
St. John's

Dynamic Cooperative Co-evolutionary
Automated Mobile Sensor Deployment

via Localized Fitness Evaluation

by

© Xingyan Jiang

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

October 2008

Newfoundland

Abstract

A wireless sensor network is a self-organized network consisting of a large number of

small sensor nodes distributed over an area of interests. Such networks are capable

of observing and sensing the environment, and sending the collected data to a data

sink for further processing. Sensors must be deployed before they can provide useful

data. Therefore the deployment of static or mobile sensors is an important basis for

sensor networking.

Automated mobile sensor deployment of a wireless sensor network has a significant

impact on the network performance, such as network sensing coverage, communication

or mobile costs, and connectivity. Due to the small size of sensors, they are equipped

with small batteries and have low-power computing and communication resources.

The lifetime of a sensor is determined by its battery life and it can not operate for

an infinite amount of time. Therefore, a good deployment yields a high utilization of

power resources.

In this thesis, we propose an innovative cooperative co-evolutionary computation

framework, Localized Distributed Coevolution (LODICO), to optimize the automated

sensor deployment with arbitrary initial positions. LODICO is a fully distributed

and localized algorithm. It can be executed on all sensors of the network in parallel.

Meanwhile the information exchange has to be done locally as each sensor can only

communicate with those within a distance. Further, we extend LODICO to LOD­

ICO /D to provide dynamic interaction to neighboring computing agents during the

evolutionary process. It models the potential local interactions between computing

agents, and uses the the imaginary neighboring movements to improve its local fitness

ii

and to help escaping from local optima.

This thesis is a powerful extension work to the traditional Cooperative Coevolu­

tionary Algorithm. One feature of it is the utilization of local fitness to achieve a

global optimum, which makes co-evolutionary algorithms applicable to localized dis­

tributed environments, such as network computing. Another salient feature is that the

proposed algorithms can adjust and adapt the frequent dynamic change of network

structures due to the position changes or failures of computing agents. LODICO /D

incorporates LODICO with mode D to help to escape local optima. Mode D creates

the third feature of imaginary collaboration with the neighboring computing agents

during the evolutionary process to improve its local fitness. Our experiments show

that LODICO and LODICO /D are effective in obtaining good solutions under such

dynamic, distributed, and localized condition constraints.

lll

Acknowledgments

I would like to acknowledge the help and support of all people in making this

thesis possible.

In particular, I would like to thank my co-supervisors, Dr. Yuanzhu Peter Chen

and Dr. Tina Yu, for their continued encouragement, valuable suggestions, and pa­

tience, during my master's studies. They are always there to guide, to support, and

to help. Thank you for giving me the chance to work with you, and thank you for

what you taught me.

My special thanks go to Dr. Wolfgang Banzhaf, who kindly provides his expertise

in the area of evolutionary computation de pite his busy schedule.

I thank Ting Hu , my classmate and friend, for her help of graph plots and discus­

sions. I also thank my officemate, Ann Ngugi. I enjoy all the discussions we had,

work related or not .

My appreciation also goes to the friendly administrative staffs of the Department

of Computer Science: Elaine Boone, Sharon Deir, Darlene Oliver, Nolan White Paul

Price, and P ter Howell. Thank you all for your kind support.

Last but not least, I want to express my deepest gratitude to my family: my

parents, my husband, and my daughter, for their endless love, encouragement, and

support.

IV

Contents

Abstract

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Wireless Sensor Networking

1.1.1 In a nutshell

1.1. 2 Design considerations .

1.1.3 Applications

1.2 Motiva tion for Optimizing Sensor Deployment

1.3 Obj ctives & Contributions

1.4 Organization

2 Literature Review on Sensor Deployments

2.1 Pre-deployment Approach

v

ii

IV

viii

ix

1

1

1

3

7

8

10

13

15

16

2.2 Post-deployment Approach .

2.3 Our Approach

3 Evolutionary Computation Models

3.1 Traditional Evolutionary Algorithms

3.1.1 Components of evolutionary algorithms .

3.2 Cooperative Co-Evolutionary Algorithms

3.2.1 Additional components of CCEA over EA

3.2.2 Related work on CCEA

3.3 Desired CCEA and Features of Our Work

4 Localized Distributed Sensor Deployment via Coevolutionary Com­

putation (LODICO)

4.1 LODICO Overview

4.2 Planning . .

4.3 Computing

4.3.1 Problem Representation

4.3.2 Evolution

4.3.3 Fitness Evaluation

4.4 Moving

5 LODICO with Dynamic Interaction of Neighboring Species

ICO/D)

5.1 Local Optima

5.2 Bi-modal Operation .

Vl

(LOD-

17

19

20

20

22

26

27

28

29

32

32

35

37

37

38

39

40

42

43

44

5.3 Mode D

5.3.1 Planning for extended search space

5.3.2 Uniform computing .

5.3.3 Individual moving . .

5.3.4 Combination with mode I

5.4 Discussion

6 Experimental Analysis

6.1 Experimental Settings

6.2 Preliminary Study .

6.3 Studies on LODICO

6.3.1 Fitness improvement

6.3.2 Coverage vs. moving distance

6.3.3 Global network fitness & local network fitness

6.3.4 Influence of the number of sensors .

6.4 Studies on LODICO /D

6.4.1 Comparison of LODICO & LODICO/D

6.4.2 Local optima

6.4.3 Initial corner deployment .

7 Conclusion and Future Work

Bibliography

vii

45

45

46

47

48

48

52

52

54

58

58

59

60

62

64

64

65

67

70

72

List of Tables

6.1 Simulation Parameters . 53

6.2 Average Coverage Comparison Between LODICO and LODICO/D. 65

viii

List of Figures

1.1 A wireless sensor network 2

3.1 Flow chart of a simple evolutionary algorithm 21

3.2 Pseudocode of a general evolutionary algorithm 22

3.3 A high-level view of CCEA 27

3.4 A high-level view of the expected CCEA framework 30

4.1 LODICO flow chart 34

4.2 Analysis of potential movement and overlaps 36

4.3 The 2-chromosome genotype representation . 38

4.4 Sensor positions before and after movement 41

5.1 An example of local optima 43

5.2 Escaping local optima 44

5.3 LODICO/D flow chart 49

6.1 Influence of distance weight (w) on the 3 performance metrics 55

6.2 99% confidence intervals on the means 57

6.3 Coverage improvement under LODICO 58

6.4 Average coverage improvement under LODICO 59

lX

6.5 Coverage vs. moving distance

6.6 Local fitness changes after each ecosystem cycle

6.7 Sensor 1: the best individual local fitness improvement at each ecosys-

60

61

tem cycle 61

6.8 Global fitness improvement after each ecosystem cycle . 62

6.9 Influence of number of sensors . 63

6.10 99% confidence intervals on the means

6.11 Global fitness under Mode I and D

6.12 etwork coverage vs. moving distance

6.13 Coverage improvement of deploying sensors in a corner

6.14 Position changes of sensors

X

63

66

66

67

69

------------------- --

Chapter 1

Introduction

1.1 Wireless Sensor Networking

A wireless sensor network is usually composed of a large number of small sensor

nodes, also known as motes, distributed over an interested area [27] . It can be used

to monitor a certain physical phenomenon, such as temperature, humidity, vocality,

motion and so on, from the environment.

1.1.1 In a nutshell

The main components of a sensor node include an antenna, a transceiver, a storage,

a controller, a sensing unit, and a power source. Each component has a specified

capability. The antenna and transceiver transmit and receive information in a wire­

less channel. The storage saves data temporarily and the controller governs data

processing. Different sensing units, such as acoustic sensor and seismic sensor, have

capabilities of sensing different events. Th power source is to provide sensor energy.

1

Depending on the different type of applications, sensor nodes can be either stationary

or mobile. Static sensors are not capable of changing their positions after deploy-

ment, whereas mobile sensors with actuation components can move under their own

control.

In such a network, each sensor has sensing, computing, and communicating capa-

bilities. It first senses the environment and collects data, then processes and transmits

the gathered data information to a powerful sink node (or base station). Next, the

information will be forwarded to the Internet or other networks for data further pro-

cessing. Figure 1.1 shows an example process of a wireless sensor network. SensorS

senses a fire event. It then transmits the sensed information to one of its neighbors.

The neighbor then relays the message to one of its neighbors. Via multiple hops, this

message reaches the data sink to be transfered to a different network.

Sensor node

~d d d
d

d

Figure 1.1: A wireless sensor network

2

1.1.2 D esign considerations

Some critical goals of a wireless sensor network include: to provide satisfactory net­

work sensing coverage, to preserve energy, to ensure network connectivity, and to use

less number of sensors. Each objective is explained as follows.

• Maximizing network sensing coverage

The sensing coverage of a sensor is defined as a disk area with itself in the

center. The radius of the disk is called sensing range. Network sensing coverage

is the union of the disks induced by all sensors in the network. In other words,

it is the area that can be monitored collectively by the sensors in the network.

etwork sensing overage can be used to measure the quality of service of a

sensor network [10], as a sensor network with a good coverage rate is able to

provide more information of the environment it monitors. The question is how

we can maximize the network coverage. We know that maximizing the network

coverage means minimizing the overlaps between sensor nodes. In order to

reducing the overlaps between the sensing coverage of sensors, we may hope that

sensors are deployed as far apart from each other as possible. In other words,

network sensing coverage can be improved by constructing sparse networks.

Decreasing overlapping area not only increases the network sensing coverage,

but also reduces the signal interference and message collisions. Less interference

results in fewer retransmissions of lost message. A number of algorithms have

been developed to optimize sensing coverage [4][12][21][39][35][42][43].

• Minimizing energy consumption

Low power consumption requirement is one of the most important constraints

3

on the operation of sensor networks. The energy costs in operating a sensor

network include moving nodes, sensing events in the environment, and transfer­

ring information. In a single-hop network topology, a sensor node can directly

communicate and exchange messages with any other sensors in the networks.

However, a sensor network is often too large and the long distance transmission

by sensor nodes is not energy efficient . It is impossible for each sensor node to

directly exchange messages with every other node. It is therefore necessary that

sensor nodes can transmit their data using a way of multi-hop communication.

In such a mult i-hop fashion, sensors can communicate with others via t he relay

of some intermediate sensors. However, excessive communication between sen­

sors would consume much energy. The lifetime of a sensor network is limited by

the battery capacity of the nodes. In many applications where the replacement

of power is impossible, preserving energy in order to increase the lifetime of

sensor nodes is extremely challenging. Many researches have been carried out

focusing on how to reduce the energy consumption [24][9][10][7][13][39][42].

• Network connectivity and data transportation

Sensors communicate in a wireless channel using the communication technology

like Bluetooth, ZigBee, Ultra Wideband (UWB) and so on. Each sensor node

has a certain transmission power and a higher transmission power allows a sensor

to send message over a longer distance. Communication range is used to measure

the transmission power of a sensor. The larger the communication range, the

better the transmission power. We say a network is a connected network if

each sensor node is able to communicate directly to its neighbors which are

4

the sensors within its communication range, and communicate indirectly to

other nodes within the network. In order to eventually sending the collected

information from all sensors in the network to the base station, the sensor

network has to be constructed as a connected network [24] [8] [41].

One critical goal of a sensor network is to forward the sensed data to a sink

node. Routing the message created by a sensor node to a sink node may have

multiple paths due to the large scale of a sensor network. Therefore, data

routing is a very important issue in wireless sensor networking. Flooding and

gossiping are two conventional routing protocols. In flooding, each sensor node

rebroadcasts every received data packet to all of its neighbors and continues

this process until the packet arrives at the destination. Flooding is very easy

to implement, but has the drawbacks of implosion due to duplicated messages

are sent to the same node, and overlaps caused by sensing the same event and

sending similar packets to the same neighbor. Gossiping is a slightly enhanced

version of flooding which can significantly reduce the number of routing message

sent by sending the packet only to a randomly selected neighbor rather than

broadcasting [1] .

Many routing protocols have been proposed and they include fiat-based routing,

hierarchical-based routing, and energy-aware routing [2]. Flat-based routing in­

cludes SPIN, Directed Diffusion, and so forth. SPIN incorporates negotiation

before transmitting data and ensures that only useful information will be trans­

fered. Directed Diffusion is different from SPIN in terms of the on demand

data querying mechanism it has. The sink node broadcasts interest messages to

5

--

find sources. The interest messages are the descriptions of a task. Each sensor

that receives the interest sets up a gradient toward the neighbors from which it

receives the interest. The gradient specifies both the direction where to forward

the data and the status of the demand. In fiat-based routing, all nodes are as­

signed equal roles, while they play different roles in hierarchical-based routing.

Routing in sensor networks has attracted a lot of interest and many new rout­

ing mechanisms are developed by considering the characteristics of sensor nodes

and the limitations and requirements of sensor networks. Detailed surveys are

described in [1][2].

• Minimizing number of sensors needed

Statistically, we know that more sensors will lead to a better network sensing

coverage given a random distribution of sensor nodes. Since there is always

a cost associated with any type of sensor node, we can not afford to deploy

an arbitrarily large number of sensors. Therefore, minimizing the number of

sensors needed for a certain application is also an important issue in sensor

networking.

It is very challenging to develop algorithms to satisfy the above goals at the same

time since some of them are conflicting.

Sensing coverage and energy conservation are two conflicting objectives. In or­

der to maximize the network sensing coverage (i.e. minimize the overlaps between

each sensing coverage), it is desirable that sensors are deployed as far apart from

each other as possible. However, this cause that some sensors have to move to new

positions and consume some power energy. The very energy constrained nature of

6

such networks makes the tradeoff's between sensing coverage and energy consumption

especially necessary.

It is obvious that the more sensors are deployed, the more network coverage ob­

tained. Network sensing coverage and the number of sensors deployed are conflicting

as well.

1.1.3 Applications

A wireless sensor network may carry different types of sensors and can be used in var­

ious applications of different domains, such as military, medical, and environmental.

1. Military Applications

A wireless sensor network usually has densely and randomly distributed, and

self-organized characteristics. It is particularly suitable for the application in

bad battlefields, including tracking the movements of warfare entities, monitor­

ing the military strength, equipments, and materials, and assessing the oppo­

nents ' quality, quantity, and possibly, intention.

2. Medical Applications

Some medical applications of sensor networks include using medical sensors to

help doctors and nurses to monitor the status of patients from a remote site.

A number of wireless medical sensors, such as pulse oximeters, blood pressure

monitors, and heart rate monitors have been designed and developed (28] .

3. Environmental Applications

Wireless sensor networks can trace the migration of birds and insects, observe

the effects of the environmental changes to crops, monitor the quality of air,

7

and so on. It can also be used to detect forest fire or flood at a high spatial

resolution and in a much more timely fashion.

In 2002, UC Berkeley and Intel researchers embedded 32 sensors in and around

the burrows of the Leach's Storm Petrels on the Great Duck Island. They

successfully used the sensor network to collect climate and burrow activity

information and to estimate the habitat of the Leach 's storm petrels. They

calculated that the sensors have sufficient power to operate for the next six

months [22] . In the summer of 2002, 43 nodes were deployed to the island. This

time they operated the sensor network for four months to see how the system

would perform. They collected and analyzed environmental data. The monitor­

ing showed very high node failure rates, yet yielded valuable insight into sensor

network operation which is not obtainable in an indoor deployment [25] .

Wireless sensor networks have very wide application future. It not only has

application value in the above mentioned fields, but also is able to be applied

to many other fields, such as home and traffic etc. Wireless sensor networking

is a fast-growing and exciting research area, and has attracted much attention

and scientific interests during the past decade. We can forecast that wireless

sensor network will be everywhere in the future.

1.2 Motivation for Optimizing Sensor D eploy ment

One of the most important issues of wireless sensor networking is the deployment of

static or mobile sensors in the region of interest. Sensors must be deployed before

they can provide useful data. An optimal deployment can let the network to collect

8

more data, while provide the maximum possible utilization of power resources.

With different applications considered, the deployment of sensor networks may

vary. In some environments, the positions of sensors can be predetermined and placed

one by one manually or deterministically using, say, a robot in the interested field .

This is typically for static sensors. But in some dangerous or unknown environment,

it is not possible to manually or deterministically deploy sensors. Therefore, mobile

sensors can be deployed by dropping from an aircraft. This random deployment does

not always cover the given area well, so an automated position adjustment after this

initial deployment is necessary. In the former case, the positions of static sensors can

be calculated before their actual deployment using more powerful computers other

than sensor nodes. While in the latter case, mobile sensors have to cooperate with

each other to fine-tune their positions. We call it automated sensor deployment and

this thesis is motivated by our interest in this perspective.

We know that wireless sensor networking has a number of technical challenges.

Automated sensor deployment, thus, also ought to be coupled tightly as part of the

solution. Due to the small size of sensors, they are equipped with small batteries and

have small energy resources. The lifetime of a sensor is determined by its battery life

and it can not operate for an infinite amount of time. Therefore, sensors are limited

in communication and mobility. It is not practical for a sensor to communicate

directly to another sensor far away, even if it could , since this will consume much

energy. Due to the failures of some nodes, mobile sensors may need to move to

replace the failed nodes. It is also not feasible for a mobile sensor to travel a long

distance. Therefore power conservation becomes one of the biggest challenges of

automated sensor deployment. Another key issue is to handle data locally since a

9

sensor network is usually large in scale. Each sensor should operate based on its

local view of the entire network to conserve energy. Additionally, sensor positions

are changed periodically as they deploy themselves. They must have self-configuring

capabilities to adjust and adapt the dynamic changes of their environments. It is

more challenging to design an automated sensor deployment algorithm which is able

to conserve power energy, process data locally, and be adaptive to dynamic change

of environment.

The automated sensor deployment lately has been studied in such fields like com­

putational geometry, robotics, fuzzy logic, and swarm intelligence. Although there are

some solutions to this problem, my interest in tackling this problem is to extend the

traditional Cooperative Coevolutionary Algorithm (CCEA) to be applicable to dis­

tributed and localized computing. An existing cooperative coevolutionary algorithm

is a distributed evolutionary algorithm but its computation needs global information.

Therefore, it can not be directly applied to localized distributed computing problem.

This motivates us to develop a more flexible and powerful CCEA model which is more

suitable for localized distributed environments.

1.3 Objectives & Contributions

The first and most important objective of this thesis is to develop a new localized

distributed system based on the traditional cooperative coevolutionary algorithm. To

achieve this first objective, we study and analyze the traditional model of CCEA. We

discover that the existing CCEA does not satisfy our localized requirements since

some computation in it is still based on the global information which is not available

10

in the environment of localized distributed computing. In this thesis, we present a

new CCEA model that is able to support dynamic, localized, and distributed network

applications and utilizes local information only to achieve a global objective.

The second objective is to apply this new model to optimize the automated sensor

deployment problem. To achieve this objective, we first do a survey on this problem to

see what researches have been done in this field. Localized algorithms are a primary

design goal in wireless sensor networks. We have found that a simple distributed

computing algorithm for automated sensor deployment would require sensors to con­

struct their local partial solutions based on local information only and to periodically

exchange the results of local computation with the neighboring sensors. We hope

that the proposed model is effective and efficient by providing it to the automated

sensor deployment, a typical application of Localized distributed system.

In the thesis, we develop two innovative coevolutionary computation frameworks,

called LODICO and LODICO/D, for optimization tasks in distributed computing.

They are completely localized distributed algorithms and can be applied to a broader

application domains in localized distributed environment. Both LODICO and LOD­

ICO /D have the following three important features.

1. Localized and distributed evolutionary algorithm

LODICO is a completely localized distributed algorithm in that it requires each

sensor to use and process information within its neighborhood. This is an es­

sential requirement of distributed computing because every node in the system

only has a local view of the environment. Global broadcasting of messages is

possible but is considered infeasible due to the high computation overhead in

11

such an environment. Sensor networks have limited resources and communica­

tion should be carried out locally to reserve energy. LODICO cooperates sensor

nodes for automated deployment through localized information exchange and

distributed evolutionary computing.

2. Flexible and dynamic problem decomposition

Every sensor node is responsible for dividing the global problem into a subprob­

lem according to the most current sensor positions. Since the sensor positions

change as the deployment progresses, the network structure also changes. As

a result, the decomposition of the problem must be redone iteratively. This

is contrast to the traditional evolutionary algorithm where the solution each

population evolves is fixed throughout the execution of the algorithm. One con­

sequence of this dynamic problem decomposition is that the populations that

collaborate for fitness evaluation also change during the algorithm execution.

3. Energy efficient partial fitness evaluation

Because each population can only assume the availability of local information

within its proximity, the fitness evaluation during the evolutionary process must

tolerate the missing input from beyond the neighborhood. This is a salient

contrast to the traditional CCEA, where fitness cannot be calculated without

the information from all other subsolutions.

LODICO/D is an extension of LODICO. Therefore, it inherits all features of LOD­

ICO. Additionally, it allows the interaction among neighboring computing agents

during the evolutionary process by providing two operation modes for effective and

efficient evolutionary search. Under the LODICO/D algorithm, it models the paten-

12

tial neighboring interactions and uses that to improve fitness and to help sensors to

escape their local optima, which is contrast to the CCEA where each local evolution­

ary algorithm is executed in isolation. We believe that this thesi is an important

contribution to CCEA. We have implemented the LODICO and LODICO /D algo­

rithms to solve the automated sensor deployment problem, and the simulation results

show that they are effective in solving this type of problem.

1.4 Organization

In the thesis, we propose LODICO and LODICO/D, two localized distributed algo­

rithms, to optimize sensor network deployment problem. It explores many aspects

associated with using LODICO and LODICO/D in distributed networking environ­

ments.

We first introduce the automated mobile sensor deployment problem of wireless

sensor networks and review related works in Chapter 2. Then, in Chapter 3 the

background of traditional evolutionary algorithms and cooperative coevolutionary

algorithms is provided. We emphasize on issues why the traditional cooperative

coevolutionary algorithms can not be utilized directly in localized environments and

what kind of model is expected to satisfy the localized distributed constraints. We

present the first algorithm, LODICO, in Chapter 4. In Chapter 5, we go ahead

with LODICO/D, which extends LODICO to more general cases. It facilitates local

interactions between the neighboring computing components during the evolutionary

process to help sensors to escape from local optimal positions. In Chapter 6, we

test LODICO and LODICO/D using computer simulation. We observe that both

13

algorithms can be applied to the applications of localized distributed environments.

Last, we conclude the thesis with a summary of contributions and future directions

in Chapter 7.

14

Chapter 2

Literature Review on Sensor

Deployments

The deployment of sensor nodes is the first step in establishing a sensor network.

Once sensor nodes are deployed, networks are established automatically. The func­

tion of sensor networks is to collect data from the environment they are in and to

periodically transmit the data to a base station. It will be a productive sensor net­

work if each sensor in the network can collect plentiful data without overlapping the

data collected by other sensors. Therefore the positions of sensors influence signifi­

cantly their capabilities of collecting information from the environment. Each sensor

has a small battery and therefore needs to minimize power consumption in order

to extend its lifetime. Various techniques have been proposed to optimize sensor

deployment [5] [7] [11] [13] [18] [20] [31] [33].

The deployment of a wireless sensor network can be carried out in two major ways:

pre-deployment and post-deployment. The goals of both approaches are to meet

15

some critical networking objectives, such as maximizing network sensing coverage,

minimizing energy consumption, ensuring the network connectivity, and minimizing

the number of sensors deployed.

2.1 Pre-deployment Approach

Pre-deployment approach calculates or estimates the number and the positions of

the sensors before they are actually deployed. This approach is typically used for

static sensors deployment in a known environment. After network topology is de­

termined, the actual deployment is then carried out by human beings or mobile

robots [9] [15] [18] [21].

Research on pre-deployment methods mostly takes a centralized approach. Dis­

tributed algorithms are not necessary since a computer program can be run on a

powerful computer before the physical deployment.

Liu and Mohapatra [21] develop a sensor network pre-deployment method for

linear topology. They introduce two problems, IDEAL and HIE, with the same

objective of maximizing the total coverage given the lifetime requirement. In IDEAL,

each sensor's energy supply is heterogeneous. Total energy constraint is given and

energy can be allocated arbitrarily among the nodes. The network dies only when

there is no energy left in any node. In contrast, HIE assumes the network is a

homogeneous energy network in which each sensor has the same fixed initial energy.

Greedy algorithms are used to solve these two problems.

In Isler et al. [15], two characteristics of sensor network , coverage and connectiv­

ity, are considered in the pre-deployment process. They use computational geometry

16

to deploy sensors and guarantee the coverage. Once the sensors are deployed, a

suitable communication range is calculated in order to guarantee the network con­

nectivity.

Jourdan and de Week [18] study the deployment problem using a multi-objective

genetic algorithm. Their goal is to balance two conflicting objectives, maximizing the

network sensing coverage while minimizing the energy consumption in the network. A

Pareto front is generated after the execution of the algorithm and produces a solution

set for users to choose from .

Hu et al. [13] consider a hybrid sensor network which consists of a mixture of

regular small sensors and more powerful micro-servers. They employ tabu search to

decide where the micro-servers should be placed so that the lifetime of the network

can be maximized.

2. 2 Post-deployment Approach

In some dangerous or unaccessible environments, it is impossible to manually deploy

sensors . Therefore mobile sensors are placed randomly in the field initially. This

initial random placement does not usually give a good coverage and, thus au tomated

adjustments of their locations is necessary. This is the post-deployment approach and

we call it automated mobile sensor deployment.

Post-deployment approach of sensors has been studied using a variety of tech­

niques. Howard et al. [11] describe an incremental algorithm which deploys one

sensor at a time. Each sensor node uses the positions of previously deployed nodes

to determine its own position.

17

Zou and Chakrabarty [42] propose a virtual force based algorithm to enhance

the coverage after an initial random deployment . Their algorithm is a cluster-based

algorithm, and the clusterheads are responsible for coordinating the distributed com­

putation. The algorithm combines attractive and repulsive forces to determine virtual

motion paths. When two sensors are too close, the repulsive force intends to apart

from each other. While when two sensors are far from each other, the attractive force

intends to pull them closer. A one-time movement is carried out when the positions

of sensors are identified to conserve energy.

Wang et al. [32] focus on repairing coverage holes when calculating target positions

of sensors. They optimize the coverage within a short deploying time and limited

movement using three Voronoi diagram based deployment protocols, VEC, VOR,

and MiniMax.

Chellappan et al. [6] propose a flip-based algorithm and optimize both the coverage

and the total number of flips. Flip-based sensors have limited mobilities. They can

flip only once to a new location and the flip distance is bounded. Their objective is

to determine optimal movement plan for sensors so that the coverage is maximized

while minimizing the total number of flips required. They construct a virtual graph

based on the initial deployment and determine the optimal movement plan from the

virtual graph.

Krause et al. [20] address deployment of role assignment of sensor nodes to max­

imize network lifetime while preserving t he coverage. More recently, it has also been

demonstrated that computational intelligence techniques, such as fuzzy logic [29],

swarm intelligence [40] and evolutionary computation [17][16] can be effective in sen­

sor deployment.

18

2.3 Our Approach

In general, our work in this thesis shares similar objectives as the above works on

post-deployment problem. We optimize the network sensing coverage as well as the

energy consumption. The different feature of our work from theirs is that we develop

a new cooperative coevolutionary computation model motivated by the application

of automated mobile sensor deployment. The model is an extended work of the

current cooperative coevolutionary algorithms. As presented in Chapter 6, computer

simulation shows our model is very effective for directing mobile sensors to find their

target locations with good coverage while using less energy consumption.

19

Chapter 3

Evolutionary Computation Models

3.1 Traditional Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search methods based on the idea of t he Dar­

winian principle of survival of the fittest . It is a powerful optimization technique for

finding a global solution to, typically, extremely complex problem where finding a

solution is very t ime-consuming [3].

EAs solve a problem by first generating a large number of individuals, each of

which represents a candidate solution to t he problem. The set of individuals are

grouped in a population. An individual can be represented using various data struc­

tures, which is it s genotype. Usually, a linear struct ure is employed to resemble the

biological chromosome in natural systems. T he fitness of an individual is evaluated

by a fi tness function that takes the genotype as an input and yields a scalar value as

an output. With the goal of finding the best solution to an optimization problem,

evolutionary algorithms combine selection, fitness evaluation, crossover , and muta-

20

tion operators to develop generations of populations. Figure 3.1 illustrates the basic

steps in an evolutionary algorithm.

Initialization (step 1)

Population

(step 5)
Survivor selection

Fitness (step 2)
evaluation

Yes

Termination

No

Parent selection
(step 3)

Offspring

Crossover

M t t
. (step 4)

u a 10n

Parents

Figure 3.1: Flow chart of a simple evolutionary algorithm

First, a number of individuals in a population are randomly generat d (step 1). At

each evolutionary step, or each generation, the fitness of each individual is calculated

based on a fitness function (step 2) . Individuals with better fitness are selected as

parents (step 3). Then their genetic representations (or genotypes) are recombined

through crossover and mutation (step 4) to produce new solutions, called offspring.

A crossover involves exchanging the genetic materials in the genotypes of two or more

parents. A mutation is a random change of an individual's genotype to produce off-

spring. These offspring then compete with each other and with the previous best

solutions to survive in the following generation (step 5) . An EA is essentially an

21

-- ------------------

iterative reproduction of generations of individuals. Frequently, the fitness of the

population improves as t he evolution continues. The process continues until certain

termination conditions are met. The pseudocode of a traditional evolutionary algo­

rithm is shown in Figure 3.2.

Begin

Initialize population

Evaluate the fitness of each individual in the population

Repeat until termination condition is met

1. Select parents to reproduce;

2. Breed through crossover and mutation to create offspring;

3. Evaluate the fitness of the offspring;

4. Select individuals for the next generation;

End

Figure 3.2: Pseudocode of a general evolutionary algorithm

The following subsections describe the details of each components of an EA.

3.1.1 C om pone nts of evolut ionary a lgorit h ms

1. Data Representation

The first step of implementing an evolutionary algorithm is to transferring the

real world problem in hand to a format of EA. Data representation defines a

22

set of solutions that form the search space of the given problem. Either a fixed

or a variable length representation may be used to encode candidate solutions.

• Genotype and Phenotype

Genotype is an EA solution representation of a real problem. Phenotype

is the behavior of the genotype it represents. The crossover and mutation

operators take place in the genotypes while the fitness evaluation is applied

on the phenotypes.

• Population, Individual, Parents, and Offspring

- Population: is a set of candidate solutions.

- Individual: is a candidate solution in a population .

- Parents: are two or more selected individuals for reproduction.

- Offspring: are new candidate solutions produced from the selected

parents.

2. Population Initialization

The initial population of individuals are normally generated randomly. It is

also possible to bias the initial population to sample a particular area of the

problem search space.

3. Selection

• Parent Selection and Survivor Selection

An individual's selection can take place at two different stages of evolution:

parent and survival. In both cases, the better an individual's fitness is, the

more chance it would be selected.

23

- Parent selection: extracts individuals from an existing population for

reproduction.

- Survivor selection: selects from one generation to create the basis of

the next generation. It extracts individuals from parents and offspring

populations to produce a new population.

• Selection Methods

There are many different ways to select fitter individuals. Here we sum­

marize several popular selection methods [3] [23].

- Roulette wheel selection

Each individual is given a probability of being selected, which is pro­

portional to its fitness. The fitter individuals have a greater chance

of being selected than the weaker ones. When the fitness between the

individuals differs greatly, the fittest individual may be over selected

but other individuals have very little chance to be s lected.

- Tournament selection

A group of individuals are randomly selected from the population.

The best individual is the winner. The larger the tournament size, the

stronger the selection pressure.

- Rank selection

All individuals in the population are sorted by their fitness and their

ranks (instead of fitness) are used for selection. Rank selection will

work better than the roulette wheel selection when the fitness of pop­

ulation differs greatly, as roulette wheel selection can over select but

24

rank selection would not.

- Elitism

Some number of the best individuals are kept at each generation and

are copied over to the population of the next generation.

4. Crossover

It combines two parent solutions to create one or two new solutions with some

of the features of each parent. The idea behind crossover is that the generated

offspring may be better than its parents if it takes the best characteristics

from its parents. There are many different types of crossover methods, such as

uniform crossover, single point crossover, two point crossover, and arithmetic

crossover. Arithmetic crossover generates offspring by a linear combination of

the parents and we use the arithmetic crossover in this thesis as you will see in

the next chapter.

5. Mutation

It randomly modifies some of the genetic material of an individual to produce

new solutions. Mutation introduces new materials to the population pool , hence

it can be used to maintain the genetic diversity of the population.

6. Fitness Evaluation

Fitness gives the performance of a candidate solution. Each individual is as­

signed a fitness value based on how well it solves the given problem. Individuals

with a higher fitness value have a higher probability of contributing good solu­

tions in the next generation.

25

7. Termination Condition

Sometimes EA may run forever without reaching a satisfied solution, therefore

a termination limit is necessary to stop an algorithm.

3.2 Cooperative Co-Evolutionary Algorithms

Cooperative Co-Evolutionary Algorithm (CCEA) is a special evolutionary algorithm

proposed in [14][26]. Unlike the traditional EA [23], which solves a problem by search­

ing the whole solution space, CCEA divides the problem into many subproblems and

searches the subsolution space simultaneously. The subsolutions are then combined

to form the whole solution to the problem. Since the subsolution space is smaller,

the algorithm may find better solutions faster.

Coevolutionary search involves two or more populations. Separate populations are

created with their genotypic representations having no functional overlapping. Each

population represents a different species corresponding to one solution component and

an individual therein represents a solution to this subproblem. Only the individuals

of the same species can mate to produce offspring. Each species evolves for a certain

number of generations, which is equivalent to one ecosystem generation. At the end of

each ecosystem generation, the genetic information at a population is shared among

all species via a representative from each species for fitness evaluation. Figure 3.3

gives a high-level flow of CCEA, where R.; is the representative of species i. This figure

only gives an illustration of cooperation of fitness evaluation for species 1. As you see

in the figure, in order to evaluate each individual, we have to collect information from

all other species to form a complete solution to the problem. Other species have the

26

common process of fitness evaluation. The outer evolutionary process is terminated

when a certain termination condition is met.

F=(i, R2, R3, ... , Rn)

Figure 3.3: A high-level view of CCEA

3.2.1 Additional components of CCEA over EA

1. Subpopulation & Species

In EAs, one population is employed to evolve the solutions. However in CCEA,

a problem is decomposed into a number of subproblems, or species. For each

subproblem, there is a separate population, which contains the set of candidate

solutions to that subproblem.

27

2. Sub-search Space

EA searches the whole solution space while CCEA searches subsolutions in a

number of sub-search space simultaneously.

3. Ecosystem Generation

Each ecosystem generation in CCEA involves a number of generations as intro­

duced in Section 3.1.

4. Fitness Evaluation

The fitness of an individual in CCEA depends on its ability to collaborate with

representatives from other species, while in EA it is evaluated in isolation and

based on its own genotype. There are many ways to select a representative,

such as the current best individual or a random individual.

3.2.2 Related work on CCEA

CCEA has been successfully used in some applications. In [34], Wang and Wu use

CCEA for robot path planning of collision avoidance problem. The algorithm can be

executed in parallel and asynchronously while the representatives from each species

are selected synchronously. Tan et al. [30] present a cooperative coevolutionary algo­

rithm to co-evolve multiple subsolutions for a multi-objective optimization problem.

They propose a distributed cooperative coevolutionary algorithm (DCCEA) for con­

current computing while there is no direct communication among species and all

communications are performed between the species and a central server. The differ­

ence between the above work and our work is that their fitness evaluation is based

on the global information while we evaluate individuals using local information only.

28

There has been research investigating problem decomposition and the efficiency of

single-best collaboration during the evolution. Wiegand and colleagues [38][37] argued

that when a problem is divided in such a way that there exists contradictory cross­

population epistasis (inter-dependency), single-best collaboration would not produce

good solution. To address the inter-dependency issue, Weicker and Weicker [36] pro­

posed dynamically merging the species when inter-dependency of variables in cross

populations was detected. Kim and Ryu [19] went farther by allowing not only merg­

ing but also splitting the species when the inter-dependency no longer exist during the

evolution. Our cooperative coevolutionary framework also provides dynamic division

of species.

3.3 Desired CCEA and Features of Our Work

To work with the constraints of automated mobile sensor deployment: dynamic

change of the network, local information exchange, and energy conservation, the

following mechanisms have been developed so that coevolutionary algorithms can be

applied effectively in localized and distributed environments, such as network com­

puting. The expected framework is depicted in Figure 3.4, where ~ is the represen­

tative of species i. For better readability, we only illustrate the process of the fitness

evaluation for species 1. For each individual in species 1, its fitness is decided by

the combination of its genotype and the representative genotypes from neighboring

species. Species 1 has two neighbors: node 2 and node 3, so its fitness is evaluated as

F = (i, R2 , R3). Other species have the similar evaluation method.

In this thesis, we develop two novel CCEA models, called LODICO and LOD-

29

ICO/D, and their features are given below.

Problem
Redivision Best

Individual F = (i, R2, R3)

Figure 3.4: A high-level view of the expected CCEA framework

1. Flexible and dynamic problem division

Under distributed environments where the location of each node may change

dynamically, the partitioning of the problem (i.e. the sub-solution that each

population evolves) also changes. This is contrast to the CCEA where the solu-

tion each population evolves is fixed throughout the execution of the algorithm.

One consequence of this dynamic problem division is that the populations that

collaborate for fitness evaluation also change during the algorithm execution.

30

2. Energy efficient partial fitness evaluation

Because each population can only assume the availability of local information

within its proximity, the fitness evaluation must tolerate the missing input from

beyond the neighborhood. This is a salient contrast to CCEA, where fitness

cannot be evaluated without the information from all other populations.

3. Two operation modes for effective and efficient evolutionary search

We alternate two operation modes to help sensors to escape local optima. In

spirit, the first mode (mode I) is similar to the splitting species proposed in [19]

and the second mode (mode D) is similar to the merging species proposed in [36] .

If evolutionary search reaches a local optimum, merging species helps escaping

the local optimum and making the search more effective. If evolutionary search

reaches the basin of a global optimum after escaping a local optimum, splitting

species helps the search find the global optimum faster. We developed a simple

method to detect t hat a population might have reached a local optimum by

checking the existence of coverage holes in the neighborhood. If one or more

holes exist, operation is switched to mode D for one ecosystem generation cycle.

Alternating these two modes can accelerate the search process while avoiding

local optima.

31

Chapter 4

Localized Distributed Sensor

Deployment via Coevolutionary

Computation (LODICO)

LODICO is a completely localized distributed algorithm in that each local population

only collaborates with populations within its neighborhood for fitness evaluation.

This is an essential requirement for distributed computing where every node in the

system only has a local view of the environment. In this chapter, we detail the design

of LODICO and defer experimental analysis of it for Chapter 6.

4.1 LODICO Overview

LODICO consists of three major stages: planning, computing, and moving. A com­

plete pass of the three steps is called an ecosystem cycle. LODICO is executed on all

32

sensors of the network in parallel for a number of iterations until a coverage require­

mentis met.

In the planning stage of each cycle, a sensor first exchanges its location information

with others within its communication range. Using this information, it prescribes a

search space within its proximity in which it will find a target position and move

to it at the end of the current ecosystem cycle. In the computing stage, the sensor

executes a local evolutionary algorithm within its search space to calculate the best

target position using a fitness calculated from local information. Finally it moves to

the target position in the moving stage.

Once the movement is completed, the new search space of each sensor needs

to be recalculated as the network structure is altered. LODICO starts the next

ecosystem cycle by exchanging position information within neighborhood to search

for the next position that the sensor would move to next. This process repeats many

times until the specified number of ecosystem cycles are reached. Figure 4.1 gives the

high-level flow of the implementation. The implementation is based on the following

assumpt ions:

• Each sensor knows its own location by using the global positioning system (GPS)

or some positioning algorithms.

• A sufficient number of sensors are deployed so that they can potentially cover

the entire area.

• Each sensor has a sensing range, Rs, a communication range, Rc, and Rc ~ 3Rs .

The LODICO algorithm executes a sequence of ecosystem cycles, where each cycle

33

.- ---- -- --- --,
: '

Planning !
~-- ------ ----'

Com puling

·------------.
' ' ' '
: Moving :
' ' : '
~- - ----------

No

No

Figure 4.1: LODICO flow chart

34

consists of 3 steps: planning, computing, and moving. We explain each step in the

following sections.

4.2 Planning

In the planning stage, a sensor determines a partition of the entire deployment region

to execute its local evolutionary algorithm. To do that, it needs to know the positions

of the neighboring nodes, i.e., those within its communication range, and to define a

search space centered around its current position. The position information of each

node is exchanged through a reliable wireless communication channel. The search

space of a sensor is a limited scope within which the sensor can move in the current

ecosystem cycle.

At the beginning of each ecosystem cycle, LODICO decomposes the entire deploy­

ment area based on the current sensor locations in the network: each search space is

the sensing region of a sensor, i.e. the circle of radius R s centered at the position of

the sensor. A local evolutionary algorithm is executed for each sensor to locate a new

position within the region where the sensor will move to at the end of the ecosystem

cycle.

The search space limit is important because excessive moving in a single cycle can

make it hard for the algorithm to find good sensor locations. The reason is that sensors

should cooperate with each other when positioning themselves. A target position is

calculated using the latest position information within a neighborhood, so a drastic

alteration of the neighborhood structure can invalidate the previous computation.

In this thesis, we define the search space of a sensor to be equal to its sensing

35

region. Under the assumption that Rc ~ 3R8 , the search space limit of Rs ensures

that the new coverage at a target position will not overlap with that of any node

beyond its communication range, Rc· This is important for the fitn ss evaluation

described in Section 4.3.

The idea of the limit of search space can be illustrated by the diagram in Figure 4.2.

Suppose node a has a communication range Rc = 3R8 . Centered at itself are these

concentric circles of radii Rs, 2Rs and 3Rs, denoted by C1 , C2 , and C3 , respectively.

The search space restricts node a to move within C1 , which implies that its new

coverage will be restricted to C2 . For a non-neighbor node b, which is out of C3 , its

sensing coverage will not overlap with the new coverage of node a, no matter where

it moves to within the range of its search space. This limitation of search space can

guarantee that the new coverage of a sensor node only have overlaps with neighboring

coverage which is obtainable.

Figure 4.2: Analysis of potential movement and overlaps

36

4 .3 Computing

Each sensor executes an instance of a local EA to compute where it will move to at

the end of the cycle in t he computing stage. This section describes each component

of the local evolutionary algorithm.

4.3.1 Problem R epresentation

As a part of the network configuration, each sensor is given the information of the

total number of sensors (n) in the network. We use a fixed length array of n elements

to represent the genotype of an individual, where n is the total number of sensors

in the network. You may want to ask why we use such a long representation with

unobtainable information. This representat ion is suitable for the dynamic change of

the network structure after each sensor movement . We do not need to redefine a new

representation for each new environment . It is also able to be used for our extended

work as described in the next chapter.

Each element i (i = 1, 2, . .. , n) is the position {xi, yi} of sensor i in the de­

ployment area (See top diagram of Figure 4.3). Since a sensor only has position

information of its neighboring sensors, the elements in the genotype corresponding

to non-neighboring sensors contain invalid values. To distinguish a neighbor ing sen­

sor from a non-neighboring one, a second non-evolvable chromosome of length n is

used (See bottom diagram of Figure 4.3) . It stores the information of whether a

sensor is inside or outside its neighborhood.

Each element of this second chromosome can take a value from {0, 1, * }, where a

value 0 indicates that the corresponding element in the first chromosome is a non-

37

neighbor while 1 indicates that it is a neighbor and * indicates the sensor itself. Note

that there is exactly one element with value* and that the number of l's equals to the

number of neighbors (See bottom diagram of Figure 4.3). Notice that we would use a

variable-length genotype representation. However, our fix-length approach provides

the flexibility to facilitate the dynamic problem division. When a sensor is switched

from being a neighbor to a non-neighbor (or vice visa) for a particular sensor after

movement, an update of the second chromosome can reflect such change.

I I I o I

Figure 4.3: The 2-chromosome genotype representation

4.3.2 Evolution

Each sensor population (local population) maintains a set of individuals, P , each of

which corresponds to a sensor positioning which is a subsolution to the entire network.

Here, an individual encodes its own position and those of its neighbors. Each sensor

initiates its individuals by generating IPI random positions uniformly distributed in

its search space. Each position, along with those of the neighbors, is included in the

genotype of an individual.

Among these individuals, the IQI fittest are selected as parents, denoted by Q,

to reproduce the same number of offspring Q' via arithmetic crossover, where the

location value of an offspring is the mid-point of the gene values of its parents. The

Q individuals are paired based on their ranks: the first rank is paired with the second

38

---------------·---

rank, the second rank is paired with the third rank and so on. The arithmetic

crossover takes the average of the two parents' gene values as the gene value of its

offspring. Out of P U Q', the IPI fittest individuals survive and are carried over to

the next generation.

This process continues for g generations and the fittest individual at the end is

selected as the target position of the sensor, where g is a small integer as part of the

EA configuration. At the end of the g generation, the sensor moves to the target

positions.

4 .3.3 Fitness Evaluation

The fitness of an individual is determined by the total coverage area induced by the

new position and the total distance to travel to the new position. The goal is to

find a target position with good coverage without excessive movement for energy

conservation. And this should be evaluated using only local information. For a given

node, the sensing coverage is the union of its sensing area and the sensing areas of its

neighboring sensors. Assume that the sensing region of node i is A; (i = 1, 2, ... , n),

each of which is a subset of the entire deployment area U, i.e. the universe. We

use the second chromosome in the genotype to filter the global information. Let

'H = (h1 , h2 , .. . , hn) be the second chromosome of the sensor node. We define a

companion vector 'H = (h1,h2 , .. . ,hn) , where h; E {0,U} , for each H. Specifically,

h; = U if h; E {1, *} and h; = 0 if h; = 0. Thus, the coverage unioned over a

neighborhood of sensors is
n

U (h; nA;)
i= l

39

As we discussed in the last section, the search space limitation can ensure that the

new coverage of a sensor node would not overlap with non-neighboring nodes. This

is very important for the coverage fitness evaluation as the change of local network

structure would not affect or invalidate the fitness evaluation.

For an individual represented by 1i and {Ai}~1 which is of distanced away from

the current position, its fitness is

where w is a weight parameter for coverage-movement tradeoff purposes.

Although the fitness evaluation of LODICO only uses local information from its

neighboring nodes, it will be shown (See Chapter 6) that the computed fitness value

is able to drive the evolutionary search to find target positions that give good overall

coverage and energy consumption.

4.4 Moving

Once the target position of a sensor is determined, the sensor moves to that location

automatically using its actuation component. Then it broadcasts its new position

and prepares for the next cycle. Figure 4.4 gives the illustration of sensors before

and after their movement. Each sensor in the network tries to move away from their

neighbors to increase its local coverage.

As sensor nodes move to new positions, the network structure is changed. The

previous neighbors may not be neighbors in this new ecosystem cycle, and some

non-neighbors may become neighbors. As a result, each node has to re-decompose

40

(a) Before move (b) After move

Figure 4.4: Sensor positions before and after movement

the problem based on the current sensor positions. The consequence of this dynamic

change of network structure is that the search space for each node is changed and each

local population is also changed during the algorithm execution. This is different than

the traditional evolutionary algorithm where the solution each population evolves is

fixed throughout the execution of the algorithm. LODICO can reflect and manipulate

the dynamic changes of network environments effectively.

In some network scenarios, the assumption of Rc ~ 3R, can not be satisfied.

In this case, the local coverage can not be calculated precisely. To alleviate this

situation, an additional broadcast of the new location is necessary before the sensor

starts to move to the new location. Further , a limited-scope flooding could be used

alternatively.

41

Chapter 5

LODICO with Dynamic

Interaction of Neighboring

Species (LODICO/D)

LODICO is a completely localized distributed algorithm and it is flexible for the

dynamic changes of the network structure. With the constraints of that each sensor

only has local information within its neighborhood, LODICO can still direct the

evolutionary search to find a good solution based on the local fitness evaluation.

LODICO/ D is an extension of LODICO. It inherits all features of LODICO. Ad­

ditionally, it allows the interaction between neighboring species during the evolution­

ary process by providing another operation mode, mode D, for effective and efficient

evolutionary search. It models the potential neighboring interactions and uses the

imaginary neighboring moving plan to improve its local fitness and to help sensors

to escape from their local optimal positions. This is a powerful extension to the

42

traditional CCEA, where each species evolves in isolation.

5.1 Local Optima

We have implemented the LODICO to solve the automated sensor deployment prob-

lem (See Chapter 6). The evolutionary process of LODICO can be very fast since the

search space of each sensor is small. However, in some special situations, sensors may

get stuck in their local optima and do not move anymore even though they have not

reached their global target. For example, in Figure 5.1 , S1 , S2, .. . , S6 are six sensors

Figure 5.1: An example of local optima

used to cover an area, where S4 , S5 , and S6 have the identical location. For easier

understanding, we use a square area as the sensing region of a sensor. It is obvious

that the sensing coverage would increase if some sensors move to the left or the lower

region of the deployment field. However, t his would never happen because the current

sensor locations give the best coverage (the union of the sensing region of all sensors),

based on the neighboring sensor positions provided at the very beginning of the cycle.

Wherever a sensor moves to within its search space, its fitness can not be improved.

43

This happens for non-square sensing region as well. Sensors would not move if the

fitness improvement is within a certain threshold, say E, as the little improvement

of fitness may be established on a large moving distance with much power energy

consumption.

In order to obtain locations that give a better coverage than the current ones

do without much power consumption, the neighboring sensors need to have different

locations. LODICO / D provides this flexibility by allowing both the locations of a

sensor and its neighboring sensors to evolve, and helps the populations to escape the

local optimum. For the local optimal example given in Figure 5.1, Figure 5.2 illus-

trates a possible result of escaping local optimal positions after running LODICO /D

for one ecosystem cycle.

s
. s, f=r-r;-

s

•82
• Sa

Figure 5.2: Escaping local optima

5.2 Bi-modal Operation

In LODICO/D, each local population is executed using one of two operation modes:

mode I (Independent) and mode D (Dynamic). Mode I executes LODICO in Chap-

44

ter 4. That is, it evolves only a sensor's position. Mode D enables imaginary neigh­

boring moving to realize local optimum escape. In this case, a local population evolves

the positions of its neighbors along with that of its own in each ecosystem cycle. It

is called imaginary because the modification of a neighbor's position only facilitates

the calculation but has no physical effect on the new position of that neighbor. Re­

gardless of the operation mode, the fitness of an individual always considers part of

the entire sensor network.

5.3 Mode D

Mode D, as mode I, has the three stages: planning, computing, and moving, as in

LODICO. They are only different in the planning stage.

5.3.1 Planning for extended search space

The search space of a sensor is a limited scope within which the sensor can move at

the end of the ecosystem cycle. Under mode I, the search space of a local population is

two-dimensional: the x , y location of a sensor. With each local population searching

a 2-dimensional space separately and simultaneously, the global sensor network can

be obtained reasonably fast. In mode D, the search space of a local population is

multiple-dimensional: the x , y locations of a sensor and its neighboring sensor. Unlike

mode I where the neighboring sensor locations that are used for fitness evaluation

are fixed throughout the ecosystem cycle, the neighboring sensor locations are also

evolved potentially. It models the potential local interactions between species and

uses that to improve the local estimate of fitness and to help escaping local optima.

45

In either case, a sensor exchanges its location information with others within its

communication range. Using this information, mode I prescribes a search space within

its proximity in which it will find a target position and move to it at the end of the

current ecosystem cycle. In contrast, a sensor in mode D defines a search space not

only includes its own position but those of its neighbors.

5.3.2 Uniform computing

The computing stage of LODICO/D can be executed the same way as LODICO.

• Fixed-length Representation

Recall that in LODICO, we use a fixed length genotypic representation for each

individual in each local population. There are a number of advantages by using

it. First, it is suitable for all sensor nodes in the network with different local net­

work structures. Second, it adapts the environment changes of sensor networks.

After a sensor moves to a new position, its network structure changes and this

representation can still reflect such change. Third, it fits both LODICO and

the extended algorithm, LODICO/D. Though there are redundant information

in this representation, the one representation fits many different cases.

• Uniform Crossover and Mutation

We use the arithmetic crossover in LODICO, where an offspring is generated by

taking the average value of its two parents' gene values. For a non-evolved neigh­

bor, its gene values are same for all individuals. Therefore the average value

of two identical value remains unchanged. That is, the arithmetic crossover

does not change the genes other than the current sensor of mode I. For mode

46

.-------------------------------------~~~----~

D, since both the sensor along with its neighbors are evolved, crossover does

make change to the gene values of both the sensor and its neighbors. We do not

use mutation during the evolution in LODICO and LODICO/D. The frequent

changes of network structures make the search spaces changed frequently, thus

the population diversities are still maintained. The designed uniform evolution­

ary process is able to be used for both mode I and mode D.

5.3.3 Indiv idual mov ing

In mode D, each population evolves the positions of its own sensor and those of its

neighbors. In other words, there exists information overlaps between neighboring pop­

ulations. This poses a question of how to resolve the conflicts and which decision we

are going to adopt or use. A species can either adopt its own evolved decision or make

a compromised decision based on its target position with those from its neighbors in­

corporated. Here, when a sensor is to move, it only adopts its own decision though

the decision has been obtained by evolving a neighborhood of sensors. Note that the

evolved neighboring sensor positions are only used for fitness evaluation. They have

no impact on the neighboring sensors' new positions, which are only decided by the

"fittest" individual in the neighboring sensor populations.

Each sensor node then moves to its target position in the moving stage once it is

calculated. As the network structure is altered, LODICO/ D starts the next ecosystem

cycle by exchanging position information within its neighborhood and selecting an

operation mode for the next cycle.

47

5.3.4 Combination with mode I

Each run of LODICO/ D is a combination run of mode I and mode D. Mode I can run

very fast as each node has a small search space. Mode D can not be run independently.

The increase of its local fitness does not always lead to the improvement of global

fitness since the target position is based on the imaginary movements of neighbors.

Therefore, it has no idea when the algorithm converges. This is solved by detecting the

coverage holes around the sensors. A coverage hole is an area that is not covered by

any sensor in its neighborhood. If there is any hole, the local evolutionary algorithm

is switched to mode D for one ecosystem cycle and switched back to mode I the

following cycle, since mode I runs faster than mode D. This check is carried out for

each sensor population. LODICO jD combines mode I and mode D to accelerate

the process of evolution as well as escaping from local optima. The general flow of

LODICO / D is given in Figure 5.3.

5.4 Discussion

We take this opportunity to discuss our fixed-length representation and the moving

decision of mode D.

1. Fixed-length representation for a uniform design framework

In LODICO and LODICO/ D, we use a fix-length genotypic representation for

individuals in each local population. We argued that this genotypic repre­

sentation is not only suitable for both proposed algorithms, i.e. LODICO and

LODICO/ D, but also it lays down a foundation for a uniform representation for

48

T
Ecosystem

Cycle

:~---------------------------------;--------- ------ ---------------------------------
:: Computing :
:L------ --- - ----- -•

'--- ---------, : :.---------~------------,

j Moving Exchange Target Positions

No & mode = I Yes

Output the Subsolution

Figure 5.3: LODICO/ D flow char t

49

all sensors in the network despite that their local neighborhood network struc­

tures are different and changed frequently. In addition, the use of a separate

genotype reveals a significant generalization of fitness evaluation in EA.

The separate genotype enables a much more general fitness evaluation. A neigh­

bor's neighbors may provide some useful information. Because such information

has been propagated via multiple hops, it can be dated to a degree. Therefore,

it would be beneficial to include its contribution to fitness in a "fuzzy" way.

This can be realized by using values in [0, 1] to populate this second genotype.

The extreme values of 0 and 1 correspond to contributions from non-neighbors

and neighbors in LODICO and LODICO/D. In contrast, a value in between can

control the level of contribution from an "informative" non-neighbor, i.e. the

closer to 1 the value is, its contribution is considered more accurate. From the

perspective of designing evolutionary algorithms, this reveals another area of

future work. That is, fuzzy fitness evaluation and tolerance of missing inputs

for global fitness computation.

2. Moving Decision

In LODICO/D, we evolve both the positions of a sensor and its neighbors. The

movement plan is decided by the current sensor only and is imaginary for its

neighbors. Alternatively, We could also incorporate the moving suggestions

from neighbors. To do this, the node should be informed of the suggested new

position of itself from its neighbors. A simple comprise is to take a weighted

average of these new positions including its own. Since the current sensor has a

better idea of its environment than neighbors, its own decision can take a greater

50

w ight in the final decision while considering the suggestions of its neighbors

with a lesser weight. This would be another interesting extension in future

work.

51

Chapter 6

Experimental Analysis

To evaluate the performance of LODICO and LODICO/D, we have implemented a

computer program to simulate the deployment of autonomous mobile sensor networks

with various initial positions. The experimental settings and results are given in the

following sections.

6.1 Experimental Settings

We run computer simulations using various numbers of sensors in three different size

of fields: 100 x 100m2 (small) , 200 x 200m2 (medium), and 300 x 300m2 (large). For

the small size field, 10, 12, 14, and 16 sensors are deployed; for the medium size

field, 40, 50, 60, and 70 sensors are deployed; for the large size field, 70, 80, 90, and

100 sensors are deployed. The initial sensor positions are uniformly distributed at

random. Table 6.1 summarizes the parameter values used to carry out our simulation.

Three metrics, moving distance, convergence time, and sensing coverage, are used

to evaluate the experimental results. Moving distance is the average distance that

52

Table 6.1: Simulation Parameters

Parameters I Settings

Sensing range Rs 20m

Communication range Rc 60m

Deployment area size U 1002
, 2002

, 3002 (m2
)

Number of sensor nodes n

Small size area: 1002 m2 10, 12, 14, 16;

Medium size area: 2002 m2 40, 50, 60, 70;

Large size area: 3002 m2 70, 80, 90, 100

Population size IPI 10

umber of offspring IQI 5

Ecosystem cycles 9e 30

Number of generations in each ecosystem cycle g 5

53

---~-----------

a sensor in the network has to travel from its initial position to the final position.

Convergence time is the number of ecosystem cycles it takes for all sensor populations

to converge, i.e. the best individual fitness stops improving. Sensing coverage is the

percentage of the deployment field that is covered by the deployed sensors. The

experimental results are presented and analyzed in the following sections.

6.2 Preliminary Study

We use two sets of preliminary experiments to study the effect of the weight parame­

ter (w) on the algorithm performance. The first set deploys 40 sensors to the medium

size field and the second set deploys 100 sensors to the large size field . Each set

of run is conducted using 5 different w values: 0, 0.5, 1.0, 1.5, and 2.0. Figure 6.1

gives the performance results averaged over 30 runs and evaluated using the three

metrics (moving distance, convergence time, and sensing coverage). The results show

that the value of w can influence the network performance considerably.

Figure 6.1(a) shows that without the weight control (w=O), the sensors travel a

long distance from their initial positions to the final positions, which consumes a lot

of the battery power. The situation improves dramatically when w is increased; even

a small value of w can reduce the moving distance per sensor from 364.4m to 43.6m

for 100 sensors deployed in a large size field (second series in the chart). As w further

increases to 2, the moving distance per sensor node is reduced to only about 2% of

the moving distance when w is 0. The same trend holds for the smaller networks such

as 40 nodes deployed to a medium size field (first series in Figure 6.1(a)).

When considering the algorithm convergence time, a greater value of w leads to

54

"' Q)

0
>-u
E
$
"' >-
"' 0 u w

30

25

20

15

10

5

0

2l
c:
.!9
<f)

'6
Ol c:
·;;
0 ::.

400

300

200

100

0

(a) Moving distance

40_sensors =
1 oo_sensors -

0.0 0.5 1.0 1.5 2.0

{b) Convergence time

40_sensors =
1 OO_sensors -

0.0 0.5 1.0 1.5 2.0

Weight

Weight

Q)
Ol

"' Q;
>
0

(.)

0.99

0.98

0.97

0.96

0.95

(c) Coverage

40_sensors =
100_sensors-

0.0 0.5 1.0 1.5 2.0

Weight

Figure 6.1: Influence of distance weight (w) on the 3 performance metrics

55

a smaller number of ecosystem cycles needed for t he populations to converge to the

final sensor positions, because it can suppress excessive node movement effectively (see

Figure 6.1 (b)). Figure 6.1(c) shows that w = 0.5 gives the largest sensing coverage

of 99.5% at the time when all populations are converged. As the w value continues

to increase, the network coverage is decreased.

When w = 0, the average number of ecosystem cycles takes to satisfy the conver­

gence requirements is larger than 30 (Figure 6.l(b)), but we only plot them within 30

ecosystem cycles for better readability. We also measure the sensing coverage of the

sensors after 30 ecosystem cycles and the population either converges or the fitness

fluctuates at a certain level. This indicates that traveling a large distance does not

help sensors locate posit ions that provide good coverage.

The 99% confidence intervals on the means of the three metrics with the 5 different

w values are given in Figure 6.2.

When all three metrics are considered, w = 1.0 gives a good balance between large

coverage, small moving distance and convergence time. We therefore use w = 1.0 to

conduct the rest of our experiments. Meanwhile, when w = 1.0, we see that the

populations take 7.9 and 9.44 ecosystem cycles to converge (Figure 6. l (b)) for the

two sets of experimental runs. Figure 6.2(b) shows that its 99% confidence intervals

are within 10 ecosystem cycles. Thus 9e = 30 is a reasonable choice to use for

the rest of our experiments.

56

(a) Moving distance

400

~ 300
c:

"' u;
'0 200
Cl
c: ·;;;
0

:::E 100

0
40_sensors 1 oo_sensors

(b) Ecosystem cycles (c) Coverage

30

"'
25 0.99

Q)

0 20 ()' Q) 0.98
Cl

E 15 Q)

u; ,.,
"' 10
8
UJ

5

"' Qj 0.97
>
0
t) 0.96

0.95

0 0.94
40_sensors 1 OO_sensors 40_sensors 1 oo_sensors

Figure 6.2: 99% confidence intervals on the means

57

6.3 Studies on LODICO

We study the performance of LODICO under different network sizes using a different

number of sensors as that given in Table 6.1. The results are analyzed in the following

sub-sections.

6.3.1 Fitness improvement

We first use three configurations of smaller nodal density (i.e. 12 sensors in a small

size region, 50 sensors in a medium size region, and 80 sensors in a large size region)

to show coverage improvement. The results of random one run for each configuration

is given in Figure 6.3. The curves indicate that the global network coverage improves

rapidly during the first few ecosystem cycles and the populations converge around

the 7th cycle. You may notice that, for the medium and large size network, the

populations converge at around 98% coverage of the deployed field . In Section 6.4,

we will show that LODICO / D can improve the coverage to 100%.

<I>
g'
05 0.95
>
8 0.9

::.! .._
~ 0.85

~ 0.8
(ii
.0 0.75
.Q

100x100 with 12 sensors ---+--
200x200 with 50 sensors - --><---
300x300 with 80 sensors · · · .,.. · ·

0 0. 7 L._.L.._J....._....L_--L..--L-_i__j___J__..L..__J

0 1 2 3 4 5 6 7 8 9 10
Number of ecosystem cycles

Figure 6.3: Coverage improvement under LODICO

58

Figure 6.4 is the results averaged over 20 runs for t he three configurations, respec-

tively. We plot 10 ecosystem cycles and the average global coverage can be achieved

at least 97% at the lOth ecosystem cycle. The evolutionary search is able to quickly

find a solution t hat gives good coverage.

Q)

~
Q) 0.95
>
0
(.)

.:.::
0.9

~ 0.85

~ 0.8
«i
.0 0 .75
0

---~:~:~r~~~:~~:::~~~:lt.--~tt~-~-

,,,)11(····

~

,:.r' , ,.
' ·
'· 100x100 with 12 sensors --+-

200x200 with 50 sensors ---><---
300x300 with 80 sensors -- - -)1(-- -

B 0. 7 L--..l.--'---'--L---'---'---'-L-.J.__J

0 1 2 3 4 5 6 7 8 9 10
Number of ecosystem cycles

Figure 6.4: Average coverage improvement under LODICO

6.3.2 Coverage vs. moving distance

To study the global network coverage and the moving distance over time, we make

one run deploying 10 sensors to a small size field, one run deploying 50 sensors to a

medium size field, and one run deploying 100 sensors to a large size field. Figure 6.5

shows that they all have a similar pat tern: the coverage increases while the moving

distance decreases as the evolution progresses. The selected w(l) is able to balance the

two conflicting objectives and direct the evolutionary search to find a good solution.

59

<I>
Cl
~
<I>
> 0.95

8 0.9
~
0 0.85
~
<I> 0.8
c:
"iii 0.75
.0
0 0.7 a 0

6.3.3

<I>
(a) 10 sensors on a small size field

~ 1x ~ 0.95

8 0.9
~
~ 0.85

~ 0.8 \

Coverage ----­
Moving distance ---a---

100 <I>
u

80 ~
iii

60 "6

40 g>
·~

20 ::E 2i 0.75 ~-
0 0.7 '.... 0
a o 1 2 3 4 5 6 7 8 9 10

Number of ecosystem cycles

(b) 50 sensors on a medium size field
<I>

(c) 100 sensors on a large size field

500 Cl 1
Coverage~ ~

Moving distance ---e--- 400
<I> <I> 0.95 u > c: 8 "' 0.9

300 iii ~ 'b "6 0 0.85
200 g> ~

Q) 0.8 \ .,.
c: 'l<l 100 ~ "iii 0.75
.0

'•,

0 0 0.7
1 2 3 4 5 6 7 8 g 10 a 0 1 2 3 4 5 6 7 8 9
Number of ecosystem cycles Number of ecosystem cycles

Figure 6.5: Coverage vs. moving distance

Global network fitness & local network fitness

1000 ~
800 c:

"' 600
iii
"6
Cl

400 c: .,.
200 0

::E
0

10

We know that each ecosystem cycle includes a number of generations. In this single

run experiment, we randomly deploy 10 sensors to a small size field to investigate the

change of the local fitness of each sensor at the end of each ecosystem cycle and each

generation.

Since a sensor moves to a new position at the end of each cycle, the induced

new local network also changes. Figure 6.6 shows the increa e or decrease of the

local fitness of each sensor at the end of each ecosystem cycle as the change of local

network structure. Within each ecosystem cycle, t he best individual local fitness

always increases or remains unchanged. Figure 6.7 shows the best individual fitness

improvement within each ecosystem cycle for sensor 1. All other nodes have the

similar patterns. The global fitness keeps on climbing up as the evolution progresses

60

"' "' "' ~

~

100

90

80

70

60

50

40~

30~~~~~~--~~--~~--~~

0 3 4 5 6 7 8 9 10
Number of eoosystem cycles

---+-- sensor 1
---)(--- sensor 2
........ sensor 3
-··D-·-·· sensor 4

- ·-e-·- sensor 5
-·-o · · sensor 6
·· ·• · · sensor 7
·- ·• - · sensor 8

sensor 9
----.-- sensor 10

Figure 6.6: Local fitness changes after each ecosystem cycle

m : ~ : 610 610 ~:bJ ~:u ~:u g ~ g ~

) :) :

lil
~
~

g
..J

55 55

54 54
0 1234 56 0123456

Number of generations

--- Ecosystem cycle 1

~u 59

~

57

56

55

54
0123456

Number of generations
-- Ecosystem cycle 6

~
~

~

Number of generations

--- Ecosystem cyde 2

~u 59

~

57

56

55

54
0123456

Number of generaUons
~- Ecosystem cyde 7

g ~ g ~ e ~

) :) : i :

~
~

~

~ ~ ~

54 54 54
0123456 0123456 0123456

Number ol generations

- Ecosystem cyclo 3

:Q 59

~

57

56

55

54
0123456

Number of generations
-- Ecosystem cyde 8

~
~

~

Number of generatk>ns
-+-- Ecosystem cycle 4

~u 59

58

57

56

55

54
0123458

Number of generations

- Ecosystem cycle 9

i
~

g
..J

Number of generations
-+- Ecosystem cycle 5

~u 59

~

57

56

55

54
0123458

Number of generations
--- Ecosystem cycle 10

Figure 6.7: Sensor 1: the best individual local fitness improvement at each ecosystem

cycle

61

as shown in Figure 6.8. This is because the fitness of each individual is based on

how well it collaborates with its neighbors to provide local network coverage. This

designed local fitness function is able to direct the evolutionary search of each local

population toward a target position which can cooperate well with other sensors. As

a result, a global network with good coverage can be generated .

'iii
D
0 a

100 r-r--O"'J!!='If"""ll-<11-<11""""~11---<jl

95

90

85

80

75

70~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 10
Number of ecosystem cycles

Figure 6.8: Global fitness improvement after each ecosystem cycle

6.3.4 Influence of the number of sensors

In this group of experiments, we want to see how nodal density affects the deployment

performance. We randomly deploy 4 different numbers of sensor nodes (Table 6.1) to

the 3 different size of deployment fields (small, medium, and large). When the best

individual in all local populations stops improving, we evaluate the three performance

metrics: network coverage (Figure 6.9(a)), convergence time (Figure 6.9(b)), and

moving distance (Figure 6.9(c)) averaged over 30 runs. The 99% confidence intervals

on the means for the three metrics are given in Figure 6.10.

The general observation from these experiments is that, as the sensor nodal density

increases, so does the induced network coverage, while the convergence time and

62

14

(Jl
12

"' 10 0
iJ'
E 8

"' iii 6
>.
(Jl

4 0

" UJ
2

0

14

(Jl ., 12
0
iJ' 10

E
Q)
;;;
>-

"' 8
UJ

~

0.99

Q) 0.98
Cl
~

0.97 "' >
0
(.) 0.96

0.95

0.94

(a) Coverage

I
1 0/40!70 12/50/80 14/60190 16!70/1 00

Number of sensors

(b) Convergence time

30

25

"' " c 20 "' iii
'5 15
Cl
c

I rr
·;; 10
0
::!:

5

0

100x1 00_area =
200x200_area
300x300_area -

(c) Moving distance

t;

I~ f~'

I! 'l m
1 0/40{70 12/50180 14/60190 16!70/1 00

Number of sensors

1 0/40!70 12/50180 14/60/90 16!70/1 00

Number of sensors

Figure 6.9: Influence of number of sensors

(a) Coverage

0.98

J_ ~~ ,-L.-L r-
~ .1-

Q)
0'>

~
0.96 Q)

>
0

(.)
0.94

0.92

l l

f
small_s1ze med1um_size large_s1ze

(b) Covergence lime (c) Moving dislance
30

~ c
25

~ 20

"' '0 15
Cl
c

10 ·;;
0
:::;

Figure 6.10: 99% confidence intervals on the means

63

moving distance decrease. This is reasonable as a larger number of sensors in the

network make it easier to cover a wider area of the deployed field with a smaller

amount of time and a shorter moving distance.

6.4 Studies on LODICO/D

In this section, we compare the performance of LODICO and LODICO/D, and in­

vestigate how LODICO / D helps sensor nodes to escape local optimal positions.

6.4.1 Comparison of LODICO & LODICO/ D

As shown in Section 6.3.1, LODICO can provide deployments of sensor networks with

good coverage. However, it does not always give 100% coverage for the deployed field .

In the case where 100% coverage is required, incorporating mode D in the algorithm

may help providing better coverage.

To investigate the benefit of mode D in helping the populations to escape local

optima and deliver better solutions, we make 30 runs for each deployment of 40,

50, 60, and 70 sensors in a medium 200 x 200m2 square area using LODICO and

LODICO/D respectively. The two sets of experiments are carried out as follows: one

operates LODICO and the other operates LODICO /D where mode I and mode D are

alternated with 5 and 1 ecosystem cycles intervals, i.e. 5 mode I cy les followed by 1

possible mode D cycle.

This alternation is selected because a population is not likely to reach a local

optimum during the first 5 cycles, hence should be operated under mode I. At the

end of the 5th cycle, the best individual in each population is checked for coverage

64

Table 6.2: Average Coverage Comparison Between LODICO and LODICO/D

LODICO LODICO/D

sensors average coverage 100% covered average coverage 100% covered

40 98.50% 0 99.33% 1

50 99.44% 0 99.88% 15

60 99.63% 0 99.98% 25

70 99.73% 0 99.99% 27

holes. If there is any hole, the local GA is switched to mode D for 1 cycle and

switched back to mode I the following cycle, since mode I runs faster than mode

D (See Chapter 5). This check is carried out for each sensor population, and only

those whose best individual induces a local network with a coverage hole operate

mode D while others remain operating mode I in the following ecosystem cycle.

The average coverage of 30 runs and the numbers of runs achieving 100% coverage

are given in Table 6.2. Overall, both setups provide very good coverage. Nevertheless,

LODICO/D with the alternation of mode I & mode D delivers a larger number of

runs that produces 100% coverage.

6.4.2 Local optima

To validate our hypothesis that mode D improves performance by helping the pop­

ulations escape local optima, we conduct another single experiment deploying 10

sensors to a small size field, where the sensor initial locations give a local optimum

coverage (64%).

65

The simulation is carried out by alternating 2 cycles of mode I followed by 1

possible cycle of mode D. The best global fitness (See Figure 6.11) shows that after

2 cycles of no fitness improvement, the fitness declines aft er the execution of mode

D at the third ecosystem cycle. This fitness decline is caused by a large moving

distance (See Figure 6.12), indicating that the sensor has escaped the local optimum.

After that , the global fitness starts to climb and eventually reaches 100% coverage.

90

80

70

60

Mode I-+­
Mode D o

so~~~~~~~~~~~

0 1 2 3 4 5 6 7 8 9 1011121314

Number of ecosystem cycles

Figure 6.11 : Global fitness under Mode I and D

120
Ql 100 Ql O'l 0.9 ca (,)

Cii
c

80 ca
> Coverage _,____ iii 0
(,) 0.8 , Distance ---><--- '6
~ \ Mode D 0 60 O'l
0 c

~
\

40 '5
><--x:, 0

Ql 0.7 ::2 z ' 'IQ_ 20

0.6 0
0 1 2 3 4 5 6 7 8 9 1011121314

Number of ecosystem cycles

Figure 6.12: Network coverage vs. moving distance

66

6.4.3 Initial corner deployment

To evaluate the system performance under the situation where all sensors are initially

deployed to a corner in the deployment field, we conduct another single experiment

with randomly init ialized 10 sensors in the corner of 40 x 40m2 area in a 100 x 100m2

field (See Figure 6.14(a)).

c
Q)

~ 0.8
> e c. 0.6
.§
Q) 0 .4
g>
~ 0.2
0
() 0L-L-~-L-L~~L-~-L-L~--L-L-~-L-L~--~~~~

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of ecosystem cycles

Figure 6.13: Coverage improvement of deploying sensors in a corner

This is a hard situation for any deployment algorithm as the initial network cov-

erage is only 22.28% as shown in Figure 6.13. The alternation of mode I and mode

D has improved the fitness quickly, and after 5 ecosystem cycles, almost 90% of the

given field is covered by the sensors. Further, at the 14th ecosystem cycle, the whole

area is fully covered. Figure 6.14 shows the sensors movement process at the end of

each ecosystem cycle.

67

10 10
9 9

8

>- >-

' + +
+ +

1
: +

+ 1
: +

0 0
0 1 4 5 6 7 8 9 10 0 1 3 4 5 6 7 8 9 10

X Xf generations

(a) Ecosystem cycle 0 (b) After ecosystem cycle 1

10 10
9

8
7 f"' +
6 .

>- >-
+

+ •
1 : .
0 0

0 1 3 4 7 8 9 10 0 1 3 4 6 7 8 9 10
X X

(c) After ecosystem cycle 2 (d) After ecosystem cycle 3

10 10
9
8

+ +

>- >-

1 1
0 0

0 1 4 5 7 8 9 10 0 1 3 4 6 7 9 10
X X

(e) After ecosystem cycle 4 (f) After ecosystem cycle 5

10 10

>- >-
'•

+ • +

1
0 0

0 1 3 4 6 7 8 9 10 0 1 5 6 7 8 9 10

X X

(g) After ecosystem cycle 6 (h) After ecosystem cycle 7

68

10
9
8
7
6

>- 5
4
3
2
1
0

(i)

10
9
8
7
6

>- 5
4
3
2
1
0

(k)

10
9
8
7
6

>- 5
4
3
2
1
0

(m)

+ + +

. . .
+ .

•
0 1 2 3 4 5 6 7 8 9

X

After ecosystem cycle 8

. +

+
+ +

. .
•

0 1 2 3 4 5 6 7 8 9
X

10
9
8
7
6

>- 5
4 +
3
2
1
0

10 0 1

(j) Aft

10
9
8
7
6

>- 5
4 +

3
2
1
0

10 0 1

2 3 4 5 6 7 8 9 10
X

er ecosystem cycle 9

+

•
2 3 4 5 6 7 8 9 10

X

After ecosystem cycle 10 (1) Afte r ecosystem cycle 11

0

+ +

+
+

.
•

1 2 3 4 5 6 7

X

+

>-.
+

8 9 10

10
9
8
7
6
5
4
3
2
1
0

0

+

1

+

•
2 3 4 5 6 7 8 9 10

X

After ecosystem cycle 12 (n) Afte r ecosystem cycle 13

10
9
8 . . +

7
6

>- 5 +

4 . .
3
2 + .
1 •
0

0 1 2 3 4 5 6 7 8 9 10

X

(o) After ecosystem cycle 14

Figure 6.14: Position changes of sensors

69

Chapter 7

Conclusion and Future Work

In this thesis, we propose two innovative CCEA models, LODICO and LODICO/D,

to optimize the automated mobile sensor deployment of a wireless sensor network.

They are completely localized algorithms which can be executed fully distributed and

in parallel at each sensor node.

LODICO and LODICO / D are powerful extensions to the traditional Coopera­

tive Coevolutionary Algorithms in three aspects. First , CCEA evaluates individuals

based on the collaboration of all species, i.e. a complete solution has to be gener­

ated for fitness evaluation, while LODICO and LODICO / D coordinate sensor nodes

through localized partial fitness evaluation and information exchange. This makes

CCEA applicable to fully distributed computing applications. Second, LODICO and

LODICO / D propose a scheme of frequent, dist ributed, and dynamic problem di­

vision, in which no center control is needed and each sensor node divides its own

subproblem based on its local information only. This is particularly suitable for the

dynamic changes of mobile sensor networks. Third, we know that in CCEA, the

70

only interaction between species is the fitness evaluation. Yet, LODICO / D models

local interactions between neighboring species during the variation of individuals to

improve its fitness and help populations escaping local optima.

The simulation results show that LODICO and LODICO / D are effective in obtain­

ing good solutions under dynamic, distributed, and localized condition constraints.

They can achieve very high coverage rates with short moving distances in short period

of times.

In the future work, we plan to extend mode D to incorporate a sensor's target

position with its neighboring moving suggestions. Further, we want to use the fixed­

length representation with fuzzy information of farther sensors to form an estimated

global view of the network while still using local communication only. This will fully

investigate the power of partial and fuzzy fitness evaluation. And yet, more interesting

findings are to be made.

71

Bibliography

[1] K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor

networks. Ad Hoc Networks, 3(3):325- 349, 2005.

[2] J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks:

a survey. IEEE Wireless Communications, 11:6- 28, 2004.

[3] T. Back, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computationl.

Institute of physics publishing, Philadelphia, PA, USA, 2000.

[4] X. Bai, S. Kumar, D. Xuan, z. Yun, and T. H. Lai. Deploying wireless sensors

to achieve both coverage and connectivity. In Proceedings of A CM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), May 2006.

[5] E. S. Biagioni and G. Sasaki. Wireless sensor placement for r liable and effi­

cient data collection. In Proceedings of the 36th Annual Hawaii International

Conference on System Science , 2003.

[6] S. Chellappan, X. Bai, B. Ma, and D. Xuan. Sensor networks deployment using

flip-based sensors. In Proceedings of IEEE Mobile Sensor and Ad-hoc and Sensor

Systems (MASS), Nov. 2005.

72

[7] K. Dasgupta, M. Kukreja, and K. Kalpakis. Topology-aware placement and

role assignment for energy-efficient information gathering in sensor networks. In

Proceedings of the 8th IEEE Symposium on Computers and Communications,

Kemer-Antalya, Turkey, Nov. 2002.

[8] R. D'Souza, D. Galvin, C. Moore, and D. Randall. Global connectivity from

local geometric constraints for sensor networks with various wireless footprints.

In Proceedings of the fifth international conference on Information processing in

sensor networks (IPSN'06}, pages 19- 26, New York, NY, USA, 2006.

[9] D. Ganesan, R. Cristescu, and B. Beferull-Lozano. Power-efficient sensor place­

ment and transmission structure for data gathering under distortion constraints.

In Proceedings of Symposium on Information Processing in Sensor N etworks

(IPSN '04}, Berkeley, California, Apr. 2004.

[10] N. Heo and P. K. Varshney. Energy-efficient deployment of intelligent mobile

sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part

A, 35(1):78- 92, 2005.

[11] A. Howard, M. J. Mataric, and G. S. Sukhatme. An incremental self-deployment

algorithms for mobile sensor networks. Autonomous Robots, Special Issue on

Intelligent Embedded Systems, 13(2):113- 126, Sep 2002.

[12] A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deploy­

ment using potential fields: A distributed, scalable solution to the area coverage

problem. In Proceedings of Distributed Autonomous Robotic Systems, pages 299-

308, 2002.

73

[13] W . Hu, C. Chou, S. Jha, and N. Bulusu . Deploying long-lived and cost-effective

hybrid sensor networks. In Proceedings of the First Annual International Con­

ference on Broadband Networking (BROADNETS), 2004.

[14] P. Husbands and F. Mill. Simulated co-evolution as the mechanism for emergent

planning and scheduling. In Proceedings of ICGA, pages 264- 270, 1991.

[15] V. Isler , K. Daniilidis, and S. Kannan. Sampling based sensor-network de­

ployment. In Proceedings of IEEE/ RSJ International Conference on Intelligent

Robots and Systems(IROS), 2004.

[16] X. Jiang, Y. P . Chen, and T. Yu. Dynamic cooperative co-evolutionary sensor

deployment via localized fitness evaluation. In Proceedings of Parallel Problem

Solving from Nature (PPSN), Dortmund, Germany, September 13-17 2008.

[17] X. Jiang, Y. P . Chen, and T. Yu. Localized distributed sensor deployment via co­

evolutionary computation. In Proceedings of the IEEE International Conference

on Communications and Networking (ChinaCom), Hangzhou, China, August

25-27 2008.

[18] D. Jourdan and 0. de Week. Layout optimization for a wireless sensor network

using a multi-objective genetic algorithm. In Proceedings of IEEE Semiannual

Vehicular Technology Conference, Milan, Italy, May 2004.

[19] M. W. Kim and J. W . Ryu. An efficient coevolutionary algorithm using dynamic

species control. In Proceedings of Third International Conference on Natural

Computation (ICNC), 2007.

74

[20] A. Krause, C. Guestrin , A. Gupta, and J. Kleinberg. Near-optimal s nsor place­

ment: Maximizing information while minimizing communication cost. In Pro­

ceedings of IPSN, 2006.

[21] X. Liu and P. Mohapatra. On the deployment of wireless sensor nodes. In Pro­

ceedings of international Workshop on Measurement, Modeling, and Performance

Analysis of Wireless Sensor Networks (SenMetrics), 2005.

[22] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless

sensor networks for habitat monitoring. In ACM workshop on wireless sensor

networks and applications, Atlanta, Georgia, USA, September 2 2002.

[23] M. Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge, MA,

1996.

[24] S. Panichpapiboon, G. Ferrari , and 0 . K. Tonguz. Optimal transmit power in

wir les sensor networks. IEEE Transactions on Mobile Computing, 5(10):1432-

1447, 2006.

[25] J. Polastre, R. Szewczyk, A. Mainwaring, D. Culler, and J. Anderson. Analysis

of wireless sensor networks for habitat monitoring. Wireless sensor networks,

pages 399- 423, 2004.

[26] M. A. Potter. The design and analysis of a computational model of cooperative

coevolution. PhD thesis, George Mason University, 1997.

[27] C. S. Raghavendra, K. M. Sivalingam, and T . Znati , editors. Wi1·eless sensor

networks. Kluwer Academic Publishers, Norwell, MA, USA, 2004.

75

[28] V. Shnayder, B. Chen, K. Lorincz, T . R. F. Fulford-Jones, and M. Welsh. Sensor

networks for medical care. In Technical Report TR-08-05, Division of Engineer­

ing and Applied Sciences, Harvard University, 2005.

[29] H. Shu, Q. Liang, and J. Gao. Dist ributed sensor network deployment using

fuzzy logic systems. International Journal of Wireless Information Networks,

14(3):163- 173, September 2007.

[30] K. C. Tan, Y. J. Yang, and C. K. Goh. A distributed cooperative coevolutionary

algorithm for multiobjective optimization. In Proceedings of the IEEE trasactions

on evolutionary computation, 2004.

[31] G. Wang, G. Cao, and T . L. Porta. A bidding protocol for deploying mobile

sensors. In Proceedings of IEEE International Conference on Network Protocols

(!GNP), Nov 2003.

[32] G. Wang, G. Cao, and T . L. Porta. Movement-assisted sensor deployment. In

Proceedings of IEEE INFOCOM, March 2004.

[33] G. Wang, G. Cao, and T . L. Porta. Proxy-based sensor deployment for mobile

sensor networks. In Proceedings of IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (MASS), 2004.

[34] M. Wang and T . Wu. Cooperative co-evolution based distributed path planning

of multiple mobile robots. Zhejiang University SCIENCE, 6A(7):697- 706, 2005.

76

[35] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. Gill. Integrated coverage

and connectivity configuration for energy conservation in sensor networks. A CM

Transactions on Sensor Networks, 1(1):36- 72, Aug 2005.

[36] K. Weicker and N. Weicker. On the improvement of coevolutionary optimizers

by learning variable interdependencies. In Proceedings of the IEEE Congress on

Evolutionary Computation (CEC) , pages 1627- 1632, 1999.

[37] R. P. Wiegand. An analysis of cooperative coevolutionary algorithms. PhD thesis,

George Mason University, 2004.

[38] R. P. Wiegand, W. C. Liles, and K. A. D. Jong. The effects of representational

bias on collaboration methods in cooperative coevolution. In Proceedings of the

S eventh Conference on Parallel Problem Solving from Nature (PPSN), pages

257- 268, 2002.

[39] J. Wu and S. Yang. Smart: A scan-based movement-assisted sensor deployment

method in wireless sensor networks. In Proceedings of IEEE INFOCOM, Mar

2005.

[40] X. Wu, J. Cho, B. J. d'Auriol, and S. Lee. Mobility-assisted relocation for self­

deployment in wireless sensor networks. IEICE Transactions, 90-B(8) :2056- 2069,

2007.

[41] B. Yener, M. Magdon-Ismail, and F . Sivrikaya. Joint problem of power opti­

mal connectivity and coverage in wireless sensor networks. Wireless Networks,

13(4):537- 550, 2007.

77

r---

[42] Y. Zou and K. Chakrabarty. Sensor deployment and target localization based

on virtual forces . In Proceedings of IEEE INFOCOM, pages 1293- 1303, 2003.

[43] Y. Zou and K. Chakrabarty. Uncertainty-aware and coverage-oriented deploy­

ment for sensor networks. Journal of Parallel and Distributed Computing,

64(7):788- 798, 2004.

78

Index

A Wireless Sensor Network, 1

CCEA, 26

Communication Range, 4

Connectivity, 4

Convergence Time, 54

Coverage Hole, 48

Crossover, 25

Data Representation, 22

Directed Diffusion, 5

Ecosystem Cycle, 32

Ecosystem Generation, 28

Elitism, 25

Energy Consumption, 3

Evolutionary Algorithms, 20

Fitness Evaluation, 25

Flooding, 5

Genotype, 23

Gossiping, 5

Individual, 23

Local Optima, 43

Local Population, 38

LODICO, 32

LODICO/ D, 42

Mobile Sensors, 2

Mode D, 45

Mode I, 44

Moving Distance, 52

Multi-hop, 4

Mutation, 25

Neighbors, 4

Network Sensing Coverage, 3

Offspring, 23

Parent Selection, 24

Parents, 23

Phenotype, 23

Population, 23

79

Population Initialization , 23

Post-deployment, 17

Pre-deployment, 16

Rank Selection, 24

Roulette Wheel Selection, 24

Routing, 5

Selection, 23

Sensing Coverage, 3

Sensing Range, 3

Sensing Unit, 1

Single-hop, 4

Sink, 2

Species, 27

SPIN, 5

Static Sensors, 2

Subpopulation, 27

Survivor Selection, 24

Termination Condition, 26

Tournament Selection, 24

80

