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pig’s glucose tolerance without stressing the pig. The bolus of glucose administered
intravenously to the pigs did not cause any noticeable agitation, and it was easy to

administer the correct dosage of “ucose to each pig.

The results from a IVGTT differ from the results of an OGTT. In a IVGTT the
glucose bypasses the gastrointestinal tract and 1s injected directly in the blood, this
removes the variation in intestinal glucose sorption and the gastrointestinal
glucoregulatory hormones known as incretins. Incretins can control the amount of insulin
released after a meal and vary the gastric emptying rate, as well as inhibit glucagon
release (Drucker and Nauck, 2006). If it were possible to administer a stress free OGTT
along with the IVGTT more infi nation could have been gleaned on this important
gastrointestinal component of gl ose metabolism. The IVGTT measures the circulatory
component of glucose metabolism in response to a rise in blood glucose by monitoring
plasma glucose and insulin levels. ] sma glucose levels rise rapidly after the
administration of glucose, and then begin to decrease as the glucose is removed from the
blood by the liver and musclesin r  onse to insulin produced by the pancreas.
Predictably the levels of insulin also increase following the administration of glucose, and
begin to decrease as the blood ucose decreases. The plasma glucose and insulin levels
were plotted against time to yield glucose \UC) and insulin (1IAUC) areas under the
curve, peak glucose and insulin values, as well as the time to return to baseline for
glucose (TTRB), glucose half life (GHL) which was calculated from the rate of glucose
clearance, and the ratio of IAUC to gAUC (1IAUC:gAUC). An animal with reduced

glucose tolerance would have higher plasma glucose concentrations, and the glucose level
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changes in turn may lead to metabolic problems later in life. This hypothesis is supported
by our data, in which reduced feed efficiency before sexual maturation correlated w 1

increased visceral fat and large abdominal circumference at 10 months of age.
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Chapter 3: Methyl metabolisms ly

3.1 Objectives

Changes in sulfur amino acid metabolism have been suggested as a possible
mechanism in developmental p  1city (I s, 2002; McMillen & Robinson, 2005; Van
den Veyver, 2002). A change in DNA methylation is one of the proposed methods by
which gene expression could be altered during development. These changes in expression
could be permanent, and result in physiological changes that mediate developmental
plasticity. The activity of the e _ s in the sulfur amino acid cycle are possible
contnbuting factors to DNA methylation status, as this cycle regulates the supply of
methyl groups and the fate of hom /steti  which can have an inhibitory effect on all
methylation if it is elevated. Enzyme activities of BHMT and CTH were observed in
livers of newborn runt piglets ¢« 1 red tc ieir larger littermates (Brophy, 2006). But it
1s unknown whether the changes in enzyme activities are due to pre- or post-translational
mechanisms. The main objectives of this study were: 1) to determine if the hepatic
expression of BHMT and CTH are fected by pre-natal growth; 2) to determine if the
global DNA methylation in the of these piglets is affected by pre-natal growth; 3) to

determine if DNA methylationisre 2dto IMT or CTH activity or expression.
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3.2 Hypo** ~ses

Runts will have reduced hepatic expression of BHMT and CTH compared to their
larger littermates, which causes the lowered BHMT and CTH enzyme activity levels. The
global hepatic DNA methylation of the rw  piglets will be decreased comparedto] zer
littermates due to decreased activity of enzymes responsible for disposing of

homocysteine.

3.3 Methods

3.3.1 Animals and housing

Twelve Yuc: n miniature piglets (5 male, 7 female) were obtained from the
Vivarium at Memorial University. Six pairs of littermates, consisting of one normal-sized
and one runt piglet, were remo  from sows at the age of 3-5 days. Necropsies were
performed the same day as removal from the sow. At the time of the necropsy the
normal-sized littern es weighed 1.085 — 1.646 kg with a mean body weight of 1.362 +
0.213 kg. Runt piglets weighed between 0.6912 — 1.0400 kg with a mean body wei; tof
0.849 + 0.128 kg. Runts were at most 80 % of their littermate’s body weight. Animal care
and handling procedures were conducted : accordance with the guidelines of Memorial
University of Newfoundland Animal Care ommittee and the Canadian Council on

Animal Care.
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3.3.2 Necropsy

Necropsies were performed on each sibling pair on the same day. The piglets
were anaesthetized with halothane (4% induction, 2% maintenance) delivered with
oxygen by mask. Blood samples were procured by heart puncture; samples of liver were
freeze-clamped and other tissue s.  )les were weighed and sampled and then frozen

using liquid nitrogen. Samples were stored at -70 °C until analyses.

3.3.3 Sulfur amino acid enzyme expression

Relative gene expression of betaine homocysteine methyl transferase (BHMT),
and cystathionase (cystathionine  1ma-l  se) (CTH) were measured using duplex real
time reverse transcriptase polyn ase chain reaction (RT-PCR). Total RNA was obtained
from liver samples using the RNea kit (Qiagen, Valencia, CA) according to the
manufacturer’s protocol. cDNA was synthesized using 1 ug of total RNA with the
QuantiTect reverse transcription kit (Qiagen, Valencia, CA) accorc 2 to manufacturer’s

protocol, including a genomic DNA wipec  step.

PCR primers and probes for porcine BHMT, CTH and B-actin were designed
using RealTimeDesign software (Biosearch Technologies, Novato, CA). Expression of f3-
actin was used as an endogenous ence ne to account for differences in sample
loading and PCR efficiencies between reac mns. Tagman probes for B-actin were labeled
with reporter dye carboxyfluorescein (FAM) on the 5’ end and black hole quencher
(BHQ-1) on the 3’end. Tagman pre  ; for IMT and CTH were labeled with reporter

dye PULSAR 650 on the 3’ end and black hole quencher (BHQ-2) on the 5’end.
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3.4.3 CTH expression

The expression of CTH was normalized as described for BHMT. The expression
of CTH was significantly different between runt and large groups (p=0.01) (Figure
3.4.3.1). Large piglets had higl CTH ex ‘:ssion than runts (1.24 + 0.54 AU versus 0.85
+ 0.54 AU, respectively) (Figure 3 3.2). The expression of CTH was not affected by
gender (Figure 3.4.3.2). CTH ression tended to correlate with CTH activity (p=0.16)
(Figure 3.4.3.3). The removal of o runt d large sibling pair outlier (>2 SD greater
than mean), allowed the CTH activity and :pression to correlate significantly (p=0.05).
Each large piglet had higher CTH expression than its sibling runt, a pattern that was also
observed in the CTH activity data. CTH e ression also significantly correlated with
plasma homocysteine levels (r=0.703, p=(  07), but not plasma cysteine or methionine

concentrations (data not shown).

84



Arbitrary units

--------------

Large Runt
*p=0.01

Figure 3.4.3.1 CTH expression  runt and large piglets.

Arbitrary units

e
SO
1"s s e u"a a u e utu"

Female Male

Figure 3.4.3.2 CTH expression by :nder.

8-
*
- 6 l. o ° .. ® Large
= " EN @ Runt
8 4
I
T ]
o, °
]
c L L)
0.0 0.5 1.0 1.5 20

CTH Expression (AU) « outlying sibling pair.

Figure 3.4.3.3 CTH expression it relates to CTH activity.

85

































Chapter 4: Conclusions

Although numerous hur 1 epidemiological studies and some animal studies have
demonstrated a negative relationship between fetal growth and impaired glucose
metabolism later in life, the results of this  1dy in Yucatan miniature pigs did not support
those observations. This is not surprising as various swine models have failed to
consistently demonstrate diet indui 1 type 2 diabetes, the species as a whole may be
resistant to such interventions (Bellinger et al.,2006) Glucose metabolism was assessed
using an intravenous glucose to  ance test VGTT) and insulin sensitivity test (IS]

The gold standard test for glucose metabolism is the hyperinsulinemic euglycemic clamp
method, which measures the amount of glucose required to maintain a normal blood
glucose level under hyperinsuli:  ic cond ons. This clamp method, however, is not
feasible on pigs of the age and s ed in this study. The IVGTT and IST methods were
sensitive enough to show gender dimorphisms in glucose metabolism in the pigs. The
IVGTT and IST also revealed a clear relationship between visceral fat content and insulin
sensitivity in the pigs which has also been observed in humans and other animal models.
There was, however, no relationst” obser 1 between pre-natal growth or early post-
natal diet and glucose metaboli  as measured by the IVGTT or IST. This finding is
contrary to evidence from other studies in] :s and epidemiological data from humans.
The pigs in this study may have en too young to show deteriorations in glucose
metabolism caused by reduced pre-natal growth or post-natal diet. In future studies of this
sort, the pigs should be tested at later ages to allow for the possible development of

complications with glucose metabolism that could be linked to early life.

96












The developmental origins of adult disease is a rapidly evolving field of research.
Much of the research being performed uses smaller animal models. Large animal models
such as the Yucatan miniature pig are an 1 Hortant step in bridging the gap between

findings in small animals and their actual 1 pact on human health.
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