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Abstract

The focus of this thesis is a technique called egomotion estimation, which involves the
extraction of motion parameters from a camera based on the nature of the motion
ficld on a frame-by-frame basis. In general, this is a multi-step process that involves
estimating the motion field, often referred to as the optical flow, from which the trans-
lation direction and rotation are then extracted. The optical flow ficld is normally
generated by tracking a frame’s strong features in the subsequent frame of a sequence.
Examples of strong features include corners of objects or arcas of high contrast within
an image. The algorithms described in this thesis have been developed with the hopes
of eventually being utilized as the primary sensor on a Draganflyer four-rotor heli-
copter (also known as a quadrotor) for self-motion estimation. A PD controller was
implemented to stabilize the quadrotor, and its effectiveness has undergone initial
testing in simulation.

The algorithms and implementations that follow, in their initial implementations,
took over one minute to find a result on an Intel 3.0Ghz Xcon system. They are
now running at a rate of about 5Hz, which is certainly a noteable difference. The
methods presented are by no means optimal. The author is continuing this rescarch

on egomotion estimation as a part of his doctoral studies.
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&€ a colnmn vector

x! the transpose of vector x

X a column vector constructed by “stacking” a, column vectors on one another
C a matrix of dimension m x n

Ct the orthogonal complement of matrix C'

u(x) 2d flow vector at point x

t 3d translation direction vector

t an estimate of the translation direction

w 3d rotation vector

d(x;) the depth of point z;

P the inverse depth of point x;

R,(w,) a matrix for rotating a vector about the z-axis by w, degrees
R,(w,) a matrix for rotating a vector about the y-axis by w, degrees

R.(w.) a matrix for rotating a vector about the z-axis by w. degrees

Uy input to Draganflyer for translation along the z-axis
Un input to Draganflyer for rotation about the z-axis

Us input to Draganflyer for translation along the z-axis
1Ly input to Draganflyer for translation along the y-axis

L upward force ¢ ted by rotor ¢ on the Draganflyer, where ¢ =1, ..., 4
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Chapt r 1

Introducti n

1.1 Motivation

Most modern remotely-operated vehicles (ROVs) come equipped with some s of
optical sensor for target tracking or sensing and avoidance, but gencerally use scme
other type of sensor to obtain their heading and locale. Clearly the study of ex-
tracting such data from a visual sensor makes scuse due to practicality (economics,
minimization, etc.), but also because of the interesting problems that exist in the
arca. The process of extracting tlie 3d motion of a visual sensor from its captured
images is referred to as egomotion estiniation.

In navigational situations where the ROV is a robot or even an unmanued aerial
vehicle (UAV), an inertial navigation system (INS) is almost always utilized in some
form. When fused with another scnsor (such as a global positioning device), the
accuracy with which a vehicle can navigate is increased substantially. Rather the

purpose of the following research is not to compete with such a solution. The purpose



is to work towards a vision-based solution that will someday be used in parallel with
currently-available technology, or in low-cost systems where a great deal of accuracy
is not critical. The author chose a monocular system for specifically this reasou, since
stereo vision carries a dual expense. Not only must one must purchase two ca  oras
instead of one, but the weight added to the payload is doubled. The Draganflyer in
particular could not handle having any weight added to its payload. Furthermore,
utilizing a monocular system resulted in a complex and interesting problem.

[t is an attractive problem in a number of ways. So much of a human’s navigational
ability comes from what he/she sces, it is interesting to see if it is possible for a robot
to navigate using only visual data. Thus, this thesis deals with problems in both
computer vision and control, and the relationship between the two.

This topic has been covered fairly extensively, but is often presented with ttle
focis on implementation. The following thesis aims to describe the implemen  ion
in a thorough and clear manner, and includes an explanation of the singular value
decomiposition (SVD) which is a useful tool when solving the egomotion estimation
problem. The major contribution of this thesis is a detailed mathematical explanation
of liow to obtain the orthogonal complement using the singular value decomposition,
and how to subsequently implement a routine that will find the orthogonal comple-
nient of the column space of a matrix. From the beginning of this research, it has
been the author’s goal to determine whether or not controlling an unstable 6 degree-
of-frecedom ROV is possible when using vision as the sole sensor. Utilizing egomotion
estimation to accurately determine the pose of a UAV is uncommon, and the author
hopes that both his current and future contributions to this area will be of use to

others. Finally, a somewhat unique method of simulation was used for the controller,
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and this has been documented.

1.2 Previous work

Hecger and Jepson’s [2] seminal paper on recovering 3D motion and depth fromn an
optical flow field of an arbitrary scene is the basis of this thesis, yct it is but one
of many contributions to the extensive body of literature that exists on the topic of
rigid motion estimation.

The method in [2] can be defined as a “lincar subspace method”, in that the
candidate solution space for the translation direction is a constrained 2d space. It
makes use of the orthogonal complement to obtain n — 6 linear constraints and solving
for the translation direction independently of rotation and depth. Before [2], russ
and Horn made use of the same algebraic constraint, but instead of iterating over
the entire solution space, they utilized a least squares approach to minimize the
difference between the measured optical flow and an ideal flow field for the extracted
translational, rotational and depth information [3]. A nonlinear equation solver like
gradient-descent or Newton’s nlethéd was utilized to obtain a motion cstimate. Like
(3], the egomotion algorithm outlined by Tomasi and Shi in {4] also nade use of a
nonlinear equation solver. Instead of measuring how features move, as most methods
proposed in the literature typically do, it measured how the image deforms over tinie.
By monitoring how the angle « formed by pairs of projection rays changes over time
(the derivative of «v is called the image deformation), they constructed n bilinear
constraints (like Bruss and Horn did in [3]) to solve for the translation direction

[5]. They used the same input data (point-to-point correspondences) as the other



algorithms, but merely interpreted the data differently by not constructing an optical
flow field.

Heeger and Jepson’s method was initially chosen due to its iterative nature. Al-
though it may yield incorrect results at tiimes, it will not get stuck in local minima.
This is due to the fact that the algorithin iterates over a a constrained 2d solution
space, as is explained in more detail in section 3.1. Its formulation is also much easier
to comprehend for those unfamiliar with tlie nonlinear solvers utilized by most other
egoniotion methods.

Egomotion estimation is used Lo extract the translation direction and the rotation
of a body based on how features of interest move in successive frames of video from
a mounted camera in a static enviromnenit. Static is cinphasized here because tlie
prescnce of undetected and unexpected entities will result in inconsistencies in the
image flow field. One must generate the optical flow field using one of the many
algorithms to generate such a field from which one will extract the rigid motion from
[rame-to-frame.

Optical flow algorithms can be divided into three different types of approaches:
discrete, differential and continuous [3]. Lucas and Kanade's approach to generating
optical flow fields is discrete in the sense that it attempts to find matching brightness
patterns at a selection of points in an image sequence; that is, it generates a sparse
ficld by utilizing a subsct of the available pixels in an image. It is the chosen method
for this thesis, but many other methods have been proposed. Hom and Sche  k's
derivative-based method, for example, introduced a constraint of simoothuess to solve
the aperture problem [6], an issue that is described in section 2.3. It finds the flow

7

for the image pair using spatiotemporal derivatives [7]. Block-based matching would



be an example of a continuous method because it generates a flow vector for every

pixel in the image based on how image pairs align.
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Chapter 2

Vision Syste

The egomotion estimation algorithin was written in C++ and the OpenCV library was
used extensively. OpenCV 1 excellent methods for both matrix and image me -
lation, and also includes methods for feature extraction and optical flow calcul.  on.
All work was completed in Linux, and the source was conmpiled using g-+ . Manalois
Lourakis’ implementation of the Levenberg-Margnordt nonlinear least squares min-
imization algorithin [8] was utilized extensively, as was David Stavens® optical flow
source code [9]. A Canon Powershot A75 was utilized to obtain both video and image
pairs.

The process of finding the egomotion of two successive frames requires one to first
find the optical flow, and then use the flow vectors to find the translation and rotation
parameters of the camera based on the orientation of the flow vectors. To find the
optical flow between two successive images, one must first extract the strong features
from the first image, and then find the positions of these features in the second fraine.

What exactly is meant by strong features is explained in section 2.2, After the optical



flow has been found, the flow field can be used to find an egomotion estimate.
An vital operation in finding optical flow is the hnage derivative. This will be

covered before feature extraction and optical flow calculation.

(a) Iinage A.

(b) Image B.

Figure 2.1: Two consecutive frames of the author’s desk in the INCA lab.



2.1 Image brightness derivative

[t is a bit strange to speak of the brightness derivative of a pixel value p;, but a
digital image is merely a discrete representation of a coutinuous image. With this
in mind, one must acknowledge that all pixel derivatives are approximations. The
spatial derivative of a digitized image is onc of the inost importaut operations in image
processing [10], and a3 a result some good estimation kernels have been developed.

The basic derivative filters arc

] Tee ]
: t
NEEN
Unfortunately, high signal noise will he in the resultant image when we apply these

{ilters, so normally convolution with one of these kernels will be coupled with some

sort of smoothing filter. In this case, the Sobel operator will be used [10]
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Each filter takes the derivative in one direction and proceeds to smooth in the or-

thogonal direction.



2.2 Feature selection

Two common ways of obtaining an estimation of the optical flow for an image include
o calculating the flow for cach individual pixel, and

e calculating the flow for good features

The latter of which will be the method used in this paper. Basically, a vood feature
is normally a corner in an image, or some small area where there is a great deal of
contrast in two directions. Recognizing such an area is casy visually, but it is a little
harder mathematically. Each pixel p; in the image is iterated over, and the spatial
gradient matrix G is obtained

2 LI,

G=2,
W L, I
where 1V is a square window (normally of size 3 x 3) with p; at the center [1 [,

and I, are the horizontal and vertical derivatives of p;, respectively. Let Ay and A, be

the eigenvalues of G, p; is @ “dered a candidate feature if
min{Ay, Az) > A,

where A, is some predefined threshold. Following this calculation, it is ensured that
the distance between all of the candidate features are a sufficient distance d apart
from oune another. The strongest corners arc considered first and those corners 1at
arc within « are pruned.

The strong features from image A can be seen in figure 2.2. Note the pixels that

are selected as strong features. For the most part, they have somne sort of dynamic
contrast surrounding them.
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Figure 2.2: Strong features are extracted from Image A and highlighted.
2.3 The aperture problem

The aperture problem simply states that the motion of a homogeneous contour is
locally ambiguous [12]. A motion sensor has a finite view of its surroundings, and if
such a contour occupies its entire image plane, different physical motions are indis-
tinguishable from one another. For example, a set of parallel lines “moving {rom left
to right will produce the same spatiotenmiporal structure as a sct of lines moving from

top to bottom”. Figure 2.3 better illustrates this phenomenon.

2.4 Finding the optice flow

A flow vector must be generated for each of the strong features identified in an image.
t
Define p = [ Pr Dy J as a pixel coordinate with A(p) and B(p) being defined as the

greyscale values of images A and B at point p, respectively.

t
Given an image point u = . on A, for a location v on the sccoud image
(s} Ur Uy y

10



() (b) (c)
Figure 2.3: No matter how the aperture is moved, the perceived motion always re

mains indistinguishable. In 2.3(b), the aperture is moved to the right, while in 2.3(¢)

1t is moved to the left.
such that

v w-+d
Uy + dy
= )
uy + d,
d is referred to as the “image velocity” or optical flow at .
Finding d is normally accomplished by minimizing the error over a window w, as

opposed to a single point (due to the aforementioned aperture problem). The residual

is defined as [13]

ur tws uy twy

dd) =eldnd) = Y > (Alx,y) - Ble+dry+dy)

I=up—Wy Y=Uy—Wy

In other words, the best residual comes from the values of d; and d, that minimize

the difference between A and B’s pixels in window w. A(u) is assumed be almost

equal to B(v).
The flow field between figures 2.1(a) and 2.1(b) is displayed in figure 2.4. There are

a couple of outliers, as is often the case, but the field correctly indicates a transla  mal

11



(left pointing arrows) difference between images A and B. For a more robust system,
one must implement some statistical methods to eliminate these inaccuracies, as seen
in [11]. This will be necessary, as can be seen with the supposed vertical motion
that the flow vectors indicate (image B was taken following a pure translation of the
camera after A was taken).

Now that the flow field has been obtained, it is possible (using some assumptions

on image geometry) to extract the three dimensional motion of the camera between

successive images.

Figure 2.4: The optical flow field induced between image A and image B.



Chapter 3

Motion F'st ation

3.1 Translation estimation

Once a field of flow vectors has becn obtained, one can make an estimate of the 3d
motion that the camera has undergone between two successive {rames. At least six
accurate flow vectors must be sampled fromn an hmage pair to solve for 3d motion,
as proved in {14]. Multiple poiut correspondences arc needed to unignely determine
rigid motion, as the z,y and z components of both the rotation and the translation,
as well as the relative depth, must be solved for. If the samples are noisy, it v | be
necessary to use more flow vectors.

When estimating egomotion, one is given m 2d flow vectors u; and their respective

positions r; in the image. The fundamental equation in egomotion estimmation relates

s}
a 2d flow vector u at position z = to its rigid 3d motion
I
u(z) = d(x)Alx)t + B(x)w, (3.1)

13



where

( 1 0 —I
Alz) = :
01 — Ty
— 1Ty 1+ :1,'2 —Z9
B(z) = ‘
—-1—z mzTe

The goal is to find the 3d motion parameters ¢ = [t;, ta, tg]T and w = [wl,wg,wB]T, as
well as the depth vector d containing the depth d(z;) at each point z; fromn the input
data.

Say that m points are sampled from strong features in the image pair. The m 2d

flow vectors can be “stacked” on top of one another to form a new 2m vector of the

form
T
a = [ 'U,l(l) 1L1(2) e 'LLm(1> Um(2> 3
Then an equation can be written in the following way [2]
u = A(t)p+ Bw (3.2)
= C(t)g, (3.3)
where
( Alxy, )t 0
A(t) - i
0 Alxy, Yn )t
B(z1, 1)
B = ,
B(Tnv yﬂ)
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and

1
4= [wl Wy W3 P11t P } :
where p1,..., P are the inverse depths of the m aforementioned points 2;;. In other

words, p; = 1/d(x;). Then C(t) can be written as
c(t) = ’A(t) Bl . (3.4)

Notice that A(¢) and B only rely on the positions of the flow vectors and the
translation vector ¢, where t can be any vector on the unit sphere. It is recommended
by [2] to precalculate A(t) and B for every possible t at every image position. Then
when the algorithm is running, it is only a matter of looking up the results of an
otherwise extremely time-consuming operation.

The translation vector can be thought of as any vector on the unit sphere. Iterating
over the candidate space  easy when spherical coordinates are used. DBy using
—180 > 0 < 180 and 0 > ¢ < 180 and p = 1, all whole-numbered vectors are

represented. The conversion to Cartesian is as follows:
ty, = psingcos?,
t, = psingsing,

i3 = pcose.

Since p = 1, the solution space of the recoverced translation is actually 2d, as
cal be scen in figure 3.1, which is a plot of the residual surface of the transla-

tion direction between images 3.2(a) and 3.2(b), the minimum of which was t =



0.918465 0.139031 0.370258 ] As an aside, the recovered rotation was w =

[ 0.007685727  —0.09866409 0.05950551 } in radians.

The residual function, E(t), is defined over the the entire candidate translation

space
E(t,q) = llu ~ C(H)ql*. (3.5)

Equation 3.3 states that the optical low at n points equals C(t)q, so it makes sense
that the (¢,q) pair resulting in the smallest least squarcs estimate in equation 3.5
would be the best prediction of the translation, rotation and depth.

As shown in the appendix of [2], it is possible to reduce equation 3.5
s 2 BYT
Bty = [[u"CT (O]]7, (3.0)

and solve first {or only ¢t. The ite ¢ that minimizes the residual will also yield
a minimal residual value in equation 3.6 as in equation 3.5. Thus, £ can then be used

to solve for ¢. Calculation of C*, the orthogonal complement, is covered next.

3.1.1 Calculating C*

Any m x n matrix A can be written as [15]

A=USVvT, (3.7)

16
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Figure 3.1: A plot of the residual surface of the translation direction incurred between
the capturing of figures 3.2(a) and 3.2(h). The solution space can be expressed in 2d
using spherical coordinates.
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and
VZ = [’UT+17 "'7Un] )

as the set of eigenvectors associated with the nonzero and zero eigenvalues in 2,

respectively. Using this no  ion, it may be easier to think of ¥ as

where £y = diag(ay, 09, ..., 0,) and the zero vectors fill 2 such that its dimensions are

m X n.

Now, from equation 3.7

A=UV!

multiply both sides by V
AV =UZV'V.

Since V is orthogonal, it follows that

AV = U3,

furthermore

[Avy, ..., Avp, Avegy, ooy Avy] = [0y, -, 0000, 0, .0, 0]
Hence
Avy = oju,

for j = 1,...,7. The resulting vector formed from Av; is of the same dimension as u;,

so u; = Av; multiplied by some scaling factor (1/0;) for j = 1,...,7. It then makes

20



sense to split U into [Uy, Us] where

Uy = |u, .. ul,

U2 = [ur+17"'1um] y

Av; = Ouj,for j=r+1L,r+2,...,m

So
Av;=0for j=r+1,7+2,...,m

U is, by definition, an orthogonal matrix [15]. As shown by [16], the first r columus
of U form an orthonormal basis for the column space of A, the matrix that we are
decomposing. Since U is an orthogonal matrix, each of its remaining m — r column
vectors (Us) are also orthogonal both every vector in U, and every other vector in Us,.
Us therefore has m — 7 column vectors, and it indeed forms a basis for the left null
space of A [16], aka: the orthogonal complement of the column space of A.

The orthogonal compl 't is [t41, ey Um).

3.2 Rotation estimation

Once the translation ¢ between the two frames has been found, obtaining the rotation
w is a much less complicated ordeal. It can be calculated by solving the linear least
squares problem as described by Zhang and Tomasi [17], where vectors are stacked

in the same fashion as they were in the translation estimator.

1 2
W 1rgmina (@) (u(z) — Blz)w)|7, (3.8)
w
o
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where {z} is the set the m flow vectors’ positions and 7 is a unit-norm vector that is

orthogonal to

ALzt

Solving equation 3.8 usiug the Levenberg-Marquardt nonlinear least squares algorithm

(as seen in section 3.3.2) will yield an estimate of w.

3.3 Realtime motion estimation

The previously described algorithm was first tested on a pair of computer-gencrated
images, as seen in figures 3.3(a) and 3.3(b). Between them, the virtual camera per-

T
formed a translation along the positive z-axis. In other words, ¢ = [ 0 0 1 ]
precisely, with a rotation of zero in all three axes. Using the previously described im-
plementation of Jepson and Heeger’s egomotion estimation algorithm, the estimated

i
translation from the flow field in figure 3.3(c) wast = [ 0.00639774 0.02576588 0.999647 ] .
While the algorithm itself was sound, it took well over a minute to process the trans-
lation direction alone between the fwo images in the pair. This is often the case with
egomotion algorithins, and herein lies 2 crux of this thesis: to use vision ¢ tlic
primary system for the control of a UAV. In order to control a UAV successfully,
estimates must be obtained at a much faster rate. Since the lhelicopter utilized in
this thesis is controllable (with difficulty) by an operator, updates must arrive at a
rate of approximately 10H 2z (human reaction time). This is especially true for ro-
tary vehicles, as they are inherently less stable than their [ixed-wing counterparts.

Thus, various optimizations were needed to drastically improve the performance of

the motion estimation.



Initially, it was suspected that it would be possible to make egomotion estimates
at a rate of about 3-4 frames per second using Heeger and Jepson’s method [2].
However, it was found that a translation estimate between a pair of [rames was taking
upwards of a minute, even on the aforementioned Xeon system. Upon completion
of the implementation. Obviously, this was not sufficient. Furthermore, when the
camera induces a large displacement between {rames, even when pyramidal Lucas-
Kanade optical flow estimation with a very low error tolerance and a large number
of iterations, optical flow estimation breaks down due to a large number of false
positives. Thus, the faster the motion of the body, the more frequent estimates must
be completed.

One technique used was to decrease the number of features utilized in the flow ficld.
In [9], 400 features are used. For operation in realtime, 50 features were utilized in
finding frame-to-frame correspondences. This means that the orthogonal complement
can be found much more quickly than before; the singular value decomposition of a
smaller set of vectors is less taxing in terms of memory usage and CPU cycles. The
found features with the smallest error in the scene were utilized, so little was lost in

terms of accuracy when recovering the rigid motion.

3.3.1 Realtime translation estimation

In [2], it is stated that the candidate translation space is the unit sphere, but that
only lialf the unit sphere needs to be considered since the solutious on the {ront and
back halves are identical. Furthermorc, the solution space is small, so the residual

function can be evaluated “using a practical amount of memory and compute timme”

23



[2]. Unfortunately, even using only the front half of the unit sphere it was found
that calculation of the translation dircction in less than a second was still impossible.
The solution space was 3600 different unit vectors, and even increasing ¢ and ¢ by
a factor of 2 when iterating over the candidate solution space (thus reducing the
solution space by a factor of four) still took too long. However, it was noticed during
the evaluation of residuals over the unit hemisphere that the “correct” estimate often
differed from the next-best estimate by approximately 0.0001. Thus, by setting the
stopping crror (||e][?) to 0.0001 in the Levenberg-Marquardt solver, good predictions
of the translation direction became obtainable in on the order of tens of seconds with
the unconstrained solver.

In further attempts to speed up the results, a heuristic method was created by
tlie author. Given that the camera is attached to a body that is governed by some
equations of motion, one can make certain assuinptions on the nature of motion. Since
it is necessary to obtain an estimate of optical flow from nearly every consecutive pair
of frames, limits may be put on rate at which the translation may vary between frames.

7" is defined as the initial estimate of the translation direction of the camcra. This
estimate is used only for finding the translation direction when evaluating the first
two frames of the video stream. After this, the recovered 7' from the previous flow
field becomes the new 7.

A patch surrounding the - :tor on the unit sphere is iterated over for each 7". The
candidate vector, T', is converted to spherical coordinates, thus ohtaining a vector of
the form Tsph = [ 1 ¢ 6 } (since p = 1), and the solution space is all vectors
such that § — 10 < ¢; < 6+ 10 and ¢ — 10 < ¢; < ¢ + 10. This method was

abandoned after it was revealed that the update rate was still insufficient for online



estimation. Furthermore, if a nuinber of consecutive poor estimates were made on
the translation direction, the algorithin would drift out of the correct solution space
and would continuc to deliver poor estimates for some time, even if the predictions
were utilizing good flow fields!

Substantial effort was put into using a nonlinear least squares solver to obtain
a realtime solution. Manolis Lourakis’ C/C++ implementation of the Levenberg-
Marquardt algorithm [8] was utilized. Out of the box, the library took multiple
seconds to obtain a translation estimate (as mentioned above), so box constraints

were placed on the nonlinear solver as follows

~1.0< T, < 1.0, (3.9)
0<T, <10, (3.10)
~1.0< T, < 1.0, (3.11)

3.3.2 Levenberg-Marquardt method

Levenberg-Marquardt is a technique that finds the minimum of a multivariate function
in an iterative fashion. Giver function f, the method tries to find a parameter
vector p that minimizes the difference between the estimated measurement vector

and input x, the measured  tor. More specifically,
&= f(p),t € R". (3.12)

Aside from the measured vector, the algorithm also requires an initial guess as

input, po. The best possible guess, p*, minimizes the squared distancc ¢’¢, where
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For a small step size ({|6,]]),
f(p+6,) = f(p)+Jb (3.13)

where .J is the Jacobian matrix of f. At each step, the algorithmn tries to find =~ 2§,
that minimizes ||z — f(p + 6,)|[, which is approximately equal to ||z — f(p) — J,|| =
[le = Jd,||. The minimum is attained when J§, — € is orthogonal to the column space
of J

JI(Js, —¢) =0 (3.14)
which leads to

JTJs, = J"e (3.15)

In 3.15, J¥J is an approximation of the Hessian. The Levenberg-Marquardt method
usually makes a slight modification of this matrix

NG, = J'e (3.16)

wlhere the off-diagonal elements of IV are equal to the corresponding elements in J7'J,

but the elements on the di  mal are such that

Ny =p+[JTJ] (3.17)

1

where ¢ > 0 is a damping term.

3.3.3 Coordinate transformation

Since the camera is the sensor upon which the control laws are based, it is necessary

that the positional estimates it gives are in the same space as the Draganflyer. In this
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configuration, it is possible to simply relabel the axes to transform the camera’s coor-
dinate system to that of the Draganflycr. Prior to (and possibly following) the writing
of this thesis, the camera’s position was (will be) such that merely relabeling the axes
was (is) impossible. For such situations, the following coordinate transforma m is

very relevant.

z
y X z
X z y X
y
(a) Camera (b)  Inter- (¢) Draganflyer
mediate

Figure 3.4: Coordinate system 3.4(a) must be converted to 3.4(c).

The conversion from the camera systemn to the Draganflyer system is a two step
process. First, a —907 rotation about the z-axis will result in the coordinate system
seen in figure 3.4(b), followed by a rotation —90° rotation about the z-axis in the new
system. This will yicld the Draganflyer coordinate system as seen in 3.4(c).

The sign of the rotation direction about the axis is determined using the right
hand rule. Simply point your right thumb along the axis in question in the positive
direction, and curl your fingers. The direction in which the fingers curl in the direction
of positive rotation.

Say one wishes to transform a vector in 3D space, and thus has a vector «  the

£
form & = [ Ty T T J . The dimension of the vector is extended and given a value
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t
of 1 (thus becoming of the form z = [ x T2 oy 1 J ), and then is multiplied by

the appropriate rotation matrices:

1 0 0 0

0 cosf, —sind, 0
R.(6.) : (3.18)
0 sin0, cosf, 0

0 0 0 1 j
!_ cosf, 0 sind, 0
0 1 0 0
R,(6,) = , (3.19)

—sinf, 0 cosf, 0

0 0 0 1

( cos b,

—-sing, 0 0
sinf, cosf., 0O O

0 0 10

0 0 01

So, any translation or rotation vector that we obtain from the camera will have to be

manipulated in the following way

where 6, = 90° and 6, = —90°. The new vector, £, may now be utilized in the PD

coutroller seen section 4.2.1.
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Chapter -

Quadrotor M c el and Control

The Draganflyer’s motions are normally manipulated using a Futaba 4-channel remote
controller by a human. To obtain autonomous flight the same controller is used, but
it is connected to a PC via a PCBuddy cable, which essentially converts RS232
commands to PWM (pulse width modulated) signals allowing for wircless control of
the aircraft. The egomotion algorithm supplies the yaw(¢), pitch(y) and roll(d) to

the PD controllers.

4.1 Draganflyer dynamics

Two of the rotors of the Draganﬂyier rotate clockwise, while two rotate counter-
clockwise. Adjacent rotors spin in opposite directions, as can be scen by the thin
arrows in figure 4.1. The logic belind controlling the Draganflyer is fairly simple.
By modifying the individual motors’ speeds, the helicopter can be maneuvered in
both directions along the z, y and z axes. Note in figurc 4.1 that the z-axis is

in the upwards/downwards direction, a conuuon coordinate systemn used in robotics
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F2

a2 E2

Fa

Figure 4.1: A sketch of the Draganflyer. The thin arrows indicate the direction in

which the corresponding rotors move, while the thick red arrows indicate the forces.

literature. To increase the height of the Draganflyer, increase the speeds of all four
rotors simultaneously. Ultilizing the notation introduced in figure 4.1, this  ans
increasing £, F,, F53 and F;. Motion along the positive z-axis can be obtained by
increasing the speeds of rotors 3 and 4, and decreasing the speeds of rotors 1 1 2.
When thought of visually, this will result in a rotation about the y-axis, increasing
the altitudes of rotors 3 and 4 and decrcasing the altitudes of rotors 1 and 2. nce
the desired tilt (the degree of rotation about the y-axis) has been reached, the four
rotors will return to equal speeds, and the thrust of the angled body will propel it
along the x-axis.

The same can be said for motion along the positive y-axis, except that the speeds
of rotors 2 and 3 will be decreased while the speeds of rotors 1 and 4 will be increased.

The altitudes of rotors 1 and 4 increase, the altitudes of rotors 2 and 3 decrease, and

30



F2

F3 F1

F4

Figure 4.2: 3D quadrotor model, as adapted from [1]. Note that the o and y-axes arc

not parallel to the rods that make up the frame, as seen in 4.1. In fact, the axes are

perpendicular to them.

the body then rotates about the z-axis. 'OllCC the desired tilt (about the r-axi:  has
been reached, the four rotors should return to equal speeds, and the quadrotor will
move along the positive y-axis. For both the xr and y axes, motion in the negative
direction can be obtained by instead incrcasing the spceds of the motors that were
decreased, and decreasing the speeds of the motors that were previously increased.

A clockwise motion about the z-axis can be obtained by increasing the speeds
of rotors 2 and 4. This will produce a moment larger than the opposing moment
created by rotors 1 and 3 in the opposite direction. A counter-clockwise motion can
be obtained by increasing the speeds of rotors 2 and 4 instead.

The four inputs to the system will be defined with the previous statements in



wind. Table 1.1 gives botl descriptions and values for the constants used in defining
the inputs and the system cquations, as seen in [18]. Note that the inputs are in
different units. u; represents the total thrust on the body along the z—axis, while wy

and uy are pitch and roll inputs and w4 is the vawing moment [1].

Table 4.1: Draganflyer model parameters

Parameter | Description Value Units
g gravity 9.81 m/s?
m vehicle mass 0.468 kg

Jy roll inertia 4.9x107% | kg -m?
J pitch inertia 4.9x 1073 | kg - m?
J3 yaw inertia 8.8 x 1078 | kg - m?
{ center to blade length | 0.225 m

From [1],

ey =(F+ N+ F3+ Fy)/m

to increase the lift, increase the thrust of all four rotors equally.

® Uiy = (—Fl - F2 + Fg +‘-4)/J1

to translate along the positive z-axis, increase thrusts of rotors 1 and 4 equally

(19].

o uz = (£ + Fy + Fy— Fy)/Ja

to translate along the positive y-axis, increase thrusts of rotors 3 and 4 equally.
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® iy = C(Fl —Fy+ Fy - F1)/];
to perform a clockwise rotation about z, increase thrusts of 1 and 3 to overcome

the moment created by 2 and 4. C is the force-to-moment scaling factor, valued

at 1.3 through experimental analysis in [20].

Finally, the model for the quadrotor used in the simulations is defined as

T = u(cospsinfcos P + sin g sin i) (1.1)
§ = uy(singsinf cosy — cos psin ) (4.2)
F=wu(cosfcos)) — g (4.3)

0 = u,l (1.4)

U = uyl (4.5)

¢ = ug (4.6)

4.2 PD control theory

A PD controller is a form of a proportional, integral, derivative (I’ID) controller,
where cach of these elements arc used to control a plant. Thesc elements take the
feedback from the plant and the system command signal, and use themn to produce
the system output [21].

The derivations of the PD countrollers that follow in section 4.2.1 are quite theo-
retical in nature, and arc essentially the same as the controller found in {1].  hile
botl [1] and [20] both do an exccllent job deriving the controller, they give little to
no implementation details.

On the other hand, [21] offers a very good tutorial on how to implement a PD
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controller in C, as well as how to estimate quantities like V1, &, 0 and 7. Much of the
code written for controlling the Draganflyer was based on it. Controls for the yaw(¢),
pitch(6), roll(¥) and height(z) are derived in [1] by linearizing about. hovering mode
(ie: @ = ¢ = 0, v, = 1). Indeed, the controller that was implemented by the author
was designed for the sole purpose of getting the quadrotor to hover. Tlie purpose of
this thesis from the outset was to demonstrate that optical flow is accurate ecnough
to be used as the primary sensor for controlling an inlierently unstable vehicle, not to

implement a full-blown control _stem responsible for the navigation ol a quadrotor.

4.2.1 PD controller
From the § term in equation 4.1, if ¢, and ¢ are set to 0 and u, is set to 1, one obtains
i = Kp(ya—y) + Ka (Ya — y) = —siny.
Note that yg and yg are both zcro, so
y=-R,y— Ky =—siny. (+.7)
By negating the arcsin of both sides of equation 4.7, we get
Wy = arcsin{Kpy + Kay), (1.8)

where 1 is the desired tilt angle. If the derivative of equation 4.8 is taken,

. KoK
wd =77 r ’ o 2.0 (49)
\/1 — \,‘;y2 - 21\;)I\d'!/y - ]‘(?yQ

an expression for the desired #ilt angle velocity is obtained.
The motion along the y-axis can be controlled by using a PD controller for input

uz, which as indicated in 4.1 cquals —F) + F» + F3 — Fy. By decreasing the thrust
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of two adjacent rotors, the helicopter rotates around the axis upon which they both
lic (F} and Fy share the z-axis). The helicopter will then translate in the direction
of the downward tilt (along the y-axis) once the desired tilt has been acquired and
(approximately) equal thrust has been restored among all rotors. To obtain the

desired tilt, 13 is controlled via a PD controller
g = Ko (b =) + K (v = 9) (4.10)

using the aforementioned definitions of 1y and u’}(,.

In the same way, one can design a controller for motion along the z-axis. This
time up will be modified by decreasing F} and F3, resulting in rotors 1 and 2 tilting
downward until the desired 6, has. been achieved, at which point (approximately)
equal thrust will be returued to all rotors and the helicopter will translate in the
direction of the downward tilt of rotors 1 and 2 (along the z-axis). If onc assigns

=1 =0and u, =1,
i sind, (4.11)
Now, to control & using a PD controller, [1] asserts
&= =Ky (g - 1) + Kq(dq — &) (1.12)

By equating the right-hand sides of equations 4.11 and 4.12

uy Ky (0 — 6) + Ko (e'd - 0) , (4.13)



where

0s = arcsin(—R,xv — Kyi), (4.14)

Y ]‘; )A.: ]’,l.'“',

6, = — pl R . (4.15)
\/1 - K222 = 2K, KNyxt ~ K2g?

Yawing motion is much less complicated, as rotation about ¢ does not result in a
translation along any axis. Thus, ¢4 and ¢, can be defined arbitrarily, either by the
operator or some intelligent system that is operating at a higher level than the D

controller. In [1], the following is given

g = Kot (g — ¢) + Kus(a — 6). (4.16)
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Chapter 5

Simulatior Results

5.1 Egomotion simulations

In the previous sections, egomotion estimates were performed on various image pairs

and video sequences. Determining the degree of accuracy was diflicult for two reasouns:

e The focal length of the (Canon A75) camera used in egomotion cstimation

calculations is an approximation.

e It is extremely difficult to generate highly accurate immage sequences due to
factors like unleveled tables and the lack of a turret for controlling rotation

accurately to multiple decimal places.
Converscly, computer-ger  ated images make this task much easier:
e The exact focal length of the “camera” is known (defaults to 1).

e Sequences in which the camera-induced motion is known can be generated with

ease.
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Povray (shorthand for Persistence of Vision Ray-Tracer) renders 3d scenes with
a technique called raytracing [22].  As input, Povray reads a text file containing
information on the camera, objects and lighting that are contained in a scene. It was
utilized to generate various image scquences and test how precisely the egomotion
of the camera could be extracted. Computer-generated imagery proved extremely
useful when creating image sequences containing combined motions that would have
been quite difficult to perform by hand. Generating a pure translation along the
z-axis, for example, is a fairly easy task. Generating an accurate sequence when the
camera is translating aloug the z-axis while rotating precisely 2° is quite another story
though. Figures 5.1(a), 5.1(b), 5.2(a) and 5.2(b) were all generated with Povray, and

the egomotion estimates from the generated flow fields can be scen in table 5.1.

5.2 Combined vision and cortroller simulations

Sample C(+4) code exists for interfacing a PC with a remote controller via the
PCBuddy and a plethora of information is available for designing PID control s in
saild language(s). C++ was chosen for the controller based on this, but also because
of its great performance.

It is often the case that when one is implementing a controller for a svstein,
lie/she designs both a model nd a corresponding controller in Matlab to test the
general performance of the gains, and then writes the actual controller in C or some
other language. In this case, the model was coded in Natlab, but the controller
was not. Instead, it was written in C++ and a two-way communication channel

was implemented between the two (each ran on a separate machine). During the
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simulations, the model would send a message containing the ¢, " and ¢ as well as the
x, y and z displacements, and the (:Qlltroller would send back the control inputs (w,
Us, uz and uy). Bach time the model received a control update, it plugged the inputs
into the ode4d solver along with the system model for 0.2 seconds, and returned the
resultant rotational and translational displacements to the controller. These can be
seen in the graphs at the end of the chapler. The ode45 solver integrates a system of
differential equations over a user- defined timespan {23]. A function written by the
user contains the equations, and the handle of this function is passed as an argument
to the solver. Matlab solves the system numerically.

After running simulations on both the vision and control algorithms separately,

the image sequences in figures 5.1(b), 5.2(a) and 5.2(b) were inputted into the full-

blown implementation, where
o the optical flow field was gencrated from point-to-point correspondences,
o the estimate for the translation direction was made from the flow field,

o the estimate for the re  ion was made from the recovered translation direction

and the flow field,

e coordinate transformations (as described in section 3.3.3) were performed on

the trauslation direction 1d rotation to convert them to the draganflyer frame

from the camera frame, and

e the transformed rotation values were then passed as input to their respective

PD controllers.
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The resultant output of the PD controllers can be seen in Table 5.2, A rotation of
2 about the z-axis in the camera frawme is a 2° (pitching) rotation about the z-axis in
the Draganfiyer frame. Thus, when the camera rotates about z-axis in figures 5.1(h)

and 5.2(b) it makes sense that uy is the largest in magnitude.









flow diagram | actual ¢ estimated ¢ actual w estimated w
0 0.0642482 0 —0.002583029
5.1(a) 0 0.197736 0 0.02339799
1 0.978148 0 0.001033989
L J L J L J .
0 0.002519399
5.1(b) n/a n/a 0 0.01115045
0.052333333 0.03215757
B T r 7 2 T
0 0.431632 0.03490658 0.0266253
5.2(a) 0 ~0.371138 0 0.0168376
1 0.822162 ] 0 0.0180777
1 0.838671 0 0.02211699
5.2(b) 0 ~0.544639 0 0.03040064
0| 0 0.05233333 0.08450596

Table 5.1: Predictions of motion in computer-generated image pairs.
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Figure 5.3: Effect of closed-loop control on displacement along the r-axis.

displacement of draganflyer on y-axis with PD controlier

time elapsed (s)

02

0.15

0.1

0.05

-0.05

-0.1

-0.15

T T

! L

-0.2
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Figure 5.5: Effect of closed-loop control on displacement along the z-axis.
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Figure 5.6: Effect of closed-loop control on ¢ rotation.
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Figure 5.8: Effect of closed-loop control on 8 rotation.
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figure | transformed rotation vector Us Uy Uy

~1.84010
5.1(b) 0.144351 5.52029 | 0.433053 | -0.511099

0.638874

[ |

~1.03578
5.2(a) 152552 3.10733 | 4.57655 |-0.771779

0.964723

~ -

—4.84184
5.2(b) 196 14.5255 | 3.80163 | -1.39346

1.74183 J

Table 5.2: The outputs of the PD controllers in response to the Aow ficlds. Note
that u, is not included as it controls positioning on the z-axis, and magnitude of

translation cannot be extracted from an image sequence.




Chapter 6

Conclusi 1 1s

6.1 Findings

The egomotion estimates presented in section 3 are generally of a high degree of
accuracy. This is due, at least in part, to the high-quality flow fields uscd as input
to the estimator. When the estimator gives suboptimal results, it is normally due to
cither excessive outliers in the flow field, or ambiguous flow fields.

One previously mentioned type of ambiguity is the aperture problem, as explaincd
in section 2.3. Normally when one speaks of aimbiguous flow fields, they are vef ing
to a flow field where it is indistinguishable whether the perceived motion was induced
by a translation or by a rotation. Motions that are parallel to the image plane (ie:
motions on the = and y-axes), as explained in [24], can cause confusion in the observer
as to whether a rotation or a translation has occurred. Iu certain circumstances, a
rotation about an axis in the negative direction will appear similar to a tran  ion

along the other axis of the image plane. These anibiguous motions, although not the



only ones, can be seen in Table 6.1.

axis of rotation | rotation direction | axis of translation | translation direction
L negative Y positive
T positive i negative
] negative x positive
Y positive T negative

Table 6.1: Ambiguous motion

The degree of robustness of an estimation is dictated by the size of the field of
view (the larger the better), and the ratio of the magnitude of the translation to the
distance from tracked features (again, the larger the better) [24]. In other words, the
effects of translation are usually inversely proportional to the distance of the camera
from the scene [1]. When a human {ries fo infterpret the camera motion from the flow
field in  zure 6.1(a), it is unlikely that he/she will be able to tell that the motion
is the result of a pure rotation, it is more likely that it would be characterized in
the same way as 6.1(b), as a pure translation on the z-axis. Egomotion estimation
algoritlnns often suffer from the same shortcoming. In fact, the further the camera
from a scene on the image plane of a rotating camera, the more like a translation it
will appear. The exception to this rule is rotation about the z-axis, as secn in  zure
6.1. A+ wer would easily be able to guess the motion that the camera is undergoing
at the t e of the capture. Likewise, estimations of translation along the z-axis tend
to be the best of the three axes.

This problem is further exacerbated by the fact that these ambiguous types of
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(a) Rotation about the y-axis.

|
(b) Translation on the z-axis.
Figure 6.1: Two frames from different sequences demonstrating how rotation. and

translational motion can be ambiguous.

motions can occur concurrently. For instance, the camera may be translating along
the z-axis while simultaneously rotating about the negative y-axis. In such a circum-
stance, it becomes even more difficult to infer what type of motion is truly ¢ sing
the degree of the displacement. It is clear that the camera is inoving the in the posi-
tive  d ction, but the degree of the magnitude of the flow that may be attributed
is indeed ambiguous. After 1, only the translation direction has been obtained, a

unit vector that may represent a translational magnitude that can be anything from
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Figure 6.2: Rotation about the z-axis.

extremely small to very large.

Likewise, say that the camera ] i again translated along the positive z-axis, but
it has rotated about the positive y-axis. In the circumstance where the magnitt s of
the translational flow vectors are similar to those of the rotational flow vectors, it will
appear that there has been nearly no movement. This is contingent on the distauces

of the ft .ures from the camera lens.

6.2 Final thoughts and future work

The mc rn INS is both affordable and reliable, and when coupled with a GPS it
makes for a better estimator of 3d motion than one could ever hope for in a ¢:  zra-
based s (tion. Furthermore, in a single camera-based solution, it is only possible
to extract the direction of translation (a unit vector), not its magnitude. Dept and
rotation can be obtained, but some other sensor is required if magnitude of trans  tion
is required.

However, that does not mean that the ego-es = tion problem is unimportant. If
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one wishes to determine the distance of‘a.n approaching object without resorting to
radar or some other active sensor, then rigid motion must be solved for in order to
extract depth. Furtliermore, vision-based navigation has been a very useful tool in
simultancous localization and mapping (SLAM). SLAM deals with the problem of
building a map of an unknown environment while navigating the environment with
said m.  [25].

The implemented estimator presently does very little to prune statistical outliers.
If a flow vector exceeds the maximal prespecified length, then it is not used  the
3d motion calculations. In order to obtain a more robust solution, there v 1 be
more effort put into using estimates based on prior motion to elhninate outliers. For
example, if a Kalman filter indicates that the camera should moving in direction f
with a rotation of w, flow vectors that vary from the expected values by more than
a predefined threshold will be pruned. Furthermore, SIFT (Scale-Invariant Feature
Transform) will be used instead of Shi and Tomasi's [26] method for identifying fea-
tures, as the former is generally unaffected by changes in illumination, rotation and
scale [27].

In the preceding thesis, all real-world images were captured using a standard 3.2
megapixcl camera. It is not so much the quality of the sensor that may have caused
issues so much as the consumer-grade lens. Indecd there is some barrel distortion that
must be corrected for, and in futur{e a calibrated camera will be used exclusiv . It
was not realized at the outset how ambiguous optical low data really can be, and how
subtle changes in the field will completely throw off motion estimates. So not only is
it important to use a better feature tracker for avoiding excessive outliers, it is also

important to have subpixel accuracy of matched features, which was not completed
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here. Essentially, the implemented estimator gives a fairly good estimation of heading
and rotation at times, but the results can be highly noisy and at tinics even wrong
(due to a lack of convergence in Levenberg-Marquardt). The problems faced during
experimentation due high levels of inaccuracy were extremely frustrating, as it was
presumned that there was a problem with the estimator. However, the literature
suggests that such is the nature of optical flow applications. Thus, it would be
interesting to characterize the type of motion and focus on, for example, the motion
of features that are closer to the camera, which will tell more about the nature of
the motion. Likewise, more weight could be put on certain areas that characterize
translation versus rotation better.

It is a good idea to gencrate ideal flow ficlds for a certain type of rigid motion.
Even when working with synthetic images, there are still too many unknowns and
inaccuracies to be sure whether or not an the translational or rotational estimators
arc performing properly. Adding noise gradually and subsequently working with
synthetic images makes much more sense.

[Finally, Bruss and Horn's egomotion cstimation mecthod will be utilized over
[ceger and Jepsoun’s. By utilizing a nonlinear equation solver, this paper has cs-
sentially emulated the same method, but with n — 6 constraints instead of n. Fur-
thiermore, it is much slower because the SV‘D has to be performed each time one finds
the orthogonal complement of the colunm space of a matrix, and also because the
Jacobian has to be approximated. In other words, the implementation will becoe

much faster and more accurate, the universal metrics toward which all Eng zers

work.
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Appendix A

Egomotic 1 Estimation Code

A.1 Camera3DState.cpp

tinclude <cv.h>
#include "Comera3DState.h"
/4’*‘
* class: CameradDState
* brief: NRespansible for storing the current rotational displaccinent of
* the camnera in 3d space.
Y/
Camera3DState::Camera3DState( ) {

rex = 0.0;
r.y = 0.0;
r.z = 0.0;
}
JEE

10



Y/
void Camera3DState::updateRotation{ CvMat* R) {

rox = r-x + cvmGet{ R, 0, 0 };
r.y = r.y + evmGet( R, 1, 0);

rz =r.z + cvmGet( R, 2, 0); 20

/4-*
* [t 4s simply assumed that as long as p and info are not null
* that they are indeed of the correct dimensions
* pre: p has 8 elements and info has 6
* post: the per-frame displacements have been addcd
/
void Camera3DState::updateRotation( double* p ) { //, double* info ) {

r-x = rx + p[0f; »0

r.y = roy + p[lf;

rz = r.z + p[2};

}
/*t
* The cumulative rotation about the z-aris from t=0 to the current lime
Y/
double Camera3DState::getRotationAboutXAxis( ) {
rcturn r_x;
}
/'*3

* The cumulative rotation about the y-aris from (=0 lo the current time

7/

GO




double Camera3DState::getRotationAboutYAxis( ) {

return r_y;

}

/nr

* The cumulative rotation about the z-aris from t=0 to the current time
Y/

double Camera3DState:getRotationAboutZAxis( ) {

return r_z; 5

A.2 CMatrix_ uilder.cpp

#include "CMatrixBuilder.h"

CMatrixBuilder::CMatrixBuilder{ CvPoint2D32{* FrameOneFeatures, CvPoint2D32f* FrameTwolFeatures,

char* FoundFeaturesMap, int NumPoints ) {

f=10,//634.0;

frameOneleatures = FrameOnceFeatures;
frameTwoFeatures = FrameTwoFeatures;
foundFeatureshlap = FoundFeaturesMap;

numPoints = NumPoints; 10

// caleulate the number of found points
int i =0 |
numFeaturesProcessed = 0;

while( i < numPoints ) {

if ( foundFeaturesMapli] == 1} {
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numFeaturesProcessed++;

allocateMatrices( );

CMatrix  ilder::"CMatrixBuilder( ) {
cvReleaseMat( &A.T );
cvReleaseMat( &B );
cvReleaseMat( &C };

1

CvMat* CMatrixBuilder:getC( } {

return C;

}

J*
* Returns the number of rows of C
Y/

int CMatrixBuilder:getCRowSize( ) {

return 2*numFeaturesProcessed;

}

/*
* Return the number of columns of C
Y/

int CMatrixBuilder::get CColumnSize( ) {

return numIeaturesProcessed+3;
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void CMatrixBuilder::allocateMatrices( ) {
// make malrices of the correct dimensions

A_T = cvCreateMat( 2*numlFeaturesProcessed, numFeaturesProcessed, CV_32I° );
B = cvCreateMat({ 2¥numPFeaturesProcessed, 3, CV_32F );

C

cvCreateMat( 2¥numFeaturesProcessed, numFeaturesProcessed+3,CV _32F ):

//Vt = coCreateMat(l, 2*numFeaturesProcessed, CV_32F );

// inttialize all elements of A(T) to 0
for( int i=0; i<2*numFeaturesProcessed; i+4 ) {
for( int j=0; j<numFeaturesProcessed; j++ ) {

CV_MAT_ELEM( *A_T, float, i,j ) = 0;

void CMatrixBuilder::fillA_T( CvMNat* T ) {

CvPoint2D32f* p1 frameOneFeatures;

// initialize A_T and all of its static elements

CvMat* A_xy = cvCreateMat( 2,3, CV_32F );
/*

* changed on May 8th to negative f

Y/

CV_MAT_ELEM( *A_xy, float, 0,0 ) = —f;
CV_MAT_ELEM( *A_xy, float, 0, 1) = 0;
CV_MAT_ELEM( *A_xy, float, 1, 0 ) = 0;

CV_MAT_ELEM( *A_xy, float, 1, 1 ) = —;
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int rowlndex = 0;
numFeaturesProcessed = 0;

int i=0;

CvMat* res = cvCreateMat( 2, 1, CV_32F ); // res 1s temporary storage for what goes into A(T)
while( i < numPoints ) {
if( foundFeaturesap[i] == 1) { //optical FlowFoundFeaturefi] == 1) { 80
CV_MAT_ELEM( *A_xy, float, 0, 2 ) = pl[i]x;

CV_MAT_ELEM( *A_xy, float, 1, 2 ) = pl[i].y;

cvmMul( A_xy,Tres ); //ewknflaw

CV_MAT_ELEM( *A_T, float, rowlndex, numFeaturesProcessed ) =
cvmGet( res, 0, 0 );
CV_MAT_ELEM( *A_T, float, rowIndex+1,numleaturesProcessed ) =
cevmGet( res, 1, 0);
BN
rowlndex = rowlndex+2;
numFeaturesProcessed++;
}
i+
}
cvReleaseMat( &res );

¢ eleaseNMat( &A_xy );

100
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void CMatrixBuilder:GEB( ) { //CvPoint2D32f* p1 ) {

CvPoint2D32f* pl = frameOncFeatures;

// initialize B and s static elements - the = & y's will be
// updated in the loop

int i=0;

int rowlndex = 0;

float x;

float y;

while( i < numFeaturesProcessed ) { 110
x = plfi].x;

pL{il.y:

// fill all columns of the first row

il

Y

// THIS WAS CHANGED TO X*Y ON MAY 8§TH

CV_MAT_ELEM( *B, float, rowlndex, 0 ) = ( x*y ) / f;

CV_MAT_ELEN( *B, float, rowIndex, 1 ) = —1* (f + ( x*x /) )

CV_MAT_ELEM( *B, float, rowIndex, 2 ) = y;

// fill all columns of second row

CV_MAT_ELEM( *B, fl |, rowlndex+1,0) =f + (y*y / f )

CV_MAT_ELEM( *B, float, rowlndex+1, 1) = =1 * ( x*y / f); 120

CV_MAT_ELEM( *B, float, rowindex+1, 2 ) = -1 * x;

// update indices
i++;

rowIndex += 2,



s
£ RCL)
* The coluinns of C are made up of AT and B
Y/
void CMlatrixBuilder:GIIC( ) {
/7 Jill the left side of C with elements of A
for( int i=0; i<2*numFeaturesProcessed; i++ ) {

for( int j=0; j<numFeaturesProcessed; j++ ) {

CV_MAT_ELEM( *C, float, i, j ) = cvinGet{ A_T, i, j );

b
// fll the right side of C with clements of B

for( int i=0; i<2*numFeaturesProcessed; i++ ) {
for( int j=0; j<3; j++ ) {

// B is offset exactly the width of A in C

CV_MAT_ELEM( *C, float, i, inmFeaturesProcessed-+j } = cvmGet( 3,1, j )i

scctionDataStruct.h

#include <cv.h>
tifndef TASTRUCT_H
#tdefine DATASTRUCT_H
Vs
* This class stores optical flow duta and feature points for

* caleulation of egomotion estimation.

*

66
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* param: T When passed to the translation estunator, 1t
* s an intial guess of the translation. When passed to
* the rotation estimator, it is the relurned estimate from
* the nonlincar solver.
* puram: R When passed to the rotation estimator, it is an
* nitial guess of the rotation. Afterwards, it is a
“ refined estimate, sutlable for passing to a controller.
Y/

struct DataStruct {
CvPoint2D32f* frameOneleaturcs;
CvPomt2D32{* frameTwoleatures;
char* featuresMap;
int numPoints;
int numleaturesProcessed;
CvMat* T
CvlMat* R;

b

#endif

A.3 LeastSquares.cpp

#include "LeastSquares.h"
#include <iostream>

#include <math.h>

/**
* The initial guess for T 1s already nside of c¢Perp,

* although it is included as an argument because

67




* the residual must be subtracted each time and cPerp
* must be rebuilt.

*/ 10

LeastSquares::LeastSquares( ) {

}
Vaks
*param: M A IznumCols vector for which we must
* find the norm
*/
double LeastSquares::evaluateColVecL2Norm( CvMat* M, int numCols ) {
double sumOfSquares = 0;
for{ int i=0; i<numCols; i++ ) { 20
// add the square of the current element
sumOfSquares += ( cvmGet( M, 0, i ) * cvinGet( M, 0,1 ) };
}
retur sqrt( sumOfSquares );
}
Jrx
* param: M o numRows 1 1 veclors for which we must find the norm
Y/
double LeastSquares::evaluateRowVecL2Norm( CvMat* M, int numRows } {
double sumOfSquares = 0; 30
for( int i=0; i<numRows; i++ ) {
sur  fSquares += ( cvmGet( M, i, 0 ) * cvmGet( M, i, 0 ) )
}

return sqrt( sumOfSquares );



A.4 NumberConverter.cpp

#include <string>
#include <iostream>
tinclude <math h>

#include "NumberConverter.h"

Vads
* Will turn the inputted vector into one of unit length
Y/
void NumberConverter::normalize3dVector( CvMat* vee ) {
10
double len = get3dVectorLength( vec );
CV_MAT_ELEM( *vec, float, 0, 0 ) == cvinGet{ vee, 0, 0 ) / len;
CV_MAT_ELEM( *vec, float, 1, 0)  cvmGet{ vee, 1, 0 ) / len;
CV_MAT_ELEM( *vec, float, 2, 0 ) = cvmGet( vec, 2, 0 ) / len;
}
double NumberConverter::get3d VectorLength( CvMat* vee ) {
double x = cvinGet( vec, 0, 0 );
double y = cvmGet( vec, 1, 0 );
20

double z = cvmGet( vec, 2, 0 };

double len = sqri (x*x) + (¥*y) + (2*2) );

return len;



double NumberConverter::degreesToRadians( double degrees ) {

return degrees * (1 3.14159265 / 180.0 );

double NumberConverter::radiansToDegrees( double radians ) {

retur  radians * ( 180.0 / 3.14159265 );

}

/**
* Both T and Toul must be preallocated 3z1 CubMals.

* param: tOut tOutf0][0] = rho, 1Out(1][0] = phi, (Out{2J{0] = theta
Y/
void NumberConverter::cartesianToSpherical( CvMat* T, CvMat* tOut ) {
assert( T != NULL ),
assert( tOut = NULL ),
double x = cvmGet( T, 0, 0 );
double y = evmGet( T, 1, 0 );

double z = cvinGet( T, 2, 0 );

// convert cartesian coords to spherical oncs
double S = sqrt( (x*x) + (y*y ) )

double rho = sqrt( (x*x) + (y*y) + (4*z) );
if( (rtho >= 1.01 ) || (rho <= —1.01) ) {

std::cerr << “rho calcu. ion is: .sed up" << std:endl;

}

double phi = radiansToDegrees( acos( z ) ). // actually z / rho, but rho = 1.0
double theta;
if( x >=00){

theta = radiansToDegrees( asin( y / S) );

30
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}

clse {

theta = radiansToDegrees( 3.14159265 — asin{ y / S ) );
}
CV_MAT_ELEM( *tOut, float, 0, 0 ) = rho;

CV_MAT_ELEM( *tOut, float, 1, 0 ) = phi;

CV_MAT_ELEM( *tOut, float, 2, 0 ) = thety; G
}
Sk
* Both must be previously-initialized Szl matrices
* param: T T[0j{0] = rho, T[1][0] = phi, T[2][0] = thela
* param: 10wt 1Outf0][0] = z, 10ut{1][0] =y, 1Out[2/[0] = =
Y/
void NumberConverter:spher:  ToCartesian{ CvMat* T, CvMat* tOut ) {
double rho = cvmGet( T, 0, 0 );
double phi = evinGet{ T, 1, 0 );
70

double theta = cvmGet( T, 2, 0 );

spherical ToCartesian( rho, phi, theta, 1Out );

}

void NumberConverter::sphericalToCartesian( double rho, double phi, double theta, CvMat* tOut ) {

CV_MAT.ELEM( *tOut, float, 0, 0 ) =
rho * sin( degreesToRadians( phi ) ) * cos( degreesToRadians( theta ) ); // =
CV_MAT_ELEM( *tOut, float, 1, 0 ) =

rho * sin( degreesToRadians( phi ) ) * sin( degreesToRadians( theta ) ), // y

CV_MAT_ELENI( *tOut, float, 2,0 ) = 80

rho * cos( degreesToRadians( phi ) ), // =



/:*

* Tuken/mmodified from the CodePraoject article entitled “Reliable Floating Point Fquality Comparison”.
* hitp://www.codeproject.com/tips /Floating Pointliquality.asp
Y/

bool NumberConverter::AlmostEqual{(double nVall, double nVal2, double nEpsilon=0.000001 ) {

bool bRet = {((nVal2 — nEpsilon) < nVall) && (nVall < (nVal2 + nEpsilon))); o)

return bRet;

}
Vaid

*
* param: nEpsilon Want the elements of m1 and m2 to be equal to at least this level
* of precision. For example, if you want clements to be equal to 3 decimal places,
*input nFpsilon = 0.0001
Y/
bool NumberConverter:: AlmostEqual{ CvMat* ml1, CvMat* m2, double nEpsilon=0.000001 ) {

CvSize mlSize = cvGetSize( ml ); 100

CvSize m2Size = cvGetSize( m2 );

if( m1Size.width !'= m2Size.width ) {

return false;

}

if( ml e height '= m2Size.height ) {

return false;

}

// have determined that they're the same size, so

=1
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// now let's cyele through the clements and make sure that

110

// they're equal

for( int i—0; i<miSize height: it + ) {

for( int j=0; j<inlSize.width; j++ ) {

if ( 'AlmostEqual( cvinGet( m1l, i, j ), evmGet( m2, i, j ), nEpsilon ) ) {

}

return false;

// all elements have evaluated true when tested with AlmostEquals

retur

true; 120

A.5

/*

FlowMain.cpp

* FlowMain.cpp

* Modified version of David Stavens’ optical flow generator source code.

Y/
#include
#include

aclude
tinclude
#include
#include
#include
#include

#include

<jostream>

<stdio.h>

<cv.h>

<highgui.h>

<math.h>

"DataStruct.h" 10
"RotationEstimator.h"

"TranslationEstimator.h"

"Camera3DState.h"



#include “NumberConverter.h"

static const double pi = 3.14159265358979323846;

inline static double square(int a){

*

retu;  a ¥ a;

20
inline static void allocateOnDemand( Ipilmage **img, CvSize size, int depth, int channels ) {

if ( *img = NULL ) return;

*img = cvCreatelmage( size, depth, channels );
if ( *img == NULL ) {
fprintf(stderr, "Error: Couldn’t allocate image. Out of memory?\n");

exit(—1);

30
int main(int arge, char *argv[]) {
if (arge != 3) {
fprintf(stderr, "usage: Y%s imagel.]jpg image?2.jpg\n", argv{0]);
return —1;
}
/* Create an object that decodes the inpul video stream. */
IplImage *frame = cvl.oadlmage( argv{l], 1),
/* Read the video’s frame size out of the AVI. */
CvSize frame_size = cvGetSize( frame );
10

/* Creale a windows called “Optical Flow” for visualizing the outpul.
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* Have the window automatically change its size to match the output.

Y/
cvNamedWindow("Optical Flow", CV_WINDOW_AUTOSIZE);
DataStruct egomotionEstData;
CvMat* transGuess = cvCreateMat( 3, 1, CV_32F ),
CV_MAT_ELEM( *transGuess, float, 0, 0 ) = 0.98; // translationEst[0}],
CV_MAT_ELEMNI( *transGuess, float, 1, 0 ) = 0.1; // translationEst/1};

CV_MAT_ELEM( *transGuess, fioat, 2, 0 ) = 0.1; // translationEst(2];

CvMat* rotGuess = cvCreateMat( 3, 1, CV_32F ),
CV_MAT_ELEM( *rotGuess, float, 0, 0 ) = 0.01;
CV_MAT_ELEM( *rotGu float, 1, 0 ) = 0.01;
CV_MAT_ELEM( *rotGuess, ., 2, 0) = 0.01;
egomotionkstData. T = transGi

egomotionEstData.R = rotGuess; |

static Ipllmage *framel = NULL, *framel_1C = NULL, *frame2.1C = NULL, *cig_image = NULL,
*temp_image = NULL, *pyramidl = NULL, *pyramid2 = NULIL;
allocateOnDemand( &frar  _1C, frame.size, IPL_.DEPTH_8U, 1 ); 60

cvConvertImage(frame, framel_1C, 0);

/¥ We’ll make a full color backup of this frame so that we can draw on it.

* (It’s not the best idea to draw on the static memory space of cvQueryFrame().)

Y/

allocateOnDemand( &framel, frame_size, IPL_.DEPTH_8U, 3 ),

cvConvertImage(frame, framel, 0);

=1
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J/* Get the second frame of video. Same principles as the first. Note that 70

* this frume is saved and used in the next tteration of the loop as well.

Y/

frame = cvLoadlinage( argv(2], 1 );

//frame = cvQueryFrame( input_video );

if (Ir e == NULL) {
return 0;

}

allocateOnDemand( &frame2_1C, {rame_size, IPL_LDEPTH_8U, 1), 80

cvConvertImage(frame, frame2_1C, 0);

/* Shi and Tomast Feature Tracking! */

/* Preparation: Allocate the -~ :ssary storage. */

alloca InDemand( &eig_image, frame_size, IPL_DEPTII_32F, 1 );
allocateOnDemand( &temp_image, {rame_size, IPL_DEPTIL.32F, 1 );

/* Preparation: This array will contain the features found in frame 1. */
CvPoint2D32f framel_features[400];

/* Preparation: BEFORE the function call this variable is the array size
* (or the mazimum number of features to find). AFTER the function call 90
* this variable is the number of features actuelly found.
Y/

int number_of_features;

/¥ I'm hardcoding this at 400. Bul you should make this a #define so thal you can
* change the number of features you use for an accuracy/speed tradeoff analysis.
*/

number_of_features = 400;



/% Actually run the Shi and Tomasi algorithm!!

* “framel_1C” is the inpul image.
¥ “oig_image” and “temp_tnage” are just workspace for the ulgorithm. 100
* The first “.01” specifies the minimum quality of the features (based on the eigenvalues).
* The second “.01” specifies the minimum Fuclidean distance between features.
* “NULL” means use the entire input image. You could point to a part of the image.
* WHEN THE ALGORITHM RETURNS:
¥ “framel features” will contain the feature poinls.

* “yumber_of_features” will be set to a value <= {00 indicating the number of feature points found.
Y/
cvGoc ‘eaturcsToT‘ra.ck(framel_IC, eig_image, temp_image,

framel_features, &number_of_features, .01, 40 );

110

/¥ Pyramidal Lucas Kanade Optical Flow! */

/* This array will contain the locations of the points from frame 1 in frame 2. */

CvPoint2D32[ frame2._features[400];

/* The i-th clement of this-array will be non-zero if and only 1if the i-th feature of
* frame 1 was found in frame 2.
Y/

char optical_flow_found_feature[400];

/* The i-th element of this array is the error in the optical flow for the i-th feature

* of frame! as found in frame 2. If the i-th feature was not found (see the array above)
¥ | think the i-th entry in this array is undefined.

Y/

float optical_flow_feature_error{400];

7



/* This is the window size lo use to avoid the aperture problem (sce slide “Optical Flow: Overview”). */

CvSize optical_flow_window = ¢vSize(3,3);

/* This termination criteria tells the alyorithm lo stop when it has either done 20 iterations or when 130
* epsalon 1s better than .8, You can play with these paramelers for speed vs. accuracy bul these values
* work pretty well in many situalions.
"/
CvTermCriteria optical_flow_termination_criteria
= c¢vTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 );
allocateOnDemand( &pyramidl, frame_size, {PL_LDEPTH_8U, 1 )
allocateOnDemand( &pyramid2, frame_size, IPLLDEPTH_SU, 1 )
evCaleOpticalFlowPyrLK (framel _1C, frame2_1C, pyramidl, pyramid2, framel features, frame2._features,

number_of_features, optical_flow_window, 5, optical_flow_found_feature,

optical flow_feature_error, optical flow _termination_criteria, 0 ); 140
int numPFeaturesProcessed = 0; // count the number of features processed
/* For fun (and debugging :)), let’s draw the flow field. */
for(int i = 0; i < number_of_features; i++){
/* If Pyramidal Lucas Kanade didn't really find the feature, skip it. */
if ( optical_flow_found_feature[i] == 0 ) continuc;
int line_thickness;
line_thickness = 1;
/* CV_RGB(red, green, blue) is the red, green, and blue components
150

* of the color you want, each out of 235.
Y/
CvScalar line_color;

line_color = CV_RGB(255,0,0);
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CvPoint p.q;

p.x = (int) framel_featuresfi}.x;

p.y = {int) framel_features[i].y;

q.x = (int) frame2_features[i].x;

q.y = (int) frame2_featuresfi].y;

double angle;

angle = atan2( (double) p.y — qy, (double) p.x — q.x );
double hypotenuse;

hypotenuse = sqrt( square(p.y — q.y) + square(p.x — q.x) );
/* Here we lengthen the arrow by a factor of three. */

qx = (int) (p.x — 3 * hypotenuse * cos(angle));

q.y = (int) (p.y — 3 * hypotenuse * sin{angle));

cvLine( framel, p, q, line_color, line_thickness, CV_AA, 0 );
p.x = (int) (gx + 9 * cos(a e + pi / 4));

p.y = (int) (q.y + 9 * sin(angle + pi / 4));

cvLine( framel, p, q, line_color, line_thickness, CV_AA, 0 )i
px = (int) (q.x + 9 * cos(t e — pi / 4));

py = (int) (q.y + 9 * sin(a — pi [/ 4);

cvLine( framel, p, g, line_color, line_thickness, CV_AA, 0 );

numFeaturesProcessed+4-+;

/* Now display the tnage we drew on. Recall that “Optical Flow” is the name of

* the window we created above.

*/

cvShowlmage("Optical Flow", framel);

/* And wait for the user to press a kcy (so the user has time lo look al the image).

160
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* If the arqument is 0 then it wails forcver otherwise it waits that number of mulliscconds.
¥ The relurn value is the key the uscr pressed.
Y/

int key.pressed,

key_pressed = cvWaitKey(0);

/*

* Fgomotion estitnation!

*/ 190
NumberConverter numConv;
egomotionEstData.frameOneFeatures = framel_features;
egomotionFEstData.frameTwoFeatures = frame2_features;
egomotionEstData.featuresMap = optical_flow_found _feature;
egomotionEstData. numPoints = number_of_features;
egom onBEstData numFeaturesProcessed = numleaturesProcessed;
TranslationEstimator trans]istinmbor;
// ilerative solver

200

transEstimator get Translation( &egomotionEstData );
std:cout << "iterative solution: " << cvinGet( egomotionEstData.’l, 0, O )
<< " " << evinGet( ymotionEstData. T, 1, 0 ) << " "
<< cvinGet( egomotionEstData. T, 2, 0 ) << std:end];
// nonlinear solver
transEstimator.estimateTranslation( &egomotionEstData );
numConv.normalizeBd\’ectbr( ymotionEstData. T );
std:icout << "nonlinear solver nmormalized trans: " <<
cvmGet( egomotionEstData. T, 0, 0 ) << " ©

<< cvmmGet( egomotionEstData.T', 1, 0) <<
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v < evmGet{ egomotionEstData T, 2, 0 ) << std:endl;

RotationEstimator rotationkEstimator;

rotationEstimator.estimateRotation( &egomotionEstData );

A.6 OrthogonalComplement.cpp

#include "OrthogonalComplement.h"”

using namespace std;
OrthogonalComplement::"OrthogonalComplement( ) {
cvRe.  ieMat( &Ut );
cvReleaseMat( &W )
cvReleaseMat( &Vt );

cvReleaseMat( &cDlerp );

}

OrthogonalComplement::OrthogonalComplement( CvMat* AL int r, int ¢ ) {
rows = 1;
cols = ¢;
C =
Ut = cvCreateMat( rows, rows, CV_32F ),
W = cvCreateMat( rows, ¢~ CV_32F ),
Vit = cvCreateMat( cols, cols, CV_32F );
cPerp = cvCreateMat( rows, rows—cols, CV_32[F };

}

void OrthogonalComplement::eval$VDecomposition( ) {

//ofstream myfile;
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}

//myfile.open( “SVD.tit" );
J/myfile << “Writing this to a file\n';
evSVD( C, W, Ut, Vi, CV_SVD_U_TICV_.SVD_V_T }
// we will avoid the data logging for now, because
// it is far loo time-consuming
JHor( mt i=0; i<rews; i++ ) {
Jor( int j=0; j<cols; j++ ) {
myfile << “ 7 << comGet( W, 4,5 ) << ©7
}
myfile << std::endl;
}
myfile.close( );*/

CvMat* OrthogonalComplement::getOrthogonal Complement( ) {

// we have to transpose U~t first (it ts stored as U)
CvMat* U = cvCreateMat( rows, rows, CV_32F };
// transpose Ut > U

cvTranspose( Ut, U );

for( i i=0; i<rows; i++ ) {

for( int j=0; j<(rows—cols); . } o

CV_MAT_ELEM( *cPerp, float, i, j ) = cvinGet( U, i, j+cols );

}

int 1 = getDiagonalMatrixRankBruteForce( W, rows,cols );
int rank2 = getDiagonalMatrixRankElegant( W, rows,cols );
if( rankl != rank2 ) {

std::cout << "Error: the ranks are not equal" << stcd:endl;
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if( cols '= rankl ) {
stdicout << "the rank of C is * << rankl << 50
", but the number of columns is " << cols << std:end];
}
return cPerp;
}
/*
* Only a singular, diagonal matriz may be passed as an
* argument lo this method
Y/
int OrthogonalComplement::getDiagonalMatrixRankBruteForce( CvMat* W, int rows, int cols ) {
int rank = 0; 60
bool nonZeroFound;
// search row by row until a zero row is found
for( int i=0; i<rows; i++ ) {
// prior lo ezamining any elements in row
nonZeroFound = false;
for( int j=0; j<cols; j++ ) {
if( cvmGet( Wij ) I=0) {

nonZeroFound = true;

} 70
if( nonZeroFound ) {
rank++;

}

nonZeroFound = false;

}

return rank;
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}

int OrthogonalComplement::igetDiagonaldlatrixRankElegant( CvMat* W, int rows, int cols ) {
int rank = 0;
for( int i=0; i<cols; i++ ) {
if( cvmGet( W,ii ) I=0) {

rank4-+;

}

return rank;

A.7 RotationEst 1 or.cpp

#include "RotationEstimator.h"
tinclude <cv.h> .
#include <iostream>
tinclude "libs/1lm.h"
#include <math h>
tinclude "NumberConverter.h"
#definc Pl 3.14159265
J*
* precondition : V must be a 211 veclor
Y/
void buildV( CvMat* V, CvPoint2D32{* pl1, CvPoint2D32{* p2 ) {
CV_NMAT_ELEN( *V, float, 0, 0 ) = pl->x — p2-—>x;

CV_MAT_ELEN( *V, float, 1, 0 ) = pl—>y - p2—>y;
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/¥
* precondition : o 2xl vector was inputted
4“/

double get2dVectorLength( CvMat* vec ) {

double x = cvmGet( vec, 0, 0 );
double y = cvinGet( vec, 1, 0 );

double len = sqrt( (x*x) + (y*y) );

return ler;

/*
* Wil turn the inputied vector into one of unit length
¥/

void normalize2dVector{ CvMat* vec ) {

// get the length of the vector
double len = get2dVectorLength( vec );
CV_MAT_ELEM( *vec, float, 0, 0 ) = cvmGet( vec, 0, 0 ) / len;

CV_MAT_ELEM( *vec, float, 1, 0 ) = cvmGet( vec, 1, 0) / len;

//double length = get2dVectorLength( vec );

//std::cout << “length of normalized vec: 7 << length << std::endl;

}

/*
* Puts a vector orthogonal to the inputVec into the outputVec
* precondition : 2 2zl (preallocated) vectors have been inputted

* postcondition : an orthogonal vector of unit length has been returned

20
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Y/
void getOrthogonal2dUnitVector( CvMat* inputVee, CvMat* outputVec ) {

CV_MAT_ELEM( *outputVec, i, 0,0) = —1 * cvmGet( inputVec, 1, 0 );

CV_NAT_ELEM( *outputVec, float, 1, 0 ) = cvinGet( inputVec, 0, 0 );

normalize2d Vector( outputVec );

void buildB( CvMat* B, CvPoint2D32f* pl ) {
double x = pl—>x;
double y = pl—>y;
double f = 634.0;
J/stdicout << pr Y << <<y T <<y << stdzendl;
CV_MAT_ELEM( *B, float, 0,0) = (x*y )/ L,
CV_MAT_ELEM( *B, float, 0, 1) = —1* (f + ( x*x /[ ) );

CV_MAT_ELEM( *B, float, 0, 2 ) = y;
CV_MAT_ELEM( *B, fioat, 1,0) = f + ( y*y / [ );

CV_MAT_ELEM( *B, float, 1,1) = —1 * ( x*y / f);

CV_MAT_ELEM( *B, float, 1,2 ) = -1 ¥ x;

void buildA( CvMat* A, CvPoint2D32f* pl ) {

double f = 634.0:

CV_MAT_ELEM( *A, float, 0, 0 ) = —I;

GO




CV_MAT_ELEM( *A, float, 0, 1) = 0;

CV_MAT_ELEM( *A, float, 0, 2 ) = pl->x;

CV_MAT_ELEM( *A, float, 1,0 ) =0,
CV_MAT_ELEM( *A, float, 1, 1) = —f;

CV_MAT_ELEM({ *A, float, 1, 2 ) = pl-—>y;

&0

/3‘
* Method called by levmar

*
*/
void rotationEstNonlinear( double* p, double* x, int m, int n, void *data ) {
assert( p != NULL );
asseri{ x != NULL );

assert( data = NULL );

CvMat* Ri = cvCreateMat( 3, 1, CV_32F ); 90

CV_MAT_ELEM( *Ri, float, 0, 0 ) = p[0};
CV_MAT_ELEM( *Ri, float, 1, 0 ) = p[i];

CV_MAT_ELEM( *Ri, float, 2, 0 ) = p[2];

CvMat* A = cvCreateMat( 2, 3, CV_32F ),
CvAMat* B = cvCreateMat( 2, 3, CV_32F );
CvMat* AT = cvCreatehat( 2, 1, CV_32F ); // product of A and T malrices

CvMat* d = cvCreateMat( 2, 1, CV_32F );
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CvAlat* dt = cvCreateMat( 1, 2. CV_32F ), // transpose of d 100
CvMat* dtB = cvCreateMat( 1, 3, CV_32I7 );
CvMat* dtBOmega = cvCreateMat( 1, 1, CV_32F ),
Cvhlat* V = cvCreateMat( 2, 1, CV_32F );

CvMat* dtV = cvCreatelMat( 1, 1, CV_32F );

DataStruct *dptr;

dptr=(struct DataStruct *)data;

int numProcessed = 0;

for( int i=0; i<dptr—>numPoints; i++ } {

if ( dptr—>leaturesMapli] 1) 110

// build malriz for curreni sel of points
// we want to pass a poinler to feature i - hence the '€’ outside the
// accessing of the actual point
buildA( A, &(dptr—>frameOneFeaturesli]) );
buildB( B, &(dptr—>frameOneFeatnresi]) );
//std::cout << “gets here” << std:endl;
J/comMul( A, dptr>T, AT );
cvMatMul( A, dptr—>T, AT );
//std::cout << “gets here” << std:endl;

120

// put the othogonal vector to AT into d

getOrthogonal2dUnitVector( AT, d );

// fill the transpose of d

ovTranspose( d, dt );

cevMathul( dt, B, dtB );

//std:cout << “past the creation of d3" << std::endl;

o0
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// get the first term of the least squares expression

cvMatMul( dtB, Ri, dtBOmega );

//std:zcout << “past creution of dBOmega” << std::endl;

// we want to pass a pointer to fealure 1

buildV( V, &{dptr—>frameOneFeaturesi]), &(dptr—>frameTwoFcatures[i]) );
cvmMul( dt, V, dtV );

J/std:cout << “past creation of diV” << std:endl;

x[numProcessed] = cvmGet( dtBOmega, 0, 0 ) — cvinGet( diV, 0, 0 );

numProcessed++;

}

cvReleaseMat( &A );
cvRel  :Mat( &B );
cvReleaseMat( &AT ),
cvReleaseMat( &d );
cvReleaseMat( &dt };

cvReleaschMat( &dtB );

V)
&dtV )

(
cvReleaseMat( &dtBOmega );
cvReleaseMat( &

(

cvReleaseMat

/Hr
¥ Responsible for eslzmating the rotation between 2 frames using a
* nonlinear equation solver. The estimated translation, T, between
* the two frames must be found prior to estimating the rotalion.
* param: myData data necessary for calculating the 3d rotation (including an estimate

* of the 3d translalion belween the two frames for which we are currently estimating the

* rotation).

89
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Y/

void RotationEstimator::estimateRotation( DataStruct®* myData ) {

double opts{LM_OPTS_SZ];
opts[0]=LM_INIT_MU;, opts[1]=1E—15; opts[2]=1E—-15; //opts/3[=1E-20;
opts[3]=1E-15;//1E-4;

opls[4]=LM_DIFF_DELTA;

std:cout << "before cvmGets on myData->R" << std:endl;

// set the initinl guess

p[0] = cvimnGet( myData—>R, 0, 0 ); // = rolation

p[l] = cvmGet( myData—>R, 1, 0); // y rotation

pl2] = cvmGet( myData—>R, 2, 0 ); // z rotation

std::cout << "entering estimator, the rotation, p=[ " << p[0] << ", "

<< p[l] << ", " << p[2] << *I" << stdiend];

double x[myData—>numFeaturesProcessed];

for( int i=0; i < myData—>numFeaturesProcessed; i++ ) {
x[i] =0

}

NumberConverter numConv;

double lowerBound = numConv.degreesToRadians( —10.0 );

double upperBound = numConv.degreesToRadians{ 10.0 };

std::cout << "Lower Bound: " << lowerBound << ", Upper Bound: " << upperBour

double 1b[3], ub[3);

90
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}
/*

* This 1is the output info of the levinar solver, and basically contains information aboul the

1b[0] = lowerBound; Ib[1] = lowerBound; 1hb[2) = lowerBound;

ub[0] = upperBound; ub[l] = upperBound; ub[2] = upperBound;

int ret = dlevmar_bc_dif( rotationEstNonlinear, p, x, 3, myData—>numleaturesProcessed,
b, ub, 1000, opts, info, NULL, NULL, (void *)myData ); //&myDala );
// once the nonlinear solver has been complcled, the estimate is stored in p 190
// wssign it to mnyData. R
CV_MAT_ELEM( *(myData—>R), float, 0, 0 ) = p[0];
CV_MAT_ELEM( *(myData—>R), float, 1, 0 ) = p[1];

CV_MAT_ELEM( *(myData—>R), float, 2, 0 ) = p[2];

std::cc <<"exiting estimator, the rotation p=[ " <<
pl0] << ", " << p[l] << ", " << p[2] << "1 << std:end];

print{("Levenberg-Marquardt returned %d in %g iter, reason %g\nSclution:
ret, info[5], info[6]); 200
for(int i=0; i<3; ++i) {

print{("%.7g *, p[i]);
printf("\n\nMinimization info:\n");
for(int i=0; i<LM_INFO_SZ; ++i) {

printf("%g ", info[i]);

printf("\n");

210

91



* convergence (or lack thereof) of the duta
Y/
double* RotationEstimator::get NoulinearSolverInfo( ) {

return info;

1
/*
* Make the pointer NULL so it correctly throws an erception
* when one allempts to access data thut is no longer present
Y/
RotationEstimator::”RotationEstimator( ) {
//delete [] p;
//delete [] info,
//cvReleaseMat( EorthVec );

A.8 TranslationEstimator.cpp

#include "OrthogonalComplement.h"
#include "TranslationEstimator.h"
#include "NumberConverter.h"
#include "LeastSquares.h"
#include "CMatrixBuilder.h"®
#include "UnitSphere.h"

#include "UnitSpherePatch.h"
tinclude <float.h>

#include <iostream>

#include "1ibs/1lm.h"

#include <cv.h>
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/4’ ¥
* class: TranslatzonEstimator.cpp

* brief: Given an imitial guess at the translation between two images, it will
g

* use a nonlinear solver to yive an accurate estimale.

*/

CvNat* buildVt( DataStruct® dptr ) {

‘ char* opticalFlowFoundFeature = dptr—-featuresMap;

CvPoint2D32f* pl = dptr—>{ramcOnecleatures; 20

CvPoint2D32f* p2 = dptr—> frameTwoFeatures;

int munPoints = dptr—>numPoints;

CvMat* Vi = cvCreateMat{1, 2*dptr—>numFeaturesProcessed, CV_32F };

int i = 0;

int h x =0

while( i < numDPoints ) {

if ( opticalFlowFoundFeature[i] == 1) {

CV_MAT_ELEM( *Vt, float, 0, 2*index ) = plfi].x — p2[i].x;
CV_MAT_ELEM( *Vt, float, 0, {2*index)+1 ) = plfily — p2fi].y;

index++; 30

i+
}

return Vi;

* fn: translationEst Nonlinear Nonlinear {ranslation estimator. It is called indireetly using the levmar library.

* param: p estimate of the 3d translation

* param: r a vector of zeroes (we want the esttmate thal renders as close Lo zcro as possible)
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* param: m danension of p

* param: n dimension of x

10

* param: data pointer to an instance of DataStruct containing the flow information needed for calculation

Y/
void translationEstNonlinear( double* p, double* x, int m, int n, void *data ) {
CvMat* T = cvCreateMat( 3, 1, CV_32F );

assert( data = NULL ); // a mistake I frequently make

// take guess and convert it to usable format
CV_MAT_ELEM( *T, float, 0, 0 ) = p[0];
CV_MAT_ELEM( *T, float, 1, 0 ) = p[1];

CV_MAT_ELEM( *T, float, 2, 0 ) = p[2];

struct DataStruct *dptr;

dptr=(struct DataStruct *)data;

CMatrixBuilder cBuilder( dptr—>[{rameOneFealures, dptr—>frameTwolcatures,
dptr—>featuresMap, dptr—>numPoints };

¢ ilder AlIA_T( T );

¢ ilder fillB( );

¢ ilder.fliC( );

CvMat* C = cBuilder.getC( );

GO

OrthogonalComplement orthComp( C, cBuilder.getCRowSize( ), cBuilder.getCColumnSize( ) );

¢ 1Comp.evalSVDecomposition( );

CvMat* CPerp = orthComp.getOrthogonalComplement( };

/// Vtis the transpose of the column vector comprised of the z & y

/// components of the clements of the optical flow ficld
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CvMat* Vt = buildVt( dptr );

70

/// where the resull of Vi * CPerp is stored
/// the column count is based on the shape of CPerp as a
/// result of taking the right side of the U matriz after
/// the SV Decomposition
/// note: numFeaturesProcessed - 3, because it is actually
/// numRows - numCols
CvMat* VtCPerp = cvCreateMat( 1,
(2 * dptr—>numFeaturesProcessed) — dptr—>numFeaturesProcessed — 3, CV_32F );
//std::cout << “gets here” << std::endl;
¢ Mul{ Vt, CPerp, VtCPerp ); 80
//coMatMul( Vi, CPerp,
for( int i=0; i< ( (2 * dptr—>numFeaturesProcessed) — dptr—>numFeaturesProcessed — 3); i++4 ) {
x[i] = cvmGet( VtCPerp, 0, i );
}
dptr—>T = T;
}
JE
* lterate through all candidales on the unit sphere and see which one
* has the minimum residual
*/ 90
CvMat* TranslationEstimator:getTranslation( DataStruct *myData ) {

assert( myData = NULL ); // a mistake I frequently make

double minResid = DBL_MAX;

int minResidPos = —1;



CvMNat* T

UnitSphere unitSphere;
LeastSquares leastSquares;
std::ofstream myfile; 100
myfile.open( "minResidTrans.txt" );
for( int i=0; i<unitSphere.getNumUnitVectors( ); i4++ ) {

T = unitSphere.getUnitVectorAt( i );

CMatrixBuilder cBuilder( myData—>frameOneFeatures, myData—>{rameTwoleatures,

myData->featuresMap, myData—>numPoints );

cBuilder AIA.T( T );

cBuilder fillB( );

cBuilder fillC( );

CvMat* C = cBuilder getC( ); o
OrthogonalComplement orthComp( C, cBuilder.getCRowSize( ), cBuilder.getCColumnSize( ) );
orthComp.evalSVDecomposition( );

CvMat* CPerp = orthComp.getOrthogonalComplement( );

// tis the lranspose of the column vector comprised of the x € y
// components of the elements of the opticdl flow field

CvMat* Vt = buildVt( myData );

// where the resull of Vi ¥ CPerp is slored

// the column count is based on the shape of CPerp as a 120
// resull of taking the right side of the U matriz after

// the SV Decomposition

// note: numFealuresProcessed - 3, because it is actually
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// numnRows - numCols

int numVtCPerpCols =

¥ myData—>numFeaturesProcessed) — niyData—>numFeaturesPro  sed — 3;
CvMat* VtCPerp = cvCreateMat{ 1, numViCPerpCols, CV_32F );
J/comMul( Vi, CPerp, VtCPerp j;
cvhMatMul{ Vt, CPerp, VtCPerp );
double Isq = leastSeuares.cvaluateColVecL2Norm( VtCPerp, numVtCPerpCols ); 130
double resid = lsg / numV{CPerpCols;

//std::cout << “evaluating ¥ << std::endl;

myfile << " " << cvinGet( unitSphere.getSphericalCoordsAt( i), 0, 0 ) << " " <<
cvmGet( unitSphere.getSphericalCoordsAt( i ), 1, 0 ) << " " << resid;
myfile << std::endl,
if( resid < minResid ) {
minResid = resid;
minResidPos = 1;
std:icout << "the new min is t=[ " << cvmGet( unitSphere.getUnilVectorAt( i), 0, 0 ) 140
<< " " << cvmGet( unitSphere.getUnitVectorAt{ i ), 1, 0 ) <<
" << cvmGet( unitSphere.getUnitVectorAt( i ), 2, 0 )
<< " 7], and the residual is " << minResid << std:endl;
}
cvReleaseMat( &Vt );
cvR  aseMat( &VtCPerp );
}
//coReleaseMat( &T ),

myfile.close( );

return unitSphere getUnitVectorAt{ minResidPos ); 150
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o
* Method that calls the privale nonlinear rotation solver. The method tukes the previous final estimale
* of the translation as the starting point for a new estimate of the translution.

* param: myData pointer lo the struct thet contains all of the necessary data to calculate the
* rotational poriton of the egomotion. It has an estimate of the translative component (myData>1T),
* and an initial guess for the rotational component (myData>R).
* sce: translationEsiNonlinear( double* p, double* x, int m, int n, void *duata ) 160
Y/
void TranslationEstimator::estimateTranslation( DataStruct *myData } {
stdiic 5 << "in translation estimator" << std:endl;
int ret;
double opts[ LM_OPTS_SZ |;
double info[ LM_INFO_SZ |; // output variable that indicates convergence, etc
opts[0]= LM_INIT_MU; //opts[1]=1F-15; opts/2]=1E-15; opts[3]=1LE-20;
opts[1]=1E-15;
opts[2]=1E-15;
opts[3  E=20; //4; 170
opts[4]= LM.DIFF_DELTA; // relevant only if the finite difference jacobian version is used

int m = 3; // dim of p vector

int n = (2*myData—>numFeaturesProcessed) — myData—>numFeaturesProcessed — 3;

double p[m];

double x[n];

// by



p[0] = evmGet( myData—>T, 0, 0 );
pll] = cvmGet( myData—>T, 1, 0 );

p[2] = cvmGet( myData—>T, 2, 0 );

for( int i=0; i<n; i++ ) {
xfi} = 0.0;
}
// stick boundaries on this sucka
double 1b[3],ub[3};
1b[0] = —1.0; Ib[l] = —1.0; Ib[2] = -1.0;
ub[0] = 1.0; ub[l] = 1.0; ub[2] = 1.0;
ret = dlevmar_bc_dif( translationEstNonlinear, p, x, m, n,

1b, ub, 1000, opts, info, NULL, NULL, (void *)myData );

// now that it has been solved, be sure to update the translation
// estunate in the DataStruct

CV_MAT._ELEM( *(myData—>T), float, 0, 0 ) = p[0];
CV_MAT_ELEM( *(myData—>T), float, 1, 0 ) = p[1];

CV_MAT_ELEM( *(myData—>T), float, 2, 0 ) = p[2];

printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution:
ret, info[5], info[6]);
for(int i=0; i<m; ++i) {
pri ("%.7g ", pli]):

}

print{("\n\nMirimization info:\n");
for(int i=0; i<LM_INFO_SZ; ++i) {

printf("%g ", info[i});
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}

printf("\n");

A.9 UnitSphere.cpp

#include <iostream>
#include <math.h>
#include "UnitSphere.h"

#include "NumberConverter.h"

UnitSph  ::UnitSphere( ) {
//numUnitVectors = 61 * 121;
numUnitVectors = 3600;

generateAllUnit Vectors( );

}

void UnitSphere:initialTranslationGuess( CvMat* T ) {
NumberConverter numConv;
CvMat* {Spherical = cvCreateMat( 3, 1, CV_32F );
CvMat* tNew = cvCreateMat( 3, 1, CV_32F ),

nunConv.cartesianToSpherical( T, tSpherical );

numConv sphericalToCartesian( tSpherical, tNew );

/*

* generaleAllUnit Vectors( )
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* We generate all possible unil vectors using

* spherical coordinates (rho = 1, sweet!), and

* then convert them to curtesian ones

"

Y/

void UnitSphere::generate AllUnitVectors( ) {

double rtho = 1.0;
int i =0; // s the index for the array

//for( int theta=-180; theta<=180; theta++ ) { 30
NumberConverter numConv;

for( int theta=0; theta<180; theta+=3) { // <180 because 0 & 180 refer to the same vector

for( int phi=270; phi<360; phi+=3) {

// the next 3 lines are for returning the spherical coords for graphing purposes
! = cvCreateMat( 2, 1, CV_32F );
CV_MAT _ELEM( *S]i], float, 0, 0 ) = phi;

CV_MAT_ELEM( *S[i], float, 1, 0 ) = theta;

| = cvCreateMat( 3, 1, CV.32F ); 40
CV_MAT_ELEM( *T}i], float, 0, 0 ) =

rho * sin( nuinConv.degreesToRadians( phi ) ) *

cos( numConv.degreesTéRadians( theta ) ); // z
¢ _MAT_ELEM( *T[i], float, 1, 0 ) =

rho * sin( numConv.degreesToRadians( phi ) ) *

sin( numConv.degreesToRadians( theta ) ), // v
CV_MAT_ELEM( *T[i], float, 2, 0 ) = rho *

cos( numConv.degreesToRadians( phi ) ); // 2
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}

for( int phi=0; phi< ; phi+=3) { // 90 refers to the sumne vector as 270
S[i] = cvCreateMat( 2, 1, CV_32F );
CV_MAT_ELEM( *S[i], float, 0, 0 ) = phi;

CV_MAT_ELEM( *S[i], float, 1, 0 ) = theta;

T[i] = cvCreateMat{ 3, 1, CV_32I" );
CV_MAT_ELEM( *T[i], float, 0, 0 ) = rho *

sin( numConv.degreesToRadians( phi ) ) *

cos( numConv.degreesToRadians( theta ) ); // «
CV_MAT_ELEM( *T[i], float, 1, 0 ) = rho *

sin{ numConv.degreesToRadians( phi ) ) *

sin{ numConv.deg  ToRadians( theta ) }; // y
CV_MAT_ELEM( *T[i], fleat, 2, 0 ) = rho *

cos( numConv.d ToRadians( phi ) ); // =

i+t

}

std::icout << "number of points: " << i << std:endl;
}
void UnitSphere:printUnitVectorAt( int i ) {
stdicc << "the new min is t=[ " << cvmGet( getUnitVectorAt( i), 0, 0)
<< " << evmGet( getUnitVectorAt( i), 1, 0) << " " <<
cviGet( getUnitVectorAt( i), 2, 0 ) << stduendl;
}
/*
* getNumUnit Vectors( )
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* Gel the number of unit veclors stored in the sequential list

*/
int UnitSphere:getNumUnit Vectors( ) {
retu numUnitVectors;
}
/*
* All unit veclors are stored in a sequential list.
* This method is how they are uccessed.
Y/
CvMat* UnitSphere:getUnitVectorAt( int i) {
r irn T[i;
}
/**
* The Oth element in Sfi] is phi, while the Ist is
* theta
Y/
CvMat* UnitSphere:getSpherical CoordsAt( int i ) {

return Sfi];
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