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Abstract 

The effects of birth weight variations on growth and glucose metabolism later in life were 

investigated in Yucatan miniature pigs. Pigs were fed a high salt, high sugar, and high fat 

diet for -12 months. Glucose metabolism in vivo was studied using intravenous glucose 

tolerance tests (IVGTT) and insulin sensitivity tests (IST). Glucose tolerance or insulin 

sensitivity was not affected by birth weight but was significantly affected by gender. 

Female pigs bad reduced glucose tolerance and insulin sensitivity compared to male pigs. 

The female pigs also bad higher visceral fat concentrations than male. Increased visceral 

fat was detrimental to glucose metabolism in all the pigs. The hepatic gene expression of 

cystathionase (CTH) was lower in runt piglets but betaine-homocysteine 

metbyltransferase (BHMT) expression and hepatic global DNA methylation were not 

different. Thus the role of methyl metabolism in fetal programming of adult disease 

remains unclear. 
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Chapter 1 Introduction and literature review 

1.1 Overview 

The work in this thesis is a continuation of two other studies completed previously 

in our laboratory. The first study assessed the development of diabetes and impaired 

glucose metabolism as it related to birth weight and early post-natal diet in Yucatan 

miniature pigs (McKnight, 2008). Those pigs were fed a normal pig feed after weaning 

and raised for an average of 9. 7 months. The second study measured the activities of 

sulfur amino acid enzymes in newborn Yucatan miniature piglets (Brophy, 2006). 

Differences between runt and large piglets were observed for betaine homocysteine 

methyltransferase (BHMT) and cystathionase (CTH) activities. In this thesis research, 

Yucatan miniature pigs were raised for~ 12 months on a "cafeteria" style diet designed to 

mimic poor dietary practices in developed countries. The long grow-out period and poor 

diet were used to further stress the glucose metabolism beyond what was achieved in the 

previous study and to determine if diabetes would develop. The expression of the BHMT 

and the CTH, as well as global DNA methylation status, was measured in samples from 

the previous piglet study. 

1.2 Developmental origins of adult disease 

The concept of "fetal origins" of adult disease was first hypothesized by David 

Barker and colleagues at the University of Southampton (Barker, 1995). They 

hypothesized that factors in utero influence the development of disease later in life. This 

hypothesis was based on the positive relationship observed in England and Wales 

between cardiovascular and stroke death in the early 1970's and neonatal mortality some 

fifty years earlier (Barker & Osmond, 1986). High infant mortality was taken to reflect 
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poor nutrition across the whole study population, and this was linked to high 

cardiovascular and stroke death later in life in adults who survived. From this 

relationship they concluded that poor health of mothers was important in stroke risk of the 

children later in life. Low birth weight was then shown to increase the risk of 

cardiovascular disease (Osmond, et al., 1993). This, however, was not the first time such 

relationships had been demonstrated. As early as 1934, Kermack and colleagues showed a 

relationship between adult death rates and childhood living conditions (Kennack et al. , 

1934). Forsdahl (1977) showed a relationship between infant mortality and surviving 

adult cardiovascular disease. Many studies have since demonstrated links between pre

natal growth rate (which determines birth weight) and adult diseases, including 

hypertension, insulin resistance and type 2 diabetes (McMillen & Robinson 2005). 

Some of these observations led to Hales and Barker's "thrifty phenotype" 

hypothesis (Hales & Barker, 2001), which contrasted Neel's "thrifty genotype" (Neel, 

1962). The "thrifty genotype" hypothesis argued that genes selected for during periods of 

evolution when food was scarce were the cause of insulin resistance, obesity and type 2 

diabetes in enviromnents where nutrients were plentiful. Alternately, the "thrifty 

phenotype" hypothesised that poor fetal nutrition "set in train mechanisms of nutritional 

thrift" (Hales & Barker, 2001) as a developmental adaption to the predicted post-natal 

environment. This thrift, which is intended to increase post-natal survival, allows for the 

development of key organ systems, at the expense of others. However, if the adaptations 

are inappropriate for the post-natal (nutritional) environment, disease risk is increased. 

The term "programming" was used to refer to the relationship between early infant feeds 

and diseases later in life (Lucas, 1991 ). It has since been used to refer to the 
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consequences of early life on long term health. Studies also show that early nutrition and 

post-natal growth rates relate to disease in adult life, changing the "fetal origins" to 

"developmental origins" which extends beyond birth (McMillen & Robinson, 2005). 

The term "developmental plasticity" is now preferred to "programming". The 

formal definition of developmental plasticity is "the ability of a single genotype to 

produce more than one alternative fonn of structure, physiological state or behaviour in 

response to environmental conditions" (Barker, 2004a). This refers to the range of 

development options that can arise from the same genetic or mechanical constraints. The 

underlying mechanisms that are thought to bring about the changes that occur in 

developmental plasticity are epigenetic changes, such as altered DNA methylation 

(Waterland & Garza, 1999, Waterland & Jirtle, 2004). This is supported by data that show 

that manipulation of methyl donors and folate in maternal animal diets can perturb DNA 

methylation in the offspring (Wu et al., 2004). 

1.3 Pre- and post-natal growth and adult disease 

Birth weight is a product of fetal growth. Fetal growth is dependent upon 

maternal circulation which delivers nutrients to the fetus. This delivery is affected by the 

mother's nutrient intake, metabolism and blood flow as well as the size of the placenta 

(Jansson & Powell, 2007). If any of these factors were altered to decrease the nutrient 

supply to the fetus, then lowered birth weight could result. 

As mentioned previously, numerous epidemiological studies show that reduced 

fetal growth and the resulting low birth weight is related to the development of diseases 

later in life. These diseases include hypertension, cardiovascular disease, stroke, insulin 

resistance and type 2 diabetes (McMillen & Robinson, 2005). 
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As mentioned above, however, fetal growth may not be the only factor in the 

development of diseases later in life; growth rates after birth are involved as well. 

Feeding a low caloric diet to babies born pre-term reduced their early growth, and may 

have a positive effect on insulin resistance during adolescence (Singhal et al., 2003). This 

suggests that early post-natal growth can have an impact on the development of diseases 

later in life. Risk of adult disease increases as birth weight decreases; however, this risk 

has also been shown to increase with rapid weight gain following birth (Barker, 2004b ). 

In a large cohort of men and women from Helsinki, those with low birth weight and low 

weight at one year of age also had an increased risk of type 2 diabetes (Eriksson et al., 

2002). Individuals who had low weight at birth and at one year of age, and who 

experienced rapid weight gain following one year of age, had the highest risk of 

developing diabetes. In both men and women, disease risk was more related to rate of 

weight gain, rather than body size at any age. Another study found that low growth in the 

first 6 months of life, and a rapid increase in body mass index (BMI) between 2- 11 years 

of age, was related to the development of impaired glucose tolerance (IGT) (Eriksson et 

al., 2006). 

Children born with higher or lower than average birth weight often experience 

"catch-down" or "catch-up" growth, which is defined as significant centile crossing on 

infant growth charts, in a negative or positive direction, respectively. In developed 

countries with well-nourished populations, approximately 25% of children experience 

catch-down growth, and - 30% catch-up growth (Ong et al. , 2000). Catch-up and catch

down growth is thought to return infants to their genetic size potential; however, in 

nutrient-rich environments, catch-up growth can cause infants to overshoot their optimal 
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weights and result in higher BMI, fat mass, and increased central adiposity in childhood 

(Ong et al., 2000). Rapid catch-up growth has also been shown to strongly predict 

childhood insulin resistance and obesity, particularly increased visceral (central) obesity 

(Ong & Loos, 2006). Rapid post-natal growth following pre-natal growth restriction, and 

its resulting physiological effects such as reduced cell number (i.e. glomeruli in the 

kidney, or beta cell mass in the pancreas), may result in demands that exceed the capacity 

of those systems. This may explain the increased risk of hypertension and type 2 diabetes 

later in life (Barker, 2004a; McMillen & Robinson, 2005). 

In animal models, if an animal is deprived of nutrients in utero or in early life, and 

is then put in a nutrient-rich enviromnent, accelerated growth occurs. This animal 

equivalent of"catch-up" growth is called "compensatory growth", which is defined as a 

period of accelerated weight gain and growth following a period of nutritional restriction 

(pre-natal or post-natal) (Romick et al. , 2000). This accelerated growth period is marked 

by an increased nutrient efficiency. This compensatory growth period does not continue 

indefinitely; initially it is characterized by increased lean tissue mass, which eventually 

turns to increased fat deposition, especially with high feed intake, and finally a return to 

normal growth rate (Hornick et al., 2000). 

The mechanisms suggested for the effects of compensatory growth include 

pennanent hormonal and physiological changes, including insulin resistance and 

structural changes in developing organs, as well as reduced cell number in specific 

organs. Changes to the timing and form of metabolic differentiation and rate of telomere 

shortening are also thought to be involved (McMillen & Robinson, 2005). Similar to the 
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changes that occur due to reduced pre-natal growth, the changes brought about by 

compensatory growth are thought to be caused by epigenetic changes (Park, 2005). 

The costs of reduced pre-natal growth and the costs of rapid compensatory 

growth are difficult to separate, as low birth weight is related to rapid weight gain in early 

childhood (Barker, 2004b ). Therefore, it is often beneficial to investigate both pre- and 

post-natal nutrition and growth together. 

1.4 Diabetes and insulin resistance 

Proper glucose metabolism, or the ability to maintain glucose homeostasis, is of 

utmost importance in the maintenance of health. An impaired ability to maintain glucose 

homeostasis can result in blood glucose levels that are too high or too low, which has 

been linked to numerous negative health outcomes (Hornick & Aron, 2008). Glucose 

tolerance is the ability of the muscle, adipose and liver tissue to remove glucose from the 

blood and maintain glucose homeostasis. The most important factor in glucose tolerance 

is the body's ability to respond to insulin, which is referred to as insulin sensitivity. If 

normal amounts of insulin fail to produce the expected results in the liver, muscle and fat 

cells, a person is said to be insulin resistant (Lann & Leroith, 2007). Decreased response 

to insulin by liver cells leads to reduced hepatic uptake and disposal of glucose from the 

blood. The liver stores glucose as glycogen for release when blood glucose levels are low. 

Insulin resistance in the liver can also fail to halt hepatic glucose output while blood 

glucose levels are high, leading to even higher blood glucose levels (Mlinar et al. , 2007). 

Insulin resistance in muscle cells leads to reduced uptake of glucose by muscle, which is 

the primary means of removing excess glucose from the blood following a meal, resulting 

in hyperglycaemia (Mlinar et al., 2007). Muscle cell insulin resistance has also been 
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linked to increased obesity (Guilherme et al. 2008). Insulin resistance in fat cells results in 

decreased uptake of free fatty acids (FF A) from the blood via a decrease in adipose 

lipoprotein lipase activity, and increased hydrolysis of stored triglycerides (Goldberg, 

2000). Hepatic insulin resistance can also lead to decreased FF A oxidation and increased 

triglyceride synthesis (Lann & Leroith, 2007). Insulin resistance is a contributing factor in 

the dyslipidemia associated with type 2 diabetes and the increased risk of cardiovascular 

complications. In general, decreased lean body mass and increased fat mass, especially 

visceral fat, increases insulin resistance. Low physical activity levels, which often 

accompany obesity and high visceral fat mass, can also lead to insulin resistance (Rizzo et 

al. , 2008). Insulin resistance has also been associated with certain medications, such as 

corticosteroids, anti-retrovirals, and some antipsychotics (Calmy et al. , 2007; Tschoner et 

al., 2007) as well as high carbohydrate diets, especially those high in fructose (Kahn, 

2003). 

The body first attempts to compensate for decreased insulin sensitivity, or insulin 

resistance, by releasing larger amounts of insulin from the pancreas to maintain blood 

glucose homeostasis. This results in increased fasting plasma insulin levels, and normal 

glucose levels (Kahn, 1998). Therefore, insulin resistance can go unnoticed as blood 

glucose levels can remain normal. However, high circulating levels of insulin can lead to 

dyslipidemia and thereby increase the risk of cardiovascular disease. Often, insulin 

resistance will progress into type 2 diabetes (Cali & Caprio, 2008). This occurs when 

cells become so resistant to insulin that increased insulin levels fail to keep blood glucose 

under control, and/or the pancreatic beta cells lose their ability to respond to 
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hyperglycaemic stimuli and stop releasing insulin, leading to persistent hyperglycaemia 

and eventual destruction of beta cells (Cali & Caprio, 2008; Kahn, 2003). 

The development of type 2 diabetes is often gradual. Starting with normal glucose 

levels and hyperinsulinemia, progressing to mildly elevated glucose levels and 

hyperinsulinemia, and finally hyperglycemia, with or without high insulin levels (Cali & 

Caprio, 2008). An oral glucose tolerance test is a diagnostic test used to assess glucose 

metabolism and diagnose diabetes and insulin resistance. It consists of a standardized 

dose of 1.75 grams of glucose per kg ofbod.y weight (to a maximum of75 g) given to a 

fasted individual; a typical protocol involves sampling blood. before the glucose is 

administered, and. 2 hours after glucose administration. Two hours post test, glucose 

levels should. be below 7.8 mM. Glucose levels two hours post test between 7.9 mM and. 

11.0 mM are indicative of impaired glucose tolerance. A fasting glucose concentration 

between 6.2-7.8 mM is considered impaired. fasting glucose (WHO, 2006). The 

diagnostic criteria for overt type 2 diabetes include a fasting blood glucose 2: 7.0 mM, or a 

two-hour post test blood glucose value 2: 11.1 mM according to the World. Health 

Organization (WHO, 2006). 

An abundance of epidemiological data link low birth weight and compensatory 

growth to impaired. glucose tolerance, insulin resistance, and the development of type 2 

diabetes (Eriksson et al., 2006; McMillen & Robinson, 2005). Animal studies of 

developmental plasticity that induce diabetes primarily use rodent models. This is due to 

the rodent's shorter lifespan, well established. research protocols, and. their limited space 

and animal care requirements. Reduced fetal growth can be induced in rodents by low 

maternal protein or energy diets, or maternal exposure to glucocorticoids. Chemical 
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induction of diabetes in rodent mothers will also result in reduced fetal growth (Vuguin, 

2007). This growth restriction leads to permanent structural and functional changes in the 

organs and tissues of the offspring. These changes, such as reduced beta cell mass or 

insulin secretion, and decreased liver, skeletal, and adipose tissue insulin sensitivity, lead 

to obesity and with time, to the development of type 2 diabetes (Martin-Gronert & 

Ozanne, 2007; Waterland & Garza, 1999). 

Although not used as extensively as the rodent models, sheep and pigs are used to 

study fetal programming and its effects on glucose metabolism. Pre-natal growth can be 

restricted in fetal lambs by surgical removal of endometrial caruncles in the ewes, which 

causes reduced placental size and fetal growth restriction. Size at birth of male lambs has 

a negative relationship with glucose tolerance at one year of age. In female lambs, the 

surgical placental restriction was associated with increased insulin sensitivity, 

demonstrating a gender difference in response to the reduced fetal growth (Owens et al, 

2007). Poore and Fowden (2004a) demonstrated a relationship between pre-natal growth 

and glucose tolerance in pigs. Low birth weight pigs had higher glucose area-under the 

curve values than high birth weight pigs at 12 months of age. Poore and Fowden also 

showed that early catch up growth in pigs was associated with insulin resistance at 12 

months of age across all birth weights; with no difference in insulin resistance between 

high and low birth weight piglets (Poore & Fowden, 2004b ). 

1.5 Developmental origins of obesity 

The marked increase in the rate of adult and childhood obesity in developed 

countries is well documented, and of epidemic proportion (James, 2008). More than 50% 

of adults in the United States are overweight, with a BMI of 25 or higher (Flegal et al., 
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2002). Epidemiological data have linked both reduced pre-natal growth (children who are 

born small for gestational age (SGA)) and rapid catch-up growth, with increased risk of 

obesity and a predisposition toward increased fat mass, particularly visceral fat (Druet & 

Ong, 2008). In a longitudinal cohort of children born SGA had gained more total and 

abdominal fat by 4 years of age than the normal birth weight control group. At 6 years of 

age, the SGA children had 50% more visceral fat than the controls (Ibanez et al., 2008a). 

A larger study found higher fasting insulin levels and visceral fat masses in SGA children 

than controls at 6 years of age. In the latter study fasting insulin concentration was 

strongly predictive of visceral fat mass (Ibanez et al ., 2008b). The amount of visceral fat 

was also associated with catch-up growth in both of these studies. In animal models of 

compensatory growth, rapid catch-up growth often results in obesity and/or increased 

visceral fat later in life (Zhan et al. , 2006). This obesity may be a result ofleptin 

resistance, leading to inappropriate appetite regulation, or insulin resistance (McMillen & 

Robinson, 2005). Obesity, particularly high visceral adiposity is a risk factor for insulin 

resistance and development of type 2 diabetes (Rader, 2007). In this relationship between 

insulin resistance and obesity, it is difficult to defme causation, as insulin resistance has 

been shown to increase the risk of obesity (Guilherme et al., 2008) 

1.6 Early nutrition and DNA methylation 

Epigenetic changes may be an underlying mechanism in the plasticity associated 

with early development (Waterland and Garza, 1999, Waterland and Jirtle, 2004). As 

plasticity associated with early development does not change an organism' s DNA, but 

can produce substantial physiological changes, it must be mediated by differential 

expression of the DNA. DNA modification plays a central role in the regulation of a 
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gene's expression, and could have the potential to bring about changes observed in 

developmental plasticity. 

DNA methylation is chemical modification of DNA involving the addition of a 

methyl group to a nucleotide. The most common site of methylation in all vertebrates is 

the 5 position of a cytosine's pyrimidine ring. DNA methylation is considered an 

epigenetic mechanism, as DNA methylation can alter gene expression without changing 

the sequence ofDNA (Waterland & Michels, 2007). Epigenetic mechanisms, of which 

DNA methylation is the most well known, can regulate gene expression and are therefore 

critical during development and throughout life (Van den Veyver, 2002). In mammals, 

DNA methylation typically occurs on cytosines next to a guanine residue (CpG, p 

denoting a phosphate group). In mammals, approximately 70% of CpGs are typically 

methylated, however clusters ofhypomethylated (approximately 30% methylation) CpGs, 

called "CpG islands" are often found in the 5 'regulatory region of many genes (Rees, 

2002; Waterland & Jirtle, 2004). These islands are thought to be one of the ways by 

which DNA methylation regulates gene expression. Typically, hypermethylation of these 

islands has a silencing effect on its corresponding gene, as demonstrated by 

hypermethylation of CpG islands in tumour suppressor genes which are often involved in 

different forms of cancer (Van den Veyver, 2002). The method by which methylation 

reduces gene expression is likely by blocking transcription factors , by recruiting proteins 

that interfere with transcription, or by modifying chromatin structure itself or recruiting 

proteins that do so (Van den Veyver, 2002). 

The DNA methylation patterns are set early in development and vary between cells of 

different tissue types. These patterns are then replicated in progeny cells and are 
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maintained throughout life. In early human development, DNA methylation is set up by 

DNA-metbyltransferase enzymes (DNMT), of which DNMT 1, 3a, and 3b are essential 

for embryonic development. DNMT 3a and 3b are de novo methyltransferases that 

establish the methylation patterns and DNMT 1 is primarily a maintenance 

metbyltransferase, which preferentially metbylates hemi-methylated DNA (Van den 

Veyver, 2002). 

Early nutrition has been shown to have an impact on DNA methylation. Manipulation 

(over or under supply) of the single carbon donors, such as methionine or choline, or 

critical co-factors such as folic acid or vitamin B12, bas led to changes in DNA 

methylation. Analysis of DNA from fetal livers of dams fed varying levels of protein 

shows decreased global DNA methylation and proportionally reduced birth weights. The 

reduction in DNA methylation was thought to be in response to lowered amounts of 

methionine in the diets. (Rees et al., 2000). The yellow agouti mouse bas a genetic 

mutation that produces yellow hair pigmentation. Oversupply of methyl donors in yellow 

agouti mice dam diet by supplementation with folic acid, vitamin B12, choline, and 

betaine bas been shown to increase DNA methylation and suppress the expression of the 

yellow pigment in mice pups, returning the mice to a typical grey coat colour (Waterland 

& Jirtle, 2003). The AxinFu mouse, which develops a kinky tail due to a genetic mutation, 

can also have expression of kinky tails suppressed by methyl oversupply in dam diets 

(Waterland et al., 2006). The yellow agouti mouse and AxinFu mouse are both examples 

of phenotypic changes mediated by DNA methylation changes resulting from methyl 

oversupply. The fetal nutrient environment is important in the establishment of DNA 

methylation, and changes in the nutrient environment can affect global DNA methylation. 
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Alterations in DNA methylation can have profound effects on gene expression, some 

resulting in significant phenotypic changes. DNA methylation is thought to be the 

primary epigenetic mechanism behind the developmental origins of adult disease. 

Changes in gene expression brought on by developmental factors such as pre- or post

natal diet, and compensatory growth are thought to be mediated by changes in DNA 

methylation (Waterland &Michels, 2007). 

1. 7 Methyl supply and the sulfur amino acid cycle 

The methyl groups required for DNA methylation come from S-adenosyl 

methionine (SAM), which is formed directly from the amino acid methionine. The 

enzyme methionine adenosyltransferase (MAT) attaches an adenosyl group from ATP to 

the sulfur atom of methionine to form SAM. When a SAM-dependent methyltransferase, 

such as the DNA methyltransferases (DNMTs), requires a methyl group, SAM is used as 

the methyl group donor and S-adenosyl homocysteine (SAH) is formed. SAH is then 

hydrolyzed by S-adenosylhomocysteine hydrolase (SAHH), to form homocysteine and 

adenosine (Brosnan et al. , 2007; Van den Veyver, 2002). This process is called the 

transmethylation pathway. 

Homocysteine is the branch point in the sulfur amino acid cycle. Homocysteine 

can be remethylated to methionine, or catabolised via the transsulfuration pathway to 

cysteine. The remethylation of homocysteine occurs via two separate enzymes: betaine

homocysteine methyltransferase (BHMT), which converts a betaine and homocysteine to 

dimethylglycine and methionine, or methionine synthase (MS), which transfers a methyl 

group from 5-methyl tetrahydrofolate to homocysteine to form methionine and 

tetrahydrofolate. The catabolism of homocysteine to cysteine is a two-step process. In the 
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first step, homocysteine is condensed with serine to form cystathionine, catalyzed by 

cystathionine P-synthase (CPS). In the second step cystathionine is broken down to 

cysteine and a-ketobutyrate by the enzyme cystathionase (CTH or cystathionine y-lyase, 

CyL) (Brosnan et al2007; Stipanuk, 2004). 

Lack of methyl donors such as folate (actually an essential carrier of serine

derived methyl groups), betaine, or choline (which can be converted to betaine), or 

essential co factors in the sulfur amino acid cycle, such as zinc or vitamin B 12, can result 

in an accumulation of homocysteine and reduced SAM levels. Due to the fact that SAH 

hydrolysis is a reversible reaction, as homocysteine increases so will SAH. This increase 

in SAH will decrease the SAM/SAH ratio. The SAM/SAH ratio is called the methylation 

index because SAH is inhibitory to most methyltransferases, and in general, as the 

SAM/SAH ratio decreases so too does methylation (Van den Veyver, 2002). 

Some of the effects of reduced pre-natal growth may be related to sulfur amino 

acid metabolism. Some animal models of developmental plasticity involve feeding 

reduced protein diets to mothers to reduce offspring birth weight, this leads to an 

increased risk of many adult diseases, especially hypertension and reduced glucose 

tolerance (Ozanne, 2001 ). These models Jed to the hypothesis that a lack of amino acids 

was perhaps the cause of reduced fetal growth, and its later consequences. However, 

human trials have shown that protein supplementation of mothers did not improve fetal 

growth (Rees, 2002). 

1.8 Swine models 

Pigs are litter-bearing animals which show natural variation ofbirth weights 

within a litter. The variation in fetal growth has been attributed to variation in nutrient 
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supply (via umbilical blood supply). The fetuses that have reduced blood supply, and 

therefore fewer nutrients, are born as runts or are spontaneous aborted prior to birth 

(Bertram & Hanson, 2001). These runts, when compared to their larger, genetically 

similar littermates, make excellent animal models to investigate developmental plasticity 

due to reduced intrauterine growth (Poore & Fowden, 2002). 

Runt piglets are known to experience compensatory growth, although some may 

never reach the weight of their larger littermates. This compensatory growth is thought to 

occur early in life during the suckling phase (Ritacco et al., 1997). Low birth weight 

piglets are less glucose tolerant later in life than their larger littermates, and in these 

piglets, rapid compensatory growth is associated with insulin resistance (Poore & 

Fowden, 2002). 

Miniature pigs, such as the Yucatan, are an ideal animal model for use in the study 

of human health. Miniature pigs are precocial, meaning they are relatively mature at 

birth, unlike rodents, which are altricial (born before they are completely developed) 

(Vuguin, 2007). Pigs are phenotypically similar to humans, having a similar 

cardiovascular system, metabolism, lipoprotein profile, and size. Miniature pigs' 

omnivorous diets, eating habits and nutrient requirements are also very similar to those of 

humans (Bellinger et al., 2006). Pigs, unlike humans, are litter-bearing animals; however 

this is a benefit in studying developmental plasticity. As previously discussed, the natural 

variation in blood supply to pig fetuses results in the development of runts, thereby 

providing an excellent model to study differences in pre-natal growth (Poore and Fowden, 

2004b). 
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1.9 Previous studies 

In a previous study in our laboratory, the effect of pre-natal and post-natal growth, 

as well as early post-natal diet, on the development of diabetes was investigated in 

Yucatan miniature pigs (McKnight, 2008). Post-weaning, the pigs were fed a normal pig 

feed diet until approximately 10 months of age. No overt type 2 diabetes developed in any 

of the pigs. Neither pre-natal growth nor post-natal diet affected glucose tolerance or 

insulin sensitivity. Males, however, were more glucose tolerant than females . Males also 

had less visceral fat. Visceral fat percentage showed a negative relationship with glucose 

tolerance which explained the sex differences. Compensatory growth was observed 

during the milk feeding phase, with runts experiencing accelerated growth compared to 

their large littermates. This growth, however, was not related to insulin sensitivity or 

glucose tolerance. The pigs were fed a nutritionally balanced pig feed used in commercial 

pig farming, which, combined with the young age of these pigs (approximately 10 

months, equivalent to young adults in humans), may have protected them from 

developing more profound symptoms of insulin resistance or diabetes. The logical 

progression of this study is to investigate the effects of poor dietary practices and a longer 

feeding phase on the symptoms of insulin resistance and diabetes, and this will be done in 

this thesis. 

In an earlier study in our laboratory the activity of sulfur amino acid enzymes was 

measured in runt and large piglets 3-5 days old (Brophy, 2006). Runt piglets were found 

to have lower activity of betaine homocysteine methyltransferase (BHMT), and 

cystathionase (CTH) than their larger siblings. The activities of these sulfur amino acid 

enzymes are both related to the available methyl supply. BHMT is the key enzyme in one 
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of the two pathways that remethylate homocysteine to methionine, CTH is the second 

enzyme on the transsulfuration pathway that converts homocysteine to cysteine. Both of 

the enzymes are important in reducing the amount of homocysteine, and thereby 

increasing the SAM/SAH ratio. The next step is to investigate whether the gene 

expression levels of the enzymes are also different, to determine if the differences in 

activity are due to pre- or post-translational regulation. 

This SAM/SAH ratio, as described previously, is called the methylation index, 

which has been linked to the activity of methylating enzymes. One of the hypothesized 

mechanisms in fetal programming is altered gene expression due to changes in DNA 

methylation. This altered DNA methylation could be a generalized effect, or targeted to 

specific genes or gene families. As differences in BHMT and CTH gene expression or 

activities could alter methyl supply, these differences between the runt and large piglets 

will be investigated in this thesis. 
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Chapter 2: Glucose metabolism study 

2.1 Objective 

Pre-natal growth and compensatory growth after birth have been shown to 

increase the risk of developing diseases later in life. Insulin resistance, and impaired 

glucose tolerance (precursors of overt type 2 diabetes) in particular, are linked to low pre

natal growth, and rapid post-natal compensatory growth. As outlined previously, a study 

in Yucatan miniature pigs looking at the development of type 2 diabetes as it related to 

developmental plasticity observed no development of overt type 2 diabetes, nor an effect 

of pre-natal or post-natal growth or post-natal diet on later insulin sensitivity or glucose 

tolerance (McKnight, 2008). In that study, however, the pigs were fed a balanced normal 

pig feed, and were raised until approximately 8 months of age. This healthy diet may 

have protected the pigs from developing type 2 diabetes, as it was low in fat and simple 

carbohydrates. Although the development of type 2 diabetes in humans is increasingly 

being observed at earlier ages, 8 months of age in a pig is equivalent to early adulthood in 

humans. Because the risk of developing type 2 diabetes increases with age, it is possible 

that these pigs were simply too young to exhibit the possible consequences of reduced 

pre-natal growth and compensatory growth. The current study will use the same basic 

design as the previous study: 18 Yucatan miniature pigs, comprising 6 triplets (3 all male, 

3 all female), each containing a runt ( <800g) and large littermate (> ll OOg) fed formula 

for the first month of age, and a sow-fed littermate (> 1 OOOg) left with the sow for the first 

month of age. At 1 month of age the triplets will be housed together and fed a 'cafeteria' 

diet modeled towards a high intake of sugar, salt, saturated fat, trans fat and total fat. 
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This style of diet is thought to be diabetogenic and promotes obesity. The pigs will also 

be raised for a longer period of approximately 12 months. After which time a glucose 

tolerance test (IVGTT) and insulin sensitivity test (IST) will be perfonned. The main 

objectives ofthis study are to: 1) determine the effects ofpre-natal growth on glucose 

metabolism and the development of type 2 diabetes; 2) determine the effect of early post

natal diet on glucose metabolism and the development of type 2 diabetes; 3) detennine 

the effects of post-natal growth on glucose metabolism and the development of type 2 

diabetes. 

2.2 Hypothesis 

Runt piglets will have reduced glucose tolerance and increased insulin resistance 

compared to their larger littermates. The sow-fed piglets will have better glucose 

tolerance and reduced insulin resistance compared to the larger littennates due to the 

health benefits of sow's milk over formula. Rapid early growth will show a negative 

effect on glucose metabolism and insulin sensitivity. The high fat, high salt, high sugar 

diet fed to the pigs will induce obesity and be detrimental to the glucose metabolism of 

the pigs. The insulin sensitivity and glucose tolerance of the pigs will deteriorate with 

increased obesity. 
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2.3 Methods 

2.3.1 Animals, housing, feeding and suometric measures 

Eighteen Yucatan miniature pigs (9 male, 9 female) were obtained and housed at 

the at the Vivarium animal care facility at Memorial University. The 18 pigs consisted of 

6 triplets from individual litters; triplets were used in an attempt to control for genetic 

variability, age and birth conditions. Each triplet contained a runt (R) (<800g birth 

weight), a large (L) (>1100g), and a sow-fed (SF) littermate (> lOOOg) ofthe same sex. 

The runts and large piglets were taken from the sow at 3 days of age and fed milk replacer 

(Piglet-Gro, Grober Nutrition, Cambridge Ontario) for 28 days on the schedule outlined 

in Table 2.3 .1.1. Sow-fed piglets were left with the sow until 31 days of age. At 31 days 

of age the triplets were housed together, but separated and individually fed ad libitum 

'cafeteria' diets for 5 hours daily. The 'cafeteria' diet was made from commercial pig 

grower chow from Eastern Co-op feeds (Table 2.3.1 .2). The commercial pelleted diet was 

milled and mixed with melted lard (NoN arne, Loblaw Companies Limited, Brampton, 

ON) and hydrogenated margarine (Central Dairies, St. John's, NL), sugar (Lantic, natural 

granulated, Lantic Sugar Limited, Montreal, QC), and salt (Windsor, free running 

iodized, The Canadian Salt Company Limited, Pointe-Claire, QC). The cafeteria diet 

ingredients are shown in Table 2.3.1.3. The cafeteria diet composition calculated as a 

percent of total calories is outlined in Table 2.3 .1.2. The composition of this diet is 

similar to other diets fed to miniature pigs to study atherosclerosis and the development of 

diabetes (Dixon et al. 1999; Otis et al. 2003). The diet is also within the range of intakes 

of total and saturated fat observed in humans (Food and Nutrition Board, 2005). This diet 
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was stored frozen as granular feed and fed by bowl to the pigs ad libitum for five hours 

daily (1200-1700 h). 

Feed intake was monitored by subtracting feed remaining after 5 hours from 

starting feed amount. Feed intake during the milk feeding phase, from 8-28 days, was 

measured daily and summed to calculate feed intake for a given period. During ' cafeteria' 

diet feeding, feed intake was measured on weekdays; weekly feed intakes were calculated 

for each animal by determining the average daily feed intake during the 5-day week and 

multiplying by 7. 

Body weight and abdominal circumference were measured bi-weekly. Body 

weight was measured using a digital scale (XI-120K, Denver Instruments, Denver, CO). 

Abdominal circumference was measured by a tape measure at the largest point of a pig's 

abdomen. Blood sampling by jugular puncture was also performed bi-weekly with pigs 

restrained in a supine position in a steel V -trough. Blood samples were centrifuged for 10 

minutes at 4000 x gat 4°C. The plasma was obtained and stored at -20 C for later analysis 

of plasma glucose. In accordance with the Canadian Council of Animal Care guidelines, 

this study was approved by the Institutional Animal Care Committee of Memorial 

University. 
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Table 2.3.1.1 Milk replacer feeding schedule 

Week 1 Week2 Week3 Week4 

6:00am 6:00am 6:00am 6:00am 

7:30am 7:30am 7:30am 7:30am 

9:00am 9:00am 9:00am 9:00am 

!0:30am !0:30am I 0:30am I 0:30am 

!2:00pm I 2:00pm I 2:00pm I 2:00pm 

1:30pm 1:30pm 1:30pm 1:30pm 

3:00pm 3:00pm 3:00pm 3:00pm 

4:30pm 4:30pm 4:30pm 4:30pm 

6:00pm 6:00pm 

7:30pm 7:30pm 

11 :OOpm 

Expand pen size Separate piglets for Last 2 days: begin 

0.5-1.0 hours, twice introducing cafeteria 

daily. diet. 
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Table 2.3.1.2 Diet compositions 

As % of total calories 

Pig grower feed Cafeteria diet 

Carbohydrate 60.10 40.32 

-Sugar 0.0 10.38 

Crude fat 11.64 50.02 

- Saturated fat 0.30 16.28 

-Trans fat 0.0 2.30 

Crude protein 21.26 10.57 

Sodium 0 (0.22% by weight) 0 (1.93% by weight) 

Table 2.3 .1.3 Cafeteria diet components by weight 

Ingredient Weight added (g) to make 1 kg of diet 

Co-op pig grower feed 660 

Lard 150 

Margarine 50 

Salt 40 

Sugar 100 
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2.3.2 Growth measures 

Total growth rate (TGR) was measured by subtracting weight at birth, from 

weight at 10 months and dividing by days of age. Growth rates (GR) for 8-14, 15-21 ,22-

28, 8-28, 30-120, 120-210, and 210-300 days were calculated by subtracting starting 

weight from final weight of each period, and dividing by days in the period. Fractional 

growth rate was calculated by dividing the GR by the pig's sta1t ing weight. The growth 

phases were selected as pre-sexual maturity (30-120 days), sexual maturation (120-210 

days), and post sexual maturation (210-300 days) (Figure 2.3.2.1). Sexual maturation in 

Yucatan miniature pigs occurs at approximately 4-6 months of age or between 20-30 kg 

of weight (Smith and Swindle, 2006). The sexual maturation phase defined in this study 

was deliberately larger than these literature values to ensure all pigs reached sexual 

maturation during this time period. Feed efficiency (FE) was calculated by dividing the 

kg of body weight gained in a growth phase by the kg of feed intake over the same time 

period. 
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Figure 2.3 .2.1 Growth phases and sexual maturation in Yucatan miniature pigs. 
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2.3.3 Surgical procedures 

At approximately 10 months of age (Table 2.3.3.1 for exact ages at surgery and 

necropsy) the triplets were transported to the Health Sciences Centre, and housed there 

for at least 24 h before surgery. As only two surgeries could be completed each day, two 

pigs from each triplet had surgery on the same day, with the third undergoing surgery the 

following day. All pigs were fasted (24h) the day before surgery. Pigs were anaesthetized 

with ketamine hydrochloride (0.25 mL/kg, Ketalean, Bimeda-MTC Cambridge ON) and 

xylazine (0.02 mL/kg, Rompum, Bayer Toronto ON), and maintained with 0.5 - 1.5 % 

halothane gas and 3/2 oxygen/nitrous oxide. A small incision was made on the proximal 

end of the medial anterior surface of the left leg, and the femoral vein was isolated. Tygon 

catheters, each 2.4 metres in length, with inner and outer diameters of 0.040 and 0.070 

mm (Norton Performance Plastics, Akron Ohio), respectively, were inserted into the 

femoral vein and advanced to the inferior vena cava. The catheters were tunneled under 

the skin and out through a small incision made between the scapulae. As part of another 

study, a radiotelemeter catheter was also inserted in the femoral artery and the telemeter 

body was implanted between the anterior thigh and peritoneum. The telemeters were used 

to measure blood pressure and physical activity. The pigs were administered intravenous 

antibiotics (Borgal: Trimethoprim 40 mg/ml, Su.lfadoxine 20 mg/ml, Intervet Canada Ltd. 

Whitby, ON) immediately after surgery and for three days post- surgery. Buprenorphine 

hydrochloride 300 J..Lg (Temgesic, Schering-Plough Ltd., Hertfordshire, UK) was 

administered at the end of surgery and 24 hours after surgery to minimize post-surgical 

pam. 
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Table 2.3.3.1 Age of pigs at surgery and necropsy. 

Litter ID # Age at surgery (days) Age at necropsy (days) 

6 310-311 338-339 

7 338-339 365-366 

9 273-274 301-302 

11 321-322 349-350 

12 342-343 370-370 

13 358-359 386-387 

Average -324 -352 
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2.3.4 Study design 

Animals were allowed to recover from surgery (4-5 days) before in vivo testing 

was started. During the recovery period, the animals' catheters were flushed daily with 5 

mL of heparinized saline (0.2% ). Body temperature was measured daily using a digital 

ear thermometer to monitor post-surgical infection. Animals with a temperature greater 

than 40°C were given antibiotics (Borgal, as above). The surgical incisions and catheter 

sites were treated with topical antibiotic cream (Hibitane, Ayerst, Guelph, ON, or 

Polysporin, Pfizer, Toronto, ON) to prevent infection. The feeding schedule was re

established on the day following surgery. 

Five days following surgery, an intravenous glucose tolerance test (NGTT) was 

conducted following an overnight fast. Animals with a fever were not tested until their 

body temperatures and feed intakes returned to normal and they had no longer received 

antibiotics in the previous 24 hours. Prior to the test, two fasting blood samples were 

taken 5 minutes apart and blood glucose was measured in a drop ofblood using an 

Ascensia Contour blood glucometer (Bayer, Toronto, ON) to establish baseline values. 

An intravenous bolus of0.5 g/kg body weight of 50% glucose solution was then 

administered. Blood was sampled every 5 minutes and blood glucose levels were checked 

every 2.5 minutes using a blood drop drawn from a venous catheter (following the 

removal of the void volume of the catheter). The test was completed when blood glucose 

concentrations returned to the baseline value range; the number of blood samples varied 

among pigs from 6-13. Pigs were not restrained during blood sampling, and all blood 

samples (4 rnL vials) were taken from an intravenous catheter, to minimize stress, and 

stored immediately on ice in an EDT A treated blood tube. Blood samples were 
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centrifuged for 10 minutes at 4000xg at 4°C. The plasma was stored at -20°C for later 

analysis of plasma glucose, C-peptide and insulin concentrations. 

The next day, an insulin sensitivity test (IST) was conducted following an 

overnight fast. A blood sample was taken to establish baseline values of glucose l 0 

minutes prior to the test. After 5 minutes, a 4 ~g/kg intravenous dose of somatostatin was 

administered to inhibit endogenous pancreatic hormone secretion. At time zero, a 0.05 

g/kg bolus of 50% glucose solution was administered intravenously. Blood samples were 

taken every 2.5 minutes, and blood glucose was measured using an Ascensia Contour 

glucometer. When blood glucose reached a plateau, 0.5 Ulkg of body weight bolus of 

Hurnulin R insulin (Eli Lilly, Toronto, ON) was given intravenously. Blood samples were 

taken every 5 minutes, and blood glucose was tested every 2.5 minutes (as above) until 

blood glucose returned to baseline values. Blood samples were treated as above. Methods 

for the IVGTT and IST were adapted from Otis and colleagues (2003). 

2.3.5 Necropsy 

Pigs were anaesthetized with sodium pentobarbital (30 mg/kg, IV), intubated and 

maintained by 0.5-1 .5% halothane gas mixed with oxygen. Two pigs from each litter 

were killed on the first day, with the third killed on the following day. Organs (lung, 

heart, stomach, small intestine, large intestine, pancreas, kidney, liver, spleen) were 

removed and samples were immediately frozen in liquid nitrogen for later analyses or 

immersed in formalin for histological analysis. Carcass and remaining visceral organs 

were taken and stored at -20°C for later compositional analyses. 
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2.3.6 Biochemical analyses 

Plasma glucose and insulin levels were measured in all IVGIT and IST blood 

samples. To assess whether endogenous pancreatic hormone secretions were suppressed 

by somatostatin, C-peptide levels were measured in plasma samples. Plasma glucose 

values were measured on a Rapid Lab 865 analyzer (Bayer Diagnostics, Toronto, ON) 

using a glucose oxidase electrode. Plasma insulin levels were measured using a 

radioimmunoassay (RIA) kit for porcine insulin (Linea Research, St. Charles Missouri). 

Briefly, a known quantity of radiolabelled ('251) porcine insulin competes with an 

unknown amount of unlabeled porcine insulin for binding with a known quantity of 

antibodies specific for porcine insulin. Once the amounts oflabelled and unlabeled 

porcine insulin are equilibrated, the concentration of bound labelled insulin can be 

measured and used to calculate the amount of unlabeled insulin present. A standard curve 

is constructed using known concentrations of labelled and unlabeled porcine insulin. 

Radioactivity was measured using a gamma counter (Wallac 1480 Wizard, Perkin Elmer, 

Waltham, MA), and plasma insulin concentrations were determined using the standard 

curve. Plasma C-peptide concentrations are also measured using a C-peptide RIA kit 

(Linea Research, St. Charles Missouri) using the same principles. Pancreatic insulin 

concentration (PIC) was measured by homogenizing pancreas samples in acid alcohol, 

incubating overnight at 4°C, centrifugation, and assaying supernatant for insulin using a 

RIA kit, as described above (Modified from Srinivasan et al., 2005). All insulin RIA 

measurements were performed in duplicate, duplicates which differed by > 10 % CV were 

repeated. The intra-assay CV for the insulin RIA was 8.09%, the inter-assay CV was 

7.10%. 
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2.3. 7 Visceral carcass analysis 

Intra-peritoneal tissues (small and large intestines, mesentery, stomach, spleen, 

pancreas, liver) taken at necropsy were homogenized using a meat grinder with a final die 

size of l/8" (Model# 4146, Hobart, Troy, OH). Fat was extracted using chloroform: 

methanol extraction technique in duplicate samples (- lOg) from each pig (Folch et al. , 

19 57). The lipid-containing phase was evaporated to yield the dry weight of lipids in each 

sample, which was expressed as a percentage of original sample's mass. The average of 

each duplicate was used to calculate the visceral fat percentage. 

2.3.8 Calculations 

Area under the curve (AUC) for the IVGTT was calculated using GraphPad Prism 

5 (GraphPad Software Inc.). Glucose or insulin concentration was plotted against time in 

minutes and AUC was calculated using the software's AUC function. The baseline for the 

AUC function was set as the average of the first two values, and peaks that were less than 

10% of the overall height of the curve were ignored, only positive peaks were used. The 

insulin-stimulated glucose half-life (ISGHL in minutes) was calculated using the formula: 

ISGHL = Ln (2)/K (the half-life equation for a first order equation). K , the rate constant, 

was calculated by plotting the natural logarithm of plasma glucose concentration vs. time, 

and taking the slope after insulin administration (Poore and Fowden, 2002). The glucose 

half -life (GHL in minutes) was calculated from the IVGTT (as described above for the 

ISGHL), starting after the administration of glucose. 

2.3.9 Statistics 

All statistical analyses were performed using Minitab Software version 15.1. 

(Minitab inc. State College, PA). The effects of treatment and gender, as well as possible 
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interactions were investigated using genera] linear model (GLM). Because many of the 

variables studied were related to visceral fat percentage, pancreatic insulin concentration 

or birth weight, these outcomes were included as co variates, if linear regression of 

covariate and response variable yielded a p < 0.05, and the addition of the covariate 

increased the adjusted R-squared value of the GLM. Differences among individual means 

identified by GLM were compared by Tu.key's post hoc test. Pearson correlation and 

linear regression analysis was performed to assess relationships between variables. For 

statistical tests, data were considered to be significantly different ifp < 0.05. A statistical 

trend was defined as between p values ~0. 05 and .$0 .1 0. All data are expressed as mean ± 

standard deviation. 

2.4 Results 

2.4.1 Fasting plasma analyses 

Fasting plasma glucose concentrations did not differ by age (Figure 2.4.1.1 ), and 

did not differ among runt, large and sow fed pigs at~ 11 months of age (Table 2.4.1 .1 ). 

The slopes of plasma glucose over time did not differ significantly from zero or between 

groups (Figure 2.4.1.1 ). Fasting plasma insulin and plasma glucose :insulin ratio did not 

differ between groups at -11 months of age. Gender significantly affected fasting plasma 

glucose:insulin ratio, with males having higher ratios than females (p=0.034) (Figure 

2.4.1.2). 

2.4.2 Intravenous glucose tolerance test (IVGTT) 

Time to return to baseline of glucose (TTRB), glucose area under the curve 

(gAUC), peak glucose, insulin area under the curve (iAUC), peak insulin, ratio of insulin 

AUC to glucose AUC (iAUC:gAUC), and glucose halflife (GHL) were determined from 
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a graph of glucose and insulin values over time for each pig (Figure 2.4.2 .1) (Table 

2.4.2.1). There were no variables that differed among runt, large or sow-fed groups, but 

gender significantly affected peak glucose, peak insulin and iAUC/gAUC. Females had a 

higher peak glucose (p=0.008), peak insulin (p=0.005), and iAUC/gAUC (p=0.046) than 

males (Table 2.4.2.2). Visceral fat content was a significant covariate of gAUC, iAUC 

and GH; as visceral fat content increased, so did gAUC (p<O.OOl), iAUC (p=0.008) and 

GHL (p=0.039). Pancreatic Insulin Concentration (PIC) also significantly affected GHL 

(p=0.041); as PIC increased, so did GHL. 

There were no significant correlations between variables from the IVGTT and 

fasting glucose or insulin for all pigs. 

Table 2.4.1.1 Average fasting glucose, insulin and glucose:insulin ratio at - 11 mond1s of 
age. 

Runts Large Sow-fed 
Plasma Glucose (mmol/L) 5.9 ±0.6 5.9 ± 0.2 6.0± 0.7 
Plasma Insulin (!lU/mL) 13.82 ± 6.45 12.71 ± 4.73 17.03 ± 4.44 
Glucose:insulin ratio 0.51 ± 0.23 0.53 ± 0.20 0.36 ± 0.07 
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Figure 2.4.1.2 Fasting plasma glucose:insulin ratio by gender. 
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2.4.3 Insulin sensitivity test (1ST) 

The insulin stimulated glucose half-life (ISGHL) was used to assess insulin 

sensitivity. A lower half-life indicates greater insulin sensitivity. There was no difference 

among runts, large or sow-fed pigs in ISGHL (Figure 2.4.3.1). Visceral fat content and 

PIC were both significant co variates of the ISGHL; ISGHL increased with visceral fat 

content (p=O.Ol4) and PIC (p=0.004). ISGHL correlated positively with the glucose half

life (GHL) calculated from the IVGTT (r=0.56, p=O.Ol9). There were no significant 

correlations between variables from the 1ST and fasting glucose or insulin for all pigs. 

2.4.4 Pancreatic insulin concentration (PIC) 

PIC did not among between runts, large or sow-fed pigs. Gender significantly 

affected PIC (Figure 2.4.4.1) with females having a higher pancreatic insulin 

concentration than males (p=O.Ol3) (Figure 2.4.4.2). PIC was positively correlated with 

GHL (r=0.52, p=0.024), and ISGHL (I-0.70, p=0.002) and showed a trend towards 

increased gAUC (r=0.46, p=0.055). Abdominal circumference at 3 months of age showed 

a positive trend with PIC (r=0.45, p=0.058). 
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Figure 2.4.2.1 Glucose and insulin AUC from IVGTT ofL9 pig. 

Table 2.4.2.1 Variables from IVGTT at ~ 11 months of age. 

Runt Large Sow-fed 
TTRB (min) 39.5 ± 13.2 50.6 ± 18.5 42.3 ± 15.8 
gAUC (mmol·min·L-1

) 473.6 ± 168.5 505.5 ± 116.45 481.67 ± 187.40 
iAUC (J.!U ·min·L-1

) 3451 ± 1388 4277 ± 2186 3706 ± 3180 
Peak Glucose (mmol/L) 31.0 ± 5.0 29.35 ± 2.63 31.10 ± 4.89 
Peak Insulin (J.LU/mL) 139.3 ± 65.3 158.09 ± 87.78 123.66 ± 72.09 
iAUC/gAUC (!lU/mmol) 7.52 ± 2.71 8.09 ± 3.25 7.12 ± 3.72 
GHL 17.0 ± 6.3 21.71 ± 9.09 16.88 ± 6.04 

Table 2.4.2.2 Gender differences in measures of glucose tolerance derived from IVGTT 
at ~ 11 months of age. 

Male Female p-value 
gAUC (nunol·min·L- 1

) 394.5± 108.6 579.3± 132.6 * 
iAUC (J.!U ·min·L-1

) 2453 ± 1287 5170 ± 2230 * 
Peak Glucose (mmol/L) 28.0 ± 3.9 33.0 ± 2.7 0.008 
Peak Insulin (!!_U/mL) 96.2 ± 34.7 184.5 ± 74.7 0.005 
iAUC/gAUC (J.LU/mmol) 6.15 ± 2.27 9.00 ± 3.24 0.046 
*No effect of gender due to s1gmficant covariate visceral fat content. 
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Figure 2.4.3.1 Insulin stimulated glucose half-life of runts, large and sow-fed pigs at ~ 11 
months of age (n=6 for each group). 
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Figure 2.4.4.1 Pancreatic insulin concentration of runts, large and sow-fed pigs at - 11 
months of age (n=6 for each group). 
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Figure 2.4.4.2 Pancreatic insulin content by gender at ~ 11 months of age (n=9 for each 
gender). 
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2.4.5 Visceral fat 

There was no difference among runts, large or sow-fed pigs in visceral fat 

percentage (Figure 2.4.5.1 ). Gender significantly affected visceral fat percentage, with 

females having higher visceral fat than males (p=0.001) (Figure 2.4.5.2). Visceral fat 

percentage correlated positively with abdominal circumference at 1 (r=0.54, p=0.025) and 

3 (r=0.65, p=0.004) months of age, and showed a positive trend at - 11 months of age 

(r=0.45, p=0.061). Visceral fat also tended to correlate positively with PIC (r=0.44, 

p=0.067) 

2.4.6 Correlations 

In order to detennine the relationship between visceral fat percentage and 

pancreatic insulin concentration on the test outcomes, correlations were performed for all 

the variables measured in the NGTT and IST (Table 2.4.6.1 ). 

2.4.7 Birth weight and weight at 10 months 

Birth weight differed among runt, large and sow-fed groups (Table 2.4. 7.1) 

(p<O. 001) but did not differ by gender. Weight at 10 months of age did not differ among 

runt, large or sow-fed group, or by gender, however visceral fat content was a significant 

covariate of weight at 10 months (p=0.048). Birth weight did not significantly correlate 

with any of the measures of glucose metabolism. Weight at 10 months correlated 

positively with gAUC (r=0.51 , p=0.029), negatively with plasma glucose:insulin ratio 

(r=-0.507, p=0.032) and showed a positive trend with fasting insulin (r=0.43, p=0.076), 

iAUC (r=0.45, p=0.063) and peak glucose during the NGTT (r=0.41 , p=0.093). 
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Figure 2.4.5.1 Visceral fat percentage of runts, large and sow-fed pigs at - 12 months of 

age (n=6 for each group). 
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Figure 2.4.5.2 Visceral fat percentage by gender (n=9 for each gender). 
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Table 2.4.6.1 Measures of glucose tolerance from the IVGTI and IST correlated to 
visceral fat percentage and PIC. 

Visceral Fat PIC 
gAUC r=0.807 p=<0.001 * r=0.459 p=0.055 
iAUC r=0.659 p=0.003* r=0.306 p=0.217 
iAUC: gAUC r=0.354 p=0.150 r=0.071 p=0.778 

Peak Glucose r=0.461 p=0.054 r=0.075 p=0.767 
Peak Insulin r=0.413 p=0.088 r=O .207 p=O .409 
GHL (min) r=0.456p=0.057 r=0.529p=0.024 * 
ISGHL (min) r=0.620 p=0.008* r=0.700 p=0.002* 
TTRB (min) r=0.431 p=0.074 r=-0.043 _!)_=0.866 
*p<0.05 

Table 2.4.7.1 Birth weight and weight at 10 months. 

Runts Large Sow Fed 
Litter ID # Birth Weight at Birth Weight at Birth Weight at 

Weight 10 Months Weight 10 Months Weight 10 Months 
(kg) (kg) (kg) (kg) (kg) (kg) 

6 0.751 44.10 1.133 60.16 1.038 61.62 

7 0.869 59.46 1.251 65.12 1.029 57.34 

8 0.754 45.30 1.057 48.78 0.978 56.84 

11 0.848 56.28 1.119 50.96 1.094 65.50 

12 0.618 61.16 1.061 51.56 0.856 69.04 

13 0.804 59.44 1.243 76.96 1.001 80.66 

Mean 0.774 54.29 1.144 58.92 0.999 65.17 

St.Dev 0.090 7.60 0.085 10.82 0.080 8.93 
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2.4.8 Abdominal circumference 

Abdominal circumference at 1 month did not differ among runt, large or sow-fed 

groups, or gender (Table 2.4.8.1), but did correlate positively with gAUC (r=0.717, 

p=O.OOl), iAUC (r=0.504, p=0.033) (Table 2.4.8.2), final weight (r=0.483, p=0.042), 

visceral fat content at - 12 months of age (r=0.526, p=0.025) and abdominal 

circumference at 3 months(r=0.690, p=0.002). Abdominal circumference at 1 month also 

showed a positive trend with abdominal circumference at 10 months (r=0.459, p=0.056). 

Abdominal circumference at 3 months did not differ among runts, large or sow-fed 

groups; however an effect of gender was observed, with female pigs having a 

significantly larger abdominal circumference than males (p=0.023). Abdominal 

circumference at 3 months also correlated positively with gAUC (r=0.730, p=0.001), 

iAUC (r=0.576, p=0.012), peak glucose (r=0.534, p=0.022), weight at 10 months 

(r=0.507, p=0.032), abdominal circumference at 10 months (r=0.547, p=0.019), visceral 

fat content at - 12 months (r=0.649, p=0.004), and showed a positive trend with PIC 

(r=0.454, p=0.054) and ISGHL (r=0.451, p=0.069). At 10 months of age a significant 

interaction of sex and group was observed in abdominal circumference (p=0.040), with 

female sow-fed pigs having a larger abdominal circumference than male sow-fed pigs. 

Abdominal circumference at 10 months correlated positively with gAUC (r=0.615, 

p=0.007), iAUC (r=0.576, p=0.012), peak glucose (r=0.525, p=0.025), weight at 10 

months (r=0.694, p=O.OOl), and showed a positive trend towards visceral fat content 

(r=0.450, p=0.061). 
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Table 2.4.8.1 Average abdominal circumferences (em) at 1, 3 and 10 months ofnmt, 
large and sow-fed pigs (n=6 for each group) . 

Age (months) Runt Large Sow-fed 
1 42.8 ± 1.9 42.0 ± 2.9 41.2 ± 4.3 
3 58.7 ± 4.4 59.3 ± 1.9 58.8 ± 5.4 
10 94.6 ± 6.0 99.2 ± 5.2 100.7 ± 12.0 

Table 2.4.8.2 Abdominal circumference at 1, 3 and 10 months correlated to measures of 
glucose tolerance and insulin sensitivity. 

Abdominal eire at Abdominal eire. at Abdominal eire. at 
1 month 3 month 10 month 

gAUC r=0.717 p=0.001 * r=0.730 p=0.001 * r=0.615 p=0.007 * 
iAUC r=0.504 p=0.033 * r=0.576 p=0.012 * r=0.576 p=O.Ol2 * 
iAUC: gAUC r=0.206 p=0.412 r=0.249 p=0.32 r=0.326 p=O.l87 

Peak Glucose r=0.305 p=0.22 t=0.534 p=0.022 * r=0.525 p=0.029 * 
Peak Insulin r=O.l04 p=0.681 r=0.353 p=O.l51 r=0.336 p=O.l72 
GHL (min) r=0.389 p_=O.l10 r=0.297p=0.232 r=0.226 p=0.367 
ISGHL (min) r=0.238 p=0.357 r=0.451 p=0.069 r=0.316 p=0.217 
TTRB (min) r=0.259 p=0.299 r=0.307 p=0.215 r=0.071 p=0.780 
*p<0.05 
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2.4.9 Total growth rate (TGR) 

TGR (1-300 days) did not differ among runt, large and sow-fed pigs or by sex 

(Figure 2.4.9.1). TGR correlated negatively with plasma glucose:insulin ratio(r=-0.519, 

p=0.027), and positively with gAUC (r=0.514, p=0.029). TGR showed a positive trend 

towards iAUC (r=0.452, p=0.060) and fasting plasma insulin (r=0.449, p=0.062). TGR 

also showed a positive trend with visceral fat percent (r=0.442, p=0.081 ). 

2.4.10 Growth rates 

Growth rates for the milk feeding phase, 8-14, 14-21, 21-28, and 8-28 days all 

differed among runt, large and sow-fed piglets (p=0.003, p<O.OOl , p=O.Ol7, and p=0.001 

respectively). The large and sow-fed piglets had higher growth rates than the runts. No 

significant difference in growth rates was observed between large and sow-fed pigs. Birth 

weight also correlated positively with growth rates for each time period (Table 2.4.10.1). 

Growth rates for 8-28, and 22-28 days also correlated positively with TGR (r=0.527, 

p=0.025 and r=0.473, p=0.047). Growth rates in the milk feeding phase did not correlate 

with any measure of glucose metabolism or suometric measurement. Growth rates for 30-

120, 120-210 and 210-300 days did not differ among runt, large or sow-fed pigs or by 

gender (Figures 2.4.10.2 and 2.4.10.3). GR at 30-120 days shows a positive trend with 

birth weight (r=0.448, p=0.063). GR at 120-210 days correlated negatively with feed 

efficiency at 30-120 days (r=-0.474, p=0.047) and positively with FE at 120-210 

days(r=0.479, p=0.044). GR at 210-300 days also correlated positively with FE at 210-

300 days(r=0.778, p<0.001). GR at 30-120 days did not correlate with FE at 30-120days. 

GR at 120-210 days and 210-300 days correlated positively with final weight (r=0.757, 

43 



~~------------------------------------------------------------- -

p<0.001, and r=0.766, p<0.001). GR at 120-210 days also correlated positively with 

abdominal circumference at 10 months (r=0.751, p<0.001). 

GR at 30-120 days correlated negatively with plasma glucose:insulin ratio (r=-

0.478, p=0.045) and fasting glucose (r=-0.581, p=0.011). GR at 30-120 days correlated 

positively with iAUC (r=0.482, p=0.043). GR 120-210 days showed a positive trend 

towards iAUC (r=0.416, p=0.086). GR at 210-300 days showed a positive trend with 

fasting insulin (r=0.444, p=0.065). 

2.4.11 Fractional growth rate 

Fractional growth rate at 120-210 days differed among runt, large and sow-fed 

(p=0.044) (Figure 2.4.11.1) with runts having a higher fractional growth rate than large 

pigs (p=0.048). FGR at 210-300 days did not differ among runts, large or sow-fed pigs. 

FGR at 30-120 days correlated negatively with fasting glucose (r=-0.600, p=0.008) and 

showed a positive trend with abdominal circumference at 3 months (r=0.465, p=0.052). 
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Figure 2.4.9.1 Total growth rate of runt, large and sow-fed pig and by gender. 

Table 2.4.1 0.1 Growth rates correlated to birth weight during milk feeding. 

8-14 Days 14-21 Days 21-28 Days 8-28 Days 
Birth weight r-0.686, r-0.807, r-0.506, r-0.700, 

p=0.002 p<O.OOl p=0.032 p=O.OOl 

45 



0.25 
>; 
"' ~ 0.20 

~ 0.15 

"' "C 
0 0.10 
N ..... 

I 

g 0.05 
0:: 

(!) 0.00 

~ 
'0 

~ 0.3 

-0.3 
>. 

"' "C -C'l ..:.:: 
-;; 0.2 
>. 

"' "C 
0 
0 
f"? 0.1 
0 ..... 
N 
0::: 
(!) 0.0 

Runt Large Sow-fed 

Runt Large Sow-fed 

Runt Large Sow-fed 

Figure 2.4.10.1 Growth rates of runt, large and sow-fed pigs. 
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Figure 2.4.11.1 Fractional growth rates by runt, large and sow-fed. Groups with differing 

superscripts are significantly different (p<0.05). 
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2.4.12 Feed efficiency 

Feed efficiency at 8-14, 14-21 , 21-28, 30-120, 120-210, and 210-300 days did not 

differ among runts, large or sow-fed pigs. Feed efficiency approached significant 

difference between genders for 8-28 days (p=0.067) and 30-120 days (p=0.060) and was 

significantly different by gender at 120-210 days (p<0.001). FE from 210-300 days did 

not differ by gender (Figure 2.4.12.1). FE from 8- 14 days correlated negatively with PIC 

(r=-0.604, p=0.038). FE from 22-28 days correlated negatively with abdominal 

circumference at 10 months (r=-0.619, p=0.032) and positively with plasma 

glucose:insulin ratio (r=0.646, p=0.023). FE from 8-28 days correlated positively with 

plasma glucose:insulin ratio (r-0.637, p=0.026) and negatively with abdominal 

circumference at 3 months and PIC (r=-0.740, p=0.006 and r=-0.607, p=0.036). FE from 

30-120 days correlated negatively with GR from 120-210 days (r=-0.474, p=0.047), FE 

from 210-300 days (r=-0.492, p=0.038), visceral fat content (r=-0.506, p=0.032) and 

abdominal circumference at 10 months of age (r=-0.481, p=0.043). FE at 30-120 days 

also showed a negative trend towards iAUC (r=-0.416, p=0.086), weight at 10 months of 

age (r=-0.460, p=0.055) and FE from 120-210 days (r=-0.397, p=0.100). Unexpectedly 

FE from 30-120 days did not correlate with GR from 30-120 (r-0.078, p=0.758), unlike 

the 120-210 and 210-300 day periods. FE from 120-210 days showed at positive 

correlation with gAUC (r-0.468, p=0.050), visceral fat content (r-0.597, p=0.009), 

abdominal circumference at 10 months (r=0.596, p=0.009) and GR from 120-210 days 

(r=0.479, p=0.044). FE from 120-210 days also showed a positive trend towards peak 

glucose (r=0.430, p=0.075), and ISGHL (r-0.414, p=0.098). FE at 210-300 days 

correlated positively with GR from 210-300 days (r=0.778, p<0001). 
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Figure 2.4.12.1 Feed efficiencies by gender. 
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2.5 Discussion 

Analysis of fasting glucose and insulin levels is the first step in assessing glucose 

metabolism. High insulin levels and low glucose to insulin ratios suggest insulin 

resistance. High fasting glucose levels suggest the development of type 2 diabetes. 

Fasting plasma glucose values in our pigs were measured on a monthly basis throughout 

the study to identify possible trends in blood glucose concentrations over time, and to 

look for differences in blood glucose among runt, large and sow-fed groups. Normal 

fasting serum glucose values for healthy, sexually mature Yucatan miniature pigs were 

determined by Radin and colleagues (1986). They found a range of 2.40-7.40 mmol!L (!1 

= 3.71 mmol/L) and no difference between genders at 80 weeks of age. A fasting blood 

glucose concentration range of 3.0-5.0 mmoVL has been reported as normal in other more 

recent studies utilizing Yucatan miniature pigs (Larsen et al. , 2001; Otis et al. , 2003; Xi et 

al., 2004). In our pigs, mean fasting blood glucose values did not change over the course 

of the study (Figure 2.4.1.1 ). These values were on the higher end of recently published 

normal values for Yucatan miniature pigs, but well within the range set out by Radin and 

not indicative of overt diabetes. At approximately 11 months of age, the pigs had a mean 

fasting glucose concentration of 5.94 ± 0.51 mmoVL and a mean plasma insulin level of 

14.52 ± 5.31 11U/mL. Fasting plasma insulin levels of 5-16 11U/mL have been reported in 

recent studies using healthy, sexually mature Yucatan miniature pigs (Larsen et al., 2001 ; 

Otis et al., 2003; Xi et al. , 2004). The plasma glucose to insulin ratio was 0.47 ± 0.19 in 

our pigs, which was similar to healthy pigs used in other studies (Larsen et al., 2001 ; Otis 

et al., 2003; Xi et al., 2004). The glucose and insulin values did not differ significantly 

among the runt, large and sow-fed piglets. This suggests that the pre-natal growth rate 
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(runt vs. large) or post-natal diet (large vs. sow-fed) did not have an effect on the fasting 

plasma values of glucose or insulin. 

From a fetal programming perspective, higher insulin levels and therefore a lower 

glucose to insulin ratio might be expected in the runt piglets, suggesting the development 

of insulin resistance. From an early nutrition perspective, sow's milk should be better 

suited for piglets' optimum growth and development compared to cow's milk-based 

formula. As the large pigs were formula-fed, we hypothesized that large pigs would have 

decreased glucose tolerance compared to the sow-fed controls, similar to epidemiological 

evidence in formula-fed humans (Owen et al., 2006). However, this was not the case. 

Birth weight across all the pigs showed no relationship with fasting glucose or insulin 

values. However, when plasma insulin levels were compared by gender, female pigs had 

higher insulin levels than males, and females had lower fasting glucose to insulin ratios. 

These data suggest that the females were more insulin resistant than the males. Although 

both males' and females' average fasting plasma insulin levels were within the normal 

range from the literature, the females were on the upper boundary of normal with a mean 

of 16.32 ± 4.18 11U/mL. These fmdings are similar to recent fmdings in Goettingen 

miniature pigs, in which higher plasma insulin levels were found in females with no 

gender difference in plasma glucose levels (Christoffersen et al. , 2007). These fmdings 

are also in agreement with results from human studies (Williams et al., 2003). In addition, 

a Spanish study found fasting insulin levels to be higher in obese pre-menopausal women 

compared with obese men of similar age (Garaulet et al., 2000). This Spanish study 
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showed a positive correlation between central obesity and insulin levels for both men and 

women. 

Although monitoring fasting plasma glucose and insulin concentrations are 

convenient and affordable, fasting plasma values do not provide a complete assessment of 

glucose metabolism. Fasting plasma values cannot demonstrate how the body responds 

to the stimulus of glucose to maintain normal blood glucose. In vivo analysis of glucose 

metabolism is the most appropriate way to measure glucose tolerance and insulin 

sensitivity. In humans, an oral glucose tolerance test (OGTT) is used to access in vivo 

glucose metabolism. This test can be modified to yield far more information on glucose 

tolerance by including blood sampling every five to ten minutes post glucose dose, and 

measuring plasma glucose and insulin levels. This allows the calculation of a glucose and 

insulin area under the curves, peaks, and times to return to baseline. Unfortunately, we 

were unable to perform OGTT on our pigs, as it was impossible to administer an oral 

dose of glucose to the pigs without stressing them. The administration of oral glucose was 

attempted in some pigs in a previous study, but this administration of glucose led to 

extreme agitation in the pigs, causing them to become stressed (McKnight, 2008). The 

oral administration of the appropriate amount of glucose to each pig was also difficult to 

ascertain and it was impossible to verify if all the glucose had been completely ingested. 

If pigs are stressed during an OGTT, then the measured values would be unusable as 

stress hormones, such as glucocorticoids, cause blood glucose concentrations to increase. 

We employed a modification of the OGTT and administered the glucose dose 

intravenously. This intravenous glucose tolerance test (IVGTT) allowed us to test the 
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pig's glucose tolerance without stressing the pig. The bolus of glucose administered 

intravenously to the pigs did not cause any noticeable agitation, and it was easy to 

administer the correct dosage of glucose to each pig. 

The results from a IVGTT differ from the results of an OGIT. In a IVGTT the 

glucose bypasses the gastrointestinal tract and is injected directly in the blood, this 

removes the variation in intestinal glucose absorption and the gastrointestinal 

glucoregulatory hormones known as incretins. Incretins can control the amount of insulin 

released after a meal and vary the gastric emptying rate, as well as inhibit glucagon 

release (Drucker and Nauck, 2006). If it were possible to administer a stress free OGIT 

along with the IVGTT more information could have been gleaned on this important 

gastrointestinal component of glucose metabolism. The IVGTT measures the circulatory 

component of glucose metabolism in response to a rise in blood glucose by monitoring 

plasma glucose and insulin levels. Plasma glucose levels rise rapidly after the 

administration of glucose, and then begin to decrease as the glucose is removed from the 

blood by the liver and muscles in response to insulin produced by the pancreas. 

Predictably the levels of insulin also increase following the administration of glucose, and 

begin to decrease as the blood glucose decreases. The plasma glucose and insulin levels 

were plotted against time to yield glucose (gAUC) and insulin (iAUC) areas under the 

curve, peak glucose and insulin values, as well as the time to return to baseline for 

glucose (TTRB), glucose halflife (GHL) which was calculated from the rate of glucose 

clearance, and the ratio ofiAUC to gAUC (iAUC:gAUC). An animal with reduced 

glucose tolerance would have higher plasma glucose concentrations, and the glucose level 
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would take longer to return to baseline. This elevated glucose concentration would be due 

to a decreased clearance of glucose from the blood, likely due to a decreased action of 

insulin. Glucose intolerant animals would therefore have higher gAUCs, higher peak 

glucose values, a longer TTRBs and a longer GHL, suggesting a slower clearance of 

glucose from the blood. Insulin resistant animals would require more insulin to return 

their plasma glucose levels to normal due to their reduced insulin sensitivities. Therefore 

insulin resistant animals would have a higher iAUC, peak insulin levels, and iAUC:gAUC 

ratios. 

Similar plasma glucose curves were observed in all pigs in response to glucose 

administration, and glucose concentrations in all pigs returned to fasting levels by 90 

minutes. The gAUC, peak glucose, and TTRB for our pigs did not differ among runt, 

large or sow-fed pigs. Jonsson and colleagues (2006) studied crossbred Landrace x 

Yorkshire x Hampshire pigs on a cereal-based or cereal-free (Paleolithic) diet, at 17 

months of age. The dose of glucose used in the IVGTT was 0.5 g/kg body weight, as in 

our study, but the average gAUC was 1076 ± 113 and 1199 ± 212 mmol·min-1·L-1 for each 

diet respectively. Poore and Fowden (2002) on the other hand also used a dose of0.5g!kg 

body weight of glucose in their IVGTT in purebred large white breed domestic pigs that 

were fed a standard pig diet for 12 months, and found average gAUC values for low birth 

weight and high birth weight pigs of approximately 280 and 200 mmol·min-1-L-1
, 

respectively. In Poore and Fowden' s study, birth weight negatively correlated with gAUC 

across both low and high birth weight groups. The average gAUC in our pigs was 487 ± 

151 mrnohnin-1-L-1
. These values were much higher than those of Poore and Fowden, 

55 



but far lower than those of Jonssen and colleagues. It must be noted that the protocol by 

Jonssen and colleagues had the pigs restrained in a supine position, although they did not 

mention the use of sedatives or anesthesia, which have been shown to affect glucose 

metabolism. Poore and Fowden's techniques most closely resemble ours. It is challenging 

to compare gAUC values from one study to another, as differing methods will affect the 

results. The amount of glucose administered and how the area under the curve is 

calculated will yield vastly different results. The age and diet of pigs in a study may also 

make comparisons between studies difficult. These differing findings may also be due to 

differences in glucose metabolism between strains ofpigs. 

Our findings suggest that neither pre-natal growth nor post-natal diet affected the 

glucose tolerance of these pigs. As low birth weight has been linked to impaired glucose 

tolerance, it was expected that the runt pig would be less glucose tolerant than the large 

pigs. However, birth weight across all pigs did not correlate with any of the measures of 

the IVGTT, unlike the data from Poore and Fowden. There were no differences in any of 

the IVGTT measures between the large and sow-fed pigs, suggesting that early post-natal 

diet did not affect glucose tolerance at - 11 months of age. 

We did find an effect of gender in our pigs. Female pigs had higher gAUC values, 

with an average of 579 ± 133 mmol·min-1·L-1 versus males with an average of395 ± 109 

mmol·rnin-1-L-1
. This was congruent with our fasting plasma values, which suggested that 

female pigs were more insulin resistant than males. This gender difference has not been 

rep01ted by other studies doing similar tests in pigs (Jonsson et al. , 2006; Poore & 

Fowden, 2004a). The experimental groups of pigs used in Poore and Fowden's study 
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were not balanced for gender. Indeed, the low birth weight group in their study had more 

female than male pigs, while the high birth weight group had an equal number of male 

and female pigs. The gender effect observed in our pigs on gAUC, disappeared when 

visceral fat content was added to the statistical model as a covariate. Visceral fat content 

was a significant covariate, suggesting that the difference between genders in gAUC was 

explained by the difference in visceral fat content, with females averaging 34.7 ± 3.9% fat 

and males 27.4 ± 3.0% fat. Visceral fat also correlated positively with gAUC, suggesting 

that as visceral fat content increased, glucose tolerance decreased. This relationship 

between visceral fat and glucose tolerance has been docUlllented in humans (Attalah et 

al. , 2006; Weiss et al., 2003). 

A gender effect was also observed for peak glucose concentrations during the 

IVGTT (females 33.0 ± 2.7 mmol/L, males 28.0 ± 3.9 mmol/L). This could be due to the 

dosage regimen used in our study. The bolus of glucose was standardized to total body 

weight, not lean mass, which resulted in higher peak glucose levels in the more obese 

females. This phenomenon was also noted by Dyson and colleagues (2006), who found 

higher peak glucose levels in obese Ossabaw pigs than normal weight Ossabaw pigs, in 

spite of no difference in glucose tolerance between the two groups. It is likely that our 

more obese females received a higher dose of glucose relative to their metabolic lean 

mass. 

TTRB did not differ by gender, but visceral fat content was a significant 

covariate, which showed a positive relationship with TTRB. In other words, as visceral 

fat increased, glucose tolerance decreased, and the time required for glucose values to 
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return to normal increased. GHL was not significantly different among runt, large or sow

fed pigs, or between genders. The average glucose half-life of our pigs was 18.5 ± 7.3 

minutes which is higher than the values reported by Poore and Fowden (2002) of - 12 

minutes for low birth weight pigs and - 9 minutes for high birth weight pigs at 12 months 

of age on a nonual pig feed diet. Visceral fat content was a significant covariate in the 

analysis of GHL, and as visceral fat increased so did GHL. Pancreatic insulin 

concentration (PIC) was also a significant covariate of GHL; pigs with higher PIC had a 

longer GHL. This relationship between higher insulin concentration in the pancreas and 

longer GHL suggests that insulin levels in the pancreas are elevated in pigs with slower 

glucose clearance, perhaps as a result of insulin resistance, which causes 

hyperinsulinemia to maintain normal glucose levels. Pancreatic insulin concentrations 

may be elevated to compensate for higher insulin requirements. 

Insulin AUC, peak insulin and iAUC to gAUC ratio from the IVGTT did not 

differ between runt, large or sow-fed groups which suggests that pre-natal growth or post

natal diet did not affect insulin sensitivity in our pigs at -11 months of age. Although we 

hypothesized an increased iAUC or iAUC to gAUC ratio in runt pigs, which would have 

been suggestive of the development of insulin resistance, no relationship between insulin 

levels and birth weight was observed in our pigs. In contrast, Poore and Fowden (2004a) 

found increased iAUC in low compared to high birth weight pigs. iAUC values are 

affected by the same factors which affect gAUC, making it difficult to compare values 

from different studies. Poore and Fowden had average iAUC values of approximately 

1500 f.,tUmin-1
· L-1 for low birth weight pigs, and 1200 f..tUmin-1

· L-1 for high birth weight 
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pigs. Our results yielded an average iAUC of3811 ± 2252 J.!Umin-1
• L"1

, almost identical 

to those reported by Dyson and colleagues (2006) in obese female Ossabaw pigs who had 

an average of3811 J.!Umin-1
• L-1

, but much higher than those of Poore and Fowden 

(2004a). The results, once again, showed a strong effect of gender, females having an 

average iAUC of 5170 ± 2229 J.!U·min-1
· L-1

, twice as high as the males, with an average 

of2452 ± 1287 J.!Umin-1
• L-1

. This large difference between genders, coupled with two 

female pigs with iAUCs in excess of7000 J.!Umin-1
· L-1 suggested that the females were 

insulin resistant compared to the males. The effect of gender on iAUC lost statistical 

significance when visceral fat content was added to the statistical model as a covariate. 

Visceral fat was a significant covariate ofiAUC; similarly to gAUC, iAUC demonstrated 

a positive relationship with visceral fat content. This suggests the differences in iAUC 

between the genders may be related to the differences in visceral fat content. There was 

also a gender difference observed in peak insulin and iAUC to gAUC ratio, with females 

having higher peak insulin levels, and higher iAUC to gAUC ratios than the males. This 

suggests that the female pigs were more insulin resistant than male pigs, and required 

more insulin to return their plasma glucose levels to normal. Visceral fat content 

correlated positively with iAUC. This suggests that across both genders as visceral fat 

content increases, so does insulin resistance. This is consistent with many findings in 

humans and other animal models (Frayn et al., 2000; Zhao et al., 2007). 

An insulin sensitivity test (IST) differs from an IVGTI in its precision. An 

IVGTI looks at glucose tolerance, which can be affected by numerous factors including 

the speed at which the pancreas begins to release insulin following an elevation of 

59 



glucose, the amount of insulin released, and how effective the insulin is at lowering blood 

glucose (the insulin sensitivity). An IST looks only at the insulin sensitivity. Using 

somatostatin to inhibit endogenous secretion of insulin and glucagon, a standardized by 

weight dose of insulin was administered following a bolus of glucose (Otis et al., 2003). 

The rate at which the glucose is cleared from the blood following the insulin 

administration was calculated. The bolus of glucose was first administered to the pigs to 

elevate their blood glucose. This was done because the pigs were not overtly diabetic and 

did not have elevated fasting glucose levels. Blood glucose was initially raised to 

minimize the chance of severe hypoglycemia (Otis et al., 2003). The pre-treatment with 

somatostatin inhibits release of endogenous glucoregulatory hormones so that the rate of 

glucose clearance in response to a standardized amount of insulin can be determined. This 

rate, the insulin stimulated glucose half-life (ISGHL), is directly related to insulin 

sensitivity. As insulin sensitivity decreases and a subject becomes more insulin resistant, 

the ISGHL increases. The rate of glucose clearance is sometimes just given as the rate 

constant, or it can be converted to half-life using the formula ISGHL = Ln (2)/K, where K 

is the rate constant. To compare our results to those from the literature, this formula was 

used to convert rate constant to half-life. 

The ISGHL in our pigs did not significantly differ among runts, large or sow-fed 

groups. This finding suggests that pre-natal growth and post-natal diet did not affect 

insulin sensitivity at - 11 months of age. It was hypothesized that at - 11 months of age the 

runt piglets would have a longer ISGHL than their large littermates; however this result 

was not found. In large white pigs, Poore and Fowden (2004b found no difference in 
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insulin sensitivity between low and high birth weights. The average ISGHL of our pigs 

was 9.98 ± 2.79 min. This is longer than the average of approximately 7.5 and 6.3 

minutes reported by Otis and colleagues (2003). These average ISGHLs were from young 

(35-45 kg body weight at start of trial) adult male Yucatan miniature pigs fed a high fat 

diet, and a normal balanced diet, for 20 weeks respectively. This suggests that all of our 

pigs may have had reduced insulin sensitivity. Visceral fat was found to be a significant 

covariate ofiSGHL. Insulin resistance measured by theIST increased with visceral fat 

content across all the pigs. PIC was also a significant covariate of ISGHL. Insulin 

resistance measured by the IST increased in a similar fashion as insulin concentration of 

the pancreas across all pig. This relationship between PIC and ISGHL is likely due to 

compensatory hyperinsulinemia, which requires more insulin production, and therefore 

higher levels of available insulin in the pancreas, to compensate for insulin resistance and 

maintain normal glucose levels. The relationship among visceral fat, PIC, and ISGHL 

was also observed in the GHL from the IVGIT. This would be expected, as the GHL 

from the IVGTT is largely determined by insulin sensitivity. ISGHL correlated 

significantly with GHL in our pigs. 

Pancreatic insulin concentration (PIC) increases during the development of insulin 

resistance (Asghar et al., 2006; Srinivasan et al., 2005). The increased PIC coincides with 

increased insulin secretory response to hyperglycemia or insulin secretagogues such as 

arginine and leucine in rats fed a high carbohydrate formula (Srinivasan et al., 2005). 

Increased PIC is also related to increased insulin secretory response to glucose that 

worsens over time in the muscle IGF-I receptor (IGF-IR)-lysine-arginine (MKR) mouse 
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model of type 2 diabetes which expresses dominant-negative mutant IGF-IRs in skeletal 

muscle and is diabetic with insulin resistance in muscle, liver, and adipose tissue (Asghar 

et al., 2006). PIC in our pigs did not differ among runt, large and sow-fed groups. Had 

reduced pre-natal growth rates in our pigs caused insulin resistance one might have 

expected higher levels of PIC in the runt pigs. Had a post-natal diet of formula, rather 

than sow's milk caused more insulin resistance it might be expected that PIC would be 

elevated in the large pigs compared to the sow-fed. Neither of these results, however, 

were observed. PIC correlated positively with GHL, and ISGHL, as mentioned 

previously. The positive trend ofPIC with gAUC, suggests a decrease in glucose 

tolerance with increasing PIC. This is consistent with increased PIC indicating decreased 

insulin sensitivity. A positive trend between PIC and visceral fat was also observed, 

suggesting a possible relationship between increased visceral fat and increased pancreatic 

insulin concentration, both of which show positive relationships with insulin resistance. 

This may be the first time that PIC was analyzed in pigs as it relates to glucose 

metabolism. 

Gender affected PIC, with females having higher PIC than males .. This difference 

in PIC between males and females is likely related to differences in visceral fat content 

between genders. Visceral fat content was strongly related to glucose metabolism in our 

pigs. This PIC difference was expected given the results from the fasting plasma analysis, 

IVGTT and IST, which showed that female pigs were less glucose tolerant and more 

insulin resistance than males. Reduced pre-natal growth followed by ad-libitum feeding 

has been shown to induce obesity in some animal models (McMillen & Robinson, 2005). 
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Therefore it was expected that runt pigs might have higher visceral fat content, a measure 

of central obesity, than large pigs. If formula feeding were related to the development of 

obesity in our pigs, then large pigs would be expected to have higher visceral fat content 

than the sow-fed pigs. The visceral fat content in our pigs did not differ between runt, 

large or sow-fed pigs. This suggests that pre-natal growth or post-natal diet did not affect 

the development of central obesity in our pigs. There was a gender difference in the 

visceral fat content in our pigs. Female pigs had higher visceral fat than males. Visceral 

fat content correlated positively with gAUC, GHL, iAUC and ISGHL, suggesting reduced 

glucose tolerance and insulin sensitivity with increasing visceral fat. The link between 

visceral fat and glucose metabolism has been clearly established in humans (Kobayashi et 

al., 2001 ; Mittra et al., 2008). However, whether impaired glucose metabolism causes 

visceral adiposity or visceral adiposity causes impaired glucose metabolism has not been 

established. Both visceral adiposity and impaired glucose metabolism may result from 

some common pathology and may have synergistic effects on each other. The visceral fat 

content in this study was measured as a percentage, and absolute visceral fat mass could 

not be calculated due to an umecoverable loss of data. Most human studies report visceral 

fat as a total mass and percentage fat calculated from an MRI, or as a percentage using 

DEXA scan. Ideally the percentage of visceral fat and the total visceral fat mass would 

allow for a better analysis of visceral fat's relationship with glucose metabolism and 

growth. Nevertheless, very strong relationships between the percentage of visceral fat 

used in this study and the measures of glucose metabolism and abdominal circumference 

were observed. 
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The early increase in abdominal circumference was predictive of visceral fat later 

in life in our pigs. Abdominal circumference as early as 1 month of age correlated 

significantly with visceral fat content at - 12 months. Abdominal circumference at 3 

months of age correlated even more strongly with visceral fat at - 12 months. Visceral fat 

content at -12 months of age showed a positive trend with abdominal circumference at 10 

months of age. Abdominal circumference was also predictive of decreased glucose 

tolerance and insulin resistance. Abdominal circumference at 1 month, 3 months and 10 

months correlated positively with gAUC and iAUC from the IVGTT at - 11 months of 

age. This suggests that development of obesity, reduced glucose tolerance, and insulin 

resistance may begin early in life. However, this development was not related to pre-natal 

growth or early post-natal diet. Abdominal circumference at 1, 3 and 10 months also 

correlated positively with weight at 10 months of the pigs. 

Rapid growth in early life has been associated with negative health outcomes, 

including insulin resistance and impaired glucose tolerance (McMillen & Robinson, 

2005). Growth rates and feed efficiencies were analyzed over numerous time periods and 

related to the outcomes of the IVGTT and IST, as well as PIC and visceral fat content. 

Growth rates in the milk feeding phase (8-14, 14-21, 21-28, and 8-28 days) were 

significantly lower in runts compared to large and sow-fed pigs. Moreover, growth in 

each phase of milk feeding was positively correlated with birth weight. This finding does 

not demonstrate compensatory growth in the milk feeding phase, as lower birth weight 

animals had lower growth rates than larger animals. This positive relationship between 

birth weight and early growth was also observed by Poore and Fowden (2004b). The rates 
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of growth during the milk feeding phase did not correlate with any of the measures of 

diabetes, fat or suometric measurements. 

Total growth rate (TGR) (l-300 days) and growth during "cafeteria diet" feeding 

phase were calculated. The diet feeding phase was divided into three phases: the pre

sexual maturation phase (30-120 days), sexual maturation (120-210 days), and post

sexual maturation (210-300 days). TGR did not differ significantly among runt, large and 

sow-fed pigs in our study. This finding suggests a period of compensatory growth. The 

growth rates in the milk feeding phase were all positively related to birth weight and 

differed significantly between runt piglets and their large and sow-fed siblings. However, 

this significant difference disappeared over the life of the pigs suggesting that runt piglets 

made up for their reduced growth rate early in life. These findings also suggest that pre

natal growth or pre-weaning diet did not affect the overall lifelong growth of the pigs. 

TGR was significantly correlated with fasting glucose:insulin ratio (negatively) and 

gAUC (positively), and showed a positive trend with iAUC. This suggests that higher 

overall growth, which may involve obesity, is related to insulin resistance and reduced 

glucose tolerance. This finding was further supported by positive trends between TGR 

and visceral fat content. When growth rates during the different maturation phases were 

analyzed, no difference in any phase was observed among runt, large and sow-fed pigs or 

by gender. Pre-sexual maturation (30-120 days) growth rate correlated negatively with 

fasting glucose:insulin ratio and positively with iAUC. This suggests that accelerated 

early growth, from 30-120 days, may be linked to insulin resistance later in life. This pre

sexual maturation period may be a critical growth stage in which rapid growth rate may 
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lead to insulin resistance later in life, similar to findings in humans (Eriksson et al., 2006; 

Ong & Laos, 2006). Growth rates during sexual maturation correlated positively with 

weight and abdominal circumference at 1 0 months, and showed a positive trend with 

iAUC. Fractional growth rates (FGR) were also calculated for the different maturation 

phases during "cafeteria diet" feeding. The FGR during sexual maturation (120-220 days) 

was significantly higher in runts than both large and sow-fed pigs. The FGR for pre and 

post sexual maturation did not differ among runt, large and sow-fed pigs. These findings 

suggest that the runt piglets experienced greater growth during sexual maturation than the 

large and sow-fed pigs proportional to their starting weight. The runt piglets must 

undergo some compensatory growth during sexual maturation. However, fractional 

growth rates were not related to any measure of glucose metabolism. 

Feed efficiencies (FE) for each growth phase (milk feeding and cafeteria diet) 

were calculated as compensatory growth in animals is often a result of increased feed 

efficiency. No significant difference in FE for any growth rate was observed between 

runt, large or sow-fed pigs. This is consistent with the lack of difference observed in the 

growth rates, but not with the difference in fractional growth rate during sexual 

maturation. Interestingly there were significant differences in feed efficiency by gender. 

FE from 120-210 days was significantly different, with females having the higher feed 

efficiency during sexual maturation. Feed efficiencies did show an interesting overall 

relationship with glucose metabolism. High early FE (i.e. before 120 days) may be 

beneficial to glucose metabolism at 10 months of age. This was demonstrated by FE from 

8-28 days correlating positively with fasting glucose:insulin ratio, negatively with 
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abdominal circwnference at 3 months, and PIC. FE from 8-28 days also showed a 

negative trend with gAUC. This positive relationship with glucose metabolism and health 

continued with high feed efficiency in the pre-sexual maturation (30-120 day) phase. FE 

from 30-120 days correlated negatively with gAUC and abdominal circumference at 10 

months of age. A negative trend between iAUC and final weight was also observed with 

FE from 30-120 days. These findings suggest that high feed efficiencies before sexual 

maturation is protective against the development of insulin resistance, reduced glucose 

tolerance and obesity. 

In contrast, the opposite relationship between FE and glucose metabolism was 

observed during sexual maturation. High FE during sexual maturation (120-210 days) had 

a negative relationship with glucose metabolism and health. FE from 120-210 days 

correlated positively with gAUC, visceral fat content, and abdominal circumference. FE 

from 120-210 days also showed a positive trend with ISGHL. These fmdings suggest that 

elevated FE during sexual maturation may lead to increased central obesity, and reduced 

glucose tolerance in our pigs, perhaps caused by insulin resistance. Interestingly, unlike 

the 120-210, and 210-300 day periods, FE from the 30-120 day period did not correlate 

positively with its corresponding growth rate. Furthermore, FE from 30-120 days 

correlated negatively with growth rate in the 120-210 day period and showed a negative 

trend with FE from 120-210. This would suggest that high feed efficiency during the pre

sexual maturation phase was related to reduced growth rate and feed efficiency during 

sexual maturation. 
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When feed efficiency and growth fmdings are analyzed together, it would seem 

that low feed efficiency and high growth before sexual maturation negatively impacts 

glucose metabolism. Furthermore, high feed efficiency during sexual maturation, which 

was related to a high rate of growth during sexual maturation, leads to increased 

development of central obesity, and reduced glucose tolerance. 

Summary 

Effects of pre-natal growth on glucose metabolism and the development of type 2 

diabetes. 

In order to investigate the effect of pre-natal growth on glucose tolerance and 

insulin sensitivity, comparisons between runt and large pigs were made. Runt pigs were 

expected to be more susceptible to insulin resistance and have reduced glucose tolerance 

compared to their large littermates, as has been demonstrated in other models (Bertram & 

Hanson, 2001; Poore & Fowden, 2002, 2004b; Vuguin, 2007). However there was no 

significant difference in any measurements of glucose tolerance or insulin sensitivity 

between runts and larger littermates at 10 months of age. There was also no significant 

difference in pancreatic insulin concentration, visceral fat content, or abdominal 

circumference between the runt and large pigs. Also, there were no significant 

correlations between birth weight and any measurement of type 2 diabetes. 

Only one other study examined the relationship among birth weight, growth and 

the effect of diabetes and pigs (Poore and Fowden, 2002).0ur findings are contrary to 

findings by Poore and Fowden, in large white breed of domestic pigs which showed that 
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low birth weight pigs had lower glucose tolerance compared to higher birth weight 

pigs. The lack of difference between low and high birth weight groups in our study could 

be due to the powerful effect of gender, attributed to differing visceral fat contents, 

observed in our pigs. Female pigs had far lower glucose tolerance and insulin sensitivity 

than the males in our study. Our experimental groups were balanced for gender; whereas 

Poore and Fowden's experimental groups were not, having more females than males in 

the lower birth weight group. 

The lack of overt symptoms of diabetes in our pigs is likely a result of their 

relatively young age. Although they were fed a high fat, high sugar, high salt, nutrient 

dilute diet, the pigs were still in young adulthood (relative to humans) and likely 

unaffected by the age related decline in glucose tolerance observed in humans (Rosenthal 

et al. , 1982; Rowe et al., 1983) and pigs (Larsen et al., 2001). This young age was likely 

protective against developing overt diabetes. In future studies using Yucatan miniature 

pigs the effect of pre-natal growth on glucose metabolism should be investigated in mid

to late adulthood. 

Effect of early post-natal diet on glucose metabolism and the development of type 2 

diabetes. 

Early post-natal growth and development is influenced primarily by early 

nutrition. In humans, breast-feeding is protective against the chronic adult diseases such 

as insulin resistance and obesity (Ravelli et al., 2000; Weyermann et al. , 2006). In order 

to investigate the effect of post-natal diet on glucose tolerance and insulin sensitivity, 
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comparisons between large and sow-fed pigs were made. It was expected that the large 

pigs that were fonnula fed may be more susceptible to insulin resistance and impaired 

glucose tolerance than the sow-fed pigs. However there was no significant difference in 

any measurements of glucose tolerance or insulin sensitivity between runts and larger 

littermates at 10 months of age. There were also no significant differences in pancreatic 

insulin concentration, visceral fat content, abdominal circumference, growth rates or feed 

efficiencies between the large and sow-fed pigs. 

These fmdings are not consistent with findings in humans. Ravelli and colleagues 

(2000) found increased 120 minute (post glucose challenge) glucose concentration and 

elevated fasting insulin levels in adults who were fonnula fed as infants compared to 

those breast fed as infants. The age of participants in this study was 48-53 years, which is 

much older than the relative age of the pigs in our study. Again, this relatively young age 

of our pigs may have protected them from formula feeding associated metabolic 

consequences. The impact of formula feeding may not develop until later in life. In future 

studies using Yucatan miniature pigs, the effect of post-natal diet on glucose metabolism 

should be investigated in mid-to late adulthood. 

Effects of post-natal growth on glucose metabolism and the development of type 2 

diabetes. 

Post-natal growth has been shown to impact the development of diseases later in 

life (Eriksson et al., 1999, 2006; McMillen & Robinson, 2005). Epidemiological data 

from Helsinki, Finland found that low birth weight infants who experienced rapid growth 
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after one year of age had the highest risk of developing type 2 diabetes (Eriksson et al., 

2004). The disease risk was related to the rate of growth rather than actual size at any 

time period (Eriksson et al., 1999). These findings suggest that rapid post-natal growth 

increases the risk of developing impairments in glucose metabolism. It was expected that 

a negative relationship between growth rate and glucose tolerance and/or insulin 

sensitivity might be observed in our pigs. As low birth weight children and animals often 

experience compensatory or "catch up" growth, runt pigs in this study were thought to 

have the highest risk of elevated post-natal growth rates and the negative impact on 

associated glucose metabolism. 

Growth during the milk feeding phase (i.e. 8-14, 14-21, 21-28, 8-28 days) differed 

significantly among runt pigs and the large and sow-fed pigs. Growth rates during milk 

feeding were positively related to birth weight, with the runt piglets having a lower rate of 

growth than the large and sow-fed pigs. The growth rates during the milk feeding phase 

did not correlate with any measure of glucose metabolism or suometric measurement later 

in life. This was contrary to finding by Poore and Fowden (2002) who found that gAUC 

was positively correlated with growth from birth to one month of age in their pigs. 

Growth during the "cafeteria" diet feeding phase (i.e. 30-120, 120-210, 210-300, 

0-300 days) did not differ among runt, large or sow-fed pigs. These fmdings are contrary 

to studies in humans that have shown higher rates of early growth (1-3 month) in breast

fed infants, but lower later (4-12 month) and overall growth rates in the first year oflife 

than formula fed infants (Agostoni et al. , 1999; Dewey et al., 1992; Zeigler, 2006). This 

pattern was not observed between large and sow-fed pigs in our study. 

71 



An interesting relationship between growth and later glucose metabolism was 

observed across all groups of pigs. High rates of growth before and during sexual 

maturations were related to decreased glucose tolerance and insulin resistance, as well as 

increased abdominal circumference and weight at 10 months. These findings were similar 

to findings by Eriksson et al. (2004) who found rapid growth during childhood was 

related to impaired glucose tolerance and increased risk of type 2 diabetes later in life. 

There was however no significant relationship between birth weight and growth rates 

during the cafeteria diet phase in our pigs. 

Feed efficiencies during pre-sexual maturation, and sexual maturation also 

showed a relationship with growth and the development of impaired glucose tolerance, 

insulin resistance and obesity. High feed efficiency during sexual maturation was 

positively related to impaired glucose tolerance, increased visceral fat, abdominal 

circumference, and growth. These findings suggest that rapid growth during sexual 

maturation may lead to central obesity and impaired glucose metabolism. Conversely, 

high feed efficiency before sexual maturation may be protective against the development 

of insulin resistance, reduced glucose tolerance and obesity. High feed efficiency before 

sexual maturation was also related to reduced growth and feed efficiency during sexual 

maturation. Interestingly, feed efficiency before sexual maturation was not positively 

related to growth at the same time, in contrast to the sexual maturation phase. This would 

suggest that inefficient rapid growth before sexual maturation may lead to metabolic 

consequences later in life. Perhaps inefficient growth before sexual maturation results in 

physiological changes that affect body composition and increase central obesity. These 
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changes in turn may lead to metabolic problems later in life. This hypothesis is supported 

by our data, in which reduced feed efficiency before sexual maturation correlated with 

increased visceral fat and large abdominal circumference at 10 months of age. 
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Chapter 3: Methyl metabolism study 

3.1 Objectives 

Changes in sulfur amino acid metabolism have been suggested as a possible 

mechanism in developmental plasticity (Rees, 2002; McMillen & Robinson, 2005; Van 

den Veyver, 2002). A change in DNA methylation is one of the proposed methods by 

which gene expression could be altered during development. These changes in expression 

could be permanent, and result in physiological changes that mediate developmental 

plasticity. The activity of the enzymes in the sulfur amino acid cycle are possible 

contributing factors to DNA methylation status, as this cycle regulates the supply of 

methyl groups and the fate of homocysteine, which can have an inhibitory effect on all 

methylation if it is elevated. Enzyme activities ofBHMT and CTH were observed in 

livers of newborn runt piglets compared to their larger littermates (Brophy, 2006). But it 

is unknown whether the changes in enzyme activities are due to pre- or post-translational 

mechanisms. The main objectives of this study were: 1) to determine if the hepatic 

expression ofBHMT and CTH are affected by pre-natal growth; 2) to determine if the 

global DNA methylation in the liver of these piglets is affected by pre-natal growth; 3) to 

determine if DNA methylation is related to BHMT or CTH activity or expression. 
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3.2 Hypotheses 

Runts will have reduced hepatic expression of BHMT and CTH compared to their 

larger littennates, which causes the lowered BHMT and CTH enzyme activity levels. The 

global hepatic DNA methylation of the runt piglets will be decreased compared to larger 

littermates due to decreased activity of enzymes responsible for disposing of 

homocysteine. 

3.3 Methods 

3.3.1 Animals and housing 

Twelve Yucatan miniature piglets (5 male, 7 female) were obtained from the 

Vivarium at Memorial University. Six pairs of littermates, consisting of one normal-sized 

and one runt piglet, were removed from sows at the age of 3-5 days. Necropsies were 

performed the same day as removal from the sow. At the time of the necropsy the 

normal-sized littermates weighed 1.085 - 1.646 kg with a mean body weight of 1.362 ± 

0.213 kg. Runt piglets weighed between 0.6912 - 1.0400 kg with a mean body weight of 

0.849 ± 0.128 kg. Runts were at most 80% of their littermate's body weight. Animal care 

and handling procedures were conducted in accordance with the guidelines of Memorial 

University of Newfoundland Animal Care Committee and the Canadian Council on 

Animal Care. 
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3.3.2 Necropsy 

Necropsies were performed on each sibling pair on the same day. The piglets 

were anaesthetized with halothane (4% induction, 2% maintenance) delivered with 

oxygen by mask. Blood samples were procured by heart puncture; samples of liver were 

freeze-clamped and other tissue samples were weighed and sampled and then frozen 

using liquid nitrogen. Samples were stored at -70 oc until analyses. 

3.3.3 Sulfur amino acid enzyme expression 

Relative gene expression of betaine homocysteine methyl transferase (BHMT), 

and cystathionase (cystathionine gamma-lyase) (CTH) were measured using duplex real 

time reverse transcriptase polymerase chain reaction (RT-PCR). Total RNA was obtained 

from liver samples using the RNeasy kit (Qiagen, Valencia, CA) according to the 

manufacturer's protocol. eDNA was synthesized using 1 f..lg of total RNA with the 

QuantiTect reverse transcription kit (Qiagen, Valencia, CA) according to manufacturer's 

protocol, including a genomic DNA wipeout step. 

PCR primers and probes for porcine BHMT, CTH and P-actin were designed 

using RealTimeDesign software (Biosearch Technologies, Novato, CA). Expression of P

actin was used as an endogenous reference gene to account for differences in sample 

loading and PCR efficiencies between reactions. Taqman probes for P-actin were labeled 

with reporter dye carboxyfluorescein (F AM) on the 5' end and black hole quencher 

(BHQ-1) on the 3 'end. Taqman probes for BHMT and CTH were labeled with reporter 

dye PULSAR 650 on the 3' end and black hole quencher (BHQ-2) on the 5 'end. 

76 



Amplification reactions contained 2 Jll of eDNA, 10 Jll of 2X x Quanti Teet 

Multiplex PCR NoROX Master Mix (Qiagen), 2 J.!L of lOX ~-actin primer/probe mix, 2 

J.!L of 1 OX BHMT or CTH primer/probe mix (1 Ox primer probe mixes made according to 

instruction in QuantiTect Multiplex PCR Kit). All reactions were performed in triplicate 

on a LightCycler 1.2 real-time PCR system (Roche, Missisauga, ON). The thermal 

cycling conditions were 10 min at 95 octo activate HotStarTaq DNA polymerase, 

followed by 40 cycles of94 oc for 45 sec, 56 oc for 45 sec, and 76 °C for 45 sec. A 

sample of the reverse transcriptase reaction without reverse transcriptase enzyme, and a 

sample of PCR reaction mixture without eDNA were used as negative controls. 

Relative gene expression was calculated using the formula outlined by M. W. 

Pfaffl (2001). A PCR efficiency of2.0 was used for all calculations. Gene expression 

was compared between runt and large piglets by a paired t-test, and genders were 

compared by unpaired t-test. 

3.3.4 Cytosine extension assay 

Hpa II is a methyl sensitive endonuclease which cuts at the sequence CCGG, if 

the middle CG is unmethylated, leaving an overhanging guanine nucleotide. This guanine 

can be paired with a cytosine using Taq polymerase, by using a radiolabelled cytosine in 

the nucleotide extension reaction; the amount of overhanging guanine residues, and 

thereby the amount of cleaved CCGG sequences in a DNA sample can be measured. As 

DNA methylation occurs primarily at CpG sites, and many of these CpG sites are found 
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in a CCGG sequence, an estimate of global methylation can be obtained. The method is 

outlined in detail by Pogribny and colleagues (1999). 

Genomic DNA from liver samples was extracted using a classic chloroform 

phenol extraction. DNA concentration and purity was measured using a Nanodrop 

spectrophotometer (Thermo Fisher Scientific, Waltham, MA). Fifteen 11g of DNA was 

added to 75 U (5-fold excess) of Hpa II (NEB, Ipswich, MA), in the Hpa II digestion 

buffer (NEB, Ipswich, MA), to make up 300 111 reactions. Negative controls containing 

15 11g of genomic DNA in digestion buffer without the addition of endonuclease were 

used. Ten ~ of each digestion reaction, including the negative controls were removed 

and added to 1 11L of plasmid (500 ng/!J.L in concentration, or equal to the amount of 

genomic DNA in the 10 11L samples). These reactions we carried out to assure that 

complete digestion occurred. All reactions were then incubated overnight at 3 7°C. 

After 12-16 h, the 11 uL reactions were run on a 0.5% agarose gel, and stained 

with ethidium bromide and visualized under UV light. Completion of the digestion 

reaction was confrrmed by the lack of intact plasmid. Endonuclease-negative samples 

showed intact plasmids. Any reactions which showed incomplete digestion were re

digested as previously described and checked again for complete digestion. When 

complete digestion was confinned, the digested DNA samples and controls were 

precipitated by the addition of 2 volumes of 98% ethanol and 1110 volume 3 M sodium 

acetate, followed by centrifugation at 13000 rpm at 4 o C for 15 minutes. DNA samples 

were then dissolved in 30 11L DNase-free water, and DNA concentration was measured 

using a Nanodrop spectrophotometer (NanoDrop products, Wilmington, DE). 
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For each Hpa II DNA digest, and the negative control, a single nucleotide extension 

reaction was set up using the following formula (Table 3.3.4.1). 

Table 3.3.4.1 Single nucleotide extension reaction (25 j..tL). 

2.0 j.lg digested DNA 

2.5 j..tL 10 x Native Taq buffer (Invitrogen, Burlington, ON) 

0.75 ~-LL 50 mM MgCl 

0.2 j..tL ofNative Taq polymerase (Invitrogen, Burlington, ON) 

0.2 j..tL [jH] CTP (57.4 Ci/mmol) (Moravek Radiochemical, Brea, CA) 

The extension reactions were incubated at 55°C for 1 h. 10 j..tL of each reaction 

digest was applied to 2 separate D-81 ion exchange filters, and each filter was washed 3 

times in sodium phosphate buffer (pH=7.0). The filter papers were dried overnight at 

room temperature, and then prepared for scintillation counting by submersion in 10 mL of 

Scintiverse (Thenno Fisher Scientific, Waltham, MA) in a 20 mL scintillation vial. 

Radioactivity was measured for 5 min using a liquid scintillation counter for tritium. 

Duplicate samples had to have a coefficient of variation of less than 10%, or the single 

nucleotide extension and scintillation counting was performed again. 

Using tritiated cytosine, the amount of methylation in a sample can be estimated 

by subtracting DPM of the control digest (background) from the Hpa II digest. The DPM 

of the samples were then expressed per 0.5 j.lg of digested DNA. As methylation in a 

DNA sample decreases the DPM/0.5 1-lg of digested DNA increases. 
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DNA methylation (DPM/0.5 J..lg DNA) was compared between runt and large 

piglets using a paired t-test, and genders were compared using an unpaired t-test. 

3.3.5 Liver BHMT and CTH activity and plasma homocysteine, cysteine, and 

methionine 

Liver BHMT and CTH enzyme activities as well as plasma homocysteine, 

cysteine, and methionine concentrations were assayed in these piglets by Julie Brophy, as 

part of an honours program. Her data will be included to allow for comparisons with the 

results ofBHMT and CTH expression and DNA methylation. 

3.4 Results 

3.4.1 DNA methylation 

Global DNA methylation was estimated by measuring the DPM/0.5 J..lg DNA in 

Hpa II digests. The DNA methylation did not differ between runt and large piglets 

(Figure 3.4.1.1) (p=0.88). The DPM/0.5 J..tg DNA of the runt piglets ranged from 3281 to 

4502 with a mean of3894 ± 469. The large piglets' DPM/0.5 J..tg DNA ranged from 3425 

to 4178, with a mean of3928 ± 314. The female piglets had a mean DPM/0.5 J..lg DNA of 

3677 ± 375 and males with 3722 ± 316 (p=O.l2) (Figure 3.4.1.2). DPM/0.5 j.lg DNA data 

in our pigs did not correlate with CTH or BHMT activity or expression. DPM/0.5 J..tg 

DNA data showed a negative trend with plasma homocysteine (r=-0.549, p=0.065) 

(Figure 3.4.1.3) and cysteine (r=-0.499, p=0.099) (Figure 3.4.1.4), suggesting a positive 

relationship between homocysteine and cysteine concentrations and DNA methylation. 
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Figure 3.4.1.1 DNA methylation of runt and large piglets (n=6 for each group). 
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Figure 3.4.1.2 DNA methylation by genders (n=7 female, 5 male). 
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Figure 3.4.1.3 DNA methylation versus plasma homocysteine. 
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Figure 3.4.1.4 DNA methylation versus plasma cysteine. 
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3.4.2 BHMT expression 

The expression ofBHMT was normalized to P-actin expression in each sample 

and normalized to a calibrator sample to allow for direct comparison among all piglets, 

giving expression values in arbitrary units (AU). BHMT expression did not differ 

between runt and large piglets (p=0.96) (Figure 3.4.2.1). Runt piglets had a mean BHMT 

expression of 0.998 ± 0.24 AU while the large piglets had a mean BHMT expression of 

0.991 ± 0.21 AU. Gender also did not affect the expression ofBHMT (p=0.72) (Figure 

3.4.2.2). BHMT expression did not correlate to BHMT activity, CTH activity or plasma 

homocysteine, cysteine, or methionine concentrations (data not shown). 
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Figure 3.4.2.1 BHMT expression of runt and large piglets (n=6 for each group). 
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Figure 3.4.2.2 BHMT expression by gender (n=7 females, 5 males). 

3.4.3 CTH expression 

The expression of CTH was normalized as described for BHMT. The expression 

ofCTH was significantly different between runt and large groups (p=O.Ol) (Figure 

3.4.3.1). Large piglets had higher CTH expression than runts (1.24 ± 0.54 AU versus 0.85 

± 0.54 AU, respectively) (Figure 3.4.3.2). The expression ofCTH was not affected by 

gender (Figure 3.4.3.2). CTH expression tended to correlate with CTH activity (p=O.l6) 

(Figure 3.4.3.3). The removal of one runt and large sibling pair outlier (>2 SD greater 

than mean), allowed the CTH activity and expression to correlate significantly (p=0.05). 

Each large piglet had higher CTH expression than its sibling runt, a pattern that was also 

observed in the CTH activity data. CTH expression also significantly correlated with 

plasma homocysteine levels (r=0.703, p=0.007), but not plasma cysteine or methionine 

concentrations (data not shown). 
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Figure 3.4.3.1 CTH expression of runt and large piglets. 
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Figure 3.4.3.2 CTH expression by gender. 
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Figure 3.4.3.3 CTH expression as it relates to CTH activity. 
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3.4.4 BHMT and CTH activity and plasma cysteine and homocysteine. 

BHMT and CTH activity, as well as plasma cysteine and homocysteine, were 

measured in our piglets by Julie Brophy, an honours student in our lab. As some of the 

results of this study related to these measures, the values will be included in tables for 

companson purposes. 

Table 3 .4.4.1 BHMT and CTH activities. 

BHMT activity (nmoVmin/mg) CTH activity (mnol/min/mg) 

Large Runt Large Runt 

Piglets 1,2 
0.335 0.271 6.55 6.09 

Piglets 3,4 
0.443 0.260 5.78 4.82 

Piglets 5,6 
0.286 0.150 6.08 3.14 

Piglets 7,8 
0.299 0.316 5.52 5.15 

Piglets 9,10 
0.317 0.255 2.26 1.31 

Piglets 11,12 
0.401 0.229 5.57 4.84 

Mean 
0.347 0.247* 5.29 4.23** 

St.Dev. 
0.062 0.055 1.53 1.72 

Runt 1s s1gmficantly different from large at *p=0.03 **p=0.04 
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Table 3.4.4.2 Plasma concentrations of cysteine and homocysteine. 

Cysteine (~unol/L) Homocysteine (f..lmol/L) 

Large Runt Large Runt 

Piglets 1,2 
88.2 81.2 23.4 25.7 

Piglets 3,4 
111.8 93.3 30.5 36.3 

Piglets 5,6 
90.0 83.5 27.6 29.1 

Piglets 7,8 
122.0 87.6 35.5 26.0 

Piglets 9,10 
88.1 86.0 26.5 21.2 

Piglets 11,12 
94.4 87.9 34.3 28.1 

Average 
99.1 86.6* 29.6 27.7 

S.D. 
14.4 4.2 4.7 5.0 

Runt 1s s1gmficantly d1fferent from large at *p=0.05 
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3.5 Discussion 

Changes in DNA methylation have been proposed as being one of the underlying 

mechanisms involved in the early origins of adult chronic diseases (McMillen & 

Robinson, 2005). Methyl supply has been shown to affect DNA methylation, which, in 

turn, can alter gene expression. This leads to the possibility that sulfur amino acid 

metabolism may be linked to the development of diseases later in life (Rees et. al, 2000, 

Rees, 2002). An honours student, who looked at the activity of sulfur amino acid enzyme 

in liver tissue, found significantly lower activity of BHMT and CTH in runt as compared 

to large piglets in our study. We hypothesized that lower activity of these homocysteine 

degradation enzymes in runt piglets may lead to the accumulation of homocysteine. 

Homocysteine has been shown to affect DNA methylation, and perhaps permanently alter 

gene expression and development, leading to the development of chronic diseases 

(Stipanuk, 2004). As methionine synthase (MS) activity did not differ between runt and 

large piglets, reduced BHMT activity could hypothetically lead to elevated homocysteine. 

However, it must be noted that the activity levels assayed represent the maximum activity 

capacity of each enzyme for each animal, not the in vivo activity levels of each enzyme. 

To determine whether the actual in vivo activity levels of sulfur amino acid enzymes are 

affected by developmental plasticity, the in vivo kinetics of the sulfur amino acid cycle 

would have to be investigated in runt and large piglets. Nevertheless, the fact that BHMT 

and CTH capacities were lower in runt piglets does presumably reflect a lower in vivo 

capability of removing homocysteine. 
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The plasma amino acid concentrations and homocysteine levels were also 

analyzed, but homocysteine (p=0.23) and methionine concentrations were not different 

(p=0.86) (data not included) (Brophy, 2006). Cysteine levels, however, were significantly 

lower in the runt piglets (p=0.03). Although homocysteine and methionine levels were not 

significantly different between runts and large piglets, the reduced cysteine levels suggest 

that runt piglets may have a lower rate oftranssulfuration than the large piglets. As a 

follow up to these findings, the gene expression of BHMT and CTH were analyzed, and 

global DNA methylation was measured. 

It was hypothesized that liver BHMT and CTH expression would show a similar 

pattern to their activities and that large piglets would have higher BHMT and CTH 

expression than runts. Indeed, CTH expression was significantly lower in runt versus 

large piglets, as hypothesized. Furthermore, consistent with the overall fmdings, CTH 

expression was higher in each large piglet compared to its runt sibling. The CTH 

expression and CTH activity correlation did not reach statistical significance, primarily 

because of one outlier pair of siblings that was >2 SD above the mean. The removal of 

this set of siblings from the correlation allowed CTH expression to have a significant 

positive correlation with CTH activity. These findings may suggest that the previously 

described difference in CTH activity between the runt and large piglets is due to 

regulation at the transcriptional level. As DNA methylation in the promoter regions of 

genes is often associated with the regulation of gene expression, it may be of interest to 

investigate the CTH gene-specific DNA methylation in these piglets. CTH is an essential 

enzyme in the removal of homocysteine and in the synthesis of cysteine from methionine. 
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Moreover, it has been suggested that this enzyme is rate-limiting for cysteine synthesis 

and its lower activity in neonates (particularly premature neonates) has led to the 

hypothesis that cysteine may be conditionally essential in early life because methionine 

cannot be transsulfurated adequately (Vifia et al, 1995). It is possible that runt piglets 

have lower CTH similar to premature infants, and may not be able to meet their 

glutathione or cysteine requirements by transsulfuration. This could lead to increased 

oxidative stress in runt piglets due to reduced glutathione levels, as well as reduced 

overall growth due to insufficient availability of cysteine for protein synthesis. This 

reduction in protein synthesis and/or increase in oxidative stress could lead to increased 

risk of developing disease later in life, particularly atherosclerosis and cardiovascular 

disease in which oxidative stress has been implicated (Willcox et al., 2008). Furthermore, 

permanent changes in CTH expression via altered DNA methylation, which if maintained 

throughout life, may demonstrate one of the mechanisms behind developmental plasticity. 

If sulfur amino acid enzymes are pennanently down regulated at a transcriptional level 

due to reduced fetal growth, then organisms with reduced fetal growth are more 

susceptible to elevated levels of homocysteine throughout life. Elevated homocysteine 

levels have been associated with numerous negative health outcomes, and these effects 

may be independent of the possible effect that elevated homocysteine concentrations can 

have on DNA methylation. This effect of elevated homocysteine on DNA methylation 

could alter the regulation of genes, possibly increasing the probability of disease (Rees et 

al., 2000; Stipanuk, 2004; Townsend et al., 2004). 
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CTH expression also correlated positively with plasma homocysteine levels. This 

observation was expected as the homocysteine level is directly related to S-adenosyl

homocysteine (AdoHcy) level, which is an activator oftranssulfuration (Finkelstein, 

2000). Surprisingly, this relationship was not observed for homocysteine and CTH 

activity. However, the removal of the one outlying sibling pair of piglets with elevated 

CTH activity showed a significant positive correlation between plasma homocysteine and 

CTH activity. S-adenosyl-methionine also activates transsulfuration; however, S

adenosyl-methionine concentration was not measured in our piglets and therefore could 

not be correlated with CTH expression or activity. 

Unlike CTH expression, liver BHMT expression was not significantly different 

between runt and large piglets. This suggests that the differences in BHMT activity 

between runt and large piglets may be due to some type of post-translational mechanism. 

The type of post-translational mechanism that may be regulating BHMT activity merits 

further investigation. One possible mechanism of down regulation ofBHMT activity in 

the runt piglets could be related to liver transglutaminases. Liver transglutaminases have 

been shown to intra- and inter-molecularly cross link BHMT subunits and thereby reduce 

BHMT activity in vitro (Ichikawa et al., 2004). Post-translational mechanisms of 

regulation may be more transient than regulation at an expression level and may be 

related to the availability of substrate. Although there was no significant difference in 

plasma homocysteine concentrations between runt and large piglets, we did not measure 

liver intracellular homocysteine or betaine levels. Perhaps the post-translational 
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regulation of hepatic BHMT activity was related to the availability of substrate in liver 

cells. 

DNA methylation was measured by the cytosine extension assay. This assay 

measures the amount of tritiated cytosine incorporation into DNA following digestion by 

Hpa II, a methyl-sensitive restriction enzyme. There was no significant difference found 

in global DNA methylation between runt and large piglets. Furthermore, DNA 

methylation was not related to the activity or expression of either BHMT or CTH. 

Although not statistically significant, a trend was observed between DNA methylation 

and plasma concentrations of homocysteine and cysteine. Higher plasma homocysteine 

and cysteine levels tended to correspond to increased DNA methylation. This relationship 

is unexpected as homocysteine levels are related to S-adenosyl-homocysteine levels, and 

S-adenosyl-homocysteine is inhibitory of most methylation reactions and associated with 

reduced DNA methylation (Finkelstein, 2000; Rees, 2000; Van den Veyver, 2002). 

However, the ratio of S-adenosyl- methionine to S-adenosyl- homocysteine (the 

previously described methylation index) is more important to DNA methylation than the 

amounts of S-adenosyl-homocysteine, as S-adenosyl-homocysteine is a competitive 

inhibitor of methylation (Van den Veyver, 2002). The amount of S-adenosyl-methionine 

was not measured in our piglets, therefore the calculation of the SAM/SAH ratio was not 

possible. 

Although global DNA methylation did not differ between runt and large piglets, it 

is possible that the gene-specific methylation of certain genes may be affected by 

developmental plasticity. Changes in cytosine methylation due to a global intervention, 
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such as a high methionine diet, may cause changes in methylation in a very specific 

fashion (McGowan et al. 2008). Such small changes in the important regulatory regions 

of genes may not be able to be detected on a global level, as variation in methylation of 

non-coding areas of DNA may be too great. The analysis of global DNA methylation is 

only a starting point, and can only detect differences across all coding and non-coding 

DNA methylation (Shen & Waterland, 2007). Where evidence suggests regulation by 

developmental programming, such as on CTH in the case of this study, DNA methylation 

should be investigated on a gene-specific level. The best method to investigate this 

specific methylation is through the use ofbisulphite sequencing (Shen & Waterland, 

2007). Bisulphite sequencing uses sodium bisulphite' s transformation ofunmethylated 

cytosine to uracil to induce cytosine (C) to thymine (T) transitions. DNA is modified by 

sodium bisulphite, and then regions of interest are amplified by PCR using pti mers that 

surround but do not overlap the CpG sites. The PCR fragments are then ligated into 

clones and amplified on selective media to produce individual colonies. The colonies are 

selected and their plasmid DNA is isolated and sequenced. Each colony' s sequence 

represents the methylation of a single allele; by using many clones, the methylation of 

numerous CpG sites can be quantified. This method is the gold standard in gene-specific 

methylation analysis, and may be too time consuming to do on a large number of 

samples. Therefore, other methods such as bisulphite pyrosequencing, bisulphite PCR 

followed by matrix assisted laser desorption time-of-flight mass spectrometry (MALDI

TOF MS), or array based analysis of CpG methylation may be less precise but more 

useful. 
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Reduced pre-natal growth in Yucatan piglets may have profound effects on their 

metabolism of sulfur amino acids. However, this reduced growth and subsequent 

impairment of the transsulfuration pathway did not affect the overall global DNA 

methylation of the piglets. 

Summary 

Effects of pre-natal growth on gene expression of BHMT and CTH. 

To investigate the effect of pre-natal growth on BHMT and CTH gene expression, 

comparisons between runt and large pigs were made. Runt piglets were expected to have 

reduced BHMT and CTH expression compared to their larger littermates, similar to the 

differences observed in BHMT and CTH activity. BHMT expression did not differ 

between runt and large piglets, suggesting that the differences in BHMT activity observed 

must be due to post-translation regulation. As hypothesized, CTH expression was 

significantly lower in runt piglets, suggesting that CTH is differentially regulated between 

runt and large pigs at pre-translational level. This effect of pre-natal growth on CTH 

expression merits further investigation to determine the mechanism and perhaps the cause 

of this differential expression, and its possible effects on health later in life. 

Effect of pre-natal growth on global DNA methylation. 

To investigate the possible effects of pre-natal growth on global DNA 

methylation, global methylation of the runt and large piglets was assessed using a 

cytosine extension assay. It was thought that because certain sulfur amino acid cycle 

enzymes had differing activity levels between runt and large piglets, this may have an 
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effect on the overall DNA methylation. No significant difference in DNA methylation 

was observed between runt and large piglets. Similar global methylation levels, however, 

do not preclude the possibility of individual differences in DNA methylation on a gene

specific level between runt and large piglets. As CTH activity and expression were shown 

to be affected by pre-natal growth, CTH is a possible candidate gene in which gene

specific methylation should be investigated. 

Effect of BHMT and CTH activity or expression on DNA methylation. 

As BHMT and CTH are enzymes involved in the control of methyl supply, it 

could be expected that variations in the activity of these enzymes would positively or 

negatively affect DNA methylation. BHMT and CTH activity and expression levels were 

correlated with DNA methylation to determine if any possible relationship between the 

variables existed. DNA methylation did not correlate with BHMT or CTH expression or 

activity. This may be due to the fact that the activity levels for each enzyme were 

measured in an in vitro assay, meaning that the activity measured was the maximum 

capacity of the enzymes and not the actual activity in vivo. The actual in vivo activity of 

the sulfur amino acid enzymes would be of great interest and perhaps better related to 

DNA methylation than the maximum capacities of the enzymes. The concentrations of 

liver SAH and SAM as well as the expression of DNA methylating enzymes would be of 

interest to investigate regarding their relationship with DNA methylation. 
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Chapter 4: Conclusions 

Although numerous hwnan epidemiological studies and some animal studies have 

demonstrated a negative relationship between fetal growth and impaired glucose 

metabolism later in life, the results of this study in Yucatan miniatme pigs did not support 

those observations. This is not surprising as various swine models have failed to 

consistently demonstrate diet induced type 2 diabetes, the species as a whole may be 

resistant to such interventions (Bellinger et al.,2006) Glucose metabolism was assessed 

using an intravenous glucose tolerance test (IVGTT) and insulin sensitivity test (IST). 

The gold standard test for glucose metabolism is the hyperinsulinernic euglycemic clan1p 

method, which measmes the amount of glucose required to maintain a normal blood 

glucose level under hyperinsulinernic conditions. This clamp method, however, is not 

feasible on pigs of the age and size used in this study. The IVGTT and 1ST methods were 

sensitive enough to show gender dimorphisms in glucose metabolism in the pigs. The 

IVGTT and 1ST also revealed a clear relationship between visceral fat content and insulin 

sensitivity in the pigs which has also been observed in humans and other animal models. 

There was, however, no relationship observed between pre-natal growth or early post

natal diet and glucose metabolism, as measmed by the IVGTT or 1ST. This finding is 

contrary to evidence from other studies in pigs and epidemiological data from humans. 

The pigs in this study may have been too young to show deteriorations in glucose 

metabolism caused by reduced pre-natal growth or post-natal diet. In future studies of this 

sort, the pigs should be tested at later ages to allow for the possible development of 

complications with glucose metabolism that could be linked to early life. 
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A negative relationship between visceral fat and glucose metabolism was clearly 

demonstrated by this study. Visceral fat tended to increase as insulin sensitivity and 

glucose tolerance decreased. Although, this relationship is well known, it is not known 

whether increased visceral fat causes insulin resistance, or vice versa. Other factors may 

be responsible for both the increases in visceral fat and insulin resistance. Even at the 

highest levels of visceral fat content, the plasma glucose levels of our pigs remained 

within normal ranges and no overt diabetes was observed. Plasma insulin levels were 

elevated, however, suggesting that the pigs were developing compensatory 

hyperinsulinemia. 

The analysis of the pigs' growth rates and feed efficiencies throughout the study 

showed an interesting relationship between feed efficiency before and during sexual 

maturation and glucose metabolism and visceral adiposity. High feed efficiency before 

sexual maturation was related to lower feed efficiency during sexual maturation, lower 

visceral fat and improved glucose metabolism later in life. In contrast, high feed 

efficiency during sexual maturation was related to increased visceral adiposity. Because 

of these interesting relationships and the rapid growth and hormonal changes that occur 

during sexual maturation, the pre and peri sexual maturation phases are ideal 

developmental periods in which to start investigating the origins of obesity and impaired 

glucose metabolism. 

Detailed analysis of metabolic hormones such as proinsulin, leptin and ghrelin in 

pigs should be investigated in future studies. Proinsulin could be used to access the proper 

production and packaging of insulin at a cellular level. High proinsulin levels suggest 
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improper insulin production and are related to the development of insulin resistance and 

the development of diabetes (Pftitzner et al. 2004). Leptin and ghrelin levels in relation to 

food intake and weight gain could be used to determine if appetite dysregulation is related 

to the development of obesity. Leptin is a hormone produced by adipocytes and is 

responsible for signalling satiety to the brain. Ghrelin is a hormone produced by the cells 

in the stomach lining and epsilon cells in the pancreas; it is thought to be the counterpart 

to leptin and to stimulate appetite (Dezaki et al., 2008; Klok et al. , 2007). Plasma levels of 

testosterone, estrogen, growth hormone and insulin-like growth factor 1 (IGFl) could also 

be analysed in future studies. All of these hormones play important roles in growth and 

sexual maturation and may be related to the development of obesity and diabetes (Regitz

Zagrosek et al., 2007). Finally plasma cortisol levels should be investigated in future 

studies. Cortisol can have profound effects on glucose and amino acid metabolism as well 

as fat deposition (Kaufman et al. 2007, Tomlinson & Stewart, 2007). Corticosteroid 

receptor levels could also be investigated, as an elevation or reduction in receptor number 

can change the responsiveness to cortisol. 

Detailed analysis of gene expression of these aforementioned hormones and their 

receptors could also help in elucidating the development of visceral adiposity and 

impaired glucose metabolism. The expression of the genes in numerous tissue types, such 

as adipose, muscle and liver could be analyzed. This type of work would be best 

completed using gene chips, which allow for the expression analysis of numerous genes 

simultaneously; these chips are now being developed for pigs. 
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The analysis of CTH and BHMT gene expression in young piglets yielded mixed 

results. CTH expression was affected by pre-natal growth, similar to the CTH activity. 

BHMT expression was not affected by pre-natal growth. This was unexpected as BHMT 

activity measured in the same piglets was different between runts and large groups. This 

suggests that there may be differences in sulfur amino acid metabolism between runt and 

large piglets that are caused by pre and post translational regulation. The significance of 

these differences in sulfur amino acid metabolism merits further investigation, to 

determine how long these differences last during development and what the potential 

impact of these differences is to later health. The effect of high and very low methyl 

group consumption later in life on the runt piglets merits investigation. If the reduced 

capacity to remove homocysteine (via remethylation and transsulfuration) is lower in a 

runt piglet, then runts would be at an increased risk of developing hyperhomocysteinemia 

on a high methyl diet. If a runt piglet's capacity to remethylate homocysteine to 

methionine is permanently reduced, then a very low methyl diet may lead to a methionine 

deficiency. 

The global DNA methylation in young piglets was not affected by pre-natal 

growth rate. We hypothesized that global methylation may be different between runt and 

large piglets due to differences in sulfur amino acid enzyme activities. The global DNA 

methylation did not differ between runt and large piglets and showed no relationship to 

CTH or BHMT activity. Future studies may want to look at gene specific DNA 

methylation differences between runt and large piglets, which may be distmbed, without 

significantly affecting the levels of global methylation. 
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The developmental origins of adult disease is a rapidly evolving field of research. 

Much of the research being perfotmed uses smaller animal models. Large animal models 

such as the Yucatan miniature pig are an important step in bridging the gap between 

findings in small animals and their actual impact on human health. 
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