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Abstract 

A wireless sensor network is a self-organized network consisting of a large number of 

small sensor nodes distributed over an area of interests. Such networks are capable 

of observing and sensing the environment, and sending the collected data to a data 

sink for further processing. Sensors must be deployed before they can provide useful 

data. Therefore the deployment of static or mobile sensors is an important basis for 

sensor networking. 

Automated mobile sensor deployment of a wireless sensor network has a significant 

impact on the network performance, such as network sensing coverage, communication 

or mobile costs, and connectivity. Due to the small size of sensors, they are equipped 

with small batteries and have low-power computing and communication resources. 

The lifetime of a sensor is determined by its battery life and it can not operate for 

an infinite amount of time. Therefore, a good deployment yields a high utilization of 

power resources. 

In this thesis, we propose an innovative cooperative co-evolutionary computation 

framework, Localized Distributed Coevolution (LODICO), to optimize the automated 

sensor deployment with arbitrary initial positions. LODICO is a fully distributed 

and localized algorithm. It can be executed on all sensors of the network in parallel. 

Meanwhile the information exchange has to be done locally as each sensor can only 

communicate with those within a distance. Further, we extend LODICO to LOD­

ICO /D to provide dynamic interaction to neighboring computing agents during the 

evolutionary process. It models the potential local interactions between computing 

agents, and uses the the imaginary neighboring movements to improve its local fitness 
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and to help escaping from local optima. 

This thesis is a powerful extension work to the traditional Cooperative Coevolu­

tionary Algorithm. One feature of it is the utilization of local fitness to achieve a 

global optimum, which makes co-evolutionary algorithms applicable to localized dis­

tributed environments, such as network computing. Another salient feature is that the 

proposed algorithms can adjust and adapt the frequent dynamic change of network 

structures due to the position changes or failures of computing agents. LODICO /D 

incorporates LODICO with mode D to help to escape local optima. Mode D creates 

the third feature of imaginary collaboration with the neighboring computing agents 

during the evolutionary process to improve its local fitness. Our experiments show 

that LODICO and LODICO /D are effective in obtaining good solutions under such 

dynamic, distributed, and localized condition constraints. 
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Chapter 1 

Introduction 

1.1 Wireless Sensor Networking 

A wireless sensor network is usually composed of a large number of small sensor 

nodes, also known as motes, distributed over an interested area [27] . It can be used 

to monitor a certain physical phenomenon, such as temperature, humidity, vocality, 

motion and so on, from the environment. 

1.1.1 In a nutshell 

The main components of a sensor node include an antenna, a transceiver, a storage, 

a controller, a sensing unit, and a power source. Each component has a specified 

capability. The antenna and transceiver transmit and receive information in a wire­

less channel. The storage saves data temporarily and the controller governs data 

processing. Different sensing units, such as acoustic sensor and seismic sensor, have 

capabilities of sensing different events. Th power source is to provide sensor energy. 
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Depending on the different type of applications, sensor nodes can be either stationary 

or mobile. Static sensors are not capable of changing their positions after deploy-

ment, whereas mobile sensors with actuation components can move under their own 

control. 

In such a network, each sensor has sensing, computing, and communicating capa-

bilities. It first senses the environment and collects data, then processes and transmits 

the gathered data information to a powerful sink node (or base station). Next, the 

information will be forwarded to the Internet or other networks for data further pro-

cessing. Figure 1.1 shows an example process of a wireless sensor network. SensorS 

senses a fire event. It then transmits the sensed information to one of its neighbors. 

The neighbor then relays the message to one of its neighbors. Via multiple hops, this 

message reaches the data sink to be transfered to a different network. 

Sensor node 

~d d d 
d 

d 

Figure 1.1: A wireless sensor network 
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1.1.2 D esign considerations 

Some critical goals of a wireless sensor network include: to provide satisfactory net­

work sensing coverage, to preserve energy, to ensure network connectivity, and to use 

less number of sensors. Each objective is explained as follows. 

• Maximizing network sensing coverage 

The sensing coverage of a sensor is defined as a disk area with itself in the 

center. The radius of the disk is called sensing range. Network sensing coverage 

is the union of the disks induced by all sensors in the network. In other words, 

it is the area that can be monitored collectively by the sensors in the network. 

etwork sensing overage can be used to measure the quality of service of a 

sensor network [10], as a sensor network with a good coverage rate is able to 

provide more information of the environment it monitors. The question is how 

we can maximize the network coverage. We know that maximizing the network 

coverage means minimizing the overlaps between sensor nodes. In order to 

reducing the overlaps between the sensing coverage of sensors, we may hope that 

sensors are deployed as far apart from each other as possible. In other words, 

network sensing coverage can be improved by constructing sparse networks. 

Decreasing overlapping area not only increases the network sensing coverage, 

but also reduces the signal interference and message collisions. Less interference 

results in fewer retransmissions of lost message. A number of algorithms have 

been developed to optimize sensing coverage [4][12][21 ][39][35][42][43]. 

• Minimizing energy consumption 

Low power consumption requirement is one of the most important constraints 
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on the operation of sensor networks. The energy costs in operating a sensor 

network include moving nodes, sensing events in the environment, and transfer­

ring information. In a single-hop network topology, a sensor node can directly 

communicate and exchange messages with any other sensors in the networks. 

However, a sensor network is often too large and the long distance transmission 

by sensor nodes is not energy efficient . It is impossible for each sensor node to 

directly exchange messages with every other node. It is therefore necessary that 

sensor nodes can transmit their data using a way of multi-hop communication. 

In such a mult i-hop fashion, sensors can communicate with others via t he relay 

of some intermediate sensors. However, excessive communication between sen­

sors would consume much energy. The lifetime of a sensor network is limited by 

the battery capacity of the nodes. In many applications where the replacement 

of power is impossible, preserving energy in order to increase the lifetime of 

sensor nodes is extremely challenging. Many researches have been carried out 

focusing on how to reduce the energy consumption [24][9][10][7][13][39][42]. 

• Network connectivity and data transportation 

Sensors communicate in a wireless channel using the communication technology 

like Bluetooth, ZigBee, Ultra Wideband (UWB) and so on. Each sensor node 

has a certain transmission power and a higher transmission power allows a sensor 

to send message over a longer distance. Communication range is used to measure 

the transmission power of a sensor. The larger the communication range, the 

better the transmission power. We say a network is a connected network if 

each sensor node is able to communicate directly to its neighbors which are 
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the sensors within its communication range, and communicate indirectly to 

other nodes within the network. In order to eventually sending the collected 

information from all sensors in the network to the base station, the sensor 

network has to be constructed as a connected network [24] [8] [41]. 

One critical goal of a sensor network is to forward the sensed data to a sink 

node. Routing the message created by a sensor node to a sink node may have 

multiple paths due to the large scale of a sensor network. Therefore, data 

routing is a very important issue in wireless sensor networking. Flooding and 

gossiping are two conventional routing protocols. In flooding, each sensor node 

rebroadcasts every received data packet to all of its neighbors and continues 

this process until the packet arrives at the destination. Flooding is very easy 

to implement, but has the drawbacks of implosion due to duplicated messages 

are sent to the same node, and overlaps caused by sensing the same event and 

sending similar packets to the same neighbor. Gossiping is a slightly enhanced 

version of flooding which can significantly reduce the number of routing message 

sent by sending the packet only to a randomly selected neighbor rather than 

broadcasting [1] . 

Many routing protocols have been proposed and they include fiat-based routing, 

hierarchical-based routing, and energy-aware routing [2]. Flat-based routing in­

cludes SPIN, Directed Diffusion, and so forth. SPIN incorporates negotiation 

before transmitting data and ensures that only useful information will be trans­

fered. Directed Diffusion is different from SPIN in terms of the on demand 

data querying mechanism it has. The sink node broadcasts interest messages to 
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find sources. The interest messages are the descriptions of a task. Each sensor 

that receives the interest sets up a gradient toward the neighbors from which it 

receives the interest. The gradient specifies both the direction where to forward 

the data and the status of the demand. In fiat-based routing, all nodes are as­

signed equal roles, while they play different roles in hierarchical-based routing. 

Routing in sensor networks has attracted a lot of interest and many new rout­

ing mechanisms are developed by considering the characteristics of sensor nodes 

and the limitations and requirements of sensor networks. Detailed surveys are 

described in [1][2]. 

• Minimizing number of sensors needed 

Statistically, we know that more sensors will lead to a better network sensing 

coverage given a random distribution of sensor nodes. Since there is always 

a cost associated with any type of sensor node, we can not afford to deploy 

an arbitrarily large number of sensors. Therefore, minimizing the number of 

sensors needed for a certain application is also an important issue in sensor 

networking. 

It is very challenging to develop algorithms to satisfy the above goals at the same 

time since some of them are conflicting. 

Sensing coverage and energy conservation are two conflicting objectives. In or­

der to maximize the network sensing coverage (i.e. minimize the overlaps between 

each sensing coverage), it is desirable that sensors are deployed as far apart from 

each other as possible. However, this cause that some sensors have to move to new 

positions and consume some power energy. The very energy constrained nature of 
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such networks makes the tradeoff's between sensing coverage and energy consumption 

especially necessary. 

It is obvious that the more sensors are deployed, the more network coverage ob­

tained. Network sensing coverage and the number of sensors deployed are conflicting 

as well. 

1.1.3 Applications 

A wireless sensor network may carry different types of sensors and can be used in var­

ious applications of different domains, such as military, medical, and environmental. 

1. Military Applications 

A wireless sensor network usually has densely and randomly distributed, and 

self-organized characteristics. It is particularly suitable for the application in 

bad battlefields, including tracking the movements of warfare entities, monitor­

ing the military strength, equipments, and materials, and assessing the oppo­

nents ' quality, quantity, and possibly, intention. 

2. Medical Applications 

Some medical applications of sensor networks include using medical sensors to 

help doctors and nurses to monitor the status of patients from a remote site. 

A number of wireless medical sensors, such as pulse oximeters, blood pressure 

monitors, and heart rate monitors have been designed and developed (28] . 

3. Environmental Applications 

Wireless sensor networks can trace the migration of birds and insects, observe 

the effects of the environmental changes to crops, monitor the quality of air, 
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and so on. It can also be used to detect forest fire or flood at a high spatial 

resolution and in a much more timely fashion. 

In 2002, UC Berkeley and Intel researchers embedded 32 sensors in and around 

the burrows of the Leach's Storm Petrels on the Great Duck Island. They 

successfully used the sensor network to collect climate and burrow activity 

information and to estimate the habitat of the Leach 's storm petrels. They 

calculated that the sensors have sufficient power to operate for the next six 

months [22] . In the summer of 2002, 43 nodes were deployed to the island. This 

time they operated the sensor network for four months to see how the system 

would perform. They collected and analyzed environmental data. The monitor­

ing showed very high node failure rates, yet yielded valuable insight into sensor 

network operation which is not obtainable in an indoor deployment [25] . 

Wireless sensor networks have very wide application future. It not only has 

application value in the above mentioned fields, but also is able to be applied 

to many other fields, such as home and traffic etc. Wireless sensor networking 

is a fast-growing and exciting research area, and has attracted much attention 

and scientific interests during the past decade. We can forecast that wireless 

sensor network will be everywhere in the future. 

1.2 Motivation for Optimizing Sensor D eploy ment 

One of the most important issues of wireless sensor networking is the deployment of 

static or mobile sensors in the region of interest. Sensors must be deployed before 

they can provide useful data. An optimal deployment can let the network to collect 
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more data, while provide the maximum possible utilization of power resources. 

With different applications considered, the deployment of sensor networks may 

vary. In some environments, the positions of sensors can be predetermined and placed 

one by one manually or deterministically using, say, a robot in the interested field . 

This is typically for static sensors. But in some dangerous or unknown environment, 

it is not possible to manually or deterministically deploy sensors. Therefore, mobile 

sensors can be deployed by dropping from an aircraft. This random deployment does 

not always cover the given area well, so an automated position adjustment after this 

initial deployment is necessary. In the former case, the positions of static sensors can 

be calculated before their actual deployment using more powerful computers other 

than sensor nodes. While in the latter case, mobile sensors have to cooperate with 

each other to fine-tune their positions. We call it automated sensor deployment and 

this thesis is motivated by our interest in this perspective. 

We know that wireless sensor networking has a number of technical challenges. 

Automated sensor deployment, thus, also ought to be coupled tightly as part of the 

solution. Due to the small size of sensors, they are equipped with small batteries and 

have small energy resources. The lifetime of a sensor is determined by its battery life 

and it can not operate for an infinite amount of time. Therefore, sensors are limited 

in communication and mobility. It is not practical for a sensor to communicate 

directly to another sensor far away, even if it could , since this will consume much 

energy. Due to the failures of some nodes, mobile sensors may need to move to 

replace the failed nodes. It is also not feasible for a mobile sensor to travel a long 

distance. Therefore power conservation becomes one of the biggest challenges of 

automated sensor deployment. Another key issue is to handle data locally since a 
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sensor network is usually large in scale. Each sensor should operate based on its 

local view of the entire network to conserve energy. Additionally, sensor positions 

are changed periodically as they deploy themselves. They must have self-configuring 

capabilities to adjust and adapt the dynamic changes of their environments. It is 

more challenging to design an automated sensor deployment algorithm which is able 

to conserve power energy, process data locally, and be adaptive to dynamic change 

of environment. 

The automated sensor deployment lately has been studied in such fields like com­

putational geometry, robotics, fuzzy logic, and swarm intelligence. Although there are 

some solutions to this problem, my interest in tackling this problem is to extend the 

traditional Cooperative Coevolutionary Algorithm (CCEA) to be applicable to dis­

tributed and localized computing. An existing cooperative coevolutionary algorithm 

is a distributed evolutionary algorithm but its computation needs global information. 

Therefore, it can not be directly applied to localized distributed computing problem. 

This motivates us to develop a more flexible and powerful CCEA model which is more 

suitable for localized distributed environments. 

1.3 Objectives & Contributions 

The first and most important objective of this thesis is to develop a new localized 

distributed system based on the traditional cooperative coevolutionary algorithm. To 

achieve this first objective, we study and analyze the traditional model of CCEA. We 

discover that the existing CCEA does not satisfy our localized requirements since 

some computation in it is still based on the global information which is not available 
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in the environment of localized distributed computing. In this thesis, we present a 

new CCEA model that is able to support dynamic, localized, and distributed network 

applications and utilizes local information only to achieve a global objective. 

The second objective is to apply this new model to optimize the automated sensor 

deployment problem. To achieve this objective, we first do a survey on this problem to 

see what researches have been done in this field. Localized algorithms are a primary 

design goal in wireless sensor networks. We have found that a simple distributed 

computing algorithm for automated sensor deployment would require sensors to con­

struct their local partial solutions based on local information only and to periodically 

exchange the results of local computation with the neighboring sensors. We hope 

that the proposed model is effective and efficient by providing it to the automated 

sensor deployment, a typical application of Localized distributed system. 

In the thesis, we develop two innovative coevolutionary computation frameworks, 

called LODICO and LODICO/D, for optimization tasks in distributed computing. 

They are completely localized distributed algorithms and can be applied to a broader 

application domains in localized distributed environment. Both LODICO and LOD­

ICO /D have the following three important features. 

1. Localized and distributed evolutionary algorithm 

LODICO is a completely localized distributed algorithm in that it requires each 

sensor to use and process information within its neighborhood. This is an es­

sential requirement of distributed computing because every node in the system 

only has a local view of the environment. Global broadcasting of messages is 

possible but is considered infeasible due to the high computation overhead in 
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such an environment. Sensor networks have limited resources and communica­

tion should be carried out locally to reserve energy. LODICO cooperates sensor 

nodes for automated deployment through localized information exchange and 

distributed evolutionary computing. 

2. Flexible and dynamic problem decomposition 

Every sensor node is responsible for dividing the global problem into a subprob­

lem according to the most current sensor positions. Since the sensor positions 

change as the deployment progresses, the network structure also changes. As 

a result, the decomposition of the problem must be redone iteratively. This 

is contrast to the traditional evolutionary algorithm where the solution each 

population evolves is fixed throughout the execution of the algorithm. One con­

sequence of this dynamic problem decomposition is that the populations that 

collaborate for fitness evaluation also change during the algorithm execution. 

3. Energy efficient partial fitness evaluation 

Because each population can only assume the availability of local information 

within its proximity, the fitness evaluation during the evolutionary process must 

tolerate the missing input from beyond the neighborhood. This is a salient 

contrast to the traditional CCEA, where fitness cannot be calculated without 

the information from all other subsolutions. 

LODICO/D is an extension of LODICO. Therefore, it inherits all features of LOD­

ICO. Additionally, it allows the interaction among neighboring computing agents 

during the evolutionary process by providing two operation modes for effective and 

efficient evolutionary search. Under the LODICO/D algorithm, it models the paten-
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tial neighboring interactions and uses that to improve fitness and to help sensors to 

escape their local optima, which is contrast to the CCEA where each local evolution­

ary algorithm is executed in isolation. We believe that this thesi is an important 

contribution to CCEA. We have implemented the LODICO and LODICO /D algo­

rithms to solve the automated sensor deployment problem, and the simulation results 

show that they are effective in solving this type of problem. 

1.4 Organization 

In the thesis, we propose LODICO and LODICO/D, two localized distributed algo­

rithms, to optimize sensor network deployment problem. It explores many aspects 

associated with using LODICO and LODICO/D in distributed networking environ­

ments. 

We first introduce the automated mobile sensor deployment problem of wireless 

sensor networks and review related works in Chapter 2. Then, in Chapter 3 the 

background of traditional evolutionary algorithms and cooperative coevolutionary 

algorithms is provided. We emphasize on issues why the traditional cooperative 

coevolutionary algorithms can not be utilized directly in localized environments and 

what kind of model is expected to satisfy the localized distributed constraints. We 

present the first algorithm, LODICO, in Chapter 4. In Chapter 5, we go ahead 

with LODICO/D, which extends LODICO to more general cases. It facilitates local 

interactions between the neighboring computing components during the evolutionary 

process to help sensors to escape from local optimal positions. In Chapter 6, we 

test LODICO and LODICO/D using computer simulation. We observe that both 

13 



algorithms can be applied to the applications of localized distributed environments. 

Last, we conclude the thesis with a summary of contributions and future directions 

in Chapter 7. 
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Chapter 2 

Literature Review on Sensor 

Deployments 

The deployment of sensor nodes is the first step in establishing a sensor network. 

Once sensor nodes are deployed, networks are established automatically. The func­

tion of sensor networks is to collect data from the environment they are in and to 

periodically transmit the data to a base station. It will be a productive sensor net­

work if each sensor in the network can collect plentiful data without overlapping the 

data collected by other sensors. Therefore the positions of sensors influence signifi­

cantly their capabilities of collecting information from the environment. Each sensor 

has a small battery and therefore needs to minimize power consumption in order 

to extend its lifetime. Various techniques have been proposed to optimize sensor 

deployment [5] [7] [11] [13] [18] [20] [31] [33]. 

The deployment of a wireless sensor network can be carried out in two major ways: 

pre-deployment and post-deployment. The goals of both approaches are to meet 
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some critical networking objectives, such as maximizing network sensing coverage, 

minimizing energy consumption, ensuring the network connectivity, and minimizing 

the number of sensors deployed. 

2.1 Pre-deployment Approach 

Pre-deployment approach calculates or estimates the number and the positions of 

the sensors before they are actually deployed. This approach is typically used for 

static sensors deployment in a known environment. After network topology is de­

termined, the actual deployment is then carried out by human beings or mobile 

robots [9] [15] [18] [21]. 

Research on pre-deployment methods mostly takes a centralized approach. Dis­

tributed algorithms are not necessary since a computer program can be run on a 

powerful computer before the physical deployment. 

Liu and Mohapatra [21] develop a sensor network pre-deployment method for 

linear topology. They introduce two problems, IDEAL and HIE, with the same 

objective of maximizing the total coverage given the lifetime requirement. In IDEAL, 

each sensor's energy supply is heterogeneous. Total energy constraint is given and 

energy can be allocated arbitrarily among the nodes. The network dies only when 

there is no energy left in any node. In contrast, HIE assumes the network is a 

homogeneous energy network in which each sensor has the same fixed initial energy. 

Greedy algorithms are used to solve these two problems. 

In Isler et al. [15], two characteristics of sensor network , coverage and connectiv­

ity, are considered in the pre-deployment process. They use computational geometry 
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to deploy sensors and guarantee the coverage. Once the sensors are deployed, a 

suitable communication range is calculated in order to guarantee the network con­

nectivity. 

Jourdan and de Week [18] study the deployment problem using a multi-objective 

genetic algorithm. Their goal is to balance two conflicting objectives, maximizing the 

network sensing coverage while minimizing the energy consumption in the network. A 

Pareto front is generated after the execution of the algorithm and produces a solution 

set for users to choose from . 

Hu et al. [13] consider a hybrid sensor network which consists of a mixture of 

regular small sensors and more powerful micro-servers. They employ tabu search to 

decide where the micro-servers should be placed so that the lifetime of the network 

can be maximized. 

2. 2 Post-deployment Approach 

In some dangerous or unaccessible environments, it is impossible to manually deploy 

sensors . Therefore mobile sensors are placed randomly in the field initially. This 

initial random placement does not usually give a good coverage and, thus au tomated 

adjustments of their locations is necessary. This is the post-deployment approach and 

we call it automated mobile sensor deployment. 

Post-deployment approach of sensors has been studied using a variety of tech­

niques. Howard et al. [11] describe an incremental algorithm which deploys one 

sensor at a time. Each sensor node uses the positions of previously deployed nodes 

to determine its own position. 
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Zou and Chakrabarty [42] propose a virtual force based algorithm to enhance 

the coverage after an initial random deployment . Their algorithm is a cluster-based 

algorithm, and the clusterheads are responsible for coordinating the distributed com­

putation. The algorithm combines attractive and repulsive forces to determine virtual 

motion paths. When two sensors are too close, the repulsive force intends to apart 

from each other. While when two sensors are far from each other, the attractive force 

intends to pull them closer. A one-time movement is carried out when the positions 

of sensors are identified to conserve energy. 

Wang et al. [32] focus on repairing coverage holes when calculating target positions 

of sensors. They optimize the coverage within a short deploying time and limited 

movement using three Voronoi diagram based deployment protocols, VEC, VOR, 

and MiniMax. 

Chellappan et al. [6] propose a flip-based algorithm and optimize both the coverage 

and the total number of flips. Flip-based sensors have limited mobilities. They can 

flip only once to a new location and the flip distance is bounded. Their objective is 

to determine optimal movement plan for sensors so that the coverage is maximized 

while minimizing the total number of flips required. They construct a virtual graph 

based on the initial deployment and determine the optimal movement plan from the 

virtual graph. 

Krause et al. [20] address deployment of role assignment of sensor nodes to max­

imize network lifetime while preserving t he coverage. More recently, it has also been 

demonstrated that computational intelligence techniques, such as fuzzy logic [29], 

swarm intelligence [40] and evolutionary computation [17][16] can be effective in sen­

sor deployment. 
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2.3 Our Approach 

In general, our work in this thesis shares similar objectives as the above works on 

post-deployment problem. We optimize the network sensing coverage as well as the 

energy consumption. The different feature of our work from theirs is that we develop 

a new cooperative coevolutionary computation model motivated by the application 

of automated mobile sensor deployment. The model is an extended work of the 

current cooperative coevolutionary algorithms. As presented in Chapter 6, computer 

simulation shows our model is very effective for directing mobile sensors to find their 

target locations with good coverage while using less energy consumption. 
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Chapter 3 

Evolutionary Computation Models 

3.1 Traditional Evolutionary Algorithms 

Evolutionary Algorithms (EAs) are search methods based on the idea of t he Dar­

winian principle of survival of the fittest . It is a powerful optimization technique for 

finding a global solution to, typically, extremely complex problem where finding a 

solution is very t ime-consuming [3]. 

EAs solve a problem by first generating a large number of individuals, each of 

which represents a candidate solution to t he problem. The set of individuals are 

grouped in a population. An individual can be represented using various data struc­

tures, which is it s genotype. Usually, a linear struct ure is employed to resemble the 

biological chromosome in natural systems. T he fitness of an individual is evaluated 

by a fi tness function that takes the genotype as an input and yields a scalar value as 

an output. With the goal of finding the best solution to an optimization problem, 

evolutionary algorithms combine selection, fitness evaluation, crossover , and muta-
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tion operators to develop generations of populations. Figure 3.1 illustrates the basic 

steps in an evolutionary algorithm. 

Initialization (step 1) 

Population 

(step 5) 
Survivor selection 

Fitness (step 2) 
evaluation 

Yes 

Termination 

No 

Parent selection 
(step 3) 

Offspring 

Crossover 

M t t
. (step 4) 

u a 10n 

Parents 

Figure 3.1: Flow chart of a simple evolutionary algorithm 

First, a number of individuals in a population are randomly generat d (step 1). At 

each evolutionary step, or each generation, the fitness of each individual is calculated 

based on a fitness function (step 2) . Individuals with better fitness are selected as 

parents (step 3). Then their genetic representations (or genotypes) are recombined 

through crossover and mutation (step 4) to produce new solutions, called offspring. 

A crossover involves exchanging the genetic materials in the genotypes of two or more 

parents. A mutation is a random change of an individual's genotype to produce off-

spring. These offspring then compete with each other and with the previous best 

solutions to survive in the following generation (step 5) . An EA is essentially an 
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iterative reproduction of generations of individuals. Frequently, the fitness of the 

population improves as t he evolution continues. The process continues until certain 

termination conditions are met. The pseudocode of a traditional evolutionary algo­

rithm is shown in Figure 3.2. 

Begin 

Initialize population 

Evaluate the fitness of each individual in the population 

Repeat until termination condition is met 

1. Select parents to reproduce; 

2. Breed through crossover and mutation to create offspring; 

3. Evaluate the fitness of the offspring; 

4. Select individuals for the next generation; 

End 

Figure 3.2: Pseudocode of a general evolutionary algorithm 

The following subsections describe the details of each components of an EA. 

3.1.1 C om pone nts of evolut ionary a lgorit h ms 

1. Data Representation 

The first step of implementing an evolutionary algorithm is to transferring the 

real world problem in hand to a format of EA. Data representation defines a 
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set of solutions that form the search space of the given problem. Either a fixed 

or a variable length representation may be used to encode candidate solutions. 

• Genotype and Phenotype 

Genotype is an EA solution representation of a real problem. Phenotype 

is the behavior of the genotype it represents. The crossover and mutation 

operators take place in the genotypes while the fitness evaluation is applied 

on the phenotypes. 

• Population, Individual, Parents, and Offspring 

- Population: is a set of candidate solutions. 

- Individual: is a candidate solution in a population . 

- Parents: are two or more selected individuals for reproduction. 

- Offspring: are new candidate solutions produced from the selected 

parents. 

2. Population Initialization 

The initial population of individuals are normally generated randomly. It is 

also possible to bias the initial population to sample a particular area of the 

problem search space. 

3. Selection 

• Parent Selection and Survivor Selection 

An individual's selection can take place at two different stages of evolution: 

parent and survival. In both cases, the better an individual's fitness is, the 

more chance it would be selected. 
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- Parent selection: extracts individuals from an existing population for 

reproduction. 

- Survivor selection: selects from one generation to create the basis of 

the next generation. It extracts individuals from parents and offspring 

populations to produce a new population. 

• Selection Methods 

There are many different ways to select fitter individuals. Here we sum­

marize several popular selection methods [3] [23]. 

- Roulette wheel selection 

Each individual is given a probability of being selected, which is pro­

portional to its fitness. The fitter individuals have a greater chance 

of being selected than the weaker ones. When the fitness between the 

individuals differs greatly, the fittest individual may be over selected 

but other individuals have very little chance to be s lected. 

- Tournament selection 

A group of individuals are randomly selected from the population. 

The best individual is the winner. The larger the tournament size, the 

stronger the selection pressure. 

- Rank selection 

All individuals in the population are sorted by their fitness and their 

ranks (instead of fitness) are used for selection. Rank selection will 

work better than the roulette wheel selection when the fitness of pop­

ulation differs greatly, as roulette wheel selection can over select but 
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rank selection would not. 

- Elitism 

Some number of the best individuals are kept at each generation and 

are copied over to the population of the next generation. 

4. Crossover 

It combines two parent solutions to create one or two new solutions with some 

of the features of each parent. The idea behind crossover is that the generated 

offspring may be better than its parents if it takes the best characteristics 

from its parents. There are many different types of crossover methods, such as 

uniform crossover, single point crossover, two point crossover, and arithmetic 

crossover. Arithmetic crossover generates offspring by a linear combination of 

the parents and we use the arithmetic crossover in this thesis as you will see in 

the next chapter. 

5. Mutation 

It randomly modifies some of the genetic material of an individual to produce 

new solutions. Mutation introduces new materials to the population pool , hence 

it can be used to maintain the genetic diversity of the population. 

6. Fitness Evaluation 

Fitness gives the performance of a candidate solution. Each individual is as­

signed a fitness value based on how well it solves the given problem. Individuals 

with a higher fitness value have a higher probability of contributing good solu­

tions in the next generation. 
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7. Termination Condition 

Sometimes EA may run forever without reaching a satisfied solution, therefore 

a termination limit is necessary to stop an algorithm. 

3.2 Cooperative Co-Evolutionary Algorithms 

Cooperative Co-Evolutionary Algorithm (CCEA) is a special evolutionary algorithm 

proposed in [14][26]. Unlike the traditional EA [23], which solves a problem by search­

ing the whole solution space, CCEA divides the problem into many subproblems and 

searches the subsolution space simultaneously. The subsolutions are then combined 

to form the whole solution to the problem. Since the subsolution space is smaller, 

the algorithm may find better solutions faster. 

Coevolutionary search involves two or more populations. Separate populations are 

created with their genotypic representations having no functional overlapping. Each 

population represents a different species corresponding to one solution component and 

an individual therein represents a solution to this subproblem. Only the individuals 

of the same species can mate to produce offspring. Each species evolves for a certain 

number of generations, which is equivalent to one ecosystem generation. At the end of 

each ecosystem generation, the genetic information at a population is shared among 

all species via a representative from each species for fitness evaluation. Figure 3.3 

gives a high-level flow of CCEA, where R.; is the representative of species i. This figure 

only gives an illustration of cooperation of fitness evaluation for species 1. As you see 

in the figure, in order to evaluate each individual, we have to collect information from 

all other species to form a complete solution to the problem. Other species have the 
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common process of fitness evaluation. The outer evolutionary process is terminated 

when a certain termination condition is met. 

F=(i, R2, R3, ... , Rn) 

Figure 3.3: A high-level view of CCEA 

3.2.1 Additional components of CCEA over EA 

1. Subpopulation & Species 

In EAs, one population is employed to evolve the solutions. However in CCEA, 

a problem is decomposed into a number of subproblems, or species. For each 

subproblem, there is a separate population, which contains the set of candidate 

solutions to that subproblem. 

27 



2. Sub-search Space 

EA searches the whole solution space while CCEA searches subsolutions in a 

number of sub-search space simultaneously. 

3. Ecosystem Generation 

Each ecosystem generation in CCEA involves a number of generations as intro­

duced in Section 3.1. 

4. Fitness Evaluation 

The fitness of an individual in CCEA depends on its ability to collaborate with 

representatives from other species, while in EA it is evaluated in isolation and 

based on its own genotype. There are many ways to select a representative, 

such as the current best individual or a random individual. 

3.2.2 Related work on CCEA 

CCEA has been successfully used in some applications. In [34], Wang and Wu use 

CCEA for robot path planning of collision avoidance problem. The algorithm can be 

executed in parallel and asynchronously while the representatives from each species 

are selected synchronously. Tan et al. [30] present a cooperative coevolutionary algo­

rithm to co-evolve multiple subsolutions for a multi-objective optimization problem. 

They propose a distributed cooperative coevolutionary algorithm (DCCEA) for con­

current computing while there is no direct communication among species and all 

communications are performed between the species and a central server. The differ­

ence between the above work and our work is that their fitness evaluation is based 

on the global information while we evaluate individuals using local information only. 
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There has been research investigating problem decomposition and the efficiency of 

single-best collaboration during the evolution. Wiegand and colleagues [38][37] argued 

that when a problem is divided in such a way that there exists contradictory cross­

population epistasis (inter-dependency), single-best collaboration would not produce 

good solution. To address the inter-dependency issue, Weicker and Weicker [36] pro­

posed dynamically merging the species when inter-dependency of variables in cross 

populations was detected. Kim and Ryu [19] went farther by allowing not only merg­

ing but also splitting the species when the inter-dependency no longer exist during the 

evolution. Our cooperative coevolutionary framework also provides dynamic division 

of species. 

3.3 Desired CCEA and Features of Our Work 

To work with the constraints of automated mobile sensor deployment: dynamic 

change of the network, local information exchange, and energy conservation, the 

following mechanisms have been developed so that coevolutionary algorithms can be 

applied effectively in localized and distributed environments, such as network com­

puting. The expected framework is depicted in Figure 3.4, where ~ is the represen­

tative of species i. For better readability, we only illustrate the process of the fitness 

evaluation for species 1. For each individual in species 1, its fitness is decided by 

the combination of its genotype and the representative genotypes from neighboring 

species. Species 1 has two neighbors: node 2 and node 3, so its fitness is evaluated as 

F = (i, R2 , R3 ). Other species have the similar evaluation method. 

In this thesis, we develop two novel CCEA models, called LODICO and LOD-
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ICO/D, and their features are given below. 

Problem 
Redivision Best 

Individual F = (i, R2, R3) 

Figure 3.4: A high-level view of the expected CCEA framework 

1. Flexible and dynamic problem division 

Under distributed environments where the location of each node may change 

dynamically, the partitioning of the problem (i.e. the sub-solution that each 

population evolves) also changes. This is contrast to the CCEA where the solu-

tion each population evolves is fixed throughout the execution of the algorithm. 

One consequence of this dynamic problem division is that the populations that 

collaborate for fitness evaluation also change during the algorithm execution. 
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2. Energy efficient partial fitness evaluation 

Because each population can only assume the availability of local information 

within its proximity, the fitness evaluation must tolerate the missing input from 

beyond the neighborhood. This is a salient contrast to CCEA, where fitness 

cannot be evaluated without the information from all other populations. 

3. Two operation modes for effective and efficient evolutionary search 

We alternate two operation modes to help sensors to escape local optima. In 

spirit, the first mode (mode I) is similar to the splitting species proposed in [19] 

and the second mode (mode D) is similar to the merging species proposed in [36] . 

If evolutionary search reaches a local optimum, merging species helps escaping 

the local optimum and making the search more effective. If evolutionary search 

reaches the basin of a global optimum after escaping a local optimum, splitting 

species helps the search find the global optimum faster. We developed a simple 

method to detect t hat a population might have reached a local optimum by 

checking the existence of coverage holes in the neighborhood. If one or more 

holes exist, operation is switched to mode D for one ecosystem generation cycle. 

Alternating these two modes can accelerate the search process while avoiding 

local optima. 
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Chapter 4 

Localized Distributed Sensor 

Deployment via Coevolutionary 

Computation (LODICO) 

LODICO is a completely localized distributed algorithm in that each local population 

only collaborates with populations within its neighborhood for fitness evaluation. 

This is an essential requirement for distributed computing where every node in the 

system only has a local view of the environment. In this chapter, we detail the design 

of LODICO and defer experimental analysis of it for Chapter 6. 

4.1 LODICO Overview 

LODICO consists of three major stages: planning, computing, and moving. A com­

plete pass of the three steps is called an ecosystem cycle. LODICO is executed on all 
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sensors of the network in parallel for a number of iterations until a coverage require­

mentis met. 

In the planning stage of each cycle, a sensor first exchanges its location information 

with others within its communication range. Using this information, it prescribes a 

search space within its proximity in which it will find a target position and move 

to it at the end of the current ecosystem cycle. In the computing stage, the sensor 

executes a local evolutionary algorithm within its search space to calculate the best 

target position using a fitness calculated from local information. Finally it moves to 

the target position in the moving stage. 

Once the movement is completed, the new search space of each sensor needs 

to be recalculated as the network structure is altered. LODICO starts the next 

ecosystem cycle by exchanging position information within neighborhood to search 

for the next position that the sensor would move to next. This process repeats many 

times until the specified number of ecosystem cycles are reached. Figure 4.1 gives the 

high-level flow of the implementation. The implementation is based on the following 

assumpt ions: 

• Each sensor knows its own location by using the global positioning system (GPS) 

or some positioning algorithms. 

• A sufficient number of sensors are deployed so that they can potentially cover 

the entire area. 

• Each sensor has a sensing range, Rs, a communication range, Rc, and Rc ~ 3Rs . 

The LODICO algorithm executes a sequence of ecosystem cycles, where each cycle 
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Figure 4.1: LODICO flow chart 
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consists of 3 steps: planning, computing, and moving. We explain each step in the 

following sections. 

4.2 Planning 

In the planning stage, a sensor determines a partition of the entire deployment region 

to execute its local evolutionary algorithm. To do that, it needs to know the positions 

of the neighboring nodes, i.e., those within its communication range, and to define a 

search space centered around its current position. The position information of each 

node is exchanged through a reliable wireless communication channel. The search 

space of a sensor is a limited scope within which the sensor can move in the current 

ecosystem cycle. 

At the beginning of each ecosystem cycle, LODICO decomposes the entire deploy­

ment area based on the current sensor locations in the network: each search space is 

the sensing region of a sensor, i.e. the circle of radius R s centered at the position of 

the sensor. A local evolutionary algorithm is executed for each sensor to locate a new 

position within the region where the sensor will move to at the end of the ecosystem 

cycle. 

The search space limit is important because excessive moving in a single cycle can 

make it hard for the algorithm to find good sensor locations. The reason is that sensors 

should cooperate with each other when positioning themselves. A target position is 

calculated using the latest position information within a neighborhood, so a drastic 

alteration of the neighborhood structure can invalidate the previous computation. 

In this thesis, we define the search space of a sensor to be equal to its sensing 
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region. Under the assumption that Rc ~ 3R8 , the search space limit of Rs ensures 

that the new coverage at a target position will not overlap with that of any node 

beyond its communication range, Rc· This is important for the fitn ss evaluation 

described in Section 4.3. 

The idea of the limit of search space can be illustrated by the diagram in Figure 4.2. 

Suppose node a has a communication range Rc = 3R8 . Centered at itself are these 

concentric circles of radii Rs, 2Rs and 3Rs, denoted by C1 , C2 , and C3 , respectively. 

The search space restricts node a to move within C1 , which implies that its new 

coverage will be restricted to C2 . For a non-neighbor node b, which is out of C3 , its 

sensing coverage will not overlap with the new coverage of node a, no matter where 

it moves to within the range of its search space. This limitation of search space can 

guarantee that the new coverage of a sensor node only have overlaps with neighboring 

coverage which is obtainable. 

Figure 4.2: Analysis of potential movement and overlaps 
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4 .3 Computing 

Each sensor executes an instance of a local EA to compute where it will move to at 

the end of the cycle in t he computing stage. This section describes each component 

of the local evolutionary algorithm. 

4.3.1 Problem R epresentation 

As a part of the network configuration, each sensor is given the information of the 

total number of sensors (n) in the network. We use a fixed length array of n elements 

to represent the genotype of an individual, where n is the total number of sensors 

in the network. You may want to ask why we use such a long representation with 

unobtainable information. This representat ion is suitable for the dynamic change of 

the network structure after each sensor movement . We do not need to redefine a new 

representation for each new environment . It is also able to be used for our extended 

work as described in the next chapter. 

Each element i ( i = 1, 2, . .. , n) is the position {xi, yi} of sensor i in the de­

ployment area (See top diagram of Figure 4.3). Since a sensor only has position 

information of its neighboring sensors, the elements in the genotype corresponding 

to non-neighboring sensors contain invalid values. To distinguish a neighbor ing sen­

sor from a non-neighboring one, a second non-evolvable chromosome of length n is 

used (See bottom diagram of Figure 4.3) . It stores the information of whether a 

sensor is inside or outside its neighborhood. 

Each element of this second chromosome can take a value from {0, 1, * }, where a 

value 0 indicates that the corresponding element in the first chromosome is a non-
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neighbor while 1 indicates that it is a neighbor and * indicates the sensor itself. Note 

that there is exactly one element with value* and that the number of l's equals to the 

number of neighbors (See bottom diagram of Figure 4.3). Notice that we would use a 

variable-length genotype representation. However, our fix-length approach provides 

the flexibility to facilitate the dynamic problem division. When a sensor is switched 

from being a neighbor to a non-neighbor (or vice visa) for a particular sensor after 

movement, an update of the second chromosome can reflect such change. 

I I I o I 

Figure 4.3: The 2-chromosome genotype representation 

4.3.2 Evolution 

Each sensor population (local population) maintains a set of individuals, P , each of 

which corresponds to a sensor positioning which is a subsolution to the entire network. 

Here, an individual encodes its own position and those of its neighbors. Each sensor 

initiates its individuals by generating IPI random positions uniformly distributed in 

its search space. Each position, along with those of the neighbors, is included in the 

genotype of an individual. 

Among these individuals, the IQI fittest are selected as parents, denoted by Q, 

to reproduce the same number of offspring Q' via arithmetic crossover, where the 

location value of an offspring is the mid-point of the gene values of its parents. The 

Q individuals are paired based on their ranks: the first rank is paired with the second 
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rank, the second rank is paired with the third rank and so on. The arithmetic 

crossover takes the average of the two parents' gene values as the gene value of its 

offspring. Out of P U Q', the IPI fittest individuals survive and are carried over to 

the next generation. 

This process continues for g generations and the fittest individual at the end is 

selected as the target position of the sensor, where g is a small integer as part of the 

EA configuration. At the end of the g generation, the sensor moves to the target 

positions. 

4 .3.3 Fitness Evaluation 

The fitness of an individual is determined by the total coverage area induced by the 

new position and the total distance to travel to the new position. The goal is to 

find a target position with good coverage without excessive movement for energy 

conservation. And this should be evaluated using only local information. For a given 

node, the sensing coverage is the union of its sensing area and the sensing areas of its 

neighboring sensors. Assume that the sensing region of node i is A; (i = 1, 2, ... , n), 

each of which is a subset of the entire deployment area U, i.e. the universe. We 

use the second chromosome in the genotype to filter the global information. Let 

'H = (h1 , h2 , .. . , hn) be the second chromosome of the sensor node. We define a 

companion vector 'H = (h1,h2 , .. . ,hn) , where h; E {0,U} , for each H. Specifically, 

h; = U if h; E {1, *} and h; = 0 if h; = 0. Thus, the coverage unioned over a 

neighborhood of sensors is 
n 

U (h; nA;) 
i= l 
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As we discussed in the last section, the search space limitation can ensure that the 

new coverage of a sensor node would not overlap with non-neighboring nodes. This 

is very important for the coverage fitness evaluation as the change of local network 

structure would not affect or invalidate the fitness evaluation. 

For an individual represented by 1i and {Ai}~1 which is of distanced away from 

the current position, its fitness is 

where w is a weight parameter for coverage-movement tradeoff purposes. 

Although the fitness evaluation of LODICO only uses local information from its 

neighboring nodes, it will be shown (See Chapter 6) that the computed fitness value 

is able to drive the evolutionary search to find target positions that give good overall 

coverage and energy consumption. 

4.4 Moving 

Once the target position of a sensor is determined, the sensor moves to that location 

automatically using its actuation component. Then it broadcasts its new position 

and prepares for the next cycle. Figure 4.4 gives the illustration of sensors before 

and after their movement. Each sensor in the network tries to move away from their 

neighbors to increase its local coverage. 

As sensor nodes move to new positions, the network structure is changed. The 

previous neighbors may not be neighbors in this new ecosystem cycle, and some 

non-neighbors may become neighbors. As a result, each node has to re-decompose 
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(a) Before move (b) After move 

Figure 4.4: Sensor positions before and after movement 

the problem based on the current sensor positions. The consequence of this dynamic 

change of network structure is that the search space for each node is changed and each 

local population is also changed during the algorithm execution. This is different than 

the traditional evolutionary algorithm where the solution each population evolves is 

fixed throughout the execution of the algorithm. LODICO can reflect and manipulate 

the dynamic changes of network environments effectively. 

In some network scenarios, the assumption of Rc ~ 3R, can not be satisfied. 

In this case, the local coverage can not be calculated precisely. To alleviate this 

situation, an additional broadcast of the new location is necessary before the sensor 

starts to move to the new location. Further , a limited-scope flooding could be used 

alternatively. 
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Chapter 5 

LODICO with Dynamic 

Interaction of Neighboring 

Species (LODICO/D) 

LODICO is a completely localized distributed algorithm and it is flexible for the 

dynamic changes of the network structure. With the constraints of that each sensor 

only has local information within its neighborhood, LODICO can still direct the 

evolutionary search to find a good solution based on the local fitness evaluation. 

LODICO/ D is an extension of LODICO. It inherits all features of LODICO. Ad­

ditionally, it allows the interaction between neighboring species during the evolution­

ary process by providing another operation mode, mode D, for effective and efficient 

evolutionary search. It models the potential neighboring interactions and uses the 

imaginary neighboring moving plan to improve its local fitness and to help sensors 

to escape from their local optimal positions. This is a powerful extension to the 
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traditional CCEA, where each species evolves in isolation. 

5.1 Local Optima 

We have implemented the LODICO to solve the automated sensor deployment prob-

lem (See Chapter 6). The evolutionary process of LODICO can be very fast since the 

search space of each sensor is small. However, in some special situations, sensors may 

get stuck in their local optima and do not move anymore even though they have not 

reached their global target. For example, in Figure 5.1 , S1 , S2, .. . , S6 are six sensors 

Figure 5.1: An example of local optima 

used to cover an area, where S4 , S5 , and S6 have the identical location. For easier 

understanding, we use a square area as the sensing region of a sensor. It is obvious 

that the sensing coverage would increase if some sensors move to the left or the lower 

region of the deployment field. However, t his would never happen because the current 

sensor locations give the best coverage (the union of the sensing region of all sensors), 

based on the neighboring sensor positions provided at the very beginning of the cycle. 

Wherever a sensor moves to within its search space, its fitness can not be improved. 
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This happens for non-square sensing region as well. Sensors would not move if the 

fitness improvement is within a certain threshold, say E, as the little improvement 

of fitness may be established on a large moving distance with much power energy 

consumption. 

In order to obtain locations that give a better coverage than the current ones 

do without much power consumption, the neighboring sensors need to have different 

locations. LODICO / D provides this flexibility by allowing both the locations of a 

sensor and its neighboring sensors to evolve, and helps the populations to escape the 

local optimum. For the local optimal example given in Figure 5.1, Figure 5.2 illus-

trates a possible result of escaping local optimal positions after running LODICO /D 

for one ecosystem cycle. 

s 
. s, f=r-r;-

s 

•82 
• Sa 

Figure 5.2: Escaping local optima 

5.2 Bi-modal Operation 

In LODICO/D, each local population is executed using one of two operation modes: 

mode I (Independent) and mode D (Dynamic). Mode I executes LODICO in Chap-
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ter 4. That is, it evolves only a sensor's position. Mode D enables imaginary neigh­

boring moving to realize local optimum escape. In this case, a local population evolves 

the positions of its neighbors along with that of its own in each ecosystem cycle. It 

is called imaginary because the modification of a neighbor's position only facilitates 

the calculation but has no physical effect on the new position of that neighbor. Re­

gardless of the operation mode, the fitness of an individual always considers part of 

the entire sensor network. 

5.3 Mode D 

Mode D, as mode I, has the three stages: planning, computing, and moving, as in 

LODICO. They are only different in the planning stage. 

5.3.1 Planning for extended search space 

The search space of a sensor is a limited scope within which the sensor can move at 

the end of the ecosystem cycle. Under mode I, the search space of a local population is 

two-dimensional: the x , y location of a sensor. With each local population searching 

a 2-dimensional space separately and simultaneously, the global sensor network can 

be obtained reasonably fast. In mode D, the search space of a local population is 

multiple-dimensional: the x , y locations of a sensor and its neighboring sensor. Unlike 

mode I where the neighboring sensor locations that are used for fitness evaluation 

are fixed throughout the ecosystem cycle, the neighboring sensor locations are also 

evolved potentially. It models the potential local interactions between species and 

uses that to improve the local estimate of fitness and to help escaping local optima. 
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In either case, a sensor exchanges its location information with others within its 

communication range. Using this information, mode I prescribes a search space within 

its proximity in which it will find a target position and move to it at the end of the 

current ecosystem cycle. In contrast, a sensor in mode D defines a search space not 

only includes its own position but those of its neighbors. 

5.3.2 Uniform computing 

The computing stage of LODICO/D can be executed the same way as LODICO. 

• Fixed-length Representation 

Recall that in LODICO, we use a fixed length genotypic representation for each 

individual in each local population. There are a number of advantages by using 

it. First, it is suitable for all sensor nodes in the network with different local net­

work structures. Second, it adapts the environment changes of sensor networks. 

After a sensor moves to a new position, its network structure changes and this 

representation can still reflect such change. Third, it fits both LODICO and 

the extended algorithm, LODICO/D. Though there are redundant information 

in this representation, the one representation fits many different cases. 

• Uniform Crossover and Mutation 

We use the arithmetic crossover in LODICO, where an offspring is generated by 

taking the average value of its two parents' gene values. For a non-evolved neigh­

bor, its gene values are same for all individuals. Therefore the average value 

of two identical value remains unchanged. That is, the arithmetic crossover 

does not change the genes other than the current sensor of mode I. For mode 
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D, since both the sensor along with its neighbors are evolved, crossover does 

make change to the gene values of both the sensor and its neighbors. We do not 

use mutation during the evolution in LODICO and LODICO/D. The frequent 

changes of network structures make the search spaces changed frequently, thus 

the population diversities are still maintained. The designed uniform evolution­

ary process is able to be used for both mode I and mode D. 

5.3.3 Indiv idual mov ing 

In mode D, each population evolves the positions of its own sensor and those of its 

neighbors. In other words, there exists information overlaps between neighboring pop­

ulations. This poses a question of how to resolve the conflicts and which decision we 

are going to adopt or use. A species can either adopt its own evolved decision or make 

a compromised decision based on its target position with those from its neighbors in­

corporated. Here, when a sensor is to move, it only adopts its own decision though 

the decision has been obtained by evolving a neighborhood of sensors. Note that the 

evolved neighboring sensor positions are only used for fitness evaluation. They have 

no impact on the neighboring sensors' new positions, which are only decided by the 

"fittest" individual in the neighboring sensor populations. 

Each sensor node then moves to its target position in the moving stage once it is 

calculated. As the network structure is altered, LODICO/ D starts the next ecosystem 

cycle by exchanging position information within its neighborhood and selecting an 

operation mode for the next cycle. 
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5.3.4 Combination with mode I 

Each run of LODICO/ D is a combination run of mode I and mode D. Mode I can run 

very fast as each node has a small search space. Mode D can not be run independently. 

The increase of its local fitness does not always lead to the improvement of global 

fitness since the target position is based on the imaginary movements of neighbors. 

Therefore, it has no idea when the algorithm converges. This is solved by detecting the 

coverage holes around the sensors. A coverage hole is an area that is not covered by 

any sensor in its neighborhood. If there is any hole, the local evolutionary algorithm 

is switched to mode D for one ecosystem cycle and switched back to mode I the 

following cycle, since mode I runs faster than mode D. This check is carried out for 

each sensor population. LODICO jD combines mode I and mode D to accelerate 

the process of evolution as well as escaping from local optima. The general flow of 

LODICO / D is given in Figure 5.3. 

5.4 Discussion 

We take this opportunity to discuss our fixed-length representation and the moving 

decision of mode D. 

1. Fixed-length representation for a uniform design framework 

In LODICO and LODICO/ D, we use a fix-length genotypic representation for 

individuals in each local population. We argued that this genotypic repre­

sentation is not only suitable for both proposed algorithms, i.e. LODICO and 

LODICO/ D, but also it lays down a foundation for a uniform representation for 
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all sensors in the network despite that their local neighborhood network struc­

tures are different and changed frequently. In addition, the use of a separate 

genotype reveals a significant generalization of fitness evaluation in EA. 

The separate genotype enables a much more general fitness evaluation. A neigh­

bor's neighbors may provide some useful information. Because such information 

has been propagated via multiple hops, it can be dated to a degree. Therefore, 

it would be beneficial to include its contribution to fitness in a "fuzzy" way. 

This can be realized by using values in [0, 1] to populate this second genotype. 

The extreme values of 0 and 1 correspond to contributions from non-neighbors 

and neighbors in LODICO and LODICO/D. In contrast, a value in between can 

control the level of contribution from an "informative" non-neighbor, i.e. the 

closer to 1 the value is, its contribution is considered more accurate. From the 

perspective of designing evolutionary algorithms, this reveals another area of 

future work. That is, fuzzy fitness evaluation and tolerance of missing inputs 

for global fitness computation. 

2. Moving Decision 

In LODICO/D, we evolve both the positions of a sensor and its neighbors. The 

movement plan is decided by the current sensor only and is imaginary for its 

neighbors. Alternatively, We could also incorporate the moving suggestions 

from neighbors. To do this, the node should be informed of the suggested new 

position of itself from its neighbors. A simple comprise is to take a weighted 

average of these new positions including its own. Since the current sensor has a 

better idea of its environment than neighbors, its own decision can take a greater 
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w ight in the final decision while considering the suggestions of its neighbors 

with a lesser weight. This would be another interesting extension in future 

work. 
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Chapter 6 

Experimental Analysis 

To evaluate the performance of LODICO and LODICO/D, we have implemented a 

computer program to simulate the deployment of autonomous mobile sensor networks 

with various initial positions. The experimental settings and results are given in the 

following sections. 

6.1 Experimental Settings 

We run computer simulations using various numbers of sensors in three different size 

of fields: 100 x 100m2 (small) , 200 x 200m2 (medium), and 300 x 300m2 (large). For 

the small size field, 10, 12, 14, and 16 sensors are deployed; for the medium size 

field, 40, 50, 60, and 70 sensors are deployed; for the large size field, 70, 80, 90, and 

100 sensors are deployed. The initial sensor positions are uniformly distributed at 

random. Table 6.1 summarizes the parameter values used to carry out our simulation. 

Three metrics, moving distance, convergence time, and sensing coverage, are used 

to evaluate the experimental results. Moving distance is the average distance that 
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Table 6.1: Simulation Parameters 

Parameters I Settings 

Sensing range Rs 20m 

Communication range Rc 60m 

Deployment area size U 1002
, 2002

, 3002 (m2
) 

Number of sensor nodes n 

Small size area: 1002 m2 10, 12, 14, 16; 

Medium size area: 2002 m2 40, 50, 60, 70; 

Large size area: 3002 m2 70, 80, 90, 100 

Population size IPI 10 

umber of offspring IQI 5 

Ecosystem cycles 9e 30 

Number of generations in each ecosystem cycle g 5 
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a sensor in the network has to travel from its initial position to the final position. 

Convergence time is the number of ecosystem cycles it takes for all sensor populations 

to converge, i.e. the best individual fitness stops improving. Sensing coverage is the 

percentage of the deployment field that is covered by the deployed sensors. The 

experimental results are presented and analyzed in the following sections. 

6.2 Preliminary Study 

We use two sets of preliminary experiments to study the effect of the weight parame­

ter ( w) on the algorithm performance. The first set deploys 40 sensors to the medium 

size field and the second set deploys 100 sensors to the large size field . Each set 

of run is conducted using 5 different w values: 0, 0.5, 1.0, 1.5, and 2.0. Figure 6.1 

gives the performance results averaged over 30 runs and evaluated using the three 

metrics (moving distance, convergence time, and sensing coverage). The results show 

that the value of w can influence the network performance considerably. 

Figure 6.1(a) shows that without the weight control (w=O), the sensors travel a 

long distance from their initial positions to the final positions, which consumes a lot 

of the battery power. The situation improves dramatically when w is increased; even 

a small value of w can reduce the moving distance per sensor from 364.4m to 43.6m 

for 100 sensors deployed in a large size field (second series in the chart). As w further 

increases to 2, the moving distance per sensor node is reduced to only about 2% of 

the moving distance when w is 0. The same trend holds for the smaller networks such 

as 40 nodes deployed to a medium size field (first series in Figure 6.1(a)). 

When considering the algorithm convergence time, a greater value of w leads to 
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a smaller number of ecosystem cycles needed for t he populations to converge to the 

final sensor positions, because it can suppress excessive node movement effectively (see 

Figure 6.1 (b)). Figure 6.1(c) shows that w = 0.5 gives the largest sensing coverage 

of 99.5% at the time when all populations are converged. As the w value continues 

to increase, the network coverage is decreased. 

When w = 0, the average number of ecosystem cycles takes to satisfy the conver­

gence requirements is larger than 30 (Figure 6.l(b)), but we only plot them within 30 

ecosystem cycles for better readability. We also measure the sensing coverage of the 

sensors after 30 ecosystem cycles and the population either converges or the fitness 

fluctuates at a certain level. This indicates that traveling a large distance does not 

help sensors locate posit ions that provide good coverage. 

The 99% confidence intervals on the means of the three metrics with the 5 different 

w values are given in Figure 6.2. 

When all three metrics are considered, w = 1.0 gives a good balance between large 

coverage, small moving distance and convergence time. We therefore use w = 1.0 to 

conduct the rest of our experiments. Meanwhile, when w = 1.0, we see that the 

populations take 7.9 and 9.44 ecosystem cycles to converge (Figure 6. l (b)) for the 

two sets of experimental runs. Figure 6.2(b) shows that its 99% confidence intervals 

are within 10 ecosystem cycles. Thus 9e = 30 is a reasonable choice to use for 

the rest of our experiments. 
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6.3 Studies on LODICO 

We study the performance of LODICO under different network sizes using a different 

number of sensors as that given in Table 6.1. The results are analyzed in the following 

sub-sections. 

6.3.1 Fitness improvement 

We first use three configurations of smaller nodal density (i.e. 12 sensors in a small 

size region, 50 sensors in a medium size region, and 80 sensors in a large size region) 

to show coverage improvement. The results of random one run for each configuration 

is given in Figure 6.3. The curves indicate that the global network coverage improves 

rapidly during the first few ecosystem cycles and the populations converge around 

the 7th cycle. You may notice that, for the medium and large size network, the 

populations converge at around 98% coverage of the deployed field . In Section 6.4, 

we will show that LODICO / D can improve the coverage to 100%. 
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Figure 6.3: Coverage improvement under LODICO 
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Figure 6.4 is the results averaged over 20 runs for t he three configurations, respec-

tively. We plot 10 ecosystem cycles and the average global coverage can be achieved 

at least 97% at the lOth ecosystem cycle. The evolutionary search is able to quickly 

find a solution t hat gives good coverage. 

Q) 

~ 
Q) 0.95 
> 
0 
(.) 

.:.:: 
0.9 

~ 0.85 

~ 0.8 
«i 
.0 0 .75 
0 

---~:~:~r~~~:~~:::~~~:lt.--~tt~-~-

,,,)11(···· 

~ .... 

,:.r' , ,. 
' · 
'· 100x100 with 12 sensors --+-

200x200 with 50 sensors ---><---
300x300 with 80 sensors -- - -)1(-- -

B 0. 7 L--..l.--'---'--L---'---'---'-L-.J.__J 

0 1 2 3 4 5 6 7 8 9 10 
Number of ecosystem cycles 

Figure 6.4: Average coverage improvement under LODICO 

6.3.2 Coverage vs. moving distance 

To study the global network coverage and the moving distance over time, we make 

one run deploying 10 sensors to a small size field, one run deploying 50 sensors to a 

medium size field, and one run deploying 100 sensors to a large size field. Figure 6.5 

shows that they all have a similar pat tern: the coverage increases while the moving 

distance decreases as the evolution progresses. The selected w(l) is able to balance the 

two conflicting objectives and direct the evolutionary search to find a good solution. 
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We know that each ecosystem cycle includes a number of generations. In this single 

run experiment, we randomly deploy 10 sensors to a small size field to investigate the 

change of the local fitness of each sensor at the end of each ecosystem cycle and each 

generation. 

Since a sensor moves to a new position at the end of each cycle, the induced 

new local network also changes. Figure 6.6 shows the increa e or decrease of the 

local fitness of each sensor at the end of each ecosystem cycle as the change of local 

network structure. Within each ecosystem cycle, t he best individual local fitness 

always increases or remains unchanged. Figure 6.7 shows the best individual fitness 

improvement within each ecosystem cycle for sensor 1. All other nodes have the 

similar patterns. The global fitness keeps on climbing up as the evolution progresses 
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as shown in Figure 6.8. This is because the fitness of each individual is based on 

how well it collaborates with its neighbors to provide local network coverage. This 

designed local fitness function is able to direct the evolutionary search of each local 

population toward a target position which can cooperate well with other sensors. As 

a result, a global network with good coverage can be generated . 
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Figure 6.8: Global fitness improvement after each ecosystem cycle 

6.3.4 Influence of the number of sensors 

In this group of experiments, we want to see how nodal density affects the deployment 

performance. We randomly deploy 4 different numbers of sensor nodes (Table 6.1) to 

the 3 different size of deployment fields (small, medium, and large). When the best 

individual in all local populations stops improving, we evaluate the three performance 

metrics: network coverage (Figure 6.9(a)), convergence time (Figure 6.9(b)), and 

moving distance (Figure 6.9(c)) averaged over 30 runs. The 99% confidence intervals 

on the means for the three metrics are given in Figure 6.10. 

The general observation from these experiments is that, as the sensor nodal density 

increases, so does the induced network coverage, while the convergence time and 
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moving distance decrease. This is reasonable as a larger number of sensors in the 

network make it easier to cover a wider area of the deployed field with a smaller 

amount of time and a shorter moving distance. 

6.4 Studies on LODICO/D 

In this section, we compare the performance of LODICO and LODICO/D, and in­

vestigate how LODICO / D helps sensor nodes to escape local optimal positions. 

6.4.1 Comparison of LODICO & LODICO/ D 

As shown in Section 6.3.1, LODICO can provide deployments of sensor networks with 

good coverage. However, it does not always give 100% coverage for the deployed field . 

In the case where 100% coverage is required, incorporating mode D in the algorithm 

may help providing better coverage. 

To investigate the benefit of mode D in helping the populations to escape local 

optima and deliver better solutions, we make 30 runs for each deployment of 40, 

50, 60, and 70 sensors in a medium 200 x 200m2 square area using LODICO and 

LODICO/D respectively. The two sets of experiments are carried out as follows: one 

operates LODICO and the other operates LODICO /D where mode I and mode D are 

alternated with 5 and 1 ecosystem cycles intervals, i.e. 5 mode I cy les followed by 1 

possible mode D cycle. 

This alternation is selected because a population is not likely to reach a local 

optimum during the first 5 cycles, hence should be operated under mode I. At the 

end of the 5th cycle, the best individual in each population is checked for coverage 
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Table 6.2: Average Coverage Comparison Between LODICO and LODICO/D 

LODICO LODICO/D 

sensors average coverage 100% covered average coverage 100% covered 

40 98.50% 0 99.33% 1 

50 99.44% 0 99.88% 15 

60 99.63% 0 99.98% 25 

70 99.73% 0 99.99% 27 

holes. If there is any hole, the local GA is switched to mode D for 1 cycle and 

switched back to mode I the following cycle, since mode I runs faster than mode 

D (See Chapter 5). This check is carried out for each sensor population, and only 

those whose best individual induces a local network with a coverage hole operate 

mode D while others remain operating mode I in the following ecosystem cycle. 

The average coverage of 30 runs and the numbers of runs achieving 100% coverage 

are given in Table 6.2. Overall, both setups provide very good coverage. Nevertheless, 

LODICO/D with the alternation of mode I & mode D delivers a larger number of 

runs that produces 100% coverage. 

6.4.2 Local optima 

To validate our hypothesis that mode D improves performance by helping the pop­

ulations escape local optima, we conduct another single experiment deploying 10 

sensors to a small size field, where the sensor initial locations give a local optimum 

coverage ( 64%). 
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The simulation is carried out by alternating 2 cycles of mode I followed by 1 

possible cycle of mode D. The best global fitness (See Figure 6.11) shows that after 

2 cycles of no fitness improvement, the fitness declines aft er the execution of mode 

D at the third ecosystem cycle. This fitness decline is caused by a large moving 

distance (See Figure 6.12), indicating that the sensor has escaped the local optimum. 

After that , the global fitness starts to climb and eventually reaches 100% coverage. 
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Figure 6.11 : Global fitness under Mode I and D 
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6.4.3 Initial corner deployment 

To evaluate the system performance under the situation where all sensors are initially 

deployed to a corner in the deployment field, we conduct another single experiment 

with randomly init ialized 10 sensors in the corner of 40 x 40m2 area in a 100 x 100m2 

field (See Figure 6.14(a)). 
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Figure 6.13: Coverage improvement of deploying sensors in a corner 

This is a hard situation for any deployment algorithm as the initial network cov-

erage is only 22.28% as shown in Figure 6.13. The alternation of mode I and mode 

D has improved the fitness quickly, and after 5 ecosystem cycles, almost 90% of the 

given field is covered by the sensors. Further, at the 14th ecosystem cycle, the whole 

area is fully covered. Figure 6.14 shows the sensors movement process at the end of 

each ecosystem cycle. 
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Chapter 7 

Conclusion and Future Work 

In this thesis, we propose two innovative CCEA models, LODICO and LODICO/D, 

to optimize the automated mobile sensor deployment of a wireless sensor network. 

They are completely localized algorithms which can be executed fully distributed and 

in parallel at each sensor node. 

LODICO and LODICO / D are powerful extensions to the traditional Coopera­

tive Coevolutionary Algorithms in three aspects. First , CCEA evaluates individuals 

based on the collaboration of all species, i.e. a complete solution has to be gener­

ated for fitness evaluation, while LODICO and LODICO / D coordinate sensor nodes 

through localized partial fitness evaluation and information exchange. This makes 

CCEA applicable to fully distributed computing applications. Second, LODICO and 

LODICO / D propose a scheme of frequent, dist ributed, and dynamic problem di­

vision, in which no center control is needed and each sensor node divides its own 

subproblem based on its local information only. This is particularly suitable for the 

dynamic changes of mobile sensor networks. Third, we know that in CCEA, the 
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only interaction between species is the fitness evaluation. Yet, LODICO / D models 

local interactions between neighboring species during the variation of individuals to 

improve its fitness and help populations escaping local optima. 

The simulation results show that LODICO and LODICO / D are effective in obtain­

ing good solutions under dynamic, distributed, and localized condition constraints. 

They can achieve very high coverage rates with short moving distances in short period 

of times. 

In the future work, we plan to extend mode D to incorporate a sensor's target 

position with its neighboring moving suggestions. Further, we want to use the fixed­

length representation with fuzzy information of farther sensors to form an estimated 

global view of the network while still using local communication only. This will fully 

investigate the power of partial and fuzzy fitness evaluation. And yet, more interesting 

findings are to be made. 
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