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Abstract 

The aim of this research work is to design, built and test low speed multiploe permanent 

magnet generators for ocean energy conversion systems. Vertical axis drag/lift type ocean 

current turbines have low speed due to water speed of less than lrn/s. A low speed 

permanent magnet generator can be utilized to deliver low power that can be used to 

power- rated sea pods. The study focuses on the design of a permanent magnet generator, 

which is suitable for under water application and can generate electric power from the 

low speed marine currents (typically below 1 OOrpm). This thesis explores different low 

speed permanent magnet generators and focuses on multipole direct driven axial flux 

permanent magnet Generator (AFPMG). AFPMG is suitable for direct coupled systems. 

Two types of AFPMG are designed and tested for several performance criterions. The 

prototyped AFPMGs are tested and the results are presented and discussed in this thesis. 

The first design produced 5.2V, 3.5W and the second design produced about 5.5V, 2W at 

70 rpm. Both designs are simple in construction, economically viable and suitable for low 

electric power generation from ocean currents. 
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Chapter 1 

Chapter 1 

1. Introduction 

1.1 Background 

One of series challenges for the world future is linked with continuous demand for 

energy. Energy is by far the largest merchandise in the world and an enormous amount of 

energy is extracted, distributed, converted and consumed in the global society. The global 

energy demand is continuously increasing. Today's global energy production is highly, in 

fact 83% [ 1] dependent on fossil fuel resources such as oil, gas and coal. These resources 

are limited and their use results in global warming due to emission of gr~enhouse gases 

like carbon dioxide. Interest in renewable energy has depended on the perceived risks of 

using fossil fuels . To provide a sustainable power production in future and at the same 

time be concerned about global warming, there is a growing demand for energy from 

renewable resources such as wind, geothermal, solar and ocean. 

Oceans can be considered as one of abundant energy resource that can be 

exploited to contribute in a sustainable manner for meeting increasing global energy 

demands. The oceans, covering more than 75% of the Earth, have long been appreciated 

as a vast renewable resource. Several types of ocean energy sources with different origins 

(thennal energy and kinetic energy) exist. The most developed conversion systems 

concern: tidal energy, which mainly results from the gravitational fields of the moon and 
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the earth; thermal energy (Ocean Thermal Energy Conversion or OTEC), resulting 

directly from solar radiation; marine currents, caused by thermal and salinity differences 

in addition to tidal effects, and ocean waves, generated by the action of the winds 

blowing over the ocean surface. Other technologies, namely salinity gradient devices, are 

at a much lower level of development. 

The ocean current resources still remain predominantly untapped. However, the 

physics behind ocean currents is very promising for energy conversion. A number of 

studies have been completed on the energy potential of marine currents but there have 

been few on the engineering requirements for utilization of this resource. Countries 

where theoretical studies and experimental projects took place are the UK, Italy, Canada, 

Japan, Russia, Australia and China in addition to the European Union. In Europe two 

prototypes are being developed partially funded by the European Commission. 

Kinetic energy from the sea can be harnessed using relatively conventional 

techniques which are similar in principle to those for extracting energy from the wind. 

Though energy conversion from marine currents is quite similar to that of wind energy 

conversion but there are also several differences between them. The underwater 

placement of a marine current energy converter (MCEC) gives some advantages such as 

no noise disturbance for the public, low visual exposure and little use of land space but 

also adds some challenges like the need for water and salt proof technology, difficult and 

costly maintenance etc. Another characteristic is the difference in density, which results 

in a higher power density. The energy content of a marine current of only lm/s is 

equivalent to a wind speed of 9m/s. A final characteristic to highlight is the relatively 

high degree of utilization, tidal streams are likely to have a utilization factor up to 40-50 
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% and currents of more constant nature are likely to have a utilization factor up to 80 % 

[2]. For wind power the corresponding utilization factor is usually between 25-30. The 

utilization factor is defined as the actual annual energy output divided by the theoretical 

maximum and is dependent on the rated power of the installed device [3] A high 

utilization factor is important to achieve an economically viable power production [ 4,5]. 

A present day typical and a new directly driven marine current power plant are 

designed. The electromechanical system of a hydro power plant usually consists of three 

main parts: turbine, gearbox and generator. Due to the low current velocities, a marine 

current turbine will experience low rotational speeds, typically below 100 rpm. In 

conventional hydro installation, the generator rotational speed is usually 1500 or 1800 

rpm. This means that a gearbox is needed between the turbine and the generator. A 

standard asynchronous generator can be used and the constant speed operation IS 

commonly used in this type of power plant. The generator can be connected directly to 

the grid, which results in a simple electrical system. However, the gearbox adds to the 

weight, generates noise, demands regular maintenance and increases losses. The aim of 

this research project is to create a generator well suited to the slow moving marine 

currents energy conversion system. 

Using permanent magnet (PM) generators as low speed energy converters is very 

common. The low speed generator does not require step-up gearbox in power 

transmission between the turbine and the generator, which is typically required in 

conventional drive train. As the generator is directly driven by the turbine, it is commonly 

known as a direct drive generator. The marine current power plant can be simplified by 

eliminating the gear and by using a low-speed direct drive generator. Many disadvantages 

3 
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avoided in gearless (directly coupled) marine current turbines. The noise caused mainly 

by a high rotational speed can be reduced. The advantages are also high overall efficiency 

due to a low cut-in speed and reliability, reduced weight and diminished need for 

maintenance. However, the diameter of a low-speed generator may be rather large 

because a great number of poles are needed in a low-speed machine. Due to the multi­

pole structure, the total length of the magnetic path is short. The winding overhangs can 

also be shorter and stator resistive losses lower than those in a long pole pitch machine. 

The output frequency is usually lower than 50Hz, and a frequency converter is usually 

needed in low-speed applications. The converter makes it possible to use the machines in 

variable speed operation. The speed can be variable over a relatively wide range 

depending on the marine current conditions, and the turbines can extract maximum power 

at different flow rate. The advantages of the variable speed operation are, for instance, the 

reduction of the drive train, mechanical stresses, the improved output power quality and 

the increased energy capture. 

1.2 Permanent Magnet Machine 

A permanent magnet is classified as a "hard" magnetic material in which the domain 

orientation is permanently fixed by an externally applied magnetizing force. The term 

permanent magnet (or PM) machine is used herein to include all electromagnetic 

conversion devices in which the magnetic excitation is supplied by a permanent magnet 

(PM). PM machines compose a well-known class of rotating and linear electric machines 

used in both the motoring and generating modes. A PM generator consists of a stator with 

armature winding and a rotor mounted with permanent magnets to provide the field flux . 

4 
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It does not need an external supply to excite the rotor field and hence the field winding 

and slip rings are eliminated. 

There are many varying physical configurations for PM machines including radial 

(Fig. 1.1 a) and axial (Fig. 1.1 b) air gap configurations. In general, the use of PM 

excitation provides the machine designer with a greater degree of freedom in physical 

configuration than most other classes of rotating electric machines. 

(a) (b) 

Figure 1.1: Permanent magnet machine (a) radial flux (b) axial flux 

The rotor of a PM machine has a special design to give the required characteristics. 

Numerous rotor geometries of PM generator have been developed. Depending on the 

orientation of the magnetization, the rotor can be classified into two types, radially 

oriented type and cercumfential type [6] . In radially 01iented type, the rotor magnets are 

oriented such that the direction of magnet field of the permanent magnets in the machine 

is radial. Thus, the air gap flux density above the magnet is approximately the same as the 

magnetic flux density. This type of rotor construction using low residual flux density 

magnetic material such as ferrite magnets, results in very low air gap flux density. 

However, with the development of high-energy permanent magnets such as neodymium-

5 
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iron-boron (NdFeB) efficient generator design using axial type of construction is possible 

due to their high residual flux density and large coercivity. The circumferential type is 

suitable for generators with large number of poles and using magnets with low residual 

flux density. 

1.3 Axial Flux Generator 

The axial flux PM motor is an attractive alternative to the cylindrical radial flux motor 

due to its pancake shape [7], compact construction and high power density. Axial flux 

PM motors are also called disk-type motor. 

1.3.1 Geometries 

Axial flux PM motors can be designed as double-sided or single-sided machines, with or 

without armature slots, with internal or external PM rotors and with surface mounted or 

interior type PMs. 

1.3.1.1 Single Sided Machine 

Single sided AFPM machines (Fig. 1.2) with stator ferromagnetic cores have a single PM 

rotor disk opposite to a stator unit consisting of a winding and ferromagnetic core. The 

stator ferromagnetic cores can be slotted or slotless. The stator winding is always made of 

flat wound coils. The PMs can be mounted on the surface of the rotor or embedded 

(buried) in the rotor disc. In the case of a slotless stator the magnets are almost always 

surface mounted, while in the case of a slotted stator with a small air gap between the 

6 



- -------- ---

Chapter 1 

rotor and stator core, the magnets can be either surface mounted on the disc or buried in 

the rotor disc. Single-sided construction of an axial flux motor is simple, but the torque 

produced is low. Large axial magnetic forces on bearings are the main drawback of single 

sided AFPM machines with ferromagnetic stator cores. 

Figure 1.2: Single sided AFPM machine 

1.3.1.2 Double Sided Machine 

In double sided AFPM machines with ideal mechanical and magnetic symmetry, the axial 

magnetic forces are balanced. In the double-sided motor with internal PM disk rotor (Fig. 

1.3a), the armature winding is located on two stator cores. The disk with PMs rotates 

between two stators. A double sided motor with internal stator (Fig. 1.3b) is more 

compact than the previous construction with internal PM rotor [8, 9, 10, 11]. The double­

sided rotor with PMs is located at two sides of the stator. Disk-type motors with external 

rotors have a particular advantage in low speed high torque application due to their large 

radius for torque production. As with single-sided AFPM machines the stator 

ferromagnetic cores can be slotted or slotless, and the rotor magnets can be surface 

mounted, embedded or buried. Again, in the case of a slotless stator with a large air gap 

7 
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between the rotor and stator core the magnets are almost always surface mounted. The 

stator windings of double sided AFPM machines can be flat wound (slotted or slotless) or 

toroidally wound (normally slotless). 

(a) (b) 

Figure 1.3: Double sided AFPM machine (a) internal rotor (b) internal stator 

1.3.1.3 Ironless Double Sided Machlne 

AFPM machines with careless stators have the stator winding wound on a non­

magnetic and non-conductive supporting structure or mould. The stator core losses, i.e. 

hysteresis and eddy current losses do not exist. The losses in PMs and rotor solid steel 

disc are negligible. This type of design offers higher efficiency at zero cogging torque. In 

order to maintain a reasonable level of flux density in the air gap, a much larger volume 

of PMs in comparison with laminated stator core AFPM machine is required. The stator 

winding is placed in the air gap magnetic field generated by the PMs mounted on two 

opposing rotor discs. 
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1.3.1.4 Multidisk Machine 

There is a limit on the increase of motor torque that can be achieved by enlarging the 

motor diameter. Factors limiting the single disk design are: (a) axial force taken by 

bearing, (b) integrity of mechanical joint between the disk and shaft and (c) disk stiffness. 

A more reasonable solution for large torques is double or triple disk motors (Fig. 1.4). 

The number of modules depends on the requested shaft power or torque. The 

disadvantage of this type of multi disk motor is that a large number of bearing equal to 

double the number of modules are required. 

Figure 1.4: Multidisk AFPM machine 

1.3.1.5 Rotor Configuration 

Depending on the location of the magnets in the rotor, the permanent magnet generator 

can be classified into three different configurations, namely the surface mounted, interior, 

and inset type [6, 12, 13]. 
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Interior: 

The interior-magnet rotor (Fig. 1.5) has radially magnetized and alternately poled 

magnets. Because the magnet pole area is smaller than the pole area at the rotor surface, 

the air gap flux density on open circuit is less than the flux density in the magnet [14]. 

The magnet is very well protected against centrifugal forces. The interior PM generator 

has narrow and smooth air gap. The motor torque is contributed by reluctance component 

due to the difference between direct and quadrature axis reactance as well as the 

permanent magnet field component. Such a design is recommended for high frequency 

high speed motors. 

Figure 1.5: Interior magnet rotor 

Surface mounted: 

The surface mounted motor (Fig. 1.6) can have magnets magnetized radially or 

sometimes circumferentially. The direct and quadrature axis reactance are practically 

same in surface magnet type. Permanent magnets are not protected against armature 

fields which cause eddy current loss in permanent magnets (when their conductivity is 

greater than zero). An external high conductivity non ferromagnetic cylinder is 

sometimes used. It protects the PMs against the demagnetization action of armature 

reaction and centrifugal force, provide an asynchronous starting torque, and act as a 
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damper [7]. The machine with surface magnet is essentially non-salient type. It has a 

large air gap. The large air gap weakens the annature reaction effect, and therefore the. 

operation is essentially restricted to low speed and constant torque region [6]. 

Figure 1.6: Surface mounted magnet rotor 

Inset: 

In the inset-type motors (Fig. 1. 7) PMs are magnetized radially and embedded in shallow 

slots. The rotor magnetic circuit can be laminated or made of solid steel. A starting cage 

winding or external non ferromagnetic cylinder is required. The inset PM generator has a 

small but relatively smooth air gap. The quadrature axis reactance is greater than that in 

the direct axis. 

Figure 1.7: Inset magnet rotor 
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Buried: 

The buried - magnet rotor (Fig. 1.8) has circumferentially magnetized PMs are embedded 

in deep slots. In this type the air gap magnetic flux density is greater than Br. The 

synchronous reactance in quadrature axis is greater than in that direct axis. The 

application of a non ferromagnetic shaft is essential. With a ferromagnetic shaft, a large 

portion of useless magnetic flux goes through the shaft [ 15]. A buried-magnet rotor 

should be equipped with a non ferromagnetic shaft or a non ferromagnetic sleeve 

between the ferromagnetic shaft and rotor core should be used. 

Figure 1.8: Buried magnet rotor 

1.3.2 Axial Flux Disk-Type Structure 

AFPM disc machines can be constructed in different forms . These machines have N 

stators and N+ 1 rotors (N ~ 1) for external rotor and internal stator surface magnet PM 

disc motor (TORUS) types and N+ 1 stators and N rotors (N ~ 1) for internal rotor and 

external stator surface magnet PM disc motor (AFIR) types. If N is chosen as 1, the 

structures have either a single stator sandwiched between two disc rotors (the TORUS 

topology) or a single rotor sandwiched between two stators (the AFIR topology). The 

axial flux topologies are shown in Fig. 1.9a-d. 
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(c) (d) 

Figure 1.9: AFPM disc-type motor structures: (a) slotless TORUS, (b) slotted 

TORUS, (c) slotless AFIR, and (d) slotted AFIR machines. 

(a) (b) 

Figure 1.10: Three-dimensional (3-D) flux paths ofthe (a) TORUS and (b) AFIR type 

topologies 

13 



Chapter 1 

The basic flux paths of the TORUS and AFIR topologies are shown in Fig. 1.1 Oa­

b, respectively. As can be shown in Fig. 1.1 Oa (for the TORUS machines), theN magnets 

drive flux into the stator core through the air gaps. The flux then travels circumferentially 

along the stator core, returns across the air gaps, and then enters the rotor core through 

the opposite polarity of the magnets. In the AFIR-type machines shown in Fig. 1.1 Ob, the 

magnets with the polarity of N drive flux across the upper air gap into the upper stator 

core. The flux then travels circurnferentially along the upper stator core, returns to the 

upper air gap, then enters the lower stator core through the S pole of the magnets, and 

closes its path. 

Two different slotted TORUS type machines, namely TORUS NN (North- North) 

type and TORUS NS (North-South) type, can be derived depending on the direction of 

the main flux, which are both illustrated in Fig. 1.9a-b. Both machines have a single 

stator and two surface mounted PM rotor discs. The stator has a slotted structure with 

tape wound stator iron. Back-to-hack connected windings are placed into back-to-hack 

slots in NN type structure while the conventional 3-phase windings are used in each side 

of the NS type structure. The rotor structures are exactly the same in both machines, 

which are composed of surface mounted axially magnetized magnets and rotor discs. The 

differences between the two structures are the magnetization direction of the magnets, 

existence of the stator core, the flux paths and winding structure. 

In order to create the appropriate flux path, the magnets facing each other on each 

rotor should be N and N poles or S and S poles in TORUS NN type and, N and S or S 

and N poles in TORUS NS type. Therefore, the direction of armature current must be 

changed appropriate! y so as to create torque [ 16]. 
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1.3.3 Performance Characteristics 

The perfotmance of PM axial flux machine highly depends on the torque quality. Torque 

quality depends not only on torque density (both torque-to-volume and torque-to-weight 

ratios) but also the pulsating torque. 

The torque components are: 

1) Cogging torque is the pulsating torque component produced by the variation of the air 

gap permeance or reluctance of the stator teeth and slots above the magnets as the rotor 

rotates. No stator excitation is involved in cogging torque production. 

2) Torque ripple is the pulsating torque component generated by the stator MMF and 

rotor MMF. In surface mounted PM machines, torque ripple is mainly created by the 

interaction between the MMF caused by the stator windings and the MMF caused by the 

rotor magnets because there exists no rotor reluctance variation. 

3) Pulsating torque is the sum of both cogging and torque ripple components. 

4) Total torque is the sum of average torque and pulsating torque components. 

1.3.3.1 Cogging Torque 

Cogging is the oscillatory torque caused by the tendency of the rotor to line up with the 

stator in a particular direction where the penneance of the magnetic circuit "seen" by the 

magnets is maximized. Cogging torque exists even when there is no stator current. When 

the motor is running, additional oscillatory torque components can result from the 

interaction of the magnet with space harmonics of the winding layout and with current 
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harmonics in the drive current. These additional oscillatory torque components are 

electromagnetic and are generally referred to as torque ripple, while the term cogging is 

often reserved for the zero cutTent condition. In a well designed motor the torque ripple 

and the cogging should both be negligible, but it is possible for the torque ripple to 

exceed the cogging torque by a large amount if the motor has an inappropriate 

combination of winding layout, drive current and internal geometry. Existence of these 

torque mechanisms is a foremost concern in the PM motor design due to the unwanted 

harmonics added to the motor output torque [17]. These components not only affect the 

self-starting ability of the motor but also produce noise and mechanical vibrations. Many 

techniques for cogging torque minimization are documented in the literature for PM 

machines due to the high demand on PM machines for high performance applications 

[18, 19, 20, 21, 22, 23]. 

With a large number of slots/pole the cogging torque is inherently reduced by the 

fact that the relative permeance variation seen by the magnet is reduced as it successively 

covers and uncovers the slots one at a time: indeed the permeance variation can be 

thought of as being concentrated at the edges of the magnet. A small amount of skew is 

then usually sufficient to eliminate most of the cogging. 

Cogging torque can also be compensated electromagnetically by adapting the 

drive cuiTent wavefonns to produce an electromagnetic torque ripple component that 

cancels the cogging [24]. 

Other methods for reducing cogging include the use of birfurcated teeth or 

punching holes in the tooth overhangs to modulate the permeance variation [25]. 

Birfurcated teeth or 'dummy slots" have a similar effect to that of doubling the number of 
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slots: the cogging torque frequency is doubled and the amount of skew required to 

eliminate the cogging is halved. Also, the permeance variation caused by uncovering a 

whole tooth, so the magnitude of the cogging torque decreased as well. 

1.3.3.2 Pulsating Torque 

The AFPM machines can be designed for higher torque-to-weight ratio and higher 

efficiency and can be considered as a significant advantage over conventional PM 

machines. Torque quality of AFPMs is an important matter for low-noise smooth-torque 

PM disc machines and directly related to pulsating torque component. Pulsating torque 

consists of two components, namely 1) cogging torque and 2) "torque ripple". Cogging 

torque arises from the variation of the magnetic permeance of the stator teeth and the 

slots above the permanent magnets. The presence of cogging torque is a concern in the 

design of PM machines because it adds unwanted hannonics to the pulsating torque. 

Torque ripple occurs as a result of fluctuations of the field distribution and the armature 

magnetomotive force (MMF). At high speeds, torque ripple is usually filtered out by the 

system inertia [26]. However, at low speeds or gearless-motor direct-drive systems, 

torque ripple produces noticeable effects that may not be tolerable in smoothtorque and 

low-noise applications [27, 28, 29, 30]. 
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1.4. Permanent magnet material 

1.4.1. History 

Permanent magnets has been known science prehistory, first in their naturally- occurring 

state, known as "lodestones", in ancient China. PMs have been used in electric machine 

applications almost from the beginning of the development of these machines as 

replacements for wound field excitation systems. However, the low energy densities of 

early manufactured permanents, such as chrome steel and other hard steel magnets, did 

not permit the use of pennanent magnets in any type of machine other than very low 

power control machines and signal transducers. Modem permanent magnet machines 

began with the development of Alnico magnets by Bell Laboratories in the 1930's. The 

high flux densities and reasonable energy products of Alnico magnets permitted their use 

in power applications, and permanent magnet motors with ratings up to several 

horsepower were developed for commercial applications. DC generators and alternators 

with ratings of many kilowatts were also developed for military and aerospace 

applications using Alnico magnets. However, the low coercive for this class of PM 

limited its applications to relatively constant current applications were transient 

disturbances were not present. 

Widespread use of PMs in commercial and aerospace applications were made 

possible with the advent of ceramic or "hard ferrite" PMs in the 1950's. Although the 

flux densities available in this class of PM are much lower than those of the Alnico class, 

the high coercive force of ferrite PMs made possible the adaptation of PM machines to 

the conventional machine armature reaction and transient environment. A great many 
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automotive motors were converted to ferrite PM excitation and, as a result, the PM de 

motor is probably the most widely-used de motor configuration today. The hard ferrite 

class of PMs generally offers a cost saving over all other types of PMs and is produced in 

extremely large quantities today for almost all types ofPM applications. 

The next major evolution affecting PM electric machines came with the advent of 

commercial rare-earth permanent magnet in the 1960's, and this evolution is ongoing 

today. The early rare-earth PMs were alloys of cobalt, with samarium as the most 

common rare earth. Samarium-cobalt PMs offer the high flux density of the Alnico class 

and an even higher coercive force than the hard ferrite class, resulting in much higher 

energy densities than any previous class of permanent magnets except for various 

"exotic" and costly alloy such as platinum-cobalt. Samarium-cobalt, while having 

excellent technical characteristics, is relatively expensive and uses a large percentage of 

cobalt, which is a strategic material in several parts of the world today. A more recent 

development in rare earth PMs is the neodymium-iron-boron (NdFeB) alloy which has 

PM characteristics comparable or superior to most of the samarium-cobalt alloys and has 

the potential for much lower cost. It uses no strategic materials and neodymium is one of 

the most plentiful of the rare earth elements. Experimental NdFeB magnetic materials 

have exhibited the highest energy density of any known permanent magnet materials. 

PM machines using NdFeB magnets have the potential for application in most electric 

machine application today. 

19 



Chapter 1 

1.4.2. PM material 

Permanent magnets used in rotating electric machines are of two general classes: 

ferromagnetic materials and ferrimagnetic materials. Ferrimagnetic permanent magnets, 

often called hard ferromagnetic materials, are crystalline structures formed from metallic 

alloys, usually containing one of the three natural magnetic metals, iron, nickel, or cobalt. 

Ferromagnetic materials, are often called hard ferrites, are oxides of iron and one other 

metal, usually barium or strontium. 

In general, all magnetic materials exhibit varymg degrees of permanent 

magnetism, often called remnance. To place a magnetic material m a state of zero 

magnetism requires a process known as "de-magnetization", by means of an externally 

applied magnetic field . However, hard magnetic materials or permanent magnets are 

those magnetic materials which retain a much higher level of magnetism than "soft" 

magnetic materials in the absence of an external magnetic field. This property results 

from the internal microscopic structure of permanent magnet (PM) materials, which also 

causes differences in most other physical properties of hard and soft magnetic materials. 

PM materials generally are hard and somewhat brittle and have lowered tensile and 

bending strength than soft magnetic materials. Their Curie temperatures and other 

thermal characteristics also differ from those of soft magnetic materials. 

Alnico magnets: 

Alnico PM Materials are metallic alloys of aluminum, nickel, cobalt, and iron, and were 

among the first high energy PMs to be developed. Developed at the Bell Lab and GE in 

the 1930's, Alnico magnets are still widely used and manufactured throughout the world. 
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Alnico magnets are still widely used and manufactured throughout the world. Alnico 

magnets are, generally, characterized by relatively high residual flux density (Br) and 

relatively low coercive force, (He). The later characteristic is undesirable from the electric 

machine standpoint. Certain grades of Alnico, such as grade 8HC, have been developed 

to remedy this weakness, but at the expense of lowered residual density. 

Ceramic magnets: 

Ceramic magnets are similar to other types of materials commonly referred to as 

ceramics in physical properties. However, ceramic PMs are properly defined as ferrite 

oxides of barium or strontium and exhibit the property known as ferrimagnetisms. 

Ferrites are brittle and have little mechanical strength and should not be used as structural 

members of a machine. 

Ceramic magnets are characterized by relatively low residual flux densities (Br) 

and relatively high coercive forces (He). Because of the later characteristic, ceramic 

magnets are able to withstand armature reaction fields without demagnetization and are 

well suited for electric machine applications. Although ceramic magnets have generally 

poor mechanical and structural characteristics, they are the lightest in density of the 

common magnet types. This is often a distinct advantage in machine applications and 

tends to compensate for the increased pole-face area required due to the low residual flux 

density. Also, ceramic magnets have the lowest recoil permeability of common magnets, 

which is stabilizing factor in machine application. 
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Samarium cobalt: 

The first commercially feasible rare earth magnets were developed by K. J. Stmat, and 

are now widely available from a number of manufacturers throughout the world. 

Samarium-cobalt magnets gave an "order-of-magnitude leap" in energy product over 

ceramic magnets and most other types of magnets. Samarium-cobalt magnets have 

residual flux densities comparable with Alnico and coercive forces three to five tomes 

those of ceramic magnets. These magnets also have generally improved physical 

characteristics as compared to both Alnicos and ceramics. From a technical standpoint, 

they are ideal for rotating electric machine applications. However, there are major 

disadvantages for commercial use: very high material and manufacturing cost and the 

strategic nature of cobalt. Samarium is one of the less plentiful rare earth materials and its 

processing costs are also high. 

NdFeB: 

Neodymium-iron-boron (NdFeB) PM materials appear to offer the greatest promise for a 

PM material with greatly improved characteristics over those of ceramic magnets. This 

material has been shown in the laboratory to have the highest energy product of any PM 

material, and the commercial versions of these laboratory samples are available with 

energy products above those of samarium cobalt. Perhaps more importantly, NdFeB 

magnets hold the promise of relatively low cost in production quantities. Neodymium is 

one of the most available of rare earth elements. Although the major deposits are in 

mainland china, there are large deposits in the US and the other western countries. 

Processing costs are lower than those of samarium. Also no strategic materials are used in 

the alloys of this magnet. 
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NdFeB has the highest coercive force available in commercial magnets and, 

therefore, is ideally suited for machine applications. Also its residual flux density is 

relatively high, comparable to the best of the Alnicos. 

Its energy product is the highest available today. Limitations of this material 

include very poor temperature characteristics. The low operating temperature requires the 

use of a large size for an application required to operate at elevated temperatures and, 

therefore, many of the reduced size and weight advantages ofNdFeB are lost. 

The addition of cobalt or some other rare-earth materials to NdFeB is claimed to 

improve the thermal characteristics of this magnet [31 ]. This material, which contains a 

large environments, and many require additional weight and size in corrosion protection 

materials in some application. 

1. 5. Aim of this work: 

The purpose of this project is to extract few watts electrical power from the sea-floor 

ocean current. To meet the requirement the study focuses on the design a generator which 

is suitable for under water application and can produce electricity from the low marine 

current velocities (usually less than 1 OOrpm). 

The gearbox is the movmg part used in between the turbine and generator in the 

conventional drive train. The gearbox adds to the weight, generates noise, demands 

maintenance and increase losses and reduces reliability. Permanent generators are now 

widely used for low speed application where the gearbox is eliminated and the generator 

is directly driven by the turbine. 
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The aim of this research work is to design a low speed direct driven generator for gearless 

marine cunent application. The hypothesis of this work is that the typical generator-gear 

solution in the marine cunent power plant can be replaced by a low speed PM 

synchronous generator. 
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2. REVIEW OF RELATED WORK 

In this chapter several literatures related to this thesis is presented. Before designing the 

generator, several works are reviewed. The literature review is presented in three 

different sections. To choose the generator topology, comparison between different PM 

generators and different geometries of AFPMG is reviewed. For the first prototype, 

different cogging torque minimizing techniques are analyzed. Also works related to the 

ironless stator is studied. 

2.1 Comparison of PM generators 

Basically, PM generators can be divided into radial-flux and axial-flux machines, 

according to flux direction in the air gap. Transverse flux machines exist, but do not seem 

to have gained a foothold in direct drive generation. Many papers have been written to 

compare different topologies of radial flux and axial flux generators in different aspects. 

Sitapati (32], et a!. [2000], gives a comparison between the traditional radial field 

PM brushless machine and different configurations of axial field Pm brushless de 

machine. The comparison consist of required copper, steel and magnet weights, copper 

and iron loss, moment of inertia, torque per unit moment of inertia, power per unit active 

weight and power per unit active volume for different power levels. According to the 

outcomes of this paper, the axial field machines have a smaller volume for a given power 
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rating making the power density very high. For a given magnet material and air gap flux 

density, the rotor moment of inertia of the radial field tends to be larger than all of the 

axial field machine in this comparison. The weight of iron required in the radial field 

motor making the active weight of axial field machines smaller. 

Cavagnino [33], et al. [2002], compares the axial-flux versus conventional radial­

flux structures for Pm synchronous motors. Two motor topologies are compared in terms 

of delivered electromagnetic torque and torque density. The comparison is developed for 

different motor dimensions and the pole number influence. The overall motor volume, the 

losses per wasting surface and the air gap flux density are kept constant. The presented 

comparison brings to the conclusion that the considered AFPMs are an attractive solution 

if the number of pole is high (2::10) and the axial length is short(< 0.3). 

Silaghi [34] , et al. [2005], provides a comparison among PM generators of seven 

different topologies consisting ofboth radial-flux and axial-flux machine. In this paper to 

compare machine topologies, a large number of prototypes is designed and obtain 

sufficient information to draw the general conclusion. Optimum design is considered for 

each prototype. It is inferred that axial-flux slotted machines have a smaller volume for a 

given power rating, making the power density very high. However, it should be 

mentioned that as the power rating is increases and the outer radius becomes larger, the 

mechanical dynamic balance must be taken into consideration for axial-flux machine. 

The two sided axial-flux configuration is superior to the one sided axial-flux 

configuration. For all of the comparisons, the outer-rotor construction is superior to the 

itmer-rotor construction. The Torus construction is simple and more suitable for low 

power rating generators. 

26 



Chapter 2 

Different machine topologies have not been compared very much with each other in 

this literature. However, the comparison shows that the conventional radial flux machine 

will not be suitable design for a low speed directly driven generator. The axial flux 

machine is smaller in volume and has a high power density. The axial flux machine is a 

better choice if the speed is very low i.e. the number of pole is high. 

2.2 PM Axial Flux Generator 

Many papers have been written on axial-flux PM generators. Perfonnance comparison 

between different machine topologies is not a straight forward task as many variables 

exist in electromagnetic, thermal and mechanical aspects. Sitapati [32] , et a!. [2000], 

compares one radial field and four axial field topologies for five different output power 

level. The comparison consists of volume, weight, power loss and inertia. All the 

machines are designed with surface mounted PM rotors - conventional radial field, axial 

field single air gap, axial field dual air gap, axial field slotless single air gap, axial field 

slotless dual air gap. The slotless axial field machines require more magnet material than 

the slotted one. The slotless machines require a larger diameter due to the additional 

turns. So the copper loss in the slotless machine is higher than that of slotted one. The 

single air gap motor has more electromagnetic loss than dual gap axial field machine. 

An axial-flux machine with toroidal air-gap winding has been presented by 

Soerlund [35], et al. [1996]. NdFeB permanent magnets are mounted on two rotor discs 

on both sides of the stator. A 5kW and a 1 OkW experimental machine have been built and 

tested. The machines have 14 poles. Special attention must be paid to the choice of 
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structural materials. If the casing is too close to the rotating magnets, the leakage flux 

will induce eddy currents causing extra losses and heating. A 1 OOkW, 90 pole 

experimental machine is under construction. 

Chalmers [36], et al. [1997], have presented an axial-flux slotless machine with a 

toroidal air-gap winding. More magnets are needed in a slotless machine than a slotted 

machine, because the total air gap (air gap + winding thickness) is large. A skewed 

construction of the stator or rotor is unnecessary in this type of a machine. However, 

eddy-currents are induced in the winding by the main air-gap flux. A 1.5 KW, 24 poles as 

well as a large 5 KW experimental machine have been built. The machines are use for in 

small-scale stand-alone generating systems in remote areas. 

Marignetti [37], et al. [2005], deals with an axial flux PM synchronous motor for 

a direct wheel drive. Its main feature is the armature winding of the fractional slots type. 

The winding is therefore a concentrated non overlapping one allowing a large number of 

poles to be achieved in a small diameter. The interest towards compact PM generators is 

partially due to its small aspect ratio and also to its torque density. The structure is of the 

single stator double rotor type and the output power is 2 KW. The end winding 

connections are short in comparison with traditional windings. The induced emf 

waveform is not distorted, due to equivalence to a machine with two slots per pole and 

per phase. 

Chen [38], et al. [2005], presents low speed directly driven axial flux PM wind 

generator. Through careful design an axial flux Pm generator with slotted soft magnetic 

composite (SMC) core is built and tested. The advantage of this type of generator is 
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better perfonnance, reduced size and weight, low part count and low cost. The best result 

is that highest torque to weight ratio. 

Ferreira [39], et al. [2007], presents a double sided axial flux PM low-speed generator 

with internal rotor and slotted stators. Such a structure gives a good compromise between 

performance characteristics and feasibility of construction. The rated power of the 

prototype at 600rpm is 340w with number of pole pair 10. A simple electromagnetic 

design model, considering the fundamental laws governing this type of machines was 

used to achieve and implement a prototype. This effort relies on a set of analytical 

expressions which lack the precision and accuracy that a final analysis deserves. 

2.3 Minimization of Cogging Torque 

A variety of techniques exist for reducing the cogging torque of conventional radial flux 

PM machines. Even though some of these techniques can be applied to axial flux 

machines, manufacturing cost is especially high due to the unique construction of the 

axial flux machine stator. Consequently, new low cost techniques are desirable for use 

with axial flux PM machines. 

Muljadi [ 40], et al. [2002], investigate three design options to m1mm1ze cogging 

torque- uniformity of air gap, pole width and skewing. FEA is used to quantify the 

cogging torque in the design process. The outcomes include 

a) the cogging torque can be minimized creating a non uniform air gap 

b) there is a minimum cogging torque as the pole arc to pole pitch ratio is varied 

c) a perfect skew can nearly eliminate cogging torque 
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Aydin [41], eta!. [2003], introduces a new cogging torque minimization technique for 

axial flux multiple rotor surface magnet PM motors. A 3kW, 8-pole axial flux surface 

magnet disc type machine with double-rotor-single-stator is designed and optimized in 

order to apply the proposed new method- alternating magnet pole arcs. The analysis has 

been carried out using 3D FEA. The minimized cogging torque is compared with several 

existing actual machine data. The analyses show that peak cogging torque components 

can be reduced greatly with careful and precise calculation of magnet pole-arcs in 

multiple-rotor machines. Besides the simplicity and cost-effective features of this 

technique, the results show that the new technique effectively reduces the cogging torque 

component without any sacrifice on the peak torque and pulsating torque components. 

Dosiek [ 42], et a!. [2006], examines two methods of reducing cogging torque in 

permanent magnet machines: magnet shifting and optimizing the magnet pole-arc. The 

methods were applied to existing machine designs and the performance calculated using 

finite element analysis (FEA). Prototypes of the machine designs were constructed and 

experimental results obtained. It is shown that the FEA predicted the cogging torque to be 

nearly eliminated by this method but in the prototype there was some residual cogging 

due to manufacturing difficulties. In both cases, the back EMF was improved by reducing 

harmonics while preserving the magnitude. 

2.4 Ironless Stator Axial Flux PM Machine 

Ironless motor do not produce any torque pulsation at zero current state and can reach 

very high efficiency impossible for standard motors with ferromagnetic cores. 

Elimination of core loss is extremely important for high speed motors operating at high 
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frequencies. Another advantage is very small mass of the ironless motor and 

consequently high power density and torque density. The drawbacks include mechanical 

integrity problems, high axial forces between PMs on the opposite disks, heat transfer 

from the stator winding and its low inductance. Small ironless motors may have printed 

circuit stator winding or film coil windings. The film coil stator winding has many coil 

layers while the printed circuit winding has up to four coil layers. 

Lombard [ 43 ], et al (1998), Presents the analysis, design and performance of an 

AFPM machine with an ironless stator. A machine model that uses both lumped magnetic 

circuit and finite element method results is used with a multi-variable optimization 

algorithm to obtain the optimum machine dimension. A prototype machine is constructed 

and evaluated. Measured results of the armature reaction effect in the large air gap are 

given and discussed. The prototype machine displayed the expected characteristics of low 

noise, zero cogging torque and reduced copper losses for a certain power level at the 

expense of a large magnet volume. 

Jang [ 44], et al (2002), introduces the design and development of an axial-gap 

spindle motor using printed circuit board (PCB) winding and dual air gaps, which has the 

mechanical rigidity, high efficiency and zero cogging torque. Superior characteristics of 

the developed motor can be effectively used for various applications. The paper shows 

the prototyped motor consumes less power than the radial-gap motor. The copper loss is 

very small, and both motors have almost the same copper loss under no load condition. 

But the prototyped motor has much less rotational loss and the difference of rotational 

loss is getting bigger as the speed increases. 
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Tsai [ 45], et al (2006), presents a miniature axial-flux spindle motor with a 

rhomboidal printed circuit board (PCB) winding. The flexible PCB winding represents an 

ultra thin electromagnetic exciting source to reduce the end-winding length and minimize 

the copper loss. The design process also incorporates finite element analysis for further 

performance evaluation and refinement. The proposed motor is prototyped, and excellent 

agreement is found between simulation and measurement. The result illustrates that the 

base-plate is thin enough to suppress noticeable and excessive base-plate eddy current 

which would lead to a reduction in open-circuit voltage and additional losses. 

Reed [ 46], et al (2008), presents an AFPMA with PCB stator. An AFPMA using 

this new stator is build, test and compare the results, specifically output power, to 

alternators of similar size using traditional wound stator. The PCB stators did simplify the 

design and assembly process of building an AFPMA. The stator has four coils per phase 

with 36 turns per coil printed on four layer circuit board. The three phases were balanced 

and the maximum recorded output power was 133 watts at 593RPM. Alternators of 

similar size produced anywhere from 100 watts to 450 watts at 600 RPM. 

2.5 Summary 

Several literatures is reviewed and presented in this chapter. In the first section of this 

chapter, papers related to comparison of different PM generators are studied. From the 

comparison it is clear that the Axial Flux PM generator is suitable for this thesis because 

of its high power density and with a smaller size a large number of pole arrangement is 

possible. The axial flux generator can be of single sided or double sided internal rotor or 

double sided internal stator type. The single sided has the drawback of a large 
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uncompensated attractive force between the rotor and the stator. The double sided 

internal rotor is simple in manufacturing process and less copper loss. The double sided 

internal stator required less magnetic material in comparison to the internal stator type 

geometry. The cored axial flux design has better constant where as the ironless axial-gap 

structure has no iron loss and no need to concern about the cogging torque reduction. 

From the above conclusion of the literature review, two prototype- one is double 

sided internal stator cored type AFPMG and the second one is one is double sided 

internal stator ironless type, is designed and developed which is presented in the 

following chapters. 
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Chapter 3 

3. FIRST PROTOTYPE 

The design of the first prototype is described in this chapter. First, the background of the 

design and the hypothesis to minimize the cogging torque is presented briefly. The 

definition of cogging torque is described in the first chapter (1.3 .3 .1 ). Different 

techniques to minimize the cogging torque which already have been applied in different 

works is reviewed and presented in chapter two (2.3). The design of the prototyped 

generator and the techniques applied to minimize the cogging torque is depict later on. 

The experimental results are presented at the end of this chapter. 

3.1. Background 

The purpose of this study is to design a generator for gearless marine current turbine. The 

gearless generator system will reduce the drive line components, thus also reduce the 

drive line weight. The study focuses on the design of multipole axial flux PM generator. 

The AFPMG has favorable characteristics concerning efficiency and specific torque 

compared to conventional designs. For this reason it is especially suited for direct drive 

application. The AFPMG is also an attractive choice due to its pancake shape [7] , 

compact construction and high power density. 

Flux in an axial flux machine flows axial to the direction of rotation. The AFPM 

machine is basically equivalent to the conventional radial flux surface mount permanent 

magnet machine geometry. Therefore, they suffer from the well-known low-inductance 

problem. However, this problem can be substantially mitigated by the high torque density 
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and good efficiency [47]. The AFMs are an attractive solution if the number of pole is 

high (2:1 0) and the axial length is short (A.<0.3, where, A.=L!De; L= active axial length of 

stator core in m and De= external motor diameter in m) [33]. 

The axial flux PMG can be of single sided or double sided internal rotor or double 

sided internal stator type. The double sided are used in order to get balanced axial forces 

and to increase the total air gap surface. The single sided has the drawback of a large 

uncompensated attractive force between the rotor and the stator. The double sided 

internal rotor is simple in manufacturing process and less copper loss. 

The stator of the double sided internal stator type can be cored or ironless type. The 

cored axial flux design has better constant power range compared to the careless design. 

The cored stator can be slotted or slotless. The slotless axial field machines require more 

magnet material than the slotted machine. Also the copper loss in the slotless dual gap 

machines is higher than the slotted dual gap AFPMG. Slotted stators increase remarkably 

the amplitude of the air gap flux density. Slotting may evoke undesired torque pulsation 

but in slotted stators the mutual and leakage inductances are increased compared to the 

slotless stator which is advantageneous. 

3.2. Design Consideration 

Several features should be taken into account when designing a low speed generator. The 

characteristics of the machine should be sufficient, for example, the efficiency high and 

torque ripple low. Furthermore, the dimensions of the machine should not be too large, 

the weight and the cost should not be too high and the manufacturing process should be 

simple. 
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Due to ehmination of gears, the machine needs to produce the total torque directly 

into the wheel shaft. Hence, the size and the weight of the machine tend to grow. 

Therefore, major challenge in a gearless system is to keep the size and the weight of the 

machine low for direct in-wheel mounting. 

The AFPM machine suffers from low-inductance problem. High torque density 

and good efficiency can mitigate the problem. The gain in density can significantly 

exceed if high energy magnets are used. The high torque density in AFPM machine is 

best achieved by designing the machine with large machine diameter and high machine 

number of poles. So there should be a trade off between the size, power and weight of the 

machine. 

For the generator with cored stator, the core loss is another concern for designing 

generator. The core loss contains the hysteresis and eddy current loss. The hysteresis loss 

is related to the frequency. At higher frequency the loss is high. The eddy current loss is 

the resistive loss in the core, so it is related to the material properties. So in designing 

cored stator, the material properties such as resistance and loss at designed frequency of 

the core should be analyzed. 

Existence of the cogging torque is the fore most concern in the PM machine design 

due to the unwanted harmonics added to the motor output torque. These components not 

only affect the self starting ability of the machine but also procedure noise and 

mechanical vibrations. For the low speed generator it is the most important designing 

consideration as it increases the required starting torque. 
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3.3. Design topologies for minimizing cogging torque 

Torque quality is a very decisive issue for direct- drive permanent magnet generator. 

There exist two undesired pulsating torque components in PM machines which affect the 

machine performance, one of which is ripple torque arising from harmonic content of the 

machine voltage and current waveforms and the other is cogging torque caused by the 

attraction between the rotor magnetic field and angular variations of the stator reluctance. 

By definition, no excitation is involved in cogging torque production. Existence of these 

torque mechanisms is the major challenge in designing PM machine due to the unwanted 

harmonics added to the motor output torque. These components not only affect the self­

starting ability of the machine but also produce noise and mechanical vibrations. 

There are many techniques for cogging torque minimization [ 48-53] including 

magnet pole shape, skewing stator tooth or rotor magnets, stator slot design, dummy slots 

on the stator tooth, varying the radial shoe depth and graded air gaps. Most of the 

techniques mentioned can be applied to axial flux machines. However, the high 

manufacturing cost of the axial flux machines will be even higher when these techniques 

are applied (54]. For instance, skewing stator slots by one slot pitch or introducing 

dummy slots will not only boost the manufacturing cost of the axial flux machine stator 

but complicate the manufacturing process as well. The overall cogging torque of an axial 

flux permanent magnet (AFPM) machine consists of several portions each of which is 

produced in one air gap. The overall cogging torque is reduced by two general 

approaches: Reducing the amplitude of each portion, similar to what conventional 

methods accomplish, and shifting the relative phase of the different components so that 
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they can compensate each other. Consequently, the overall cogging torque will be much 

reduced at minimal incremental cost. 

The following design techniques are applied in our design to mtmmtze the 

cogging torque. The following design technique is a combination of methods that utilize 

the aforementioned cogging torque reduction theory. 

3.3.1 The TORUS configuration 

AFPM disc machines can be constructed in different forms - TORUS types and AFIR 

types as described in chapter 1.3 .2. The stator of TORUS or AFIR topology can be 

slotted or non-slotted type. Disk-type motors with external rotors have a particular 

advantage in low speed applications, due to their large radius. 

Two different slotted TORUS type machines, namely TORUS NN (North- North) type 

and TORUS NS (North-South) type, can be derived. The flux direction of both NN and 

NS TORUS machine is shown in Fig. 3.1b-c. Both machines have a single stator and two 

surface mounted PM rotor discs. 

In order to create the appropriate flux path, the magnets facing each other on each 

rotor should beN and N poles or S and S poles in TORUS NN type and, N and S or S 

and N poles in TORUS NS type. Therefore, the direction of armature current must be 

changed appropriately so as to create torque [55]. Since the windings in the radial 

direction are used for torque production, the end windings of the NN type machine are 

much shorter than that of NS type machine. In other words, the winding structure used in 

the NS type machine results in a longer end winding which implies a bigger outer 
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diameter, high copper loss, reduced efficiency and power density compared to its NN 

counterpart. In our design TORUS NN type is chosen for this advantage. 

In case of TORUS NN type motor the two rotors are only mechanically coupled 

not magnetically. So the alternating pole arc and magnetic shift is possible. 

(a) 

(b) (c) 

Figure 3.1: Axial flux permanent magnet generator: (a) TORUS Topology (b) NN type 

(c) NS type 

3.3.2 Alternative pole arc 

It is a well-established fact that the magnet pole arc can have a large effect on the 

magnitude of the cogging torque [56]. By varying the magnet pole-arc (Fig. 3.2) the 

phase of the co gging torque is shifted [ 48]. The consequent magnets in each rotor are 

designed with two different magnet pole-arc ratios: am and ac. The two magnet pole-arc 
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ratios of the next rotor are same as the previous ones, but in the reversed order, i.e. ac and 

am, so that the cogging torque produced in each air gap has a phase shift relative to that 

produced in the consequent. Therefore, the overall cogging torque in any two consequent 

air gaps could be reduced. The amplitude of each portion can be reduced as well by 

optimizing the two arcs. In other words, the objective of this technique is to vary the 

cogging torque phase angle by alternatively using two magnet pole arcs and 

simultaneously to reduce the amplitude of each portion so that the superposition of the 

cogging torque variation of all air gap adds up to a very small value. 

t tt t tt 
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T~ I 

1 • t~m 

t 
(a) (b) 

Figure 3.2: Two pole section of (a) conventional double rotor single stator TORUS 

machine with the same magnet pole-arc and (b) TORUS machine with alternating pole 

arcs 

3.3.3 Magnet shifting 

In traditional machines, the cogging torque contributions from each magnet are in phase 

and thus add to produce the full cogging effect. To avoid this additive effect, the magnets 

can be shifted relative to each other to place each magnet's cogging torque out of phase 
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with the others. Shifting the relative phase of the different components can compensate 

each other [56]. Fig. 3.3 shows only 6 poles, in our design the number of pole is 100. 

Figure 3.3: Simplified Cross section of a rotor with shifted magnets. 

3.3.4 Fractional number of slots per pole 

By using a fractional number of slots per pole, each magnet see a fractional number of 

slots and therefore the cogging torque contribution from the magnets are out of phase 

with each other, thus reduces the overall cogging torque. The slot per pole combination is 

an important factor to determine the amplitude and the frequency of the cogging torque 

[56] 

3.4. Design 

The final design of the axial flux PMG for under water application is shown in Fig. 3.4. 

The two rotors are shifted in the TORUS NN topology where two different pole arc ratios 

are used. The two rotors are mechanically coupled using the shaft, hub and the bearing. 

The stator is fixed with the frame of the generator with 6 brackets. 
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Figure 3.4: The first prototyped generator 

3.4.1 Permanent -magnet material 

Chapter 3 

The PM chosen for the design is NdFeB. NdFeB has PM characteristics comparable or 

superior to most of the samarium-cobalt alloys and has the potential for much lower cost. 

It uses no strategic materials and neodymium is one of the most plentiful of the rare earth 

elements. NdFeB has the highest coercive force available in commercial magnets and, 

therefore, is ideally suited for machine applications. Also its residual flux density is 

relatively high, comparable to the best of the Alnicos. Its energy product is the highest 

available today. Limitations of this material include very poor temperature 

characteristics. 

The chosen magnets are of NdFeB of N42 grade which means that the maximum energy 

product (BHmax) is around 42 MGOe. The residual flux density (Brmax) is 13.2 KGs and 

coercive force (He) is greater than 11 KOe and the inductive coercive force (Hci) is 

greater than 12 KOe. Curie temperature is 31 0°C. 
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TABLE 3.1 Magnet properties 

Properties Values 

Tolerances ±0.002" X ±0.002" X ±0.002" 
Material NdFeB, Grade N42 
Plating/Coating Ni-Cu-Ni (Nickel) 
Magnetization Direction Thru Thickness 
Weight 0.271 oz. (7.68 g) 
Pull Force 13.15lbs 
Surface Field 4871 Gauss 
Max Operating Temp 176°F (80°C) 
Brrnax 13,200 Gauss 
BHmax 42 MGOe 
Coercive Force(Hc) >11.0 KOe 
Intrinsic Coercive Force (Hci) >12 KOe 

3.4.2 Number of Pole 

Where a de output is required, as in present case, the a. c. output is rectified so no 

particular frequency of machine emf is demanded. At low speeds in direct network 

applications lots of poles are needed. The magnetizing inductance Lm of a rotational field 

machine is inversely proportional to the square of the pole pair number p . In synchronous 

machines a low synchronous inductance, however, is a benefit because the peak torque of 

the machine [55] is inversely proportional to the synchronous inductance Ls which 

consists of the magnetizing inductance and the stator leakage Lu as: 

1 
(3 .1) Lm ~-2 

p 

1 
(3 .2) Tmax ~-

Ls 
Ls = Lm +La (3 .3) 

The number of poles is calculated from the fundamental equation: 

120· f n = ------''- (3.4) 
p 
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Where n is the mechanical rpm, f is the electrical frequency and p is the number 

of pole. Mechanical rpm is available from the turbine is only 72. As the electrical 

frequency is not concern for this design, so chosen 60 Hz. According to the equation, so 

the number of pole is 100. 

3.4.3 Rotor 

The permanent magnets in the external rotor of a double sided structure are located on the 

surface of the rotor disk. Thereby, the main flux may flow axially through the rotor disk 

or flow circumferentially along the rotor disk. With the permanent magnets located at the 

surface of the rotor disk, it is not necessary a ferromagnetic rotor core and the axial 

length are substantially reduced, which consequently improves the power density of the 

machine [ 1 0]. The flux path associated with this machine topology is shown in Fig. 1 (b). 

The flux travels axially in the rotor structure and completes its path by returning 

circumferentially around the stators cores. The rotor of the machine is made by the 

RENSHAPE (www.mfcomposites.com) material to achieve a minimum generator mass. 

As the rotor base material is not made by magnetic material, so to have a continuous 

magnetic path a ring of steel material is placed by making a groove. 
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TABLE 3.2 RENSHAPE material properties 

Properties Values 

Hardness Shore D 54 

Density (g/ cc) 0.55 

Density (lbs/ft.3) 34 

Tensile Strength (psi) 1,300 

Compressive Strength (psi) 1,400 

Compressive Modulus Elasticity (psi) 105,000 

Flexural Strength (psi) 2,300 

Flexural Modulus (psi) 106,000 

Glass Transition Temp COF) 203 

Coefficient Thermal Expansion (in/in/°F) 34.4 X 10-6 

Color Red. Brown 

(a) (b) 

Figure 3.5: Permanent magnet (a) Larger (b) Smaller 
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magnet 

(a) (b) 
Figure 3.6: The rotor (a) full view with magnets (b) sectional view 

3.4.4 Stator 

For the TORUS configuration, the stator can be slotted or non-slotted type. Slotted stators 

increase remarkably the amplitude of the air gap flux density due to the shorter air gap 

and consequently this reduces the required amount of permanent magnets, which yields 

savings in the generator price [57]. It should be noted also that in slotted stators, the 

leakage and mutual inductances are increased compared to the slotless stators, which is 

advantageous for the torque production. The stator slots are built with ferrite E-cores. 

Ferrite is the component which gives steel and cast iron magnetic properties, and is the 

classic example of a ferromagnetic material. The main advantage of the ferrite E-core is 

that at low frequency the core loss is very low. 
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Figure 3.7: E-Core with dimensions 

(a) 

(b) (c) 

Figure 3.8: The stator (a) solid works design (b) stator withE-core (c) Stator with 
winding 
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3.4.5 Stator Winding 

In the stator core, there are 300 slots in each side. The number of turns per coil is only 4. 

For the stator winding A WG 20 is used. The properties of the wire are shown in Table 

3.3. The winding is done by hand though it is tedious and complicated. After winding the 

core epoxy is used. 

TABLE 3.3 Properties of AWG 20 

Properties Values 

Conductor Diameter (inch) 0.032 
Conductor Diameter (rnrn ) 0.8128 
Ohms per 1 000 ft. 10.15 
Ohms per km 33.292 
Maximum amps for chassis wiring 11 
Maximum amps for power transmission 1.5 
Maximum frequency for 100% skin depth for 27kHz 
solid conductor copper 

Stator 

Figure 3.9: A sectional view of proto typed generator 
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TABLE 3.4: Generator design parameters 

Outer radius, r0 [rnm] 380 
Magnet spacing, -rr [ rnm] 2.5 & 1.5 

Number of magnets, Nm 100 

Number of coils, Ns 4 

Number of phases, Nph 1 

Magnet thickness, lm [rnm] 1.55 

Air gap, 8 [rnm] 1 
Dimension of larger magnet l.Ox0.25 x0.0625 
(inch) 
Dimension of larger magnet 0.75 x0.25 x0.0625 
(inch) 

3.5 Calculated Result 

The generator is designed to generate about 12V at a speed of 72rpm. The generator has 

1 00 poles on each of the rotor discs which results in an electrical frequency of 60 Hz at 

rated speed from equation 3 .4. 

Induced voltage is calculated by-

E £max 2;r N J Ns --- - -X X X X-
rms - r;::: - r;::: CfJmax 

...; 2 ...;2 Np, 
(3.5) 

Where, 

N- Number of turn per coil 

Ns- Number of slots 

Np11- number of phases 

f- electric frequency 

<I> max- peak value of the fundamental flux 
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<Dmax is calculated from-

(3.6) 

Where, 

Amagn- magnet area 

Bmax - maximum air gap flux density 

Air gap flux density is calculated by-

E = B . !"' 
max ,. (1m+ o) 

(3.7) 

Where, 

Br- remnant flux density of the magnet 

lm- magnet length 

8- Air gap length between the two rotors 

The length of the magnet in the direction of flux is 0.062 inch or 1.6 mm. The air gap 

length is the swn of the mechanical clearance between the magnet and the E-core and the 

height of theE-core. The air gap between the rotor and the stator is 1.0 mm on both sides. 

The height of the stator E-core is 5.7mm. So the total air gap length is about 6.7 mm. So 

from equation 3.7, the maximum air gap flux density is 0.25T. This would give a rather 

optimistic value of the air gap flux density. To get a more realistic value an empirical 

correction factor of 0.75 is used. After correcting the value with the correction factor a 

maximum air gap flux density of 0.19 T is given. 

The remnant flux density of the magnet is 13 Kilo Gauss (KG) or 1.3 Tesla (T). 

The area of the magnet is (1 .0 inch x 0.25 inch) 0.25 inch2 or 1.6e-4 m2 for large magnet 

and (0.75 inch x 0.25 inch) 0.19 inch2 or 1.2le-4 m2
. Using the magnet area and the 
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maximum air gap flux density in equation 3.6 the maximum fundamental flux from each 

magnet is found 0.27e-4 Weber (Wb). From the equation 3.5, the number of turns can be 

calculated to produce required voltage. For this machine 5.5 turns will induce 12 volt. As 

the number of turns is a fraction, so the number of turns will be the nearest integer 

number. So the number ofturns can be 6 or 5. The wire size calculated was AWG 18. But 

it is not possible to wind 6 or 5 turns of this wire in the E-core as the height of the E-core 

is small. So there was a need to compromise between the wire size, number of turns and 

the wire size. At last 4 turns with the wire A WG 20 is decided. With 4 turns the induced 

voltage is 8.5 volt. 

The total length of the wire is about 200 ft or 60 m. The resistance of the wire is 

10.15 ohm per 1000 ft. So the total resistance of the coil is 2.03 ohm. The coil of both 

sides is connected in series. So the 300 coils (150 coils in each side) are connected in 

senes. 

3.6Test Result 

The designed generator is build and tested in Memorial University of Newfoundland. The 

generator is tested to find out it's the mechanical and electrical properties. 

3.6.1 Mechanical parameter test 

For a generator the main mechanical properties are the inertia and the friction of the 

generator. The inertia of the rotor can be calculated easily from the equation 3.8. As the 

rotor is a solid disk, the equation for the inertia is 

2 
J = mr 

2 
(3.8) 
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Where 

J = Inertia of a solid disk 

m= mass of the disk 

r= radius of the disk 

As the radius, r of the rotor is known 39cm and the density of the material is 0.55g/cc. 

The volume of the rotor is 

4 2 
volume = -1lr h 

3 
(3.9) 

Where h is the thickness of the rotor disk. So the inertia mass can be calculated 

from the volume and so also the inertia. The total inertia is the sum of the inertia for the 

two rotor disk and the shaft. So the total inertia found is 0.96 kg-m2
. 

The generator friction can not be measured as 12 extra bearing is used to make the 

generator mechanically stable. Because of the bearing the friction of the generator is too 

high. As the RENSHAPE material is flexible and the attraction for of the magnet is very 

high, so to maintain the small equal air gap between the rotor and the stator 12 extra 

bearing is used. 

The initial torque required to move rotate the rotor is measured using weights. 

The test setup is shown in Fig. 3.10. The weight required to start the rotor is 3.77Kg. Care 

should be needed for this test as the weight should be in 90 degree with the radius 

otherwise the angle should be in account. So the initial torque is 14.5 N-m 
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r 

Rotor 

m 

Figure 3.10: Initial torque measurement 

3.6.2 Electrical parameter test 

To find the electrical parameters of the generator, the generator is tested in the lab. The 

test setup is shown in Fig. 3.11. The test setup contains the generator coupled to a prime­

mover. The developed voltage and generating current is recorded through oscilloscope 

and multimeter for different load (0-20 ohm) and at djfferent frequency (20Hz, 25Hz, 

30Hz, 35Hz, 40Hz, 55Hz, 60Hz, and 70Hz). 

Figure 3.11: Test setup for first prototype 
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The open circuit test was made under various rotational speeds from 33 to 86 rpm. 

Fig. 3.12 shows the output open circuit voltage at different operating speed. In the graph 

the observed data and data fit the polynomial is shown. The test result shows that the 

output voltage is linearly proportional to the rotating speed. 

As the load condition has a significant influence on the output performance of a 

generator, a resistive load is reasonably used in the experiment. Fig 3.13- fig. 3.15 is the 

load characteristic of the generator. Fig. 3.13 shows the variation of power output with 

rotational speed at different load. The variation of induced voltage and current flow at 

different frequency and load is shown in Fig. 3.14. Here each graph is for a particular 

frequency with a variation of load. From the curve it is clear that the inductance of the 

generator is very low which agree with the measured inductance. Fig. 3.15 is the power 

curve from where the maximum power point can be identified. From the curve, the 

maximum power is occurred just below 2 ohm. The measured value of the internal 

resistance of the generator is 1.8 ohm. So the maximum power will be occur at 1.8 ohm. 

So the graph has the satisfactory agreement with the measured resistance value. 

Time (ms) 
(a) 
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Time (ms) 

(b) 

Figure 3.16: The wave form of the first prototyped generator (a) individual wave form of 

the both side of the stator (b) the resultant waveform of the generator after adding two 

stators in series (both are taken at 60HZ) 

From the Fig. 3 .16a, the two wave form for the two stators is exactly in phase. So 

they can be connected in series to have a larger voltage output. The resultant waveform of 

the generator after the series connection of the two stators is shown in Fig. 3 .16b. 

3. 7 Circuital model 

PMSM are multiphase Synchronous Machines where the magnetic field and rotor rotate 

in synchronism. However, its operational characteristics are more akin to DC machines. 

Instead of running only at a synchronous speed, it operates in variable speed variable 

frequency mode. Also, the torque-speed characteristics are similar to DC machines [58]. 

In [59] , a circuital modeling is approached through classical AC machine theories 

and a simplified DC machine analogy is established based on the observations. Details 
I 

and model parameters of a PMSM generator can be found through Finite Element 

57 



Chapter 3 

Modeling and subsequent investigation of design features. Extracting such model 

parameters and implementing them in computational simulation tools is very laborious. 

In this work the circuital model depicts in [59] is used as shown in Fig. 3.17. 

J&B 
/ \ 

Figure 3.17: Simplified circuital model of Generator 

The test result can reveal inherent characteristic of the machine. The machine 

constant/ flux linage ~11 , electrical angular velocity Wre, resistance Rg and synchronous 

inductance Lg can be found from the test results. The resistance and the inductance is 

measured using RLC meter, Rg = 1.8 ohm and Lg = 216.7 J..lH. The machine constant Ao1 

can be determined from the open circuit test. The slope of the linear open circuit voltage 

characteristic curve yields the parameter Am. So from the curve ~11 = 0.071. The Rnull is 

found using the curve fitting approach where Rnul is found 0.003f+0.0116f-0.1458. 

TABLE 3.5: Generator parameters 

Internal resistance, Rg, [ohm] 1.8 
Internal inductance, Lg [J..lH] 216.7 

Machine constant, Am 0.071 

No load loss. Rnull [ohm] 0.003f+0.0116f-0.1458 

Inertia, Jm [Kg-m' ] 0.96 

Initial torque, T0 [N-m] 14.5 

Open Circuit voltage at 72 rpm [volt] 5.18 

Load for maximum power point [ohm] 1.8 
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3.8 Result Analysis 

In section 3.5 the calculated result and in section 3.6 the test result is shown. The 

calculated induced voltage is 8.5 volt but the prototype output voltage is only 5.18 volt. 

Though in the design the air gap between the rotor and the stator was 1.0mm but while 

building the generator it was not possible to keep the air gap 1.0 mm as the rotor core 

material is too much flexible and the pull force of the magnetic pole is very high. Now 

the air gap is 2.3mm. Using this value in equation 3. 7 the air gap flux density is 0.16 T. 

To get the realistic value of the air gap flux a correction factor of 0.75 is chosen. But the 

measured air gap flux density is 0.12 T. So the cotTection factor will be 0.6 other than 

0.75. Using the measure air gap flux density in equation in 3.6 and 3.4 the induced 

voltage is 5.4 volt which is very close to the test data. 

3.9 Summary 

The first prototyped generator is presented in this chapter. The reasons behind choosing 

these generator topologies are discussed. While designing the generator a lot of 

challenges was faced and made compromise on different requirements. The designed 

generator is described and the test results are presented. An analysis is made on the test 

result. 
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4. SECOND PROTOTYPE 

The second prototype is also double rotor internal stator type. The stator of the second 

prototype is made of printed circuit board (PCB). The design of the generator is described 

while describing it different parts- rotor, stator, stator winding. The calculated and 

experimental results are shown. The results are analyzed afterwards. 

4.1 Background 

According to the earlier research [60], the axial-flux PMSG type is very suitable for low 

speed applications. In low speed direct driven systems, PM axial-flux generators have 

proven to be superior to radial-flux generators in many aspects such as high 

torque/volume ratio, high efficiency and short length [ 61]. However the axial-gap design 

cannot take advantage of small air gap because the effective air gap, i.e. summation of 

mechanical air gap and the height of coil winding, is much greater than the radial-gap 

design. The reluctance of air is extremely high compared to other materials. Reducing the 

magnet-to-stator gap improves the efficiency. In addition, it cannot reduce the air gap 

length because small air gap increase the attractive magnetic force in axial direction, 

which is directly transmitted to the bearing increases the bearing friction loss. 

For conventional AFPM machine, the stator is slotted type as the slotless axial field 

machines require more magnet material than the slotted one. The slotless machines 

require a larger diameter due to the additional turns. So the copper loss in the slotless 
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machine is higher than that of slotted one. Whereas the tooth/slot structure has cogging 

torque due to the existence of tooth/slot structure. It generally requires some innovative 

design to reduce the cogging torque [60]. 

The conventional axial-gap machine has the iron Joss due to the alternating magnetic 

flux in the stator. Iron loss consumes significant amount of power and it increases with 

the increase of the rotor speed and alternating magnetic flux density [62]. 

The ironless axial-gap structure can be a good solution as it has no iron Joss and no 

need to concern about the cogging torque reduction. But still the air gap flux density 

problem reveals. The effective air gap is n times of the diameter of the stator coil in 

addition to the mechanical clearance and the thickness of resin (where n = 1 + number of 

turns). It also depends on the height of permanent magnet. 

The axial-gap machine using PCB winding is developed to improve the demerits of 

the conventional machine. The stator coil is replaced by the printed coil of PCB. Since 

PCB is nonmagnetic material, it has no iron loss in the stator. The magnetic field from the 

permanent magnets of the two rotors rotates synchronously. This structure has zero 

cogging torque and there is no unbalanced magnetic force acting on the stator. The 

effective air gap is the summation of the thickness of the PCB and the mechanical 

clearance between the rotor and the stator. The PCB is very thin (1116 inch for a 4 layers 

PCB) and as the PCB is nonmagnetic material, required mechanical clearance is very 

small result a very small air gap. This design also prevents the axial magnetic force from 

being transmitted to the bearing, which decreases mechanical friction loss. 
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4.2Design Considerations 

The task of an electrical machine design is to detennine machine topology, choose 

necessary materials to be used and decide the size in various sections based on the 

requirements of power and torque. These required magnetic circuit calculations and 

verification of the performance equation as the parameters and the dimensions will 

influence the design result. 

Machine design is a synthetic knowledge application of machine theory and 

machine design experience. In designing second generator, the experience of designing 

first generator helps a lot. In first prototype, the main design problem was the bending 

tendency of rotor due to the attraction of force of magnet and the material and thickness 

of the rotor. With the strong material and thick rotor can help to avoid the bending 

tendency of the rotor but it will increase the weight of the generator so also the inertia 

loss. 

After designing the first prototype, the objective was to design a generator smaller 

in size with same number of pole for the same power and torque. For the first design the 

main challenge was to eliminate the cogging torque, as the cogging torque is the main 

design problem for a cored stator type PM machine. To eliminate the cogging torque of 

the first prototype, different techniques was applied which increase the size of the 

generator. So in case of choosing machine topology the main criteria was a less cogging 

torque machine geometry. 

To avoid cogging torque, coreless stator can be a very good choice. But the 

coreless geometry poses challenges mostly due to the use of a winding being placed in 

the air gap and directly exposed to the magnet flux. As a consequence, the coreless 
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geometry is characterized by extremely low machine inductance and thereby hardly has 

any constant power range. To overcome this problem, the machine inverter needs to be 

oversized. The coreless geometry, although doesn't have any core loss, may have 

significant copper loss due to the induced eddy current in the winding. 

Figure 4.1 : PCB board 

The PCB stator overcomes the drawback of the conventional coreless geometry. 

But the printed circuit coil has narrow cross section and therefore high resistance. The 

lower the trace width (the narrow conducting path as shown in Fig. 4.1) higher the DC 

resistance and inductance lower the current and higher manufacturing cost. The number 

of turns and number of coils is also limited by the size of the trace in a specified area. So 

there should a compromise of trace width that means the current carrying capacity and 

the number of turns and coils. 

4.3Design 

The generator assembly includes two rotor yoke (Upper and lower) incorporate with 

pennanent magnet pole and a printed circuit board stator. The stator is fixed and the rotor 

is connected with the rotary shaft using hub and bearing. 
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z 
PCB stator 

z 

Figure 4.2: 2D view of the double sided AFPMG with PCB stator 

Stator fixed with 
the structure .-----

Magnets 

Hub 

Bearing 

PCB Stator 

Rotor 2 

Figure 4.3 : The proto typed generator 

4.4.1 Rotor 

The two rotors are of surface mounted type. The permanent magnets are arranged as 

shown in Fig. 4.2. This generator configuration is termed as TORUS geometry. In 

TORUS geometry, the magnets in the two opposite rotor disk may be placed on N-N or 

N-S arrangements. But the careless geometry can only be N-S geometry to complete the 

flux path. The flux direction of this topology is also shown in Fig. 4.2. The two rotors are 

magnetically and mechanically coupled. The permanent magnets are arranged at equal 
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angular spacing wherein each pair of magnetic pole pairs is equally magnetized so that 

the north and the south poles thereof are of equal strength. The yoke is made of mild steel 

(C-1 020) of thickness Y2 inches (Fig 4.4). The diameter of the rotor is 300.21 mm or 11.82 

inch. The magnets are of N-42 grade NdFeB (Table 3.1 ). The reason for choosing this 

magnet is depicted in chapter 3.4.1. The magnets are very small in size (Fig. 4.5). While 

choosing the magnets the criteria was the possible smallest size (1 .o inch x 0.25 inch x 

0.25 inch) available to keep the size of the generator small that can produce sufficient 

flux to generate required voltage. The maximum pull force of the magnet is 13.15 lb. 

Each rotor section has 100 Poles. The theory behind taking large number of pole is 

explained in chapter 3.4.2. As the size of the magnets is rectangular other than edge 

shape, the spacing between the magnets is tapped from 0.12 inch to 0.06 inch from the 

circumference to the centre (Fig 4.6). 

Figure 4.4: Isometric view of the rotor Figure 4.5: 3D view of the magnet with 
dimensions 
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Figure 4.6: The spacing between the magnets 

Figure 4.7: Final view of the rotor with 
magnets 

Figure 4.8: The prototyped rotor 

TABLE 4.1: Rotor Yoke (mild steel C-1 020) data 

Chemical composit ion: C=0.20%, Mn=0.45%, P=0.04% max, S=0.05% max 

Property Value in m etric unit Value in US unit 

Density 7.872 *to• kg/m• 491.4 lb/Ft• 

Modulus of elasticity 200 GPa 29000 ksi 

Thermal expansion (20 oc) 11.9* 10-6 oc- 1 6.61*10"6 in/( in* Of) 

Specific heat capacity 486 J/(kg*K) 0.116 BTU/(Ib*Of) 

Thermal conductivity 51.9 W/ (m*K) 360 BTU*in/(hr* ft>*Of) 

Electric resistivity 1 .59"' w-7 Ohm"'m 1.59* .10·5 Ohm*cm 

Tensile strength (hot rolled) 380 MPa 55 100 pSI 

Yield strength (hot rolled) 165 MPa 29700 psi 

Elongation (hot rolled) 25 % 25 % 

Hardness (hot rolled) 66 RB 66 RB 

Tensile strength (cold drawn) 420 MPa 60900 psi 

Yield strength (cold drawn) 205 MPa 50800 psi 

Elongation (cold drawn) 15 % 15 % 

Hardness (cold drawn) 73 RB l3 RB 
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4.4.2 PCB Stator 

The PCB stator winding as used herein refers to a circuit board including a dielectric 

board (FR-4) with lead wires disposed in different layers of the dielectric board. Fr-4 an 

abbreviation for Flame Retardant 4 is a type of material used for making PCB. It 

describes the board substrate, with no copper layer. The FR-4 used in PCBs is typically 

UV stabilized with tetra functional epoxy resin system. A PCB needs to be an insulator to 

avoid shorting the circuit, physically strong to protect the copper tracks placed upon it. 

FR-4 is preferred over cheaper alternatives due to several mechanical and electrical 

properties. It absorbs less moisture, has greater strength and stiffuess. 

TABLE 4.2: FR-4 data 

Properties Values 
Dielectric constant 4.70 max, 
(permittivity) 4.35 @ 500 MHz, 

4.34@ 1 GHz 
Dissipation factor (loss 0.02 @1 MHz, 
tangent) 0.01@ 1 GHz 
Dielectric strength 20MV/mm 

(500 V/mil) 
Surface resistivity (min) 2x105 M.Q 
Volume resistivity (min) 8x107 M.O·cm2/cm 
Typical thickness 1.25- 2.54 mm 

(0.049-0.100 inches) 
Typical stiffuess (Young's 17 GPa (2.5 x 106 PSI; 
modulus) for use in PCBs) 
Water absorption 0.10% 
Tg (glass transition 110-200 oc by 
temperature) manufacture and 

resin system 
Thermal Expansion 11 pprn/K (glass fiber 
Coefficient lengthwise ) 
Thermal Expansion 15pprn/K (glass fiber 
Coefficient crosswise) 
Density 1.91 kgfL 
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The PCB stator winding is secured to the fixed structure. The PCB winding are at 

the outer edge of the stator. The stator is tapped at the edge (Fig. 4.9) and the stepped 

portion is tightly fitted with the structure. But as the PCB is very thin and still flexible, 

spacer is used to maintain the required equal air gap throughout the circumference. 

Tapped Edge 

Figure 4.9: The PCB stator 

4.4.3 Stator Winding 

The coil winding in a conventional axial gap motor is replaced by the printed coil of 

PCB. The PCB winding can be designed as wave winding and concentric winding (Fig. 

4.1 0) [Special PCB]. The wave winding can be in different shape. The wedge shaped 

windings offer more surface area than conventional rectangular shape. 

The PCB is of 4 layers. In each layer, number of turns is 4 and the number of coil is 100. 

This is a single phase alternator. In order to increase the voltage of the generator all the 

coils are connected in series. The choice to increase voltage by connecting all the coils in 

series is made due to concerns of the current carrying ability of the copper used in the 

PCB stator. Whereas, to take the advantage of lower resistance, the four stacked stators ( 4 

layers PCB) are wired together in series. 
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(a) Wave winding (b) Concentric winding 

Figure 4.10: PCB winding pattern Figure 4.11: The designed PCB stator winding 

TABLE 4.3: Generator design parameters 

Outer radius, r0 [mm] 150 
Magnet spacing, 'tf [ mm] 0.12 

Number of magnets, Nm 100 

Number of coils, N5 4 

Number of phases, Nph 1 

Magnet thickness, lm [inch] 0.25 

Air gap, 8 [mm] 0.7 
Dimension of larger magnet _(inch) 1.0x0.25x0.25 

4.4 Calculated Result 

The generator is designed to generate about 12V at a speed of 72rpm. The generator has 

100 poles on each of the rotor discs which results in an electrical frequency of 60 Hz at 

rated speed from equation 3.4. 

The number of turns and induced is calculated using the equation 3.5-3.7 as did for the 

first prototype. The remnant flux density of the magnet is 13 Kilo Gauss (KG) or 1.3 

Tesla (T). The length of the magnet in the direction of flux is 0.25 inch or 6.35 mm. The 

air gap length is the sum of the air gap between the both rotor and the PCB stator and the 

thickness of the stator. The mechanical clearance between the rotor and the stator is 

0. 7mm on both sides. The thickness of the stator is 1.6mm. So the total air gap length is 
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about 3 mm. So from equation (3), the maximum air gap flux density is 0.883T. This 

would give a rather optimistic value of the air gap flux density. To get a more realistic 

value an empirical correction factor of 0. 75 is used. After correcting the value with the 

correction factor a maximum air gap flux density of 0.6 Tis given. 

The area of the magnet is (1.0 inch x 0.25 inch) 0.25 inch2 or 1.6e-4 m2
. Using the 

magnet area and the maximum air gap flux density in equation (2) the maximum 

fundamental flux from each magnet is found 1.1e-4 Weber (Wb). From the equation (2), 

the number of turns can be calculated to produce required voltage. For this machine 4 

turns will induce 12 volt. 

Figure 4.12: The dimension of a single coin with 4 turns 

As the trace width of the PCB is 16 mil and the length of each coil calculated from the 

figure 11 is 13.4403 inch or 34.14 em. so the resistance of each coil is 0.136 ohm. The 

coils in 4 layers are connected in parallel and then the 100 coils are connected in series. 

So the total resistance is 4.3 ohm. 
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4.5 Test Result 

The prototyped generator is built in the technical services of Memorial University of 

Newfoundland and tested in the lab. For finding the mechanical stability, before building 

the prototype the generator is simulated by using Slid works software. The prototyped 

generator is tested and with the data a simplified circuital model of the generator is 

presented. 

4.5.1 Stress and strain test 

As the pull force of the magnet is very high, there is a question of using materials and 

thickness of material for the rotor yoke. While building the first prototype a lot of 

problem is faced due to the magnetic force and the material and the thickness of the rotor. 

So the stress and strain of the rotor yoke is tested by FEA using solid works. The 

maximum stress at the edge is 2e+008 N/m2 and minimum stress at the center is 5e+005 

N/m2 (see figure 11). The maximum displacement is 6.275e-003 inch and the minimum is 

5.229e-004 inch (figure 12). 
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Figure 4.13: (a) Figure 4.13: Static nodal stress of the rotor 
(b)Static displacement plot of the rotor 

4.5.2 Mechanical parameter test 

The main parameters to find out the mechanical characteristic of a generator are inertia 

and friction. If the inertia and friction is high then the output of the generator will not be 

satisfactory. These parameters are very important for low speed generator. These 

parameters are directly related to the torque of the generator. The initial torque for this 

prototype is zero. The inertia of the generator is also determined following the same 

procedure and equation as done for the first prototype. The radius of the generator is 

0.15m and the density of the mild still is 7 .872e3 kg/m3 The height of each rotor is only 

0.0127m. The total inertia of the generator is the sum of inertia of the two rotor and the 

inertia of the shaft. Inertia of each rotor is 0.106 Kg-m2 and that of the shaft is 0.001 Kg-

m2
. So the total inertia for the generator is 0.213 Kg-m2

. 

To determine the friction of the generator, the self rotating characteristic of the 

generator is found (Fig. 4.14). Among the four graphs of Fig. 4.14 two graphs is similar. 

Taking data from this two graph the friction is determined. These graphs are the linear 
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portion of an exponential curve which is related to friction and inertia following equation 

4 .1. 

Nl= N0 e -1/BJ (4.1) 

Where, 

Nl = rotational speed at time t 

No= initial rotational speed 

B= friction 

J= inertia 

The initial rotational speed is not known. Using data from both curves in equation 
4.1 friction is determined 0.3. 
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Figure 4.14: Self rotating characteristic 

4.5.3 Electrical parameter test 

4.5 5 

Electrical parameters are required to build the circuital model of the generator. The 

generator is tested in the lab as did for the first prototype. The internal resistance and 
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inductance is measured using LCR meter. The test setup is shown in figure 4.15. The test 

setup contains the generator coupled to a prime-mover. The developed voltage and 

generating current is recorded through oscilloscope and multimeter for different load (0-

20 ohm). The generator is for low speed marine current turbine. So the interest was the 

characteristic of generator at low speed. Test data is taken at different frequency -20Hz, 

25Hz, 30Hz, 35Hz, 40Hz, 55Hz, 60Hz, and 70Hz. 

Figure 4.15: Test set up for the prototyped generator 
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Figure 4.1 6: Open circuit characteristic curve 
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Figure 4 .17: Output characteristic for second prototype 
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Figure 4.18: load current and voltage for second prototype 
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load and power curve 

2 4 6 8 10 12 14 16 18 20 
load, R (ohm) 

Figure 4.19: Power curve for second prototype 

In Fig. 4.16, the open circuit characteristic of the second prototype is shown. In this 

test no load is connected. At a different frequency voltage induced in the generator 

terminal is recorded. At designed frequency the open circuit voltage is 5.6 volt. The 

characteristic is linear with the variation of speed. In Fig 4.17-4.19 the load characteristic 

is shown. In Fig. 4.18 the induced voltage versus the generating current is shown. Each 

curve is for a particular frequency at different load. From the curve it is clearly 

understand the inductance of the generator is very low. From the power curve of the 

generator (Fig. 4.19) the maximum power point can be traced. Here the maximum power 

generation occurs between 4 and 5 ohm. It is very difficult to find the exact point. As we 

measured the internal resistance is 4.4 ohm, so it is clear that maximum power generation 

will be at 4.3 ohm which is similar to that get from the curve. 
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Figure 4.20: The voltage wave form of the second prototype 

4.6 Circuital model 

Chapter 4 

As did for the first generator, the circuital model (Fig. 3.17) of the second generator can 

be buird using the same procedure. From the open circuit characteristic the machine 

constant, Am is found 0.078. The internal resistance, Rg = 1.8 ohm and internal inductance 

is Lg=216.7J.!H. The Rnull is found using the curve fitting approach where Rnul is found 

0.0003:f+0.0066f-0.11 07. 

TABLE44 G t t (S enera or parame ers econ d t ) genera or 
Internal resistance, Rg, [ohm] 4.4 
Internal inductance, Lg [f.!H] 66.2 

Machine constant, Am 0.078 

No load loss. Rnull [ohm] 0.0003f+0.0066f-O.ll 07 

Inertia, Jm [Kg-mL] 0.213 

Friction, Bm 0.3 

Initial torque, T0 [N-m] 0 

Open Circuit voltage at 72 rpm [volt] 5.6 

Load for maximum power point [ohm] 4.5 
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4.7 Result Analysis 

There is dissimilarity between the calculated and the tested result as happened for the 

first generator. The reason is also same. The air gap between the PCB stator and the rotor 

in the design was 0. 7mm. But in practical case, we can not make it possible to keep such 

a small air gap. For this case the rotor is not bending as the rotor is enough strong for the 

pull force of the magnets. But the thin PCB is flexible and not straight from the centre to 

the edge. The air gap in prototype generator is 3.3 mm. So from equation 3.7 the 

maximum flux density is 0.57 T. The correction factor is chosen 0.75. But the measured 

maximum flux density is 0.35 T. So the correction factor should be o.6. So the maximum 

fundamental flux is 0.56e-4 wb. So the calculated induced voltage Enns is 5.9 volt 

whereas the test data is 5.6 volt which is very close to the calculated result. 

4.8 summary 

In the second generator the aim was to eliminate the problem faced in designing the first 

generator. Also the reduction of size and simple construction was the requirement. 

Though there are some mechanical constrains still reveals in the second prototype but the 

design requirements were fulfilled. 

78 



Chapter 5 

Chapter 5 

5. Conclusion & Future work 

5.1. Conclusion 

Two PMG for low speed manne current application is designed and developed at 

Memorial University of Newfoundland. Marine current energy is a promising alternative 

energy source capable of producing electricity with minimum environmental impact. The 

ocean current resources still remain predominantly untapped. In this thesis two different 

type AFPMG has been presented and analyzed for marine current application. The first 

prototype is cored stator internal stator double sided AFPMG and the second one is PCB 

stator double sided internal stator type. Two prototyped generators are tested in lab and 

the mechanical and electrical characteristics of both generators are presented in this 

paper. Experimental results show that the AFPMG is a very good choice for low speed 

application like marine current. 

The first prototype is very large in size compared to the second prototype. The 

stator of the generator is made of E-cores. The main drawback of the PMG with cored 

stator is the cogging torque especially for low speed application. It affects the self starting 

ability of the generator. So, while designing the first prototype, the main concern was to 

minimize the cogging torque. Different techniques have been applied to minimize the 

cogging torque. But the size of the generator can't be optimized. Because of the larger 

size and weight the inertia and the initial torque of the generator is high. The rotor core 

was of RENSHAPE material. The RENSHAPE is not strong enough to give a 
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mechanically rigid structure. To have equal spacing between the both rotor and the stator 

couple of bearing is used which cause a lots of friction. The winding of the generator is 

done by hand. This is a very tedious and prone to error. The induced voltage is slightly 

smaller than that of the second prototype. But as the winding coil size is large for the first 

prototype, the internal resistance is low. So the generating current is more than that of the 

second prototype. The result is the larger output power. But the generated voltage has 

harmonics. The main outcome from this prototype is the larger output power and less 

cogging torque in cored PMG. 

The size of the second prototype is less than the half of the first generator. Also 

the axial length of the generator is less. As the stator is made of PCB, there is no cogging 

torque. The initial torque is zero which is an attractive characteristic for low speed marine 

current application. The inertia and friction of the generator is very small. There is no 

core in the stator so also core loss. The manufacturing process of the generator is very 

simple. The voltage induced is larger than that of the first one. But as the PCB winding 

has a smaller cross section and higher resistance. So the generating current is low and so 

also the output power. But the waveform of the generated voltage is perfectly sine wave. 

There is no harmonics. If the generating current is more then cause vibration in PCB. 

This prototype is a very good choice because of its size, inertia, initial torque, easy 

manufacturing process, zero cogging torque and magnitude and wave shape of generating 

voltage though the output power is less. 

The first prototype can be used for the application where the larger output is 

required. The techniques for minimizing the cogging torque can be applied to the other 
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PMG. The second prototype is suitable for any low speed application because of its zero 

initial and cogging torque characteristic. 

5.2. Future work 

The aim of the work was to design a generator to extract few watts electrical energy from 

marine current. The objective of the work is fulfilled. The work conducted here drew 

meaningful conclusion and recommendation for the application of both prototypes. The 

generators are giving expected output and have the desired characteristics. But the both 

generator has some drawbacks. Future work can be done to overcome constrains and 

have a better output. To work this area a sound knowledge on three major scientific 

disciplines, namely electrical engineering, mechanical engineering and material science is 

required. The following should be further work for anyone who has a great deal of 

interest in this subject. 

• Make the generator totally sealed. If a standard stuffing box is used to couple the 

generator with the turbine, there will be a possibility to leak and friction will be 

more. A magnetic clutch might work. The hydrostatic loads due to water pressure 

should be in consideration. 

• Use a suitable material with better rigidity but light in weight for the rotor of the 

first prototype. The first prototype suffers from the large friction and inertia loss 

due to its weight and bearings. 
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• Chose E-cores and magnets of smaller stze to reduce the stze of the first 

generator. The first generator is very large and has large inertia. 

• Reduce the air gap of the both designed generator. The designed generator had 

smaller air gap but due to some mechanical constrain maintaining that air gap 

wasn't possible while developing the generator. 

• Optimize the thickness of the rotor of the second prototype. The rotor of the 

second generator is very heavy and thick, cause more inertia loss. 

• Chose PCB with more layers. The second prototype has larger internal resistance 

and low current. Recently, PCB stators have appeared in the market place. Now 6 

layers up to 200oz copper PCB with same thickness as used in second design is 

available. 

• Magnetic gear can be a good choice if the generator is rotate at a very low speed. 

The efficiency of the magnetic gear is very high. 

Great strides will be made in ocean energy harvesting only when the scientific 

community will pay the proper attention towards this area. 
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