater Glider (MUG) [23]. This glider is used as an undergraduate student ed­

ucation platform. A more recent research based project from the Osaka Prefecture 

University is the ALEX vehicle [24], [25]. This vehicle uses independently control­

lable main wings to achieve a high degree of maneuverability and to increase the glide 

performance by controlling the angle of attack to the control surfaces. 

The ROGUE vehicle was also developed as a laboratory scale glider at Princeton 

University to validate stability and control models [26], [27]. Additional modelling 

of control algorithms was based off the ROGUE vehicle in which a model based 
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feedback control method was developed and tested [28]. Dynamic, stabilisation and 

coordination mathematical models were also developed using the ROGUE glider [29], 

[30]. This simulated dynamic model was later extended to the Slocum vehicle using 

field data to generate a hydrodynamic model [3] . Bachmayer et al. , using this model 

and some recorded data from field trials with the Slocum glider, tuned several of the 

control loops within the vehicle [31]. A summary of the dynamic modelling work 

on the Slocum and ROGUE gliders may be found in Graver 's thesis [1] . Additional 

stability and non-linear control methods for underwater gliders from the Princeton 

University Dynamics and Control Systems group may be found in [32], [33]. 

A larger hybrid gliding vehicle named STERNE was developed at ENSIETA in 

France [34] . The plans detailed a vehicle substantially larger than the Slocum gliders, 

around 1000 kg, capable of travelling faster than many of the other underwater gliders 

to date and having both ballast control and a propeller. For testing, a 1/3 scale 

laboratory version of the vehicle was built which was around the same size as the 

Slocum gliders. 

Several other hybrid glider developments include the AUV-glider and the Folaga 

glider [35], [36], [37]. The AUV-glider was developed at the Florida Institute for Tech­

nology as hybrid between the long endurance buoyancy driven gliders and propeller 

based Autonomous Underwater Vehicles (AUVs). This vehicle weighs about 300 kg 

with an endurance of approximately 150 hrs and an optimal speed of 2 knots. The Fo­

laga glider was developed as a very low cost system which drives at or near the surface 

using a propeller with intermittent profiles using a ballast system. The Folaga vehicle 

weighs about 30 kg with an endurance of around 8 hrs and a top speed of 2 knots. 

Additional work has been done with the Folaga vehicle for multi-vehicle cooperative 

missions, adaptive environmental sampling missions as well as hull op timisation for 

near surface operation of submerged vehicles in waves [38], [39], [40]. 



CHAPTER 1. INTRODUCTION 4 

A more recent commercial glider development is the Sea Explorer by ACSA Un­

derwater GPS. The Sea Explorer is an underwater glider with acoustic navigation that 

has an optional propeller based propulsion module to make a hybrid type glider [41] . 

The vehicle is still in development and expected to have an endurance on the order 

of months and weigh about 60 kg. 

The Liberdade/X-ray is another glider configuration tha t is in development. This 

vehicle is a blended wing/body type glider that makes use of t he flying wing concept 

[42], [43]. To genera te sufficient lift for this configuration the wing mu t be larger than 

that of vehicles mentioned previously making this glider the largest at a wingspan of 

6 m. The vehicle is to be capable of speeds of up to 3 knots with an endurance of 

months and a range of over 1000 km. 

Another variation on a gliding vehicle is the Wave Glider by Liquid Robotics. 

The wave glider uses a surface buoy coupled to a large gliding submerged body to 

harvest wave motion and propel itself forwards. In this way the vehicle has no electric 

propulsiv load and maintains a p ed r lative to the mean wav h ight [44]. A recent 

application of this technology in the form of a buoy replacement was met with success 

where the Wave Glider was able to stay on station at all t imes with the exception of 

extreme winds. In this sit uation the vehicle was still able to recover its position after 

the weather event [45]. 

Throughout the development cycl of these first underwater gliders there has 

been significant interest by the avi s in various countries. In 2003, directly after the 

three Office of Naval Research (ONR) funded Slocum, Sea Glider and Spray glider 

programs finished , a glider systems study was performed and compiled for 0 R [20] . 

Shortly after the completion of this study, 0 R announced a contract for over a 

hundred gliders prompting iRobot to exclusively license the Sea Glider, Tel dyne to 

purchase Webb Research and Bluefin Robotics to license t he Spray [46]. In early 



CHAPTER 1 . INTRODUCTION 5 

2009 Teledyne Webb Research announced that it had been successful in its bid for 

the contract [47] . This contract has lead to significant developments with the Slocum 

glider to harden the system to military specifications leading to the second generation 

of Slocum gliders, the Slocum G2. 

Another primary motivator for development of gliders and glider related technolo­

gies has been the scientific community [48]. The most prevalent u es in science have 

been in Physical Oceanography where they have been used as profilers, gathering 

salinity, density and temperature information through conductivity, temperatur and 

density (CTD) sensors. Many publications have been dedi ated to the correction 

and interpretation of this data as the vehicles use a non-pumped CTD sensor which 

presents time-lag errors and challenges with dynamic measurements which vary in 

space and time [49]. Additional popular sensors include dissolved oxygen sensors, 

backscatter s nsors, turbulence meters, Acoustic Doppler Current Profilers, various 

sonar devices and hydrophones to name a few. 

1.1.2 Long Range AUVs 

It is interesting to note that Autonomous Underwater Vehicles (AUVs) and gliders 

developed to meet different needs and markets while still being underwater vehicles. 

Only recently have some of the roles of AUVs and underwater glider begun to merge. 

One notable example of this is the Long Range Autosub (LRA) 6000 AUV which 

extends the Autosub 6000 architecture to a version with a range of 6000 km [50], [51]. 

Previously, vehicles with a range of over 1000 km were exclusively the domain of 

underwater gliders. This tran ition is motivated by the de ire to push the boundaries 

of the types of missions possible with underwater vehicles. The LRA is scheduled 

for field testing in J anuary 2011 with some possible missions including traversing 
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beneath the arctic ice cap and in the strong current region of the drake passage 

between Antarctica and South America [52]. Additional work comparing gliders and 

AUVs is pr sented in Steinberg et. al's work in which an analytical comparison 

between the normalised transit efficiencies is presented [53]. 

1.1.3 Under-Ice AUVs 

There have been a small number of AUVs which have specialised in under-ice mis­

sions. The most notable of these from a Canadian perspective is the Theseus AUV 

from Int rnational Submarine Engineering [54]. The Theseus vehicle was developed 

on contract from the Defense Research Establishment Atlantic of the Canadian De­

partment of National Defense to lay fibre-optic cables in i e covered waters [55]. 

Initially developed to have a range of around 400 km, it has evolved to being capable 

of a range of over 1360 km with a depth rating of 2000 m [56]. The Theseus vehi le 

remains one of the few AUVs specifically designed and successfully used in under-ice 

deployments. Th success of the Theseus vehicle has prompte 1 under-ice missions 

with the MUN-Explorer vehicle in 2009 [57]. These missions came as a precursor to 

two additional explorer class vehicles being contracted by the Canadian government 

for use in under-ice survey of the Canadian arctic ridge to establish Canada's claim to 

the Commission on the Limits of the Continental Shelf through the United Nations 

Convention on the Law of the Sea [58]. These vehicles are presently doing survey 

work to meet the deadline for claims of 2013. 

The Autosub Under-Ice program is another notable under-ice AUV exploration 

program. Th Autosub under-ice program was a 5-year program funded by the Na­

tional Environment Research Council in the United Kingdom to bring together sci­

entists and engineers to study ice-shelf and ocean interactions and the impact they 



CHAPTER 1. INTRODUCTION 7 

have on the climate. This program has collected the most data to date on under-ic 

properties in arctic waters [59], [60]. The use of the Autosub platform for under­

ice missions also prompted significant investigation into under-ice AUV risk of loss 

assessment after the loss of one of the Autosub vehicles [61]. 

1.1.4 The Autonomous Ocean Syst em s Lab 

The Autonomous Ocean Systems Lab (AOSL) at Memorial University of Newfound­

land (MUN) focuses on the development of ocean technologies related to scientific and 

industrial needs. Current research projects include a highly maneuverable yet stable 

AUV platform for high resolution sonar bathometry being developed in conjunction 

with Marport Canada and the National Research Council Institute for Ocean Tech­

nology [62]; the hybrid glider and the subject of this thesis [63], [64]; the integration 

and data correction for a glider outfitted with an acoustic doppler current profiler 

(ADCP) [65] ; using an upwards facing altimeter for ice profiling work with an un­

derwater glider [66]; an autonomous surface vessel for glider launch and recovery and 

a glider outfitted with acoustic transponders for localisation. These projects bring 

together many of the different specialised commercial, provincial and federal interests 

in ocean technology in Canada and help to generate public interest and awareness of 

ocean related issues. 

1.2 Motivation and Scope of Work 

Over the last ten years autonomous underwater gliders have become increasingly use­

ful for oceanographic research because of their ability to lower operational expenses, 

increase range and endurance [18]. Gliders use an active buoyancy control system 

combined with a set of fixed wings to move vertically and horizontally, in a saw tooth 
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like pattern through the water column [15], [14], [10]. The endurance of these un­

derwater vehicles varies from weeks to several months and even longer in the case of 

the thermal glider [10]. In contrast, currently available propeller driven autonomous 

underwater vehicles (AUVs) achieve an endurance ranging from hours to days. This 

stark contrast can mostly be attributed to a purpose built system and to the low 

speed at which the gliders move [67] and [68]. Gliders typically move at horizontal 

speeds of about 0.3 mjs compared to propeller driven AUVs which typically move at 

average speeds greater than 1.0 mjs. The low speed capability can cr ate significant 

problems when operating in areas of strong water currents which exceed the glider's 

maximum forward speed. If the direction of the currents is known a priori or mea­

sured in situ [69] the missions can be designed to either avoid thes areas or to take 

advantage of them. In this case the operator must redirect the glider to better deal 

with the current by moving away from that region or, in the case of significant vertical 

stratification, try to operate below/ above the expected layer of highest lateral veloc­

ities. However, in the case of unknown currents they can po e a significant risk to 

the successful execution of the mission plan. These issues have given rise to the idea 

of the hybrid glider which combines the gliding behaviours of traditional underwater 

gliders with the propeller driven behaviours of AUVs. 

This thesis addresses the design and testing of an auxiliary propulsion module for 

the Slocum clas of underwater gliders. The objectives of the proj ct are to enable 

the glider to move horizontally at the nominal glider speed of 0.3 m/s and, for short 

periods of time, to double its horizontal speed to approximately 0.6 mjs. To this 

end a simplified mathematical model of underwater gliders as well as a model for the 

Slocum 200 m glider ballast pump power consumption based on experimental data 

are described. These two models are used to develop design constraints and initial 

component sel ction. The design and testing process for the propeller and motor 
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are presented during which the final configuration is shown. Following this, the 

mechanical, electrical and software integration of the module into the existing glider 

is discussed. The system testing and evaluation including experimental results from 

full-scale tests in the Marine Institute (MI) of Memorial University of Newfoundland 

(MUN), tow tank self-propulsion tests in the Ocean Engineering Research Centre at 

MU and open water flight tests in the Ocean Engineering Basin (OEB) at National 

Research Council's Institute for Ocean Technology are presented. A range model for 

a hybrid glider is developed based on the combination of an AUV range model and 

the hydrodynamic model for the glider. The last section summarises the results of 

the design and evaluation phase of the hybrid glider and gives an overview of the next 

steps in the development of the hybrid glider towards a fully operational system. 



Chapter 2 

Vehicle Modelling 

A model of the vehicle is presented to facilitate the design and analysis of the new 

propulsion module. The hydrodynamic mod 1 is based on a previously published 

hydrodynamic model and the ballast pump model is derived using experimental data. 

2.1 Hydrodynamic Modelling 

The full six degree of freedom hydrodynamic model for an nnderwater glider is simpli­

fied due to the assumption of steady state conditions for the vehicle. This assumption 

is justified as a well ballasted gliding underwater vehicle spends the majority of its 

time at steady state. Most of the hydrodynamic modelling to date for underwater 

gliders has assumed steady-state glides and extrapolated parameters based on a com­

bination of measured data and theoretical calculations. For a glider with angles and 

forces as defined in Fig. 2.1 the simplified steady state equations of motion in the 

vertical plane may be written as 

10 
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( 

FL cos(~)+ FD cos(~) ) ( 0 ) 

FL sin(~)+ FD sin(~)+ F9 - FB - 0 
(2.1) 

where~ is the glide-path angle, FL is the hydrodynamic lift , FD is the hydrodynamic 

drag, F9 is the gravitational force and FB is the buoyant force. The lift and drag 

force may then be defined as [3] 

(2.2) 

(2.3) 

where a is t he angle of attack, e is the pitch angle defined as e = ~ - a, p is fluid 

density, A is the cross sectional area and VA is the advance velocity. In [3] the authors 

present the hydrodynamic model parameters for a Slocum 200 m underwater glider. 

From (2.2) the lift coefficient CL(a) based on frontal area is determined as 

(2.4) 

and similarly from (2.3) the drag coefficient CD(a) as 

(2.5) 

where the coefficients from (2.4) and (2.5) are defined as in Tab. 2.1 

For the purposes of the propulsion module design the glider was assumed to be 

ballasted neutrally buoyant, trimmed for level flight at pitch angle() = 0° and moving 

at a constant speed. These assumptions do not hold for regular glider operations 

but for the ini tial design purpose they provide a starting point while significantly 

simplifying the lateral plane hydrodynamic model of gliders as presented in [28]. 

As a result of the assumed pitch angle () = 0°, the glide-path angle ~ = 0° and 
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..... 
..... 

Figure 2.1: Schemat ic of an autonomous underwat er glider in the vertical plane defining 

the angles relevant to the glider's pa th during steady state glides. 

co 11.76 deg- 1 

c1 4.6 deg- 2 

C2 0.214 

C3 32. 3 deg- 2 

Table 2.1: Hydrodynamic lift and drag coefficients for the model taken from Graver e t a!. [3] 
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therefore the angle of attack a = 0° as well. Under the assumption of constant 

velocity, there is no acceleration, therefore added mass effects can be neglected and 

the equation of motion (2.1) is reduced to the balance of the drag force FD and the 

thrust generated by the propulsion module. Due to the assumption of a zero angle of 

attack (a= 0°) the hydrodynamic model simplifies to a drag only model. From (2.5) 

CD(a = 0) = CDo = c2 such that 

(2.6) 

This simplified hydrodynamic model provides the vehicle drag force for a given 

advance velocity to the propulsion module design cycle, establishing the operating 

parameters for the propeller and motor. Additionally, the model provides an estimate 

of t he hydrodynamic power requirements. The hydrodynamic power may be coupled 

with the electrical input power of the ballast system and propulsion module to give a 

measure of the transport efficiency. The transport efficiency for the buoyancy driven 

glider may then be compared with the propeller driven glider. 

2.2 Ballast Pump Modelling 

The ballast pump is the device responsible for changing the volume of the glider, 

causing the net buoyancy to be positive or negative and subsequently causing the 

vehicle to glide upwards or downwards. It is the propulsive motive force for a gliding 

vehicle. In this section a model is developed for the buoyancy engine based on ex-

perimental data that captures the electrical and mechanical changes. This model is 

used for a comparison between the buoyancy driven vehicle and the propeller driven 

vehicle. To establish the power usage of a buoyancy driven glider, the power to the 

ballast pump was monitored during a mission with a variety of depths of profiles. A 
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subset of the data recorded in this mission is shown in Fig. 2.2. 

During a mission the ballast pump turns on only at the inflection points of a profile, 

at either the deepest or shallowest points of the profile. From these measurements 

the instantaneous electrical power for a given depth may be plotted as in Fig. 2.3, 

establishing the load line for the pump as a function of depth as in 

P~;pi = Paz + P1 (2.7) 

where z is the glider depth and the coefficients for (2 .7) are defined as in Tab. 2.2 

P0 0.3 W/ m 

pl 8.2 w 

Table 2.2: Instantaneous ballast pump power coefficients 

The mechanical power output by the ballast pump P~;pm may be defined as 

Pbpm = p(z)Q (2.8) 

where p is the pressure at depth and Q is the volumetric rate. The volumetric rate is 

found by taking the t ime derivative of the volume of ballast pumped V as in 

Q = !£v 
dt 

(2.9) 

The computed volumetric rate is plotted in Fig. 2.4 for the Bonavista 2009 mission 

where the volume is increasing. The ra te is shown to decrease with depth when the 

volume is increasing, i.e., the glider is coming back to the surface. 

(2. 10) 
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Figure 2.2: Ballast pump power monitoring from a mission out of Bonavista, Newfoundland 

on June 17th, 2009 where the left is a subset of the data showing the depth , 

ballast pump power and measured ballast pumped and the right is a close up 

of a deep inflection point where the ballast pump is on 
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where Q+ is the volumetric rate when the volume is increasing determined using a 

least squares fit. The coefficients for (2.10) are shown in Tab. 2.3 

Qo 2.228E-5 m3 /s 

q1 3.1E- m 2 /s 

Table 2.3: Positive volumetric rate coefficients 

The volumetri rate for the ballast system when the glider is decrea ing its volume 

and at the surface, i.e. , about to dive, may be extracted from Fig. 2.5 as in 

(2.11) 

where Q- is the volumetric rate when the volume is decreasing and the coefficients 

for (2.11) are shown in Tab. 2.4 

q2 2.45E-5 m 3 /s 

Q3 0 m2 /s 

Table 2.4: Negative volumetric rate coefficients 

The increase in volumetric rate at z = 0 for Q- ov r Q+ i attributed to the 

internal vacuum in the vehicle as the ballast pump must work against it to expand 

the vehicle' volume. It i expected that Q- will take a form similar to Q+· however, 

the gliders shallow inflection point was always set to be 3 m for the e tests resulting 

in insufficient data to determine q3 . The pressure at depth i defined to be 

P = Po+ pgz (2.12) 

where Po i atmo pheric pressure, g i the gravitational acceleration and z i water 

depth defined as positive downward . The time averaged ele trical power Pbpe is then 
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2009 mission while at depth where the volume is decreasing. 
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given by convert ing the instantaneous power to energy consumed per up and down 

profile Ebpe with one use of the buoyancy pump at the surface and one at depth, and 

dividing by the total profile time t bp as in 

D - Ebpe 
r bpe - --

tbp 

(2. 13) 

(2.14) 

Here the shallow inflection depth is assumed to always be at the surface z = 0 and 

the time used to compute the ballast pump electrical energy E bpe is found by dividing 

the total volume change V8 by the volumetric rate Q where V8 = 4.50E-4 m 3
. The 

on-time for the ballast pump was computed using the volumetric rate to remove the 

aliasing errors due to the slow sampling rate of the glider. The total cycle t ime tbp 

can be measured from the mission data, however, extended periods at the surface 

and the bot tom for many of the profiles made it difficult to accurately estimate this 

value. Therefore, the steady state depth rate was used to estimate the glide t ime as 

a function of depth for half a profile as in 

z 
t bp = ­

z 
(2.15) 

where the steady st ate depth rate i was calculated from the measured values shown 

in Fig. 2.6. 

From Fig. 2.6 it is evident that there is a significant miss-trim in the vehicle 

due to the difference between the descending and ascending steady state dep th rates 

of i = 0.1187 m/s and i = 0.2657 m js. To calculate the depth rate the average 

between the descending and ascending steady state depth rates of i = 0.1187 m/s 

and i = 0.2657 m/s was taken to give i = 0.1922 m js. From a plot of the steady state 
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Figure 2.7: Line connecting the ascending and descending steady-state depth rate as a func-

tion of the ballast pumped showing the ballast adjustment required. 

depth rate and the ballast pumped the mass change required for an ideally trimm d 

vehicle may be obtained as in Fig. 2. 7. An ideally ballasted vehicle ha!:l zero depth 

rate for zero ballast pumped, therefore, the ballast change required is found wher 

the depth rate is zero and is equal to 8.6E-5 m 3 for the Bonavista mission. 

The resultant time averaged ballast pump electrical power Pbpe is shown in Fig. 

2.8. The focus in developing the ballast pump model has been on the time averaged 

electrical power rather than the energy consumption. This focus on the time averaged 

power is presented for ease of comparison to a continuous load. 
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2.3 Glider Efficiency Modelling 

The transport efficiency is an effective way of comparing the overall effectiveness of 

the buoyan y and the propeller based propulsiv methods. To e timate the efficiency 

of the glider we can use the geometric relation hip defined in Fig. 2.1 between the 

glide path angle ~ and the vertical velocity of the glider i to determine the advance 

velocity v A as 

and the horizontal velocity i; as 

z 
VA= 

sin(O 

. z 
X=-...,......,.. 

tan(~) 

(2. 16) 

(2.17) 

The hydrodynamic power may then b alculated using (2.3), (2.5) and (2.16) as 

m 

(2.1 ) 

A measur of the hydrodynamic effi iency of the buoyancy driven glider 'r/bph may 

be estimated u ing (2.14) and (2.18) as in 

P hyrl 
'r/bph = -­

P bpe 
(2.19) 

Additionally, the mechanical effi iency of the ballast pump 'r/bpm may be calculated 

using (2.14) and (2. ) as in 

P bpm 
'r/bpm = R 

bpe 
(2.20) 

The fficiency and time averaged power results are plotted in Fig. 2.9 with an 

assumed angle of attack a = 2. go [3]. 
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C4 0.2175 

c5 6.36 deg-2 

Table 2.5: Hydrodynamic drag coefficients for the model taken from Williams et al. [2] 

An additional hydrodynamic model presented by Williams et. al [2] presents the 

drag coefficient from field data that is different from (2.5) as 

(2.21) 

where the coefficients for (2.21) are defined as in Tab. 2.5 

The c4 coefficient in this model is significantly less than c2 in (2.5) due to the 

author assuming a larger angle of attack than in Graver 's model [1]. The efficiency 

and time averaged power results for the Williams model are plotted in Fig. 2.10 with 

an assumed angle of attack a= 6.53° [2]. 

The 'f/bph is less in William's model than in Graver's model. This difference is 

attributed to the difference in the glide path angle ~ due to the different assumed 

angle of attack a. Since the depth rate z is fixed from the data from the Bonavista 

2009 ballast pump power trials, the glider advance velocity VA is larger in the Graver 

model resulting in a larger drag force F D for the same electrical power. This difference 

also highlights the dependance of the drag coefficient from Graver and Williams on 

parameters other than a. 

To summarise, the mechanical efficiency of the ballast pump is presented as a 

function of depth and is independent of the hydrodynamic model. The hydrodynamic 

efficiency of the gliding vehicle is presented and is shown to be dependant on the 

hydrodynamic model used. Several hydrodynamic models have been presented to 

date, however, the two models used [3], [2] do not match well resulting in a diff rent 
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namic model [2] 
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hydrodynamic efficiencies. The difference is mainly due the assumptions surrounding 

the glider 's angle of attack a . By measuring a directly a more accurate hydrodynamic 

model may be created. 



Chapter 3 

Propulsion Module Design 

A design for an auxiliary propulsion module for an underwater glider is presented. The 

propulsion module is designed using an integrated approach where hydrodynamic, 

mechanical and electrical performances are considered as a whole to maximise the 

propulsive efficiency of t he vehicle. 

3.1 D esign Constraints 

To minimise the impact of the propulsion unit on t he performance of the glider , cer tain 

constraints were placed on the design. T he module should be able to be turned on 

and off to allow the glider to retain its normal buoyancy-driven method of operation . 

In light of this, during regular operations, the influence of the propulsion unit on the 

hydrodynamic performance of the glider should be minimised. The impact of the 

propulsion module on the glider 's endurance and range when propelled for horizontal 

flight at typical glide speeds should be such that the propulsor should consume equal 

or less power than the buoyancy engine. Also, the module should be capable of 

providing enough t hrust to enable a sprint mode to at least double the glider's typical 

29 
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speed for short durations. These constraints provide a unique challenge in developing 

a high efficiency, low power propulsion module. 

3.2 Design 

To design a prototype d vice within these constraints an overall concep t was chosen 

utilising an electric motor, magnetic coupling and folding propeller. These compo-

nents require careful design matching to ensure that the peak operational regions 

overlap one another. To this end, electric motors provide the necessary energy d n-

sity for a small low power device and provide good efficiency matching potential to 

peak propeller efficiencies. A magnetic coupling was selected to minimise frictional 

losses due to shaft seals. 

drivetrain magnetic 
motor gearbox coupling propel ler 

v ~ 1sh lp ~ - ~ 

- ~ 
11 m 
~ 

11gb 11mc l1p 
~ 

i om o sh op VA 

Figure 3.1: Energy flow diagram showing the inputs and outputs for each stage of nergy 

conversion 

Initial matching of the motor, gearbox and propeller was clone using the simplifi cl 

drag force model from section 2 and nominal glider operational parameters as a 

reference for design . The energy flow for the system is shown in Fig. 3.1 , where the 

product of the inputs over the product of the outputs is equal to the efficiency of the 

particular subsystem. The system efficiency fJsy s is then given as the product of the 

subsystem efficiencies 
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(3.1) 

where 'r/m is the motor efficiency, 'r/gb is the gear box efficiency, Time is the magnetic 

coupling efficiency and 'r/p is the propeller efficiency. The efficiency of the motor 

controller may be included in 'r/sys as well. However , for this design a high quali ty 

brushed motor with precious metal brushes was chosen with the final design to be 

driven directly from the rail voltages of 14.4 V and 3.3 V to give a high and low sp d 

operation point. The motor controller efficiency was therefore left out of th syst m 

efficiency definition. Also left out of the system efficiency definition is the bat tery 

performance which is a product of environmental conditions and the el ctrical load 

requirem nts. The effects of the environmental conditions are left out b cause they 

apply to buoyancy driven vehicles and propeller driven vehicles. The electrical load 

for the auxiliary propulsion module is a continuous load and intermittent for the 

buoyancy engine. This difference can impact the battery performance differently due 

to 12 R losses. The instantaneous 12 R losses for the auxiliary propulsion module are 

on the order of 0.001 W and for the buoyancy engine they are on the order of 0.01 W, 

where R, in this case, is the internal resistance of the bat teries equal to 0.15.0 [70]. 

However , since th buoyancy engine use is intermittent, the 12 R lo ses are reduced to 

a negligible level. Both 12 R loss cases arc therefor consider d to be irrelevant wh n 

compared to the time averaged power consumption. 

In general the motor efficiency may be given as [71] 

(3.2) 

where the motor torque Tm and the motor speed Dm are given by 

(3.3) 
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(3.4) 

with (3.3) 

(3.5) 

Substituting (3.3) and (3.5) into (3.2) gives 

k1(i- i 0 )[uk2- k3k1(i- i0 )]27r 
'rfm = iu 60 (3.6) 

showing that the resulting motor efficiency depends on only the input voltage u and 

current i where k1 is the torque constant, k2 is the speed constant, k3 is th motor 

constant and i 0 is the motor no-load current. 

A propeller was mod lied as a small blade area ratio propeller using the OpenPVL 

MATLAB scripting [72]. The gearbox was assigned a fixed efficiency due to mechan-

icallosses as given by the data-sheet from the manufacturer. The magnetic coupling 

efficiency was assumed to be constant irrespective of motor or propeller selection and 

was therefore removed from the parameter space for the purposes of propeller, motor 

and gearbox matching. The propeller torque constant Kr [73] may be written as 

K - Tp 

T- p(~)2d~ 
(3.7) 

which may be re-written to give the propeller torque Tp 

" = K P(nP)2d5 
p T 60 p (3.8) 

where Tp is the propeller torque, dp is the propeller diameter and Kr is the propeller 

torque constant. The propeller torque constant Kr shaft speed DP are outputs from 

the OpenPVL MATLAB script ing. 
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The peak efficiencies for electric motors generally occur for RPMs that are high r 

than the peak efficiency for propellers. Gearboxes are therefore used to match the 

RPM of a given motor to the peak operational region of the propeller. If the gearbox 

ratio is too small th motor efficiency will be small due to the propeller speed require­

ments being well below the motor 's peak operational region. However , for each stage 

of gear reduction additional mechanical losses are ac.crued by the gearbox thus re­

ducing its effici ncy. These parameters compete against one another and by iterating 

the gearbox and motor parameters a motor and gearbox combination showing peak 

performance for the theoretical small blade-area-ratio propeller and nominal glider 

operational conditions may be chosen. 

The propeller efficiency generated by the OpenPVL MATLAB script was plot ted 

against the output of the motor model for different motor and gearbox combinations 

to match the peak efficiencies for a given shaft speed OP and propeller torque Tp as 

in Fig. 3.2 - 3.5. The script for these figur s is included in Appendix A. The voltage 

input to the motors was limit d to the v hi le battery voltage of 15V to maintain the 

operational region of the motors. The propeller design shaft speed was 100 RPM for 

an advance v locity of 0.35 m/s and 0.4 N of thrust resulting in a J(T = 0.0051. 

The motor 's considered in Fig. 3.2 - 3.5 have motor coefficients as defined in Tab. 

3.1 with gearbox 's having coefficients as defined in Tab. 3.2. Thi data is supplied 

from manufacturers data sheets [71]. 

From Tab. 3.1 and 3.2 the m1 motor and gb1 gearbox were selected. T he predicted 

motor performance for this motor and gearbox combina tion is shown in Fig. 3.2. In 

this figure it i shown that the m5 motor results in a high motor efficiency for the 

design propeller speed of 100 RPM. However , this motor when combined with the 

gb1 gearbox was too long to fit inside of the motor housing and the m1 motor was 

selected instead . 
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kl k2 k3 'to 

Units [ m/A] [RPM/V] [ m/RPM] [A] 

ml 9.92 E-3 9.62 E2 8.04 E5 7.35 E-3 

m2 1.39 E-2 6.85 E2 1.64 E6 4.27 E-3 

m3 3.33 E-3 2.9 E3 1.11 E6 2.34 E-1 

m4 1.63 E-2 5.84 E2 8.25 E5 6.45 E-3 

m5 1.9 E-2 5.02 E2 4.04 E5 4.63 E-3 

m6 9.17E-3 1.04 E3 2.60 E6 9.54 E-3 

m7 1.07 E-2 8.93 E2 2.6 E6 9.69 E-3 

m8 8.23 E-3 1.16 E3 2.32 E6 4.88 E-2 

Table 3.1: Motor coefficients for motors considered during sci ction. The selected motor is 

shown in bold. 

gbl gb2 gb3 gb4 

Ratio 29 24 84 5.4 

T}gb 81 81 73 90 

Table 3.2: Gearbox coefficients for gearboxes con idered during selection. The s lected 

gearbox is shown in bold. 
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Since the level of input energy IS very low, on the order of 1 W , all stages of 

energy conversion were considered and all losses were minimised . Shaft seal frictional 

losses, which in a more powerful system account for only a fraction of the total 

power , domina te in low power systems. To this end, a magnetic coupling was used 

and designed such that the pull-out torque was just beyond what the theoretical 

requirements wer for the propell r to move the glider at a sprint speed of 0. 75 m/ s. 

Magnetic couplings often require additional bearings and the lubrication and seals 

on bearings consume a large portion of a single Watt system's power. Therefore, 

ultra-low friction, dry-lubricated , ceramic bearings were used to reduce these losses. 

The losses from the magnetic coupling and bearings were quantified through analysis 

of the motor input current before and after assembly. For the maximum voltage 

condition, this difference equates to a change in current of 3 rnA re ult ing in less than 

0.001 1 m frictional torque in the magnetic coupling assembly, which is 10 % of the 

no-load torque and 1 % of the full load torque. These losses are a result of frictional 

losses in the bearings as well as eddy current losses due to the rotating magnetic 

fields. 

To summaris the motor selection process has been detailed showing the matching 

of motor and gearbox to a simulated propeller performance. A brief discussion of the 

sources of mechanical losses highlights the importance of careful component selection 

and tolerances. 

3.3 Propeller Selection and Testing 

In this section the propeller design process for the propulsion module is pres nted. 

This process takes the thrust requirements and advance velocity from the hydrody­

namic model. As an initial estimate the ideal actuator disk efficiency r71 may be 
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computed as in [73] 

2 
(3.9) 'r/J = ---==== 

1+ /__2E1:_+1 v pAp VA 
2 

where Fr is the thrust. This equation may be re-written to show the relationship 

between the hull diameter and propeller diameter at steady state and level flight by 

substituting (2.3) for Fr as in 

2 
(3.10) rti = ---;:::::o=== 

1 + Jd~d~D + 1 

where dv is the vehicle diameter and dp is the propeller diameter ; for t he Slocum 200m 

glider dv = 0.21 m. The ideal efficiency for a given propeller diameter is plotted in 

Fig. 3.6 

The ideal efficiency shows that for larger diameter propellers the propeller effi-

ciency increases. Additionally, it gives the upper bound for expected efficiency for 

the propeller that is selected. In order to minimise the drag from the propeller while 

the propulsion module is not in use folding propellers were selected for use. However , 

no suitable folding propellers were found with published torque and thrust data for 

low advance velocities and low levels of thrust . Therefore, a propeller was designed 

using t he OpenProp MATLAB code with a cord length to diameter ratio as shown 

in Fig. 3.7 

Additional inputs include an advance velocity of VA = 0.35m.s, thrust of Fr = 

0.4N and D = 100RP M for a two bladed propeller. The propeller efficiency for these 

parameters is shown in Fig. 3.2. The propeller was output into a 3-D CAD model 

and prototyped on a Fused Deposition Modelling (FDM) Machine. When tested 

however it was found that the blades suffered significant deformations resulting in 

efficiencies 60% less than predicted. Since the propeller design was not the focus 
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Figure 3.6: Ideal propeller efficiency for different propeller diam ters with a propeller lo-

cated at the rear of a Slocum 200m glider. 
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Figure 3.7: Input ratio of cord length to diameter for the propeller designed using t he 

OpenProp MATLAB code 
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Figure 3.8: Selection of propellers tested in the Memorial University of Newfoundland flume 

tank. 

of this work a series of RC folding model airplane propellers were selected to be 

tested experimentally to determine their operating parameters. These propellers use 

a graphite reinforced plastic which provides a good degree of stiffness for the loads 

under consideration. Propellers with varying diameters and pitch ratios were selected 

for tests as shown in Fig. 3.8. 

To characterise these propellers VA , Fr, u and i were measured in the 0.3 m x 0.5 m 

x 5 m .flume t ank at MUN using the experimental setup shown in Fig. 3.9. Electrical 

current and volt age were measured using a Hall Effect current sensor and a resistive 
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Figure 3.9: Memorial University of ewfoundland flume tank test schematic for propul ion 

system characterisation. 

voltage divider. The thrust was m asured using a lever to amplify the force and an 

Omega LCAE-6kg load cell with a Dataforth DSCA38-05 signal conditioner. The 

lever arm for thrust measurement Fr was calibrated using known masses attached 

through pulleys to the centerline of the propulsion module as shown in Fig. 3.10 The 

resultant conversion formula is given by 

Fr = 1.8715(FM - Fa) (3.11) 

where 1.8715 is the lever ratio, F0 is the drag force on the measurement apparatus 

and FAI is the measured force. These values were read into MATLAB for fmther 

processing using the Data Acquisit ion Toolbox and a National Instruments USB-6211 

data acquisition system. The advance velocity VA of the water was measured u ing 

a SonTek ADVOcean Acoustic Doppler V locimeter (ADV). Tests were performed 
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for flow speeds of 0.3, 0.4 and 0.5 m/s where the input current to the motor was 

controlled from 0 A to the pull out torque at 0.3 A. The measured system efficiency 

ilsys is calculated as in 

A FrvA 
fJ ys = - .-

1-U 
(3.12) 

Using the motor model presented in (3.6), the propeller efficiency may be deduced 

from the system efficiency as in 

(3.13) 

where Tm is (3.3) and Dm is (3.4) . The motor efficiency is also computed according 

to (3.6) . It should be noted that the mechanical losses in the magnetic coupling and 

bearings are lumped in with the propeller efficiency. The result from these tests 

showing th syst m efficiency ilsys, the thrust Fr and the vehicle drag force FD at VA 

= 0.3, 0.4 and 0.5 m/s are shown in Fig' . 3.11 - 3.13. 

A non-folding 0.2 m diameter propeller with a pitch of 0.15 m was also selected 

for testing to compare the performance of folding and fixed bladed propellers. The 

fixed propeller results are shown with the folding propeller results in Fig. 3.14. These 

results are shown only for advance velocities of 0.3 and 0.5 m/s as there was a loo e 

connection on th el ctrical current s nsing device for the te ts with an advance 

velocity of 0. 4 m/s and the data wa unusable. 

The fixed propeller efficiencies are higher than the efficiencies for the same size of 

folding propeller. This difference i attributed to the size of th hub for the folding 

propeller as well as the differences in the blade area ratio. The folding propeller has a 

larger hub size relative to the fixed propeller to accommodate the folding mechanism. 

The fixed propeller also has a larger blade area ratio when compared with the folding 
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Figure 3.11: Efficiencies of propellers for a given thrust for a flume tank water velocity of 

0.3 m/s, the drag force for a glider with an advance velocity of 0.3 m/ s is 

shown as a vertical line 
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Figure 3.12: Efficiencies of propellers for a given thrust for a flume tank water v locity of 

0.4 m/ . the drag force for a glider with an advance velocity of 0.4 m/ s is 

shown as a vertical line 
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Figure 3.13: Efficiencies of propellers for a given thrust for a flume tank water velocity of 

0.5 m/s, the drag force for a glider wit h an advance velocity of 0.5 m/ s is 

shown as a vertical line 
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F igure 3.14: Fixed propeller and folding propeller comparison for a propeller with a diam-

eter of 0.2 m and a pitch of 0.15 mat flow speeds of 0.3 m / s and 0.5 m / . 
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Figure 3.15: Image showing the differ nces betw en the fixed and folding propellers with a 

diameter of 0.2 m and a pi tch of 0.15 m. 

propeller. The difference between th fixed and folding propellers is shown in Fig. 

3.15 

By analysing the peak efficiencies from the data in Fig. 3.11 - 3.13 an optimum 

propeller of 0.225 m diameter and 0.175 m pitch may be select d for use on the 

hybrid glider. However , the selection above does not take into account the interaction 

between the propeller and the hull of the glider. The wake fraction w and thrust 

deduction t factors affect the performance of the propeller through the hull efficiency 

'f/h to giv the total propulsive efficiency 'f/d [7 4] as shown by 

1 - t 
'f/d = 'f/sy 'f/h = 'f/sys-

1
- ­
-w 

(3.14) 
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Figure 3.16: Velocity contours for a Slocum glider CFD model shown at the location of the 

propeller with a 0.2 m and 0.225 m circle overlaid to show the propeller disk 

ar a where the advance velocity is 0.5 mjs. 

Estimates of the wake fraction from a computational fluid dynamic ( CFD) model 

shown in Fig. 3.16 give values of w=0.34 and w=0.296 for 0.2 m and 0.225 m diameter 

propellers for VA = 0.5 m/s. These values combined with an assumed thrust deduction 

factor of t = 0.2 from [7 4], results in rJh = 1.212 for t he smaller propeller and rJh = 1.136 

for t he larger propeller as shown in Fig. 3.17; however, the r lative difference in the 

open water system efficiency from the MU flume tank tests for these two propellers 

is only 2 %. Additionally, t he torque requirements of the 0. 175 m pitch propeller were 

such that the magnetic coupling stalled at full power. For th se reasons, a prop ller 

wit h 0.2 m diameter and 0.15 m pitch was selected for the propulsion module. The 

motor and propeller efficiency for thi propeller may be xtracted from the data 

presented earlier using (3. 13) and (3.6) . 

In Fig. 3.18 the motor , propeller and system efficiencies for the propulsion module 
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Figure 3.17: Hull efficiency from a computational fluid dynamic model for 0.2 m and 0.225 

m diameter propellers. 
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Figure 3.18: Propulsion module efficiencies for a propeller with 0.2 m diameter and 0.15 

m pitch at advance velocities of 0.3, 0.4 and 0.5 m / s. The vehicle drag force 

is overlaid as vertical lines increasing from left to right for a given advance 

velocity. 
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in the MUN flume tank are shown. By examining the intersections of the drag force 

lines with the propeller data for th same v locity the pr diet d operating point is 

determined. Using this procedure the propeller efficiency is seen to increase with VA 

and the motor efficiency decreases with load resulting in a system efficiency which 

increases slightly with an increase in advance velocity. 

The propeller selection and design is presented using an integrated approach re­

sulting in a system that is well matched to the glider hull form and to the propulsive 

requirements for the design objective . A range of small blade area ratio folding 

propellers were characterised and an appropriate propeller selected using the wake 

fraction from a CFD model. 



Chapter 4 

System Integration and 

Modification 

The integration of the propulsion module into the glider is presented . From the design 

requirements this integration was done such that minimal changes would be necessary 

beyond what is easily accomplished by an experienced glider user. 

4.1 Mechanical 

Mechanically, the propulsion module was designed snch that it replaces the 0.5 kg 

emergency drop weight at the rear of the glider. To t his effect, the weight in water 

of the propulsion module is matched to the weight in water of the drop weight. This 

location has the added benefit of being directly in line with the centre of buoyancy of 

the vehicle; however , it currently removes the function of the emergency drop weight. 

Also, it interferes with the power plug used to turn the glider on and off requiring 

modification of the plug to make it shorter. Additionally, the cabling for the thruster 

requires a hole to be made in the drop weight housing. The assembly procedure 

56 
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of the tail section reqmres the tail cone to be loosely placed over the tail. The 

propulsion module is inserted into the drop weight location and the cable connected to 

bulkhead connector. The tail cone is then secured into location. Future versions of the 

propulsion module will ease some of the installation and modification requirements 

as well as either adding an additional drop weight mechanism or incorporating an 

ejection mechanism into the propulsion module. 

4.2 Electrical 

Electrically, the glider has two P rsi tors; low power, single board computers, con­

nected by a communications bus. The glider computer handles all control and low 

level functions while the science computer is used for integration of new payloads and 

sensors. To avoid changing the existing glider architecture the propulsion module i 

onnected to the power pins on the science omputer board u d for pow ring payload 

instruments. 

For testing purpo es, the motor of the propulsion module is controlled through an 

L298 motor controller with the drive voltage being supplied from the science board 

payload pow r pins and logic level power from the Persistor stack's 3.3 V supply. A 

pulse width modulated (PWM) signal is input into the motor controller to control the 

input voltage to the motor and the logic inputs are fixed high or low to make the motor 

uni-directional. In futme versions the motor will be run off the rail supply voltages 

in the glider to remove the electrical losses associated with the motor controller. 

To measure power into the propulsion module a power monitoring board was de­

veloped to measur th input current and voltage using the same hall effect sensor and 

resistive voltage divider as in Section 3.3. The schematic for this device is included in 

Appendix B. The voltages were r ad in using the MAX127 analog to digital converter 
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(ADC) which is also used elsewhere in the glider allowing for easy integration into 

the code. This chip uses the serial peripheral interface (SPI) to communicate with 

the science computer Persistor board and is powered from the 3.3V power bus on the 

Persistor stack. 

A Microstrain 3DM-GX3 inertial measurement unit (IMU) was also integrated 

into the system to measure the euler angles, angular rates and linear accelerations 

of the vehicle during the unconstrained open water tests. This device uses a RS-232 

bus to interface with the science computer and is powered through a step down linear 

voltage regulator from payload power pins on the Science board. 

4 .3 Software 

In software, interfacing to the science computer requires the use of proglets, which use 

a manufacturer specified finite state machine template to control science payloads. 

The hybrid proglet takes one input from the glider computer , the commanded duty 

cycle for the motor controller. The motor controller is powered on when the proglet 

is enabled from the glider computer. 

The power monitoring proglet utilises the SPI interface to receive the voltage and 

current data from the ADC. This data is logged on the science computer flash along 

with the glider time-stamp. By default this data is also sent to the glider at a slower 

rate but may be disabled. Since the power for the power monitor is supplied from 

the Persistor stack, t he power monitor is powered on with the science computer. 

The Microstrain IMU proglet uses one of the RS-232 lines on the science board. 

Commands are sent to the device and data read back to the Persistor and stored on 

the science computer flash along with the glider time-stamp. The device is initialised 

when the science computer turns on and is then put into a low power state until the 
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proglet is enabled by the glider computer. The complete code listing for the above 

proglets may be obtained by contacting the author. 



Chapter 5 

System Evaluation and Testing 

The te ting f the vehicle with the propul ion module is pre ented. The evaluation 

of its performance was done incrementally using different test facilities here in St. 

John's. Validation of the drag mod 1 at zero angl of attack i pr ented. To evaluat 

the vehicles tabili ty the tuning of th d pth controller i d tailed as well. 

5.1 Tow Tank Self Propulsion Ex periments 

Self propulsion tests were performed in th tow tank at MUN to evaluat the glider's 

propulsive capabilities. The experimental setup for these tests involved a tension d 

guide wire being strung the length of th tank 1 m below the water surface. The glid r 

was atta hed to the guide wire uch that it was able to move under self propulsion 

while being constrained dir ctionally. The directional constraints are necessary due 

to the inability of the magnetic heading reference to function in the tow tank. 

For thes t ts the electrical input voltag an I current was measur d. The advan 

velocity of the glider was measured by timing the glider as it moved through a known 

distance. S v ral different configuration wer tried for fixing th glid r to the guid 
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wire to minimise the friction due to the attachment points. Init ial tests used t ie­

wraps through tie-wrap mount points, however , after bringing the glider out of the 

water and investigating the sta te of the tie-wraps significant wear was present. Teflon 

coated wire taped to the underside of the hull was also used which worked well for 

several runs until the wire slipped from the tape. The final setup had the tension d 

guide cable passing through plastic tubing and tie-wrapped to the tie-wrap mounting 

points. 

This setup allows for testing of many different propulsion configurations to analys 

the relative impact of a change in propeller or hull configuration. The standard 

configuration for comparison to others is the glider with wings attached , the sensor 

hole on the tail-cone taped ov r and the power plug placed inside the tail-cone as 

shown in Fig. 5. 1 

In this configuration two propellers were tested, a propeller with 0.2 m diam ter 

and 0.15 m pitch and another propeller with 0.225 m diameter and 0.175 m pitch. 

The smaller propeller, i.e., the propeller selected during the design phase, was run 

at seven different voltages and the larger propeller at only three different voltages. 

These results are shown in Fig. 5.2 with the motor duty cycle shown in Fig. 5.3. 

In Fig. 5.2 and 5.3 the larger propeller was unable to be run at higher power levels 

due to torque limits in the magnetic coupling. From these resul ts the larger prop ller 

is capable of higher overall speeds at higher power levels. However , to achieve higher 

advance velocities the magnetic oupling requires adjusting to increas the pull-out 

torque. 

The influence of sensor holes in the tail-cone, the power plug external to the tail­

cone and the removal of the wing were al o examined. Each variable was tested 

individually, only making one change from the standard configuration. To test the 

sensor hole influence the tape covering the hol was removed . Forth power plug t st 
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Figure 5.1: Glid r 49 showing the standard testing configuration of a taped sensor hole and 

power plug inside of tail-cone 
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F igure 5.2: Power requiremen ts for a given velocity for different propellers in the Memorial 

University of Newfoundland tow tank 
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the plug was taken out of the tail-cone and placed in its housing above the thruster. 

The removal of the wings necessitated there-ballasting of the glider. For this purpos 

weights were added to the wing attachment rails. T he results of these test are shown 

in Fig. 5.4. 
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Figure 5.4: Power requirements at a given advance velocity for different external component 

configurations in the Memorial University of Newfoundland tow tank 

From Fig. 5.4 the sensor hole test and the power plug te t how higher power 

requirement for the arne velocity when compared with the tandard configuration. 

This increa e i attributed to a decrease in propeller performance due to the distur-

bance of the inflow characteristics. The glider tests with no wings attached show 
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lower power r quirements for the same velocity when compar d to the standard con­

figuration. This reduction in power is attributed to the removal of the wings contri­

bution to the v hicle drag. The tow tank self propulsion test provide a comparis n 

of the relative benefits of one configuration over another. The results are presented 

to inform the election of a configura tion warranting further te ting. 

5.2 Flume Tank Drag and Propulsion Tests 

Using the selected vehicle configuration from the tow tank s If propulsion tests, full 

scale drag and propulsion tests were perform d a t the Marine Institute's flume tank 

with a test section m x 4 m x 22.5 m and capable of generating flow pe ds from 

0 to 1 m/s. These tests were done to verify the glider 's hydrodynamic model and to 

evaluate it propulsion abilities. The general experimental s tup i shown in Fig. 5.5 

with an expand d view of the attachments to the glider in Fig. 5.6. In this setup th 

glider is attached to a guide wire which constrains the glid r in yaw, pitch and roll. 

Drag measur m nts were then perform d through a load cell atta heel to the forward 

end of the glider. Additional drag and elf propulsion experiments were performed 

with an addi tional load cell attach d to the aft end of the glider and pre-tensioned 

with a count rbalance weight. Th forward attachment point was through the no e 

and the aft attachment was through a twin-bridle harness at ta h d well outboard on 

each wing in order to provide clearance for the propeller to . ·pin fr ely. 

The drag tests were performed for the glider at zero angle of attack with wings, 

without wings and with wings and the counterbalance weighL. Self propulsion test · 

were performed for th glider with th counterbalance weight by varying the voltage 

to the motor. Th se tests were performed for advance velocities of 0.2 to 1.0 m/ 

in increments of 0.1 m/s. For all tests th motor voltage v , electrical current i, 
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Pre-tension line 
(upstream) 
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67 

Figure 5.5: Marin Institute 4 m x m x 22 m flume tank experimental etup for full scale 

glider hydrodynamic and propulsion testing. 
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Figure 5.6: Expanded view of the Marine In t itute flume tank experimental setup 
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and glider drag force FD were recorded. For the counterbalanced measurements, FD 

was calculated by subtracting the aft load cell readings from the forward load cell 

reading to remove the effect of the pre-loading. The Marine Institute's flume tank 

has been previously calibrated such that the advance velocity was recorded from the 

commanded set point and not actively measured. The effect of the harness attached 

to the wings for the counterbalance was quantified through the difference between the 

drag test with and without the counterbalance. The effect of the wings on the drag 

at zero angle of attack was also measured. The results of the drag forces exerted on 

the glider for the different tests are shown in Fig. 5.7. 

After the harness drag is removed the measured drag is found to be higher than 

the drag at zero angle of attack in (2.6). At a speed of 0.3 m/s the measured drag 

force was 0.5 N and the predicted drag force was 0.34 N, a difference of nearly 50%. 

This difference can partially be attributed to parasitic drag in the test setup; however, 

the drag presented in (2.6) is based on indirect measurements and extrapolated to 

the zero angle of attack condition. Therefore, the measurements presented here are 

considered to be more accurate for this case. For the no wing tests the harness could 

not be used as it attaches to the wings. The measurements for this test were therefore 

subject to higher levels of noise as the force levels were low. Therefore, although the 

test shows the drag to be lower with the wings not attached, the data is determined 

to be less reliable. 

For the tests with the propulsion module the force difference between the upstream 

and downstream load cell forces was measured as in Fig. 5.8 Where the force crosses 

zero in l~ ig 5.8, shown by crosses, is the electrical power required for the given velocity 

at steady state. This data as summarised in Fig. 5.9. 

The amount of electrical power required for horizontal flight using the auxiliary 

propulsion module is shown to be 
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(5.1) 

using a polynomial cubic fi t to the MI flume tank pow r data in Fig. 5.9. Where 

the coefficients for (5.1 ) are defined as in Tab. 5.1 

p2 1.1 kg m/s 

p3 -1.0 kg/s 

p4 13.2 kg/m 

Table 5.1: Coefficients for the electrical power to the propeller 

From (2.18) and (2.6) a cubic rela tionship is expected for the hydrodynamic power 

which is different from the cubic polynomial in (5.1 ). A cubic polynomial was used 

as the correlation to the data was much stronger. This differen is a ttributed to 

the non simple body form of the vehi lc and varied advance velocity resulting in flow 

transitions around sensors, wings and oth r body protrusion . 

To define the input duty cycle to the hybrid proglet , the duty cy le as a function 

of glider advance velocity may be plott d as in Fig. 5.10 wh r the crosses mark 

where the for e cross s zero. The duty cycle as a function of v locity may then be 

plotted as in Fig. 5.11 

5. 3 Drift at D epth Tests 

The trajectory of an underwater glider is typically in a sawtooth-like pat tern wher 

the vehicle i gliding downwards and upwar I . This pattern is not conducive to flying 

horizontally u ing the auxiliary propul ion module. To allow for horizontal flight two 

of the controllers which must be configur d are t he depth and pitch controllers. For a 
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Figure 5.10: Self propulsion test results showing the force difference between t he upstr am 

and downstream load cell forces for a given motor duty cycle. The self propul-

sion condition for each curve is marked by an 'x'. 
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glider with zero advance velocity, the pitch and depth controllers may be considered 

independent. This assumption does not hold for non-zero advance velocities as the 

pitch and depth are strongly coupled in this case. However, to tune the controllers 

the assumption is used as a starting point. 

1 1 
c deoth I Ballast lr- x hover ballast 
m de th IL ~ 

Controller s;i De a< band fation 

~ d/dt -

Figure 5.12: Depth controller structure 

For testing purposes the drift-at-depth behaviour was used as it includes a pit h 

controller and depth controller. A diagram of the depth controller structure is shown 

in Fig. 5.12 where c_depth is the desired depth control point and c_deadband is the 

depth deadband for determining the hovering state. Init ially, the neutral ballast 

lookup table mode was used but this did not allow for a predictable start value for 

x_hover_ballast, the output to the ballast system, as the table is unpopulated for t he 

first dive after the glider is turned on making the response unpredictable. Therefore, 

an initial x_lwver_ballast value V0 based on experimental tests was used. The con-

troller step x_hover_ballast by the ballast pump delta value bbp depending on which 

state it determines the glider to be in. If the glider is outside of the hovering depth 
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zone defined by c_depth and c_deadband, the controller will deer ment x_hover_ballast 

if it is above the depth zone and moving up and will increment x_/wver_ballast if it is 

below the depth zone and moving down. If the vehicle is insid the depth zone there 

are two additional stat s in which the controll r will change x_/wver_ballast, moving 

down too quickly and moving up too quickly. The controller determines thes tates 

by comparing the measured depth rate i with the hovering depth rate ih which is 

calculated using the user configurabl maximum depth rate to be considered hovering 

Zin as in 

(5.2) 

where the factory set hovering depth rate z1 = 0.1425 m/s by default. If the glider 

is moving up and Iii is greater than the ZJt , the glider is moving up too fast and 

x_hover_balla tis incremented. Similarly if the glider is moving down and lzl is gr ater 

than the ih, the glider is moving down too fast and x_hover_ballast is decremented. 

If the glider pas s through all these state it is assigned to b in or hovering toward 

the drift depth zone in which the x_avq_hover_ballast argument is updated for the 

neutral ballast lookup table. 

The d pth controller was tuned experimentally by iterating the input parameter 

to the controll r around the default vehicle parameters. Four te ts were run to tune 

each of th parameters. The ballast pump delta value bop tuning results are shown 

in Fig. 5.13. From these tests the resultant ballast pump delta value bop = 2. These 

tests also how significant spiking in the depth sensor reading. The intermittent spikes 

occurring wh n the vehicle passes 2 m were determined to be a result of the depth 

state changing from or to the at-surface state. The periodic spike were determined 

to be a result of the relay switching the antenna from the GPS r eiver to the Iridium 
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satellite mod m while the vehicle was in the at-surface stat . The tank's limited 

depth required changing the default at surface depth of 2m to 0.5 m which prevents 

the depth sen or reading from spiking. 
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Figure 5.13: Depth controller ballast pump delta bbp tuning te ts 

The maximum hovering depth rate Zin tuning results are shown in Fig. 5.14. 

The balla t bump initial value V0 tuning results are shown in Fig. 5.15. 

600 

From these tests the resultant input parameters were taken as the ballast pump 

delta value bbp = 2, the ballast pump initial value V0 = -30 cc and Zin = 0.1. It should 

be noted that the depth reading spiking wa discovered half-way through the i in test 

and was present for all of the bbp t ests therefore the resultant values may be affected. 
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Figure 5.14: Dept h cont roller maximum hovering depth rate Zin tuning tests 
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The pitch controller uses several limits and a proportional gain to maintain a set­

point value using an internal mass shifting mechanism [31]. The controller inputs are 

taken from [31] as u_pitch_max_delta_battpos = 0.5 and u_pitch_ap_gain = -0.5 where 

the u_pitch_max_delta_battpos argument is the maximum change in inches for the 

mass shifting actuator and the u_pitch_ap_gain argument is the proportional gain for 

the controller. Additional arguments that were tuned include u_pitch_ap_deadband = 

0.001 which is the deadband for the input to the controller in radians and f_battpos_deadzone_width 

= 0.03125 which is the deadband for the output to the mass shifter mechanism in 

inches. 

Using these input parameters a test mission was run three times in the deep water 

tank to verify the stability of the pitch and depth controller. The results of these 

tests are shown in Fig. 5.16 and in Fig. 5.17. 

From Fig. 5.16 it is shown that the depth controller reaches the hover depth zone 

of 2 m with a dead-band of 0.2 m within 5 minutes in all cases. Additionally, the 

maximum overshoot is limited to 0.5 m. 

During these tests it was noticed that there was a natural pitching resonant fre­

quency where the glider would oscillate slowly when disturbed. The fast Fourier 

transform (FFT) of the pitch data from Fig. 5.17 is shown in Fig. 5. 18. 

The FFT calculation shows a spike in the amplitude of the pitch response at 

frequencies of around 0.05 Hz to 0.06 Hz corresponding to a period of roughly 20 

seconds and again around 0.005 Hz corresponding to a period of roughly 200 seconds. 

The higher frequency period of oscillation is attributed to the separation of the centre 

of gravity and buoyancy of the glider and the viscous damping of the vehicle while the 

lower frequency oscillations are the settling frequency of the controller. These tests 

show the glider 's ability to control the pitch and depth under zero advance velocity 

and give modified values for the depth controller parameters. 
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Figure 5.16: Depth measurement during the drift-at-depth test mi sions in the deep water 

test tank at Memorial University of Newfoundland 
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test tank at Memorial University of Newfoundland 
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Figure 5.18: Fast Fourier t ransform of the pitch measurements during the drift-at-depth test 

missions in the deep water test tank at Memorial University of Newfoundland 



CHAPTER 5. SYSTEM EVALUATION AND TESTING 85 

5.4 Drive at D epth Tests 

To evaluate the stability of the hybrid glider during horizontal flight the glider was 

flown using the auxiliary propulsion module and the tuned drift at depth behaviour 

from Section 5.3. Using the NRC-lOT's Ocean Engineering Basin (OEB) (L: 70 m, 

W: 35 m, D: 3m ) a total of 25 tests were performed. During these tests five different 

missions were flown, each mission having a different motor setting corresponding to 

speeds of 0.2 m/s to 0.6 m/s as in Fig. 5.11. The propulsion module for these missions 

turns on during the hovering state of the mission which lasts for a specific time such 

that the total distance covered is 30m. A depth of 1.6 m was set as it is approximately 

halfway between 0.5 m and 3 m. Tests were flown with a fixed rudder angle of zero 

degrees for straight ahead travel. The inertial measurement unit was also installed 

in the vehicle to record the vehicles attitude, angular rates and accelerations. The 

depth during the hovering behaviour until the behaviour terminates is shown in Fig. 

5.19 

The results in Fig. 5.19 show the glider's depth is well controlled for the 0.2 m/s 

test. As the velocity increases the lift on the vehicle increases shown by an increase in 

the amplitude of the depth oscillations. At slower speeds the lift acts to stabilise the 

depth controller when compared with the MUN deep water test tank tests in which 

the glider had zero advance velocity. The pitch results for the same tests are shown 

in Fig. 5.20 

The pitch results show the vehicle is able to control the pitch to zero degrees. 

There are several instances where a sudden decrease in the pitch for 0.4 and 0.6 m/s 

is present. This pitching disturbance is also visible in the depth figure for the same 

velocities as sudden change in depth. However, these disturbances are caught by the 

controller and corrected. The natural pitching motion of the vehicle is also present 
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Figure 5. 19: Depth results for the hy brid glider flying 30 m horizontally at 1.6 m in the 

Ocean Engineering Basin shown in blue. From top to bottom t he advance 

velocity of the vehicle i 0.2 m js . 0.3 m/s, 0.4 m/ , 0.5 m/s and 0.6 mjs. 

The depth results from the deep water test tank at Memorial University of 

Newfoundland are overlayed in red and adjusted to the same depth setpoint 
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Figure 5.20: Pitch results for the hybrid glider flying 30 m set to a pitch angle of zero 

degrees. From top to bottom the advance velocity of the vehicle is 0.2 m/s, 

0.3 m/s, 0.4 m/s, 0.5 m/s and 0.6 mjs. 
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in this data as shown by the fast Fourier transform (FFT) of the pitch data shown in 

Fig. 5.21 
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Figure 5.21: Fast Fourier transform results of the pitch data from the Ocean Engineering 

Basin tank tests. From top to bottom the advance velocity of the vehicle is 0.2 

m/s, 0.3 m/s, 0.4 m/s, 0.5 m/s and 0.6 m/s. The black vertical lines indi ate 

the minimum frequency corresponding to a p riod equal to half of the total 

sample t ime 

The natural pitching motion peak still appears at around 0.05 Hz orresponding 

to a period of around 20 s. Additionally, the amplitude of the oscillations increases 

with incr asing advance velocity. However in the FFT analysis of the pitch data 



C H APTER 5. SYSTEM EVALUATION AND TESTI NG 89 

the total sampling time of each t est must be taken into consideration to establish the 

reliability of the lower end frequencies. It is considered that frequencies corresponding 

to periods less than half of the total sampling time are not reliabl . 

Another variable which mu t be considered is change in roll due to the applied 

torque from th motor. The raw roll data is plotted as a time series in Fig. 5.22 
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Figure 5.22: Roll results for the hybrid glider flying 30 m in the OEB test tank. From top 

to bottom the advance velocity of the vehicle is 0.2 m/s, 0.3 mjs, 0.4 mjs. 0.5 

m/s and 0.6 m js. 

From Fig. 5.22 the roll of the vehicle is seen to increase with the applied torque. 

T he increase in roll is balanced with the restorative force due to the righting moment. 
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The righting moment may be calculated in this case as in (5.3) 

H = Tsh 

F9 sin(¢>) 
(5.3) 

where H is the righting moment arm, Tsh is the shaft torque, F9 is the force due to 

gravity and ¢> is the roll. This calculation is applied to the data shown in Fig. 5.22 

using the mea ured roll and torqu to find the righting moment for the OEB tank 

tests as in Fig. 5.23. For this calculation the vehicle mass was measured to be 52 kg. 
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Figure 5.23: Righting moment resul ts for the hybrid glider flying 30 m in the OEB test 

tank. From top to bottom the advance velocity of the vehicle is 0.2 mjs, 0.3 

m/s, 0.4 mfs, 0.5 m/s and 0.6 mfs. 
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The resultant righting moment is shown to b around 2E-3 m for advance velocities 

for 0.4-0.6 mjs. However , th nois in the roll measurements caused a significant 

degree of noise in the calculation resul ts for 0.2 and 0.3 m/s. This noi e is a ttributed 

to the very small change in roll due to the low applied motor torque, resulting a roll 

value which remains very close to zero. Since th righting moment is dependant on 

the invers of sin(¢ ), a value of the roll ¢ close to zero causes unstable values. 

These tests show the ability of the hybrid glider to fly at a desired depth m 

a straight line on the horizontal plane. The length of the OEB testing tank did 

not allow for a conclusive demonstration of the controllability and stability of th 

controllers used. The OEB tests show that glider is capable of driving at depth by 

tuning the glider 's existing control parameters and no large instabilities are present. 

5.5 Range Estimates 

The range of an underwater vehicle is a function of the en rgy available, power con­

sumed and advance velocity [75] . Specifically, the total power consumption in the 

vehicle divided by the v locity gives the energy consumed per meter. The range i 

then given by dividing the total energy available by the energy consumed per meter. 

This calculation may be extended to buoyancy driven glid rs where the range Rllp 

becomes 

(5.4) 

where the ballast pump load P bpe is the propulsive load from 2. 14, the availabl energy 

E = 8 MJ the hotel power or computational power Ph = 0. 2 vV and the sensor load 

~ = 1 W [18]. The glider horizontal velocity i; is based on the glide path angle (and 

depth rat i as in 2.17. 
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For a propeller driven vehicle the range Rr>rop becomes 

(5.5) 

where the propulsion module load Pprop is defined as in 5.1. The propulsive velocity 

VA varies from 0.2 t_o 0.67 m/s, the maximum speed from the MU tow tank self 

propulsion results. For a glider operating with a bathtub shaped trajectory, the 

buoyancy engine brings the glider to depth and the propeller is used at that point to 

move the glider horizontally by a distance dprop until it is time for the next surfacing 

at which point the buoyancy is increased to bring the glider back to the surface. In 

this case the range Rhybrid is 

R 
E(x6.bp + vA6.prop) 

hybrid = n A D A p D 
.Lbpe L:l.bp + .Lprop L:l.prop + h + rt 

(5.6) 

where D,.bp and 6.prop represent the ratio of time for which each propulsion method is 

active relative to the total time as in 

(5.7) 

and 

D,. _ iprop 
prop-

2 t bp + iprop 
(5.8) 

The time the propeller propulsion is active t prop is defined as 

(5.9) 

where the horizontal distance travelled dprop =2500 m. The time the ballast pump 

propulsion is active tbp is taken from (2.15). 
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Figure 5.24: Estimated range for a glid r operating in hybrid, propeller only and ballast 

pump only modes where the top is for full 200 m depth dives and the bottom 

is for 10 m average depth dives 
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If Rbp , ~op and Rhybrid are plotted as functions of the vehicle's horizontal velocity 

it can be seen that the buoyancy-driven glider and the hybrid glider exhibit similar 

range capabilities as shown in part a) of Fig. 5.24 when the glide depth z = 200 

m. However , the hybrid glider is capable of travelling at faster overall speeds and 

has a significantly larger range when compared to a convent ional glider with small 

glide depths of z = 10 m as shown in part b) of Fig. 5.24. It should also be noted 

that in Fig. 5.24 the horizontal distance travelled while at depth z , dprop is set to 

2500 m. If dprop is decreased the vehicle spends more time gliding to depth relative 

to moving horizontally at depth causing Rhybri d and the time averaged horizontal 

velocities decrease towards the Rbp curve. To illustrate this behaviour two cases may 

be examined at the extreme ends, the case of the vehicle with tbp = 0 s and with tprop 

= 0 s. With tbp = 0 s, the vehicle stays at the surface and the buoyancy engine is 

not used at all. The range for this case is shown by ~w When tprop = 0 s, the 

propeller is not used at all and the vehicle behaves as an unmodified glider. The range 

for this case is shown by Rbp. This model does not take into account settling times 

for the vehicle changing between operational modes or at the top or bottom of the 

inflection of the glide path. Addit ionally, the time spent on surface is neglected. These 

omissions become increasingly important for gliding vehicles with shallow inflections 

as transitions occur with greater frequency. The hybrid glider propulsion module i 

therefore considered to operate with a similar performance to t he buoyancy driven 

glider. 



Chapter 6 

Summary 

An auxiliary propulsion module for a 200 m Slocum glider has been presented. The 

module greatly enhances the operational abilities of underwater gliders by enabling 

horizontal flight and increased speed capabilities. A simplified hydrodynamic model 

under the assumption of a zero angle of attack was used to design the module. Us­

ing this model, the initial component selection was accomplished through matching 

the motor, gearbox and measured propeller efficiencies. The propulsion module's 

performance was confirmed through propulsion tests in the flume tank a t Memorial 

University of Newfoundland (MU ). Upon integration of the propulsion module into 

the glider , self propulsion tests were condu ted in the 4 m x 8 m x 22 m flume tank 

at the Marine Institute (MI). Direct measurements of the drag force for the glider at 

zero angle of a ttack were also performed in th fi flume tank in order to verify th 

simplified hydrodynamic model; the measured drag force was found to be 0.5 N for 

an advance velocity of 0.3 m/s, nearly 50 % higher than the predicted value of 0.34 N 

at 0.3 m js. Additional, directionally constrained, self propulsion te ts were executed 

in the 53 m long MU tow tank to verify the performance of the hybrid glider. The 

self propulsion tests show that the propulsion module is capable of moving the glider 

95 
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horizontally at 0.3 m/s while consuming 0.6 W of battery power and at 0.67 m/s 

using 4.25 W. 

To analyse the stability of th vehicle while under horizontal flight the pitch and 

depth controller were analysed and tuned. These tests were performed in the deep 

water test tank at MU . From these tests it was shown that the vehicle exhibits 

a natural pitching motion. Additionally, it was shown that the depth and pitch of 

the vehicle were controllable under the zero velocity condition. Using the parameters 

determined from these tests the vehicle was driven at a constant depth, heading and 

pitch over a distance of 30 m. These tests showed the controllability of the vehi le at 

speed. 

A comparison of the power requirements for propulsion of conventional glid rs 

with the power consumed by this auxiliary propulsion module shows that the power 

consumed is about the same for full l pth glides to 200 m. When us d only for 

shallow water operations, the time averaged power consumed by this module is less 

than that by the conventional glider. This performance results in the potential for 

equal range for hybrid and conventional modes of operation when used appropriately; 

additionally, the auxiliary propulsion module enables new modes of operation such 

as movement in the lateral plane and higher overall velocities. 

The hybrid glider 's expansion of ahilities opens up many new roles and opportu­

nities for collaborations using underwater glid rs. The auxiliary propulsion module 

is capable of operating at depths over 1000 m, allowing it to be transferred to 1000 

m gliders as well. The 1000 m variant of the Slocum glider would require only some 

wiring and software additions to integrate the module into its systems. Potential 

future collaborations will involve investigating the propulsive performanc of the aux­

iliary propulsion versus the de p glider as the ballast system on the deep gliders use 

a pump rather than a piston to maintain efficiency in deep water. 
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Future work with the hybrid glider will involve extended stability testing in the 

ocean over a longer distance. The navigational behaviours which update the glider 

mission coordinates need to be developed. Following this work the propulsion module 

will require testing in the various roles envisioned for it. 
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Appendix A Propeller Comparison Script 

%g e n e ral constant s 

rho = 1000 ; 

u_max = 15; 

%wate r d e n si ty [kg /m • 3 j 

fJ"dmaximum motor vo l t ag e [Vj 

%motor c onstant s for REmax-17 4W 12 V 

kL1 =9.92*0.001; 

k2_1 =962 ; 

k3 _1 = 804 *1000; 

i0 _1 =0.00738 ; 

%motor c on s tants 

kL2=13.9 *0.001 ; 

k2 _2 = 685 ; 

k3_2 = 1640d000; 

i0 _2 = 0.00427 ; 

%motor con stant s 

kL3 = 3.3 *0 .001 ; 

k2 _3 = 2900 ; 

k3 _3 = 1110* 1000 ; 

i0_3 = 0.23 4; 

rdVm/ A 

fJ"drpm/ V 

fJ"drpm/ Nm 

%4 

for REmax- 16 

rdVm/ A 

fJ"drpm/ V 

fJ"drpm/ Nm 

%4 

2W 12 V 

for EC-16 15W 12 V 

rdVm/ A 

fJ"drpm/ V 

fJ"drpm/ Nm 

fJ"oA 

%motor co n s tants for REmax- 17 2. 5W 12V 

kL4= 16.3 *0.001 ; 

k2_4 = 584 ; 

rdVm/ A 

fJ"drpm/ V 
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k3_4=825*1000; 

i0 _4 =0.00645; 

%motor constants 

kL5 = 19 *0.001; 

k2_5 =502; 

k3_5 = 404 *1000; 

i0 _5 = 0.00463; 

IJ'drpm/Nm 

roA 

for RE-16 3 .2W 12V 

'YNm/A 

if'drpm/V 

if'drpm/ Nm 

IJ'oA 

%motor constants for A-max 16 2W 12V 

kL6=9.17*0.001; 

k2_6 = 1040; 

k3_6 = 2620 * 1000; 

i0 _6 = 0.00954; 

'YNm/A 

if'drpm / V 

if'drpm/ Nm 

IJ'oA 

%motor constants for A- max 16 1. 2W 12 V 

kL7 = 10.h0.001 ; 

k2 _7 =893; 

k3 _7 =2600* 1000; 

i0 _7 = 0.00969 ; 

'YNm/ A 

if'drpm/ V 

%rpm/Nm 

roA 

%motor c on tants for A- max 16 1. 2W 12 V 

kL8 = 8.23*0.001; 

k2 _8 = 1160 ; 

k3 _8 = 2320* 1000 ; 

i0 _8 = 0 .0488· 

'YNm/A 

IJ'drpm/ V 

%rpm/ Nm 

%4 
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%g earbox param e ters for GP 16 A 

R_1=29; 

R efL1 =0 .81; 

R_2=24; 

R e fL2 =0.81; 

R _3=84; 

R efL3 = 0.73 ; 

R_4=5 .4; 

R e fL 4 = 0.90 ; 

%prop e ll e r paramet e rs 

kq 0. 011; %torqu e coeffi cient 

dp 0 .225; %propell er d iameter 

IJ7orpm fr om prop e ll e r 

111 

omega_prop = (6 0/(2* pi ())).*[41.6215461030311 ; 83.2430912 03 8465; 

54.3535671407506 ; 28 .9490283296888; 21.3758770260448; 

17 .16 76114196556 ; 14 .42606654630 82; 12 .4851624495464; 

11.0368662088487; 9 .91608570148360 ; 9.02568829075 550; 

8.3 039 84 17368966; 7.71012397973262 ; 7.216005 81502827 ; 

6.80116624938808; 6.45079493080424 ; 6.15369272 828 412; 

5.901266 14760881; 5.68680710283808 ; 5 .5 0500005229578; 

5.35157676168959 ; 5 .22324829077582; 5.1169069 4045159 ; 

5. 03030643063675; 4.96147808697379] '; 



%efficienct from prop e ller 

eta_prop = [NaN;NaN; 0. 54 90215616 95 221; 0. 773121382606497 ; ... 

0. 83 7622560398599 ; 0. 86 9128611712 548; 0. 886536 595360214; . . . 

0.896310380190165 ;0. 90126883644 7632;0. 902816507594973; .. . 

0. 901715 703 283965 ; 0. 898409617882835 ;0. 8931692145 23 6 70 ; .. . 

0. 8 861714 2 79 20010; 0. 8 77 54213 3 3 0310 0; 0. 8 6 7 3 79 806 6 9 80 2 7; . . . 

0. 8 55 770868 599 15 7 ; 0. 84 279858 7303946 ;0. 828548458146 55 9; . . . 

0 . 813111180128276 ;0 . 796583978693364;0 . 779075073569666; .. . 

0. 760689303504456 ;0. 741544104505675;0 . 721757979115252] '; 

tau _prop = kq.*rho.*(omega_prop . l60). ' 2.*dp. ' 5; 

p_prop = omega_prop. * tau_prop .*( 2* pi ()l60) ; 

%with g ea rbo x 1 

omega_m _1 = omega_prop. * R _1 ; 

tau _m _1 = ( tau _prop. I ( R_1. * RefL1)); 

u_m_1 = ( omega_m_1+k3_1 . * tau_m_1) . I k2_1 ; 

i_m_1 tau_m_1 .1 kL1 + i 0_1 ; 

u_m _1. * i_m_1 ; 

e t a_m _1 = R e ff _1 . * ( tau _m _1 . * omega_m_1 . * ( 2 * pi ()I 6 0 )) . I ( p _m _1 ) ; 

e ta_sys_1 = e ta_prop.* e ta_m_1 ; 

omega_m_2 = omega_ prop. * R _1 ; 

tau_m_2 = ( tau_prop. I ( R _1. * RefL1)) ; 

u _m _2 

i _m_2 

( omega_m _2+k 3_2 . * tau_m_2). I k2 _2; 

tau _m _2 . l kL2 + i 0 _2; 

p _m _2 tLm_2. * i _m _2; 

eta_m_2 = R e fL1.*(t a u_m_2. * omega_m_2. *(2* pi ()I60)).I(p_m_2); 
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eta_sys_2 e ta_prop. * eta_m _2; 

omega_m_3 = omeg a _prop . * R_1 ; 

tau_m _3 = ( tau _prop. I ( R_1. * R e fL1)); 

u_m_3 

i _m_3 

( omega _m _3+k3 _3. * tau _m _3). I k2 _3 ; 

tau_m_3. l kL3 + i0_3; 

p _m_3 u_m_3.*i _m _3; 

eta_nL3 = R e fL 1 . * ( tatLm _3. * omega_m_3. * ( 2 * p i () I 6 0)). I ( p _nL 3) ; 

eta_sys_3 = eta_prop. * eta_nL3 ; 

omega_m_4 = omega _prop. * R _1; 

tau _m _4 = ( tau _prop . I ( R _1. * RefL1)); 

u_m_4 

i_m _4 

( omega _mA+k3_4 . * tau_m _4) . I k2_4 ; 

tau _m _4. l kL4 + i0 _4; 

p_m_4 u _m_4.*i _m _4 ; 

eta_m_4 = RefL1. * ( t au_m_4 . * omega_m_4. * (2 * p i () I 6 0 ) ) . I ( p _m_4) ; 

eta_sys_4 = eta_prop. * e ta_m_4 ; 

omega_m _5 = omega_prop. * R _l ; 

tau_m_5 = ( t a u_prop. I ( R_1. * R e fL 1 ) ) ; 

u _m_5 

i _nL5 

p _m_5 

( omega _m _5+k3 _5 . * tau _nL5). I k2 _5 ; 

tau _m _5 .1 kL5 + i0 _5 ; 

u _nL5. * i _nL5; 

eta_m_5 = R e fL1. * (tau_m_5. * omega_m_5 .* (2 * pi() l 60 ) ) . 1 (p_m _5) ; 

eta _sys _5 = e ta_prop. * e ta_m _5 ; 

omega_m_6 omega_prop. * R_1 ; 
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tau _m_6 = ( tau _prop. I ( R_1 . * RefL1 ) ) ; 

u_m_6 = ( omega_m_6+k 3_6 . * tau_m_6). I k2_6; 

i_m_6 tau _m _6 .jkL6 + i 0 _6; 

p_m_6 u_m _6.*i_m_6; 

e ta_m _6 = RefL1 .* (tau_m _6 .*om ga_m _6. *( 2* pi ()I60)) .I (p_m _6 ); 

eta_sy _6 = eta_prop. * eta_m_6; 

omega_m _7 = om ga_prop. * R _1; 

tau_m_7 = ( tau_p r op. I ( R_1 . * RefL1 ) ) ; 

u _m _7 

i _m_7 

p_m_7 

(om ga_m_7+k3_7.*tau _m _7)./k2 _7· 

tau _m _7. l kL7 + i 0 _7 ; 

u _m _7 ·* i _m_7 ; 

e ta_m_7 = RefL1 .* (tau _m _7. *omega_m_7 .*( 2* pi ()I 60 )) . I(p_m_7) ; 

eta_sys_7 = e ta_prop. *eta_m _7 ; 

omega_m_ = omega_prop. * R _1 ; 

tau _m _8 = (tau _prop. I( R _1. * R efL1 )); 

lL11L8 

i _m _8 

p _m _8 

( omcga_m _ +k3 _8. * t a u _m _8). I k2 _8; 

tau _m _ .lkL8 + i 0 _8; 

u _m _8.*i _m _8; 

eta_m _8 = R fL1. *(tau _m _8.*omega_m _8.*(2* pi ()I60)).I(p_m _ ) ; 

e t a _sys _ = e t a _prop.*eta_m _8; 

j 1= find ( u_m _1 < 15) ; 

j2= find ( u_m _2 < 15) ; 

j3= find ( u _nL 3 < 15) ; 

j4= f i n d ( u _m _4 < 15) ; 
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j5= find ( u_nL5 < 15); 

j6= find ( u _m_6 <15); 

j7= find ( u_m _7 < 15); 

j8= find ( u_m_8 <15); 

figur e 

h = axes; 

set (h, 'FontName',' Aria! ', ' fon ts i zc' ,12, 'LineWidth' , 1); 

plot (omega_prop(j1 :25) , eta_m_1 (j1 :25 ).*100 . '- b' , 'LineWidth' , 1) 

hold on 

plot (omega_prop(j2 :25) , eta_m _2(j2 :25).* 100 , ' - r' ' 'LineWidth' , 

plot (omega_prop( j3 :25) ,eta_m _3(j3 :25) .* 100 , ' - g' ' 'Line Width' , 

plot (omega_prop( j4 :25) ,eta_m_4( j 4 :25).*100 , '- rn ' . 'LineWidth' , 

plot (omega_prop(j5 :25) , eta_m _5(j5 :25). * 100 ' -. b ' . ' LineWidth ', 

plot (om ga_prop(j6 :25) , eta_nL6(j6 :25).*100 , ' -. r ' ' LineWidth' 

plot ( omega_pr p ( j7 : 2 5) , e t a_m _ 7 ( j7 : 2 5) . * 1 0 0 , ' - .g ' . ' LineWidth' , 

plot ( omega_prop ( j 8:2 5) . eta_m _ ( j :25).*100 , ' - .n1 ', ' Line Width ', 

plot (omega_ prop , cta_prop . * 100 , '- k ' , ' Line Width ' , 1) 

xlabel ( '\Omega [RPM] ' ) , y labe l ( 'Eff iciency [o/c ] ' ) 

legend ( '\eta_{m1} \eta _{gb1}', '\eta_{m2} \eta _{gb1} ' ... 

. ' \ e t a _ { m3} \ t a_ { g b 1 } ' . ' \ e t a _ { m4} \ e t a_ { g b 1 } ' . . . 

, ' \ eta _ { m5} \ e ta _ { g b 1 } ' , ' \ eta_ { m6} \ eta_ { g b 1 } ' .. . 

, '\eta _ { m7} \eta _ { g b 1 } ' , ' \eta_ { m8} \eta _ { g b 1} ' .. . 

, '\eta _{prop} ' ,'Locat ion ' , ' SouthEast ' ) 

axis ([O 450 0 100]) 

g rid on. box on 

set(h, ' Lin eWidth ' , 1); 

1) 

1) 

1) 

1) 

1) 

1) 

1) 



print - depsc motoreffgbl 

%gearbox 2 

omega_m_9 = omega_ prop . * R _2; 

tau_m_9 = ( tau_prop. I ( R _2 . * RefL2)); 

u_m_9 

i_m_9 

( omega_m_9+k3_1. * tau_m_9). I k2_1; 

tatLm_9.lkLl + iO _l ; 

p_m_9 u_m_9 . * i _m _9; 

eta_m_9 = R ff_2.*(tau_m_9.*om ga_m_9 . *(2* pi ()I60)) . I(p_m_9) · 

ta_sys _9 = eta_prop .*eta_m_9; 

omega_m_lO = omega_ prop . * R _2; 

tau_m_lO = ( tau_prop. I ( R_2. * R c fL2) ); 

u _m _lO = ( omcga_m_l0+k3 _2. * tau _m_lO). I k2 _2; 

i _m_lO tatLm _lO .1 kL2 + i0 _2 · 

p _m_lO u_m_lO.*i_m_lO; 
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eta_m_lO = R fL2 .*(tau _m_lO.*omega_m_l 0 .*(2* pi ()I60)). I (p_m_l O); 

eta _sys _lO = eta _prop .*eta_m_lO; 

omega_m _ll = omega_prop. * R._2; 

tau_m_ll = ( tau _prop. I ( R _2. * R.cfL2)); 

u_m_ll 

i _m _ll 

(om ga_m _ll+k3_3. * tatun_ll ) . I k2 _3; 

tau _m _ll.l kL3 + i0 _3 ; 

p_nLll u _m _ll. * i _m _ll ; 

eta_m _ll = R fL2 . *(tau _m _ll.*omega_m _ll . *(2 * pi () I 60)). I (p_m _ll)· 

eta_sys _ll = cta_prop.*eta_m _ll · 



omega_m _l2 = omega _prop . * R _2 ; 

tau _m _l2 = ( tau_prop . I ( R_2. * R e fL2 ) ); 

u _m _l2 

i_m _l2 

( omega _m _l2+k3 _4. * tau _m _l2). I k2 _4; 

t a u _m _l2 . j kL4 + i0 _4; 

p _m _l2 u _m _l2. * i_m _l2 ; 
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e t a _m _l2 = R efL2 . *( t a u_m_l2 .*omega_m _l2 .*(2* pi() I 60 )).j( p_m _l2 ); 

e ta _sys _l2 = eta_prop .*et a_m_l 2; 

omega_nL13 = omega_prop. * R_2 ; 

t a u _m _l3 = ( t a u _prop. I ( R _2. * R e fL2 ) ); 

u_m _l3 

i_m _l3 

( om ega_m _l3+k3_5 . * tau _m _l 3) . I k2 _5; 

t a u_m _l3. l kL5 + i0 _5 ; 

p _m_l 3 u_m _l 3.* i _m _l3 ; 

e t a_ m _l3 = R efL2 . *( t a u _m _l 3.*omega_m _l 3 . *( 2 * pi ()l 60 )).j( p _m _l 3); 

et a _sys _13 = e t a_prop. * e t a_m _l 3 ; 

omega_m _l 4 = omega_prop . * R _2; 

tau _m _l 4 = (tau _ pro p. I ( R _2 . * R e fL2 )) ; 

tLm _l 4 

i_m _l 4 

( omega_m _l 4+k3 _6 . * tau _m _l 4) . I k2 _6; 

t a u_m _l4 .j kL6 + i0_6 ; 

p _m _l 4 u _m _l4 ·* i _m _l 4; 

e t a_m _l 4 = R efL2 . * ( t a u _m _l 4 . * omega_m _l 4 . * ( 2 * pi ( ) / 6 0 )) . I ( p_m _l 4); 

e t a_sys_ l 4 = e t a_pr o p. *e t a_m _l 4; 

omega_m _l 5 = omega_prop . * R _2; 

tau_m _l5 = ( tau _prop. I ( R _2 . * R e fL 2)); 

tLm_l 5 = ( omega_m_l 5+k 3_7 .*tau_m _l 5) . l k2 _7 ; 
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i_m _15 = tau _m _15 .1 kL7 + i0 _7 ; 

p_m _15 u _m_15 . * i_m_15; 

e ta_m _15 = R e fL2. * (tau _m _15. * omega_m _15. *( 2 * pi ()I 60 )).I( p_m_15 ) ; 

e ta _sys _15 = eta_prop. * e t a _m _15; 

omega_m_16 = omega_prop . * R _2 ; 

tau _m _16 = ( tau _prop . I ( R _2 . * R fL2 ) ) ; 

u _m _16 

i _m_16 

( omega_m_16+k3 _8 . * t a u _m _16) . I k 2 _8 ; 

t a u _m _16 ./ kL8 + iO _ ; 

p _m _16 u _m _16. * i _m _16 ; 

e ta_m _16 = R e fL2 .*( t a u _m _16. * omega_m _16. *( 2 * pi ()I 60 )).I( p_m _16)· 

e ta _s y s _16 = e t a_prop .*e ta_m _16 ; 

j9= find ( u_m _9 < 15); 

j 10= find ( u_m _10 < 15 ); 

j 11= find ( tun_11 < 15); 

j12= find ( u _m _12 < 15 ); 

j13= find ( u _m _13 < 15); 

j 14= find ( u _m _14 < 15); 

j15= find ( u_nL 15 < 15); 

j 16= find ( u _m _16 < 15); 

fi g ur e 

h = axes ; 

se t ( h , ' Fon tNa m ' ' Ari a ! ' ' fo n ts i z ' 12 ' LineWidth ' 1) · ' . ' ' ' ' 

plo t (om ga_prop ( j9 :25) . e t a _m _9 ( j 9 :25).* 100 , '-b ', ' Line W idth . 1) 

hold on 
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plot (om ga _prop( j1 0:25) ,e t a_m _10( j 10:25) . d00 , 

plot (omega _prop ( jll :25) , eta_m _ll ( j ll :25) . d00 , 

plot ( om ega _prop ( j 12 :25 ) ,e t a_m _12 ( j12 :25).d00 , 

plot ( omega_prop ( j13 :25 ) ,e t a_m _13 ( j13 :25 ).* 100 , 

plot (om ega_prop ( j 14 :25 ) e t a_ m _14( j14 :25 ).* 100 , 

, - r ,, ' LineW idth' , 

, 
-g ' , ' LineW idth ', 

'--rn , ' ' LineW idth ' 

' -. b ', 

' -. r ,, 

plot ( omega_prop(j 1 5 :25 ), e t a_m _15 ( j15 :2 5). * 100 

plot ( om ega_p rop( j1 6 :25) , et a_m _16 ( j1 6 :25). * 100 , 

plot ( om ega _prop ,e t a_prop. * 100 , '-k ', ' LineWid t h ', 1) 

xlabe l ( '\Om ga [RPM]' ) , yl a b e l ( ' Effi c i e n cy [%] ') 

le g e nd ('\ t a_ {m1} \e t a_ {gb2} ', '\eta_ {m2} \eta_{gb2} ' . .. 

' - .g', 

' -.1n ', 

. ' \ eta_ { m3} \ eta_ { g b 2 } ' , ' \ c t a_ { m4} \ e t a_ { g b 2} ' .. . 

. '\cta_ {m5} \ e t a _{ g b2} ' , '\e t a_ {m6} \e t a_ {g b2} ' . . . 

. '\c t a_ {m7} \ e t a_ {g b2} ', '\e t a_ {m8} \e ta _{g b2} ' .. . 

. '\c t a_ {prop} '.' Loca t io n '. ' SouthEas t ') 

a xi s ([ O 450 0 100]) 

g rid on. box on 

se t ( h , ' Lin Wid t h ' , 1 ); 

print - d c ps motor effg b2 

%gearbox 2 

om ega_m _17 = o mega_prop . * R _3; 

t a u _m _17 = ( t a u _pro p .j( R _3 .* R fL 3)); 

u_nL 17 = ( omega_m_17+ k3 _1. * tau _nL 17 ). j k2 _1 ; 

i _m _17 t a u_m _17 .j kL1 + i 0 _1 ; 

p _m _17 = u_nL 17. * i_nL1 7; 

' LineWid t h ', 

' Line Wid t h ' , 

' LineWid th', 

' Line Wid t h ', 

eta_m _17 = R e fL3.*(tau _m _17.*om ga_nL 17.*(2* pi ()/ 60 )).j( p _m_17); 

e t a_sy _1 7 = ta_pro p. * eta_m_1 7 ; 

1) 

1 ) 

1 ) 

1 ) 

1 ) 

1) 

1 ) 



omega_m_l8 = omega_ p r op .* R_3; 

tatLnL18 = ( tau _prop. I ( R _3. * R e fL3)); 

u _nL1 8 

i _m _l 8 

( omega_m_l 8+k3 _2 . * tau _m _l 8). I k2 _2 ; 

t a u_m _l 8 .1 kL2 + i0_2 ; 

p_m_l 8 tun_l8. * i_m_l8 ; 

120 

eta_m_ l 8 = R e fL3. *( tau _m _l 8.*omega_m _l8 . *(2* p i ()I60)).I(p_m_l8); 

eta_sys_ l 8 = e t a_prop . *e t a_m_ l 8; 

omega_m _l9 = omega_prop. * R _3; 

t a u _nL 19 = (tau_prop . I( R _3.* R efL3)); 

u _nL 19 

i_m _l9 

( omega_m_l9+k3_3. * tau _m_l9). I k2 _3 ; 

tau_m_l9 .1 kL3 + i0 _3; 

p _m _l9 u _m _l9. * i_m_ l9 ; 

eta_m_ l9 = R e fL3 .*(tau _m_ l9. *omega_m _l9 .*(2* pi() I6 0 )).I(p_m_l 9); 

e t a_sys _19 = eta _ prop. * eta_m_ l9 ; 

omega_nL20 = omega_ prop.* R _3; 

tau_m _2 0 = ( tau _prop . I ( R _3. * R efL3)); 

u_m_20 

i _m _20 

p _m _2 0 

( omega_m_20+k3_4. * tau_m_20). I k2 _4; 

tau _m _20.IkL4 + i0 _4; 

tun_20. * i _m_2 0 ; 

eta_m _20 = R e fL 3 . * ( tatLm _20. * omega_m _20. * ( 2 * pi() I 6 0 )). I ( p_m_20); 

eta_sys_20 = eta_prop ·* e t a_m_2 0 ; 

omega_m _2 1 = omega_ prop .* R _3; 

tau_m_21 = ( tau_prop. I ( R _3 . * R e fL3 )); 



u_m_21 

i_m_21 

( omega_m_2l+k3_5 . * tau _m _21). I k 2_5; 

tau _m_21 .1 k L 5 + i0_5; 

p_m_21 tLm _21.* i _m_21; 
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eta_m_21 = RefL3 . *(tau_m_2l.*Om ga_m_21.*(2* pi ()I60)).I(p_m_21)· 

eta_sys_21 = cta_prop . *eta_m_21; 

omega_m _22 = omega_ p r o p .* R _3; 

tau _m _22 = ( tau _p r op . I ( R _3. * R fL3)); 

u_m_22 

i _m_22 

( omega_m_22+k3_6. * tau_m_22). I k2_6 · 

t a u _m _22. l kL6 + i0 _6; 

p _m _22 u _m _22. * i _m _22; 

eta_m_22 = RefL3. * ( tau _m_22. * omega_m _22. * (2 * pi () I 60)). I ( p _m_22); 

eta_sys_22 = cta_prop . *e ta_m_22; 

omega_m _23 = omega_ prop . * IL3 ; 

tau _m _23 = ( tau_prop. I ( R _3 . * R e f£ _3)); 

u_m_23 

i _m _23 

(om ga_nL23+k3_7. * tau _m_23) . I k2_7 ; 

tau _ nL 2 3 . I k L 7 + i 0 _ 7 ; 

p _m _23 tU1L23 . * i _m _2 3 ; 

eta_m_23 = R fL3. *( tau _m _23.*omega_m_23.*(2* p i() I 60)) .I(p_m _23)· 

e ta _sys _23 = eta_ prop. * eta_m _23 · 

omega_m _24 = omega_prop. * R _3 ; 

tau _m _24 = ( tau _prop . I ( R _3 . * R fL3) ); 

u _m _24 

i_m _24 

p _m_24 

( omega_m _24+k3 _8 . * tau _nL24 ) . I k2 _8; 

tau _m _24.l kL8 + i0 _8 ; 

u _m _24. * i_m_24 ; 
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eta_m _24 = R fL3 . * ( tatLm_24 . * omega_m_24. * ( 2 * pi () I 6 0)) . I ( p_m _24); 

eta_sys_24 = eta_prop . * eta_m_24; 

j 17= find ( u _m _1 7 < 15); 

j 18= find ( u_m _1 < 15) ; 

j i 9= find (u_m _19 < 15); 

j20= find ( u_m _20 < 15); 

j21= find ( u _m _21 < 15); 

j22= find ( u_m _22 < 15). 

j23= find ( u _m _23 < 15) ; 

j24= find ( u _m _24 < 15) ; 

figure 

h = axes ; 

se t (h , ' FontName' ' Arial ', ' fon ts i ze' , 12 , ' LineWidth ' , 1 ); 

plot (omega_prop(j17 :25). e t a _m_l7 ( j17:25).d00. '-b ' . ' LineWidth ', 1 ) 

hold on 

plot (omega _prop(j18 :25) ,e ta_m _l8(j18 :25). * 100 , ' - r ' . ' Line Width ', 

plot (om ga _prop ( j 19 :25) , e t a _m _19 (j 19 :25). * 100. '- g' . ' LineWidth ', 

plot ( om ega _prop ( j 20:2 5) e t a_ m _20(j20 :25) .* 100, '--rn ' . ' LineWidth ', 

plot ( om ga_prop ( j21 :25) , et a_ m _21 ( j21 :25). * 100. ' - .b '. ' Lin e Wid t h ' , 

plot ( omega_prop ( j 22 : 2 5) e t a_ m _2 2 ( j 2 2 : 2 5). * 1 0 0 . -. r ' Line Wid t h ' . 

plot (om ega_prop(j23 : 25) , t a_m _23(j23 :25) .* 100 , ' - .g' . ' Lin eWid t h ', 

plot ( om ega _pro p ( j 2 4 : 2 5) , e t a_ m _24 ( j 2 4 : 2 5). * 1 0 0 . ' - .111 ': ' Line Width ' , 

plot ( omega _prop . e t a_prop. * 100 . '-k ' , 'Line Wid t h . 1) 

x l abel( ' \Omega [RPM] ' ) ylabel ( ' Effici e nc y [o/c] ') 

legend( ' \ t a_ {ml} \ e ta _{gb3} ' , ' \ t a_ {m2} \ eta_ {gb3} ' ... 

1 ) 

1 ) 

1 ) 

1 ) 

1 ) 

1 ) 

1 ) 



, '\ ta _{m3} \eta_{gb3}', '\e ta _ {m4} \eta_{gb3} ' . . . 

, ' \ e ta _{m5} \ e ta_{ gb3} ', '\eta_{m6} \eta_{gb3}' .. . 

, ' \eta _{m7} \eta_{gb3}' , '\eta_{m8} \eta_{gb3} ' .. . 

, '\eta_ {prop} ',' L ocation ', ' SouthEast') 

axis ([ O 450 0 100]) 

grid on) box on . 

se t (h , ' Lin Wi l th ' , 1); 

print - de psc motore ffg b3 

%gearbox 2 

omega_m _25 = omega_prop . * R _4; 

tau _m _25 = ( tatLpr op . I ( RA . * R c fL4)) ; 

u_m _25 

i _m _25 

( omega_m_25+k3_1 . * tau_m_25). I k2_1 ; 

tau _m _25 .1 kL1 + i0 _1; 

p _m _25 tLm _25. * i _m _25; 
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eta_m _25 = R efL4 . *(tau_m_2 5.*om ga_m_25 . *(2* pi ()I60)).I(p_m_25); 

eta_sys_25 = eta_prop . *eta_m_25; 

omega_m _26 = omega_ prop. * R _4; 

tau _m _2 6 = (tau _prop.I( R A.* R efL4)); 

u _m _26 

i _m _26 

( omega_m_26+k3_2. * tau_m_26). I k2_2; 

tau_m _26 .1 kL2 + i0 _2 ; 

p _m _26 tLm _26. * i _m _26; 

eta_m _26 = R fL4. * ( tau _nL26 . * omega_m _26. * ( 2 * pi () I 6 0)). I ( p_m _26); 

eta_sys _26 = cta_prop. * eta_m _26 ; 

omega_m_27 om ga_p rop . * R _4 ; 



--------------------------------------------------------

tau _m _27 = ( tau_prop. I ( RA. * R e fL 4)); 

u _m _27 

i_m _27 

( omega_m _27+k3 _3 . * tau_m_27) . I k2_3 ; 

tau _m _27 . I kL3 + i 0 _3 ; 

p _m _27 u _m_27. * i _m _27; 
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eta_m_27 = R e fL4. * ( tau_m_27. * omega_m _27. * ( 2 * pi () I 6 0 )). I ( p _m _2 7 ); 

eta_sys_2 7 = eta _prop .*eta_m _27; 

omega_m_28 = omega_ prop .* R A; 

tau_m_28 = ( tau_prop . I ( RA. * R e fL 4)); 

u _m _28 

i_m _28 

( omega_m_28+k3_4. * tau _m _28). I k2 _4; 

tau_m_28. I kL4 + i 0 _4; 

p _m _28 tLnL28. * i_m _28; 

eta _m_2 8 = R e fL4 . * ( t a u_m _28. * omega_m_28. * (2 * pi () I 6 0 ) ). I ( p_m_28 ); 

eta_sys_ 28 = eta_prop .*eta_m_28; 

omega_m_29 = omega_prop. * R _4; 

tau_m_29 = ( tau_prop. I ( R_4. * R e ff _4 ) ) ; 

u _m _29 

i_m _29 

( omega_m _29+k3 _5. * tau_m _29). I k2 _5; 

t a u _m _29. l kL5 + i0 _5; 

p_m_29 u _m _29. * i_m_29 ; 

e ta_m _29 = R e fL4 . * ( t a u _m _29. * omega_m _29. * ( 2 * pi () I 6 0 )). I ( p_m_29); 

eta_sys_29 = eta_prop . * eta_m_29; 

omega_m_30 = omega_ prop. * R A; 

tatLnL30 = ( t a u _prop . I ( R A. * R e fL 4)); 

u _m _30 

i_m_30 

( omega_m_30+k3_6. * tatLnL3 0 ) . I k2 _6; 

tau_m_30. I kL6 + i 0 _6 ; 
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p_m _30 = tLnL30. * i_m _30; 

eta_m_30 = RefL4. * ( tau_m_30 . *om ga_m_30 . * ( 2 * pi ()I 6 0)). I ( p_m_30); 

eta_sys_3 0 = eta_prop . *eta_m_30; 

omega_m_31 = omega_prop. * RA; 

t a u _m_3 1 = ( tau_prop. I ( R A . * RcfL4)); 

u _m _3 1 ( omega_m_31+k3_7. * tatLm _3l). I k2 _7 ; 

i_m_3l = tau _m _3l -I kL7 + i0 _7; 

p_m_3l u _m_3l.* i _m_3 l · 

eta_m_3l = R efL4.*(tau _m _3 l. * m ega_m _31.*(2*pi()I60)).I(p_m_3l); 

eta_sys _31 = ta_prop. * eta_m _3l · 

omega_m_32 = omega_prop. * R A; 

tau _m _32 = ( ta u _prop . I ( R A. * R e fL4)) ; 

tLm _32 = ( omega_m _32+k3 _8. * tau _m _32). I k2 _8 · 

i _m _32 tau_m_32 .1 kL8 + iO_ · 

p_m_32 u_m_32. * i_m_32; 

eta_m _32 = R e fL4 . * ( tau _nL32. * omega_nL32. * ( 2 * pi () I 6 0)). / ( p _nL32 ); 

eta_sys _32 = eta_prop . * eta_m _32; 

j2 5= find ( u _m_25 < 15); 

j26= find ( u _m _26 < 15); 

j27= find ( u _nL27 < 15 ); 

j28= find ( u _m _28 < 15); 

j29= find ( u _m _29 < 15); 

j30= find ( u _m _3 0 < 15)· 

j31= find ( u _m_3l < 15) ; 
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j 32= find (u_m _32 < 15); 

figur e 

h =axes; 

se t (h , 'Font arne' 'Ar i al ' ' fon ts ize' 12 'LineWidth' 1) · ' ' ' , ' ' 

plot (omega_prop( j 25:25),eta_m _25(j25:25).*100 , '-b ', 'LineWidth' 1) 

hold on 

plot (omega_prop(j26 :25) ,eta_m_26( j 26 :25).*100 

plot (omega_prop(j27 :25), ta_m_27(j27 :25).*100 , 

plo t(omega_prop(j2 :25) ,e ta_m _2 (j28:25).*100. 

plot(om ga_prop(j29:25) ,eta_m_29(j29:25) . * 100 

plot (omega_prop( j 30 :25) ,eta_m _30(j30 :25).*100, 

plot (omega_prop(j31 :25) ,e ta_nL31 (j3 1 :25).*100, 

'-r, 

'-g'' 

'-n1, 

' - .b'' 

, 
- .r' ' 

'-.g,' 

'LineWidth', 1) 

' LineWidth ' 1) 

' L ineWidth ' 1) 

' Lin e Width' , 1) 

'Line Width ' , 1) 

' Line W idth' , 1 ) 

plot (om ga_prop(j32 :25) ,e ta_m _32(j32 :25). * 100. '-.m ', ' LineW idth' , 1 ) 

plo t (om ga_prop. e ta_prop. * 100 , '-k' , ' Line Width ', 1) 

x labe l ( \Omega [RPM]'), y l a b e l ('Effic i e nc y [%] ') 

le g e nd ( '\e ta _{m1} \eta_{gb4}' , ' \eta_{m2} \eta_{gb4}' ... 

, '\e ta _{m3} \eta _{gb4} ', '\ ta_ {m4} \ e ta _{gb4} ' .. . 

, '\e ta _{m5} \eta_{gb4}', '\eta_{m6} \ e ta _{g b4} ' . . . 

. '\ ta _{m7} \eta_{gb4}', '\eta_{m8} \ e t a_ {gb4 } ' . . . 

. '\eta_ {prop} . ' Location ', ' SouthEast ') 

ax is([O 450 0 100]) 

g rid on. box on 

se t (h , ' LincWidth ' , 1); 

p rin t - d psc motoreffg b4 
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Appendix B Power Monitor Schematic 
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