








Egomotion Estin1ation for Vehicle Control 

by 

© Mark Brophy 

B. Sc.(Honours), Memorial University of Newfoundland (2005) 

A thesis submitted to the 

School of Graduate Studies 

in partial fulfilment of the 

requirements for the degree of 

Master of Engineering 

! 

Department of Engineering and Applied Science 

Memorial University of Newfoundland 

July 2007 

St. John's Newfoundland 



Abstract 

The focus of this thesis is a technique called egomotion estimation, which involves the 

extraction of motion parameters from a camera based on the nature of the motion 

field on a frame-by-frame basis. In general, this is a multi-step process that involves 

estimating the motion field, often referred to as the optical flow, from which the trans

lation direction and rotation are then extracted. The optical flow field is normally 

generated by tracking a frame 's strong features in the subsequent frame of a sequence. 

Examples of strong features include corners of objects or areas of high contrast within 

an image. The algorithms described in this thesis have been developed with the hopes 

of eventually being utilized as the primary sensor on a Draganflyer four-rotor heli

copter (also known as a quadrotor) for self-motion estimation. A PD controller was 

implemented to stabilize the quadiotor, and its effectiveness has undergone initial 

testing in simulation. 

The algorithms and implementations that follow, in their initial implementations, 

took over one minute to find a res~lt on an Intel 3.0Ghz Xeon system. They are 

now running at a rate of about 5Hz, which is certainly a noteable difference. The 

methods presented are by no means optimal. The author is continuing this research 

on egomotion estimation as a part of his d,octoral studies. 
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Chapter 1 

Introduction 

1.1 Motivation 

Most modern remotely-operated vehicles (ROVs) come equipped with some sort of 

optical sensor for target tracking or sensing and avoidance, but generally use some 

other type of sensor to obtain their heading and locale. Clearly the study of ex

tracting such data from a visual sensor makes sense due to practicality (economics, 

minimization, etc.), but also because of the interesting problems that exist in the 

area. The process of extracting the 3d motion of a visual sensor from its captured 

images is referred to as egomotion estimation. 

In navigational situations where the ROV is a robot or even an unmanned aerial 

vehicle (UAV), an inertial navigation system (I S) is almost always utilized in some 

form. When fused with another sensor (such as a global positioning device), the 

accuracy with which a vehicle can navigate is increased substantially. Rather the 

purpose of the fo llowing research is not to compete with such a solu tion. The purpose 
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is to work towards a vision-based solution that will someday be used in parallel with 

currently-available technology, or in low-cost systems where a great deal of accuracy 

is not critical. The author chose a monocular system for specifically this reason, since 

stereo vision carries a dual expense. Not only must one must purchase two cameras 

instead of one, but the weight added to the payload is doubled. The Draganflyer in 

particular could not handle having any weight added to its payload. Furthermore, 

utilizing a monocular system resulted in a complex and interesting problem. 

It is an attractive problem in a number of ways. So much of a human's navigational 

ability comes from what he/she sees, it is interesting to see if it is possible for a robot 

to navigate using only visual data. Thus, this thesis deals with problems in both 

computer vision and control, and the relationship between the two. 

This topic has been covered fairly extensively, but is often presented with little 

focus on implementation. The following thesis aims to describe the implementation 

in a thorough and clear manner, and includes an explanation of the singular value 

decomposition (SVD) which is a useful tool when solving the egomotion estimation 

problem. The major contribution of this thesis is a detailed mathematical explanation 

of how to obtain the orthogonal complement using the singular value decomposition, 

and how to subsequently implement a routine that will find the orthogonal comple

ment of the column spl:).ce of a matrix. From the beginning of this research, it has 

been the author's goal to determine whether or not controlling an unstable 6 degree

of-freedom ROY is possible when using vision as the sole sensor. Utilizing egomotion 

estimation to accurately determine the pose of a UAV is uncommon, and the author 

hopes that both his current and future contributions to this area will be of use to 

others. Finally, a somewhat unique method of simulation was used for the controller, 
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and this has been documented. 

1.2 Previous work 

Heeger and Jepson's [2] seminal pap.er on recovering 3D motion and depth from an 

optical flow field of an arbitrary scene is the basis of this thesis, yet it is but one 

of many contributions to the extensive body of literature that exists on the topic of 

rigid motion estimation. 

The method in [2] can be defined as a "linear subspace method" , in that the 

candidate solution space for the translation direction is a constrained 2d space. It 

makes use of the orthogonal complement to obtain n- 6 linear constraints and solving 

for the translation direction independently of rotation and depth. Before [2], Bruss 

and Horn made use of the same algebraic constraint, but instead of iterating over 

the entire solution space, they utilized a least squares approach to minimize the 

difference between the measured optical flow and an ideal flow field for the extracted 

translational, rotational and depth information [3]. A nonlinear equation solver like 

gradient-descent or Newton's method was utilized to obtain a motion estimate. Lil<e 

[3], the egomotion algorithm out lined by Tomasi and Shi in [4] also made use of a 

nonlinear equation solver. Instead of measuring how features move, as most methods 

proposed in the literature typically do, it measured how the image deforms over time. 

By monitoring how the angle a formed by pairs of projection rays changes over time 

(the derivative of a is called the image deformation), they constructed n bilinear 

constraints (like Bruss and Horn did in [3]) to solve for the translation direction 

[5]. They used the same input data (point-to-point correspondences) as t he other 
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algorithms, but merely interpreted the data differently by not constructing an optical 

flow field. 

Heeger and Jepson's method was initially chosen due to its iterative nature. Al

though it may yield incorrect results at times, it will not get stuck in local minima. 

This is due to the fact that the algorithm iterates over a a constrained 2d solution 

space, as is explained in more detail in section 3.1. Its formulation is also much easier 

to comprehend for those unfamiliar with Lhe nonlinear solvers utilized by most other 

egomotion methods. 

Egomotion estimation is used to extract the translation direction and the rotation 

of a body based on how features of interest move in successive frames of video from 

a mounted camera in a static environment. Static is emphasized here because the 

presence of undetected and unexpected entities will result in inconsistencies in the 

image flow field. One must generate the optical flow field using one of the many 

algorithms to generate such a field from which one will extract the rigid motion from 

frame- to-frame. 

Optical flow algori thms can be divided into three different types of approaches: 

discrete, differential and continuous [3]. Lucas and Kanade's approach to generating 

optical flow fields is discrete in the sense that it attempts to find matching brightness 

patterns at a selection of points in an image sequence; that is, it generates a sparse 

field by utilizing a subset of the available pixels in an image. It is the chosen method 

for this thesis, but many other methods have been proposed. Horn and Schunck's 

derivative-based method, for example, introduced a constraint of smoothness to solve 

the aperture problem [6], an issue that is described in section 2.3. It finds the flow 

for the image pair using spatiotemporal derivatives [7]. Block-based matching would 
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be an example of a continuous method because it generates a flow vector for every 

pixel in the image based on how image pairs align . 
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Chapter 2 

Vision System 

The egomotion estimation algorithm was written in C++ and the OpenCV library was 

used extensively. OpenCV has excellent methods for both matrix and image manipu

lation , and also includes methods for feature extraction and opt ical flow calculation. 

All work was completed in Linux, and the source was compiled using g++. Manalois 

Lourakis' implementation of the Levenberg-Marquardt nonlinear least squares min

imization algorithm [8] was utilized extensively, as was David Stavens' optical flow 

source code [9] . A Canon Powershot A 75 was utilized to obtain both video and image 

pairs. 

The process of finding the egomotion of two successive n·ames requires one to first 

find the optical flow, and then use the flow vectors to find t he t ranslation and rotation 

parameters of the camera based on the orientation of the flow vectors. To find the 

optical flow between two successive images, one must first extract the strong features 

from the first image, and then find the positions of these features in the second frame. 

What exactly is meant by strong features is explained in section 2.2. After the optical 
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flow has been found, the flow field can be used to find an egomotion estimate. 

An vital operation in finding optical flow is the image derivative. This will be 

covered before feature extraction and optical flow calculation. 

(a) Image A. 

(b) Image B. 

Figure 2.1: Two consecutive frames of t he author's desk in the INCA lab. 
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2 .1 Image brightness derivative 

It is a bit strange to speak of the brightness derivative of a pixel value p;, but a 

digital image is merely a discrete representation of a continuous image. With this 

in mind, one must acknowledge tha.t all pixel derivatives are approximations. The 

spatial derivative of a digitized image is one of the most important operations in image 

processing [10], and as a result some good estimation kernels have been developed. 

The basic derivative filters are 

Unfortunately, high signal noise will be in the resultant image when we apply these 

filters, so normally convolution with one of these kernels will be coupled with some 

sort of smoothing filter. In this case, the Sobel operator will be used [10] 

1 

[ hx ] 
1 

[ 1 - 1 ]) - 2 0 4 

1 

1 

[ hy ] 
1 

. [ 1 1 ] . = - 0 2 4 

- 1 

Each filter takes the derivative in one direction and proceeds to smooth in the or-

thogonal direction. 
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2.2 Feature selection 

Two common ways of obtaining an estimation of the optical flow for an image include 

• calculating the flow for each individ4al pixel, and 

• calculating the flow for good features 

The latter of which will be the method used in this paper. Basically, a good feature 

is normally a corner in an image, or some small area where there is a great deal of 

contrast in two directions. Recognizing such an area is easy visually, but it is a little 

harder mathematically. Each pixel Pi in the image is iterated over, and the spatial 

gradient matrix G is obtained 

where W is a square window (normally of size 3 x 3) with Pi at the center [11]. I,. 

and Iv are the horizontal and vertical derivatives of Pi, respectively. Let A1 and A2 be 

the eigenvalues of G, Pi is considered a candidate feature if 

where At is some predefined threshold. Following this calculation, it is ensured that 

the distance between all of the candidate features are a sufficient distance d apart 

from one another. The strongest corners are considered first and those corners that 

are within d are pruned. 

The strong features from image A can be seen in figure 2.2. Note the pixels that 

are selected as strong features. For the most part, they have some sort of dynamic 

contrast surrounding them. 
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Figure 2.2: Strong features are extracted from Image A and highlighted. 

2.3 The aperture problem 

The aperture problem simply states that the motion of a homogeneous contour is 

locally ambiguous [12]. A motion sensor has a finite view of its surroundings, and if 

such a contour occupies its entire image plane, different physical motions are indis-

tinguishable from one another. For example, a set of parallel lines "moving from left 

to right will produce the same spatiotemporal structure as a set of lines moving from 

top to bottom". Figure 2.3 better illustrates this phenomenon. 

2.4 Finding the optical flow 

A flow vector must be generated for each of the strong features identified in an image. 

Define p = [ Px Py ] t as a pixel coordinate with A(p) and B(p) being defined as the 

greyscale values of images A and B at point p, respectively. 

Given an image point u = [ ux tty ] ton A, for a location v on the second image 
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(a) (b) 

~ 

• 
~ 

(c) 

Figure 2.3: No matter how the aperture is moved, the perceived motion always rc-

mains indistinguishable. In 2.3(b), the aperture is moved to the right, while in 2.3(c) 

it is moved to the left. 

such that 

v u+d 

= I Ux + d x j 
1 l uy+dy 

d is referred to as the "image velocity" or optical flow at u . 

Finding dis normally accomplished by minimizing the error over a window w, as 

opposed to a single point (due to the aforementioned aperture problem). The residual 

is defined as [13] 

Ux+wx uy+wy 

E(d) = E(dx, dy) = L L (A(x, y) - B(x + dx, y + dy)) 2 

In other words, the best residual comes from the values of dx and dy that minimize 

the difference between A and B's pixels in window w. A(u) is assumed be almost 

equal to B(v). 

The Bow field between figures 2.l (a) and 2. l (b) is displayed in figure 2.4. There are 

a couple of outliers, as is often the case, but the field correctly indicates a translational 
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------------------------------------------

(left point ing arrows) difference between images A and B. For a more robust system, 

one must implement some statistical methods to eliminate these inaccuracies, as seen 

in [11]. This will be necessary, as can be seen with the supposed vertical motion 

that the flow vectors indicate (image B was taken following a pure translation of the 

camera after A was taken) . 

Now that the flow field has been obtained, it is possible (using some assumptions 

on image geometry) to extract the t hree dimensional motion of the camera between 

successive images. 

Figure 2.4: The opt ical flow field induced between image A and image B. 
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Chapter 3 

Motion Estimation 

3.1 Translation estimation 

Once a field of flow vectors has been obtained, one can make an estimate of the 3d 

motion that the camera has undergone between two successive frames. At least six 

accurate flow vectors must be sampled from an image pair to solve for 3d motion, 

as proved in [14] . Multiple point correspondences are needed to uniquely determine 

rigid motion, as the x, y and z components of both the rotation and t he translation, 

as well as the relative depth, must be solved for. If the samples are noisy, it will be 

necessary to use more flow vectors. 

When est imating egomotion, one is given m 2d flow vectors ui and their respective 

positions xi in the image. The fundamental equation in egomotion estimation relates 

[ 

X1 l a 2d flow vector u at position x = x

2 

to its rigid 3d motion 

u(x) = d(x)A(x)t + B(x)w, (3.1) 
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where 

The goal is to find the 3d motion parameters t = [t1, t2, t3f and w = [wt, w2, w3f, as 

well as the depth vector d containing the depth d(xi ) at each point xi from the input 

data. 

Say t hat m points are sampled from strong features in the image pair. The m 2d 

flow vectors can be "stacked" o'n top of one another to form a new 2m vector of the 

form 

Then an equation can be written in the following way [2] 

u A(t)p + Bw (3.2) 

C(t)q, (3.3) 

where 

A(xt, Yt)t 0 

A(t) 

0 A(xn, Yn)t 

B(xt, Yt) 

B 

B (xn, Yn) 
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and 

q = [ WI . W2 W3 PI · · · Pm ] T ' 

where PI, . .. , Pm are the inverse depths of the m aforementioned points xi. In other 

words, Pi= 1/d(x;) . Then C(t) can be written as 

C(t) = A(t) B (3.4) 

Notice that A(t) and B only rely on the positions of the flow vectors and the 

translation vector t, where t can be any vector on the unit sphere. It is recommended 

by [2] to precalculate A(t) and B for every possible t at every image position. Then 

when the algorithm is running, it is only a matter of looking up the results of an 

otherwise extremely time-consuming operation. 

The t ranslation vector can be thought of as any vector on the unit sphere. Iterating 

over the candidate space is easy when spherical coordinates are used. By using 

-180 2: f) ::; 180 and 0 2: ¢ ::; 180 and p = 1, all whole-numbered vectors are 

represented. The conversion to Cartesian is as follows: 

t1 psin¢cosfJ, 

t2 p sin¢ sine' 

t3 pcos¢. 

Since p = 1, the solution space of the recovered translation is actually 2d, as 

can be seen in figure 3.1, which is a plot of the residual surface of t he transla

tion direction between images 3.2(a) and 3.2(b), the minimum of which was t = 
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[ 0.918465 0.139034 0.370258]. As an aside, the recovered rotation was w 

[ 0.007685727 -0.09866409 0.05950551 ] , in radians. 

The residual function, E(t), is defined over the the entire candidate translation 

space 

E(t,q) = llu - C(t)qjj2
. (3.5) 

Equation 3.3 states that the optical flow at n points equals C(t)q, so it makes sense 

that the (t,q) pair result ing in the smallest least squares estimate in equation 3.5 

would be the best prediction of the translation, rotation and depth. 

As shown in the appendix of [2], it is possible to reduce equation 3.5 

(3.6) 

and solve first for only t . The candidate t that minimizes the residual will also yield 

a minimal residual value in equation 3.6 as in equation 3.5. Thus, t can then be used 

to solve for q. Calculation of Cl., the orthogonal complement, is covered next. 

3 .1.1 Calculating Cj_ 

Any m x n matrix A can be written as [15] 

(3.7) 
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Figme 3.1: A plot of the residual surface of the translation direction incurred between 

the capturing of figures 3.2(a) and 3.2(b). The solution space can be expressed in 2d 

using spherical coordinates. 
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(a) (b) 

Figure 3.2: 3.2(b) was taken after 3.2(a) and a substantial camera translation was 

incurred . The flow field is fairly noisy and results in residual values which are quite 

large on the residual surface. 

using singular value decomposition (SVD) where the following orthogonal matrices 

exist 

u = [ J 
E JRmxm 

Ul, ... , Um ' 

v [ J 
E JRnxn 

VJ, ... , Vn > 

and 2:1 E IRmxn with the form 

O'J 0 0 

and 0'1 2: 0'2 2: ... 2: O'p 2: 0 where p is the lesser of m and n . 

Let t he rank of A = r . This is also the rank of A1 A and exactly the number of 

nonzero eigenvalues in E [15]. Define 
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(a) Computer-generated image A. (b) Computer-generated image B. 

(c) The resultant flow field of images A and B 

overlayed on A. 

Figure 3.3: Two computer-generated frames that are often seen in egomotion esti

mation literature. The translation direct ion incurred by the camera between the two 

"captures" is precisely along the z-axis. 

19 



and 

as the set of eigenvectors associated with the nonzero and zero eigenvalues in 2::, 

respectively. Using this notation, it may be easier to think of L: as 

where 2::1 = diag(a1 , a2 , .. . , ar ) and t he zero vectors fill L: such that its dimensions are 

m x n. 

Now, from equation 3.7 

mul tiply both sides by V 

Since V is orthogonal, it follows that 

AV ~ UL:, 

furthermore 

Hence 

for j = 1, .. . , r . The resulting vector formed from Avi is of the same dimension as uj, 

so 1tj = Avi multiplied by some scaling factor (1/ai) for j = 1, ... , r. It then makes 
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sense to split U into [U1 , U2] where 

Avj = Ouj, for j = r + 1, r + 2, ... , m 

So 

Avj = 0, for j = r + 1, r + 2, ... , m 

U is, by definition, an orthogonal matrix [15] . As shown by [16], the first r columns 

of U form an orthonormal basis for the column space of A , the matrix that we are 

decomposing. Since U is an orthogonal matrix, each of its remaining m - r column 

vectors (U2 ) are also orthogonal both every vector in U1 and every other vector in U2 . 

U2 therefore has m - T COlumn vectors, and it indeed forms a basis for the }eft null 

space of A [16], aka: the orthogonal complement of the column space of A. 

The orthogonal complement is [ur+l> .. . , um]· 

3.2 Rotation estimat ion 

Once the translation t between the two frames has been found , obtaining the rotation 

w is a much less complicated ordeal. It can be calculated by solving the linear least 

squares problem as described by Zhang and Tomasi [17], where vectors are stacked 

in the same fashion as they were in the translation estimator. 

. 1 """' wk = argmm- L....t 1/Tk(x)(u(x)- B(x)w) ll2 , 

w m {X} 
(3.8) 
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where { x} is the set the m flow vectors' positions and T is a unit-norm vector that is 

orthogonal to 

e= 
A(x)t 

IIA(x)tll. 

Solving equation 3.8 using the Levenberg-Marquardt nonlinear least squares algorithm 

(as seen in section 3.3.2) will yield an estimate of w. 

3.3 Realtime motion estimation 

The previously described algorithm was first tested on a pair of computer-generated 

images, as seen in figures 3.3(a) and 3.3(b). Between them, the virtual camera per

formed a translation along the positive z,axis. In other words, t = [ 0 0 1 ] T 

precisely, with a rotation of zero in all three axes. Using the previously described im-

plementation of Jepson and Heeger's egomotion estimation algorithm, the estimated 

translation from the flow field in figure 3.3(c) was i = [ 0.00639774 0.0257688 0.999647 ] T 

While the algorithm itself was sound, it took well over a minute to process the trans-

lation direction alone between the two images in the pair. This is often the case with 

egomotion algorithms, and herein lies the crux of this thesis: to use vision as the 

primary system for the control of a UAV. In order to control a UAV successfully, 

estimates must be obtained at a much faster rate. Since the helicopter utilized in 

this thesis is controllable (with difficulty) by an operator, updates must arrive at a 

rate of approximately lOH z (human reaction time) . This is especially true for ro-

tary vehicles, as they are inherently less stable than their fixed-wing counterparts. 

Thus, various optimizations were needed to drastically improve the performance of 

the motion estimation. 
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Initially, it was suspected that it would be possible to make egomotion estimates 

at a rate of about 3-4 frames per second using Heeger and Jepson's met hod [2]. 

However, it was found that a translation estimate between a pair of frames was taking 

upwards of a minute, even on the aforementioned Xeon system. Upon completion 

of the implementation. Obviously, this was not sufficient. Furthermore, when the 

camera induces a large displacement between frames, even when pyramidal Lucas

Kanade optical flow estimation with a very low error tolerance and a large number 

of iterations, optical flow estimation breaks down due to a large number of false 

positives. Thus, the faster the motion of the body, the more frequent estimates must 

be completed. 

One technique used was to decrease the number of features utilized in the flow field. 

In [9], 400 features are used. For operation in realtime, 50 features were utilized in 

finding frame-to-frame correspondences. This means that the orthogonal complement 

can be found much more quickly than before; the singular value decomposition of a 

smaller set of vectors is less taxing in terms of memory usage and CPU cycles. The 

found features with the smallest error in the scene were utilized , so little was lost in 

terms of accuracy when recovering the rigid motion. 

3 .3 .1 Realtime translation estimation 

In [2], it is stated that t he candidate translation space is the unit sphere, but that 

only half the unit sphere needs to be considered since the solutions on the front and 

back halves are identicaL Furthermpre, the solut ion space is small , so the residual 

function can be evaluated "using a practical amount of memory and compute time" 
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[2]. Unfortunately, even using only the front half of the unit sphere it was found 

that calculation of the translation direction in less than a second was still impossible. 

The solution space was 3600 different unit vectors, and even increasing ¢ and 8 by 

a factor of 2 when iterating over t he candidate solution space (thus reducing the 

solution space by a factor of four) still took too long. However, it was noticed during 

the evaluation of residuals over the unit hemisphere that the "correct" estimate often 

differed from the next-best estimate by approximately 0.0001. Thus, by setting the 

stopping error (IIEW) to 0.0001 in the Levenberg-Marquardt solver, good predictions 

of the translation direction became obtainable in on the order of tens of seconds with 

the unconstrained solver. 

In further attempts to speed up the results, a heuristic method was created by 

the author. Given that the camera is attached to a body that is governed by some 

equations of motion, one can make certain assumptions on the nature of motion. Since 

it is necessary to obtain an estimate of optical flow from nearly every consecutive pair 

of frames, limits may be put on rate at which the translation may vary between frames. 

T is defined as the initial estimate of the translation direction of the camera. This 

estimate is used only for finding the tran~lation direction when evaluating the first 
\ 

two frames of the video stream. After this, the recovered T from the previous flow 

field becomes the new T. 

A patch surrounding the vector on the unit sphere is iterated over for each T. The 

candidate vector, T, is converted to spherical coordinates, thus obtaining a vector of 

the form T,ph = [ 1 ¢ e ] (since p = 1), and the solution space is all vectors 

such that 8 - 10 < ei ::; 8 + 10 and ¢ - 10 ::; ¢i ::; ¢ + 10. This method was 

abandoned after it was revealed that the update rate was still insufficient for online 
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estimation. Furthermore, if a number of consecutive poor estimates were made on 

the translation direction, the algorithm would drift out of the correct solution space 

and would continue to deliver poor estimates for some time, even if the predictions 

were utilizing good flow fields! 

Substantial effort was put into using a nonlinear least squares solver to obtain 

a realtime solution. Manolis Lourakis' C/C++ implementation of the Levenberg

Marquardt algorithm [8] was utilized. Out of the box, the library took multiple 

seconds to obtain a translation estimate (as mentioned above), so box constraints 

were placed on the nonlinear solver as follows 

- 1.0 :S Tx :S 1.0, 

- 1.0 ::; Ty :S 1.0, 

- 1. 0 :S Tz :S 1. 0. 

3 .3 .2 Levenberg-Marquardt method 

(3 .9) 

(3 .10) 

(3 .11) 

Levenberg-Marquardt is a technique that finds the minimum of a multivariate function 

in an iterative fashion. Given a function j , the method tries to find a pru·ameter 

vector p that minimizes the difference between the estimated measurement vector x 

and input x, the measured vector. More specifically, 

(3.12) 

Aside from the measured vector, the algorithm also requires an init ial guess as 

input, p0 . The best possible guess, p+, minimizes the squared distance r.TE, where 

E=x-x 
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For a small step size (jjbpll), 

(3.13) 

where J is the Jacobian matrix of f. At each step, the algorithm tries to find the Op 

that minimizes llx- f (p + bp)ll, which is approximately equal to llx- f(p)- Jbpll = 

liE- Jopll · The minimum is attained when J6P- E is orthogonal to the column space 

of J 

(3 .14) 

which leads to 

(3.15) 

In 3.15, JT J is an approximation of the Hessian. The Levenberg-Marquardt method 

usually makes a slight modification of this matrix 

(3 .16) 

where the off-diagonal elements of N are equal to the corresponding elements in JT J, 

but the elements on the diagonal are such that 

(3 .17) 

where f.l > 0 is a damping term. 

3 .3 .3 Coordinate transformation 

Since the camera is the sensor upon which the control laws are based, it is necessary 

that the positional estimates it gives are in the same space as the Draganflyer. In this 
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configuration, it is possible to simply relabel the a.,xes to transform the camera's coer-

dinate system to that of the Draganfiyer. Prior to (and possibly following) the writing 

of this thesis, the camera's position was (will be) such that merely relabeling the axes 

was (is) impossible. For such situations, the following coordinate transformation is 

very relevant. 

z 

y X z 

X ~z 
y 

~ 
X 

y 

(a) Camera (b) Inter- (c) Draganflyer 

mediate 

Figure 3.4: Coordinate system 3.4(a) must be converted to 3.4(c). 

The conversion from the camera system to the Draganfiyer system is a two step 

process. First, a -90° rotation about the x-axis will result in the coordinate system 

seen in figure 3.4(b), followed by a rotation -90° rotation about the z-a.:x:is in the new 

system. This will yield the Draganflycr coordinate system as seen in 3.4( c) . 

The sign of t he rotation direction about the axis is determined using the right 

hand rule. Simply point your right thumb along the axis in question in the positive 

direction , and curl your fingers. The direction in which the fingers curl in the direction 

of positive rotation. 

Say one wishes to transform a vector in 3D space, and thus has a vector of the 

form x = [ x 1 x2 x
3 

] t The dimension of the vector is extended and given a value 
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of 1 (thus becoming of the form x = [ x 1 x2 x 3 1 J \ and then is multiplied by 

the appropriate rotation matrices: 

1 0 0 0 

0 cosBx -sin Bx 0 
(3. 18) 

0 sinBx cosBx 0 

0 0 0 1 

cos By 0 sin By 0 

0 1 0 0 
(3 .19) 

-sin By 0 cos By 0 

0 0 0 1 

cos Bz -sin Bz 0 0 

sinB2 cos ez 0 0 
(3 .20) 

0 0 1 0 

0 0 0 1 

So, any t ranslation or rotation vectbr that we obtain from the camera will have to be 
I 

manipulated in the following way ~ 

where Bx = 90° and Bz = -90°. The new vector, x, may now be utilized in the PD 

controller seen section 4.2.1. 
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Chapter 4 

Quadrotor Model and Cont rol 

The Draganflyer 's mot ions are normally manipulated using a Futaba 4-channel remote 

controller by a human. To obtain autonomous flight the same cont roller is used, but 

it is connected to a PC via a P CBuddy cable, which essent ially converts RS232 

commands to PWM (pulse width modulated) signals allowing for wireless control of 

the aircraft. The egomotion algorit hm supplies the yaw(¢) , pitch(7/;) and roll (B) to 

the PD controllers. 

4 .1 Draganflyer dynamics 

' 
Two of the rotor::? of the Draganflyer rotate clockwise, while two rotate counter-

clockwise. Adjacent rotors spin in opposite directions, as can be seen by the t hin 

arrows in figure 4.1. The logic behind controlling the Draganflyer is fairly simple. 

By modifying the individual motors' speeds, the helicopter can be maneuvered in 

both directions along the x , y and z axes. Note in figure 4.1 that the z-axis is 

in the upwards/downwards direction, a common coordinat e system used in robotics 
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F2 

Figure 4.1: A sketch of the Draganflyer. The thin arrows indicate the direction in 

which the corresponding rotors move, while the thick reel arrows indicate the forces. 

literature. To increase the height of the Draganfl.yer, increase the speeds of all four 

rotors simultaneously. Utilizing the notation introduced in figure 4.1, this means 

increasing F1 , F2 , F3 and F4 . Motion along the positive x-axis can be obtained by 

increasing the speeds of rotors 3 and 4, and decreasing the speeds of rotors 1 and 2. 

When thought of visually, this will result in a rotation about the y-axis, increasing 

the altitudes of rotors 3 and 4 and decreasing the altitudes of rotors 1 and 2. Once 

the desired tilt (the degree of rotation about the y-axi ) has been reached, the four 

rotors will return to equal speeds, and the thrust of the angled body will propel it 

along the x-axis. 

The same can be said for motion along the positive y-axis, except that the speeds 

of rotors 2 and 3 will be decreased while the speeds of rotors 1 and 4 will be increased. 

The altitudes of rotors 1 and 4 increase, the altitudes of rotors 2 and 3 decrease, and 
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F2 

F4 

Figure 4.2: 3D quadrotor model, as adapted from [1] . Note that the x andy-axes are 

not parallel to the rods that make up the frame, as seen in 4.1. In fact , the axes are 

perpendicular to them. 

t he body then rotates about the x-axis. Once the desired tilt (about the x-axis) has 

been reached, the four rotors should return to equal speeds, and the quadrotor will 

move along the positive y-axis. For both the x and y axes, motion in the negative 

direction can be obtained by instead increasing the speeds of the motors that were 

decreased, and decreasing t he speeds of the motors that were previously increased. 

A clockwise motion about the z-axis can be obtained by increasing t he speeds 

of rotors 2 and 4. This will produce a moment larger than the opposing moment 

created by rotors 1 and 3 in t he opposite direction . A counter-clockwise motion can 

be obtained by increasing the speeds· of rotors 2 and 4 instead. 

The four inputs to the system will be defined with the previous st atements in 
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mind. Table 4.1 gives both descriptions and values for the constants used in defining 

the inputs and the system equations, as seen in [18]. Note that the inputs are in 

different units. u1 represents the total thrust on the body along the z-axis, while u2 

and u 3 are pitch and roll inputs and u4 is the yawing moment [1]. 

Table 4.1: Draganflyer model parameters 

Parameter Description Value Units 

g gravity 9.81 mjs2 

m vehicle mass 0.468 kg 

Jl roll inertia 4.9 X 10- 3 kg· m 2 

]2 pitch inertia 4.9 X 10- 3 kg· m 2 

J3 yaw inertia 8.8 X 10-3 kg· m 2 

l center to blade length 0.225 m 

From [1], 

• Ut = (F1 + F2 + F3 + F4)jm 

to increase the lift, increase the thrust of all four rotors equally . 

• U2 = (-Fl - F2 + F3 + F4)/J1 

to translate along the positive x-axis, increase thrusts of rotors 1 and 4 equally 

[19]. 

• U3 = (- Fl + F2 + F3 - F4) I J 2 

to translate along the positive y-axis, increase thrusts of rotors 3 and 4 equally. 
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• U4 = C ( F1 - F2 + F3 - F4) / J3 

to perform a clockwise rotation about z, increase thrusts of 1 and 3 to overcome 

the moment created by 2 and 4. C is the force-to-moment scaling factor, valued 

at 1.3 through experimental analysis in [20]. 

Finally, the model for the quadrotor used in the simulations is defined as 

i = u 1(cos¢ sinBcos1f;+sin¢sin 'ljl) 

y = u 1 (sin¢ sin B cos 1/J- cos¢ sin 'l/1) 

i = u 1 (cos B cos 'l/1) - g 

B = u2l 

'l/1 = u3l 

¢ = tl4 

4 .2 PD control theory 

(4.1) 

(4.2) 

( 4.3) 

( 4.4) 

( 4.5) 

(4.6) 

A PD controller is a form of a proportional, integral, derivative (PID) controller, 

where each of these elements are used to control a plant. These elements take the 

feedback from the plant and the system command signal, and use them to produce 

the system output [21]. 

The derivations of the PD controllers that follow in section 4.2.1 are quite theo

retical in nature, and are essentially the same as the controller found in [1]. While 

both [1] and [20] both do an excellent job deriving the controller, they give little to 

no implementation details. 

On the other hand, [21] offers a very good tutorial on how to implement a PD 
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controller inC, as well as how to estimate quantities like ~. ¢, Band i . Much of the 

code written for controlling the Draganfiyer was based on it. Controls for the yaw(¢), 

pitch(B), roll(1/l) and height(z) are derived in [1] by linearizing about hovering mode 

(ie: e = ¢ = 0, u1 = 1) . Indeed the controller that was implemented by the author 

was designed for the sole purpose of getting the quadrotor to hover. The purpose of 

this thesis from the outset was to demonstrate that optical flow is accurate enough 

to be used as the primary sensor for controlling an inherently unstable vehicle, not to 

implement a full-blown control system responsible for the navigation of a quadrotor. 

4 .2 .1 P D controller 

From the 'fj term in equation 4.1, if e, and¢ are set to 0 and u 1 is set to 1, one obtains 

Note tha t Yd and Yd are both zero, so 

(4.7) 

By negating the arcsin of both sides of equation 4.7, we get 

(4.8) 

where 1/Jd is the desired tilt angle. If the derivative of equation 4.8 is taken, 

.i. KviJI<d'fj 
~d= , J1 -K~y2 - 2I<vKdyiJ- KJy2 

( 4.9) 

an expression for the desired tilt angle velocity is obtained. 

The motion along the y-axis can be controlled by using a PD controller for input 

u3 , which as indicated in 4.1 equals -F1 + F2 + F3 - F4. By decreasing the thrust 
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of two adjacent rotors, the helicopter rotates around the axis upon which they both 

lie ( F1 and F4 share the x-axis). The helicopter will then translate in the direction 

of the downward tilt (along the y-axis) once the desired tilt has been acquired and 

(approximately) equal thrust has been restored among all rotors. To obtain the 

desired tilt, u3 is controlled via a PD controller 

(4.10) 

using the aforementioned definitions of 'l/Jd and 1/;d . 

In t he same way, one can design a controller for motion along the x-axis. This 

time u2 will be modified by decreasing F1 and F2 , resulting in rotors 1 and 2 tilting 

downward until the desired ed has been achieved, at which point (approximately) 

equal thrust will be returned to all rotors and the helicopter will translate in the 

direction of the downward tilt of rotors 1 and 2 (along the x-axis) . If one assigns 

¢ = 1{; = 0 and u1 = 1, 

(4.11) 

Now, to control x using a PD controller, [1] asserts 

(4.12) 

By equating the right-hand sides of equations 4.11 and 4.12 

(4.13) 
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where 

arcsin ( - Kpx - Kdx), 

]{pi + ]{ /i 

(4.14) 

(4.15) 

Yawing motion is much less complicated , as rotation about ¢ does not result in a 

translation along any axis. Thus, ¢d and ¢d can be defined arbitrarily, either by the 

operator or some intelligent system that is operating at a higher level than the PD 

controller . In [1], the following is given 

(4.16) 

36 



Chapter 5 

Simulation Results 

5.1 Egomotion simulations 

In the previous sections, egomotion estimates were performed on various image pairs 

and video sequences. Determining the degree of accuracy was difficult for two reasons: 

• The focal length of the (Canon A 75) camera used in egomotion estimation 

calculations is an approximation. 

• It is extremely difficult to generate highly accurate image sequences due to 

factors like unleveled tables and the lack of a turret for controlling rotation 

accurately to multiple decimal places. 

Conversely, computer-generated images make this task much easier: 

• The exact focal length of the "camera" is known (defaults to 1). 

• Sequences in which the camera-induced motion is known can be generated with 

ease. 
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Povray (shorthand for Persistence of Vision Ray-Tracer) renders 3d scenes with 

a technique called raytracing [22]. As input, Povray reads a text file containing 

information on the camera, objects and lighting that are contained in a scene. It was 

utilized to generate various image sequences and test how precisely the egomotion 

of the camera could be extracted. Computer-generated imagery proved extremely 

useful when creating image sequences containing combined motions that would have 

been quite difficult to perform by hand. Generating a pure translation along the 

x-axis, for example, is a fairly easy task. Generating an accurate sequence when the 

camera is translating along the z-axis while rotating precisely 2° is quite another story 

though. Figures 5.l(a), 5.l(b), 5.2(a) and 5.2(b) were all generated with Povray, and 

the egomotion estimates from the generated flow fields can be seen in table 5.1. 

5. 2 Combined vision and controller sin1.ulations 

Sample C( ++) code exists for interfacing a PC with a remote controller via the 

PCBuddy and a plethora of information is available for designing PID controllers in 

said language(s) . C++ was chosen for the controller based on this, but also because 

of its great performance. 

It is often the case that when one is implementing a controller for a system, 

he/she designs both a model and a corresponding controller in Matlab to test the 

general performance of the gains, and then writes the actual controller in C or some 

other language. In this case, the model was coded in Matlab, but the controller 

was not. Instead, it was written in C++ and a two-way communication channel 

was implemented between t he two (each ran on a separate machine). During the 
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simulations, the model would send a message containing the¢, 1/J and B as well as the 

x, y and z displacements, and the controller would send back the ontrol inputs (u1 , 

u2 , 1£3 and u4 ). Each time the model received a control update, it plugged the inputs 

into the ode4 5 solver along with the system model for 0.2 seconds, and returned the 

resultant rotational and translational displacements to the controller. These can be 

seen in the graphs at the end of the chapter. The ode45 solver integrates a system of 

differential equations over a user- defined timespan [23] . A function written by the 

user contains the equations, and the handle of this function is passed as an argument 

to the solver. Matlab solves the system numerically. 

After running simulations on both the vision and control algorithms separately, 

the image sequences in figures S.l(b), 5.2(a) and 5.2(b) were inputted into the full

blown implementation, where 

o the optical flow field was generated from point-to-point correspondences, 

• the estimate for the translation direction was made from the flow field, 

• the estimate for the rotation was made from the recovered translation direction 

and the flow field, 

• coordinate transformations (as described in section 3.3.3) were performed on 

the translation direction and rotation to convert them to the draganflyer frame 

from the camera frame, and 

• the transformed rotation values were then passed as input to their respective 

PD controllers. 
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The resultant output of the PD controllers can be seen in Table 5.2. A rotation of 

2° about the z-axis in the camera frame is a 2° (pitching) rotation about the x-axis in 

the Draganflyer frame. Thus, when the camera rotates about z-axis in figures 5.l(b) 

and 5.2(b) it makes sense that u2 is the largest in magnitude. 
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(a) Translation on the negative z-axis with zero rota

t ion. 

(b) Rotation of 3 degrees about the z-axis in the posi

tive direction with no translational component. 

Figure 5.1: Estimating the egomotion of a simulated camera in a sparse Povray scene. 

5.1(a) contains only translation, while 5. 1(b) contains only rotation. 
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(a) Translation along positive z-axis with positive ro

tation about the x-axis of 2 degrees. 

(b) Translation along positive x-axis with positive ro

tation about z-axis of 2 degrees. 

Figure 5.2: Again estimating the egomotion of a simulated camera, but this time on 

scenes with both translational and rotational components. 
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flow diagram actual t estimated t actual w estimated w 

0 0.0642482 0 -0.002583029 

5.1(a) 0 0.197736 0 0.02339799 

1 0.978148 0 0.001033989 
-

,. 

0 0.002519399 

5.1(b) n/a n/a 0 0.01115045 

0.052333333 0.03215757 

0 0.431632 0.03490658 0.0266253 

5.2(a) 0 -0.371138 0 0.0168376 

1 0.822162 0 0.0180777 

1 0.838671 0 0.02211699 

5.2(b) 0 -0.544639 0 0.03040064 

0 0 0.05233333 0.08450596 

Table 5.1 : P redictions of motion in computer-generated image pairs. 
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displacement of draganflyer on x-axis with PD controller 
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Figure 5.3: Effect of closed-loop control on displacement along the x-axis. 

displacement of draganflyer on y-axis with PD controller 
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Figure 5.4: Effect of closed-loop control on displacement along the y-axis. 
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displacement of draganf!Yer on z-axis with PD controller 
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Figure 5.5: Effect of closed-loop control on displacement along the z-axis. 
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Figure 5.6: Effect of closed-loop control on '1/J rotation. 
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tilt of draganflyer with PO controller 
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Figure 5. 7: Effect of closed-loop control on ¢ rotation. 

yaw of draganflyer with PO controller 
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Figure 5.8: Effect of closed-loop control on B rotation. 
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figure transformed rotation vector U2 1£3 U4 

- 1.84010 

5.1(b) - 0.144351 5.52029 0.433053 -0.511099 

0.638874 

- 1.03578 

5.2(a) - 1.52552 3.10733 4.57655 -0.771779 

0.964723 

-4.84184 

5.2(b) - 1.26721 14.5255 3.80163 -1.39346 

1.74183 

Table 5.2: The outputs of the PD controllers in response to the flow fields. Note 

that u1 is not included as it controls positioning on the z-axis, and magnitude of 

translation cannot be extracted from an image sequence. 
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Chapter 6 

Conclusions 

6.1 Findings 

The egomotion estimates presented in section 3 are generally of a high degree of 

accuracy. This is due, at least in part, to the high-quality flow fields used as input 

to the estimator. When the estimator gives suboptimal results, it is normally due to 

either excessive outliers in "the flow field, or ambiguous flow fields. 

One previously mentioned type of ambiguity is the aperture problem, as explained 

in section 2.3. Normally when one speaks of ambiguous flow fields, they are referring 

to a flow field where it is indistinguishable whether the perceived motion was induced 

by a translation or by a rotation. Motions t hat are parallel to t he image plane (ie: 

motions on the x and y-axes), as explained in [24], can cause confusion in the observer 

as to whether a rotation or a translation has occurred. In certain circumstances, a 

rotation about an axis in the negative direction will appear similar to a translation 

along the other axis of the image plane. These ambiguous motions, although not the 
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only ones, can be seen in Table 6.1. 

axis of rotation rotation direction axis of translation translation direction 

X negative y positive 

X positive y negative 

y negative X positive 

y positive X negative 

Table 6.1: Ambiguous motion 

The degree of robustness of an estimation is dictated by the size of the field of 

view (the larger the better), and the ratio of the magnitude of the translation to the 

distance from tracked features (again, the larger the better) [24]. In other words, the 

effects of translation are usually inversely proportional to the distance of the camera 

from the scene (4]. When a human tries to interpret the camera motion from the flow 

field in figure 6.l(a), it is unlikely that he/she will be able to tell that the motion 

is the result of a pure rotation, it is more likely that it would be characterized in 

the same way as 6.1(b), as a pure translation on the x-axis. Egomotion estimation 

algorithms often suffer from the same shortcoming. In fact, the further the camera 

from a scene on the image plane of a rotating camera, the more like a translation it 

will appear. The exception to this rule is rotation about the z-axis, as seen in figure 

6.1. A viewer would easily be able to guess the motion that the camera is undergoing 

at the time of the capture. Likewise, estimations of translation along the z-axis tend 

to be the best of the three axes. 

This problem is further exacerbated by the fact that these ambiguous types of 
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(a) Rotation about the y-axis. 

(b) TI-anslation on the x-axis. 

Figure 6.1: Two frames from different sequences demonstrating how rotational and 

translational motion can be ambiguous. 

motions can occur concurrently. For instance, the camera may be translating along 

the x-axis while simultaneously rotating about t he negative y-axis. In such a circum

stance, it becomes even more difficult to infer what type of motion is truly causing 

t he degree of the displacement. It is clear that the camera is moving the in the posi

tive x direction, but the degree of the magnitude of the flow that may be attributed 

is indeed ambiguous. After all, only the translation direction has been obtained, a 

unit vector that may represent a translational magnitude that can be anything from 
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Figure 6.2: Rotation about the z-axis. 

extremely small to very large. 

Likewise, say that the camera has again translated along the positive x-axis, but 

it has rotated about the positive y-axis. In the circumstance where the magnitudes of 

t he translational flow vectors are similar to those of the rotational flow vectors, it will 

appear that there has been nearly no movement. This is contingent on the distances 

of the features from the camera lens. 

6.2 Final thoughts and future work 

The modern INS is both affordable and reliable, and when coupled with a GPS it 

makes for a better estimator of 3d motion than one could ever hope for in a camera

based solution. Furthermore, in a single camera-based solution, it is only possible 

to extract the direction of translation (a unit vector) , not its magnitude. Depth and 

rotation can be obtained, but some other sensor is required if magnitude of translation 

is required. 

However, that does not mean that the ego-estimation problem is unimportant. If 
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one wishes to determine the distance of an approaching object without resort ing to 

radar or some other active sensor, then rigid motion must be solved for in order to 

extract depth. Furthermore, vision-based navigation has been a very useful tool in 

simultaneous localization and mapping (SLAM). SLAM deals with the problem of 

building a map of an unknown environment while navigating the environment with 

said map [25]. 

The implemented estimator presently does very little to prune statist ical outliers. 

If a flow vector exceeds the maximal prespecified length, then it is not used in the 

3d motion calculations. In order to obtain a more robust solution, there will be 

more effort put into using estimates based on prior motion to eliminate outliers. For 

example, if a Kalman filter indicates that t he camera should moving in direction t 

with a rotation of w, flow vectors that vary from the expected values by more than 

a predefined threshold will be pruned . Furthermore, SIFT (Scale-Invariant Feature 

Transform) will be used instead of Shi and Tomasi's [26] method for identifying fea-

tmes, as the former is generally unaffected by changes in illumination, rotation and 

scale [27] . 

In the preceding thesis, all real-world images were captured using a standard 3.2 

megapixel camera. It is not so much the quality of the sensor that may have caused 

issues so much as the consumer-grade lens. Indeed there is some barrel distortion that 

must be corrected for, and in futme a calibrated camera will be used exclusively. It 
I 

was not realized at the outset how ambiguous optical flow data really can be, and how 

subtle changes in the field will completely throw off motion estimates. So not only is 

it important to use a better feature tracker for avoiding excessive out liers, it is also 

important to have subpixel accuracy of matched features, which was not completed 
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here. Essentially, the implemented estimator gives a fairly good estimation of heading 

and rotation at times, but the results can be highly noisy and at t imes even wrong 

(due to a lack of convergence in Levenberg-Marquardt) . The problems faced during 

experimentation due high levels of inaccuracy were extremely frustrating, as it was 

presumed that there was a problem with the estimator . However , the literature 

suggests that such is t he nature of optical flow applications. Thus, it would be 

interesting to characterize the type of motion and focus on, for example, the motion 

of features that are closer to the camera, which will tell more about the nature of 

t he motion. Likewise, more weight could be put on certain areas that characterize 

translation versus rotation better. 

It is a good idea to generate ideal flow fields for a certain type of rigid motion. 

Even when working with synthetic images, there are still too many unknowns and 

inaccuracies to be sure whether or not an t he translational or rotational estimators 

are performing properly. Adding noise gradually and subsequently working wit h 

synthetic images makes much more sense. 
. ; 

Finally, Bruss and Horn's egomotion estimation method will be utilized over 

Heeger and Jepson 's. By utilizing a nonlinear equation solver, this paper has es-

sentially emulated the same method, but with n - 6 constraints instead of n. F\.ir-
' 

thermore, it is much slower because the SVD has to be performed each time one finds 

the orthogonal complement of the column space of a matrix, and also because the 

Jacobian has to be approximated. In other words, the implementation will become 

much faster and more accurate, the universal metrics toward which all Engineers 

work. 
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Appendix A 

Egomotion Estimation Code 

A .l C amera3DState .cpp 

#include <cv.h> 

#include 11 Caroera3DState . h 11 

/** 

* class: Camera3DState 

* brief: Responsible for storing the current rotational displacement of 

* the camera in 3d space. 

*I 
Camera3DState::Camera3DState( ) { 

LX= 0.0; 

r_y = 0.0; 

LZ = 0.0; 

} 

/** 

* A 3x1 opencv matrix is inputted instead for the update 
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*I 

void Camera3DState::updateRotation( CvMat* R ) { 

r_x = LX + cvmGet( R, 0, 0 ); 

r_y = LY + cvmGet( R, 1, 0 ); 

r_z = LZ + cvmGet( R, 2, 0 ); 

I** 

* It is simply assumed that as long as 7J and info are not null 

* that they are indeed of the correct dimensions 

* pre: p has 3 elements and info has 6 

* post: the per-frame displacements have been added 

*I 
void Camera3DState::updateRotation( double* p ) { II, double* info ) { 

LX = LX + p[OJ; 

r_y = r_y + p(l); 

LZ = LZ + p(2); 

} 

I** 

* The cumulative rotation about the x-axis from t=O to the current time 

*I 
double Camera3DState::getRotationAboutXAxis( ) { 

re turn r_x; 

} 

I** 

* The cttmulative rotation about the y-axis from t=O to the current time 

*I 
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double Camera3DState: :getRotationAbout YAxis( ) 

return r_y; 

I** 
* The cumulative rotation about the z-axis from t=O to the current time 

*I 
double Camera3DState::getRotationAboutZAxis( ) { 

return r_z; 

A.2 CMatrixBuilder .cpp 

#include "CMatrixBuilder .h" 

50 

CMatrixBuilder: :CMatrixBuilder( CvPoint2D32f* FrameOneFeatures, CvPoi nt2D32f* FrameTwoFeatures, 

char* FoundFeaturesMap, int NumPoints ) { 

f = l.0;/1634.0; 

frameOneFeatures = FrameOneFeatures; 

frameTwoFeatures = FrameTwoFeatures; 

foundFeaturesMap = FoundFeaturesMap; 

numPoints = NumPoints; 

I I calculate the number of found points 

inti = 0; 

numFeaturesProcessed = 0; 

while( i < numPoints ) { 

if( foundFeaturesMap[i] == 1 ) { 
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numFeaturesProcessed++; 

} 

i++; 

allocateMatrices( ); 

} 

CMatrixBuilder::-CMatrixBuilder( ) { 

cv Release Mat( &A_ T ) ; 

cvReleaseMat( &8 ); 

cvReleaseMat( &C ); 

} 

CvMat* CMatrixBuilder::getC{ ) { 

return C; 

} 

I* 
* Returns the number of rows of C 

*I 
int CMatrixBuilder::getCRowSize( ) { 

return 2*numFeaturesProcessed; 

I* 
* Return the number of columns of C 

*I 
int CMatrixBuilder: :getCColumnSize( ) { 

return numFeaturesProcessed+3; 

} 
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void CMatrixBuilder::allocateMatrices( ) { 

} 

I I make matrices of the correct dimensions 

A_ T = cvCreateMat( 2*numFeaturesProcessed, numFeaturesProcessed, CV _32F ) ; 

B = cvCreateMat( 2*numFeaturesProcessed, 3, CV _32F ); 

C = cvCreateMat( 2*numFeaturesProcessed,numFeaturesProcessed+3,CV _32F ) ; 

IIVt = cvCreateMat(l , 2*numFeaturesProcessed, CV_32F ); 

I I initialize all elements of A (T) to 0 

for( int i= O; i< 2*numFeaturesProcessed; i++ ) { 

for( int j=O; j<numFeaturesProcessed; j++ ) { 

CV_MALELEM( *A_T, float, i, j) = 0; 

} 

} 

void CMatrixBuilder::fil!A_ T ( CvMat* T ) { 

CvPoint2D32f* p1 = frameOneFeatures ; 

I I initialize A_T and ~ll of its static elements 

CvMat* A_xy = cvCreateMat( i,3, CV_32F ); 

I* 

* changed on May 8th to negative f 

*I 

CV_MAT_ELEM( *A_xy, floa t, 0, 0 ) = -f; 

CV_MAT_ELEM( *A_xy, float , 0, 1 ) = 0; 

CV_MAT_ELEM( *A_xy, floa t, 1, 0) = 0; 

CV_MAT_ELEM( *A_xy, floa t, 1, 1 ) = -f; 
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int rowindex = 0; 

numFeaturesProcessed = 0; 

int i= O; 

CvMat* res = cvCreateMat( 2, 1, CV _32F ); I I res is temporary storage for what goes into A {T} 

while ( i < numPoints ) { 

if( foundFeaturesMap[i] == 1 ) { llopticalFlowFoundFeature{i/ == 1 } { 

CV_MAT_ELEM( *A_xy, float, 0, 2) = pl[i].x; 

} 

CV_MAT_ELEM( *A_xy, float , 1, 2) = pl[i].y; 

cvmMul( A_xy,T,res ); I lewknflaw 

CV_MAT_ELEM( *A_T, float, rowlndex, numFeaturesProcessed ) = 

cvmGet( res, 0, 0 ); 

CV_MAT_ELEM( *A_T, float, rowlndex+l,numFeaturesProcessed) = 

cvmGet( res, 1, 0 ); 

rowindex = rowlndex+2; 

numFeaturesProcessed ++; 

i++; 

cvReleaseMat( &res ); 

cvRelease 1at( &A_xy ); 
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} 

void CMatrix8uilder::fillB( ) { I I OuPoint2D32f* pl } { 

CvPoint2032f* pl = frameOneFeatures; 

I I initialize B and its static elements - the x & y's will be 

I I updated in the loop 

int i= O; 

int rowindex = 0; 

float x; 

float y; 

while( i < numFeaturesProcessed ) { 

x = p1(i].x; 

y = pl(i].y; 

II fill all columns of the first row 

II THIS WAS CHANGED TO X*Y ON MAY 8TH 

CV _MAT _ELEM( *8, float, row Index, 0 ) = ( x*y ) I f; 

CV _MAT_ELEM( *8, float, rowindex, 1 ) = - 1* ( f + ( x*x I f) ); 

CV _MAT _ELEM( *8, float, rowfndex, 2 ) = y; 

II fill all columns of second row 

CV _MALELEM( *8, float, rowindex+1, 0 ) = f + ( y*y / f ); 

CV _MAT_ELEM( *8, float, rowindex+1, 1 ) = - 1 * ( x*y I f); 

CV_MAT_ELEM( *8, float, rowindex+ 1, 2 ) = - 1 * x; 

I I update indices 

i++ ; 

rowlndex += 2; 
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} 

I** 

* FillC{ ) 

* The columns of Care made up of A_T and B 

*I 
void CMatrixBuilder::fillC( ) { 

I I fill the left side of C with elements of A 

for( int i= O; i< 2*numFeaturesProcessed; i++ ) { 

for( int j= O; j< numFeaturesProcessed; j++ ) { 

CV _MALELEM( *C, float, i, j ) = cvmGet( A_ T, i, j ); 

} 

I I fill the right side of C with elem ents of B 

for( int i= O; i<2*numFeaturesProcessed; i++ ) { 

for( int j= O; j<3; j++ ) { 

I I B is offset exactly the width of A in C 

CV _MAT _ELEM( *C, float, i, numFeaturesProcesscd+j ) = cvmGet( B. i, j ); 

} 

sectionDataStruct.h 

#include <cv.h> 

#ifndef DATASTRUCLH 

#define DATASTRUCLH 

I** 
* This class stores optical flow data and f eature points for 

* calculation of egomotion estimation. 
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* param: T When passed to the translation estimator, it 

* is an intial guess of the translation. When passed to 

* the rotation estimator, it is the returned estimate from 

* the nonlinear solver. 

* param: R When passed to the rotation estimator, it is an 

* initial guess of the rotation. Afterwards, it is a 

* refined estimate, suitable for passing to a controller. 

*I 
struct DataSLruct { 

} ; 

Cv Point2D32f* frarneOneFeatu res; 

Cv Point2D32f* frameTwoFeatures; 

char* featuresMap; 

int numPoints; 

int numFeaturesProcessed; 

CvMat* T; 

CvMat* R; 

#end if 

A .3 LeastSquares.cpp 

#include "LeastSquares. h" 

#include <iostream> 

#include <math.h> 

/"'* 

* The initial guess for T is already inside of cPerp, 

* although it is included as an argument because 
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* the residual must be subtmcted each time and cPerp 

* must be rebuilt. 

*I 
LeastSquares: :LeastSquares( ) { 

} 

I** 
* pamm: M A lxnumCols vector for which we must 

* find the norm 

*I 
double LeastSquares::evaluateColVecL2Norm( CvMat* M, int numCols ) { 

double sumOfSquares = 0; 

10 

for( int i= O; i< numCols; i++ ) { 20 

I I add the square of the current element 

sumOfSquares += ( cvmGet( M, 0, i ) * cvmGet( M, 0, ) ); 

return sqrt( sumOfSquares ); 

} 

I ** 
* param: M a numRows x 1 vectors for iuhich we must find the norm 

*I 
double LeastSquares::evaluateRowVecL2Norm( CvMat* M, int numRows ) { 

double sumOfSquares = 0; 30 

for( int i= O; i< numRows; i++ ) { 

sumOfSquares += ( cvmGet( M, i , 0 ) * cvmGet( M, i, 0 ) ); 

} 

return sqrt( sumOfSquares ); 
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A.4 Number Converter. cpp 

#include <string> 

#include < iostream> 

#include <math.h> 

#include "NumberConverter. h" 

/** 

* Will tum the inputted vector into one of unit length 

*I 
void NumberConverter::normalize3dVector( CvMat* vee ) { 

double len = get3dVeetorLength( vee ); 

CV _MAT _ELEM( *vee, float, 0, 0 ) = evmGet( vee, 0, 0 ) I len; 

CV _MAT _ELEM( *vee, floa t, 1, 0 ) = evmGet( vee, 1, 0 ) I len; 

CV _MAT _ELEM( *vee, float, 2, 0 ) = evmGet( vee, 2, 0 ) I len; 

} 

double NumberConverter::get3dVeetorLength( CvMat* vee ) { 

double x = evmGet( vee, 0, 0 ); 

double y = evmGet( vee, 1, 0 ); 

double z = evmGet( vee, 2, 0 ); 

double len = sqrt( (x*x) + (y*y) + (z*z) ): 

return len; 

} 
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double umberConverter::degreesToRadians( double degrees ) { 

return degrees * ( 3.14159265 I 180.0 ); 

double NumberConverter::radiansToDegrees( double radians ) { 

return radians * ( 180.0 I 3.14159265 ); 

I** 
* Both T and Tout must be preallocated 8xl CvMats. 

* param: tOut tOut{0/[0/ = rho, tOut{l/[0/ = phi, t0ut{2/{0j = theta 

*I 
void NumberConverter::cartesianToSpherical( CvMat* T, CvMat* tOut ) { 

assert( T != NULL ); 

assert( tOut != NULL ); 

double x = cvmGet( T, 0, 0 ); 

double y = cvrnGet( T , 1, 0 ); 

double z = cvmGet( T, 2, 0 ); 

I I convert cartesian coords to spherical ones 

double S = sqrt( (x*x) + (y*y ) ); 

double rho = sqrt( (x*x) + (y*y) + (z*z) ); 

if( (rho >= 1.01 ) II (rho <= - 1.01 ) ) { 

std::cerr << "rho calculation is messed up" << std::endl; 

double phi = radiansToDegrees( acos( z ) ); I I actually z I rho, but rho = 1.0 

double t heta; 

if( X >= 0.0 ) { 

theta = radiansToDegrees( asin( y /, S ) ); 
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} 

else { 

theta = radiansToDegrees( 3.14159265 - asin( y / S ) ); 

} 

CV_MAT_ELEM( *tOut, float, 0, 0) =rho; 

CV_MAT_ELEM( *tOut, float, 1, 0) = phi; 

CV _MAT_ELEM( *tOut, float, 2, 0 ) = theta; 

} 

I** 

* Both must be previously-initialized 3x1 matrices 

* param: T T[Oj(Oj = rho, T{l}(Oj = phi, T{2j[Oj = theta 

* param: tOut tOut[O}(Oj = x, tOut[tj[Oj = y, t0ut[2j{Oj = z 

*I 
void NumberConverter::sphericalToCartesian( CvMat* T, CvMat* tOut ) { 

double rho = cvmGet( T, 0, 0 ); 

double phi = cvmGet( T, 1, 0 ); 

double theta = cvmGet( T, 2, 0 ); 

sphericalToCartesian( rho, phi, theta, tOut ); 

} 
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void NumberConverter::sphericalToCartesian( double rho, double phi, double theta, CvMat* tOut ) { 

CV _MAT _ELEM( *tOut, float, 0, 0 ) = 

rho * sin( degreesToRadians( phi ) ) * cos( degreesToRadians( theta ) ); I I x 

CV _MAT _ELEM( *tOut, float, 1, 0 ) = 

rho * sin( degreesToRadians( phi ) ) * sin( degreesToRadians( theta ) ); I I y 

CV _MALELEM( *tOut, float, 2, 0 ) = 

rho * cos( degreesToRadians( phi ) ) ; I I z 
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/** 

* Taken/modified from the CodePmject article entitled "Reliable Floating Point Equality Comparison". 

* http:/ jwww. codepmject. com/tips/ FloatingPointEquality. asp 

*I 
boo! NumberConverter::AlmostEqual(double nVall, double nVal2, double nEpsilon=O.OOOOOl ) { 

boo! bRet = (((nVal2 - nEpsilon) < nVall) && (nVall < (nVal2 + nEpsilon))); 90 

return bRet; 

/** 

* pamm: nEpsilon Want the elements of ml and m2 to be equal to at least this level 

* of precision. For example, if you want elements to be equal to 3 decimal places, 

* input nEpsilon = 0. 0001 

*I 
boo! NumberConverter::AlmostEqual( CvMat* ml, CvMat* m2, double nEpsilon=O.OOOOOl ) { 

CvSize mlSize = cvGetSize( ml ); 

CvSize m2Size = cvGetSize( m2 ); 

if( mlSize.width != m2Size.width ) { 

re turn false; 

if( mlSize. height != m2Size.height ) { 

return fa lse; 

// have determined that they're the same size, so 
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I I now let's cycle through the elements and make sure that 

I I they're equal 

for ( int i= O; i< mlSize.height; i++ ) { 

for( int j= O; j <ml Size.width; j++ ) { 

if( !AlmostEqual( cvmGet( ml, i, j ), cvmGet( m2, i, j ), nEpsilon ) ) { 

return fa lse; 

} 

} 

} 

II all elements have evaluated true when tested with AlmostEquals 

r eturn t r u e; 

} 

A .5 F lowMain.cpp 

I* 
* FlowMain.cpp 

* Modified version of David Stavens' optical flow genemtor source code. 

*I 
#include < iostream> 

#include <stdio.h> 

#include <cv.h > 

#include <highgui.h> 

#include < math.h> 

#include "DataStruct .h" 

#in clude "RotationEst imator .h" 

#include "TranslationEstimator. h " 

#include "Camera3DStat e. h " 
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#include 11 NumberConverter. h 11 

static const double pi = 3.14159265358979323846; 

inline static double square(int a){ 

return a * a; 

20 

inline static void allocateOnDemand( Ip!Image **img, CvSize size, int depth, in t channels ) { 

} 

if ( *img != NULL ) return; 

*img = cvCreatelmage( size, depth, channels ); 

if ( *img == NULL ) { 

} 

fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n 11 
); 

exit( - 1); 

int main(int argc, char *argv[]) { 

if (argc != 3) { 

fprintf(stderr, "usage: 'l.s imagel.jpg image2.jpg\n 11
, argv[O]); 

return - 1; 

I* Create an object that decodes the input video stream. *I 

Iplimage *frame = cvLoadlmage( argv[1], 1 ); 

I* Read the video's frame size out of the AVI. *I 

CvSize frame_size = cvGetSize( frame ); 

I* Create a windows called "Optical Flow" for visttalizing the outpttt. 
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* Have the window automatically change its size to match the output. 

*I 

cvNamedWindow("Dptical Flow", CV_WINDOW_AUTOSIZE); 

DataStruct egomotionEstData; 

CvMat* transGuess = cvCreateMat( 3, 1, CV _32F ); 

CV_MAT_ELEM( *transGuess, float, 0, 0) = 0.98; II translalionEst(O}; 

CV_MAT_ELEM( *transGuess, float, 1, 0) = 0.1; II translationEst(l}; 

CV_MAT_ELEM( *transGuess, float, 2, 0) = 0.1; II translationEst(2}; 

CvMat* rotGuess = cvCreateMat( 3, 1, CV_32F ); 

CV _MAT _ELEM( *rotGuess, float, 0, 0 ) = 0.01; 

CV _MAT _ELEM( *rot Guess, float, 1, 0 ) = 0.01; 

CV _MAT _ELEM( *rotGuess, float, 2, 0 ) = 0.01; 

egomotionEstData.T = t ransGuess; 

egomotionEstData.R = rotGuess; 

50 

static Ip!Tmage *frame1 =NULL, *frameL1C =NULL, *frame2_1C = NULL, *eig_image = NULL, 

*temp_image = NULL, *pyramid1 = NULL, *pyramid2 = NULL; 

allocateOnDemand( &frameL1C, frame_size, IPL_DEPTH_8U, 1 ); 

cvConvertimage(frame, frameLI'C, 0) ; 

I* We'll make a full color backup of this frame so that we can draw on it. 

* (It's not the best idea to draw on the static memory space of cvQueryFrame() .) 

*I 

allocateOnDemand( &framel, frame_size, IPLDEPTH_8U, 3 ); 

cvConvertimage(frame, frame1, 0); 
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/* Get the second frame of video. Same principles as the first. Note that 

* this frame is saved and used in the next iteration of the loop as well. 

*I 

frame = cvLoadimage( argv(2], 1 ); 

//frame = cvQueryFrame( inpuLvideo ); 

if (frame == NULL) { 

return 0; 

allocateOnDemand( &frame2_1C, frame_size, IPLDEPTJL8U, 1 ); 

cvConvertimage(frame, frame2_1C, 0); 

/* Shi and Tom asi Feature Tracking! */ 

/* Preparation: Allocate the necessary storage. */ 

allocateOnDemand( &eig_image, frame_size, IPL_DEPTH_32F, 1 ); 

allocateOnDemand( &temp_image, frame_size, IPL_DEPTIL32F, 1 ) ; 

/* Preparation: This array will contain the features found in frame 1. */ 

CvPoint2D32f frameLfeatures(400]; 

/* Preparation: BEFORE the function call this variable is the array size 

*(or the maximum number of f eatures to find). AFTER the function call 

* this variable is the number of features actually found. 

*I 
int number_oLfeatures; 

/* I'm hardcoding this at 400. But yo·u should make this a #define so that you can 

* change the number of f eatures you use for an accuracy/speed tradeoff analysis. 

*I 
number_oLfeatures = 400; 
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I* Actually run the Shi and Tomasi algorithm!! 

* "frame f_f C" is the input image. 

* "eig_image" and "temp_image" ar·e just workspace for the algorithm. 

* The first ". OJ " specifies the minimum quality of the fea tures {based on the eigenvalues). 

* The second ". 01" specifies the minimum Euclidean distance between features . 

* "N ULL" means use the entire input image. You could point to a part of the image. 

* WHE N THE ALGORITHM RET URNS: 

* "frameL features" will contain the feature points. 

100 

* "number_of_features" will be set to a value < = 4 00 indicating the number of feature points found. 

*I 
cvGoodFeaturesToTrack( frameLl C, eig_image, temp_image, 

frameLfeatures, &number_oLfeatures, .01 , 40 ); 

I * Pyramidal Lucas· Kanade Optical Flow! *I 

I* This array will contain the locations of the points from frame 1 in frame 2. *I 

CvPoint2D32f frame2_features[400] ; 

I* The i-th element of this array will be non-zero if and only if the i-th feature of 

* fram e 1 was fo und in frame 2. 

*I 
char opticaLflow _found_feature[400]; 

I* The i-th elem ent of this array is the error in the optical flow for the i-th feature 

* of framel as found in fram e 2. If the i-l.h f eature was not found (see the array above) 

* I think the i-th entry in this array is undefined. 

*I 
float opticaUiow _feature_error[400]; 
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I* This is the window size to use to avoid the aperture problem (see slide "Optical Flow: Overview") . *I 

CvSize opticaUiow_window = cvSize(3,3); 

I* This termination criteria tells the algorithm to stop when it has either done 20 iterations or when 130 

* epsilon is better than .3. You can play wiU~ these parameters for speed vs. accuracy but these values 

* work pretty well in many situations. 

*I 

CvTermCriteria optical_flow _termination_criteria 

= cvTermCriteria( CV _TERMCRIT_ITER I CV _TEH.MCH.ILEPS, 20, .3 ); 

a llocateOnDemand( &pyramid!, frame_size, fPL_DEPTlL8U, 1 ); 

a llocateOnDemand( &pyramid2, frame_size, IPLDEPTH_8U, 1 ); 

cvCalcOpticalFlowPyrLK(frameLIC, frame2_1C, pyramid!, pyramid2, frameLfeatures, frame2_features, 

number _of_features, opticaLflow_ window, 5, opticaLflow _found_feature, 

opticaLflow _feature_error, opticaLflow _termination_criteria, 0 ) ; 

int numFeaturesProcessed = 0; I I count the number of features processed 

I* For fun (and debugging :}}, let's draw the flow field. *I 

for(int i = 0; i < number_oLfeatures; i++ ){ 

I* If Pyramidal Lucas I< anade didn 't really find the f eature, skip it. *I 

if ( opticaUlow_found_feature(i) == 0 ) continue; 

int line_thickness; 

line_thickness = 1; 

I* CV_RGB{red, green , blue) is the red, green, and blue components 

* of the color you want, each out of 255. 

*I 

CvScalar line_color; 

line_color = CV_RGB(255,0,0); 
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-------------------------------------------------

} 

CvPoint p,q; 

p.x = (int) frameL features [i].x; 

p.y = (int) frameLfeatures[i].y; 

q.x = (int) frame2_features[i].x; 

q.y = (int) frame2_features[i].y; 

double angle; 

angle = atan2( (double) p.y- q.y, (double) p.x - q.x ); 

double hypotenuse; 

hypotenuse = sqrt( square(p.y - q.y) + square(p.x - q.x) ); 

I* Here we lengthen the arrow by a factor of three. *I 

q.x = (int) (p.x - 3 * hypotenuse * cos(angle)); 

q.y = (int) (p.y - 3 * hypotenuse * sin(angle)); 

cvLine( framel, p , q, line_color, line_thickness, CV _AA, 0 ); 

p.x = (int) (q.x + 9 * cos(angle + pi I 4) ); 

p.y = (int) (q.y + 9 * sin(angle + pi I 4)) ; 

cvLine( framel, p, q, line_color, line_thickness, CV_AA, 0 ); 

p.x = (int) (q.x + 9 * cos(angle- pi I 4)); 

p.y = (int) (q.y + 9 * sin(angle- pi I 4)); 

cvLine( frame I. p, q, line_color, line_ thickness, CV _AA, 0 ); 

numFeaturesProcessed++; 

I* Now display the image we drew on. Recall that "Optical Flow" is the name of 

* the window we created above. 

*I 
cvShowlmage("Dptical Flow", frarnel); 

I* And wait for the user to press a key (so the user has time to look at the image). 
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* If the argument is 0 then it waits forever otherwise it waits that number of milliseconds. 

* The return value is the key the user pressed. 

*I 
int key_pressed; 

key_pressed = cvWaitKey(O); 

I* 
* Egomotion estimation! 

*I 
N umberConverter numConv; 

egomotionEstData.frameOneFeatures = frameLfeatures; 

egomotionEstData.frameTwoFeatures = frame2_features; 

egomotionEstData. featuresMap = opticaLflow _found_feature; 

egomotionEstData.numPoints = number_oLfeatures; 

egomotionEstData.numFeaturesProcessecl = numFeaturesProcessed; 

TranslationEstimator transEstimator; 

I I itemtive solver 

transEstimator.getTranslatioo( &egomotionEstData ); 

std::cout << "iterative solution : " << cvmGet( egomotionE tData.T, 0, 0) 

<< " " << cvmGet( egomotionEstData.T, 1, 0 ) << " " 

<< cvmGet( egomotionEstData.T, 2, 0 ) << std::endl; 

I I nonlinear solver 

transEstimator.estimateTranslation( &egomotionEstData ); 

numConv.normalize3dVect~r( egomotionEstData.T ); 

std::cout << "nonlinear solver normalized trans: " << 

cvmGet( egomotionEstData.T, 0, 0 ) << II II 

<< cvmGet( egomotionEstData.T, 1, 0 ) << 
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} 

" " << cvmGet( egomotionEstData.T, 2, 0 ) << std: :endl; 

RotationEstimator rotationEstimator; 

rotationEstimator.estimateRotation( &egomotionEstData ); 

A .6 OrthogonalComplement .cpp 

#inc! ude "OrthogonalComplement. h" 

using namespace std; 

Orthogona!Complement::-Orthogona!Complement( ) { 

cvReleaseMat( &Ut ); 

cvReleaseMat( & W ); 

cvReleaseMat( &Vt ); 

cvReleaseMat( &cPerp ); 

} 

Orthogona!Complement::Orthogona!Complement( CvMat* M, int r, int c ) { 

rows = r; 

cols = c; 

C = M; 

Ut = cvCreateMat( rows, rows, CV _32F ); 

W = cvCreateMat( rows, cols, CV _32F ); 

Vt = cvCreateMat( cols, cols, CV _32F ); 

cPerp = cvCreateMat( rows, rows- cols, CV _32F ); 

void Orthogona!Complement::evaiSVDecomposition( ) 

/ /ofstream myfile; 
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} 

I lmyfile. open( "SVD. txt" ); 

llmyfile << "Writing this to a file.\n"; 

cvSVD( C, W, Ut, Vt. CV_SVD_U_TICV_SVD_V_T ); 

I I we will avoid the data logging for now, because 

I I it is fa!' too time-consuming 

/*for( int i=O; i<rows; i++ ) { 

for( int j =O; j<cols; j++ ) { 

myfile << " " << cvm.Get( W, i, j) << 

} 

m.yfile < < std::endl; 

} 

myfile.close( };*I 

u "· 
J 

CvMat* OrthogonaiComplement::getOrthogonaiComplement( ) { 

11 we have to transpose u-t first (it is stored as u J 

CvMat* U = cvCreateMat( rows, rows, CV _32F ); 

I I transpose Ut -> U 

cvTranspose( Ut, U ); 

for( int i= O; i< rows; i++ ) { 

for( int j=O; j< (rows- cols); j++ ) { 

CV _MAT_ELEM( *cPerp, float, i, j ) = cvmGet( U, i, j+cols ); 

} 

int rankl = getDiagonaiMatrixRankBruteForce( W,rows,cols ); 

int rank2 = getDiagona!MatrixRankE!egant( W,rows,cols ); 

if( rankl != rank2 ) { 

std: :cout << "Error: the ranks are not equal" << std::endl; 
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-------------------------

if( cols != rankl ) { 

std::cout << "the rank of Cis " << rankl << 

" , but the numbe r of columns is " << cols << std::endl; 

return cPerp; 

} 

I* 
* Only a singular, diagonal matrix may be passed as an 

* argument to this method 

*I 

50 

int Orthogona!Complement::getDiagona!MatrixRankBruteForce( CvMat* W, int rows, int cols ) { 

int rank= 0; 

boo! nonZeroFound; 

I I search row by row until a zero row is found 

for( int i= O; i< rows; i++ ) { 

} 

I I prior to examining any elements in mw 

nonZeroFound = false; 

for( int j= O; j<cols; j++ ) { 

if( cvmGet( W, i,j ) != 0 ) { 

nonZeroFound = true; 

} 

if( nonZeroFound ) { 

rank++; 

nonZeroFound = false; 

return rank; 
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} 

int Orthogona!Complement ::getDiagona!MatrixRankElegant( CvMat* W, int rows, int cols ) { 

int rank= 0; 

} 

for( int i= O; i<cols; i++ ) { 

if( cvmGet( W,i,i ) != 0 ) { 

rank++ ; 

} 

r eturn rank; 

A .7 RotationEstimator .cpp 

#include 11 RotationEstimator. h 11 

#include <cv.h> 

#include < iostream> 

#include 11 l ibs /lm . h 11 

#include <math.h> 

#include 11 NumberConverter . h 11 

#define PI 3.14159265 

I* 
* precondition : V must be a 2xl vector 

*I 
void buildV( CvMat* V, CvPoint2D32f* p1, CvPoint2D32f* p2 ) { 

CV _MAT _ELEM( *V, floa t, 0, 0 ) = pl ->x - p2->x; 

CV _MALELEM( *V, float , 1, 0 ) = pl ->y - p2->y; 

} 
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I* 
* precondition : a 2xl vector was !nputted 

*I 
double get2dVeetorLength( CvMat* vee ) { 

double x = evmGet( vee, 0, 0 ); 

double y = evmGet( vee, 1, 0 ); 

double len = sqrt( (x*x) + (y*y) ); 

return len; 

I* 
* Will turn the inputted vector into one of unit length 

*I 
void norrnalize2dVeetor( CvMat* vee ) { 

I* 

/I get the length of the vector 

double len = get2dVeetorLength( vee ); 

CV_MAT_ELEM( *vee, float, 0, 0) = evrnGet( vee, 0, 0) I len; 

CV_MAT_ELEM( *vee, float , 1, 0) = evrnCet( vee, 1, 0) I len; 

//double length = get2dVectorLength{ vee); 

//s td::cout << "length of normalized vee: "<< length<< std::endl; 

* Puts a vector orthogonal to the input Vee into the output Vee 

* precondition : 2 2x1 {preallocated) vectors have been inputted 

* postcondition : an orthogonal vector of unit length has been returned 
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*I 
void getOrt hogonal2dUnitVector( CvMat* inputVec, CvMat* outputVec ) { 

CV_MALELEM( *outputVec, float, 0, 0) = - 1 * cvmGet( inputVec, 1, 0 ); 

CV_MAT_ELEM( *outputVec, float, 1, 0) = cvmGet( inputVec, 0, 0 ); 

normalize2dVector( outputVec ); 

void buildB( CvMat* B, CvPoint2D32f* p1 ) { 

double x = pl ->x; 

} 

double y = pl ->y; 

double f = 634.0; 

//std::cout << "x: "<< x << ", y: "<< y << std::endl; 

CV _MAT_ELEM( *B, float, 0, 0 ) = ( x*y ) I f ; 

CV_MAT_ELEM( *B, float, 0, 1) = -1* ( f + ( x*x I f) ); 

CV_MAT_ELEM( *B, float , 0, 2 ) = y; 

CV_MAT_ELEM( *B, float, 1, 0) = f + ( y*y I f); 

CV_MAT_ELEM( *B, float, 1, 1) = - 1 * ( x*y I f); 

CV_MAT_ELEM( *B, float, 1, 2 ) = - 1 * x; 

void buildA( CvMat* A, CvPoint2D32f* pl ) { 

double f = 634.0; 

CV_MAT_ELEM( *A, fl oa t, 0, 0) = - f; 
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} 

CV_MAT_ELEM( *A, float, 0, 1) = 0; 

CV _MAT_ELEM( *A, float, 0, 2 ) = p1->x; 

CV_MALELEM( *A, float, 1, 0) = 0; 

CV _MAT_ELEM( *A. float , 1, 1 ) = - f; 

CV_MAT_ELE 1( *A, float, 1, 2) = pl ->y; 

I* 
* Method called by levrnar 

* 

*I 
void rotationEstNonlinear( double* p, double* x, int m, int n, void *data ) { 

assert( p != NULL ); 

assert( x != NULL ); 

assert( data != NULL ); 

CvMat* Ri = cvCreateMat( 3, 1, CV _32F ); 

CV_MAT_ELEM( *Ri, float, 0, 0) = p[O); 

CV_MAT_ELEM( *Ri, float , 1, 0) = p[1); 

CV _MAT _ELEM( *Ri, float , 2, 0 ) = p[2); 

Cv Mat* A = cvCreateMat( 2, 3, CV _32F ) ; 

Cv 1at * 8 = cvCreateMat( 2, 3, CV _32F ) ; 

CvMat* AT = cvCreateMat( 2, 1, CV _32F ); I I product of A and T matrices 

CvMat* d = cvCreateMat( 2, 1, CV _32F ); 
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CvMat* dt = cvCreateMat( 1, 2, CV _32F ); I I transpose of d 

CvMat* dtB = cvCreateMat( 1, 3, CV _32F ); 

CvMat* dtBOmega = cvCreateMat( 1, 1, CV _32F ); 

CvMat* V = cvCreat_eMat( 2, 1, CV _32F ); 

CvMat* dtV = cvCreateMat( 1, 1, CV_32F ); 

DataStruct *dptr; 

dptr= (struct DataStruct *)data; 

int numProcessed = 0; 

for( int i= O; i< dptr->numPoints; i++ ) { 

if( dptr->featuresMap(i] == 1 ) { 

I I build matrix for current set of points 

I I we wan t to pass a pointer to feature i - hence the '&' outside the 

I I accessing of the actual point 

buildA( A, &(dptr->frameOneFeatures(i]) ); 

buildB( B, &(dptr->frameOneFeaiures (i]) ); 

llstd::cout << "gets here"<< std::endl; 

llcvmMul{ A, dptr-> T, AT}; 

cvMatMul( A, dptr->T, AT ); 

llstd::cout << "gets here"<< std: :endl; 

I I put the othogonal vector to AT into d 

getOrthogonal2dUnitVector( AT, d ); 

I I fill the transpose of d 

cvTranspose( d, dt ); 

cvMatMul( dt, B, dtB ); 

llstd::cout << "past the creation of dB"<< std::endl; 
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I I get the first term of the least squares expression 

cvMatMul( dtB, Ri, dtBOmega ); 

1/std::cout << "past creation of dBOmega" << std::endl; 

I I we want to pass a pointer to feature i 

buildV( V, &(dptr-> frameOneFeatures[i)), &(dptr->frameTwoFeatures[i)) ); 

cvmMul( dt, V, dtV ); 

llstd::cout << "past creation of dtV" << std::endl; 

x[numProcessed] = cvmGet( dtBOmega, 0, 0 ) - cvmGet( dtV, 0, 0 ); 

numProcessed++ ; 

} 

} 

cvReleaseMat( &A ); 

cvReleaseMat( &B ); 

cvReleaseMat( &AT ); 

cvReleaseMat( &d ); 

cvReleaseMat( &dt ); 

cvReleaseMat( &dtB ); 

cvReleaseMat( &dtBOmega ); 

cvReleaseMat( &V ); 

cvReleaseMat( &dtV ); 

/** 

* Responsible for estimating the rotation between 2 frames using a 

* nonlinear equation solver. The estimated translation, T, between 

* the two frames must be found prior to estimating the rotation. 

* param: myData data necessary for calculating the 3d rotation (including an estimate 

* of the 3d translation between the two frames for which we are currently estimating the 

* rotation). 
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*I 
void RotationEstimator::estimateRotation( DataStruct* myData ) { 

d ouble opts[LM_OPTS_SZJ; 

opts[OJ=LM_INIT_MU; opts[1]= 1E-15; opts[2]=1E-15; llopts{3}=1E-20; 

opts[3]= 1E-15;/ 11 E-4; 

opts[4J=LM_DIFF _DELTA; 

std::cout << "before cvmGets on myData->R" << std::endl; 

I I set the initial guess 

p[Oj = cvmGet( myData->R. 0, 0 ); I I x rotation 

p[1] = cvmGet( myData-> R. 1, 0 ); I I y rotation 

p[2] = cvmGet( myData->R. 2, 0 ); I I z rotation 

std::cout << "entering estimat or, the rotation, p= [ " << p[O] << 

<< p(1] << ", " << p[2] << •]" << std::endl; 

doub le x[myData->numFeaturesProcessedj; 

for( int i= O; i < myData->numFeaturesProcessed; i++ ) { 

x[i] = 0; 

} 

NumberConverter numConv; 

double lowerBound = numConv.degreesToRadians( - 10.0 ); 

doub le upperBound = numConv.degreesToRadians( 10.0 ); 
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stcl::cout << "Lower Bound : " << lowerBouncl << " Upper Bound : " << upperBound << std::endl; 

doub le lb[3], ub[3]; 
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} 

I* 

lb[O] = lowerBound; lb[l] = lowerBound; lb[2] = lowerBound; 

ub[O] = upperBound; ub(l] = upperBound; ub[2] = upperBound; 

int ret = dlevmar_bc_dif( rotationEstNonlinear, p, x, 3, myData->numFeaturesProcessed, 

lb, ub, 1000, opts, info, NULL, NULL, (void *)my Data ); I l&myData }; 

I I once the nonlinear solver has been completed, the estimate is stored in p 

I I assign it to myData.R 

CV_MAT_ELEM( *(myData->R), float, 0, 0 ) = p[O]; 

CV_MAT_ELEM( *(myData- > R), floa t , 1, 0 ) = p(I]; 

CV _MAT_ELEM( *(myData->R), float, 2, 0 ) = p(2]; 

std::cout <<"exiting estimator, the rotation p=[ " << 

p(O] << ", " << p(I] << ", " << p[2] << "]" << std::endl; 

printf("Levenberg-Marquardt r eturned %d in %g iter, reason %g\nSolution: " 

} 

ret, info(S], info[6]) ; 

for(int i= O; i< 3; ++i) { 

printf("%. 7g ", p(i]); 

printf( "\n\nMinimization info: \n "); 

for(int i= O; i< LM_INFO_SZ; ++i) { 

printf( "%g ", info[i]); 

printf( "\n"); 

* This is the output info of the levmar solver, and basically contains information about the 
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* convergence (or lack thereof) of the data 

*I 
double* RotationEstimator: :getNonlinearSolverfnfo( ) 

r eturn info; 

} 

I* 
* Make the pointer NULL so it correctly throws an exception 

* when one attempts to access data that is no longer present 

*I 
RotationEstimator:: -RotationEstima tor( ) { 

//delete { j p; 

//delete {} info; 

/ /cvReleaseMat( f1orth Vee }; 

} 

A .B TranslationEstimator .cpp 

#include "Orthogonal Compl ement . h " 

#inc! ud e "Translat ionEstimator . h" 

#include "Number Converter . h" 

#include "LeastSquares . h" 

#include "CMatrixBuilder .h" 

#include "UnitSphere . h" 

#include "Uni tSpherePatch .h" 

#include < float .h> 

#include < iostream> 

#include "libs /lm.h" 

# include < cv. h> 
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} 

/** 

* class: TranslationEstimator. cpp 

* br·ief: Given an initial guess at the. translation between two images, it will 

* use a nonlinear solver to give an accurate estimate. 

*I 

CvMat* buildYt( DataStruct* dptr ) { 

char* opticalFlowFoundFeature = dptr->featuresMap; 

vPoint2D32f* pl = dptr->frameOneFeatures; 

CvPoint2D32f* p2 = dptr->frameTwoFeatures; 

int numPoints = dptr->numPoints; 

CvMat* Vt = cvCreateMat(l, 2*dptr->numFeaturesProcessed, CV_32F ); 

inti = 0; 

int index = 0; 

while( i < numPoints ) { 

} 

if( opticaiFlowFoundFeature[i] == 1 ) { 

} 

CV _MAT_ELEM( *Vt, float, 0, 2*index ) = pl[i].x - p2[i].x; 

CV _MALELEM( *Yt, float, 0, (2*index)+ l ) = pl[i].y - p2[i].y; 

index++; 

i++; 

return Vt; 

!** 

20 

30 

* fn: translationEstNonlinear Nonlinear translation estimator. It is called indirectly using the levmar library. 

* param: p estimate of the 3d translation 

* param: x a vector of zeroes (we want the estimate that renders as close to zero as possible) 
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* param: m dimension of p 40 

* param: n dim ension of x 

* param : data pointer to an instance of DataStruct containing the flo w information needed for calculation 

*I 
void translationEst Nonlinear( double* p, double* x, int m, int n, void *data ) { 

CvMat* T = cvCreateMat( 3, 1, CV_32F ); 

assert( data != NULL ); II a mistake I frequently make 

I I take guess and convert it to usable format 

CV _MAT_ELEM( *T, float , 0, 0 ) = p(O]; 

CV_MAT_ELEM{ *T, float, 1, 0) = p(1]; 

CV _MAT_ELEM( *T, float, 2, 0 ) = p(2]; 

struct DataStruct *dptr; 

dptr= (struct DataStruct *)data; 

CMatrixBuilder cBuilder( dptr-> frameOneFeatures, dp tr- > frarneTwoFeatures, 

dptr->featuresMap, dptr->numPoints ); 

cBuilder.fi!IA_ T( T ) ; 

cB uilder. fi!IB ( ) ; 

cBuilder.fillC( ) ; 

CvMat* C = cBuilder.getC( ); 
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OrthogonalComplement orthComp( C, cBuilder.getCRowSize( ), cBuilder.getCColumnSize{ ) ); 

orthComp.eva!SVDecomposition{ ); 

CvMat* CPerp = orthComp.getOrthogona!Complement( ); 

I I I Vt is the transpose of the column vector comprised of the x f1 y 

I I I components of the elements of the optical flow fie ld 
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CvMat* Vt = buildVt( dptr ); 

I I I where the result of Vt * CPerp is stored 

I I I the column count is based on the shape of CPerp as a 

I I I result of taking the right side of the U matrix after 

I I I the SV Decomposition 

I I I note: numFeaturesProcessed - 3, because it is actually 

I I I numRows - numCols 

CvMat* VtCPerp = cvCreateMat( 1, 

70 

(2 * dptr-> numFeaturesProcessed) - dptr->numFeaturesProcessed - 3, CV _32F ); 

I lstd::cout < < "gets here" < < std::endl; 

cvmMul( Vt, CPerp, VtCPerp ); 

I lcvMatMul( Vt, CPerp, 

80 

for( int i= O; i< ( (2 * dptr->numFeaturesProcessed) - dptr->numFeaturesProcessed - 3); i++ ) { 

x(i] = cvmGet( VtCPerp, 0, i ); 

dptr->T = T; 

} 

I ** 

* ltemte through all candidates on the unit sphere and see which one 

* has the minimum residual 

*I 
CvMat* TranslationEstimator::getTranslation( DataStruct *myData ) { 

assert( myData != NULL ); II a mistake I frequently make 

double minResid = DBL_MAX; 

int minResidPos = - 1; 
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CvMa t* T; 

UnitSphere unitSphere; 

LeastSquares leastSquares; 

std::ofstream myfile; 

myfile.open( "minResidTrans. txt" ); 

for( int i= O; i<unitSphere.getNumUnitVectors( ); i+ + ) { 

T = unitSphere.getUnitVectorAt( i ); 

CMatrixB uilder cBuilder( my Data-> frameOneFeat ures, my Data-> frame T wo Features, 

myData-> featuresMap, myData- >numPoints ); 

cBuilder fil!A_ T( T ); 

cBuilder.fillB( ); 

cBuilder.fillC( ); 

CvMat* C = cBuilder.getC( ); 

100 

llO 

Orthogona!Complement orthComp( C, cBuilder.getCRowSize( ), cBuilder.getCColumnSize( ) ); 

orthComp.evaiSVDecomposition{ ); 

CvMat* CPerp = orthComp.getOrthogonaiComplement( ); 

II Vt is the transpose of the column vector comprised of the x f1 y 

II components of the elements of the optical flow field 

CvMat* Vt = buildVt( myData ); 

I I where the result of Vt * CPerp is stored 

I I the column count is based on the shape of CPerp as a 

II result of taking the right side of the U matrix after 

I I the S V Decomposition 

II n ote: numFeaturesProcessed - 3, because it is actually 
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} 

I I numRows - numCols 

int num VtCPerpCols = 

(2 * myData-> numFeaturesProcessed) - myData->numFeaturesProcessed - 3; 

CvMat* VtCPerp = cvCreateMat( 1, numVtCPerpCols, CV _32F ); 

llcvmMul{ Vt, CPerp, VtCPerp ); 

cvMatMul( Vt, CPerp, VtCPerp ); 

double lsq = leastSquares.evaluateCo!VecL2Norm( VtCPerp, numVtCPerpCols ); 

double resid = lsq / num VtCPerpCols; 

llstd::cout << "evaluating " << std::endl; 

myfile << " " << cvmGet( unitSphere.getSpherica!CoordsAt( i ), 0, 0 ) << " " << 

cvmGet( unitSphere.getSpherica!CoordsAt( i ), 1, 0 ) < < " " < < resid; 

myfile << std::endl; 

if( resid < minResid ) { 

minResid = resid; 

minResidPos = i; 

130 

std::cout << "the new min is t=[" << cvmGet( unitSphere.getUnitVectorAt( i ), 0, 0) 140 

<< " " << cvmGet( unitSphere.getUnitVectorAt( i ), 1, 0) << 

" " << cvmGet( uni tSphere.getUnitVectorAt( i ), 2, 0 ) 

<< " ] , and the residual is " << minResid << std::endl; 

} 

cvReleaseMat( &Vt ); 

cvReleaseMat( &VtCPerp ); 

I lcvReleaseMat( &T ); 

myfile.close( ); 

return unitSphere.getUnitVectorAt( minResidPos ); 
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I** 

* Method that calls the private nonlinear rotation solver. The method takes the previous final estimate 

* of the translation as the starting point for a new estimate of the translation. 

* param: myData pointer to the struct that contains all of the necessary data to calculate the 

* rotational portion of the egomotion. It has an estimate of the translative component (myData-> T), 

* and an initial guess for the rotational component (myData-> R ). 

* see: translationEstNonlinear( double* p, double* x, int m, int n, void *data ) 

*I 
void TranslationEstimator::estimateTranslation( DataStruct *myData ) { 

std::cout << "in translation estimator" << std: :endl; 

int ret; 

double opts( LM_OPTS_SZ ]; 

double info( LM_INFO_SZ ]; I/ output variable that indicates convergence, etc 

opts[O]= LM_INIT_MU; llopts(l}= IE-15; opts(2}=1E-15; opts(3}=1E-20; 

opts[l]= lE- 15; 

opts(2]= 1E- 15; 

opts[3]= 1E- 20; I 14; 

opts(4]= LM_DIFF_DELTA; // relevant only if the finite difference jacobian version is used 

int m = 3; I I dim of p vector 

int n = (2*myData->numFeaturesProcessed) - myData->numFeaturesProcessed - 3· 

double p(m]; 

double x(n] ; 

II by 
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p[OJ = cvmGet( myData->T. 0, 0 ): 

p[l] = cvmGet( myData->T, 1, 0 ): 

p[2] = cvmGet( myData->T, 2, 0 ); 

for( int i= O; i< n; i++ ) { 

x[i] = 0.0; 

II stick boundaries on this sucka 

double lb[3J,ub[3]; 

lb[OJ = - 1.0; lb[l] = - 1.0; lb(2] = -1.0; 

ub[O] = 1.0; ub[l] = 1.0; ub[2] = 1.0: 

ret = dlevmar_bc_dif( translationEstNonlinear, p, x, m, n, 

lb, ub, 1000, opts, info, NULL, NULL, (void *)myData ); 

I I now that it has been solved, be sure to update the translation 

I I estimate in the DataStruct 

CV _MAT_ELEM( *(myData->T), float, 0, 0 ) = p[OJ; 

CV_MAT_ELEM( *(myData->T), float, 1, 0 ) = p[l]; 

CV_MAT_ELEM( *(myData->T), float, 2, 0 ) = p[2]; 

printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution : " 

ret, info[S], info[6]); 

for(int i= O: i< m; ++i) { 

print f( "%. 7g ", p[i]); 

} 

printf(" \n \nMinimization info: \n" ); 

for(int i= O; i<LM_INFO_SZ; ++i) { 

printf("%g ", info[i]); 
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printf("\n"); 

} 

A.9 U nitSphere.cpp 

#include < iostream> 

#include <math.h> 

#include "UnitSphere.h" 

#include "NumberConverter. h " 

Uni tSphere: :UnitSphere( ) { 

//numUnit Vectors = 61 * 121; 

numUnitVectors = 3600; 

generateAIIU nit Vectors( ) ; 

void UnitSphere::initia!TranslationGuess( CvMat* T ) { 

NumberConverter numConv; 

I* 

CvMat* tSpherical = cvCreateMat( 3, 1, CV _32F ); 

CvMat* tNew = cvCreateMat( 3, 1, CV_32F ); 

numConv.cartesianToSpherical( T, tSpherical ); 

nu mConv.spherica!ToCartesian( tSpherical, tNew ); 

* generaieA ll Unit Vectors( ) 
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* We generate all possible unit vectors using 

* spherical coordinates (rho = 1, sweet!), and 

* then convert them to cartesian ones 

* 

*I 
void UnitSphere::generateAIIUnitVectors( ) { 

d ouble rho = 1.0; 

int i = 0; // i is the index for the array 

//for( int theta=-180; theta<=180; theta++) { 

NumberConverter numConv; 

for( int theta=O; theta< 180; theta+=3 ) { // < 180 because 0 f.1 180 refer to the same vector 

for( int phi= 270; phi<360; phi+= 3 ) { 

// the next 3 lines are for returning the spherical coords for graphing purposes 

S[i] = cvCreateMat( 2, 1, CV _32F ); 

CV_MAT_ELEM( *S[i], float, 0, 0) =phi; 

CV _MAT _ELEM( *S[i], float, 1, 0 ) = theta; 

30 

T[i] = cvCreateMat( 3, 1, CV_32F ); 

CV _MAT _ELEM( *T[i]. float, 0, 0 ) = 

40 

rho * sin( numConv.degreesToRadians( phi ) ) * 

cos( numConv.degreesToRadians( theta ) ); // x 

CV _MALELEM( *T[i]. float, 1, 0 ) = 

rho * sin( numConv.degreesToRadians( phi ) ) * 

sin( numConv.degreesToRadiaris( theta ) ); // y 

CV_MAT_ELEM( *T[i], float, 2, 0) = rho * 

cos( numConv.degreesToRadians( phi ) ); // z 
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} 

} 

i++; 

} 

for( int phi= O; phi<90; phi+=3 ) { I I 90 refers to the same vector as 270 

S[i] = cvCreateMat( 2, 1, CV_32F ); 

CV_MAT_ELEM( *S[i], floa t , 0, 0 ) = phi; 

CV_MAT_ELEM( *S[i], float, 1, 0 ) = theta; 

T[i] = cvCreateMat( 3, 1, CV _32F ); 

CV _MALELEM( *T[i], floa t, 0, 0 ) = rho * 

sin( numConv.degreesToRadians( phi ) ) * 

cos( numConv.degreesToRadians( theta ) ) ; I I x 

CV_MAT_ELEM( *T(i], float, 1, 0 ) = rho * 

sin( numConv.degreesToRadians( phi ) ) * 

sin( numConv.degreesToRadians( theta ) ); II y 

CV _MAT _ELEM( *T(i]. float, 2, 0 ) = rho * 

cos( numConv.degreesToRadians( phi ) ); I I z 

i++ ; 

std: :cout << "number of points: " << i << std::endl; 

void UnitSphere::printUnitVectorAt( int i ) { 

I* 

std::cout << "the new min is t=[ " << cvmGet( getUnitVectorAt( i ), 0, 0 ) 

<< " " << cvmGet( getUnitVectorAt( i ), 1, 0 ) << " " << 

cvmGet( getUnitVectorAt( i ), 2, 0 ) << std::endl ; 

* getNumUnit Vectors( ) 
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* Get the number of unit vectors stored in the sequential list 

*I 
int UnitSphere::getNumUnitVectors( ) { 

return numUnitVectors; 

I* 
* All unit vectors are stored in a sequential list. 

* This method is how they are accessed. 

*I 
CvMat* UnitSphere: :getUnitVectorAt( int i ) { 

return T[i]; 

} 

I** 
* The Oth element in S{ij is phi, while the 1st is 

* theta 

*I 
CvMat* UnitSphere::getSphericalCoordsAt( int i ) { 

return S[i]; 

} 
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