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the bare-hull during lateral accelerations, according to the pure sway test data, was
observed to have a variation over manoeuvring frequency and amplitude. Also, empirical
formulae were proposed to estimate the magnitude an phase of the hydrodynamic loads:
sway force and yawing moment that are exerted on the axisymmetric torpedo-shape bare-
hull of an underwater vehicle during a rapid zigzag manoeuvre.

Finally, in order to obtain further insight into the origin and distribution of the
hydrodynamic loads during underwater manoeuvres, essure measurement experiments
were proposed and as an initial step towards the aim of performing such measurements
over the surface of an underwater vehicle, a re-analysis of the old airship data was
presented. The re-analysis of the airship pressure test results provide an estimate of the

normal pressures that may be experienced by an underwater vehicle during manoeuvres.
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CHAPTER 1

INTRODUCTION

1.1 General background

Underwater vehicles are being used increasingly in a variety of applications such as:
survey, exploration, inspection, maintenance and construction, search and rescue,
environmental and biological monitoring, military, undersea mining, and recreation.
Underwater vehicles fall into two major categories: manned and unmanned. The costs
and risks for the manned underwater vehicles are h™ ~ and in recent ast decades there
has been an obvious trend toward unmanned vehicles. However, for the scientists who
may want direct observation of the undersea world | for the tourist industry, manned
vehicles are of use. Allmendinger [1990] provides an extensive introduction to most of
the design aspects of manned underwz  vehicles.

Unmanned underwater vehicles can be categorized as: towed, remotely operated (ROV)
and autonomous (AUV). The towed ¢ | remotely operated vehicles are connected to the
surface or a manned environment via a cable or tether. The towed vehicles are normally
passive, i.e., they have no propellers and no active control systems. ROVs have thrusters
and active control systems. They get energy supply, navigation comman . and they
transfer data through the tethers. The high speed of communication : ows real-time
control of the vehicle. AUVs, instead, 1ve no physical connection to the surface. Power
supply, underwater communication, intelligent mission planning and control, underwater

navigation and sensors are still challenging in the des 1 and construction of an AUV.






1.2 Objective of the thesis

In this research, the main question is: what is the correct form of the physically-based
expressions for the hydrodynamic loads that are exerted on completely-submerged
underwater vehicles during various manoeuvres? Clearly, there are many parallels with
the study of the aerodynamics of aircraft. However, for underwater vehicles, the vehicle
weight is balanced by the buoyant force that is provided by the surrounding fluid, so in
that sense underwater vehicles are more like airships than traditional winged aircraft.
Also, the contribution of the hydrodynamic moment on the hull of an ur rwater vehicle
is much greater than the contribution of the fuse : on a winged aircraft, so the
traditional methods of computing the aerodynamic coefficients for aircraft do not
immediately transfer to the computation of hydrod mic coefficients for underwater
vehicles [Nahon 1993, Jones et al. 2002].
For high-amplitude, high-rate manoeuvres, first-order Taylor-series expansion is
insufficient to capture the higher-order non-linear d :ndence of the loads on the flow
angle and the vehicle turning rate. F  example, [Mackay et al. 2002] show that the
transverse force has a non-linear variation with angle-of-attack; above an angle-of-attack
of 10 degrees the stability-derivative-based prediction (slope through the ¢ a near the
origin) underestimates the actual load by 50 percent or more. Therefore in the present
research, employing mostly experimen  methods, two extreme cases will be considered:

(a) Large angles of attack encountered during hovering.

(b) High-rate-of-turn  manoeuvres  encounte during  obstacle-avoidance

manocuvres.



Two methods can be used for this study:

1) Measurement of the overall hydrodynamic loads with an internal balance.

2) Observations on the manoeuvring performance of a self-propelled vehicle.
This research is focused on the first method while the second method is the subject of
parallel studies at Memorial University. For the first method, again there are two different
possibilities:

1a) fixed-attitude (static) manoeuvres
1b) variable-attitude (dynamic) manoeuvres

To perform type (b), one uses a towing tank and a forced-oscillation apparatus such as the
NRC-IOT Planar Motion Mechanism (PMM) or Marine Dynamic Test Facility (MDTF)
[Williams et al. 2002]. Test results from both types of experiments e presented in this
thesis and a new empirical formulation to model the ‘drodynamic loads that are exerted
on the bare hull of a slender axisymmetric underwater vehi : is proposed. Next, a
simulation code based on the empirical formulae for the hydrodynamics of the bare hull
is developed to simulate manoeuvring of the MUN Explorer AUV including control
surfaces and the propulsion system.
In order to obtain further ins” it into the or’ 'n a1 * distribution « the hydrodynamic
loads during any manoeuvre, it is helpful to measure the distribution of pressures over the
surface of the vehicle while these  inoeuvres are taking place. The surface pressures can
then be integrated and compared with the overall I Is as measurc simultaneously by
the internal balance. Surface-pressure ita exist from fixed-attitude experiments with an

airship hull in a wind-tunnel [Freeman 1932b], but few data exist for surface-pressure



data on underwater vehicles, especia + during high-rate and high-amplitude manoeuvres
in water. This thesis also presents a re-analysis of the existing airship data which is the

first step in design of the pressure experiments for an underwater vehicle.
1.3 Organization of the thesis

To obtain an answer for the main question of this research, experiments to measure the
hydrodynamic loads that are exerted on the bare hull of a slender torpedo-shaped
underwater vehicle during manoeuvres with large a1 “es of attack a | large rates of turn
were performed. The overall hydrodynamic loads were measured with an internal balance
during: i) fixed-attitude (static) manoeuvres and ii) variable-att ide (dynamic)
manoeuvres. Then, the experimental data were studied and analyzed as follows:

1) Fixed-attitude tests: in chapter 2 empirical formulae are roposed for the drag, lift
and moment coefficients of the bare hull of a slender axisymmetric underwater
vehicle. Also, the concept of statistical des 1 of experiment is introduced in
chapter 2 and its possible application to design experiments for the study of
underwater vehicle hydrodyna cs is discussed.

2) Variable-attitude tests: a) 1 chapter 3, pure sway test results are analyzed to
model the sway force that is exerted on the bare hull of a slender underwater
vehicle during lateral accelera )ns; b) in chi er 4, response surface models are
constructed for the pure yaw tc  results and a sample application of these models
to predict the required deflection angle of the control planes to perform a rapid

zigzag manoeuvre with the MUN Explorer AUV is illustrated.



Next, in chapter 5, a simulation code to predict the manoeuvring behaviour of the MUN
Explorer AUV is developed. The en rical formi e for the dr  lift and moment
coefficients for the slender torpedo-sl 1ed bare hull of an underwater vehicle that were
obtained in chapter 2, are used in the simulation code. Stern-planes of MUN Explorer
which are in an X-configuration, are modeled as the active actuators to navigate the
vehicle in a constant-depth planar manoeuvre. The propeller thrust force is modeled using
the test results from straight-line sea-trials. Simulation results for turning manoeuvres are
presented with more details.

Finally, in chapter 7, an initial step towards the aim of performing pressure measurement
experiments over the surface of an underwater vehicle is presented. Re-analysis of the old
airship data provides an estimate of the normal press s that may be experienced by an
underwater vehicle during manoeuvres.

1.4 Literature Review

Using both numerical simulations wi a combination of the ANSYS and LLS-DYNA
finite element codes, and physical experiments with the Marine Dynamic Test Facility
(MDTF), at the Institute for Ocean :chnology, National Research Council, Canada
(NRC-IOT), Curtis [2001] presented direct comparisons between numerical and
experimental results in the study of underwater vehic hydrodynamics. 7 : focus of that
study was more on the numerical simulation, and the experimental data were used to
validate the numerical code. The bare hull of the DREA (Defense Research

Establishment Atlantic) Standard Submarine was used for this purpose. Only the



numerical simulation of straight-ahead motion and its comparison to e experimental
data was presented in that report [Curtis, 2001].

The Maritime Platforms Division within DSTO (Defence Science and Technology
Organisation) of Australia was tasked with the development of models to determine the
hydrodynamic coefficients of simple and complex submerged bodies as a function of
their shape. The report by Jones et al. [2002] prov :s a discussion and evaluation of
three methods for the calculation of these coefficients. Two of these methods were based
on the techniques developed in the acronautical industry: i) the U.S. Air Force DATCOM
method which was applied by Peterson [1980] to unc water vehicles ar ii) the Roskam
method as was modified by Brayshaw [1999] for underwater vehicles. The third method
was based on methods applicable to the calculation of the coefficients of single screw
submarines and was developed at University Collc : London. Many semi-empirical
relations to calculate the hydrodynam coefficients ¢ presented in the report by Jones
et al. [2002], but most of them are only applicable o0 a small range of incidence angles
and the effect of rate of change of 1gle is completely absent. One of the few studies on
large non-linear angles of attack has been done by Finck [1976], which provides some
additional techniques to use the DATCOM method in a non-linear rai 2 of angles of
attack (AOAs).

A recent numerical study to p licthy odynamic lo. ; for underwater vehicles has been
done by Boger and Dreyer [2006]. Tt _ added an o* set mesh capability to the existing
two and three-dimensional Reynolds-averaged Navier-Stokes (RANS) solvers, so as to

enable the extension of traditional ictured and unstructured solution methods in



computational fluid dynamics (CFD) to problems of greater geometric complexity,
including better resolution of geometric details and e simulation of bodies in relative
motion. The surface pressures and predicted forces and moments were shown to be in
good agreement with measurements for the DARPA (Defence Advanced Research
Projects Agency) SUBOFF and the ONR (Office of Naval Research) Body-1 submarine
model. For DARPA SUBOFF the numerical and experimental data for static pressure
along the bare hull were shown. For three-dimensional ONR Body-1 = del, numerical
and experimental results for hydrodynamic force and moment coefficients versus pitch
angle were presented. Pitch angle varied from zero to 18 degrees [Boger and Dreyer,

2006].


















2.3 Resistance runs

2.3.1 Modeling the axial force
Straight-ahead resistance runs were performed for the five bare hulls at fixed forward
speeds of 1, 2, 3 and 4 m/s. All the resistance runs were performed for zero drift angle,
that is, with each model aligned with the direction of towing. The axial force recorded
during the resistance tests was modeled as a function of the towing speed and the bare
hull LDR. Table 2.3 shows the quadratic multiplier k for the curve fits to the resistance
test data as shown in Fig. 2.4. The axial force in straiy t-ahead motion is then modeled
as:

E, = k-U? where: k = 0.162 * LDR + 0.681 (2-1)

which is valid in the range 8.5 < LDR < 12.5, i.e. not for LDR — 0.
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Fig. 2.4 Axial force versus tow speed for the five bare hulls; reproduced from [Williams et al. 2006}
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If equation (2-4) is used to predict the axial force on the bare hull of the C-SCOUT AUV
which is 2.7 m long and 0.4 m in diameter [Curtis 2001], the axial force coefficient is
estimated to be 0.119. Substituting this value of C, in (2-2) for various speeds U produces

the axial force as shown by solid line in Fig. 2.7. The predicted axial force for C-SCOUT




for forward speeds lower than 2 m/s is closely comparable to the resistance test data as
were reported by Thomas [2003]. For larger forward speeds, since the bare C-SCOUT
was tested relatively close to the water surface (centrc ne depth 2.2 body diameter), there

is a large effect of wave-making resistance in the C-SCOUT test data.
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Fig. 2.7 Resistance for on re C-SCOUT; eq. (2-4) compared to test data

2.3.2 Uncertainty in the resistance tests

The uncertainty in the resistance tests ita is characterized by measuring the mean value
and the standard deviation of the axi force during the constant-speed portion of each
run. The data were recorded at 50 Hz, thus e.g. if the constant speed was performed for
20 seconds there were 1000 data points to be averaged. Note that the usable length of the
towing tank is 78 m and the maximum acceleration of the carriage is 0.5 m/s’. Table 2.4
shows the mean value and the standard deviation for the axial force that were recorded

for the bare hulls at different towing speeds. Number of samples for each run is also
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2.4 Static yaw runs

All the static yaw runs were performed using a fixed sequence of yaw (drift) angles [
from —2 to +20 degrees in steps of two degrees. All runs were performed at a fixed speed
of 2 m/s. Figs. 2.9 to 2.11 show the i al rce, lateral force and yawing moment data
versus yaw angle of attack. As mentioned, the yaw moment is reported about an axis
through the centre of buoyancy CB that was reported in Table 2.2. For the purpose of
curve-fitting and modeling the data, it is more useful to derive the drag . 1 lift forces by
projecting the axial and lateral forces ong and perpendicular to the flow, i.e., to define
the drag and lift forces as follows:

D=F c B)+E, sin(f) (2-5)

L F,-cos(f) — F, -sin(f) (2-6)
Then, the drag, lift and yaw moment ¢ Ticients were defined as follows:

o D/(g- ) (2-7)
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L/, A, (2-8)

Cu=M/(q-Ar- D) (2-9)

where g = ¥pU? and Ar = nd? /4, and U is the towing speed which was 2 m/s for all
the static yaw runs. The resulting non-dimensional coefficients alor  with the curve fits
are shown in Figs. 2.12 to 2.14. Due to the length pa  ieter in the denomin r (2-9), the
yaw moment coefficient for all the bare hull configurations is about the same in Fig. 2.14;

while the dimensional yaw moment in Fig. 2.1 was larger for the longer odels.
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experimental runs and it was further developed to include fractional factorial designs,
orthogonal arrays and response surface methodology.

Regular factorial design includes the following steps:

a) Select the factors, i.e. decide which ir 1t variables are going to be studied:;
b) Determine the factor levels; that is, the range of values for each input
variable.

c) Identify the responses; what do we m  iure as the output?

d) Perform the experiment with various combinations of factor levels to

obtain the responses (outputs);

e) Estimate the factor effects, i.e. perform the ANOVA (Analysis of

Variance);
) Develop the model usi~~ important effects;
2) Check if the model fits the responses well an if the assumptions of

regression are valid;

h) Analyze and interp :t results; and

i) Use the model for prediction.
From the results, we can also determine if we shoul add or drop factors, change factor
levels, redefine the responses, etc. until a suitable m« 1 of the process will be obtained.
A major engineering application of the 'OE is in manufacturing science 1d industry and
other fields are becoming aware of  potential effectiveness. Many articles on the
application of DOE in manufacturing, 1emical and food science and technology can be

found in [Statease website, 2008]. Among the few, [Morelli and Deloach, 2003] and
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[Sutulo and Soares, 2002] can be mentioned as application of DOE in respectively
aerodynamics and hydrodynamics. According to the highly non-linear manoeuvring
mechanics, both the above references utilize the concept of subspaces and D-optimal
design to model the responses thror 1 the whole nge of definition of the factors.
Reference [Chung et al. 2005] illustrates the vital need to have a well-designed
experiment so as to reduce the number of runs.
A reverse design of experiment is applied using the available static-attitude test data and
a response surface model is fitted to 1at portion of these data. It is desired to obtain
answers for the following questions:
1. Is it possible to combine the results of two sets of exp ments, namely
resistance and static yaw, an develop a model for the responses versus the
important factors: velocity, length-to-diameter ratio and drift angle, as in
% E,,M;) = g(LDR,U, B)? (2-16)
2. According to the performed experiments and available = :a, how should
an experiment for the study of the hydrodynamics of an underwater vehicle be
designed so as to conserve time and cost?
2.5.2 Experiment factors
For the resistance tests the two facto are: towing velocity, U, and model dimensions,
LDR; for the static yaw tests the factors involved are: yaw (drift) any :, f, and LDR.
Tables 2.6 and 2.7 define the factors and their treatment levels for the two types of
experiments. Shown in Tables 2.6 and 2.7, the resistance and static yaw tests respectively

contribute 4*4 =16 and 5*12 60 runs.
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[Kowalski and Potcner, 2003] and [Potcner and Kowalski 2004]), the data here are
analyzed as if they were gathered1 domly.

2.5.3 Analysis of test data using a statistical approach

The software "Design Expert™6.0.3" by Stat-Ease, Inc. was used to analyze the data. The
ANOVA shows that in the resistance test, the velocity (U) is higl ’ significant at the 10%
significance level, whereas in the static yaw test, the yaw angle () is hig y significant at
the 10% significance level. None of the experiments result in a significant interaction
effect between the two factors.

The 2% factorial design is the special case of the general factorial design. In this case,
there are k factors each used at two levels, usually called low level and high level, in
order to make the combinations. As mentioned, ANOVA is used to test for the statistical
significance. A factor that has a greater effect on the response is statistically more
significant. The factor effect is defined as the cha; : in the mean response when the
factor is changed from low levelto h™  level. For it ance,if Aand B :two factors in

an experiment, the effect of A4 is evaluated as:

Term A1 = Estimate of effect of A at high B = a;b; —ayb,
Term A2 Es 1teofeffectof A atlow B=a.b; agbg
[A] = Estimate of the effect of A over all B 2-17)
=(Term Al + Term A2) /2
The effect of B is evaluated in the san  way. [4] and [B] are the main e :cts. Indices ‘0"
and ‘1’ consequently indicate the low and hi_ level for each factor, e.g. a;b; is the

response at the treatment combination in which both factors are in high level. There is
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also an interaction effect between the two factors, which is named 1B]. Interaction is
actually a form of curvature and describes the dependence of the effect of one factor on

the level of the other factor. The interaction effect is calculated as:

[AB] = Estimate of effect of B on the effect of A (2-18)
=(Term .— TermA2) /2

It should be noted that in the presence of large interaction effects, the main effects might
not be meaningful.
Table 2.8 shows the sum of squares : | contribution of the factors A, B and AB for the
resistance experiments that is: modc dimension  DR), towing speed (U), and the
interaction of them. Note that the m of squares for any effect is directly proportional to
the effect squared. Eliminating the interaction term AB, since it is the smallest
contribution, and doing ANOVA for the factors A and B provides a significant model for
the resistance test results as shown in Table 2.9. T  significance level used was 10%.
Although, from Table 2.9, factor A i )ears to be statistically signific. t, according to
Table 2.8, it contributes less than 2% to the model. This shows that the dominant effect is
the resistance of the nose and tail sections since the length of the const: -diameter mid-

body accounts for less than two  cent of the resistance.
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2.5.4 Response surface models for the static yaw data

A regression model for a response, which depends on two factors, is a surface in 3D
space. The response surface may be represented graphically using a contour plot or a 3D
plot; this type of graphical representation is possible only when there are two factors. In
the contour plot, lines of constant response are drawn in the plane of the vo factors. In a
3D representation, the response is plo :d in the third dimension. The Response Surface
Model (RSM) can be a first-order mod: if the response is a linear fi :tion of the factors.
If the response has curvature, then a higher order polynomial should be used. A second-
order (quadratic) model is often able to capture the curvature [Myers and Montgomery
1995]. The general form of a quadratic regression for the response z versus the factors x
and y is written as:

z  Cexx?+Cpyy?+Cyx- +Cx+Cy+C (2-19)
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The available data for static yaw test included five levels for factor A (bare | LDR) and
12 levels for factor B (yaw angle). Some of the ava 1ble data can be used ) develop a
RSM. Central Composite Design (CCD) is a popular design to t a response surface to
the data Montgomery, 2001]. A CCD was built order to capture the static yaw
experiment results. Fig. 2.17 shows the general scheme of design. The design points are
shown as pairs of (LDR,f8) values. The data shown in Table 2.10 were used for this
purpose. In Fig. 2.17 the center-point has coordinates (LDR, ) of (10, 10) and axial-runs
are the runs augmented in between the square two-level design; they have coordinates

(8, 10), (12, 10), (10, 0) and (10, 20).

Iﬁ’ [deg]
(10, 20)
(9. 16) (11.16)
o e}
(8, 10) (10110) LDR
o— —_— 41 o >
(12. 10}
' e Y o)
9.4 (11, 4)
0(10.0)

Fig. 2.17 Test set  vels for the Central Composite Design

The process of fitting a RSM for sway force, axial force and yaw moment is similar. For
the sway force data, the linear model was suggested; however, the qua itic terms were
in the boundary of significance. The interaction term was negligible. Checking additional
statistics for a second-order model re 1iled that including the quadratic terms will result

in a more accurate but not Jundant model. Table 2.11 shows the ANOVA for the
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available data can be used to check for the predictive capability of the model. Fig. 2.18,
showing sway force versus yaw ar "e for LDR equal to 8 and 12, is plotted to assess the
predictive capability of the model. The asterisk 1d circle signs represent the
experimental data, which are available for the yaw angle from -2 to 20 degrees, in steps
of two d¢ ees. The solid and dashed lines were fitted to the RSM generated data from
(2-20) with the same step-size. There is a gap between the model prediction and test data
at some yaw angles (e.g. at h ier angles for the LDR 8 vehicle or lower angles for LDR
12).

As mentioned, the same procedure can be applied to the axial force and yaw moment.
The models for the sway-force and yaw-moment include the quadratic term 82, but the
axial force model is a simple linear model. It is often convenient to convert the actual
values of the test factors to coded levels. The coded factors are defined so that the low
and high levels are minus one and plus one, respectively as defined in Table 2.12. The

model equations written for the coded  tors are:

F, 12.58 + 0.55(4) + 1.47(B) (2-21)
F, = 45.05+ 36(A) +41.63(B) + 10.25(B)? (2-22)
M =24, +3.88(A)+1C L(B)-1.51(B)? (2-23)

where factor A4 is the bare hull LDR and factor B is the yaw a1 :, . As was explained,
equations (2-21) to (2-23) were derived by performing the analysis of vari ce over the
static yaw test data for the axial force, lateral force and yawing moment and thus

identifying the terms which have a significant effect on those responses.

35



Table 2.12 Actual and coded factors for the static yaw tests

B [deg] 0 4 | 10 | 16 | 20
A -1 06 0 |06 ] 1
LDR’ 8 9 | 1o | 11| 12
B -1 -0.5 U_| u.5 1

Notice that (2-22) corresponds to (2-20); the former is written for the actual factors and
the latter for the coded factors. With the coded factors one can exactly see which factor
has a larger effect on the response because all factors have the same range of variation:
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F 2.18 Comparison of the experimental | RSM gen ted da

The RSM 3D demonstration for sway force F, is shown in Fig. 2.19. Plot of contours of

the sway force model is shown in Fig. 2.20. In fact, Fig. 2.20 is the bottom face of Fig.

2.19.

* Note that the models were actually 8.5 to 12.5 in length-to-diameter ratio but this section about DOE
mainly focuses on the introduction of the concept of a statistical analysis of the test data.
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Therefore f; and f, have been already derived in (2 1) and (2-25). and there are some
clues to answer the first question that was put before; equation (2-16) is repeated below:

(Fy, F,.M,) = g(LDR,U, ) (2-26)
The objective function is g. In other words, a response surface model in the four-
dimensional space is desired. If the three factors LD U and f are named consequently
A, B and C, then the first-order (linear) regression equation for the objective function is
of the form:

g=ag+a A+ a,B+aj pAxB+azC+a3A*C +

Q3B *( 11,3A*B*( (2-27)
Equation (2-27) includes all the ter 5 (i.e. main effects, two-factor interaction effects and
the three-factor interaction ¢ «c¢t) in the model, but some terms may not have a
significant effect on the response. In case of a two-level factorial design, the coefficients
are calculated as:

a, = overall average, a; = [4]/2, a, = [B]/2. a3 = [C]/2.a;, [AB]/2,
a3 = [AC]/2. 53 =[BC]/2, a;,; = [ABC]/2, (2-28)

In (2-28), [A] is the effect of factor A, [AC] is the interaction effect of factors A and C
which represents the dependence of the effect of factor A on the level of factor C (or vice
versa), and so on. Hence performing a 2’ factorial design (two-levels for three factors),
may give an appropriate approximation of the objective function. With the available data
we have no information about a,; (interaction of the factors towing speed U and yaw
angle ) and a;,3 (interaction of all three factors: bare hull LDR, towing speed and drift

angle).
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Now, an answer can be provided for the question: How an experim: : (in the context of
underwater vehicle hydrodynamics) should be designed in the future so as to conserve
time and cost? To give an approximate quantity on tl time and cost saving that could be
made, noting the previous paragraph, with a 2* factorial design, performing only eight
runs, we might obtain an approximation of the objective function g. Then, to check for
the curvatures in the responses, the design could be augmented with axial runs to create a
central composite design, which is a very effective design for fitting a second-order
response surface model.

The full CCD for three factors is 14 runs plus the center-point runs. The center-point for
instance, has coordinates (LDR,f) of (10, 10) in Fig. 2.17. Note that if we have
performed the 2° design, only six axial runs plus the center-point runs should be
augmented to it. Axial-runs have coo nates (8. 10). .2, 10), (10, 0) and (10, 20) in Fig.
2.17. It is usual to replicate the center-point runs. With e.g. three replications for the
center-point the design totals to 17  ns. The present data for the resistance and static yaw
tests totalled 16 + 60 = 76 runs! The diff 1ce between the number of runs shows the
time and cost savil

2.6 Summary

In this chapter, experimental data for fixed-attitude manoeuvring experiments, i.e.
resistance and static yaw tests, that were measured for a series of five axisymmetric bare
hull models of the same di: :ter but of increasing length-to-diameter ratios of 8.5, 9.5,

10.5, 11.5 and 12.5 were presented and analyzed. Empirical formulae to predict the drag.
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lift and moment coefficients for the .re hi  of an axisymmetric underwater vehicle
were proposed.

Next, from a statistical design of experiment (DOE) point of view, the effects of the main
factors in each type of experiment were studied. Derivation of a unified :sponse for the
axial force, lateral force and turning moment that are exerted on the bare hull during
fixed-attitude experiments was discussed. With a s istically designed experiment, the
adequate regression equation, which gives the hydrodynamic loads versus the main factor
effects and interaction effects, can be derived. Mo »>ver, with a statistically designed
experiment, the possible saving of time and cost in the experiments was suggested. As
was illustrated for the present data, the nu ber of runs for a statistically designed
experiment is several times less than the regular one-factor-at-time experiment which

means a great saving in time and cost.
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CHAPTER 3

VARIABLE-ATTITUDE TESTS: PURE SWAY EXPERIMENTS

3.1 Introduction

Pure sway experiments on the five hull forms for an isymmetric underwater vehicle
were also performed in the 90 m towing tank at NRC-IOT in November 2005. These
experiments used the towing carriage to move the vehicle along the tank x-axis, the PMM
(Planar Motion Mechanism) to produce the oscillating lateral (sway) motions, and, an
internal three-component balance to measure two hydrodynamic forces (axial, lateral)
and the hydrodynamic yaw moment.

As was introduced in the previous chapter, the origii  bare hull model had a length-to-
diameter ratio (LDR) of about 8.5:1. Extension pieces were added to the parallel mid-
body to test hulls of the same diameter, 203 mm, but with LDR 9.5, 10.5, 11.5 and 12.5.
The carriage forward velocity for all rwas 2 s;inthep  sw ns the sway
velocity of the PMM had smooth sinusoidal variations with amplitudes of about 0.55 m/s
for most of the runs. The maximum and minimum sway motion amplitudes for the pure
sway runs were 1.25 and 0.32 m;then imum and minimum periods of oscillation were
respectively about 14.3 and 3.5 s for all the bare hull configurations. Although some parts
of the pure sway test results that were :rformed on five axisymmetric bare hull models
in November 2005 were published in an earlier report in September 2006 [Williams et al.
2006]. a more comprehensive analysis of the filtered data was necessary. Analysis of the
resulting experimental data from the pure sway captive manoeuvring tests reveals a

variation of the apparent mass with e oscillation amplitude and frequency.
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are as follow:

y = Asin(wt) 3-D

v v, cos(wt) (3-2)
where A and v, are the amplitude of the PM! sway displacement and velocity
respectively, and v, is given by A - w.

Differentiating (3-2) results in the PMM’s and thus the model’s sway acceleration as:

a, aycos(wt+ g) (3-3)
where a,, is the amplitude of the sway acceleration of the PMM given y A - w?. Also,
from the tests it is concluded that the sway force can be represented in the form:

E,  Fyocos(wt + @f) (3-4)
where Fy, is the amplitude of the sway force measured by the internal balance and ¢ is
the phase lag between the sinusoidal sway force and sinusoidal sway velocity motions,
that is, @ is the amount by which : PMM sway velocity leads the measured sway
force. See Table 3.1 on pages 74 and 75 at the end of this chapter fi the pure sway
manoeuvring data. The raw time-se :s were filtered using the "filtfilt" function in
MATLAB™ which does not use a frr  ency nd to filter the signal, but it calculates a
smoothed value at each time-instant ' averaging n data points in the vicinity; in this
analysis n was 20. Since, this filter pri  >sses the data twice, once in the forward direction
and once in the reverse direction, no  ase shift is introduced into the signal, which is of
particular interest in the present method of analyzing the data where the phase shift

between the PMM motion and the me. 1red loads is of primary interest.
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3.3 Data analysis

3.3.1 Manoeuvring frequency and amplitude

The manoeuvring amplitude versus frequency for all pure sway runs for the bare hull
with LDR 8.5 is plotted in Fig. 3.1. For other bare hulls the amplitude and frequency are
also the same as in Fig. 3.1. Since the tests were planned to have about the same sway
velocity amplitude for most of the runs, vy, 4 - w is constant at about 0.55 [m/s], hence
there is an inverse relationship between the amplitude A and frequency w as can be seen
in Fig. 3.1. However, as will be presented later, the sway frequency and iplitude are the
two independent factors affecting the  ay force am| tude and phase. There are two sets
of runs with equal frequency but d erent amplitude. 1ere is one single run of frequency
about 0.44 rad/s and amplitude 0.7 m which has lower sway velocity amplitude that is

about 0.3 m/s (Table 3.1).
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Fig. 3.1 Sway amplitude versus frequency for all runs for the bare hull with LDR 8.5
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3.3.2 The sway force amplitude

It is simplest first to interpret the results for a single bare hull configuration, and then the
effect of model size can be studied. Sway force amplitude versus sway frequency for
LDR 8.5 is plotted in Fig. 3.2. It is clear that for the runs of equal frequency, the lower
maximum sway velocity — that is the smaller manoeuvre amplitude — produces a smaller
force. Next, the sway force amplitude is plotted against sway acceleration amplitude in
Fig. 3.3. The run with the lowest maximum acceleration results in the smallest sway force
amplitude. It is seen that the amplii le of the sway force increases with increasing

amplitude of the sway acceleration.
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Fig. 3.2 Sway force amplitude ver  sway frequency for the bare hull with LDR 8.5
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Fig. 3.3 Sway force amplitude versus sway acceleration

amplitude for the bare hull with LDR 8.5

3.3.3 Phase lag between 1e sway fo  and sway ocity signals

The values of the phase lag between the sway force 1d sway velocity signals (minus 90
degrees) as presented in Table 3.1 for the five bare 1lls, are shown in Fig. 3.4. As the
sway frequency, and thus : nplitude of the acceleration increase, the phase lag
decreases. Also, the phase |  for It er bare hulls is smaller. As a 'si , one may
anticipate that if this trend continues for higher frequencies that this phase lag will tend to

ZEro.
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real and imaginary axes respectively produces (i) the damping component of the force

vector, named F, ; which acts in phase with the velocity vector but in the opposite
direction, and, (ii) the inertial component of the force vector, named F,; which is in

phase with the acceleration vector.

4 Im

Re

Fig. 3.5 Velocity, acceleration and force vectors in the complex plane

As shown in Fig. 3.5 the amplitude of the damping and inertial components of the sway

force vector are derived as:

Fyoa = —Fyqsin (‘PF - g) (3-5)
Fyoi = Fyocos(p (3-6)
According to the expei al « :a in Table 3.1, as the frequency increases (i) the

magnitude of the sway force increases 1d (ii) the phase lag ¢, decreases, both of which
result in a larger inertial component of  : sway force.

3.3.5 The apparent mass vel I1s manoeuvring frequency and am] tude

If the inertial component of the sway force vector in (3-6) is divided by the amplitude of

the sway acceleration, the resulti | ameter is tl parent ma  of the system (the
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flooded vehicle mass, reported in Table 2.1, plus the Ided mass of the surrounding water
external to the vehicle), that is:

FyO,i/ayO = Mapparent [kg] (3-7)
where a4 is given by A - w?. ..e magnitude of the  arent mass from (3-7) is shown in
Table 3.1 for all pure sway runs for all the bare hulls. The apparent mass for the bare hull
with LDR 8.5 is plotted in Fig. 3.6 versus the sway a :leration amplitude. The same data
are plotted versus the sway frequency w and amplitude A4 in Figs. 3.7 and 3.8. The sway

velocity amplitude for each data point is also shown in Figs. 3.6 to 3.8.
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Clearly seen for the LDR 8.5 data, the apparent mass resulting from these lateral

acceleration manoeuvres is variable. From Figs. 3.8 to 3.10 the following conclusions can

be made:

Fig. 3.6 shows that as t| amplitude A - w? of the sway accel 1tion increases,
the apparent mass decreases.
Fig. 3.7 shows that as the frequency w of the sway motic increases, the
apparent mass decreases.
Fig. 3.8 shows that as the amplitude A of the sway motion increases, the
apparent mass increases.
According to Fig. 3.6, the lateral velocity and acceleration have independent
effects on the magnitude of e appa t mass, because the d | with different
sway velocity amplitudes do not lie alor a curve. Since the velocity and
acceleration amplitudes are respectively: A - w and A - w?, it can be concluded
that the oscillation amplitude and frequency are in fact the two independent
factors that are affecting the magnitude of the apparent mass besides the body
geometry, that is:

Mapparent [ (A, @, geometry) (3-8)
In Fig. 3.7 for the same sway velocity 0.55 m/s, the three data-points which
have frequencies higher than 1 rad/s result in almost the same parent mass of
about 85 kg.
According to Fig. 3.8, for the same sway motion amplitude, a lower sway

velocity amplitude - w results in larger apparent mass. Note that one should
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3.3.6 The apparent mass versus the | re hull size

Next, Fig. 3.9 shows the apparent mass for the five bare hull configurations versus the
sway frequency. The clear pattern is that for all configurations the magnitude of the
apparent mass appears to tend asymptotically to a sit 2 value as the equency increases.
On the other hand, if the experimental data are plotted versus the bare hull LDR. as
shown in Fig. 3.10, it is seen that there is ¢..octively linear increase in the magnitude of
the apparent mass with increasing LDR, for all the combinations of sway frequency and

amplitude shown.
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3.3.7 The damping factor
Going back to Fig. 3.5 and equation (3-5). if the d¢ ping component of the sway force
vector is divided by the sway velocity amplitude the resulting value is a damping factor
which is often denoted by b, that is:

|Fyo.al/vo = b [ke/sl. (3-10)
where: vg = A - w. The magnitude of the damping factor from (3-10) is shown in column
#10 in Table 3.1 on pages 74 " fi 1ill are sway ns for all the bare hulls. Note that
the damping force acts in the opposi direction of the velocity vector. ut the damping
factor is defined to be positive. The damping factor derived by (3-10) | the dimension
of [kg/s] and the dimensional values are between about 100 to 180 [kg/s]. Fig. 3.11 shows
how the damping factor varies with e frequency of the sway motion. It is observed that

the damping factor is largest for the longest model.
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Fig. 3.11 Damping factor vers frequency of sway motion for all bare hulls

during pure sway runs

3.4 The sway force model

Using the rotating vector representation in Fig. 3.5, the sway force in a pure sway

manoeuvre at time instant t = 0 can be modeled as follows:
Fy(t=0) = FyO,d +i FyO,i = _va + i(mapparentayo)
where i is the imaginary unit vector. | 1ation (3-11) is rewritten as follows:
Fy(t=0) —bAw + i(mapparentsz)

Then the amplitude of the sway force is found to be:

21(1/2)
Fyo = v [b2 + (mapparentw) ]
and the amount by which the sway force lags the sway velocity is given by:

- - n
@rp = tan 1(_"lap;oarentw/b) = tan 1(b/"‘lapparentw) + 3
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In general, the magnitude of the apparent mass and the magnitude of the damping factor
depend on the body geometry as well as the sv / frequency d amplitude. The
parameters for the sway force model in (3-13) and (3-14) can be obtained from the
experimental data for each of the five models. The time variation of the sway force is
obtained by substituting the force amplitude and phase lag from (3-13) and (3-14) into
equation (3-4), that is: F,, = F,,; cos(wt + @F).

3.5 Uncertainty in the test results

The model that was constructed for the sway force during lateral acceleration manoeuvres
can be checked for the uncertainty. 1e apparent mass was derived as the in-phase

component of the sway force divided by the lateral acceleration of the PMM as follows:

Mapparent cos ((pF - 7—;') : (FyO/AwZ) (3-15)

Equation (3-15) provides an explic statement for the apparent mass versus the
experimentally measured values: nj tude of the sway irce F),. and the phase lag
between the sway force and sway velocity signals @p. as well as the manoeuvring
amplitude and frequency. Using (3-15), uncertainty in the prediction « apparent mass
during the pure sway manoeuvres can be stud |. There may be the following
uncertainties in the pure sway experiments:

(1) The planar motion mechanism (PMM) is uncertain in performing the required

amplitude and frequency. Since the manoeuvring frequency and amplitude, during

a pure sway manoeuvre, are independent parameters, thus the st facility also

may have independent uncerta ies. Therefore, the test facility is x; % uncertain
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in performing the required sway amplitude and x,% uncertain in performing the
required frequency.
(2) The load cells are x3% uncertain in measuring the magnitude of the sway
force.
(3) The phase difference between the sinusoidal curve fits to the recorded signal
for the sway force and the sway velocity si. 1, that is: ¢g, are read with x,%
uncertainty.
Also if it is assumed that: the command signals that are sent to the test icility (carriage
and PMM) are transferred with 100% certainty, 1d the measured load values are
transferred with 100% certainty thrc h the recording channels, then the above three
items are the main sources of uncerta y during the sts. Substituting those uncertainty
sources into (3-15) results in:

Mapparent = €08 (X4 x @ — ) - (x5 * Fy0) /[(31 * A) (%2 * )] (3-16)
Assuming a confidence level of 98 for the PMM performance, i.e. x; = 0.98 and
x, = 0.98, and a confidence level of 95% for the data an: sis in reading the magnitude
of the sway force and its phase difference, i.e. x3 0.95 and x, = 0.95, then the
apparent mass versus manoeuvring frequency for the bare hull mod of LDR 8.5 is
plotted with the error intervals as shown in Fig. 3.12. According to (3-16), the lower bars
are resulting if the PMM sway amplit le and frequency are both larger than the recorded
values in Table 3.1, and the amplitude of the sway »>rce is smaller an its phase lag is
larger than estimated in Table 3.1. © : upper bars are resulting if the frequency and

amplitude are smaller, the sway force is larger and the phase lag is smaller than their
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values in Table 3.1 on pages 74 and 75. Note that there are two data points at frequencies

0.44 and 0.66 rad/s.
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Fig. 3.12 Apparent mass of the bare hull LDR 8.5 during pure sway manoeuvres

including the error bars

At this level of uncertainty for these = -ameters, still the trend of varying apparent mass
versus the manoeuvring frequency does not lay within the uncertainty limits. The largest
uncertainties in the data in F 3.12 e about 40% lower and 50% uj :r limits which
occur at the smallest frequency: the most rapid manoeuvre. However, the uncertainty in
the test results for the apparent mass in Fig. 3.12 is rather large and is even larger if e.g.
the uncertainty in reading the phase lag x, has b 1 larger than 95% which is quite
possible. Thus, further PMM experiments are si  zested to clarify the phenomenon.

3.6 An improved design for future pure sway experiments

Observation of the pure sway test data revealed that 1e sway force vector, in addition to

the body geometry, is a function of two independent variables (i) the amplitude of the
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sway velocity A - w, and, (ii) the amplitude of the sway acceleration A - w?, in a lateral
harmonic manoeuvre. In other words, the sway motion amplitude A and frequency w
should vary independently during the experiments so as to acquire data-points at different
levels of both sway velocity and sway acceleration. With the present test data, since the
sway amplitude and frequency had an inverse relation for most of the runs, it is only
possible to observe the sway force variation versus later: acceleration for a particular
sway velocity amplitude of about 0.55 /s. With a st stical design of experiment, using
the concept of response surface mod: ., the tests can be designed starting with a basic
two-level factorial scheme which is then augmented with axial and centre-point runs so
as to capture the variation of the response, sway force, over the two test factors: (i) the
amplitude of the sway velocity A - w, and, (ii) the amplitude of the sway acceleration
A-w?

Fig. 3.13 proposes an example test pl.  which covers a range of 0.3 to 0.6 [m/s] for the
sway velocity amplitude and a . of 0.1 to 0 [m/s’] for the sway acceleration
amplitude. In the figure the factor sway velocity vai ; horizontally, and the factor sway
acceleration is alor  the vertical axis. The design has both axial runs which are outside
the square-box, and face-centered runs which lie on e sidi of the square. Such an
experimental plan can capture the v. ation of the sway force over the manoeuvring
frequency and amplitude. In Table 3.2 the proposed test runs are shown; for each run the
manoeuvring frequency is obtained by dividing the acceleration amplitude by the velocity
amplitude, and then the amplitude A of the sway displacement equals the nplitude of the

sway velocity A - w divided by the sway frequency w.
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the experimental repeatability. For example, with three replications for the centre-point
run, the design scheme in Fig. 3.13 totals to 15 runs; to this if a study of the effect of the
bare hull geometry is added, e.g. with three different bare hulls the test set totals to 45

runs which is equal number of runs as the present data.
3.7 Instantaneous lift and drag forces

During pure sway manoeuvres due to the combination of forward towing speed and
PMM sway velocity, there is an apparent drift angle which produces apparent lift and
drag forces on the model. Fig. 3 illustrates the apparent dr  angle. Since the
maximum sway velocity occurs when the model passes the centre-line, the apparent drift
angle is a maximum at that time instant which is calculated as follows:

~=tan"}(v/u) (3-17)
Towing speed u was 2 m/s for all runs and maximum sway velocity of the PMM was
about v 0.56 m/s for most of the runs which results in a maximum apparent drift angle
of about 16 deg. Since the sway velocity during pu  sway runs varies sinusiodally, the
apparent drift angle also has harmonic sinusoidal variation. The apparent drag and lift
forces that are exerted on the vehicle due to the apparent drift angle e calculated as
follows:

D= %pAfUZCD, (3-18)

L = ipAsU%C, (3-19)
where A; = md?/4 and U? = u® + v?. Drag and lift coefficients in the above formulae

are functions of the apparent drift g
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Fig. 3.14 Illustration of the apparent drift angle during pure sway manoeuvres and the resulting

apparent drag and lift forces

As was explained in chapter 2, static yaw test results were used to model the drag and lift
coefficients versus drift angle and LDR of the five bare hull configurations. The
following models were obtained (equa ns (2-13) and (2-14)):
1000+ ,=1.88p% 11.7LDR + 38 (3-20)
1000 = C, = (0.007 L +0.011)p3 + (4.87 LDR + 8.85)8 (3-21)
where the drift angle in (3-20) and (3-21) is in degrees. Thus, e.g. for a maximum
apparent drift angle of 16 deg which occurs at the towing tank centre-line, the maximum
drag and lift coefficients are  pectively: 0.62 and 1.08 which are then vary sinusoidally
during a pure sway run. The minimum apparent drift angle is zero at the instant at which
the sway motion displacement is maximum, for which the lift coefficient from (3-21) is
zero and the drag coefficient from (3-20) for respe vely shortest to longest bare hulls
(LDR 8.5 and 12.5) is about 0.14 to 0.18.
Hence, the apparent lift and drag forces which for ich run vary sinusoidally with the
same frequency as of the PMM, maximum while the model passes the towing centre-
line. The apparent drag force has a non-zero minin m, while the apparent lift force is

zero at the maximum sway displacements as was il* trated in Fig. 3.14. The maximum
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Fig. 3.15 Sway force amplitude at w and high frequencies for the five bare hulls:
pure sway test data compared to the estimated value in (3-23)

The axial force that was estimat by (3-22), as shown in Table 3.1, as a maximum
value at the towing centre-line of about 20 N for the shortest model. owever, at the
sway motion amplitudes, where the aj arent drift angle is zero, the estimated axial force
which is equal to the minimum apparent drag force is about 10 N. The measured axial
force signals during pure sway tests were not analyzed yet to verify such a sinusoidal
variation in the axial force during pure sway manoeuvres due to the apparent drift angle.

3.8 Deriving the conventional sway coefficients from PMM tests

The application of the planar motion mechanism (PMM) to perform captive manoeuvring
tests and the conventional approach to derive the hydrodynamic coefficients from those
tests have been presented in sources such as [PNA, 1967], [Goodman, 1960] and [Bishop

and Parkinson, 1970].
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oscillatory derivatives of the sway force with respect to the sway acceleration and sway
velocity are respectively defined as follows [Bishop and Parkinson, 1970, equation (68)]:
Vo =m— (Fyoi/ay0) (3-28)
Yo = —Fy0a/v0 (3-29)
where according to the previous sections, amplitudes of the late;  velocity and
acceleration of the PMM during a pure sway run are vy = Aw and a,, = Aw?. In fact,
equations (3-28) and (3-29) are ar  ogous to (3-7) and (3-10), i.e., the v¢ Hcity derivative
of the sway force ¥, is equal to the « nping factor b that was defined in section 3.3.7.
and the acceleration derivative of the sway force ¥, is the flooded mass of the vehicle m
minus the apparent mass Mg, qren: (the flooded mass of the vehicle plus the added mass
of water) that was defined in section 3.3.5. Obviously, this definition for ¥; is not quite
straightforward for using in the equation of motion {see equation (66) in [Bishop and
Parkinson, 1970]}.
If (3-28) and (3-29) are multiplied by 2 sway motion frequency with some algebra the

sway cocfficients are calculated as follows:
(m—VY,): slope at the origin of (Fyo‘,-/A)%
plotted versus frequency as shown in Fig. 3.16 (3-30)
Y, = slope at the origin of (Fyo‘d/A)
plotted versus frequency as shown in Fig. 3.17 (3-31)

This approach was presented by van Leeuwen [1964] for a model of a surface vessel. Fig.

3.16 as stated in equation (3-30) was lotted using the pure sway test data for the five
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bare hull configurations and lines were fitte to the test data. The line slopes at the origin,
i.e. w — 0, are larger for longer hulls. Then, rearranging (3-30) and substituting the line
slopes from Fig. 3.16 and the flooded mass of the vehicle from Table 2.1 into it, the sway
force derivative Y;, is calculated for the five hulls. Those values divided by %pl3 result in
the non-dimensional acceleration derivative of the sway force which is as follows for the
bare hulls of LDR 8.5 to 12.5 respectively:

Y, =- )3%[69,4 4.6,4.0,3.4] (3-32)
The non-dimensional mass of the underwater bare hulls of LDR 8.5 to 12.5 using the data

in Table 2.1 are respectively m'= 1073 % [19.2,15.4,13.1,11,9.4].
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Fig. 3.16 The plot based on equation (3-30) to find the acceleration derivative of :sway forceY,
So it may be concluded that for a :nder underv er bare hull the non-dimensional
acceleration derivative of the sway force during a lateral acceleration manoeuvre has
about one-third of magnitude of its non-dimensional mass. In fact, Y; is the no-

dimensional added mass of the vehicle with a minus sign.
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Fig. 3.17 as stated in equation (3-31) was plotted to derive the velocity derivative of the
sway force Y,,. Then it is divided by %pUl2 —at the towing speed of U = m/s for all the
runs— to conclude the non-dimensional sway force derivative with respect to the sway
velocity for the five bare hulls of LDR 8.5 to 12.5 as follows:

Y, = —[0.046, 0.042, 0.035, 0.031, 0.028] (3-33)
Compared to the previously derived values of Y, = —[0.037, 0.029, 0.024, 0.02,
0.017] in (3-25) that was from the static yaw test results for the five bare hu , the above
values in (3-33), although are in rough agreement, show that the velocity derivative of the
sway force during a dynamic test, i.e. pure sway, is larger than predicted during static
tests. So this may make the validity of deriving ¥, >m static yaw tests doubtful. Also
van Leeuwen [1964] using (3-31) reported a non-dimensional sway force derivative Y, of
about —0.02 for the surface vessel n el which was 2.258 m long with a maximum

breadth of 0.323 m thus a length-to-breadth ratio of about seven.
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Fig. 3.17 The plot based on equation (3 ) to find the velocity derivative of the sway force Y,
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Fig. 3.18 Non-dimensional acceleration derivative of the yaw moment N}, during pure sway tests

On the other hand, the velocity derivative of the yawing moment during a pure sway
manoeuvre seems to be more significant. According to Fig. 3.19 the test data are about an
average constant value for N, which a shown by solid lines for each LDR; it is seen that
for longer hulls the non-dimensional derivative N, is smaller. If the constant average
value is extended to w 0, then for the five bare hulls of LDR 8.5 to 12.5 it follows:

N, 073%[9.3,7.7,6.6,5.7,4.9] (3-37)
Compared to the previously deriv  values of N, = 073 *[11,8.1,6. 4.5,3.5} in (3-
26) from the static yaw test results, : above vali ; in (3-37) show that the velocity
derivative of the yaw moment durii a dynamic test, i.e. pure sway, is somewhat

different than predicted using the static tests.
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Fig. 3.19 Non-dimensional velocity derivative of the yaw moment N;, during [ ‘e sway tests

Finally, it should be noted that although the values for hydrodynamic derivatives were
derived in this section invariable with equency, as ested in previous sections of this
chapter, there is a frequency effect on amplitude 1 phase of the sway force and yaw
moment during pure sway tests which should be s lied more carefully with a better
design of experiment as was roughly outlined in section 3.6.

3.9 Summary

This study presents test results th it cate how the sway force and yaw moment of the
bare hull of an AUV varies during a lateral acceleration manoeuvre. In oscillating lateral
motions such as the pure sway m euvres performed in these experiments, the value of
the apparent mass depends on the manoeuvring frequency and amplitude as well as the
body geometry. However, the preser :d results indicate that further experimental and
analytical research is required to acqu  an improved understanding of the apparent mass

and damping phenomena in lateral acceleration manoeuvres.
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The sway force that is exerted on the axisymmetric bare hull of an underwater vehicle
during pure sway manoeuvres was modeled in the complex plane with its damping
component in phase with sway velocity vector (but in  : direction opposite to it), and its
inertial component in phase with the sway acceleration vector. Then the amplitude and
phase of the sway force were formulated versus the manoeuvring frequency and
amplitude, the magnitude of the apparent mass and the magnitude of the damping factor
of the system. As mentioned, it is shown that the mz _ itude of the apparent mass itself is
a function of the body geometry, and the manoeuvring frequency and amplitude.

Also, the conventional method of  ilyzing the PMM test data was used to calculate the
sway force and yawing moment derivatives. It was shown that the derivatives that are
calculated using the dynamic test results compared tc e same derivatives based on static
yaw test results are rather different. Moreover, using the conventional method, still the
frequency-dependency is observable in the test data« ing the dynamic manoeuvres.

An improved test-plan for future experimental work was also proposed in section 3.6 so
that to perform the pure sway tests in a way that both the manoeuvrii  frequency and
amplitude effects on the response sv ' force are independent variables instead of their
product A - w being ¢...cti* y held con: 1t as is shown in the fifth column of Table 3.1

for the present experiments.
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CHAPTER 4

VARIABLE-ATTITUDE TESTS: PURE YAW EXPERIMENTS

4.1 Introduction

Pure yaw tests are one of the most important and basic types of manoeuvring experiments
to be performed on marine vessels. These manoeu' . are performed in captive model
tests as a counterpart to zigzag manoeuvres which are performed in free running model
tests, full-scale tests and also as* i ion checks for numerical manoeuvring codes. In
the pure sway manoeuvre, the vehicle >llows a sinusoidal path with a constant heading
angle of zero, but in the pure yaw manoeuvre the vehicle’s heading is always tangent to
its path. In a zigzz manoeuvre com| ‘ed to a pure yaw captive test, the vehicle has a
small sway velocity which creates a small drift angle off its path.

In the literature, extensive studies are available for the pure yaw and zigzag tests
especially for surface vessels. The recommendations of the ITTC for captive model tests
cover most of the important requirements for the zigzag tests on surface vessels [24th
ITTC, 2005]. There are many reported results from either one of the mentioned
experimental methods, that is: captive, free-runt 3 or full-scale tests, but also numerical
codes are recently used to perform PMM tests. By Hochbaum [2006] a set of virtual
PMM test results using a RANS code based on a finite volume technique to simulate the
flow around a twin-screw ship was prc  1ted.

A not very recent but valuable set of PMM tests were performed on e full-scale
autonomous underwater vehicle ! AF JS in e Danish Maritime  ititute; some of the

results were reported by Aa  and Smitt [1994]. That paper utilizes SNAME standard
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factors to define the non-dimensional parameters, and presents the test results in the form
of hydrodynamic coefficients for surge, sway, heave. tch and yaw directions. The AUV
MARIUS is a flatfish type vehicle and therefore horizontal and verti  p 1e manoeuvres
are different. A non-dimensional sway force coefficient ¥, of about 0.04 and a non-
dimensional yaw moment N, of i >ut 0.01 were measured; however, it is not clear to
which values of manoeuvring amplitudes and frequencies that the reported values

correspond. The parameters ¥ and Ny in the notation of this thesis are respectively Fy,

and M_,, as will be introduced later.

In this project, as a part of the underwater technology studies, the pure sway and pure
yaw experiments on a series of five ht  forms for an underwater vehicle were performed
in the 90 m towing tank at NRC-IOT. These experiments used the towing carriage to
move the vehicle along x-axis, the PMM (Planar Motion Mechanism) to produce the
oscillating lateral (sway) plus angular (yaw) motioi  and, an internal three-component
balance to measure two hydrodynamic forces (axial, lateral) and the hydrodynamic yaw
moment.

It is desired to find the correct fi 1 of the physically-based expres sns for the
hydrodynamic forces and moments on a completely submerged underwater vehicle
during high-amplitude, high-rate manoeuvres. It should be noted that the results of this
research are valid for the planar manoeuvres for either horizontal or vertical planes,
because these underwater bare hull series are bodies of revolution. Therefore, throughout
this chapter sway and yaw motions are respectively equivalent to heave and pitch

motions.



4.2 The experiment set up and the recorded di 1

The original bare hull model, as was shown in chapter two Fig. 2.1 when installed on the
PMM, had a length-to-diameter ratio ~* JR) of about 8.5:1. Extension pieces were added
to the parallel mid-body to test hulls of the same diameter, 203 mm, but with LDR of 9.5,
10.5, 11.5 and 12.5. The centre of buoyancy (CB) of the model remained essentially the
same distance aft of the origin of the i1 :rnal balance. All the modules were free-flooding
and no appendages were included i this hull-extension investigation. The carriage
forward velocity for all the runs was 2 m/s; the PMM lateral velocity and yaw angle of
the PMM had smooth sinusoidal var ions with amplitudes of respectively about 0.5
[m/s] and 14 deg for all the runs; maximum and minimum sway motion amplitudes were
1.25 and 0.41 m; the maximum and nimum yaw rates were respectively about 17.4
[deg/s] for the shortest model in its short-period pure yaw motion, and, about 5.5 [deg/s]
for the longest model in its long-peric pure yaw manoeuvre. See Table 4.1 at the end of
this chapter page 124 for the detai o1 e pure yaw manoeuvres.

Fig. 4.1 shows the time period T fortl pure yaw runs Hrthe LDR 8.5 model, versus the
ratio of the sway amplitude to vehii : diameter. Fig. 4.1 shows that the periods and
amplitudes for the pure yaw runs were chosen such that the product of the amplitude and
frequency was held the same for all runs. Note that in this study the pu ose of the pure
yaw experiments was to measure e sway force and yaw moment as functions of PMM
angular velocity and acceleration.

The data points in Fig. 4.1 were read from either the PMM lateral velocity or its yaw

angle recorded for each run. Fig. 4.2 ows a sample yaw angle signal for LDR 8.5 and
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input values of A= 0.51 m and T= 6.4 s. Clearly seen in Fig. 4.2 there is an initial set-
angle in the PMM yaw angle which has introduced a vertical shift to the recorded yaw
angle. however, the yaw angle amplitude is 14 degr  as mentioned. As a result of this
set-angle, the recorded loads have offsets as well, which were removed during the data
analysis. The reason is that the model motion mu  begin from rest. so the software
computes an initial set-angle which corresponds to the distance that is required for the
PMM to accelerate the model to begin a manoeuvre with zero yaw attitude and the

correct angular velocity.
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Fig. 4.1 Time period ver  non-dimen 1al sway amplitude A/d; pure yaw runs for LDR 8.5

79



Yaw angle (deg)

Fig. 4.2 Yaw angle signal for LDR 8.5 and inputv. esof A=0.51mandi 5.4s

fora ‘e yaw manoeuvre
The main outputs are the axial force, F, the sway force, F,, and the yaw moment, M,.
Fig. 4.3 shows the original and filter sw ’ force, yaw moment and axial force signals
for a pure yaw manoeuvre with LDR 8.5, A =0.51 and T = 6.4 s. Fig. 4.4 shows a
close-up of the filtered sway force in Fig. 4.3. The three-component balance inside the
bare hull model uses a single loadce to measure the axial force and vo loadcells to
measure the lateral force; by sun  ng the signals from the two lateral-force loadcells we
obtain the total lateral force, 1d, by differenc 7t signals from the two lateral-force
loadcells, we obtain the yaw moment. The three loadcells selected for the internal balance
must withstand many different loads: (i) the hydrodynamic loads during the manoeuvres,
(ii) the weight of the model in air when flooded with water, (iii) the ine al loads during

the acceleration and deceleration of the model, and, v) the inevitable bumps that occur

during installation and removal of the model.  us the capacity of each loadcell is much
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larger than that required to measure only the hydrodynamic loads. Also there are
inevitable vibrations in the PMM due to flexibilities in the drive mechanism. Thus there
is significant measurement noise on 1 : loadcell sig s as is indicated in Fig. 4.3. The
raw time-series data were therefore filtered using the "filtfilt" function in MATLAB™7.1,
since this filter does not introduce any phase shift into the signal.

For a high-frequency manoeuvre as in Figs. 4.2 and 4.3, there were one or two complete
cycles in which several zero-crossing  ints, peaks and troughs are observable which are
circled in Fig. 4.4, hence an average value for the maximum and minimum force and
moment and the correspondii  time period could be obtained from the data. However,
for low-frequency (higher T) manoeu |, hardly a complete cycle was performed due to
the restricted length of the towing tank. For exam| : for LDR 10.5, =1.19 m and
T = 14.3 s the data were captured for less than one complete cycle; this may affect the
statistical reliability of the results. The approximate mber of steady-state cycles for all

pure yaw runs are shown in Table 1 column#8.
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4.3 PMM motions during pure yaw tests

During a sea-trial, an overhead view of a spatially-sinusoidal t ectory allows us to view
the cycle width and cycle length; these are analogous to the PMM sway a plitude and
cycle length T - Uggprigge in the towil  tank. In designing the pure yaw manoeuvres, two
constraints that had to be satisfied w  due to physical limitations of ¢ PMM (i) the
maximum PMM lateral velocity cannot exceed 0.50 s, and, (ii) the maximum yaw rate

cannot exceed 60 deg/s. The first of these requires th

A w <0.50 [m/s] 4-1)
or, which is equivalent, that:

T > 47 - A [sec] (4-2)
A third constraint is the kinematic requirement that 1 : longitudinal axis of e vehicle is

everywhere tangent to the sinusoidal trajectory in the tank x-y coordinate system; this
requires that
BO = tan—l(A ) w/ucarriage) (4'3)

which is equivalent to

B, =tan"! '—] (4-4)

“IUcarriage
In these experiments, a constant carriage speed of 2 m/s was used. Combining these

kinematic and dynamic constraints, the result is that:
Bo < tan'l(i) (4-5)
So the yaw amplitude will not exceed about 14 deg in. y of these pure yaw manoeuvres.

For small yaw amplitudes (4-4) can be approximated by:
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Bo 2mA/(T -ucar e) (4-6)
or
T = 2nA/(Bo - Ucarriage)= 2md - (A/d)/(Bo * Ucarriage) (4-7)
If the carriage speed U grrigge and yaw amplitude f, e held constant at 2 m/s and 14
deg respectively, then (4-7) provides a linear relation between the period T and the sway
amplitude 4 or non-dimensional sway amplitude A/d.
The time-series for the PMM sway a1 yaw motions were plotted as in Fig. 4.2, for one
or more cycles of motion; smooth sinusoids were fitt:  to the constant-amplitude portions
of the time-series and values for ;. T and A were ex cted. These experimental values

were plotted in Fig. 4.1 which conft d the validity of the approximation (4-7). The

relation in Fig. 4.1 can be represented by a straight lii  through the ¢ :in as follows:
A/T = 0.0 [m/s] (4-8)
or
A- © = 0.5 [m- rad/s] (4-9)
which satisfies the requi 1 tin (4 +tl the ma um PMM lateral velocity cannot

exceed 0.50 m/s.

4.4 Analysis of data

4.4.1 PMM lateral velocity and yaw gle

The planar motion mechanism is programmed with the desired time-series of sway
displacement and yaw angle as inputs. A sample of the yaw angle time-series was shown

in Fig. 4.2. As mentioned, the desi 1 values for the amplitude of the PMM lateral

84







18

T I
—6— 11d=8.5
—+—1/d=9.5
——1/d=10.5 [|
e |/d=11.5
— s /d=12.5

16

-
'S

—
N
1
I
|
L
1
I
I
)

-
(=]

Yaw rate of tum (deg/s)

=

[T, U B
«

3]

ok - - -
o

v

< P ° 2.9 4 45
plitude-to-diameter ratio

Fig. 4.5 Yaw rate of turn vs. sway amplitude A/d during pure yaw manoeuvres

4.4.2 Sway force and yaw moment amplitudes

The main responses to be studied in the pure yaw experiments are the sway force and
yaw moment. The primary results are the maximum and minimum values of the lateral
force F, and yaw moment M,. There is an offset (vertical shift) in the time-series of both
responses, which, when removed, gives the amplitude of force and moment sinusoidal
signals, named F,, and M,,. Figs. 4.6 1d 4.7 are the plots of the amplitude of sway force
and yaw moment versus the yaw rate of turn during the pure yaw tests. Note that, as
shown in Table 4.1 at the end of this chap , all the pure yaw manoeuvres were
performed with the same amplitude of the lateral velocity of PMI at 0.5 m/s and the

same amplitude of yaw angle of PMM at about 14.3 deg.
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Fig. 4.6 Amplitude of the sway force vs. yaw rate of turn of the PMM
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Fig. 4.7 Amplitude of tt yaw moment vs. yaw rate of turn of the PMM

Similar graphs as in Figs. 4.6 and 4.7 obtained if the amplitude of lateral acceleration
of the PMM is on the x-axis inst 1 “yaw ri : of turn. Then, the amplitudes of sway

force and yaw moment are non-dimensionalized as fi ows:

S0 = Fyo/(%l ZAp) (4-13)
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Mo = Mzo/(%pUZApl) 4-14)

where p is the water density, A, is the rectangular planfo 1 area of the vehicle defined

as:
A,=1-d. (4-15)

and U is the vehicle velocity evaluated as:
U? = Ularriage + V8 (4-16)

where Ucqrrigge 1S the towing speed of the carriage which was 2 m/s for all the pure yaw
runs, and v, is the amplitude of PMM sinusoidally-varying lateral velocity equal to 0.5

m/s for all runs, thus U in (4-16) is: Vee 4 u.ad = 2.06 mis.

In (4-13) the non-dimensional sway force amplitude was defined as force divided by the
planform area. The vehicle is slenc (8.5 < LDR < 12.5) and : hull series were
produced by increasing the length of the para : mid-body. therefore the non-
dimensional sway force amplitude as defined  (4-13) gives an estimate of the maximum
sway force per unit length for a slender underwater vehicle of diameter d. For the non-
dimensional yaw moment amplitude in (4-14), planform area times length is in the
denominator so as to accc  t rthe ial variation of location of centre of effort within
the length of the vehicle (see Table 2.2). The centre of effort is the point which defines
the vertical axis about which the yaw moment is zero at each yaw angle. Detailed
definition of the centre of effort and curves of its variation versus static yaw angle for this
hull series was presented by Willi. s et al. [2006].

The amplitude of the non-dimensional sway force and yaw moment versus non-

dimensional sway amplitude ’d during pure yaw runs are plotted in Figs. 4.8 and 4.9
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and also shown in Table 4.1 at the end of this chapter. Although the data points do not all
lie on smooth curves, the trend is clear. In both these figures the short-period small-
amplitude manoeuvres are in the top left-hand corner of the figure and the long-period
high-amplitude runs are in the bottom right-hand portion.

The sway force per unit length (during pure yaw manoeuvres) is larger for the longer
vehicles, but other than the large jump from the LDR 8.5 curve to the LDR 9.5, the
difference between curves is less significant. Fig. 4.8 shows that as A/d increases F,
decrease, i.e., a large amplitude slow anoeuvre sustains less lateral force. The point is
that for abrupt manoeuvres, €  obstacle avoidance, a quick small-amplitude manoeuvre
might be required, hence the large lateral forces are unavoidable. This has implications
for size of control surfaces required to produce the yaw moment necessary to produce
these turning rates. Fig. 4.9 shows the same trend for the yaw moment, that is, as A/d
increases, M;, decreases, and, the yaw moment :r unit length (during pure yaw
manoeuvres) is larger for the longer vehicles. Moreover, the manoeuvring frequencies for
these pure yaw runs are readable on the top axis of Figs. 4.8 and 4.9. Again, showing the
same point that: at large frequencies the amplitudes of non-dimensional sway force and

Yaw momeg¢ ire
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4.4.3 Phase difference between the hydrodynamic loads and the model motions

Again it should be emphasized that for the pure yaw manoeuvres the input signals to the
PMM are the time-series of PMM lateral displacement and model heading angle. These
two state variables are in phase and have equal fr¢ ency. Also, measurements reveal
that the frequency of the hydrodynamic loads is the same as frequency of the state

variables. Therefore the sway force is of the form:

B = By sin(wt) 4-11)
E,  Fyosin(wt — @) 4-17)

Fig. 4.10 shows the magnitude of @g phase lag betv n the sway force and yaw angle
signals, in radians, versus A/d for pure yaw ma »euvres with this hull-series. The
sinusoidal sway force is delayed by about m/2 radians relative to the sinusoidal yaw
angle. Although, the data are scat « there is a tr 1: the longer vehicle experiences a
larger phase lag and for slower manoeuvres, la :r A/d, the phase lag is larger. It should
be noted that rather than the magnitude of the phase lag, we are more i1 rested to know
how far the data points are from the potential flow phase lag of /2. In Fig. 4.10 a single
curve indicates the trend for all hu  'ngths comb :d. The trend is « iser to /2 for
larger sway amplitudes. The information from Figs. 4.8 and 4.10 may be combined and
portrayed with a polar plot as in F*  4.11. The radius of the data points is the non-

dimensional amplitude of the sway force Fy, and the polar angle is the hase difference

between the measured sway force and the yaw angle - in (4-17).
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4.4.4 Instantaneous variation of the hydrodynamic )ads versus the model motions
Interesting observations were made by plotting the hy  odynamic loads versus the PMM
state variables: PMM lateral velocity and yaw angle. As discussed, referring to (4-10) and
(4-11), PMM lateral velocity and yaw angle theoretically have the same effect on the
hydrodynamic loads in a pure yaw manoeuvre, and the experimental results, e.g. phase
difference between the sway forr and PMM lateral velocity compared to the phase
difference between sway force and yaw angle, were only slightly different. Hence, the
discussion is continued for the yaw angle. Figs. 4.15 and 4.16, for the vehicle with
LDR 9.5, respectively show the instan 1eous variation of sway force and yaw moment
versus yaw angle. Different curves are the several runs with differe sway motion
amplitudes performed on the LDR 9.5 hull. These ell ical phase-plane trajectories with
varying semi-axes length and orientation as shown in Figs. 4.15 and 4.16, represent the
relations between the pure yaw  noeuvre input: yaw angle, and its outputs:
hydrodynamic loads. Equation (4-11) for the yaw angle can be rewritten intl form:

fi =csin(wt), f1=8.¢1= B (4-20)
Then the hydrodynamic loads: sway force and yawing moment, would be:

¢, sin(wt — ¢) (4-21)

where f, is either F, or M,, ¢, is either F),o or A, and @ is the phase di  rence between
either sway force and yaw angle or yaw moment ar yaw angular acceleration. In Figs.
4.15 and 4.16, f, was plotted against  In the special case where ¢ = 0°, then using (4-
21) it concludes: ¢ = 0° f, = ¢, sin(wt) = (c;/c1) f1; therefore, if there is no phase

lag between f; and f; the phase-plane plot reduces tc  line of slope ¢, /c;. For ¢ = 180°
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we have: @ = 180° - f, = —¢, sin(wt) = —(c3/cy) fi; and for @ =90° it is: @ =
90° = f, = ¢, sin(wt — m/2). After some algebra it reduces to (f;/¢1)? + (f2/¢2)% =1
which is the equation for an ellipse of semi-axes ¢, and ¢, and no tilt angle.
In general, the phase lag ¢ and variables c; and ¢, : affecting the size and orientation
of the ellipses. The ellipse equation in the general form is:
Aff+Bff+Cfif, +Dfi +Efy+F 0 (4-22)

If the major axis of the ellipse has a tilt angle of @ it is calculated as:

sin(28) = —C/Q, (4-23)
where:

e=J(a-£ ¢c* (4-24)
Also there are formulae to calculate the radii of the tilted ellipse based on the coefficients
in (4 ~7) [Van Drent, webpage 2008]. With lengthy  :ebra on (4-20) and (4-21), one can

find the ellipse coefficients in (4-22) | edon fi, f, and ¢.

A=Ud4Bm T=6s

A=054m T=68s
----A=062m, T=78s
[| — - A=076m, T=95s
A=107m, T=135s

Sway force {N)

v
Y aw angle (deg)

Fig. 4.15 Phase-plane plot of F,, versus § for LDR 9. 5 during pure yaw manoeuvres
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Yaw moment (N.m)
[=]

Yaw angle (deg)

Fig. 4.16 Phase-plane plot of M, vs. § for LDR 9.5 during pure yav  anoeuvres

Because the instantaneous yaw angle and PMM la 1l velocity are in phase with each
other, their derivatives are too. Thus : yaw rate of turning is in phase with the lateral
acceleration of the PMM. Plc  1g the instantaneous variation of loads versus the yaw rate
of turn, may further clarify the phenc :na. In gs. 4.17 to 4.19, the legend is the same

as for Figs. 4.15 and 4.16. Fig. 4.17, for the vehicle with LDR 9.5, shows the

instantaneous variation of yaw moment versus yaw ¢ of turn B. Fig. 4.17 'ves a more
straightforward demonstration of the relation between yaw moment and manoeuvre
characteristics. For a slow turn, e.g. A 1.07 m and T = 13.5 s, the rate of turn is slow
and therefore the yaw moment is small which results in the inner ellipse. Figs. 4.18 and
4.19 both for the vehicle with LDR 9.5 show ¢ instantaneous variation of yaw moment

versus yaw angle squared 82 and yaw angle cubed 83 respectively.
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Fig. 4.17 Phase-plane plot of M, vs.  for LL 9.5 during pure yaw manoeuvres
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Fig. 4.18 Phase-plane plotof , B2 for LDR 9.5 during pure yaw m: euvres
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Fig. 4.19 Phase-plane plot of M, vs. 83 for LDR 9.5 during pure yaw manoeuvres

4.5 Response surface models for the pure yaw test results

As was demonstrated in chapter 2, section 2.4.4, are_ ssion model for a response, which
depends on two factors, is a surface in 3D space. ~ e Response Surface Model (RSM)
can be a first-order model if the r )onse is a linear function ¢ the factors. If the
response has curvature, then a higher order polynomial should be used. A second-order
(quadratic) model is often able to cap'  the curvature.

4.5.1 The mathematical model

A mathematical model for the experimental results of the pure yaw manoeuvres is
desired. According to the | sious :ction, the put signals for these pure yaw
manoeuvres are the PMM lateral velocity and yaw angle, (4-10) and (4-11), repeated
below:

v=ygsin(w, ,B =pPsin gt) (4-25)
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where the amplitude of the PMM latt  velocity v, was 0.5 m/s, and the amplitude of
yaw angle 8, was 14 deg. The frequencies of the two motions, sway and yaw, must be
identical, thus w =w, = wpg, and in phase with each other. On the other hand,
measurements reveal that the frequency of the h: >dynamic loads is the same as
frequency of the input signals. Therefore the sway irce and yaw moment are of the
form:

E, = F o sin(wt — ¢F) (4-26)

M, = M, sin(wt — @y) (4-27)
The measured response sway force F, in a captive [ € yaw manoeuvre in towing tank,

for a range of different hull ler  hs, can be written as:

Fy  f(Ucarriage v, B, 8,5, LDR) (4-28)
According to (4-25), for constant amplitudes of PMM lateral velocity and yaw angle,
equation (4-28) reduces to:
, =f(w,t2 R (4-29)
On the other hand, these tests were performed under the constraint of equation (4-8), that
is: A/T = 0.08; which imposed a line relation between the manoeuvring frequency and
amplitude during these pure yaw tests as was shown in Fig. 4.1. Hence, (4-29) can be
further simplified to:
F, = f(t,g,LDR) (4-30)

These results show that in the steady portion of each pure yaw run, the complicated

relation (4-28) reduces to the simpler relation (4-30) while the forward towing speed and
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response surface. The response surface for the sway force amplitude when plotted versus
the coded factors is shown in Fig. 4.22. Note that the centre-point in Fig. 4.22, (X,Y) =
(0,0) corresponds to the actual val :s (A/d,LDR) = (4,10.5). The largest force
amplitude is at the corner: (X,Y) (—1,1) which corresponds to (A/d,LDR) =
(2,12.5), that is, the longest hull in its most rapid pure yaw manoeuvre experiences the

largest force.

Table 4.3 Actual and coded factors for the pure yaw tests

A/d] 2 3 [ 45 ] e
x | 1] 05 ] 0 Jos]| 1
rnpTgs | 95 10511511725

Lo -t [os o os ) v

0.03 ]

0.025 |

0.02

Fy(;

0.015 |

0.01 |

0.005 |

Fig. 4.22 Response surface for the non-dimensional sway force amplitude in pure yaw manoeuvres

4.5.3 Regression model for the non- mensional yaw moment amplitude
Next the yaw moment amplitude in equation (4-33) is modeled through the same process
as for the sway force. Therefore, first a quadratic regression is performed over the

factor PMM sway amplitude A/d, which is follov 1 by a linear regression over the
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Y: coded I/d ' -1 ) X: coded A/d

Fig. 4.25 Response surface for the non-dimensional yaw moment amplitude in pure yaw manoeuvres

4.5.4 The phase lag between manoeuvre inputs and hydrodynamic loads

It is more difficult to model the phase lags. The sinusoidal sway force is delayed by a
phase angle ¢ of about m/2 radi.  relative to the sinusoidal yaw angle. and for the yaw
moment the phase lag relative to the yaw angular acceleration ¢, is close to zero, though
it gets as large as 0.7 radians for the long hulls in slow pure yaw manoeuvres. Figs. 4.26
and 4.27 show the experimental data for the hull-series for the sway force and yaw
moment phase lags. Because of the s tered data the procedure that was used before to
fit a response surface model does not work in this ca  The curves fitted to the data only

show the general trend for all hull series.
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Fig. 4.26 Phase difference of F,, and § vs. A/d during pure yaw manoeuvres
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The fitted curves in Figs. 4.26 and 4.27
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following quadratic equations
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with commanded amplitude and cycle-length of 20 m and 80 m respectively, at a forward
speed of 1.5 m/s. An overshoot of about eight metres in amplitude was observed,
therefore the parameters for this zigzag are:

A=28[m],U=15[m/s], T =80, 5=0533[s],LDR=6.5A/d =40.6 (4-48)
which results in:

A/T  0.525 [m/s] (4-49)

Note that the LDR ratio at about 6.5 for the MUN Explorer is outside the range of
applicability 8.5 < LDR < 12.5 ¢ our response model. Similarly the value of A/d of
40.6 is outside the range of applicab ty of - < A/d < 6.1 used in this study. It is
postulated that the linear effects of le :th-to-diameter ratio will permit an extrapolation
to 6.5 based on the validated range of 8.5 to 12.5. b vever, the quadratic effect of sway
amplitude prevents extrapolation to A/d of 40.6 which is well beyond the validated
range of two to six. Due to thi : considerations, these RSMs e not suitable for
estimating the sway force and yaw moment exerted on the MUN Explorer in the above
zigzag manoeuvre.
4.6.2 Sample application
For a sample application of the RSMs, imagine a  3zag manoeuvring mission to be
performed by the MUN Explorer UV defined as follows: commande amplitude and
cycle-length for the zigzag equal to 4 m and 50 m respectively with a forward speed of
1.0 m/s. Such an abrupt manoeuv may occur, for mple, during obstacle avoidance
such as manoeuvring around a small iceberg. For this >rupt turn:

A=4mU=1m/s,T=50/1=50s (4-50)
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where a is in degrees. The moment of inertia of t| flooded vehicle, denoted by I. is
estimated about 3300 [kg.m’], while the flooded vehicle, with the payload installed,
weighs about 1450 kg’. The yaw angular acceleration in (4-62) is calculated:

B = —p - w?sin(wt) (4-63)
Fig. 4.28 shows the yaw angular acceleration and the yaw moment sign:  for this zigzag
manoeuvre with the MUN Explorer / 'V with a commanded amplitude and cycle-length

for the zigzag equal to 4 m and 50 m respectively; forward speed | m/s.

oM T T i — .
X )

Yaw angular acceleration [rad/sz]
o

t1s]

Fig. 4.28 Yaw moment and yaw angular acceleration signals for thez ag manoeuvre

with the MUN Explorer AUV

According to Fig. 4.28 when the yaw >ment sign is maximum at time tp,, which is
calculated at the first positive peak to :32.86 s, the yaw angular acceleration B is below
its maximum value; therefore, the angular acceleration that should be substituted into (4-

62) isread in Fig. 4.28 as follows:

7 Derivation of the mass and moment of inertia of the A/UN Explorer AUV is explained in more details in
chapter 5, section 5.5.
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B (atty,, =32.86s) = € 3* 1073 [rad/s’] (4-64)
Substituting (4-64) and the estimated moment of inertia into (4-62) results in:

If =3300%6.63+1073=5125 —2.84 (4-65)
This allows us to solve for the required deflection : : of the control planes § for this
zigzag manoeuvre, which is about 4.8 deg. Note that there is some efficiency lower than
100% for the rudders, and there is some extra opposing moment in addition to the bare
hull moment evaluated by the RSMs here. In addition the assumption that the rudders are
operating in a steady-flow r 'me, as would be experienced in a circular-arc turn at
constant forward speed, durii  a zi; 1g manoeuvre where the instantaneous angle of
attack and rudder deflection are changing continuously is not correct. Thus the deflection
angle § in (4-65) should properly ¢ 1t for the true local angle of attack while turning
which is beyond the scope of this example ap] catic here.

4.7 Deriving the conventional yaw coefficients from PMM tests

Similar to section 3.8 that was presen | for the sway coefficients, now the pure yaw test
results are used for the derivation of the y v coefficients. Fig. 4.29 illustrates the sway
force and yaw moment vectors along with the vect of the heading angle of the PMM
and its first and second derivatives which are respectively the rate of turn and the angular
acceleration, and also the vector of lateral velocity and lateral acceleration of the PMM.
The vectors in Fig. 4.29 are shown at e start of the motion and they turn in the plane at
manoeuvring frequency of w. The vector of sway force as was introduced before is @r

radians behind the heading angle or : lateral velocity of the PMM, and the vector of
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yawing moment as was introduced bt re is ¢y, radians behind the angular acceleration

of the PMM; the data for these phase angles are shown in Table 4.1 on page 124.

A Im
A R
B
y
\F Re
- _—>
Mz,d

Fig. 4.29 Force and moment vectors  istrated along with the heading angle of the PMM

According to Bishop and Parkinson [1¢.J, pages 54 and 55], the oscillatory yaw
coefficients during these pure yaw manoeuvres can be calculated as follows:

% Fyoa/Bo. Vi mU = Fyoi/Bo. Ny =1, = Myoi/fo. Nr = —=Mzoa/Bo  (4-66)
where the amplitudes of the rate of turn and angular acceleration ¢ the PMM are
respectively: B, = Bow and B, Pow?. The damping and inertia components of the
sway force and yaw moment in equation (4-66) we illustrated in Fig. 4.29 which are
calculated as follows:

Fyo,a = Fyosin(@r —m/2), Fyo; = Fyo cos(@r — m/2), and (4-67)
My Mzocos(@y). Mzoa = Mz sin(gp). (4-68)
where the force and moment amplitudes and their phase angles are reported for these pure

yaw tests in Table 4.1 on page 124. As seen in Fig. 4.29, the inertia component of the
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Using (4-66) the non-dimensional derivative V' —=Y/) is plotted against the
manoeuvring frequency for the five hulis in Fig. 4.30. It is observed that the test data for
each LDR are almost non-var 1t within the range of frequency 0.4 < w 1.3 rad/s, thus
a constant average value is drawn in Fig. 4.30 for each LDR. Then substituting the non-
dimensional mass values from (4-69) respectively result in the following values for the

non-dimensional turning rate derivative of the sway force for LDR 8.5 to 12.5:

YT' =103 % [6.7,6.0,5.7,5.1,4.6]. (4-71)
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Fig. 4.30 Non-dimensional turni  rate derivative of the sway force (m’' — Y,) during pure yaw tests

A positive value for ¥/ me. . that the effect of stern is dominant, that is: when the
vehicle turns in positive yaw direction a positive sway force is exerted on the stern and a
negative sway force is exerted on the bow, sum of which gives the total sway force on the
hull; thus positive ¥, means that the « :ct of stern dominates. Also, note that according

to (4-66), Y, —with a minus sign to show the ¢ _>sing force— is in fact the non-
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The data for ¥/ in Fig. 4.32 are mos  scattered about zero, but the data for N, in Fig.
4.33 have a small negative value which means that zre is a moment opposing the turn

due to the damping effects.
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Fig. 4.33 Non-dimensional turning rate ivative of the yaw moment N, during pure yaw tests
Finally, it should be noted that the hy dynamic y. coc icients that were derived in
this section using the conventional approach do not di  tly express the tests conditions.
The approach that was used in the earlier sections of this chapter to analyze and model
the test data was concerned with cc ructing a practical model to approximate the
hydrodynamic loads that are exerted on the bare hull during zigzag manoeuvres for a
free-running underwater vehicle, rega ng that all the pure yaw runs in this study were

subjectto A/T = 0.08 m/s.
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4.8 Summary

Results from towing tank experiments for pure yaw manoeuvres on the { : axisymmetric
hull forms for an underwater vehicle were reported. = ¢ coupled sway-yaw motion for
pure yaw manoeuvres produced PMM sway amplitudes of up to about six diameters,
maximum yaw angles of about 15 degrees, and, a maximum turning rate of 17 deg/s. Pure
yaw manoeuvres with the small-sway-amplitudes and shorter periods and larger yaw
rates produced larger non-din  sional /drodynamic vay force and yaw moment. Next,
the data from the pure yaw capti  manoeuvring te : were used to develop regression
equations in the form of Response S1 ice Models (RSMs) for the hydrodynamic loads
versus manoeuvre inputs. A method was outlined for estimating the command signal
required for the control surfaces in order to execute a zigzag manoeuvre by a self-
propelled fully-submerged underv er vehicle. These set of pure yaw manoeuvres were
of short period and abrupt, with a constant ratio of manoeuvre amplitude to its period
A/T = 0.08 m/s. During a sample zigzag manoeuvre with the MUN Explorer AUV with
commanded amplitude and cycle-length for the zigz: of respectively 4 m and 50 m with
a forward speed of 1.0 m/s, the required rudder d¢ ction angle was calculated to be
about 4.8 degrees. In the last section ¢« this chapter, the hydrodynamic yaw coefficients
were also derived using the conventional approach to analyze the pure yaw test data. [t
was observed that the cross-coupled derivatives Y. and N; are of a significant magnitude

during a pure yaw manoeuvre.
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CHAPTER 5

MANOEUVRING ¢ MULATION OF THE MUN EXPLORER

AUV BASED ON THE EMI RICAL HYDRODYNAMICS

OF AXISYMM ETRIC BAnE HULLS

5.1 Introduction

In a previous project that was reported by Azarsina et al. [2007a], manoeuvring of an
underwater vehicle was studied under the action of its dynamic control systems. The
equations of motion were solved merically in the original state without any
linearization or other simplification. The underwater vehicle was assumed to be a rigid
body with six DoF (Degrees of Freedom) moving in calm water. The computer code
developed, using MATLAB™7.1, could simulate various states of an underwater vehicle
during manoeuvring. As an example, the turning manoeuvres were demonstrated in detail
[Azarsina et al. 2007a]. Some major assumptions in that simulation code were: 1) waves
and underwater currents were not modeled; ii) the effects of internal moving masses,
including ballast water with a free surface, were not modeled; iii) in & mass matrix
calculation, mass and inertia of the hu were assumed to be dominant and the mass and
inertia of the appendages were ignored; iv) the underwater vehicle was assumed to be
neutrally buoyant with zero trim 1y : More importantly, the hydrodynamics of that
original code were fairly simple, since the main focus was to develop the motion

simulation code and verify if it could properly respond to the manoeuvring mission, e.g. a
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The centre of gravity (CG) for the MUN Explorer is 2.44 m from the nose and about 40
mm below the longitudinal 1treline; thus the CG is located about 20 cm aft of the
vehicle mid-length; see section 5 in this chapter for re details. The origin used in this
study is at the CG of the vehicle.

The dynamics of an underwa  vehicle with six de. s of freedom c¢ be represented
by vectors: 7, U and 7, where 7 is the linear and a1 ilar displacement vector in global
coordinates, U is the linear and angular velocity vector in body-fixed coordinates and 7 is
the vector of forces and moments ex ed on the underwater vehicle in the body-fixed

coordinate system. Displacement, velocity and force vectors are defined as follow:

1= [11,72] (5-1)
U = [Uy, U] (5-2)
T= [?1‘f2] (5-3)

where the linear and angular displacement, velocity 1d force vectors respectively are:
=[x, . 2 1= [0, 6. Wl 0= [, v. wl, = [p. q. 71, 1= [Fu Fyo F]. 4 %= [Ma M,
M:]. The captive tests on the bare hull series were performed in the x-y plane. The
hydrodynamic forces and moments which act in the horizontal and vertical planes on a
body-of-revolution are the same. However, the MUN Explorer AUV has bow-planes,
therefore in diving or surfacing it h  a different performance than in a lateral-plane
manoeuvre at constant depth. The simulation code  this study is programmed for the
horizontal plane manoeuvres in which e force vec have three elen 1ts: surge and

sway forces along x and y-axes and yawing mom« around z-axis in the body xed
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coordinate system (see Fig. 5.1). In the planar manoecuvre with surge, sway and yaw

degrees of freedom, the kinematics of motion simplify to the three equations as follow:

mlu  vr  x;r?—y;r] = F, (5-4)
m[v +ur —yer? +x;7] = F, (5-5)
Li+mxcg(0+ur) ysu—vr)]=»~N (5-6)

In the above equations, m as will be explained later is the flooded mass of the underwater
vehicle and I, is the moment of inert  of the vehicle in the flooded state. The vertical
axis around which the moment of inertia is calculated indicates the origin of the body-
fixed coordinate system relative to which the centre of gravity may have non-zero offsets
x¢ and y;. In this simulation, the or _ 1 of the body-fixed coordinate system is assumed
to be at the mid-length of the vehicle.

The forces and moments exerted on the underwater vehicle are expressed as a function of
velocity and acceleration vectors of t  underwater vehicle, th . 7 is a function of time
because both velocity and acceleration are variables of time. The underwater vehicle’s
acceleration at any instant t is obtained as the inverse of the mass matrix times the vector
of forces and moments, that is:

Dy = M7 (5-7)
where M is the sum of the flooded vehicle mass matrix and the added mass matrix.
Integration of the initial acceleration in the time interval §t gives the velocity vector at
the next time-step. Integration of e initial velocity in the time interval §t gives the
position vector at the next time-step. Finally, the position vector is transferred to the

global coordinate system via the axes rotation which is defined by the Euler angles
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[@,8,%]. In order to make use of this procedure we must formulate 7(;y and the method
chosen was to measure 7 experiment. y for a typical 1 lerwater vehicle shape.
5.3 Bare hull hydrodynamics

Manoeuvring experiments were performed with a  ies of five slender axisymmetric
bare hulls in November 2005 in the 90 m long, 12 wide towing tank at the National
Research Council Canada, Institute for Ocean Technology (NRC-1C ). Each of the five
hulls used the same nose and tail sections, and varied only in the length of the constant-
diameter mid-body section. The five bodies were mounted on a Planar Motion
Mechanism (PMM) and the experim al conditioi included straight-line runs, static
yaw runs, dynamic sway and dynamic yaw manoeuvres. The hydrodynamic loads were
measured with an internal three-comp: =nt balance to record the axial force, lateral force
and yaw moment. The recorded data have been extracted and analyzed as were presented
in chapters 2, 3 and 4 of this thesis. The focus of the simulation resultst  are presented
here is on the turning manoeuvres of a 1ll-scale vehicle, the hydrodynan s of which are
well-represented in a quasi-static sense for low yaw rates by measurem s from static-
yaw runs.
Using the fixed-attitude test results the following models for the drag, t and moment
coefficients were proposed in chapter 2:
1000 * C, = 1.888% + 11.7LDR + 38 (5-8)
1000+ C, (0.007LDR +0.011)f + (4.87LDR + 8.85)f (5-9)

1000+ Cy, —0.0183 + 17.928 (5-10)
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The empirical formulae in (5-8) to (5-10) are valid over ranges of the factors: bare hull
length-to-diameter ratio (LDR), yaw angle and forward speed of respectively: 8.5 to 12.5,
-20 to 20 degrees and | to 4 m/s. Drag, lift and moment coefficients are substituted in the
following relations to produce the drag and lift forr and the turn g moment that are

exerted on the bare hull of a torpedo-shape underwater vehicle:

D=Cp-q-A (5-11)
L=CL’Q'Af (5-12)

where g ¥%pU? is the dynamic pressure of : flow, Af = nd? /4 is the frontal area of
the bare hull, and ! is the overall length of the bare hull also denoted by LOA in this
chapter. Forward speed of the vehicle lative to the flow is: U? = u? + v? where u and
v as previously introduced are su :and sway velocity of the vehicle. (5-8) to (5-10)
are used to predict the drag and lift fo s and the turning moment that are exerted on the
bare hull of the MUN Explorer AUV, which is torpedo-shape with LDR 6.5, at various
forward speeds within a range of —30 to 30 degrees of drift angle, the curves in Figs. 5.2
to 5.4 are produced. These curves sug; t that the empiric. formulae (5-8) to (5-10) also

produce smooth variation outside the range of applic. lity.
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Fig. 5.2 Drag force exerted on the MUN Explorer AUV using empirical formulae (5-8)
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Fig. 5.3 Lift force exerted on the MUN Explorer AUV using empirical formulae (5-9)
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Fig. 5.4 Yaw turnii moment exerted on the MUN Explorer AUV

using empirical formulae (5-10)

5.4. Dynamic control systems

5.4.1 Control surfaces

Fig. 5.5 shows the MUN Explorer AUV} its overall I sth is about 4.5 metres and it has a
maximum diameter of out 0.69 m. A cylindric  main body is blended with an elliptical
nose at its front and a tapered tail section at its rear. Manoeuvring of the vehicle is
facilitated by four aft planes arranged in "X" conf ration and two foreplanes which
assist with precise depth and roll control. The vehicle yaw, pitch and roll motions can be
independently controlled by the aft planes. With proper control of the v i : pitch, the
vehicle depth can also be controlled usii  only the aft planes. The planes have the
symmetrical cross-section of NACA 0024. Each ple  is controlled independently by a

24 Volt brushless DC motor that resides inside the plane body [Issac et al. 2007a]. MUN

132



Explorer’s control planes are about 35 by 35 cm in chord and span, that is an aspect ratio
of one®.

In this simulation, which is to simulate the horizontal plane manoeuvres of the MUN
Explorer AUV, the tail-planes are the active controllers. The bow-planes were modeled
with zero deflection angles only to contribute to the axial force. This, of course.
introduces some error in the simulation prediction, since the real vehicle even in a
constant-depth manoeuvre operates w . deflected bow-planes, which should be corrected
in a later study. As was reported by Issac et al. [2007b], dur z  straight-ahead
manoeuvre all six planes operate to t 1g the vehicle to a nose-up attitude, but the pitch
attitude of the vehicle especially at lower forward speeds was observed to be negative;
e.g.at | and 1.5 m/s forward  eds the vehicle had a negative pitch angle of respectively
about 5 and 1.5 deg. This was explained by the fact at when the vehicle is at rest at the
surface, it is normally trimmed to | e the nose down trim so as to ensure that the
antennas which are mounted ontl ¢ munications 1iast on the vehicle tail are well out
of the water thus providing a failsafe condition for communications. For the same reason
the AUV has a positive buo: icy of about 8 kg. = : bow-plane deflection angles that
were recorded durii  some turnii n  oeuvres were reported by Issac et al. [2007b]

which are reproduced later in this study.

¥ Each control plane consists of a stationary root-base of about 3 cm span which fairs to the hull and a
moving main part of 35 cm span. Here, the root-base was not included in the modeling.
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AOA of 24 deg. Fig. 5.6 shows the lift, drag and moment coefficients for NACA 0025

section of aspect ratio six reproduced from the NACA report.

e
S

Drag and moment coefficients CD and CM

AOA [deg]

Fig. 5.6 Lift and drag coefficients for the control planes;

NACA 0025 airfoils of aspect ratio (AR) of six

The NACA tests were performed for airfoils of aspect ratio (AR) of six, while the MUN
Explorer planes have an AR of one. For NACA 0015 profiles, in a study by Whicker and
Fehlner [1958] the effect of aspect ra » was reported to be significant with higher lift-

coefficient for larger aspect ratio. The followir formulae [von Mises 1959, pp. 148 to

167] can be used to correct for the | and drag coefficients of a 2D section to a 3D
section:
Crapy  Crepy: (AR/(AR + 2)) (5-14)
Co@apy = Co@py + €. n*/(m - AR) (5-15)
Therefore:

Coai y=Crepy: . /8)and (apg=1) Crep):(1/3) (5-16)
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Plane number 5 is the same as number 4 with the upper face facii the flow during a
positive turn. Drag, lift and moment coefficients are derived for the actt  AOA that are

calculated in (5-21) and (5-22).

e Xplane ,

A-AE*',

Fig. 5.8 View of the tail planes looking frr  behind: Illustration of the flow velocity relative to the

stern-planes duri  a horizontal-plane manoeuvre

T Xplane sin(§) v sin(

»

(a) (b)
Fig. 5.9 Top view of plane 3 during a horizontal-plane manoeuvre: (a) the perpendicular cut A-A in

Fig 5.8, (b) the resultant inflow velocity and drift angle

138



Note that the resultant lateral velocity was projected along the plane’s perpendicular in
(5-19). If the planes were in upright position: £ = 90 - 3 for rudders and £ = 0 deg for
horizontal planes, then for the rudders sin(¢) would reduce to unity and for the horizontal
planes it would diminish. Also, note that the projected component of the resultant lateral
velocity along the plane’s parallel, which for £ = 45 deg has equal magnitude as of (5-
19), may introduce additional complexity into the ydrodynamic performance of the
plane, however that effect is ni ~'ected here.

Therefore, in summary thel and drag forces on each stern plane are as follow:

L %pUZApCL, and D %pUZApCD (5-23)
where A, is the planform area of each plane equal to chord-length, c, times span, b. The
lift and drag coefficients in (5-23) e read from Fig. 5.7 at an actual angle of attack that
is calculated by either (5-21) or (5-22) r planes number 3 to 6.

As shown in Fig. 5.9(b), the dr. and lift forces should be projected along the x and y
axes of the vehicle coordinate system to conclude the net axial force and sway force that
are produced by the control planes. Thus, the sway force that is produced by plane
number 3, along its y; axis that was shown in Fig. 5.8, is:

Fy planes = Lpianes cos(B") + Dpianes sin(8"), (5-24)
Then the net sway force of the four ste  planes is calculated using the sway force of each

plane similar to (5-24) and correct 1 =m forthe X gle as follows:

=
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Fy ptanes = (Fyptanes — Fy pianes = Fy pianes + Fy pianes) * Sin(€)
= [ (Lplane3 = Lpianes — Lpianes LplaneG) - cos(f")
+ (Dpianes — Dpianes — Dpianes Dplanee) . sin([f')] -sin(¢)
= %pUZAp[(CLS —CLa—Cs+Cpz) co 3+ (Cpz—Cpa—Cps+Cpys)-

sin(8")] - sin(¢) (5-25)
Note that in (5-25), according to Fig. 8, the sway force of planes 3 and 6 are acting in
the positive direction of the y :is of * : vehicle coordinate system, while the sway force
of planes 4 and 5 are acting negative thus have a minus sign. The lift and drag
coefficients for each plane depend on the actual / A of that plane which itself is a
variable of the vehicle velocity vector as was written in (5-19). During a simulation run,
e.g. a turning manoeuvre, at the time instant t know : the velocity vector of the vehicle,
equation (5-25) is used to calculate for the net sway force of the stern-planes which is
then added up with other forces that :t in the sway direction, and the resultant force
produces the sway acceleration vector at the next 1e instant. The sway acceleration
vector is then integrated to produce the sway velocity vector from where the loop
continues.
To turn the vehicle in positive yaw direction, to create a starboard turn, the vehicle tail
should move in the negative y direction (to the portside), thus the resultant sway force in
(5-25) should be negative. For that purpose, planes number 3 and 6 should have a
negative deflection angle (LE down), and planes 4 and 5 should ave a positive

deflection angle (LE up). The yawing 1oment equals the net sway force that is produced
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other hand, for a pitch-to-diameter ratio of P/d, = 1 as was calculated above, thrust

coefficient of B 2-30, that is a two-blades propeller with a blade area ratio (BAR) of 0.3,
and thrust coefficient of B 2-38 were reproduced as ¢ shown in Fig. 5.12 [Kuiper 1992].

For an advance ratio of 0.72 either B 2-30 or B 2-38 has a thrust coefficient of 0.13.

04

0.35F

o
w

o
N
2]

0.15

Thrust coefficient, K
o
N

0.1

0.05

Advance ratio, J

Fig.5.12 T it coefficient for B 2-30 a1 B 2-38 for P/d, ~ 1 reproduced fr  [Kuiper 1992]
Then the propeller thrust is calculated using:
= pK;-N?. dg (5-33)
Equation (5-33), using the estimated value for the thrust coefficient for either B 2-30 or B
2-38, results in the curve of thrust >rce versus propeller speed as was shown by dashed
curve in Fig. 5.11; the two curves are in good agreement, however, the curve which was

obtained by the test data was used as the thrust force model in this simulation.
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distributed within an ellipsoid of the same length and diameter as the / /N Explorer'”.
which results in a moment of inertia of 844 [kg.m’] about the centre « volume of the
ellipsoid, which is close enough to the vehicle mid-le :th. Thus, the moment of inertia of
MUN Explorer in the flooded state to be used in this simulation code is estimated as
l, = 2475 + 844 = 3319 [kg.mz]. Also the centre gravity of the flooded vehicle is
estimated as if the C'G of the 815 kg floodwater is at the body-fixed origin (vehicle mid-
length on the longitudinal axis), which results in a flooded CG 2.33 m from the bow end
and 0.02 m below the centerline that is: x; = 2.25 2.33 = —0.08 aft of mid-length,
with y; = 0 and z; = 0.02 m below the longitudina :nterline of the hu

5.5.2 Added mass and added moment of inertia

Assuming potential flow for an ellipsoid with a length of [ and maximum diameter d. the
first three significant terms: translation in surge and sway directions and rotation in yaw
direction, for the added mass effect were studied by Lamb and the curves as are
reproduced in Fig. 5.13 were proposed [Lamb, 1932]. The axial and lateral coefficients,
K; and K,, in Fig. 5.13 are respectivi ' the r. ) of the added mass of the ellipsoid in
axial and lateral directions to its displaced mass, and e rotational coefficient, K'. is the
ratio of the added moment of inertia of the ellipsoid to the moment of inertia of its
displaced volume of water about an axis through its mid-length.

For the forward acceleration s 2, the: led mass according to the K; curve in Fig. 5.13,

for the MUN Explorer AUV with LDR 6.5 is about 0.05. However, additional amount of

"> Note that the enclosed volume of such an ellipsoid is sn  er than the enclosed volume of M{'N
Fxplorer. Also note that assumi  in even distribution of 815 kg tloodwater within such an ellipsoid means
that a density of about 726 [kg/m~| is assumed for the water.









0.01, 1 and 10 s respectively result in: 144.7, 143.2 and 130.8 m distance travelled until
the vehicle reaches a steady speed of 1.03 m/s for all those time-steps. Figs. 5.14 and 5.15
respectively show the time-history of surge velocity and surge acceleration during a
straight-line run for the above time-steps. All turning manoeuvres were simulated with a

time-step of 0.01 s.
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Fig. 5.14 Surge speed for the MUN Explorer AUV during a straight-line run at 120 rpm
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Fig. 5.15 Surge acceleration for the MUN Explorer AUV during a straight-line run at 120 rpm
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5.6.1 Turning manoeuvres: calibrating the simula n code with the

free-running test results

In August 2006, at Holyrood Harbour situated about 45 km south-west ¢ St. John's,
Newfoundland, a set of trials were performed with the MUN Explorer AUV, some of
which were reported by Issac et al. [2007a] and Issac et al. [2007b]. Ten runs of turning
circle manoeuvres with an approach  :ed of | m/s at a constant depth of 3 metres that
were reported by I[ssac et al. [2007b] as e reproduc  in Table 5.2 were used to evaluate
and then calibrate the response of the simulation cc :. Note that to perform the turning
manoeuvres with the AUV, the inputs to the software are the approach speed. the radius
of turn and the centre-point around which it turns. Then, the vehicle path, its rate of turn,
propeller rpm, forward speed and the controlled deflection of the six control planes are
some of the recorded signals during « h run. Each run is made of a straight-ahead phase
until the vehicle attains the desired approach speed and then the control planes are
deflected so as to turn the vehic w  the desired radius around the specified centre-
point. The resulting radius of turn a its centre, even in calm water, may have minor
errors relative to the commanded *  ues.

The lower portion of Table 5 = shows the reported results for the radius of turn, turning
rate and forward speed for ten it ng manoeuvre tt s, indicated by "T" in parentheses,
reproduced from [Issac et al., 2007b]". Indicated by "S" in parentheses are the respective
simulation results. Note that for the simulation code, the tail plane deflection angles were

set to the reported average value for the recorded signal of each plane during the trial as

' Rate of turn in [Issac et al. 2007b] was mis  enly reported as [rad/s]; the values were in [deg/s].
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shown in Table 5.2: e.g. the first simulation run was performed with input deflections for
the tail planes number 3 to 6 equal to —10.32, =0.1, —1.82, and —12.51 deg'*. Note that for
the approach speed of 1 m/s, the data from sea-trials as were shown in Table 5.2 are
equivalent to an average deflection a1 ‘e for the four planes calculated as: deflection (&)
of plane number 3 plus that of number 6 minus the 4 of number 4 and 5; e.g. the average
deflection angle for the first run is: 6 = (—=10.32 12.51 —(-0.1) .82))/4 =
—5.23 deg, which has about the same simulation result as a starboard turn of all four
planes at 5.23 deg. This average § is: wn as the average plane angles in Table 5.2.
The simulation code operates the AUV straight-ahead under the thrust force at a propeller
rpm of 120 until a steady forward speed of about 1 m/s is attained and the surge
acceleration has been damped to ze  then at a rate of | deg/s the stern-planes are
deflected up to the commanded values. The simulation time-step was 0.01 sec, therefore
the deflection angles of the four cor )l planes were changed by 0.01 deg during each
computational loop, which n 1s an effective rate of change of 1 deg/s. Relative errors
for the radius of turn, if the test results are assumed to be the correct value, are defined as
follows:

er =10 = (R(S) — R(T))/R(T) (5-35)
Relative error between the test and sii  ation results in the radius of turn and the rate of
turn for these ten runs are shown in Table 5.2 respectively by ep and e, which vary

between 10 to 35 percent of error.

' The planes’ deflection angle (&) have different signs in [Issac et al., 2007b]; here all the stern planes have
positive § when the leading edge turns upward and thus provides upward lift force (also see Fig. 5.8).
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Fig. 5.16 Relative error in the radius o! rns vs. longit  nal location of the CG of the vehicle

The trend is almost linear and if the centre of gravity for the simulation model coincides
with the origin of the local coordinate system, as is seen in Fig 5.16, then the relative
error in the radius of turn is less than 5 percent. T 1s the model can be calibrated by
moving the centre of gravity about 8 cm forward. For the reason explained above (no
speed reduction during the sea-ti s), rate of turn was not a good criterion to use for
calibrating the code; the best correlation was obtai 1 by using the radius of turn. The
results presented after this were obtained by the ¢ ibrated simulation code. Also see
Appendix A at the end of thesis for an uncertainty study of the simulation code.

5.6.2 Turning manoeuvres: radiusof v tu ng e, drift angle and speed
reduction versus the stern-planes’ deflection angle and the approach speed

The simulation code is a useful tool to study :' ation of the indicators of turning
manoeuvres such as: radius and rate of turn, drift angle and speed reduction versus the
input factors: stern-planes’ deflection angle and the approach speed. In the following

simulations, the average plane angles were used for all four stern-planes. That is: planes
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The control planes can deflect up to maximum 25 di  ees, however at an approach speed
of 1 m/s if the average deflection gle is set above Hout 13 deg, the actual AOA of the
planes relative to flow as calculated by equations (5-20) to (5-22), will exceed 25
degrees. Fig. 5.17 shows the time-history of the predicted AOA of plane number 3 during
three turning manoeuvres at 290 rpm with commanded ¢ of respectively =7, —10 and —15
deg. After the vehicle obtains a steady forward speed, the plane starts to deflect at a rate
of 1 deg/s, and the vehicle’s tail turns in the pos ve yaw direction thus produces a

negative sway velocity vand  positive 7 - xpjane velocity.
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Fig. 5.17) Actual AOA of plane1 aber 3 during turning manoeuvres at 290 rpm

with commanded deflection angles of respectively =7, —10 and —15 deg

As a result, the actual AOA of plane number 3, calculated by equation (5-21) becomes
large positive as seen in F 5.17. The actual AOA of plane number 6 has the same
diagram as of Fig. 5.17, and the diagram of planes number 4 and 5 are mirrored

vertically. According to Fig. 5.17 the act  AOA « the MUN Explorer’s planes, at an
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approach speed of 2.5 m/s, will exceed 25 degrees for average deflection angles larger
than about 16 deg.

Drift angle S8, which is defined as the inverse tangent of the ratio of sway velocity to
surge velocity of the vehicle with a minus sign, that is:

g = tan"}(—v/u), (5-36)
was shown in the fourth column in Table 5.3. Fora+ board turn at 120 rpm, drift angle
is in the positive yaw direction which eans that the vehicle heads inside the circle. Drift
angle increases for larger plane deflection angles. According to the data in Table 5.3, for
a turning manoeuvre at 120 rpm with an average § of about 4 degrees, e magnitude of
drift angle is about 5.3 deg which is verified by the reported test results for the runs in
Table 5.2 [Issac et al. 2007b, p. 7].

In Table 5.3, additional data-points wi - shown for the approach speed of 2.5 m/s (at 290
rpm). At higher approach speeds the AOA does not exceed 25 deg until rger deflection
angles; i.e. at 2.5 m/s the average deflection angle of the control planes can be as large as
16 degrees which produces a minimum radius of turn about 4.2 m which is slightly
smaller than the overall length of the vehicle 4.5 m. According the data in Table 5.3,
radius of turn becomes smaller for la :r defli  on angles, but it does not depend on the
approach speed. If the radius of { n is divided by the vehicle length to produce a non-

dimensional radius of turn as follows:

R R/, (5-37)
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configuration, while the large submarine was modeled with two rudders and two
horizontal planes in an upright configuration.

While the propeller rpm was maintained to a ¢ stant during the turns, the vehicle surge
velocity notably decreased during the turn. The vehicle’s total speed is the surge speed
divided by the cosine of the drift angle, that is: U = u/ cos(f). Rate of turn is equal to:
the total speed of the vehicle after it maintains a steady speed during the turn, which is
tangent to the vehicle path, divided by the steady radius of turn, that is: r = U/R. Rate of
turn predicted by the simulation code  equal to the rate of turn that is calculated from
the above formula as is shown in the second last column in Table 5.3. The ta in Table

5.3 for the rate of turn at different approach speeds is  otted in Fig. 5.19.

10 T T T T T

—&— Constant propeller speed: 120 pm :
—+— Constant propeller speed. 174 pm X
—+— Constant propeller speed: 232 rpm |,
—— Constant propelier speed: 290 rpm T |

o tum [deg/s]

F

Awverage deflection of planes, § [deg]

Fig. 5.19 Rate of turn versus stern-planes deflection angle for the MUN Explorer AUV

at the approach speeds: 1, 1.5, 2 and 2.5 m/s

Also the ratio of the steady speed of the vehicle during a turn to the approach speed was

calculated and shown in the last colur in Table 5.3. It is observed that this ratio has the
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diameter squared, then for MUN Explorer it is: Cg = 66. Note that the curves by Shiba
and Davidson were for ships with block coefficients Cp of respectively 0.8 and 0.7, and it

can be concluded that a more slender body experien ; a larger speed reduction during a
turn. The abscissa in Fig. 5.20 for the Explorer data increases up to about 2 * LOLA =60

and reaches an asymptotic trend at higher values, however only a part of the data were
shown so as to be in range with the data for the surface ships.

5.6.3 Vehicle path, velocity and acceleration

The X-Y path of the vehicle at a propeller speed of - ) rpm turning with the stern-planes
average 6 of respectively —3, =6 and —9 d are shown by black, blue and red curves in
Fig. 5.21. Note that a starboard turn requires a negative average deflection angle and the
turn is clockwise (Z-axis into the page; into the wat depth). Clearly, a larger average o
produces a smaller radius of turn. At  average § of 3 deg, the black curve, the turn is a
circle which is initiated tar :nt to the X-axis. However, at 6 deg, the blue curve, the
vehicle turns around and crosses the X-axis. Then, at an average & of 9 deg, the red
curve, the vehicle first turns in a smaller circle and then maintains a larger steady radius.
Time-histories of the vehicle position along X and Y axes are shown in Figs. 5.22 and
5.23. During the same length of tin  with a la r §, and same >proach speed, the

vehicle performs a larger number of turns.
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Fig. 5.21 Turning manoeuv  at 290 rpm with average AOAs of: 3,6
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Fig. 5.23 Position of the vehicle along Y-axis (global coordinates)

Time-histories of the vehicle's surge and sway velocities are shown in Figs. 5.24 and
5.25. Yaw rate of turn is shown in Fig. 5.26. With increasing &, nonlinear patterns occur.
While the vehicle performs a st oard turn, it attains a steady sway velocity to the
portside. In a starboard turn, the rate of turn is positive which is shown in rad/s in Fig.
5.26. Time-histories of the vehicle’s surge and sway accelerations are shown in Figs. 5.27
and 5.28. As is observed in these velocity and acceleration curves, first the vehicle speeds
up under the thrust force of the pro. ler until the axial forces are balanced. Then the
stern-planes start to deflect which causes the vehicle to turn and  :refore creates

impulsive axial and lateral forces and also an impulsive yaw moment.

165



T l
I I
! °
! &
o o o &
o0 ofw
© o ol ... |
® @ 2|8
nwonon |8
N =D
1S
=3
o
= -4
=) M—
i
|
|
!
|
\\\\\\\\\\\\ I __
)
)
I
I
1
1
\\\\\ e
|
1
1
1
1
o

o

250

tis]

‘he vehicle during turns to starboard

Fig. 5.24 Surge velocity

[ I I I I I
1 1 | | 1 |
| . I I I i
B3 | 1 1 i
Pl | | | !
° V1 by | | | )
L = R i A S S
oo | |8 ! ! ! !
w w w||8 ! ! ! !
v o of |8 ) 1 | 1
oo o |8 I ' t )
mmm > | ! ) I
= | 1 1
<« g «FE 1|Lw|1+1 T
v 1 ) 1 1
~ | I | |
£ | ! ! |
_ ! =S ( 1 1 [
o | I I |
e St = s Attt Sl it il Al
t AN | I I i
' I i 1 I t
t 1 1 | 1 1 1
' I | ' . | i
) ¢ | ! . 1 i
[ D S | S SN N I IR
\ ' | ] i I )
1 \ 1 1 + Al
| - i T [ i 1
1 ! ] 1 | 1 1
1 I 1 1 i 1 1
I ! ! 1 ) I I
it Bl Tl SR Sl ittt el Bl
I ) ! I i l !
I | l 1 I I |
1 1 1 1 1 1 1
1 I I | ! I |
t I 1 1 1 1 I
L 1 1 1 1 1 1
g - © S 8 o g =
d . =] { )
b= < o ? o < o <
[syw] A

300

250

100

t[s]

: turns to starboard

Fig. 5.25 Sway velocity of the vehicle du

166






0.0t T T r I
1 I I
I
| N | |
| . | |
0 Y J— : - -
f ‘
I
|
R I i I et —
)
f
“": ' Awerage § = -3 de )
B 002w T g
= , Average § = -6 deg
© [ 1 Avel = -9 deg
| 1 1
003 ~--------- I— T *[290 M, 2.5 Mo appm0ach speed| - -
1 l
I I I
LO04- - - - — -4 - - -~ - - S - — - = 4 - - - - —
i I I
I
I
_005 A L 1. 1.
0 50 100 150 zuu 250 300

Fig. 5.28 Vehicle acceleration in the sway direction during turns to starboard

The predicted AOA of plane number 3 varies during the turns as is shown in Figure 5.29.
Although it is commanded to deflect respectively 3, 6 and 9 deg in the negative direction
(leading edge downward) the steady actual AOA is spectively about | 1s 1.1, 2.6 and
4.8 deg. As was shown in Fig. 5.21 the run with aver : deflection of 9 deg first turned in
a smaller circle until it reached a steady radius. To "ieck for the reason, the radius of
curvature of the vehicle’s path defined as the speed of the vehicle divided by its rate of
turn, R U/r,isplotted ver 't e “wi t =80 ) 200 seconds of the § = ) deg
manoeuvre in Fig. 5.30. Obviously, the radius of curvature is changing during the
transient portion until the vehicle speed (see Figs. 5.24 and 5.25) and  turning rate (Fig.
5.26) reach to steady values and thus tt  radius of curvature reach a steady value of about
10.5 m. Note that the turnat§ —9d and 290 rpm initiates at ¢ = 73 s, and the radius

of curvature of the vehicle’s path is of course infinite before it starts to turn.
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Fig. 5.30 Radius of curvature of the vehicle’s path at average § = —~9 deg  '0 rpm

The advantage of this simulation model is that the time histories of the force and moment
vectors for the bare hull and control planes can be traced independently. Time-histories of
the net sway force and the net yawing moment that were produced by the stern-planes

during these turns are shown in Figs. 5.31 and 5.32. To produce a starboard turn the
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planes were deflected in order to produce a net sway force to portside (negative y-axis);
the net sway force in the starting phase of turn with average § of 9 deg reaches to a
maximum of about 40 N towards port. However, as was described before and shown in
Fig. 5.29 the actual AOA of planes due to the relative flow velocity change and thus the
net sway force of the stern-planes during the steady phase of the turns is to starboard
(Fig. 5.31). The net yawing moment of the stern-planes has the same variation but in the
opposite direction: for a starboard tu  first positive moment is produced. however the
steady turning moment becomes negative due to the ct .ge in the actual in. lence angle

of the flow.
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Fig. 5.31 Net sway force that is produced by the stern-p  es during turns to starboard
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Fig. 5.32 Net yaw moment t  is produced by the stern-planes during turns  starboard

The axial force that is exerted on the bare hull is shown in Fig. 5.33. At the start of the
turn there is an impulsive increase in the axial force on the bare hull, but it decreases and
reaches a steady value durit the turn. The time-hit ry of the sway force and the yaw
moment at are exerted on the ba hull are shown in Figs. 5.34 and 5.35. The
magnitudes of the overshoot in the vehicle response to rudder chai : »r rger § are
notable. According to Fig. 5.27, the time history of surge acceleration, at an average & of
9 deg, at the start of the turn there is an impulsive deceleration which then causes a
bounce back to acceleration; i.e., after the negative acceleration between about 70 to 100
s due to the rather large amount « deceleration the vehicle stores an inertia to bounce
back to a forward acceleration pha (1 curve in Fig. 5.27 between about 110 to 150 s)
which finally is balanced to zero. This process results in the large reduction in the surge
velocity as was shown in Fig. 5.24. Similar responses are also observable in the sway and

yaw directions.
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Fig. 5.33 Axial force that is exerted on the bare hull during turns to starboard
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Fig. 5.34 Sway force that is exerted on the bare hull during turns to starboard
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dominates. Converting the above non- mensional derivatives to dimensional form for
the MUN Explorer AUV with overall length [ = 4.5 m at a forward speed U = 2.5 m/s,
predicts: Y, ® —958 N/(m/s) and N,, ® —1363 N.m/(m/s).
In a steady motion, for small sway velocity and small rate of turn, the sway force and
yaw moment equations are:
=Y, v+Yr (5-41)

N=N, v+ N,r (5-42)
The derivatives: Y, and N, are still unknown. Sway force and yaw moment values during
a turning manoeuvre for the MUN Explorer AUV are the outputs of the present
simulation code as were shown in plots of section 5.6.3. At a propeller speed of 290 rpm:
approach speed 2.5 m/s, the simulatic code was performed for the average stern-planes’
6 of 1 to 9 deg and the steady values of sway force 1 yaw moment that are exerted on
the bare hull were recorded as are shown in Table 5.4. Variations of sway force versus
sway velocity and yaw moment v ;us yaw rate of turn are respectively shown in Figs.
5.36 and 5.37 at approach speeds of 1, 1.5, 2 and 2.5 m/s. Also, in Table 5.4 values for
the net steady sway force and yaw mon  t that were produced by the stern-planes duri
the steady phase of the turns at dit ¢ & are presen 1. ..gs. 5.38 and 5.39 are plots of
those values versus the average § of stern planes at . roach speeds of 1, 1.5, 2 and 2.5

m/s.
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Fig. 5.39 Steady net yaw moment produce by the stern-planes of MUN  plorer during

turning manoeuvres

Hence, in the vicinity of zero & where the variation of forces and moments as shown in

Figs. 5.36 to 5.39 are linear, if the first three values for the non-dimensional derivatives
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in the second part of Table 5.4, i.e. at § of 1, 2 and 3 g, are averaged it indicates that:
Y, = —40.6 1073 N/ —10.6+1073 Y5 =6.18x1073, Ny =—1.7 «1073. Also it
is reminded that using the data in Fig. 2.10 for the bare hull with LDR 8.5 it was
estimated that: ¥, = —36.9 » 10~3 which is close to the value —40.6 x 1073 that is
derived above; the difference is because for the MUN Explorer AUV, the LDR is about
6.5 that is a less slender hull thus has a non-dimensional derivative of about 1.1 times
larger. Also using the static yaw test results for LDR 8.5 in Fig. 2.11 it was previously
estimated that: N, = —11.7 * 1073, If this derivative is also scaled by 1.1 then for the
MUN Explorer it is Nj = —12.8* 1073, The only remaining parameter to solve the
radius of turn and drift angle in (5-39) d (5-40) is Y;'.

According the experimental and theoretical data for the non-dimensional derivatives for
the surface ships, with propellers ar rudders and some without those, that were
presented by Mandel [PNA, 1967, pp. 526-540], Y,/ | a positive s 1(v ich means that
the effect of stern is dominant, that is: when the vehicle turns in positive yaw direction a
positive sway force is exerted on the stern and a n¢  tive sway force is exerted on the
bow, sum of which gives the total sway force on the hull; thus positive Y,! means that the
effect of stern dominates) and its average 1gnitude varies about 4 to 7 times smaller
than Y. However, an underwater vehicle compared to a surface ship is more symmetrical
about yz-planc thercforc may have a smaller cross-coupled derivative Y. If Yy is assumed
between 7 to 10 times smaller than Y, and all the non-dimensional derivates as were
calculated before are substituted in (5-39) and (5-40) the resulting curves compared to the

simulation results for the radius of turn and drift angle are own in Figs. 5.40 and 5.41.
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The values for derivatives are summarized within the plots; four different theoretical
curves correspond to |Yy /Yyl =7. 8, 9 and 10, with all other derivatives as were
calculated above Yy = —40.6+«1073, N} —10.6*1073, N, =—12.8x1073, ¥5 =
6.18 x 1073, Ng = —1.79 « 1073, The rational curve-fit in (5-38) is also shown in Fig.
5.40. Note that the minus signs in (5-39) and (5-40) mean that the average plane
deflection angles for a starboard turn should be negative (that is: leading edge deflects to
port). In this simulation for a starboard turn, planes number 3 and 6 are negative and
planes number 4 and S are positive (Fig. 5.8). There is a good agreement between the
simulation results and the theoretical curves. Non-dimensional radius of turn at |Y, /Y/| =
10, that is: ¥,/ = 4.1 * 1073, is the closest to the simulation data.
Finally, note that the numerator in brackets on the right hand side of (5-39) indicates the
directional stability of the vehicle. According to PNA [1967, page 475. equation (13m)],
the vehicle is directionally stable if:
Yy(Nf —m'xg)—N, —m')>0. (5-44)

Substituting the above calculated values for the hydrodynamic derivatives Y, = —40.6 *
1073, N!=-106+10"3, Y/ =41%10"3, N, =-128%10"3, and the non-
dimensional mass equal tom’ 0.031 andx; 0, it follows that:

Yo(N) m'x;) Ny, m')=86%10"7°>0. (5-45)

Therefore the vehicle is directionally stable.

180









6-

The calibrated simulation code was then used to simulate turning manoeuvres for
various approach speeds and various deflection angles of the stern-} ines. It was
observed that: i) radius of turn, drift angle and the speed reduction ratio (ratio of
the forward speed of the vehii  within a st 1y turn to its approach speed) are
independent of the approach speed, ii) the radius of turn has an inverse relation to
the planes’ deflection angle, iii) rate of turn is faster at higher approach speeds
and higher deflection angles, iv) drift angle during a starboard turn is positive
which means that the vehicle heading is inside the circle while it is turning; drift
angle is larger at larger deflection angles, v) speed reduction ratio increases
asymptotically to unity at higher radius of turns, i.e.: smaller deflection angles, vi)
speed reduction during a turn  larger for m: : slender bodies, that is: bodies of
smaller block coefficient.

The time-histories of path, velocity, acceleration and forces that are experienced
by MUN Explorer during turning manoeuvrc were also demonstrated. At larger
deflection angles of stern-planes non-linear patterns in those signals are clearly
observable.

The simulation code was finally checked with theoretical formulae for the radius
of turn and drift angle based on the lineari 1 equations of motion. Using the
steady values for the sway forr and yaw moment that were recorded for the bare
hull and the stern-plai  durii  the turns, non-dimensional force and moment

derivatives were calculated and it was observed that the theoretical formulae
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produced similar results for the radius of tt  and drift angle as the simulation
code.
The major restriction of the present simulation code is that it was modeled for the planar
manoeuvres. To model the two bow-planes as active controllers which mainly affect the
pitching and rolling behaviour of the vehicle, introdi s a higher level of complexity into

the simulation code.
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bare hull at about 400 locations and at eight pitch angles. The geometric data includes the
shape of the bare hull, that is, the variation of the hull radius over its length. 1e pressure
data included the ratio p/q,, whe p is the dynamic pressure measured at each orifice,
and q, is the dynamic pressure of the free stream:

qo = Y2pU? (6-1)
where p is the air mass density and U is the free stream velocity.
In this study, in order to integrate the measured normal pressures over the surface of the
bare hull of the airship, it was meshed by panels. Normal pressure integration results in
the pressure drag only, however about 80 percent of the drag force is due to the viscous
effects. Viscous properties of the flow from another  of experiments on the 1/40-scale

model of the airship Akron were observed and reported [Freeman 1932c].
6.2 Fitting curves to the experim: tal data

6.2.1 Airship geometry and arrai :ment of the orifices

About 400 pressure orifices, distribute longitudinally over 26 transverse stations, on the
port half of each station simultaneously recorded the local pressure on the airship hull
both with and without control sur es fitted to the model. Eight angles of pitch 8 of the
bare hull of 0, 3, 6,9, 12, 15, 18 and 20 degrees and two air speeds of ¢ ut 70 and 100
mph (31.3 and 44.7 m/s) were used. In these experiments the model any : ¢ attack was
restricted to variations of the pitch angle only; the effects of changes in yaw or roll
attitude were not investigated. Table 6.1 and F 6.1 show the location of stations along

the airship model, and Fig. 6.2 shows the location of : orifices around each station.
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Fig. 6.1 Location of measurement stations in metres reproduced from ‘reeman 1932b]

Table 6.1 Measurement stations and their axial location

Stat  No. 1 2 3 4 5 6 7 8 9
Axial location [m]| 0 |0.035 0.087 | 0.143 | 0.221 0.306 | 0.454 | 0.662 | 0. ]
x/l 0 10.00¢ 0.015(0.024|0.037 0.051 {0.076|0.111 | 0.153
Contd. 10 11 12 13 14 15 16 17
1.189 | 1.480 | 1.838 | 2.244 | 2.704 | 3.211 | 3.719 | 4.232
0.199 [ 0248 1307 [0.375|0.452]0.537]0.622 0.7
Contd. 18 19 20 21 22 23 24 25 1 26
4.536 4.775| 5.035 | 5.187 | 5372 | 5.533 | 5.676 | 5.816 5918
0.75910.798 | 0.842 | 0.867 | 0.898 | 0.925 | 0.949 | 0.973 | 0.990
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Fig. 6.2 Angular position of the orifices at different transverse stations; all views looking aftward (locations marked "X" are orifices to check
the flow symmetry): (a) Stations 2, 3, 4, 6, 10, 14 and 16; (b) stations 5,7, 9, 11, 13, 15 and 17; (c) stations 8 and 12; (d) Stations 18 to .

inclusive; (e) stations 22 to 26 inclusive jreproduced from Freeman 1932b]
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along the hull showing the variation « p/q,. Having the coefficients of the fitted curves
from equation (6-2) for stations 2 to 26 r eight pitch angles, fitted values of p/q, could
be calculated for any desired value of the circumferential angle. At this point, it had to be
decided what angular increment Aw was desired. Fitted values of p/q, for a pitch angle
of 15 degrees and an azimuth angle of 180 degrees : shown in Fig. 6.5. Fitted values

are marked by asterisks and experime;  data by circles.
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Fig. 6.5 Fitted values of p/qg along the hull compared to the
Experimental a; 0 = and w = 180°

Experimental data were not available for every azimuth angle, e.g. for Aw = 5 deg and
w = 45 deg no measurements were taken but still equation (6-2) fits values to p/q,.
Only for station number 1, that is at the airship nose, is the fitted value the same as the
experimental data. Table 6.2 shows the experimental :asurements at the airship nose,
station number 1, for all pitch angles. The method of reporting the e :rimental data

included subtraction of the static pressure which was measured at each station along the
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6.2.3 Fitting 9™ order polyn.  als to the pressure data along the airship hull

Now smooth generator curves can be fitted to the dis: e fitted values that were obtained
at each station by fitting equation (6-2) to the experiments data; these points are shown
by asterisks in Fig. 6.5. Polynomials of 9" order were used to fit the values of p/q,.
which were themselves fitted values to the experimer  data. The 9" order polynomial
fit is the final pressure generator equation to be used for integration'. The polynomial
curve itself is a discrete series of values fitted over the longitudinal coordinate x by an
increment of Ax. For example, the p«c 'nomial representation is shown in Fig. 6.7 for a
pitch angle of zero and azimuth angle of 90 degrees. and in Fig. 6.8 for a pitch angle of
15 degrees and azimuth angle 180 degrees. Note that due to the high order of the
polynomial, care must be tal 1 not to use this to predict pressures outside of the range of

the input data.

+  rueu vaiue with equation (2)
_____ e ——

Polynomiatl fit of 9th order

Omega=90deg _ _'__
Pitch= 0 deg ‘

Fig. 6.7 Polynomials of 9" order (solid line) fitted to the p/q, values (asterisks)

by 1 '6-2); 8 = 0° lw = 90°

'* These curve-fit coefficients are available from the author upon request.
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+  Fitted walue witt ation (2)

Palunamia] fit of 9th order N

------------------------ Omega=180deg |- - - 1
Pitch= 15 deg /

Fig. 6.8 Polynomials of 9" order (solid line) fitted to the p/qg values (asterisks)
Fitted by equation (6-2); @ = 15° and @ = 180°

6.2.4 Geometry of the panels

The angular increment from which the ‘:nerator ci es were produced. determines the
size of one side of the surface panels, and the increment Ax by which the polynomial
curve was defined, determines the size of the other side of the panels. Thus one side is of
dimension r - Aw, where r is the radius of the hull cre  -section, and, the second side is of
dimension 4x/ cos(g), where @ is tI angle between the tangent line to the surface of
the hull and the longitudinal axis. The meshed surface obtained using the surface-panel
method is shown in Fig. 6.9. A tai :nt to the meshed surface at the bow end should have
a 90 degree slope, whereas a curve fitted to the as-constructed shape has a slope of about
0.9 radian (52°) at the bow end. Fig. 9 shows the 3D view of the meshe airship for
longitudinal increment of 0.1 m and ¢ jular increme of 10°. In this study the x-axis is

positive toward the stern, the y-axis is positive to starboard and the z-axis is positive
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upward; these axes do not follow the SNAME convention for underwater vehicles
[SNAME 1950].
In summary, the area of each panel is derived as

AA = (4x/ cos(@)) - (r - Aw) (6-3)
where ¢ = ¢(x) and r = r(x) hence:

AA = AA (6-4)

According to equation (6-4) the panel size depends only on the longitudinal distance from
the airship nose. In equation (6-3). the longitudinal side of each panel, 4x/ cos(g). is
approximated as a straight line; hence. the error in calculating 4A increases as the
incremental value of Ax increases, but the incremental value of Aw does not affect the

surface area value, because r - Aw is the exact arc ler h of the lateral side of each panel.
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Fig. 6.9 Isometric view of the ""Akron" airship hull meshed according to

Aw = 10degand Ax =0.1m
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6.3 Pressure surface illustration

The pressure data can be illustrated by surfaces as in Figs. 6.10 and 6.11 on axes of
azimuth angle w and the longitudinal distance from the airship nose x. Fig. 6.10 is the
pressure surface for a pitch ar "¢ of nine degrees and Fig. 6.11 is the pressure surface for
a pitch angle of 20 deg. The magnitude of the maximum and minimum pressures for pitch
angles nine and 20 degrees are shown within the plots. There is not a significant change
in maximum pressure between these 1 ) pitch angles, however the minimum pressure is
considerably lower (larger vacuum) for the larger pitch angle.

In this re-analysis, the dry air density was assumed to be 1.168 kg/m3 for a temperature of
25 C° and barometric pressure of 100 kPa, hence for the air speed of 100 mph the free

stream dynamic pressure is:
9o EpU2 = 4 ¥ 1.168 * (100 = 0.44704)2 = 1167 (6-5)

The maximum pressure for zero pitch angle is exactly equal to the dynamic pressure in
equation (6-5) and for the other pitch angles it is close to that value. Table 6.4 shows the
maximum and minimum pressu for tl eight fferent pitch angles tested. The
longitudinal location and azimuth angle of the minimum and maximum pressures are
included in Table 6.4; however, the pressure surface interpolation is not accurate up to
three decimals as is shown for the maximum pressure location. Pressure contours give a
better illustration of the pressure variation along and  >und the airship hull. Fig. 6.12(a)
shows the pressure contours on axes of azimuth angle and the longitudinal distance from

the airship nose for a pitchar eof 15d
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Fig. 6.12(b) Magnified region near the nose for a pitch angle of 15 deg

The pressure distribution over the bare hull of an underwater vehicle should have the

same pattern and same variation with itch or yaw : jle as for the airship for the same
hull shape (if it is a body of revolution the effect of p  h and yaw attitude changes are the
same). The pressures for an underwa  vehicle that is towed at a speed of 3 m/s in fresh
water are scaled relative to the "Akron" airship surface pressures according to:
Underwater vehicle normal stresses/Airship normal stresses=

(PwaterUater)/ (PairUZ,) = (1000 + 32 (1,168 * 44.72) = 3.86

(6-6)
Therefore the maximum and minimum pressures occurring on the surface of the hull of
an underwater vehicle (which has the same shape as the "Akron" airship) at a towing

speed of 3 m/s are roughly four times the values in T le 6.4.

6.4 Pressure integration over the 3D meshed model

The fitted pressures were integrated over the meshed surface of the hull. For an arbitrary

circumferential angle along the airship the differential normal force on each panel is:
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AF(x,w) = (p/q0) - 8A(X) * qo (6-7)

The first term in parentheses on the RHS of equation (6-7) is read from the polynomials

of 9" order. The elemental force resulting from equation (6-7) is per; idicular to the

panel and should be projected in the directions parallel and perpendicular to the

longitudinal axis of the hull. This is illustrated in F* 6.13(a); therefore, the radial and

axial components of the differential force are as follows:

AF, = AF -s (@) (6-8)

AF,. = AF - cos(p) (6-9)

The component of force intherad d  :tion AF,. should be projected into the lateral and
vertical directions, as illustrated in Fig. 6.13(b). Hence, using equation (6-9) results in:

AF, = AF, - sin(w) = 4F (x, w) - cos(¢) - sin(w) (6-10)

AF, = AF, - cos(w) = AF(x, w) - cos(@) - cos(w) (6-11)

AF,
Fig. 6.13 Arbitrary elemental forces wus ted in: (a) side-view and (b) front view looking

aftward (x-axis goes 0 the sheet)
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Note that the directions of the positive axes are required to interpret the minus sign in
(6-16). The circumferential a1 e is zero at the keel 1d positive counterclockwise in a

front view when looking aftward.

Fig. 6.14 Axial and norn  forces and dr: ind lift forces illustrated

Figs. 6.15 to 6.19, respectively, show e axial force F, (positive aftward), normal force
(positive away from the keel), dr: force (positive downwind), lift force (positive
upward), and pitching moment (positive nose upward). Each figure has been plotted for
several mesh-sizes with the smallest and largest increments for Ax and Aw of
respectively: 0.01 and 0.2 m, 1d 1 and 30 degrees. 1e mesh-size (4x,4w) of (0.01 m,
1 deg) is an extremely fine mesh for a hull which is almost 6 m long. F. the axial force,
normal force and pitching moment the reported results from [Freeman 1932b] are also
shown with square markers. For the . al force F, the NACA reported result found from
a 2D integration has large errors compared to the 3D panel method used here. In the
NACA report, no values were reported for pitch angles of 18 and 20 deg  =s: int.  »lated
results are now available for these tv  pitch angles. The integrated values for the axial
force with fine mesh sizes for a zero pitch angle converge to a value of 6.5 [N]. This axial

force is the pressure-drag as can be observed in Fig. .17 for pitch angle of zero. Up to a
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pitch angle of 15 deg the axial force is about the same value; however, decreases from
there to negative values for the larger pitch angles. For the pitch angle of 20 degrees the
integrated axial force is about —16.5 [N].

Except for the axial force results, the other forces resulting from the 3D fine mesh size
integration approach the reportc NACA results, even though the latter used the
relatively simple 2D integration methods. As can be observed, there are  -ge differences
between the computed forces and moments for the fine me size with (4x,4w) of

[0.01 m, I deg], and for the coarse  zsh size with (4x, Aw) of [0.2 m, 30 deg].
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Fig. 6.15 Axial force vs. pitch ang for various mesh sizes compared to NACA report
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desired. In addition to the fixed-attitude manoeuvres as in the "Akron" experiments,
variable-attitude manoeuvres with underwater vehicles including high- plitude, high-
rate manoeuvres, such as those which occur durit  obstacle avoidance, have to be
performed. Measurements of the overall hydrodynamic loads with an internal balance
have already been performed and some results were presented in chapters: two to four.
The main motivations for pressure measurements are:
1) To know the pressure distribution o1 the underwater vehicle. Pressure
distribution information will result in knowle« : of the locations of the maximum
and minimum pressures, the pressure gradier  and locations of flow separation.
2) To evaluate the hydrodynamic loads by integrating the pressures. Pressure
transducers only measure the normal presst  therefore, the viscous effect that
results from the shearing stresses is not taken into account in the integration. The
differences between the hydrodynamic loads resulting from direct load
measurement and from p < e tests will clarify the contribution of viscous
shearing effects. Note that there is a viscous pressure axial force as was shown in
Fig. 6.15.
The first stages in these measure nts are the straight-line towing and static yaw tests,
which are very similar to the "Akron" tests. One major difference is that the airship was
tested in a wind tunnel with the fluid passing over it; however, in these tests it will be

necessary to tow the vehicle through stationary fluid.
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6.6 Summary

For the study of AUVs (Autonomous Underwater V¢ cles) at the NRC-10T (Institute for
Ocean Technology, National Research Council, Canada) pressure measurements over the
bare hull of an AUV model towed with a variable attitude apparatus (Planar Motion
Mechanism) in the calm towing tank water is ommended. To approximate the
distribution and magnitude of pressures over the bare hull of an AUV and the resulting
forces and moment, the best available resource is the pressure data from the US airship
"Akron" tested by the NACA in 1932.
A re-analysis of the Akron pressure data utilizing mc  rn numerical tools concluded:
a- Plots of pressure distribution versus the azimuth angle and the longitudinal
distance from the airship nose. Hence, one can know where the maximum and
minimum pressures occur for each pitch igle. Also these data will be useful
for those people who wish to valii e their CFD predictions using
experimental results.
b- Drag and lift forces and pitching mon 1t show nonlinear variations versus
pitch angle resul” | frc  the measured normal st ses. This can be
compared to the total forces and moment including shear stresses.
With this basic knowledge the design of the | :ssure-measurement experiments for an

AUV is recommended.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In this research, the main goal was to find the correct form of the physically-based
expressions for the hydrodynamic loads that are exerted on completely-submerged
underwater vehicles during various manoeuvres. It was noted that for high-amplitude,
high-rate manoeuvres, first-order Taylor-series expansion is insufficient to capture the
higher-order non-linear dependence « he loads on the flow angle and the vehicle turning
rate. Therefore, experiments to measure the hydrodynamic loads that are exerted on the
bare hull of a slender torpedo-shaped underwater vehicle during manoeuvres with large
angles of attack and large rates of turn were performed.

The fixed-attitude (resistance and static yaw) test results were analyzed and regression
models for drag, lift and moment coefficients of the bare hull were obtained versus the
experiment factors: bare hull length-to-diameter ratio (LDR), forward speed and yaw
angle. These regression models were later embedded within a simulation code to predict
the manoeuvring behaviour of the MUN Explorer AUV. Also, the concept of statistical
design of experiment was introdur | and its pc t applic ion to d experiments
for the study of underwater vehicle hydrodynamics was discussed.

The variable-attitude pure sway tests were also performed on the five bare hull
configurations. To model the sway force that is exerted on the bare 1ll of a slender
underwater vehicle during lateral :celerations, the recorded test data were decomposed
into an inertial and a damping force component. S ly of the inertial force component,

revealed that the apparent mass of the submerged body depends on the manoeuvring
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Next, a simulation code to | 1lict the manoeuvrii  behaviour of the MUN Explorer
AUV was developed. The empirical formulae for the drag, lift and moment coefficients
for the slender torpedo-shaped bare hull of an underwater vehicle, were used in the
simulation code. Stern-planes of MUN Explorer which are in an X-configuration were
modeled as the active actuators to navigate the vehicle in a constant-depth planar
manoeuvre. The propeller thrust force was modeled using the test results from straight-
line sea-trials. Simulation results for turning manoeuvres clearly proved that at higher
stern-plane deflection angles which result in higher : ay velocity and higher rate of turn,
the hydrodynamic loads have non-linear variation.

Finally, an initial step towards the aim of performing pressure measurement experiments
over the surface of an underwater vehicle was pres ed. The integration code that was
developed to predict the axial and normal forces 1 the turning moment due to the
normal pressures can be used for future test data frc underwater pressure measurement
experiments. Also, this re-analys of the old airst data provided an estimate of the
magnitude of the normal pressures that may be experienced by an underwater vehicle
during manoeuvres; therefore, the required test apparatus can be either designed or

purchased.



In summary, the following ite ; are recommen« 1 fi future research:

1.

To perform a statistically designed set of tests for lateral acceleration manoeuvres
(as was proposedin T e3.2onpi :61).

To develop a numerical simulation code with its bare hull hydrodynamics based
on the empirical formulae for high-ampli le high-rate-of-turn manoeuvres,
which is then capable « simulating abrupt high-rate-of-turn manoeuvres.

To measure the pressure di ibution on the bare hull of an axisymmetric
underwater vehicle durir  both static and dy1 nic captive tests. The pressure test
results will provide new information for the hydrodynamics of underwater

vehicles.
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run the simulation code for turning manoeuvres at several deflection angles of the stern-
planes to observe the variation in the manoeuvre ¢ puts such as: radius of turn, drift
angle, speed reduction and the steady values of the loads. Thus, the presente uncertainty
study is only for the turning manoeuvres which were | preformed at a propeller speed of
290 rpm: 2.5 m/s approach speed and at average stern-plane deflection a1 “es of 1, 3. 6,
9,12, 14 and 16 degrees.
A.2 Uncertainty in the model mass
In chapter 5, the vehicle mass (dry mass of the vehicle plus floodwater mass) was
estimated 1445 kg. If this value is £10% uncertain  n the resultii uncertainty for the
radius of turn, drift angle, speed reduction ratio and sway force and yaw moment that are
exerted on the bare hull are presented in Table A.1. The uncertainty d¢ ned as the
relative error in the simulation response if the vehicle mass is +10% uncertain; e.g. the
uncertainty in the radius of turn is:

U myr10% = 100 * (R — Rpny+100%) /R (A-1)
Similarly, the uncertainty in the simulation response r e.g. the steady drift angle during
a turn due to uncertainty in the vehicle mass is denoted by

Ug (mj+10%, and so on. Comparing the second and third parts of T le A.1 it is observed

that the effect of +10% uncertainty in the vehicle mass is not symmetric on the simulation
response. In either case: mass underestimated or overestimated, the errors in simulation

response are mostly within a 10% ran
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Appendix B: Contribution of the skin friction 1d form drag

in the total resistance force'®

From Allmendinger [1990, page 253], first equation 64 from the ITTC >r the skin
friction coefficient is:
Cr = 0.075/{[log,,(RN) = %} (B-1)
And then equation 65 from Hoerner for the total resis 1ce coefficient is stated as:
Co=Cr*[1+ 1.5(d/D'> + 7(d/13] (B-2)
Then the resistance force on the bare hull of the underwater vehicle is:

R Zp(WSA)-U?-C, (B-3)
where WSA is the wetted su .ce ar  of the ull. For the five bare hull configurations
the wetted surface areas were repc  :d in Table 2.2t were:

WSA =[0.9511 1.0806 2100 1.3395 1.4690] m’. (B-4)
Then at forward speeds U of 1 to 4 m/s, using (B-1) to (B-4) in a water density of 1000
kg/m’, the values in Table B.1 are obt. ed for the five bare hull configuratic s.
It is inferred from (B-2) that the contribution of the sk  friction in the total resistance is
measured by Cf, and the expression in rackets in (B-2) is the contribution of the form
drag to the total resistance coefficient. Note that the two contributions are not additive
but rather are multiplicative. The contribution of the skin friction in the total resistance is

calculated as (C¢/C;)% which is shown in the second last column in Table B.1; the rest

'® This appendix was created mainly on the basis of an email sent by Dr. Chris Williams to the author.
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speeds, however at larger speeds the measured test « a for the resistance force is larger

than the estimated values by (B-3).

45} 4 -0 -U=1m/s, eq (B-3)
-+ U=2ms, eq. (B-3)
40 R 1 U =13 m/s, eg. (B-3)
. w + U=4mis, eq. (B-3)
35 e 4 & U=1mis, test data
z - " "~ U=2mis, test data
x 30 L ' 1 U =3 mis, test data
8 o ¢ 1= 4 mys test data
825
U
2
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Bare hull length-to-diameter ratio

Fig. B.1 Comparison of the resistance force estimated using the skin friction and form drag with the

test data for the five bare hull figurations a1 rward speeds of 1 to 4 m/s

For the MUN Explorer with length 4.5 m and diameter 69 cm, the LDR is 6.5 so using
(B-2) it is concluded that the skin friction contr 1t close to 90% of the total resistance
and the form drag contributes 10%. Of course those « imates are valid only for:
() the same Reynolds Number based on length,
(ii) the same surface roughness on the Explorc as on the Phoenix models, and,
(iii) it assumes that the Explor has the same axisymmetric shape of the Phoenix
models.
So this prediction method for any other full-scale |  :-hull axisymmetric shape can be

used by:



(i) scaling the results by the ratio of the con¢ 1ts in equation (B-1) to represent
the surface roughness on the vehicle,
(i1) scaling to a longer or short  vehicle .ingthea; ropriate WSA, and,
(iii)  scaling to a different LDR via the expression in the square brackets in (B-2).
Also if the forward spe¢ is ¢ Tferent the Reynolds Numbers will be different at model-
scale and full-scale so that scaling shot | be performed by using ratio of RN factors in

(B-1).
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