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Vegetation Index (NDVI) input. The vi  tion of In(«/tanf) between difterent land covers
was investigated using one-way analysis of variance (ANOVA).  he results of ANOVA
showed that no obvious relationship be  cen In(«/tanf}) nd the land cover classes could

be determined.
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of a saturated zone of a given thi ¢ Zquation 7-5 is integrated from z (the depth to the

water table) to D (the total soil depth) to obtain 7; as:

r.=Ko (g r_gmy . , Equation 7-6
f

The term e’ is generally much st ler than the term e, so Equation 7-6 can be

simplified:

T;= %e‘f’ Equation 7-7

TOPMODEL does water-balance accounting by keeping track of the s  ration deficit (s).
s (m) is the amount of water that one would have to add to the soil at a given point to
bring the water table to the surface. To implement computations in term of s, z is replaced
by s/e, where @ (fraction) is the porosity of the soil. Substituting for z in Equation 7-7

gives:

Ti= %e_fi Equation 7-8

To make thighs “neater”, f/o is replaced with //m, and Equation 7-8 is substituted into

Equation 7-4 to get:

_ Ko _= .
AR= (78 mtan f3).C; Equation 7-9
Dividing by Cj, letting a=4/C;, Tp= and solvi  fors:

s =min(2) = min(—2

To tan 3

) Equation 7-10
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To solve for the catchment-average  uration deficit (E), Equation 7-10 is integrated

over the entire watershed area to obtaing, here R and T, are assumed to keep constant

over the catchment:

s=-m ln(i) -ml Equation 7-11

T,

where 1 is the mean In(a/tanfl) for catchment. Combining Equation 7-10 and 7-11

gives:

a

si=5+m{A—In( )] Equation 7-12
tan #°

Equation 7-12 states that s at any ion i is determined bys, and the difference

between 4 and the value of In(a/tan| location i . Equation 7-12 is used to determine

Gdirecr a0 Grenrn. Any location i the watershed where si< 0 is saturated, and has the
potential to produce saturation ¢ flow. Any location where 5;<0 produces return

flow.

The value of guirer is computed by ¢ 1ming the products of the saturated areas, aj,

multiplied by the precipitation inten  , p, and dividing by the watershed area, 4, as:

Xap
G trees =—— 550 Equation 7-13
The value of Grensn is computed  summing the products of the saturated areas
multiplied by the absolute value of tl ratively valued saturation de its, as:

Za.-lsi|

A

Drewrn =" 5<0 Equation 7-14
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Figure 7-10: Results of daily model validation from August to Sep iber 2006 for the
Marmot Creek basin. QSIM is the simulated runoff, QOBS is the observed runoff.

From Figure 7-10, it is obvious that the simulation in such a case do not fit the observed
data equally well over the entire period of simulation, and EFF decreases to only 0.332
for the Marmot Creek basin. ...e total simulated s  mflow (0.0196 m)is 00137 m less
than the observed streamflow (0.0210 m). The underestimation of runoff may be caused
by the rough estimation of PET. This  lerestimation may also be i totl fact that the
soil variability is ignored. Soil properties vary with space, but they are assumed to be

homogenous in this model.

7.3.3. fects of Flow Directions and Grid Size on Runoff Generation

In this section, parameter sets are rec  jrated using In(a/tanp) values determined by D8
with 1- and 90-meter resolution DEMs. e same parameters are applied again to Do in
order to determine the effect of flow direction and grid size on streamflow generat

The results of model efficiencies and entages of sul rface flow are shown in Table

7-7.
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do land cover classification using sion Tree classifier. From the land co

classification, it can be found atin Marmot Creek basin, 11.21% [the area is bare
ground, 16.12% area is the grass, and 1.70% area is the forest. The results of the one-
way ANOVA show no obvious felath p between In(a/tanf) and the land cover classes

can be determined.
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PET is used to estimate the actual evapotranspiration in TOPMODEL simulation. The
Penman-Monteith method is limitied to precisely calculate PET, a further study in PET
estimation is recommended.

iv) DEM resolution and flow direction algorithms

Both D8 and Do are single flow direction algorithms. This limitation becomes
increasingly important on convex slopes. More suitable flow direction algorithms are
suggested to determine the flow direction of the streamflow. As 1-meter resolution DEM
has huge data to process and 90-me  resolution DEM does not work well to the
hydrologic simulation in hillslope watershed, a more appropriate resolution DEM is

recommend.
v) Improved TOPMODEL

In the Marmot Creek basin most of the streamflow results from the melting of snow.
Snow as the most important component in this watershed is ignored in TOPMODEL
simulation. Although the calit on t d is snow free, the stream w is still
significantly affected by the snow. This will result in the poor prediction. TOPMODEL
combined with a sophisticated snow subroutine is highly recommended to improve our

simulation in the future.
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