

Egomotion Estin1ation for Vehicle Control

by

© Mark Brophy

B. Sc.(Honours), Memorial University of Newfoundland (2005)

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Engineering

!

Department of Engineering and Applied Science

Memorial University of Newfoundland

July 2007

St. John's Newfoundland

Abstract

The focus of this thesis is a technique called egomotion estimation, which involves the

extraction of motion parameters from a camera based on the nature of the motion

field on a frame-by-frame basis. In general, this is a multi-step process that involves

estimating the motion field, often referred to as the optical flow, from which the trans

lation direction and rotation are then extracted. The optical flow field is normally

generated by tracking a frame 's strong features in the subsequent frame of a sequence.

Examples of strong features include corners of objects or areas of high contrast within

an image. The algorithms described in this thesis have been developed with the hopes

of eventually being utilized as the primary sensor on a Draganflyer four-rotor heli

copter (also known as a quadrotor) for self-motion estimation. A PD controller was

implemented to stabilize the quadiotor, and its effectiveness has undergone initial

testing in simulation.

The algorithms and implementations that follow, in their initial implementations,

took over one minute to find a res~lt on an Intel 3.0Ghz Xeon system. They are

now running at a rate of about 5Hz, which is certainly a noteable difference. The

methods presented are by no means optimal. The author is continuing this research

on egomotion estimation as a part of his d,octoral studies.

List of Notat ion

X

c
cl.

u(x)

t

t

w

Pi

Rx(wx)

Ry(wy)

Rz(wz)

a column vector

the transpose of vector x

a column vector constructed by "stacking" xi column vectors on one another

a matrix of dimension m x n

the orthogonal complement of matrix C

2d flow vector at point x

3d translation direction vector

an estimate of the translation direction

3d rotation vector

the depth of point Xi

the inverse depth of point xi

a matrix for rotating a vector about the x-axis by Wx degrees

a matrix for rotating a vector about the y-axis by wy degrees

a matrix for rotating a vector about the z-axis by Wz degrees

input to Draganflyer for translation along the z-axis

input to Draganflyer for rotation about the z-axis

input to Draganflyer for translation along the x-axis

input to Draganflyer for translation along the y-axis

upward force created by rotor ion the Draganflyer, where i = 1, ... , 4

List of Figures

2.1 Two consecutive frames of the author's desk in the INCA lab.

2.2 Strong features are extracted from Image A and highlighted. .

2.3 No matter how the aperture is moved, the perceived motion always

remains indistinguishable. In 2.3(b), the aperture is moved to the

7

10

right, while in 2.3(c) it is moved to the left. 11

2.4 The opt ical flow field induced between image A and image B. 12

3.1 A plot of the residual surface of the translation direction incurred be

tween the capturing of figures 3.2(a) and 3.2(b) . The solution space

can be expressed in 2d using spherical coordinates. 17

3.2 3.2(b) was taken after 3.2(a) and a substantial camera translation was

incurred. The flow field is fairly noisy and results in residual values

which are quite large on the residual surface. 18

3.3 Two computer-generated frames that are often seen in egomotion es

timation literature. The translation direction incurred by the camera

between the two "captures" is precisely along the z-axis.

3.4 Coordinate system 3.4(a) must be converted to 3.4(c) .. .

ii

19

27

4.1 A sketch of the Draganfiyer. The thin arrows indicate the direction

in which the corresponding rotors move, while the thick red arrows

indicate the forces. 30

4.2 3D quadrotor model, as adapted from [1] . Note that the x andy-axes

are not parallel to the rods that make up the frame, as seen in 4.1. In

fact, the axes are perpendicular to them. 31

5.1 Estimating the egomotion of a simulated camera in a sparse Povray

scene. 5.l (a) contains only translation, while 5.l(b) contains only

rotation. 41

5.2 Again estimating the egomotion of a simulated camera, but this time

on scenes with both translational and rotational components ..

5.3 Effect of closed-loop control on displacement along the x-axis.

5.4 Effect of closed-loop control on displacement along the y-axis.

5.5 Effect of closed-loop control on displacement along the z-axis.

5.6 Effect of closed-loop control on 7/J rotation.

5.7 Effect of closed-loop control' on ¢rotation.

5.8 Effect of closed-loop control on e rotation.

6.1 Two frames from different sequences demonstrating how rotational and

translational motion can be ambiguous. .

6.2 Rotation about the z-a.x.is.

lll

42

44

44

45

45

46

46

50

51

List of Tables

4.1 Draganflyer model parameters 0 • • • • • • • • • 0 32

5.1 Predictions of motion in computer-generated image pairs. 43

5.2 The outputs of the PD controllers in response to the flow fields. Note

that u1 is not included as it controls positioning on the z-axis, and

magnitude of translation cannot be extracted from an image sequence. 4 7

6.1 Ambiguous motion 0 • • • 0 •• • ••• •• • • • 0 • • 0 • • • • • • • • 49

iv

Contents

Abstract

1 Introduction

1.1 Motivation .

1.2 Previous work

2 Vision System

2.1 Image brightness derivative

2.2 Feature selection . . .

2.3 The aperture problem

2.4 Finding the optical flow

3 Motion Estimation

3.1 Translation estimation

3.1.1 Calculating C.l

3.2 Rotation estimation . .

3.3 Realt ime motion estimation

3.3.1 Realtime translation estimation

v

1

1

3

6

8

9

10

10

13

13

16

21

22

23

3.3.2 Levenberg-Marquardt method

3.3.3 Coordinate transformation . .

4 Quadrotor M odel and Cont ro l

4.1 Draganfiyer dynamics .

4.2 PD control theory . .

4.2.1 PD controller

5 Simulation Results

5.1 Egomotion simulations

5.2 Combined vision and controller simulations .

6 Conclusion s

6.1 Findings

6.2 Final thoughts and future work

Appendices

A Egomotion Estimation Code

A.l Camera3DState.cpp .

A.2 CMatrixBuilder.cpp .

A.3 LeastSquares.cpp . .

A.4 N umberConverter .cpp

A.5 FlowMain.cpp

A.6 OrthogonalComplement.cpp

A.7 RotationEstimator .cpp . . .

VI

25

26

29

29

33

34

37

37

38

48

48

51

59

59

59

61

67

69

73

81

84

A.8 TranslationEstimator.cpp .

A.9 UnitSphere.cpp

vii

93

100

Chapter 1

Introduction

1.1 Motivation

Most modern remotely-operated vehicles (ROVs) come equipped with some sort of

optical sensor for target tracking or sensing and avoidance, but generally use some

other type of sensor to obtain their heading and locale. Clearly the study of ex

tracting such data from a visual sensor makes sense due to practicality (economics,

minimization, etc.), but also because of the interesting problems that exist in the

area. The process of extracting the 3d motion of a visual sensor from its captured

images is referred to as egomotion estimation.

In navigational situations where the ROV is a robot or even an unmanned aerial

vehicle (UAV), an inertial navigation system (I S) is almost always utilized in some

form. When fused with another sensor (such as a global positioning device), the

accuracy with which a vehicle can navigate is increased substantially. Rather the

purpose of the fo llowing research is not to compete with such a solu tion. The purpose

1

is to work towards a vision-based solution that will someday be used in parallel with

currently-available technology, or in low-cost systems where a great deal of accuracy

is not critical. The author chose a monocular system for specifically this reason, since

stereo vision carries a dual expense. Not only must one must purchase two cameras

instead of one, but the weight added to the payload is doubled. The Draganflyer in

particular could not handle having any weight added to its payload. Furthermore,

utilizing a monocular system resulted in a complex and interesting problem.

It is an attractive problem in a number of ways. So much of a human's navigational

ability comes from what he/she sees, it is interesting to see if it is possible for a robot

to navigate using only visual data. Thus, this thesis deals with problems in both

computer vision and control, and the relationship between the two.

This topic has been covered fairly extensively, but is often presented with little

focus on implementation. The following thesis aims to describe the implementation

in a thorough and clear manner, and includes an explanation of the singular value

decomposition (SVD) which is a useful tool when solving the egomotion estimation

problem. The major contribution of this thesis is a detailed mathematical explanation

of how to obtain the orthogonal complement using the singular value decomposition,

and how to subsequently implement a routine that will find the orthogonal comple

ment of the column spl:).ce of a matrix. From the beginning of this research, it has

been the author's goal to determine whether or not controlling an unstable 6 degree

of-freedom ROY is possible when using vision as the sole sensor. Utilizing egomotion

estimation to accurately determine the pose of a UAV is uncommon, and the author

hopes that both his current and future contributions to this area will be of use to

others. Finally, a somewhat unique method of simulation was used for the controller,

2

and this has been documented.

1.2 Previous work

Heeger and Jepson's [2] seminal pap.er on recovering 3D motion and depth from an

optical flow field of an arbitrary scene is the basis of this thesis, yet it is but one

of many contributions to the extensive body of literature that exists on the topic of

rigid motion estimation.

The method in [2] can be defined as a "linear subspace method" , in that the

candidate solution space for the translation direction is a constrained 2d space. It

makes use of the orthogonal complement to obtain n- 6 linear constraints and solving

for the translation direction independently of rotation and depth. Before [2], Bruss

and Horn made use of the same algebraic constraint, but instead of iterating over

the entire solution space, they utilized a least squares approach to minimize the

difference between the measured optical flow and an ideal flow field for the extracted

translational, rotational and depth information [3]. A nonlinear equation solver like

gradient-descent or Newton's method was utilized to obtain a motion estimate. Lil<e

[3], the egomotion algorithm out lined by Tomasi and Shi in [4] also made use of a

nonlinear equation solver. Instead of measuring how features move, as most methods

proposed in the literature typically do, it measured how the image deforms over time.

By monitoring how the angle a formed by pairs of projection rays changes over time

(the derivative of a is called the image deformation), they constructed n bilinear

constraints (like Bruss and Horn did in [3]) to solve for the translation direction

[5]. They used the same input data (point-to-point correspondences) as t he other

3

algorithms, but merely interpreted the data differently by not constructing an optical

flow field.

Heeger and Jepson's method was initially chosen due to its iterative nature. Al

though it may yield incorrect results at times, it will not get stuck in local minima.

This is due to the fact that the algorithm iterates over a a constrained 2d solution

space, as is explained in more detail in section 3.1. Its formulation is also much easier

to comprehend for those unfamiliar with Lhe nonlinear solvers utilized by most other

egomotion methods.

Egomotion estimation is used to extract the translation direction and the rotation

of a body based on how features of interest move in successive frames of video from

a mounted camera in a static environment. Static is emphasized here because the

presence of undetected and unexpected entities will result in inconsistencies in the

image flow field. One must generate the optical flow field using one of the many

algorithms to generate such a field from which one will extract the rigid motion from

frame- to-frame.

Optical flow algori thms can be divided into three different types of approaches:

discrete, differential and continuous [3]. Lucas and Kanade's approach to generating

optical flow fields is discrete in the sense that it attempts to find matching brightness

patterns at a selection of points in an image sequence; that is, it generates a sparse

field by utilizing a subset of the available pixels in an image. It is the chosen method

for this thesis, but many other methods have been proposed. Horn and Schunck's

derivative-based method, for example, introduced a constraint of smoothness to solve

the aperture problem [6], an issue that is described in section 2.3. It finds the flow

for the image pair using spatiotemporal derivatives [7]. Block-based matching would

4

be an example of a continuous method because it generates a flow vector for every

pixel in the image based on how image pairs align .

5

Chapter 2

Vision System

The egomotion estimation algorithm was written in C++ and the OpenCV library was

used extensively. OpenCV has excellent methods for both matrix and image manipu

lation , and also includes methods for feature extraction and opt ical flow calculation.

All work was completed in Linux, and the source was compiled using g++. Manalois

Lourakis' implementation of the Levenberg-Marquardt nonlinear least squares min

imization algorithm [8] was utilized extensively, as was David Stavens' optical flow

source code [9] . A Canon Powershot A 75 was utilized to obtain both video and image

pairs.

The process of finding the egomotion of two successive n·ames requires one to first

find the optical flow, and then use the flow vectors to find t he t ranslation and rotation

parameters of the camera based on the orientation of the flow vectors. To find the

optical flow between two successive images, one must first extract the strong features

from the first image, and then find the positions of these features in the second frame.

What exactly is meant by strong features is explained in section 2.2. After the optical

6

flow has been found, the flow field can be used to find an egomotion estimate.

An vital operation in finding optical flow is the image derivative. This will be

covered before feature extraction and optical flow calculation.

(a) Image A.

(b) Image B.

Figure 2.1: Two consecutive frames of t he author's desk in the INCA lab.

7

2 .1 Image brightness derivative

It is a bit strange to speak of the brightness derivative of a pixel value p;, but a

digital image is merely a discrete representation of a continuous image. With this

in mind, one must acknowledge tha.t all pixel derivatives are approximations. The

spatial derivative of a digitized image is one of the most important operations in image

processing [10], and as a result some good estimation kernels have been developed.

The basic derivative filters are

Unfortunately, high signal noise will be in the resultant image when we apply these

filters, so normally convolution with one of these kernels will be coupled with some

sort of smoothing filter. In this case, the Sobel operator will be used [10]

1

[hx]
1

[1 - 1]) - 2 0 4

1

1

[hy]
1

. [1 1] . = - 0 2 4

- 1

Each filter takes the derivative in one direction and proceeds to smooth in the or-

thogonal direction.

8

2.2 Feature selection

Two common ways of obtaining an estimation of the optical flow for an image include

• calculating the flow for each individ4al pixel, and

• calculating the flow for good features

The latter of which will be the method used in this paper. Basically, a good feature

is normally a corner in an image, or some small area where there is a great deal of

contrast in two directions. Recognizing such an area is easy visually, but it is a little

harder mathematically. Each pixel Pi in the image is iterated over, and the spatial

gradient matrix G is obtained

where W is a square window (normally of size 3 x 3) with Pi at the center [11]. I,.

and Iv are the horizontal and vertical derivatives of Pi, respectively. Let A1 and A2 be

the eigenvalues of G, Pi is considered a candidate feature if

where At is some predefined threshold. Following this calculation, it is ensured that

the distance between all of the candidate features are a sufficient distance d apart

from one another. The strongest corners are considered first and those corners that

are within d are pruned.

The strong features from image A can be seen in figure 2.2. Note the pixels that

are selected as strong features. For the most part, they have some sort of dynamic

contrast surrounding them.

9

Figure 2.2: Strong features are extracted from Image A and highlighted.

2.3 The aperture problem

The aperture problem simply states that the motion of a homogeneous contour is

locally ambiguous [12]. A motion sensor has a finite view of its surroundings, and if

such a contour occupies its entire image plane, different physical motions are indis-

tinguishable from one another. For example, a set of parallel lines "moving from left

to right will produce the same spatiotemporal structure as a set of lines moving from

top to bottom". Figure 2.3 better illustrates this phenomenon.

2.4 Finding the optical flow

A flow vector must be generated for each of the strong features identified in an image.

Define p = [Px Py] t as a pixel coordinate with A(p) and B(p) being defined as the

greyscale values of images A and B at point p, respectively.

Given an image point u = [ux tty] ton A, for a location v on the second image

10

(a) (b)

~

•
~

(c)

Figure 2.3: No matter how the aperture is moved, the perceived motion always rc-

mains indistinguishable. In 2.3(b), the aperture is moved to the right, while in 2.3(c)

it is moved to the left.

such that

v u+d

= I Ux + d x j
1 l uy+dy

d is referred to as the "image velocity" or optical flow at u .

Finding dis normally accomplished by minimizing the error over a window w, as

opposed to a single point (due to the aforementioned aperture problem). The residual

is defined as [13]

Ux+wx uy+wy

E(d) = E(dx, dy) = L L (A(x, y) - B(x + dx, y + dy)) 2

In other words, the best residual comes from the values of dx and dy that minimize

the difference between A and B's pixels in window w. A(u) is assumed be almost

equal to B(v).

The Bow field between figures 2.l (a) and 2. l (b) is displayed in figure 2.4. There are

a couple of outliers, as is often the case, but the field correctly indicates a translational

11

--

(left point ing arrows) difference between images A and B. For a more robust system,

one must implement some statistical methods to eliminate these inaccuracies, as seen

in [11]. This will be necessary, as can be seen with the supposed vertical motion

that the flow vectors indicate (image B was taken following a pure translation of the

camera after A was taken) .

Now that the flow field has been obtained, it is possible (using some assumptions

on image geometry) to extract the t hree dimensional motion of the camera between

successive images.

Figure 2.4: The opt ical flow field induced between image A and image B.

12

Chapter 3

Motion Estimation

3.1 Translation estimation

Once a field of flow vectors has been obtained, one can make an estimate of the 3d

motion that the camera has undergone between two successive frames. At least six

accurate flow vectors must be sampled from an image pair to solve for 3d motion,

as proved in [14] . Multiple point correspondences are needed to uniquely determine

rigid motion, as the x, y and z components of both the rotation and t he translation,

as well as the relative depth, must be solved for. If the samples are noisy, it will be

necessary to use more flow vectors.

When est imating egomotion, one is given m 2d flow vectors ui and their respective

positions xi in the image. The fundamental equation in egomotion estimation relates

[

X1 l a 2d flow vector u at position x = x

2

to its rigid 3d motion

u(x) = d(x)A(x)t + B(x)w, (3.1)

13

where

The goal is to find the 3d motion parameters t = [t1, t2, t3f and w = [wt, w2, w3f, as

well as the depth vector d containing the depth d(xi) at each point xi from the input

data.

Say t hat m points are sampled from strong features in the image pair. The m 2d

flow vectors can be "stacked" o'n top of one another to form a new 2m vector of the

form

Then an equation can be written in the following way [2]

u A(t)p + Bw (3.2)

C(t)q, (3.3)

where

A(xt, Yt)t 0

A(t)

0 A(xn, Yn)t

B(xt, Yt)

B

B (xn, Yn)

14

and

q = [WI . W2 W3 PI · · · Pm] T '

where PI, . .. , Pm are the inverse depths of the m aforementioned points xi. In other

words, Pi= 1/d(x;) . Then C(t) can be written as

C(t) = A(t) B (3.4)

Notice that A(t) and B only rely on the positions of the flow vectors and the

translation vector t, where t can be any vector on the unit sphere. It is recommended

by [2] to precalculate A(t) and B for every possible t at every image position. Then

when the algorithm is running, it is only a matter of looking up the results of an

otherwise extremely time-consuming operation.

The t ranslation vector can be thought of as any vector on the unit sphere. Iterating

over the candidate space is easy when spherical coordinates are used. By using

-180 2: f) ::; 180 and 0 2: ¢ ::; 180 and p = 1, all whole-numbered vectors are

represented. The conversion to Cartesian is as follows:

t1 psin¢cosfJ,

t2 p sin¢ sine'

t3 pcos¢.

Since p = 1, the solution space of the recovered translation is actually 2d, as

can be seen in figure 3.1, which is a plot of the residual surface of t he transla

tion direction between images 3.2(a) and 3.2(b), the minimum of which was t =

15

[0.918465 0.139034 0.370258]. As an aside, the recovered rotation was w

[0.007685727 -0.09866409 0.05950551] , in radians.

The residual function, E(t), is defined over the the entire candidate translation

space

E(t,q) = llu - C(t)qjj2
. (3.5)

Equation 3.3 states that the optical flow at n points equals C(t)q, so it makes sense

that the (t,q) pair result ing in the smallest least squares estimate in equation 3.5

would be the best prediction of the translation, rotation and depth.

As shown in the appendix of [2], it is possible to reduce equation 3.5

(3.6)

and solve first for only t . The candidate t that minimizes the residual will also yield

a minimal residual value in equation 3.6 as in equation 3.5. Thus, t can then be used

to solve for q. Calculation of Cl., the orthogonal complement, is covered next.

3 .1.1 Calculating Cj_

Any m x n matrix A can be written as [15]

(3.7)

16 .

(/)
Q)

cu
c
"2
0
0
()

""iil
(.)

-~
.c
Q.

(f)

c
c
0

~
~
0
c
0

~
en
c
~
1-
0
Q)
(.)
ctl
't:
~
(/)

""iil
~
-o .iii
Q)

0:

Figme 3.1: A plot of the residual surface of the translation direction incurred between

the capturing of figures 3.2(a) and 3.2(b). The solution space can be expressed in 2d

using spherical coordinates.

17

(a) (b)

Figure 3.2: 3.2(b) was taken after 3.2(a) and a substantial camera translation was

incurred . The flow field is fairly noisy and results in residual values which are quite

large on the residual surface.

using singular value decomposition (SVD) where the following orthogonal matrices

exist

u = [J
E JRmxm

Ul, ... , Um '

v [J
E JRnxn

VJ, ... , Vn >

and 2:1 E IRmxn with the form

O'J 0 0

and 0'1 2: 0'2 2: ... 2: O'p 2: 0 where p is the lesser of m and n .

Let t he rank of A = r . This is also the rank of A1 A and exactly the number of

nonzero eigenvalues in E [15]. Define

18

(a) Computer-generated image A. (b) Computer-generated image B.

(c) The resultant flow field of images A and B

overlayed on A.

Figure 3.3: Two computer-generated frames that are often seen in egomotion esti

mation literature. The translation direct ion incurred by the camera between the two

"captures" is precisely along the z-axis.

19

and

as the set of eigenvectors associated with the nonzero and zero eigenvalues in 2::,

respectively. Using this notation, it may be easier to think of L: as

where 2::1 = diag(a1 , a2 , .. . , ar) and t he zero vectors fill L: such that its dimensions are

m x n.

Now, from equation 3.7

mul tiply both sides by V

Since V is orthogonal, it follows that

AV ~ UL:,

furthermore

Hence

for j = 1, .. . , r . The resulting vector formed from Avi is of the same dimension as uj,

so 1tj = Avi multiplied by some scaling factor (1/ai) for j = 1, ... , r. It then makes

20

sense to split U into [U1 , U2] where

Avj = Ouj, for j = r + 1, r + 2, ... , m

So

Avj = 0, for j = r + 1, r + 2, ... , m

U is, by definition, an orthogonal matrix [15] . As shown by [16], the first r columns

of U form an orthonormal basis for the column space of A , the matrix that we are

decomposing. Since U is an orthogonal matrix, each of its remaining m - r column

vectors (U2) are also orthogonal both every vector in U1 and every other vector in U2 .

U2 therefore has m - T COlumn vectors, and it indeed forms a basis for the }eft null

space of A [16], aka: the orthogonal complement of the column space of A.

The orthogonal complement is [ur+l> .. . , um]·

3.2 Rotation estimat ion

Once the translation t between the two frames has been found , obtaining the rotation

w is a much less complicated ordeal. It can be calculated by solving the linear least

squares problem as described by Zhang and Tomasi [17], where vectors are stacked

in the same fashion as they were in the translation estimator.

. 1 """' wk = argmm- L....t 1/Tk(x)(u(x)- B(x)w) ll2 ,

w m {X}
(3.8)

21

where { x} is the set the m flow vectors' positions and T is a unit-norm vector that is

orthogonal to

e=
A(x)t

IIA(x)tll.

Solving equation 3.8 using the Levenberg-Marquardt nonlinear least squares algorithm

(as seen in section 3.3.2) will yield an estimate of w.

3.3 Realtime motion estimation

The previously described algorithm was first tested on a pair of computer-generated

images, as seen in figures 3.3(a) and 3.3(b). Between them, the virtual camera per

formed a translation along the positive z,axis. In other words, t = [0 0 1] T

precisely, with a rotation of zero in all three axes. Using the previously described im-

plementation of Jepson and Heeger's egomotion estimation algorithm, the estimated

translation from the flow field in figure 3.3(c) was i = [0.00639774 0.0257688 0.999647] T

While the algorithm itself was sound, it took well over a minute to process the trans-

lation direction alone between the two images in the pair. This is often the case with

egomotion algorithms, and herein lies the crux of this thesis: to use vision as the

primary system for the control of a UAV. In order to control a UAV successfully,

estimates must be obtained at a much faster rate. Since the helicopter utilized in

this thesis is controllable (with difficulty) by an operator, updates must arrive at a

rate of approximately lOH z (human reaction time) . This is especially true for ro-

tary vehicles, as they are inherently less stable than their fixed-wing counterparts.

Thus, various optimizations were needed to drastically improve the performance of

the motion estimation.

22

Initially, it was suspected that it would be possible to make egomotion estimates

at a rate of about 3-4 frames per second using Heeger and Jepson's met hod [2].

However, it was found that a translation estimate between a pair of frames was taking

upwards of a minute, even on the aforementioned Xeon system. Upon completion

of the implementation. Obviously, this was not sufficient. Furthermore, when the

camera induces a large displacement between frames, even when pyramidal Lucas

Kanade optical flow estimation with a very low error tolerance and a large number

of iterations, optical flow estimation breaks down due to a large number of false

positives. Thus, the faster the motion of the body, the more frequent estimates must

be completed.

One technique used was to decrease the number of features utilized in the flow field.

In [9], 400 features are used. For operation in realtime, 50 features were utilized in

finding frame-to-frame correspondences. This means that the orthogonal complement

can be found much more quickly than before; the singular value decomposition of a

smaller set of vectors is less taxing in terms of memory usage and CPU cycles. The

found features with the smallest error in the scene were utilized , so little was lost in

terms of accuracy when recovering the rigid motion.

3 .3 .1 Realtime translation estimation

In [2], it is stated that t he candidate translation space is the unit sphere, but that

only half the unit sphere needs to be considered since the solutions on the front and

back halves are identicaL Furthermpre, the solut ion space is small , so the residual

function can be evaluated "using a practical amount of memory and compute time"

23

[2]. Unfortunately, even using only the front half of the unit sphere it was found

that calculation of the translation direction in less than a second was still impossible.

The solution space was 3600 different unit vectors, and even increasing ¢ and 8 by

a factor of 2 when iterating over t he candidate solution space (thus reducing the

solution space by a factor of four) still took too long. However, it was noticed during

the evaluation of residuals over the unit hemisphere that the "correct" estimate often

differed from the next-best estimate by approximately 0.0001. Thus, by setting the

stopping error (IIEW) to 0.0001 in the Levenberg-Marquardt solver, good predictions

of the translation direction became obtainable in on the order of tens of seconds with

the unconstrained solver.

In further attempts to speed up the results, a heuristic method was created by

the author. Given that the camera is attached to a body that is governed by some

equations of motion, one can make certain assumptions on the nature of motion. Since

it is necessary to obtain an estimate of optical flow from nearly every consecutive pair

of frames, limits may be put on rate at which the translation may vary between frames.

T is defined as the initial estimate of the translation direction of the camera. This

estimate is used only for finding the tran~lation direction when evaluating the first
\

two frames of the video stream. After this, the recovered T from the previous flow

field becomes the new T.

A patch surrounding the vector on the unit sphere is iterated over for each T. The

candidate vector, T, is converted to spherical coordinates, thus obtaining a vector of

the form T,ph = [1 ¢ e] (since p = 1), and the solution space is all vectors

such that 8 - 10 < ei ::; 8 + 10 and ¢ - 10 ::; ¢i ::; ¢ + 10. This method was

abandoned after it was revealed that the update rate was still insufficient for online

24

estimation. Furthermore, if a number of consecutive poor estimates were made on

the translation direction, the algorithm would drift out of the correct solution space

and would continue to deliver poor estimates for some time, even if the predictions

were utilizing good flow fields!

Substantial effort was put into using a nonlinear least squares solver to obtain

a realtime solution. Manolis Lourakis' C/C++ implementation of the Levenberg

Marquardt algorithm [8] was utilized. Out of the box, the library took multiple

seconds to obtain a translation estimate (as mentioned above), so box constraints

were placed on the nonlinear solver as follows

- 1.0 :S Tx :S 1.0,

- 1.0 ::; Ty :S 1.0,

- 1. 0 :S Tz :S 1. 0.

3 .3 .2 Levenberg-Marquardt method

(3 .9)

(3 .10)

(3 .11)

Levenberg-Marquardt is a technique that finds the minimum of a multivariate function

in an iterative fashion. Given a function j , the method tries to find a pru·ameter

vector p that minimizes the difference between the estimated measurement vector x

and input x, the measured vector. More specifically,

(3.12)

Aside from the measured vector, the algorithm also requires an init ial guess as

input, p0 . The best possible guess, p+, minimizes the squared distance r.TE, where

E=x-x

25

For a small step size (jjbpll),

(3.13)

where J is the Jacobian matrix of f. At each step, the algorithm tries to find the Op

that minimizes llx- f (p + bp)ll, which is approximately equal to llx- f(p)- Jbpll =

liE- Jopll · The minimum is attained when J6P- E is orthogonal to the column space

of J

(3 .14)

which leads to

(3.15)

In 3.15, JT J is an approximation of the Hessian. The Levenberg-Marquardt method

usually makes a slight modification of this matrix

(3 .16)

where the off-diagonal elements of N are equal to the corresponding elements in JT J,

but the elements on the diagonal are such that

(3 .17)

where f.l > 0 is a damping term.

3 .3 .3 Coordinate transformation

Since the camera is the sensor upon which the control laws are based, it is necessary

that the positional estimates it gives are in the same space as the Draganflyer. In this

26

configuration, it is possible to simply relabel the a.,xes to transform the camera's coer-

dinate system to that of the Draganfiyer. Prior to (and possibly following) the writing

of this thesis, the camera's position was (will be) such that merely relabeling the axes

was (is) impossible. For such situations, the following coordinate transformation is

very relevant.

z

y X z

X ~z
y

~
X

y

(a) Camera (b) Inter- (c) Draganflyer

mediate

Figure 3.4: Coordinate system 3.4(a) must be converted to 3.4(c).

The conversion from the camera system to the Draganfiyer system is a two step

process. First, a -90° rotation about the x-axis will result in the coordinate system

seen in figure 3.4(b), followed by a rotation -90° rotation about the z-a.:x:is in the new

system. This will yield the Draganflycr coordinate system as seen in 3.4(c) .

The sign of t he rotation direction about the axis is determined using the right

hand rule. Simply point your right thumb along the axis in question in the positive

direction , and curl your fingers. The direction in which the fingers curl in the direction

of positive rotation.

Say one wishes to transform a vector in 3D space, and thus has a vector of the

form x = [x 1 x2 x
3

] t The dimension of the vector is extended and given a value

27

of 1 (thus becoming of the form x = [x 1 x2 x 3 1 J \ and then is multiplied by

the appropriate rotation matrices:

1 0 0 0

0 cosBx -sin Bx 0
(3. 18)

0 sinBx cosBx 0

0 0 0 1

cos By 0 sin By 0

0 1 0 0
(3 .19)

-sin By 0 cos By 0

0 0 0 1

cos Bz -sin Bz 0 0

sinB2 cos ez 0 0
(3 .20)

0 0 1 0

0 0 0 1

So, any t ranslation or rotation vectbr that we obtain from the camera will have to be
I

manipulated in the following way ~

where Bx = 90° and Bz = -90°. The new vector, x, may now be utilized in the PD

controller seen section 4.2.1.

28

Chapter 4

Quadrotor Model and Cont rol

The Draganflyer 's mot ions are normally manipulated using a Futaba 4-channel remote

controller by a human. To obtain autonomous flight the same cont roller is used, but

it is connected to a PC via a P CBuddy cable, which essent ially converts RS232

commands to PWM (pulse width modulated) signals allowing for wireless control of

the aircraft. The egomotion algorit hm supplies the yaw(¢) , pitch(7/;) and roll (B) to

the PD controllers.

4 .1 Draganflyer dynamics

'
Two of the rotor::? of the Draganflyer rotate clockwise, while two rotate counter-

clockwise. Adjacent rotors spin in opposite directions, as can be seen by the t hin

arrows in figure 4.1. The logic behind controlling the Draganflyer is fairly simple.

By modifying the individual motors' speeds, the helicopter can be maneuvered in

both directions along the x , y and z axes. Note in figure 4.1 that the z-axis is

in the upwards/downwards direction, a common coordinat e system used in robotics

29

F2

Figure 4.1: A sketch of the Draganflyer. The thin arrows indicate the direction in

which the corresponding rotors move, while the thick reel arrows indicate the forces.

literature. To increase the height of the Draganfl.yer, increase the speeds of all four

rotors simultaneously. Utilizing the notation introduced in figure 4.1, this means

increasing F1 , F2 , F3 and F4 . Motion along the positive x-axis can be obtained by

increasing the speeds of rotors 3 and 4, and decreasing the speeds of rotors 1 and 2.

When thought of visually, this will result in a rotation about the y-axis, increasing

the altitudes of rotors 3 and 4 and decreasing the altitudes of rotors 1 and 2. Once

the desired tilt (the degree of rotation about the y-axi) has been reached, the four

rotors will return to equal speeds, and the thrust of the angled body will propel it

along the x-axis.

The same can be said for motion along the positive y-axis, except that the speeds

of rotors 2 and 3 will be decreased while the speeds of rotors 1 and 4 will be increased.

The altitudes of rotors 1 and 4 increase, the altitudes of rotors 2 and 3 decrease, and

30

F2

F4

Figure 4.2: 3D quadrotor model, as adapted from [1] . Note that the x andy-axes are

not parallel to the rods that make up the frame, as seen in 4.1. In fact , the axes are

perpendicular to them.

t he body then rotates about the x-axis. Once the desired tilt (about the x-axis) has

been reached, the four rotors should return to equal speeds, and the quadrotor will

move along the positive y-axis. For both the x and y axes, motion in the negative

direction can be obtained by instead increasing the speeds of the motors that were

decreased, and decreasing t he speeds of the motors that were previously increased.

A clockwise motion about the z-axis can be obtained by increasing t he speeds

of rotors 2 and 4. This will produce a moment larger than the opposing moment

created by rotors 1 and 3 in t he opposite direction . A counter-clockwise motion can

be obtained by increasing the speeds· of rotors 2 and 4 instead.

The four inputs to the system will be defined with the previous st atements in

31

mind. Table 4.1 gives both descriptions and values for the constants used in defining

the inputs and the system equations, as seen in [18]. Note that the inputs are in

different units. u1 represents the total thrust on the body along the z-axis, while u2

and u 3 are pitch and roll inputs and u4 is the yawing moment [1].

Table 4.1: Draganflyer model parameters

Parameter Description Value Units

g gravity 9.81 mjs2

m vehicle mass 0.468 kg

Jl roll inertia 4.9 X 10- 3 kg· m 2

]2 pitch inertia 4.9 X 10- 3 kg· m 2

J3 yaw inertia 8.8 X 10-3 kg· m 2

l center to blade length 0.225 m

From [1],

• Ut = (F1 + F2 + F3 + F4)jm

to increase the lift, increase the thrust of all four rotors equally .

• U2 = (-Fl - F2 + F3 + F4)/J1

to translate along the positive x-axis, increase thrusts of rotors 1 and 4 equally

[19].

• U3 = (- Fl + F2 + F3 - F4) I J 2

to translate along the positive y-axis, increase thrusts of rotors 3 and 4 equally.

32

• U4 = C (F1 - F2 + F3 - F4) / J3

to perform a clockwise rotation about z, increase thrusts of 1 and 3 to overcome

the moment created by 2 and 4. C is the force-to-moment scaling factor, valued

at 1.3 through experimental analysis in [20].

Finally, the model for the quadrotor used in the simulations is defined as

i = u 1(cos¢ sinBcos1f;+sin¢sin 'ljl)

y = u 1 (sin¢ sin B cos 1/J- cos¢ sin 'l/1)

i = u 1 (cos B cos 'l/1) - g

B = u2l

'l/1 = u3l

¢ = tl4

4 .2 PD control theory

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

A PD controller is a form of a proportional, integral, derivative (PID) controller,

where each of these elements are used to control a plant. These elements take the

feedback from the plant and the system command signal, and use them to produce

the system output [21].

The derivations of the PD controllers that follow in section 4.2.1 are quite theo

retical in nature, and are essentially the same as the controller found in [1]. While

both [1] and [20] both do an excellent job deriving the controller, they give little to

no implementation details.

On the other hand, [21] offers a very good tutorial on how to implement a PD

33

controller inC, as well as how to estimate quantities like ~. ¢, Band i . Much of the

code written for controlling the Draganfiyer was based on it. Controls for the yaw(¢),

pitch(B), roll(1/l) and height(z) are derived in [1] by linearizing about hovering mode

(ie: e = ¢ = 0, u1 = 1) . Indeed the controller that was implemented by the author

was designed for the sole purpose of getting the quadrotor to hover. The purpose of

this thesis from the outset was to demonstrate that optical flow is accurate enough

to be used as the primary sensor for controlling an inherently unstable vehicle, not to

implement a full-blown control system responsible for the navigation of a quadrotor.

4 .2 .1 P D controller

From the 'fj term in equation 4.1, if e, and¢ are set to 0 and u 1 is set to 1, one obtains

Note tha t Yd and Yd are both zero, so

(4.7)

By negating the arcsin of both sides of equation 4.7, we get

(4.8)

where 1/Jd is the desired tilt angle. If the derivative of equation 4.8 is taken,

.i. KviJI<d'fj
~d= , J1 -K~y2 - 2I<vKdyiJ- KJy2

(4.9)

an expression for the desired tilt angle velocity is obtained.

The motion along the y-axis can be controlled by using a PD controller for input

u3 , which as indicated in 4.1 equals -F1 + F2 + F3 - F4. By decreasing the thrust

34

of two adjacent rotors, the helicopter rotates around the axis upon which they both

lie (F1 and F4 share the x-axis). The helicopter will then translate in the direction

of the downward tilt (along the y-axis) once the desired tilt has been acquired and

(approximately) equal thrust has been restored among all rotors. To obtain the

desired tilt, u3 is controlled via a PD controller

(4.10)

using the aforementioned definitions of 'l/Jd and 1/;d .

In t he same way, one can design a controller for motion along the x-axis. This

time u2 will be modified by decreasing F1 and F2 , resulting in rotors 1 and 2 tilting

downward until the desired ed has been achieved, at which point (approximately)

equal thrust will be returned to all rotors and the helicopter will translate in the

direction of the downward tilt of rotors 1 and 2 (along the x-axis) . If one assigns

¢ = 1{; = 0 and u1 = 1,

(4.11)

Now, to control x using a PD controller, [1] asserts

(4.12)

By equating the right-hand sides of equations 4.11 and 4.12

(4.13)

35

where

arcsin (- Kpx - Kdx),

]{pi +]{ /i

(4.14)

(4.15)

Yawing motion is much less complicated , as rotation about ¢ does not result in a

translation along any axis. Thus, ¢d and ¢d can be defined arbitrarily, either by the

operator or some intelligent system that is operating at a higher level than the PD

controller . In [1], the following is given

(4.16)

36

Chapter 5

Simulation Results

5.1 Egomotion simulations

In the previous sections, egomotion estimates were performed on various image pairs

and video sequences. Determining the degree of accuracy was difficult for two reasons:

• The focal length of the (Canon A 75) camera used in egomotion estimation

calculations is an approximation.

• It is extremely difficult to generate highly accurate image sequences due to

factors like unleveled tables and the lack of a turret for controlling rotation

accurately to multiple decimal places.

Conversely, computer-generated images make this task much easier:

• The exact focal length of the "camera" is known (defaults to 1).

• Sequences in which the camera-induced motion is known can be generated with

ease.

37

Povray (shorthand for Persistence of Vision Ray-Tracer) renders 3d scenes with

a technique called raytracing [22]. As input, Povray reads a text file containing

information on the camera, objects and lighting that are contained in a scene. It was

utilized to generate various image sequences and test how precisely the egomotion

of the camera could be extracted. Computer-generated imagery proved extremely

useful when creating image sequences containing combined motions that would have

been quite difficult to perform by hand. Generating a pure translation along the

x-axis, for example, is a fairly easy task. Generating an accurate sequence when the

camera is translating along the z-axis while rotating precisely 2° is quite another story

though. Figures 5.l(a), 5.l(b), 5.2(a) and 5.2(b) were all generated with Povray, and

the egomotion estimates from the generated flow fields can be seen in table 5.1.

5. 2 Combined vision and controller sin1.ulations

Sample C(++) code exists for interfacing a PC with a remote controller via the

PCBuddy and a plethora of information is available for designing PID controllers in

said language(s) . C++ was chosen for the controller based on this, but also because

of its great performance.

It is often the case that when one is implementing a controller for a system,

he/she designs both a model and a corresponding controller in Matlab to test the

general performance of the gains, and then writes the actual controller in C or some

other language. In this case, the model was coded in Matlab, but the controller

was not. Instead, it was written in C++ and a two-way communication channel

was implemented between t he two (each ran on a separate machine). During the

38

simulations, the model would send a message containing the¢, 1/J and B as well as the

x, y and z displacements, and the controller would send back the ontrol inputs (u1 ,

u2 , 1£3 and u4). Each time the model received a control update, it plugged the inputs

into the ode4 5 solver along with the system model for 0.2 seconds, and returned the

resultant rotational and translational displacements to the controller. These can be

seen in the graphs at the end of the chapter. The ode45 solver integrates a system of

differential equations over a user- defined timespan [23] . A function written by the

user contains the equations, and the handle of this function is passed as an argument

to the solver. Matlab solves the system numerically.

After running simulations on both the vision and control algorithms separately,

the image sequences in figures S.l(b), 5.2(a) and 5.2(b) were inputted into the full

blown implementation, where

o the optical flow field was generated from point-to-point correspondences,

• the estimate for the translation direction was made from the flow field,

• the estimate for the rotation was made from the recovered translation direction

and the flow field,

• coordinate transformations (as described in section 3.3.3) were performed on

the translation direction and rotation to convert them to the draganflyer frame

from the camera frame, and

• the transformed rotation values were then passed as input to their respective

PD controllers.

39

The resultant output of the PD controllers can be seen in Table 5.2. A rotation of

2° about the z-axis in the camera frame is a 2° (pitching) rotation about the x-axis in

the Draganflyer frame. Thus, when the camera rotates about z-axis in figures 5.l(b)

and 5.2(b) it makes sense that u2 is the largest in magnitude.

40

(a) Translation on the negative z-axis with zero rota

t ion.

(b) Rotation of 3 degrees about the z-axis in the posi

tive direction with no translational component.

Figure 5.1: Estimating the egomotion of a simulated camera in a sparse Povray scene.

5.1(a) contains only translation, while 5. 1(b) contains only rotation.

41

(a) Translation along positive z-axis with positive ro

tation about the x-axis of 2 degrees.

(b) Translation along positive x-axis with positive ro

tation about z-axis of 2 degrees.

Figure 5.2: Again estimating the egomotion of a simulated camera, but this time on

scenes with both translational and rotational components.

42

flow diagram actual t estimated t actual w estimated w

0 0.0642482 0 -0.002583029

5.1(a) 0 0.197736 0 0.02339799

1 0.978148 0 0.001033989
-

,.

0 0.002519399

5.1(b) n/a n/a 0 0.01115045

0.052333333 0.03215757

0 0.431632 0.03490658 0.0266253

5.2(a) 0 -0.371138 0 0.0168376

1 0.822162 0 0.0180777

1 0.838671 0 0.02211699

5.2(b) 0 -0.544639 0 0.03040064

0 0 0.05233333 0.08450596

Table 5.1 : P redictions of motion in computer-generated image pairs.

43

displacement of draganflyer on x-axis with PD controller

0.35 ,....----.----,----,-----.-----.-------.------,

0.3

K
"' ·;;:
~ 0.25
Ol
c:
.2
"' c
Q)

E

~
Ci
.!!I
"0

K
"' ·;;:

"' ;..,
Ol
c:
0
'iti
c
Q)

E
2l
"' Ci
"' '6

0.2

0.15

0. 1 ~---~---~---~---~---~---~---~

0 2 6 8 10 12 14

time elapsed (s)

Figure 5.3: Effect of closed-loop control on displacement along the x-axis.

displacement of draganflyer on y-axis with PD controller

0.2

0.15

0.1

0.05

0

-o.os

-0.1

-0.15

-0.2
0 2 4 6 8 10 12 14

bme elapsed (s)

Figure 5.4: Effect of closed-loop control on displacement along the y-axis.

44

displacement of draganf!Yer on z-axis with PD controller

6

5.5

5

:[
"' ' ;:(4.5
"' N
0>
c:
9 4 "' c
Q)

E
1l 3.5
"' '1i
.!!1
'0

3

2.5

2
0 2 4 6 8 10 12 14

time elapsed (s)

Figure 5.5: Effect of closed-loop control on displacement along the z-axis.

1.8

1.4

1.2

~ .e o.8
c:
0>

"' E

0.4

0.2

tilt of draganflyer with PD controller

time elapsed (s)

Figure 5.6: Effect of closed-loop control on '1/J rotation.

45

tilt of draganflyer with PO controller

Sr-------.-------.-------.--------.-------.-------.-------,

·!··· - ...

.,
3 .,

!!!
0>
Q)

B
~ a. 2
0 .,
"0
2 ·c:
0> ' "' E

.... ;. ..

0

-1
0 2 4 6 8 10 12 14

lime elapsed (s)

Figure 5. 7: Effect of closed-loop control on ¢ rotation.

yaw of draganflyer with PO controller

1.2 r-------.-------.-------,-------,-------.-------,-------,

.,
"' 0.8 e
0>
Q)

B
21
Q)

= 0.6
0
Q)
"0

~
c
Cl 0.4 ..
E

0.2

0
0 2 4 6 8 10 12 14

time elapsed (s)

Figure 5.8: Effect of closed-loop control on B rotation.

46

figure transformed rotation vector U2 1£3 U4

- 1.84010

5.1(b) - 0.144351 5.52029 0.433053 -0.511099

0.638874

- 1.03578

5.2(a) - 1.52552 3.10733 4.57655 -0.771779

0.964723

-4.84184

5.2(b) - 1.26721 14.5255 3.80163 -1.39346

1.74183

Table 5.2: The outputs of the PD controllers in response to the flow fields. Note

that u1 is not included as it controls positioning on the z-axis, and magnitude of

translation cannot be extracted from an image sequence.

47

Chapter 6

Conclusions

6.1 Findings

The egomotion estimates presented in section 3 are generally of a high degree of

accuracy. This is due, at least in part, to the high-quality flow fields used as input

to the estimator. When the estimator gives suboptimal results, it is normally due to

either excessive outliers in "the flow field, or ambiguous flow fields.

One previously mentioned type of ambiguity is the aperture problem, as explained

in section 2.3. Normally when one speaks of ambiguous flow fields, they are referring

to a flow field where it is indistinguishable whether the perceived motion was induced

by a translation or by a rotation. Motions t hat are parallel to t he image plane (ie:

motions on the x and y-axes), as explained in [24], can cause confusion in the observer

as to whether a rotation or a translation has occurred. In certain circumstances, a

rotation about an axis in the negative direction will appear similar to a translation

along the other axis of the image plane. These ambiguous motions, although not the

48

only ones, can be seen in Table 6.1.

axis of rotation rotation direction axis of translation translation direction

X negative y positive

X positive y negative

y negative X positive

y positive X negative

Table 6.1: Ambiguous motion

The degree of robustness of an estimation is dictated by the size of the field of

view (the larger the better), and the ratio of the magnitude of the translation to the

distance from tracked features (again, the larger the better) [24]. In other words, the

effects of translation are usually inversely proportional to the distance of the camera

from the scene (4]. When a human tries to interpret the camera motion from the flow

field in figure 6.l(a), it is unlikely that he/she will be able to tell that the motion

is the result of a pure rotation, it is more likely that it would be characterized in

the same way as 6.1(b), as a pure translation on the x-axis. Egomotion estimation

algorithms often suffer from the same shortcoming. In fact, the further the camera

from a scene on the image plane of a rotating camera, the more like a translation it

will appear. The exception to this rule is rotation about the z-axis, as seen in figure

6.1. A viewer would easily be able to guess the motion that the camera is undergoing

at the time of the capture. Likewise, estimations of translation along the z-axis tend

to be the best of the three axes.

This problem is further exacerbated by the fact that these ambiguous types of

49

(a) Rotation about the y-axis.

(b) TI-anslation on the x-axis.

Figure 6.1: Two frames from different sequences demonstrating how rotational and

translational motion can be ambiguous.

motions can occur concurrently. For instance, the camera may be translating along

the x-axis while simultaneously rotating about t he negative y-axis. In such a circum

stance, it becomes even more difficult to infer what type of motion is truly causing

t he degree of the displacement. It is clear that the camera is moving the in the posi

tive x direction, but the degree of the magnitude of the flow that may be attributed

is indeed ambiguous. After all, only the translation direction has been obtained, a

unit vector that may represent a translational magnitude that can be anything from

50

Figure 6.2: Rotation about the z-axis.

extremely small to very large.

Likewise, say that the camera has again translated along the positive x-axis, but

it has rotated about the positive y-axis. In the circumstance where the magnitudes of

t he translational flow vectors are similar to those of the rotational flow vectors, it will

appear that there has been nearly no movement. This is contingent on the distances

of the features from the camera lens.

6.2 Final thoughts and future work

The modern INS is both affordable and reliable, and when coupled with a GPS it

makes for a better estimator of 3d motion than one could ever hope for in a camera

based solution. Furthermore, in a single camera-based solution, it is only possible

to extract the direction of translation (a unit vector) , not its magnitude. Depth and

rotation can be obtained, but some other sensor is required if magnitude of translation

is required.

However, that does not mean that the ego-estimation problem is unimportant. If

51

one wishes to determine the distance of an approaching object without resort ing to

radar or some other active sensor, then rigid motion must be solved for in order to

extract depth. Furthermore, vision-based navigation has been a very useful tool in

simultaneous localization and mapping (SLAM). SLAM deals with the problem of

building a map of an unknown environment while navigating the environment with

said map [25].

The implemented estimator presently does very little to prune statist ical outliers.

If a flow vector exceeds the maximal prespecified length, then it is not used in the

3d motion calculations. In order to obtain a more robust solution, there will be

more effort put into using estimates based on prior motion to eliminate outliers. For

example, if a Kalman filter indicates that t he camera should moving in direction t

with a rotation of w, flow vectors that vary from the expected values by more than

a predefined threshold will be pruned . Furthermore, SIFT (Scale-Invariant Feature

Transform) will be used instead of Shi and Tomasi's [26] method for identifying fea-

tmes, as the former is generally unaffected by changes in illumination, rotation and

scale [27] .

In the preceding thesis, all real-world images were captured using a standard 3.2

megapixel camera. It is not so much the quality of the sensor that may have caused

issues so much as the consumer-grade lens. Indeed there is some barrel distortion that

must be corrected for, and in futme a calibrated camera will be used exclusively. It
I

was not realized at the outset how ambiguous optical flow data really can be, and how

subtle changes in the field will completely throw off motion estimates. So not only is

it important to use a better feature tracker for avoiding excessive out liers, it is also

important to have subpixel accuracy of matched features, which was not completed

52

here. Essentially, the implemented estimator gives a fairly good estimation of heading

and rotation at times, but the results can be highly noisy and at t imes even wrong

(due to a lack of convergence in Levenberg-Marquardt) . The problems faced during

experimentation due high levels of inaccuracy were extremely frustrating, as it was

presumed that there was a problem with the estimator . However , the literature

suggests that such is t he nature of optical flow applications. Thus, it would be

interesting to characterize the type of motion and focus on, for example, the motion

of features that are closer to the camera, which will tell more about the nature of

t he motion. Likewise, more weight could be put on certain areas that characterize

translation versus rotation better.

It is a good idea to generate ideal flow fields for a certain type of rigid motion.

Even when working with synthetic images, there are still too many unknowns and

inaccuracies to be sure whether or not an t he translational or rotational estimators

are performing properly. Adding noise gradually and subsequently working wit h

synthetic images makes much more sense.
. ;

Finally, Bruss and Horn's egomotion estimation method will be utilized over

Heeger and Jepson 's. By utilizing a nonlinear equation solver, this paper has es-

sentially emulated the same method, but with n - 6 constraints instead of n. F\.ir-
'

thermore, it is much slower because the SVD has to be performed each time one finds

the orthogonal complement of the column space of a matrix, and also because the

Jacobian has to be approximated. In other words, the implementation will become

much faster and more accurate, the universal metrics toward which all Engineers

work.

53

Bibliography

[1] J.P. Ostrowski E. Altug and Robert Mahony, "Control of a quadrotor helicopter

using visual feedback" , Proceedings of the 2002 IEEE International Conference

on Robotics and Automation, pp. 72- 77, 2002.

[2] D.J. Heeger and A.D. Jepson, "Subspace methods for recovering rigid motion

i: algorithm and implementation", Int. J. Comput. Vision, vol. 7, no. 2, pp.

95- 117, 1992.

[3] A.R. Bruss and B.K.P. Horn, "Passive navigation", Computer Vision, Graphics

and Image Processing, vol. 21, no. 1, pp. 3-20, 1983.

[4] C. Tomasi and J. Shi, "Direction of heading from image deformations", in

CVPR93, 1993, pp. 422- 427.

[5] T. Tian, C. Tomasi, and D. Heeger, "Comparison of approaches to egomotion

computation", 1996.

[6] B.K. Horn and B.G. Schunck, "Determining optical flow", pp. 389- 407, 1992.

[7] S.M. Smith, "Reviews of optic flow, motion segmentation, edge finding and

corner finding", Tech. Rep., Oxford University, 1997.

54

[8] M.I.A. Lourakis, "levmar: Levenberg-marquardt nonlinear least squares algo

rithms in C/C++", [web page] http:/ jwww.ics.forth.gr/ lourakisjlevmar, Jul.

2004, [Accessed on Jul. 24, 2007].

[9] D. Stavens, "Introduction to opencv", [web page]

http:/ jai.stanford.edu/ dstavensjcs223b, Jan. 2005, [Accessed on Jul. 24,

2007].

[10] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Image processing fundamen

tals".

[11] A. Fusiello, E. Trucco, T. Tommasini, and V. Roberto, "Improving feature

tracking with robust statistics", Pattern Analysis and Applications, vol. 2, pp.

312- 320, 1999.

[12] E. C. Hildreth, "Computations underlying the measurement of visual motion",

Artificial Intelligence,·vo!. 23, pp. 309- 354, 1984.

[13] J. Bouguet, "Pyramidal implementation of the Lucas Kanade feature tracker",

2000.

[14] K. Prazdny, "On the information in optical flows.", Computer Vision, Graphics,

and Image Processing, vol. 22, no. 2, pp. 239-259, 1983.

[15] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Press,

Baltimore, MD, USA, second edition, 1989.

[16] J .S. Hourigan and L.V.

Jar value decomposition

Mclndoo,

introduction",

55

"The

[web

singu

page]

http:// online.redwoods.cc.ca. us/instruct/ darnold/laproj /Fall98 / J odLynn /report2. pdf,

Accessed on Nov. 3, 2007.

[17] T. Zhang and C. Tomasi, "Fast, robust, and consistent camera motion estima-

tion.", in CVPR. 1999, pp. 1164- 1170, IEEE Computer Society.

[18] A. Tayebian and S. McGilvray, "Att itude stabilization of a vtol quadrotor air-

craft", IEEE Transactions on Control Systems Technology, vol. 14, pp. 562-571,

2006.

[19] M. Chen and Mihai Huzmezan, "A simulation model and hinf loop shaping

control of a quadrotor unmanned air vehicle.", in Modelling, Simulation, and

Optimization, M. H. Hamza, Ed. 2003, pp. 320-325, lASTED/ ACTA Press.

[20] J .P. Ostrowski E. Altug and C.J. Taylor, "Control of a quadrotor helicopter using

dual camera visual feedback", Int. J. Rob. Res., vol. 24, no. 5, pp. 329- 341, 2005.

[21] T. Wescott, "Pid without a phd", Embedded Systems Programming, October

I

2000, http:/ /www.embedded.com/2000/0010/0010feat3.htm.

[22] Persistence of Vision Pty. Ltd., "Persistence of vision raytracer (version 3.6)",

[software] http: / jwww.povray.org/ download/, 2004, Accessed on Nov. 10, 2007.

[23] "Matlab function reference" , [web page]

http:/ jwww.mathworks.comfaccess/helpdesk/helpftechdocfref/odell3.html,

[Accessed on Nov. 6, 2007].

56

[24] K. Daniilidis and H.-H. Nagel, "The coupling of rotation and translation in

motion est imation of planar surfaces", in it IEEE Conf. on Computer Vision

and Pattern Recognition 1993, New York, NY, June 15-17, 1993, pp. 188- 193.

[25] S. Riisgaard and M.R. Bias, "Slam for dummies: a tutorial to simultaneous lo

calization and mapping", [web page] http:/ jocw.mit.edu/OcwWeb/ Aeronautics

and-Astronautics/16-412JSpring-2005/Projects, 2005, [Accessed on Nov. 3,

2007].

[26] J. Shi and C. Tomasi, "Good features to track", in IEEE Confer·ence on Com

puter Vision and Pattern Recognition (CVPR '94), Seattle, Jun, 1994.

[27] D. Lowe, "Distinctive image features from scale-invariant keypoints", in Inter

national Journal of Computer Vision, 2003, vol. 20, pp. 91- 110.

57

Appendices

58

Appendix A

Egomotion Estimation Code

A .l C amera3DState .cpp

#include <cv.h>

#include 11 Caroera3DState . h 11

/**

* class: Camera3DState

* brief: Responsible for storing the current rotational displacement of

* the camera in 3d space.

*I
Camera3DState::Camera3DState() {

LX= 0.0;

r_y = 0.0;

LZ = 0.0;

}

/**

* A 3x1 opencv matrix is inputted instead for the update

59

10

*I

void Camera3DState::updateRotation(CvMat* R) {

r_x = LX + cvmGet(R, 0, 0);

r_y = LY + cvmGet(R, 1, 0);

r_z = LZ + cvmGet(R, 2, 0);

I**

* It is simply assumed that as long as 7J and info are not null

* that they are indeed of the correct dimensions

* pre: p has 3 elements and info has 6

* post: the per-frame displacements have been added

*I
void Camera3DState::updateRotation(double* p) { II, double* info) {

LX = LX + p[OJ;

r_y = r_y + p(l);

LZ = LZ + p(2);

}

I**

* The cumulative rotation about the x-axis from t=O to the current time

*I
double Camera3DState::getRotationAboutXAxis() {

re turn r_x;

}

I**

* The cttmulative rotation about the y-axis from t=O to the current time

*I

60

20

30

40

double Camera3DState: :getRotationAbout YAxis()

return r_y;

I**
* The cumulative rotation about the z-axis from t=O to the current time

*I
double Camera3DState::getRotationAboutZAxis() {

return r_z;

A.2 CMatrixBuilder .cpp

#include "CMatrixBuilder .h"

50

CMatrixBuilder: :CMatrixBuilder(CvPoint2D32f* FrameOneFeatures, CvPoi nt2D32f* FrameTwoFeatures,

char* FoundFeaturesMap, int NumPoints) {

f = l.0;/1634.0;

frameOneFeatures = FrameOneFeatures;

frameTwoFeatures = FrameTwoFeatures;

foundFeaturesMap = FoundFeaturesMap;

numPoints = NumPoints;

I I calculate the number of found points

inti = 0;

numFeaturesProcessed = 0;

while(i < numPoints) {

if(foundFeaturesMap[i] == 1) {

10

61

numFeaturesProcessed++;

}

i++;

allocateMatrices();

}

CMatrixBuilder::-CMatrixBuilder() {

cv Release Mat(&A_ T) ;

cvReleaseMat(&8);

cvReleaseMat(&C);

}

CvMat* CMatrixBuilder::getC{) {

return C;

}

I*
* Returns the number of rows of C

*I
int CMatrixBuilder::getCRowSize() {

return 2*numFeaturesProcessed;

I*
* Return the number of columns of C

*I
int CMatrixBuilder: :getCColumnSize() {

return numFeaturesProcessed+3;

}

20

30

40

62

void CMatrixBuilder::allocateMatrices() {

}

I I make matrices of the correct dimensions

A_ T = cvCreateMat(2*numFeaturesProcessed, numFeaturesProcessed, CV _32F) ;

B = cvCreateMat(2*numFeaturesProcessed, 3, CV _32F);

C = cvCreateMat(2*numFeaturesProcessed,numFeaturesProcessed+3,CV _32F) ;

IIVt = cvCreateMat(l , 2*numFeaturesProcessed, CV_32F);

I I initialize all elements of A (T) to 0

for(int i= O; i< 2*numFeaturesProcessed; i++) {

for(int j=O; j<numFeaturesProcessed; j++) {

CV_MALELEM(*A_T, float, i, j) = 0;

}

}

void CMatrixBuilder::fil!A_ T (CvMat* T) {

CvPoint2D32f* p1 = frameOneFeatures ;

I I initialize A_T and ~ll of its static elements

CvMat* A_xy = cvCreateMat(i,3, CV_32F);

I*

* changed on May 8th to negative f

*I

CV_MAT_ELEM(*A_xy, floa t, 0, 0) = -f;

CV_MAT_ELEM(*A_xy, float , 0, 1) = 0;

CV_MAT_ELEM(*A_xy, floa t, 1, 0) = 0;

CV_MAT_ELEM(*A_xy, floa t, 1, 1) = -f;

63

50

60

70

int rowindex = 0;

numFeaturesProcessed = 0;

int i= O;

CvMat* res = cvCreateMat(2, 1, CV _32F); I I res is temporary storage for what goes into A {T}

while (i < numPoints) {

if(foundFeaturesMap[i] == 1) { llopticalFlowFoundFeature{i/ == 1 } {

CV_MAT_ELEM(*A_xy, float, 0, 2) = pl[i].x;

}

CV_MAT_ELEM(*A_xy, float , 1, 2) = pl[i].y;

cvmMul(A_xy,T,res); I lewknflaw

CV_MAT_ELEM(*A_T, float, rowlndex, numFeaturesProcessed) =

cvmGet(res, 0, 0);

CV_MAT_ELEM(*A_T, float, rowlndex+l,numFeaturesProcessed) =

cvmGet(res, 1, 0);

rowindex = rowlndex+2;

numFeaturesProcessed ++;

i++;

cvReleaseMat(&res);

cvRelease 1at(&A_xy);

64

80

90

100

}

void CMatrix8uilder::fillB() { I I OuPoint2D32f* pl } {

CvPoint2032f* pl = frameOneFeatures;

I I initialize B and its static elements - the x & y's will be

I I updated in the loop

int i= O;

int rowindex = 0;

float x;

float y;

while(i < numFeaturesProcessed) {

x = p1(i].x;

y = pl(i].y;

II fill all columns of the first row

II THIS WAS CHANGED TO X*Y ON MAY 8TH

CV _MAT _ELEM(*8, float, row Index, 0) = (x*y) I f;

CV _MAT_ELEM(*8, float, rowindex, 1) = - 1* (f + (x*x I f));

CV _MAT _ELEM(*8, float, rowfndex, 2) = y;

II fill all columns of second row

CV _MALELEM(*8, float, rowindex+1, 0) = f + (y*y / f);

CV _MAT_ELEM(*8, float, rowindex+1, 1) = - 1 * (x*y I f);

CV_MAT_ELEM(*8, float, rowindex+ 1, 2) = - 1 * x;

I I update indices

i++ ;

rowlndex += 2;

65

110

120

}

I**

* FillC{)

* The columns of Care made up of A_T and B

*I
void CMatrixBuilder::fillC() {

I I fill the left side of C with elements of A

for(int i= O; i< 2*numFeaturesProcessed; i++) {

for(int j= O; j< numFeaturesProcessed; j++) {

CV _MALELEM(*C, float, i, j) = cvmGet(A_ T, i, j);

}

I I fill the right side of C with elem ents of B

for(int i= O; i<2*numFeaturesProcessed; i++) {

for(int j= O; j<3; j++) {

I I B is offset exactly the width of A in C

CV _MAT _ELEM(*C, float, i, numFeaturesProcesscd+j) = cvmGet(B. i, j);

}

sectionDataStruct.h

#include <cv.h>

#ifndef DATASTRUCLH

#define DATASTRUCLH

I**
* This class stores optical flow data and f eature points for

* calculation of egomotion estimation.

66

130

140

* param: T When passed to the translation estimator, it

* is an intial guess of the translation. When passed to

* the rotation estimator, it is the returned estimate from

* the nonlinear solver.

* param: R When passed to the rotation estimator, it is an

* initial guess of the rotation. Afterwards, it is a

* refined estimate, suitable for passing to a controller.

*I
struct DataSLruct {

} ;

Cv Point2D32f* frarneOneFeatu res;

Cv Point2D32f* frameTwoFeatures;

char* featuresMap;

int numPoints;

int numFeaturesProcessed;

CvMat* T;

CvMat* R;

#end if

A .3 LeastSquares.cpp

#include "LeastSquares. h"

#include <iostream>

#include <math.h>

/"'*

* The initial guess for T is already inside of cPerp,

* although it is included as an argument because

67

10

20

* the residual must be subtmcted each time and cPerp

* must be rebuilt.

*I
LeastSquares: :LeastSquares() {

}

I**
* pamm: M A lxnumCols vector for which we must

* find the norm

*I
double LeastSquares::evaluateColVecL2Norm(CvMat* M, int numCols) {

double sumOfSquares = 0;

10

for(int i= O; i< numCols; i++) { 20

I I add the square of the current element

sumOfSquares += (cvmGet(M, 0, i) * cvmGet(M, 0,));

return sqrt(sumOfSquares);

}

I **
* param: M a numRows x 1 vectors for iuhich we must find the norm

*I
double LeastSquares::evaluateRowVecL2Norm(CvMat* M, int numRows) {

double sumOfSquares = 0; 30

for(int i= O; i< numRows; i++) {

sumOfSquares += (cvmGet(M, i , 0) * cvmGet(M, i, 0));

}

return sqrt(sumOfSquares);

68

A.4 Number Converter. cpp

#include <string>

#include < iostream>

#include <math.h>

#include "NumberConverter. h"

/**

* Will tum the inputted vector into one of unit length

*I
void NumberConverter::normalize3dVector(CvMat* vee) {

double len = get3dVeetorLength(vee);

CV _MAT _ELEM(*vee, float, 0, 0) = evmGet(vee, 0, 0) I len;

CV _MAT _ELEM(*vee, floa t, 1, 0) = evmGet(vee, 1, 0) I len;

CV _MAT _ELEM(*vee, float, 2, 0) = evmGet(vee, 2, 0) I len;

}

double NumberConverter::get3dVeetorLength(CvMat* vee) {

double x = evmGet(vee, 0, 0);

double y = evmGet(vee, 1, 0);

double z = evmGet(vee, 2, 0);

double len = sqrt((x*x) + (y*y) + (z*z)):

return len;

}

69

10

20

double umberConverter::degreesToRadians(double degrees) {

return degrees * (3.14159265 I 180.0);

double NumberConverter::radiansToDegrees(double radians) {

return radians * (180.0 I 3.14159265);

I**
* Both T and Tout must be preallocated 8xl CvMats.

* param: tOut tOut{0/[0/ = rho, tOut{l/[0/ = phi, t0ut{2/{0j = theta

*I
void NumberConverter::cartesianToSpherical(CvMat* T, CvMat* tOut) {

assert(T != NULL);

assert(tOut != NULL);

double x = cvmGet(T, 0, 0);

double y = cvrnGet(T , 1, 0);

double z = cvmGet(T, 2, 0);

I I convert cartesian coords to spherical ones

double S = sqrt((x*x) + (y*y));

double rho = sqrt((x*x) + (y*y) + (z*z));

if((rho >= 1.01) II (rho <= - 1.01)) {

std::cerr << "rho calculation is messed up" << std::endl;

double phi = radiansToDegrees(acos(z)); I I actually z I rho, but rho = 1.0

double t heta;

if(X >= 0.0) {

theta = radiansToDegrees(asin(y /, S));

70

30

40

50

}

else {

theta = radiansToDegrees(3.14159265 - asin(y / S));

}

CV_MAT_ELEM(*tOut, float, 0, 0) =rho;

CV_MAT_ELEM(*tOut, float, 1, 0) = phi;

CV _MAT_ELEM(*tOut, float, 2, 0) = theta;

}

I**

* Both must be previously-initialized 3x1 matrices

* param: T T[Oj(Oj = rho, T{l}(Oj = phi, T{2j[Oj = theta

* param: tOut tOut[O}(Oj = x, tOut[tj[Oj = y, t0ut[2j{Oj = z

*I
void NumberConverter::sphericalToCartesian(CvMat* T, CvMat* tOut) {

double rho = cvmGet(T, 0, 0);

double phi = cvmGet(T, 1, 0);

double theta = cvmGet(T, 2, 0);

sphericalToCartesian(rho, phi, theta, tOut);

}

60

70

void NumberConverter::sphericalToCartesian(double rho, double phi, double theta, CvMat* tOut) {

CV _MAT _ELEM(*tOut, float, 0, 0) =

rho * sin(degreesToRadians(phi)) * cos(degreesToRadians(theta)); I I x

CV _MAT _ELEM(*tOut, float, 1, 0) =

rho * sin(degreesToRadians(phi)) * sin(degreesToRadians(theta)); I I y

CV _MALELEM(*tOut, float, 2, 0) =

rho * cos(degreesToRadians(phi)) ; I I z

71

80

/**

* Taken/modified from the CodePmject article entitled "Reliable Floating Point Equality Comparison".

* http:/ jwww. codepmject. com/tips/ FloatingPointEquality. asp

*I
boo! NumberConverter::AlmostEqual(double nVall, double nVal2, double nEpsilon=O.OOOOOl) {

boo! bRet = (((nVal2 - nEpsilon) < nVall) && (nVall < (nVal2 + nEpsilon))); 90

return bRet;

/**

* pamm: nEpsilon Want the elements of ml and m2 to be equal to at least this level

* of precision. For example, if you want elements to be equal to 3 decimal places,

* input nEpsilon = 0. 0001

*I
boo! NumberConverter::AlmostEqual(CvMat* ml, CvMat* m2, double nEpsilon=O.OOOOOl) {

CvSize mlSize = cvGetSize(ml);

CvSize m2Size = cvGetSize(m2);

if(mlSize.width != m2Size.width) {

re turn false;

if(mlSize. height != m2Size.height) {

return fa lse;

// have determined that they're the same size, so

72

100

I I now let's cycle through the elements and make sure that

I I they're equal

for (int i= O; i< mlSize.height; i++) {

for(int j= O; j <ml Size.width; j++) {

if(!AlmostEqual(cvmGet(ml, i, j), cvmGet(m2, i, j), nEpsilon)) {

return fa lse;

}

}

}

II all elements have evaluated true when tested with AlmostEquals

r eturn t r u e;

}

A .5 F lowMain.cpp

I*
* FlowMain.cpp

* Modified version of David Stavens' optical flow genemtor source code.

*I
#include < iostream>

#include <stdio.h>

#include <cv.h >

#include <highgui.h>

#include < math.h>

#include "DataStruct .h"

#in clude "RotationEst imator .h"

#include "TranslationEstimator. h "

#include "Camera3DStat e. h "

73

LLO

120

10

#include 11 NumberConverter. h 11

static const double pi = 3.14159265358979323846;

inline static double square(int a){

return a * a;

20

inline static void allocateOnDemand(Ip!Image **img, CvSize size, int depth, in t channels) {

}

if (*img != NULL) return;

*img = cvCreatelmage(size, depth, channels);

if (*img == NULL) {

}

fprintf(stderr, "Error: Couldn't allocate image. Out of memory?\n 11
);

exit(- 1);

int main(int argc, char *argv[]) {

if (argc != 3) {

fprintf(stderr, "usage: 'l.s imagel.jpg image2.jpg\n 11
, argv[O]);

return - 1;

I* Create an object that decodes the input video stream. *I

Iplimage *frame = cvLoadlmage(argv[1], 1);

I* Read the video's frame size out of the AVI. *I

CvSize frame_size = cvGetSize(frame);

I* Create a windows called "Optical Flow" for visttalizing the outpttt.

74

30

40

* Have the window automatically change its size to match the output.

*I

cvNamedWindow("Dptical Flow", CV_WINDOW_AUTOSIZE);

DataStruct egomotionEstData;

CvMat* transGuess = cvCreateMat(3, 1, CV _32F);

CV_MAT_ELEM(*transGuess, float, 0, 0) = 0.98; II translalionEst(O};

CV_MAT_ELEM(*transGuess, float, 1, 0) = 0.1; II translationEst(l};

CV_MAT_ELEM(*transGuess, float, 2, 0) = 0.1; II translationEst(2};

CvMat* rotGuess = cvCreateMat(3, 1, CV_32F);

CV _MAT _ELEM(*rotGuess, float, 0, 0) = 0.01;

CV _MAT _ELEM(*rot Guess, float, 1, 0) = 0.01;

CV _MAT _ELEM(*rotGuess, float, 2, 0) = 0.01;

egomotionEstData.T = t ransGuess;

egomotionEstData.R = rotGuess;

50

static Ip!Tmage *frame1 =NULL, *frameL1C =NULL, *frame2_1C = NULL, *eig_image = NULL,

*temp_image = NULL, *pyramid1 = NULL, *pyramid2 = NULL;

allocateOnDemand(&frameL1C, frame_size, IPL_DEPTH_8U, 1);

cvConvertimage(frame, frameLI'C, 0) ;

I* We'll make a full color backup of this frame so that we can draw on it.

* (It's not the best idea to draw on the static memory space of cvQueryFrame() .)

*I

allocateOnDemand(&framel, frame_size, IPLDEPTH_8U, 3);

cvConvertimage(frame, frame1, 0);

75

60

/* Get the second frame of video. Same principles as the first. Note that

* this frame is saved and used in the next iteration of the loop as well.

*I

frame = cvLoadimage(argv(2], 1);

//frame = cvQueryFrame(inpuLvideo);

if (frame == NULL) {

return 0;

allocateOnDemand(&frame2_1C, frame_size, IPLDEPTJL8U, 1);

cvConvertimage(frame, frame2_1C, 0);

/* Shi and Tom asi Feature Tracking! */

/* Preparation: Allocate the necessary storage. */

allocateOnDemand(&eig_image, frame_size, IPL_DEPTH_32F, 1);

allocateOnDemand(&temp_image, frame_size, IPL_DEPTIL32F, 1) ;

/* Preparation: This array will contain the features found in frame 1. */

CvPoint2D32f frameLfeatures(400];

/* Preparation: BEFORE the function call this variable is the array size

*(or the maximum number of f eatures to find). AFTER the function call

* this variable is the number of features actually found.

*I
int number_oLfeatures;

/* I'm hardcoding this at 400. But yo·u should make this a #define so that you can

* change the number of f eatures you use for an accuracy/speed tradeoff analysis.

*I
number_oLfeatures = 400;

76

70

80

90

I* Actually run the Shi and Tomasi algorithm!!

* "frame f_f C" is the input image.

* "eig_image" and "temp_image" ar·e just workspace for the algorithm.

* The first ". OJ " specifies the minimum quality of the fea tures {based on the eigenvalues).

* The second ". 01" specifies the minimum Euclidean distance between features .

* "N ULL" means use the entire input image. You could point to a part of the image.

* WHE N THE ALGORITHM RET URNS:

* "frameL features" will contain the feature points.

100

* "number_of_features" will be set to a value < = 4 00 indicating the number of feature points found.

*I
cvGoodFeaturesToTrack(frameLl C, eig_image, temp_image,

frameLfeatures, &number_oLfeatures, .01 , 40);

I * Pyramidal Lucas· Kanade Optical Flow! *I

I* This array will contain the locations of the points from frame 1 in frame 2. *I

CvPoint2D32f frame2_features[400] ;

I* The i-th element of this array will be non-zero if and only if the i-th feature of

* fram e 1 was fo und in frame 2.

*I
char opticaLflow _found_feature[400];

I* The i-th elem ent of this array is the error in the optical flow for the i-th feature

* of framel as found in fram e 2. If the i-l.h f eature was not found (see the array above)

* I think the i-th entry in this array is undefined.

*I
float opticaUiow _feature_error[400];

77

llO

120

I* This is the window size to use to avoid the aperture problem (see slide "Optical Flow: Overview") . *I

CvSize opticaUiow_window = cvSize(3,3);

I* This termination criteria tells the algorithm to stop when it has either done 20 iterations or when 130

* epsilon is better than .3. You can play wiU~ these parameters for speed vs. accuracy but these values

* work pretty well in many situations.

*I

CvTermCriteria optical_flow _termination_criteria

= cvTermCriteria(CV _TERMCRIT_ITER I CV _TEH.MCH.ILEPS, 20, .3);

a llocateOnDemand(&pyramid!, frame_size, fPL_DEPTlL8U, 1);

a llocateOnDemand(&pyramid2, frame_size, IPLDEPTH_8U, 1);

cvCalcOpticalFlowPyrLK(frameLIC, frame2_1C, pyramid!, pyramid2, frameLfeatures, frame2_features,

number _of_features, opticaLflow_ window, 5, opticaLflow _found_feature,

opticaLflow _feature_error, opticaLflow _termination_criteria, 0) ;

int numFeaturesProcessed = 0; I I count the number of features processed

I* For fun (and debugging :}}, let's draw the flow field. *I

for(int i = 0; i < number_oLfeatures; i++){

I* If Pyramidal Lucas I< anade didn 't really find the f eature, skip it. *I

if (opticaUlow_found_feature(i) == 0) continue;

int line_thickness;

line_thickness = 1;

I* CV_RGB{red, green , blue) is the red, green, and blue components

* of the color you want, each out of 255.

*I

CvScalar line_color;

line_color = CV_RGB(255,0,0);

78

140

150

}

CvPoint p,q;

p.x = (int) frameL features [i].x;

p.y = (int) frameLfeatures[i].y;

q.x = (int) frame2_features[i].x;

q.y = (int) frame2_features[i].y;

double angle;

angle = atan2((double) p.y- q.y, (double) p.x - q.x);

double hypotenuse;

hypotenuse = sqrt(square(p.y - q.y) + square(p.x - q.x));

I* Here we lengthen the arrow by a factor of three. *I

q.x = (int) (p.x - 3 * hypotenuse * cos(angle));

q.y = (int) (p.y - 3 * hypotenuse * sin(angle));

cvLine(framel, p , q, line_color, line_thickness, CV _AA, 0);

p.x = (int) (q.x + 9 * cos(angle + pi I 4));

p.y = (int) (q.y + 9 * sin(angle + pi I 4)) ;

cvLine(framel, p, q, line_color, line_thickness, CV_AA, 0);

p.x = (int) (q.x + 9 * cos(angle- pi I 4));

p.y = (int) (q.y + 9 * sin(angle- pi I 4));

cvLine(frame I. p, q, line_color, line_ thickness, CV _AA, 0);

numFeaturesProcessed++;

I* Now display the image we drew on. Recall that "Optical Flow" is the name of

* the window we created above.

*I
cvShowlmage("Dptical Flow", frarnel);

I* And wait for the user to press a key (so the user has time to look at the image).

79

160

170

180

* If the argument is 0 then it waits forever otherwise it waits that number of milliseconds.

* The return value is the key the user pressed.

*I
int key_pressed;

key_pressed = cvWaitKey(O);

I*
* Egomotion estimation!

*I
N umberConverter numConv;

egomotionEstData.frameOneFeatures = frameLfeatures;

egomotionEstData.frameTwoFeatures = frame2_features;

egomotionEstData. featuresMap = opticaLflow _found_feature;

egomotionEstData.numPoints = number_oLfeatures;

egomotionEstData.numFeaturesProcessecl = numFeaturesProcessed;

TranslationEstimator transEstimator;

I I itemtive solver

transEstimator.getTranslatioo(&egomotionEstData);

std::cout << "iterative solution : " << cvmGet(egomotionE tData.T, 0, 0)

<< " " << cvmGet(egomotionEstData.T, 1, 0) << " "

<< cvmGet(egomotionEstData.T, 2, 0) << std::endl;

I I nonlinear solver

transEstimator.estimateTranslation(&egomotionEstData);

numConv.normalize3dVect~r(egomotionEstData.T);

std::cout << "nonlinear solver normalized trans: " <<

cvmGet(egomotionEstData.T, 0, 0) << II II

<< cvmGet(egomotionEstData.T, 1, 0) <<

80

190

200

}

" " << cvmGet(egomotionEstData.T, 2, 0) << std: :endl;

RotationEstimator rotationEstimator;

rotationEstimator.estimateRotation(&egomotionEstData);

A .6 OrthogonalComplement .cpp

#inc! ude "OrthogonalComplement. h"

using namespace std;

Orthogona!Complement::-Orthogona!Complement() {

cvReleaseMat(&Ut);

cvReleaseMat(& W);

cvReleaseMat(&Vt);

cvReleaseMat(&cPerp);

}

Orthogona!Complement::Orthogona!Complement(CvMat* M, int r, int c) {

rows = r;

cols = c;

C = M;

Ut = cvCreateMat(rows, rows, CV _32F);

W = cvCreateMat(rows, cols, CV _32F);

Vt = cvCreateMat(cols, cols, CV _32F);

cPerp = cvCreateMat(rows, rows- cols, CV _32F);

void Orthogona!Complement::evaiSVDecomposition()

/ /ofstream myfile;

81

210

10

20

}

I lmyfile. open("SVD. txt");

llmyfile << "Writing this to a file.\n";

cvSVD(C, W, Ut, Vt. CV_SVD_U_TICV_SVD_V_T);

I I we will avoid the data logging for now, because

I I it is fa!' too time-consuming

/*for(int i=O; i<rows; i++) {

for(int j =O; j<cols; j++) {

myfile << " " << cvm.Get(W, i, j) <<

}

m.yfile < < std::endl;

}

myfile.close(};*I

u "·
J

CvMat* OrthogonaiComplement::getOrthogonaiComplement() {

11 we have to transpose u-t first (it is stored as u J

CvMat* U = cvCreateMat(rows, rows, CV _32F);

I I transpose Ut -> U

cvTranspose(Ut, U);

for(int i= O; i< rows; i++) {

for(int j=O; j< (rows- cols); j++) {

CV _MAT_ELEM(*cPerp, float, i, j) = cvmGet(U, i, j+cols);

}

int rankl = getDiagonaiMatrixRankBruteForce(W,rows,cols);

int rank2 = getDiagona!MatrixRankE!egant(W,rows,cols);

if(rankl != rank2) {

std: :cout << "Error: the ranks are not equal" << std::endl;

82

30

40

if(cols != rankl) {

std::cout << "the rank of Cis " << rankl <<

" , but the numbe r of columns is " << cols << std::endl;

return cPerp;

}

I*
* Only a singular, diagonal matrix may be passed as an

* argument to this method

*I

50

int Orthogona!Complement::getDiagona!MatrixRankBruteForce(CvMat* W, int rows, int cols) {

int rank= 0;

boo! nonZeroFound;

I I search row by row until a zero row is found

for(int i= O; i< rows; i++) {

}

I I prior to examining any elements in mw

nonZeroFound = false;

for(int j= O; j<cols; j++) {

if(cvmGet(W, i,j) != 0) {

nonZeroFound = true;

}

if(nonZeroFound) {

rank++;

nonZeroFound = false;

return rank;

83

60

70

}

int Orthogona!Complement ::getDiagona!MatrixRankElegant(CvMat* W, int rows, int cols) {

int rank= 0;

}

for(int i= O; i<cols; i++) {

if(cvmGet(W,i,i) != 0) {

rank++ ;

}

r eturn rank;

A .7 RotationEstimator .cpp

#include 11 RotationEstimator. h 11

#include <cv.h>

#include < iostream>

#include 11 l ibs /lm . h 11

#include <math.h>

#include 11 NumberConverter . h 11

#define PI 3.14159265

I*
* precondition : V must be a 2xl vector

*I
void buildV(CvMat* V, CvPoint2D32f* p1, CvPoint2D32f* p2) {

CV _MAT _ELEM(*V, floa t, 0, 0) = pl ->x - p2->x;

CV _MALELEM(*V, float , 1, 0) = pl ->y - p2->y;

}

84

80

10

I*
* precondition : a 2xl vector was !nputted

*I
double get2dVeetorLength(CvMat* vee) {

double x = evmGet(vee, 0, 0);

double y = evmGet(vee, 1, 0);

double len = sqrt((x*x) + (y*y));

return len;

I*
* Will turn the inputted vector into one of unit length

*I
void norrnalize2dVeetor(CvMat* vee) {

I*

/I get the length of the vector

double len = get2dVeetorLength(vee);

CV_MAT_ELEM(*vee, float, 0, 0) = evrnGet(vee, 0, 0) I len;

CV_MAT_ELEM(*vee, float , 1, 0) = evrnCet(vee, 1, 0) I len;

//double length = get2dVectorLength{ vee);

//s td::cout << "length of normalized vee: "<< length<< std::endl;

* Puts a vector orthogonal to the input Vee into the output Vee

* precondition : 2 2x1 {preallocated) vectors have been inputted

* postcondition : an orthogonal vector of unit length has been returned

85

20

30

40

*I
void getOrt hogonal2dUnitVector(CvMat* inputVec, CvMat* outputVec) {

CV_MALELEM(*outputVec, float, 0, 0) = - 1 * cvmGet(inputVec, 1, 0);

CV_MAT_ELEM(*outputVec, float, 1, 0) = cvmGet(inputVec, 0, 0);

normalize2dVector(outputVec);

void buildB(CvMat* B, CvPoint2D32f* p1) {

double x = pl ->x;

}

double y = pl ->y;

double f = 634.0;

//std::cout << "x: "<< x << ", y: "<< y << std::endl;

CV _MAT_ELEM(*B, float, 0, 0) = (x*y) I f ;

CV_MAT_ELEM(*B, float, 0, 1) = -1* (f + (x*x I f));

CV_MAT_ELEM(*B, float , 0, 2) = y;

CV_MAT_ELEM(*B, float, 1, 0) = f + (y*y I f);

CV_MAT_ELEM(*B, float, 1, 1) = - 1 * (x*y I f);

CV_MAT_ELEM(*B, float, 1, 2) = - 1 * x;

void buildA(CvMat* A, CvPoint2D32f* pl) {

double f = 634.0;

CV_MAT_ELEM(*A, fl oa t, 0, 0) = - f;

86

50

60

70

}

CV_MAT_ELEM(*A, float, 0, 1) = 0;

CV _MAT_ELEM(*A, float, 0, 2) = p1->x;

CV_MALELEM(*A, float, 1, 0) = 0;

CV _MAT_ELEM(*A. float , 1, 1) = - f;

CV_MAT_ELE 1(*A, float, 1, 2) = pl ->y;

I*
* Method called by levrnar

*

*I
void rotationEstNonlinear(double* p, double* x, int m, int n, void *data) {

assert(p != NULL);

assert(x != NULL);

assert(data != NULL);

CvMat* Ri = cvCreateMat(3, 1, CV _32F);

CV_MAT_ELEM(*Ri, float, 0, 0) = p[O);

CV_MAT_ELEM(*Ri, float , 1, 0) = p[1);

CV _MAT _ELEM(*Ri, float , 2, 0) = p[2);

Cv Mat* A = cvCreateMat(2, 3, CV _32F) ;

Cv 1at * 8 = cvCreateMat(2, 3, CV _32F) ;

CvMat* AT = cvCreateMat(2, 1, CV _32F); I I product of A and T matrices

CvMat* d = cvCreateMat(2, 1, CV _32F);

87

80

90

CvMat* dt = cvCreateMat(1, 2, CV _32F); I I transpose of d

CvMat* dtB = cvCreateMat(1, 3, CV _32F);

CvMat* dtBOmega = cvCreateMat(1, 1, CV _32F);

CvMat* V = cvCreat_eMat(2, 1, CV _32F);

CvMat* dtV = cvCreateMat(1, 1, CV_32F);

DataStruct *dptr;

dptr= (struct DataStruct *)data;

int numProcessed = 0;

for(int i= O; i< dptr->numPoints; i++) {

if(dptr->featuresMap(i] == 1) {

I I build matrix for current set of points

I I we wan t to pass a pointer to feature i - hence the '&' outside the

I I accessing of the actual point

buildA(A, &(dptr->frameOneFeatures(i]));

buildB(B, &(dptr->frameOneFeaiures (i]));

llstd::cout << "gets here"<< std::endl;

llcvmMul{ A, dptr-> T, AT};

cvMatMul(A, dptr->T, AT);

llstd::cout << "gets here"<< std: :endl;

I I put the othogonal vector to AT into d

getOrthogonal2dUnitVector(AT, d);

I I fill the transpose of d

cvTranspose(d, dt);

cvMatMul(dt, B, dtB);

llstd::cout << "past the creation of dB"<< std::endl;

88

100

110

120

I I get the first term of the least squares expression

cvMatMul(dtB, Ri, dtBOmega);

1/std::cout << "past creation of dBOmega" << std::endl;

I I we want to pass a pointer to feature i

buildV(V, &(dptr-> frameOneFeatures[i)), &(dptr->frameTwoFeatures[i)));

cvmMul(dt, V, dtV);

llstd::cout << "past creation of dtV" << std::endl;

x[numProcessed] = cvmGet(dtBOmega, 0, 0) - cvmGet(dtV, 0, 0);

numProcessed++ ;

}

}

cvReleaseMat(&A);

cvReleaseMat(&B);

cvReleaseMat(&AT);

cvReleaseMat(&d);

cvReleaseMat(&dt);

cvReleaseMat(&dtB);

cvReleaseMat(&dtBOmega);

cvReleaseMat(&V);

cvReleaseMat(&dtV);

/**

* Responsible for estimating the rotation between 2 frames using a

* nonlinear equation solver. The estimated translation, T, between

* the two frames must be found prior to estimating the rotation.

* param: myData data necessary for calculating the 3d rotation (including an estimate

* of the 3d translation between the two frames for which we are currently estimating the

* rotation).

89

130

140

150

*I
void RotationEstimator::estimateRotation(DataStruct* myData) {

d ouble opts[LM_OPTS_SZJ;

opts[OJ=LM_INIT_MU; opts[1]= 1E-15; opts[2]=1E-15; llopts{3}=1E-20;

opts[3]= 1E-15;/ 11 E-4;

opts[4J=LM_DIFF _DELTA;

std::cout << "before cvmGets on myData->R" << std::endl;

I I set the initial guess

p[Oj = cvmGet(myData->R. 0, 0); I I x rotation

p[1] = cvmGet(myData-> R. 1, 0); I I y rotation

p[2] = cvmGet(myData->R. 2, 0); I I z rotation

std::cout << "entering estimat or, the rotation, p= [" << p[O] <<

<< p(1] << ", " << p[2] << •]" << std::endl;

doub le x[myData->numFeaturesProcessedj;

for(int i= O; i < myData->numFeaturesProcessed; i++) {

x[i] = 0;

}

NumberConverter numConv;

double lowerBound = numConv.degreesToRadians(- 10.0);

doub le upperBound = numConv.degreesToRadians(10.0);

160

170

180

stcl::cout << "Lower Bound : " << lowerBouncl << " Upper Bound : " << upperBound << std::endl;

doub le lb[3], ub[3];

90

}

I*

lb[O] = lowerBound; lb[l] = lowerBound; lb[2] = lowerBound;

ub[O] = upperBound; ub(l] = upperBound; ub[2] = upperBound;

int ret = dlevmar_bc_dif(rotationEstNonlinear, p, x, 3, myData->numFeaturesProcessed,

lb, ub, 1000, opts, info, NULL, NULL, (void *)my Data); I l&myData };

I I once the nonlinear solver has been completed, the estimate is stored in p

I I assign it to myData.R

CV_MAT_ELEM(*(myData->R), float, 0, 0) = p[O];

CV_MAT_ELEM(*(myData- > R), floa t , 1, 0) = p(I];

CV _MAT_ELEM(*(myData->R), float, 2, 0) = p(2];

std::cout <<"exiting estimator, the rotation p=[" <<

p(O] << ", " << p(I] << ", " << p[2] << "]" << std::endl;

printf("Levenberg-Marquardt r eturned %d in %g iter, reason %g\nSolution: "

}

ret, info(S], info[6]) ;

for(int i= O; i< 3; ++i) {

printf("%. 7g ", p(i]);

printf("\n\nMinimization info: \n ");

for(int i= O; i< LM_INFO_SZ; ++i) {

printf("%g ", info[i]);

printf("\n");

* This is the output info of the levmar solver, and basically contains information about the

91

190

200

210

* convergence (or lack thereof) of the data

*I
double* RotationEstimator: :getNonlinearSolverfnfo()

r eturn info;

}

I*
* Make the pointer NULL so it correctly throws an exception

* when one attempts to access data that is no longer present

*I
RotationEstimator:: -RotationEstima tor() {

//delete { j p;

//delete {} info;

/ /cvReleaseMat(f1orth Vee };

}

A .B TranslationEstimator .cpp

#include "Orthogonal Compl ement . h "

#inc! ud e "Translat ionEstimator . h"

#include "Number Converter . h"

#include "LeastSquares . h"

#include "CMatrixBuilder .h"

#include "UnitSphere . h"

#include "Uni tSpherePatch .h"

#include < float .h>

#include < iostream>

#include "libs /lm.h"

include < cv. h>

92

220

10

}

/**

* class: TranslationEstimator. cpp

* br·ief: Given an initial guess at the. translation between two images, it will

* use a nonlinear solver to give an accurate estimate.

*I

CvMat* buildYt(DataStruct* dptr) {

char* opticalFlowFoundFeature = dptr->featuresMap;

vPoint2D32f* pl = dptr->frameOneFeatures;

CvPoint2D32f* p2 = dptr->frameTwoFeatures;

int numPoints = dptr->numPoints;

CvMat* Vt = cvCreateMat(l, 2*dptr->numFeaturesProcessed, CV_32F);

inti = 0;

int index = 0;

while(i < numPoints) {

}

if(opticaiFlowFoundFeature[i] == 1) {

}

CV _MAT_ELEM(*Vt, float, 0, 2*index) = pl[i].x - p2[i].x;

CV _MALELEM(*Yt, float, 0, (2*index)+ l) = pl[i].y - p2[i].y;

index++;

i++;

return Vt;

!**

20

30

* fn: translationEstNonlinear Nonlinear translation estimator. It is called indirectly using the levmar library.

* param: p estimate of the 3d translation

* param: x a vector of zeroes (we want the estimate that renders as close to zero as possible)

93

* param: m dimension of p 40

* param: n dim ension of x

* param : data pointer to an instance of DataStruct containing the flo w information needed for calculation

*I
void translationEst Nonlinear(double* p, double* x, int m, int n, void *data) {

CvMat* T = cvCreateMat(3, 1, CV_32F);

assert(data != NULL); II a mistake I frequently make

I I take guess and convert it to usable format

CV _MAT_ELEM(*T, float , 0, 0) = p(O];

CV_MAT_ELEM{ *T, float, 1, 0) = p(1];

CV _MAT_ELEM(*T, float, 2, 0) = p(2];

struct DataStruct *dptr;

dptr= (struct DataStruct *)data;

CMatrixBuilder cBuilder(dptr-> frameOneFeatures, dp tr- > frarneTwoFeatures,

dptr->featuresMap, dptr->numPoints);

cBuilder.fi!IA_ T(T) ;

cB uilder. fi!IB () ;

cBuilder.fillC() ;

CvMat* C = cBuilder.getC();

50

60

OrthogonalComplement orthComp(C, cBuilder.getCRowSize(), cBuilder.getCColumnSize{));

orthComp.eva!SVDecomposition{);

CvMat* CPerp = orthComp.getOrthogona!Complement();

I I I Vt is the transpose of the column vector comprised of the x f1 y

I I I components of the elements of the optical flow fie ld

94

CvMat* Vt = buildVt(dptr);

I I I where the result of Vt * CPerp is stored

I I I the column count is based on the shape of CPerp as a

I I I result of taking the right side of the U matrix after

I I I the SV Decomposition

I I I note: numFeaturesProcessed - 3, because it is actually

I I I numRows - numCols

CvMat* VtCPerp = cvCreateMat(1,

70

(2 * dptr-> numFeaturesProcessed) - dptr->numFeaturesProcessed - 3, CV _32F);

I lstd::cout < < "gets here" < < std::endl;

cvmMul(Vt, CPerp, VtCPerp);

I lcvMatMul(Vt, CPerp,

80

for(int i= O; i< ((2 * dptr->numFeaturesProcessed) - dptr->numFeaturesProcessed - 3); i++) {

x(i] = cvmGet(VtCPerp, 0, i);

dptr->T = T;

}

I **

* ltemte through all candidates on the unit sphere and see which one

* has the minimum residual

*I
CvMat* TranslationEstimator::getTranslation(DataStruct *myData) {

assert(myData != NULL); II a mistake I frequently make

double minResid = DBL_MAX;

int minResidPos = - 1;

95

90

CvMa t* T;

UnitSphere unitSphere;

LeastSquares leastSquares;

std::ofstream myfile;

myfile.open("minResidTrans. txt");

for(int i= O; i<unitSphere.getNumUnitVectors(); i+ +) {

T = unitSphere.getUnitVectorAt(i);

CMatrixB uilder cBuilder(my Data-> frameOneFeat ures, my Data-> frame T wo Features,

myData-> featuresMap, myData- >numPoints);

cBuilder fil!A_ T(T);

cBuilder.fillB();

cBuilder.fillC();

CvMat* C = cBuilder.getC();

100

llO

Orthogona!Complement orthComp(C, cBuilder.getCRowSize(), cBuilder.getCColumnSize());

orthComp.evaiSVDecomposition{);

CvMat* CPerp = orthComp.getOrthogonaiComplement();

II Vt is the transpose of the column vector comprised of the x f1 y

II components of the elements of the optical flow field

CvMat* Vt = buildVt(myData);

I I where the result of Vt * CPerp is stored

I I the column count is based on the shape of CPerp as a

II result of taking the right side of the U matrix after

I I the S V Decomposition

II n ote: numFeaturesProcessed - 3, because it is actually

96

120

}

I I numRows - numCols

int num VtCPerpCols =

(2 * myData-> numFeaturesProcessed) - myData->numFeaturesProcessed - 3;

CvMat* VtCPerp = cvCreateMat(1, numVtCPerpCols, CV _32F);

llcvmMul{ Vt, CPerp, VtCPerp);

cvMatMul(Vt, CPerp, VtCPerp);

double lsq = leastSquares.evaluateCo!VecL2Norm(VtCPerp, numVtCPerpCols);

double resid = lsq / num VtCPerpCols;

llstd::cout << "evaluating " << std::endl;

myfile << " " << cvmGet(unitSphere.getSpherica!CoordsAt(i), 0, 0) << " " <<

cvmGet(unitSphere.getSpherica!CoordsAt(i), 1, 0) < < " " < < resid;

myfile << std::endl;

if(resid < minResid) {

minResid = resid;

minResidPos = i;

130

std::cout << "the new min is t=[" << cvmGet(unitSphere.getUnitVectorAt(i), 0, 0) 140

<< " " << cvmGet(unitSphere.getUnitVectorAt(i), 1, 0) <<

" " << cvmGet(uni tSphere.getUnitVectorAt(i), 2, 0)

<< "] , and the residual is " << minResid << std::endl;

}

cvReleaseMat(&Vt);

cvReleaseMat(&VtCPerp);

I lcvReleaseMat(&T);

myfile.close();

return unitSphere.getUnitVectorAt(minResidPos);

97

150

I**

* Method that calls the private nonlinear rotation solver. The method takes the previous final estimate

* of the translation as the starting point for a new estimate of the translation.

* param: myData pointer to the struct that contains all of the necessary data to calculate the

* rotational portion of the egomotion. It has an estimate of the translative component (myData-> T),

* and an initial guess for the rotational component (myData-> R).

* see: translationEstNonlinear(double* p, double* x, int m, int n, void *data)

*I
void TranslationEstimator::estimateTranslation(DataStruct *myData) {

std::cout << "in translation estimator" << std: :endl;

int ret;

double opts(LM_OPTS_SZ];

double info(LM_INFO_SZ]; I/ output variable that indicates convergence, etc

opts[O]= LM_INIT_MU; llopts(l}= IE-15; opts(2}=1E-15; opts(3}=1E-20;

opts[l]= lE- 15;

opts(2]= 1E- 15;

opts[3]= 1E- 20; I 14;

opts(4]= LM_DIFF_DELTA; // relevant only if the finite difference jacobian version is used

int m = 3; I I dim of p vector

int n = (2*myData->numFeaturesProcessed) - myData->numFeaturesProcessed - 3·

double p(m];

double x(n] ;

II by

98

160

170

p[OJ = cvmGet(myData->T. 0, 0):

p[l] = cvmGet(myData->T, 1, 0):

p[2] = cvmGet(myData->T, 2, 0);

for(int i= O; i< n; i++) {

x[i] = 0.0;

II stick boundaries on this sucka

double lb[3J,ub[3];

lb[OJ = - 1.0; lb[l] = - 1.0; lb(2] = -1.0;

ub[O] = 1.0; ub[l] = 1.0; ub[2] = 1.0:

ret = dlevmar_bc_dif(translationEstNonlinear, p, x, m, n,

lb, ub, 1000, opts, info, NULL, NULL, (void *)myData);

I I now that it has been solved, be sure to update the translation

I I estimate in the DataStruct

CV _MAT_ELEM(*(myData->T), float, 0, 0) = p[OJ;

CV_MAT_ELEM(*(myData->T), float, 1, 0) = p[l];

CV_MAT_ELEM(*(myData->T), float, 2, 0) = p[2];

printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution : "

ret, info[S], info[6]);

for(int i= O: i< m; ++i) {

print f("%. 7g ", p[i]);

}

printf(" \n \nMinimization info: \n");

for(int i= O; i<LM_INFO_SZ; ++i) {

printf("%g ", info[i]);

99

180

190

200

printf("\n");

}

A.9 U nitSphere.cpp

#include < iostream>

#include <math.h>

#include "UnitSphere.h"

#include "NumberConverter. h "

Uni tSphere: :UnitSphere() {

//numUnit Vectors = 61 * 121;

numUnitVectors = 3600;

generateAIIU nit Vectors() ;

void UnitSphere::initia!TranslationGuess(CvMat* T) {

NumberConverter numConv;

I*

CvMat* tSpherical = cvCreateMat(3, 1, CV _32F);

CvMat* tNew = cvCreateMat(3, 1, CV_32F);

numConv.cartesianToSpherical(T, tSpherical);

nu mConv.spherica!ToCartesian(tSpherical, tNew);

* generaieA ll Unit Vectors()

100

210

10

20

* We generate all possible unit vectors using

* spherical coordinates (rho = 1, sweet!), and

* then convert them to cartesian ones

*

*I
void UnitSphere::generateAIIUnitVectors() {

d ouble rho = 1.0;

int i = 0; // i is the index for the array

//for(int theta=-180; theta<=180; theta++) {

NumberConverter numConv;

for(int theta=O; theta< 180; theta+=3) { // < 180 because 0 f.1 180 refer to the same vector

for(int phi= 270; phi<360; phi+= 3) {

// the next 3 lines are for returning the spherical coords for graphing purposes

S[i] = cvCreateMat(2, 1, CV _32F);

CV_MAT_ELEM(*S[i], float, 0, 0) =phi;

CV _MAT _ELEM(*S[i], float, 1, 0) = theta;

30

T[i] = cvCreateMat(3, 1, CV_32F);

CV _MAT _ELEM(*T[i]. float, 0, 0) =

40

rho * sin(numConv.degreesToRadians(phi)) *

cos(numConv.degreesToRadians(theta)); // x

CV _MALELEM(*T[i]. float, 1, 0) =

rho * sin(numConv.degreesToRadians(phi)) *

sin(numConv.degreesToRadiaris(theta)); // y

CV_MAT_ELEM(*T[i], float, 2, 0) = rho *

cos(numConv.degreesToRadians(phi)); // z

101

}

}

i++;

}

for(int phi= O; phi<90; phi+=3) { I I 90 refers to the same vector as 270

S[i] = cvCreateMat(2, 1, CV_32F);

CV_MAT_ELEM(*S[i], floa t , 0, 0) = phi;

CV_MAT_ELEM(*S[i], float, 1, 0) = theta;

T[i] = cvCreateMat(3, 1, CV _32F);

CV _MALELEM(*T[i], floa t, 0, 0) = rho *

sin(numConv.degreesToRadians(phi)) *

cos(numConv.degreesToRadians(theta)) ; I I x

CV_MAT_ELEM(*T(i], float, 1, 0) = rho *

sin(numConv.degreesToRadians(phi)) *

sin(numConv.degreesToRadians(theta)); II y

CV _MAT _ELEM(*T(i]. float, 2, 0) = rho *

cos(numConv.degreesToRadians(phi)); I I z

i++ ;

std: :cout << "number of points: " << i << std::endl;

void UnitSphere::printUnitVectorAt(int i) {

I*

std::cout << "the new min is t=[" << cvmGet(getUnitVectorAt(i), 0, 0)

<< " " << cvmGet(getUnitVectorAt(i), 1, 0) << " " <<

cvmGet(getUnitVectorAt(i), 2, 0) << std::endl ;

* getNumUnit Vectors()

102

50

60

70

* Get the number of unit vectors stored in the sequential list

*I
int UnitSphere::getNumUnitVectors() {

return numUnitVectors;

I*
* All unit vectors are stored in a sequential list.

* This method is how they are accessed.

*I
CvMat* UnitSphere: :getUnitVectorAt(int i) {

return T[i];

}

I**
* The Oth element in S{ij is phi, while the 1st is

* theta

*I
CvMat* UnitSphere::getSphericalCoordsAt(int i) {

return S[i];

}

103

80

90

