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Abstract 

There have b en a number of advanc ments in the area of wa t tr atment ov r 

the past decade, especially in mining indust r ial appli ation . Improvem nts hav 

been mad to conventional technologie to adapt to the tightening of waste disposal 

regulations. Trace metals in industrial effluents, once regard d as waste, now have 

the potential to be recovered as a valuable by-product. 

Thre s paration technologies shown to be succ ssful in mining industrial applicat ions 

include: ion- xchangers, membran s paration process s and bi -pro ssing system . 

The primary objective of this research i to provide a single ource of information for 

separation t hnologi s that apply to the recovery or removal of m tals from wast 

streams and by-product streams from industrial process s similar to !nco's hydromet

allurgical process and to indicate wh re mor res arch is requir d to determin t h 

b st s paration technology. It a lso provides a framework for comparing technologi s 

based on technical feasibility, compatibili ty with other op rations, nvironment and 

safety one rn and cost. 

Due to limited information availabl on the specifics of the I CO ffiuent str am, 

this thesis focu es on t chnologies availabl to metal pro ing fa iliti s in g neral. 

Key Words: Tra m tal recovery, separation t chnologi s, hydr m tallurgy, wastew

aters 
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Chapter 1 

Introduction 

The mining industry is constantly improving through te hnological innovations, en

hanced knowledg of environmental issues, and increasing demand for metal prod

ucts. Dilut waste str ams on e considered to be uneconomical for nhanced m tal 

refin ment are now being treat d for additional r covery for economic purpos s, n

vironmental reasons, or both. Improvements in processing te hnologies have result d 

in decreased operation t ime, higher energy efficiency, minimal use of add d ch mi

cals, lower operational pH and temperature values, and improved wast management 

ystems which ben fit mining companies as well as the surrounding environment. 

The increase in knowledge in area of hazardous waste , environmental impacts, and 

waste manag ment technologies, has shifted the focus from on-site manag ment to 

remediation and pollution prevention. The fie ld of waste managem nt is mult idis i

plinary and involves the management of wast water, pro ss effluent, groundwater, 

and solid wastes that affect the nvironment and human h alth . 

Research is being conducted on a variety of levels to accomplish a common goal; to 

reduce th amount of waste in the effluent streams exiting the mineral proce ing 
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industry and to recover maximum amounts of product from these effluent streams 

using specific s paration techniques. 

1.1 Problem Statement 

There are a numb r of challenges in extractive metallurgy of non-ferrous metals and 

advanced materials. The area of greate t challenge involves the field of treatm nt 

of metallurgical wastewaters and residues for product and by-product recovery and 

detoxification [1] . 

In order for a process to become more economical there ne ds to be a r duction in 

the contaminant in the effluent . This is accomplished by th recovery of as much of 

the valuabl m tals, and other contaminant metals, as possible. There are a numb r 

of issues to consider with the treatment of wastewater from the hydrom tallurgical 

pro ess. First, the low values of by-product metals in the effluent treams requir 

equipment that can effectively remove metals present in dilute concentrations and 

secondly, th need for processing te hnologies that can handle the high flow rate 

that typically leave these industri s [2]. 

Du to the volum and toxicity, all major wast streams from th hydrometallurgical 

process are considered to impact th surrounding environm nt. Th physical and 

chemical environmental impact of thes wast streams is a fun tion of the wast 

that is generated at each stage of th process (i.e. quantity and content of heavy

metals). It is therefore necessary to hav ad tailed understanding of the waste str am 

constituents exit ing the major sections of the processing plant to ensure that the most 

effectiv and efficient waste reduction technologies are implem nted. 
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Inco has a quired the rights to develop the Voisey's Bay nick 1-copp r-cobalt d posits 

discovered in northern Labrador. Upon ompletion of a number of f asibilit studi , 

it was d termin d that the novel us of a hydrometallurgi al pr ss facility that 

utilizes an atmosph ric and pr sure 1 a hing system will be resear hed and po ibly 

developed. Du to the specific composition of the ore and th use of a novel and 

innovative proc s , the waste g nerated in Voisey 's Bay hydrom tallurgical facility 

is proprietary. Ilowever, bulk prop rties of typical waste str ams from hydrom t 

facilities hav b en determin d from lit ratur . At pr sent, th haract ristics of 

the effiu nt str am from I ·co' hydrometallurgi al proc ss ar unavailabl . Specific 

analysis and tion of processing t chnologi s based on I CO's fflucnt str am is 

not po sibl . Th objective of this res arch is to investigate possible technologies that 

will r duce or r cov r the amount of contaminants present in a wast str am from a 

metal processing facility and provid a fram work for technology el ction for future 

research. 

Metals ar a lass of pollutants, often toxi or dangerous, widely pr s nt in industrial 

wastewater [3]. The term heavy-m tal refers to any metalli h mi al lement that 

has a r latively high density and is toxi or poisonous at low con ntrations. From a 

toxicity perspective, the contaminants that are of most concern in wa t water in lud : 

mercury (Hg), admium (Cd) arseni ( ), chromium (Cr), thallium (Tl), and 1 ad 

(Pb) [4] . 

This r s ar h pr sents a study of th availabl separation techno] gi that will sup

port the r duction and treatm nt of dilu te m tal waste str am onstitu nts. Thr e 

major separation t hnologies that are applied in industrial wast treatment appli

cations includ ion- xchang , m mbrane s paration and bio-pro ing of materials. 

The typ of m tals present in th wast stream, the amount of paration requir d, 
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and th flow rate involved all play a role in choosing th appropriate s paration 

technology. 

Furth r extraction of metals from the by-product streams can potentially increas th 

revenue generat d throughout the proj ect's life time. Each treatment alternative has 

distinct advantages and disadvantages which n d to be analyzed in greater detail on e 

specific d tails of th wa te stream is known. Typical distinguishing parameters for 

comparing th t chnologies include cost, feasibility, compatibility and environmental 

impact. Technical, nvironmental, and conomical issues n ed to be addressed wh n 

considering each of the treatment alternative . 

1.2 Scope of the Research 

In the initial stages of the research, an in depth analysis of the hydrometallurgical 

process was conducted for pyrite / pyrrhotite production. T his involved understand

ing the individual steps that take plac including i) leaching (mid-low temperatur ), 

ii) solid & liquid separation, iii) electrowinning, and iv) neutralization. Research was 

conduct d in the attempt to uncover examples of hydrometallurgical proc sses that 

have been used to process nick 1-copp r-cobalt sulphide produ ts comparabl to the 

Voisey's Bay project. It was hopeful that a comparable pro s would be discov r d 

that would offer a break down of typi a l waste stream constitu nts xiting the various 

stages of the hydrometallurgi al facility. Due to the fact that th hydrom t pro 

to be implemented for the Voisey's Bay project is a novel t hn logy, information was 

collect d from proc sses that were similar but not identical. 

Regulations and restrictions impos d by the Provincial and B deral Governments 

were analyzed. This allowed for a general understanding of th restrictions that ar 
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imposed by the various governing bodies, providing a better picture of reduction goals 

for the technologies considered. 

Technologies that can be used to treat dilute metal concentrations were examined. 

Currently there are a wide variety of technologies at the research stage that have not 

yet been applied at an industrial scale. Less emphasis was placed on these technologies 

since they were determined to have a high associated risk factor. Particular focus 

was given to the ion-exchange process, membrane technologies, and bio-processing 

techniques. 

It should be noted that research and development in the operation of the hydromet 

demonstration plant are ongoing and additional information obtained from exper

iments conducted at the mini-pilot plant and the pilot plant will lead to process 

improvements. Updates are constantly being made to !nco's hydromet process to 

ensure that maximum extraction is achieved with minimum harm to the surrounding 

environment. 

1.3 Objective of R esearch 

The main objectives of the research are: 

• To study the INCO specific hydrometallurgical process. 

• To identify waste stream constituents in a hydrometallurical application or sim

ilar process. 

• To evaluate the regulatory disposal guidelines and standards for mining waste 

products (provincial and national levels) . 
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• To identify the possible separation technologies available to treat the previou ly 

identifi d waste streams. 

• To provide framework for comparing technologies for futur re earch. 

1.4 Thesis Outline 

This thesis consists of seven chapters. Chapter 1 is th introductory chapter that 

presents th problem statement, scope of research, and the obje tiv s of the research. 

In Chapt r 2 a descriptive background is giv n with respect to Inco' Voisey's Bay 

project, th hydrometallurgical process, proc ss description, wast regulations, pos

sible waste tream constituents a ording to the literatur review conducted, and a 

list of separation processes examined for dilute metal r covery. Chapter 3 provides 

detailed information on the ion- xchang process including its appli ability toward 

dilute metal concentrations. Membrane separation technologies ar explored in Chap

ter 4. Chapter 5 demonstrates t he possible use of bio-processing for waste reduction. 

Chapter 6 provides a qualitative breakdown of technologies explored and the th sis 

is then concluded in Chapter 7. 



Chapter 2 

Background 

2.1 Voisey's Bay D etails 

The Voisey's Bay nickel-copper-cobalt deposits were discovered in Septemb r 1993 by 

prosp ctors AI Chislett and Chris Verbiski on the Eastern edge of a vast expanse of 

northern wild rness 35 km southwest of Nain, Labrador: Figure 2.1. The deposits ar 

contained within igneous rocks that were formed approximately 1.3 billion years ago 

[6]. In 1996 Vois y's Bay Nickel Company (VI3NC), a wholly owned subsidiary oflnco 

Ltd ., acquir d rights to the Voisey's Bay property and in June 2002, Inco announc d 

that an agreement had been reached with the Government of T wfoundland and 

Labrador on a plan to develop the Voisey's Bay deposits [7]. Figure 2.2 shows th 

propos d Voisey's Bay site map where the mining and con entrating of the ore will 

take place. 

T h location of the mineralized zones at the Voisey's Bay site is shown in Figur 

2.3. One zone, known as the "Ovoid", has surface dim nsion of approximat Iy 

800 met rs by 3-o meters, extending 125 meters in dep th and will b mined using 

open pit methods. As of the end of 2002, the Ovoid deposit contained an estimated 

7 



Figure 2.1: Location of the Voisey's Bay Deposits [8] 
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Figure 2.3: Mineralized Zones at Voisey's Bay [8] 
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proven and probable mineral reserve of 30 million tonnes grading 2.85% nickel, 1.68% 

copper, and 0.14% cobalt. In addition, there is an estimated 54 million tonnes of 

indicated mineral resources grading 1.53% nickel, 0.70% copper, and 0.09% cobalt; 

and 16 million tonnes of inferred mineral resource grading 1.6% nickel, 0.8% copper 

and 0.1% cobalt available as part of the Voisey's Bay project [8]. Further exploration 

work will be conducted to determine the amount of minerals that can be mined and 

the appropriate mining techniques applicable for extraction [6]. 

The minerals are found within three deposits: the "Eastern Deeps" zone located 1 km 

east of the Ovoid, the "Discovery Hill" located 1 km west of the Ovoid, and the "Reid 

Brook" deposit located 2 km west of the Ovoid. The Ovoid is close to the surface 

(beneath 2.5-30 meters of overburden) while the depths of the other deposits vary be-
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tween 100 and 1000 meters below the surfa e [6]. All mineral zon s consi t of ni k l 

sulphide (pentlandite, (FeNi)gS8 ), which contains the obalt, copper-iron sulphid 

(chalcopyrite, CuFeS2 ) and iron sulphide (pyrrhotite, F ( L-x)S). Th style of min

eralization varies from massive (over 90 p rc nt sulphid minerals) to disseminat d 

(the sulphides are mixed with oth r minerals) [6]. 

2.2 Hydrometallurgy 

Hydrometallurgy, also known as hydrom t, is a mineral proc s ing technology that 

combines water, oxygen and oth r ch micals in a pr ssuriz d vessel to di solve valuabl 

metals from its ore, concentrate or intermediate proclu t such as a matte (ore that i 

partially processed through a smelter). The goal of the hydrom t process is to obtain 

metal product solution (containing both impurity metals and valuable metals) that 

must be purified chemically in order to re ov r the valuabl metal in the form of a 

pure product and waste components (such as ro k, iron oxide , and sulphur) in a solid 

residue that can be dispo eel of in an environmentally r sponsible mann r [9]. 

Hydrometallurgy is not a new technology, it has been us d for many y ars for the 

processing of zinc, copper , and ni kel matte [9]. Over 200 processes world-wide u. 

some form of the hydromet process for extracting m tals directly from or s or from 

concentrate [6]. A major improvement in the technology arne about in th mid-

1990s when an acid-oxidative hydrom t proc s was d v lop d for pro essing nickel 

sulphicl concentrates [8]. This d velopment evolved into a pr ssure a id leaching 

(PAL) technology that directly processes nickel sulphide concentrate to produce a high 

purity el ctronickel without having to first smelt the cone ntrate. "Inco s innovative 

proposal for Voisey's Bay proc ssing applies state of the art technology to nickel 
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sulphide con entrate" [9]. 

Traditionally t he production of m tals occurred in two steps: smelting and refin ing in 

a process called pyrometallurgy. Pyrom tallurgy is a processing m thod that is used 

for mined or sand involves the use of high temperature reactions to process minerals. 

In recent years, the nickel industry has smelted concentrates produced from ni kel, 

copper , and cobalt sulphide ores to make an intermediate product (matte) and then 

refined this product using the hydromet process to produce high puri ty metals [10]. 

T he distinguishing factor of hydrometallurgy is that some of the chemical reactions 

that occur during the sequence of events take place in an aqueous solution. The hy

dromet process is a more economical and environmentally friendly proc ss, compared 

to pyrometallurgy, since t he sulphur dioxide and dust emissions from the smelting 

process are eliminated and the wastes tha t are generated in the system can be easily 

contained and removed in a safe manner. In t he hydromet process, the sulphid s 

are transformed into elementary sulphur, which together with iron oxide, form solid 

tailings that can be neutralized to form a stable residue. T he tailings will also contain 

gypsum and unleached rock mineral at a neutral pH [9]. Through the use of hydromet

allurgy it is estimated that there will be an increase in the recovery of valuable metals 

normally lost during the smelting process, a decrease in nergy consumption, a w ll 

as economi and environmental long-term ben fi ts. 

In order to nsur effective results using the newly developed processing te hnologies 

it is necessary to: confirm the processes t chnical and economical viabili ty; allow for 

proper selection of materials for onstruction; and to examine the best way to handle 

and dispose of the wastes from the hydromet proc ss. Inco has outlin d a step-by-step 

research and d velopment approach that is to be followed: [8]. 
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i) Prove that ach st p of the chemi al process works individually at a laboratory 

scale. 

ii) Operat a mini pilot plant at laboratory facilities to en ure steps an be intercon

nected in a continuous proces . 

iii) Build a demonstration plant in order to allow for fine tuning and ptimization of 

the process. 

iv) Design and build the commercial hydromet faci lity capabl of full cale operation. 

Research and dev lopment willl ad to better predictions of chemi al reactions, evalua

tion of chemical and mechanical engineering of the process, specifi ation of mechanical 

equipm nt and d sign, and method of op ration of the plant[10] . 

2.3 Process Description 

The demonstration pilot plant will be built in Argentia, Tewfoundland on the valon 

Peninsula, Figure 2.4 while th commercial scale plant will b lo ated in Long Har

bour, 'ewfoundland. All the nickel concentrate originating from the Voisey's Bay 

mining operation will be process d at this processing plant. 

Vois y's Bay mill/concentrator in Labrador will produce a finely ground nickel-ri h 

concentrate (approximately 25% nickel) with a 10% moistur ont nt to be xport d 

from the mine via ship to th processing fa ility. The primary output will b a 

commercial grade nickel product (el ctronickel), but it will al o produce cobalt and 

copper, both of which are contained in the Voisey' Bay ni kel oncentrate. The 

projected r overy rates are 95% for both nickel and cobalt , and 65% for copper 
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Figure 2.4: Hydromet Pilot Plant Location: Argentia, Newfoundland [11] 
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Figure 2.5: Hydromet Commercial Scale Plant Location: Long Harbour, · ewfound
land [10] 

[8, 11]. 

The goal for th Voisey's Bay Project is to construct a plant that will treat the 

nickel/cobalt/copper concentrate or a matte using either a hydromet or matte facility. 

In the case of a hydromet facility the feed stream will consist of a nickel cone ntrat 

that will be pro essed for the recovery of nick l copper and cobalt. The matt facility, 

on the other hand, will proc ss a smelter produ ed nickel-b aring matte which will 

then be processed to recover the metal constituents. Another difference between th 

two processing facilities is that the hydromet plant uses a chloride-sulphate medium 

while the matte plant uses a sulphate m dium only[10] . Differences can also be s n 

in the quantities and types of residues that are produced in these processes. The 

hydromet pro ess will require large amounts of leach residue which requires subs a 
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storage in order to avoid the oxidation of elemental ulfur produ ing sulfuric acid. 

There will also be gypsum and iron hydroxide wastes involved. Th matte plant 

will have mostly gypsum waste which can be stored above ground . Efforts are being 

made on all fronts to choose a technology that will provid the best technical and 

economical r suits. The focus of this thesis is on the opportuniti s involved in th 

use of a hydromet facility. 

There ar thr main operations used in the hydrometallurgical proc ss [12]: 

(i) Lea hing of the or or of an intermediate metallurgical produ t with acid, caustic, 

or a complex forming solvent, often combin d with oxidation. 

(ii) Purification of the solution by precipi tation of insoluble ompounds or cementa

tion of unwant d m tals. 

(iii) Precipitation of wanted produ t , eith r as an insoluble om pound or as a metal, 

ither by ch mi al or electrochemical methods. 

Figure, 2.6, shows a conceptual process flow sheet for the treatment of nickel oncen

trate specific to th Voisey's Bay project. 

The following sections describe in more detail the steps that tak place in the pro

cessing of nickel-copp r-cobalt sulphide using the hydrom t pro es : [10, 11] 

Crushing and Grinding 

The ore concentrate will be received at th pro e sing sit from shipm nts origination 

from the Voisey's Bay concent rator plant. The product will be tored in a concentrat 

storage building until needed for processing. In order to break up fused or lumpy 

materials and to provide a suitable particle size for further treatment, the con entrate 
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Figure 2.6: Conceptual Process Flow sheet for VBNC Hydromet Process [11] 

is crushed and ground into a fine powder using a roll crusher, ball mill, and fine 

grinding mill. Approximately 80% of the concentrate will pass 20 micron. It is then 

mixed with recycled process water to produce a paste-like slurry which is stored in 

tanks for the subseqent leaching stage. 

Leaching 

Leaching is defined as the treatment of ores, concentrates and other metal-bearing 

materials by an acidic wet process that dissolves soluble minerals and recovers them 

into a pregnant leach solution [13]. Leaching processes in hydrometallurgy form a 

solution containing the metals that are to be recovered in the system. There are two 

types of leaching present in the proposed hydromet plant, atmospheric pre-leach and 

the pressure oxidative leach. 



17 

• Atmospheric pre-Leach 

The feed is lea hed in a continuous stilT d tank reactor (CSTR) with oxygen and 

chlorine gases. The 0 2 and Cl2 gases come from the nickel electrowinning circuit and 

are compressed to be utilized for leaching. This leach stage tak s plac at atmospheri 

pressure and is sometimes referred to as the chlorine pre-leach. The concentrate is 

then pumped into a large pressur cook r alled an autoclave for the next stage, the 

pressure oxidative l aching. 

• Pressure Oxidative Leach 

The pr -1 ach concentrate is fed to th second leaching stage. This takes pla e in 

an autoclave at elevated temp rature of 1-ooc and pressure of 150 psig. Oxygen is 

inject d into th autoclave and will r act with t he nickel, cobalt, and opper sulphide 

minerals to form liquid or solid sulphur and sulphuric acid . Once the sulphides ar 

broken down by this process, the associated metals to which they were once bound 

are free to dissolv into the acidic solution. 

The product of th autoclav system is a complex mixtur of liquid or solid sulphur, 

an acidic solution of d sirabl and uncle irable metals, and insolubl wast rock. Th 

discharged slurry is cooled in a singl stage of pressure let-down, know as flashing, to 

atmosph ric pr s ur in a fl ash v ss l. This results in the generation of orne team 

and the concentration of t he metal solution. 

This process takes place in corrosiv conditions sufficient to di solv mo t metals 

therefore anti-corrosive coatings, for xample, titanium and linings such as a id

resistant brick are required for the proc ss equipment. Once th solution is flashed , 
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the pro es takes place at atmospheric pr s ure in fiberglas and plastic, tanks, and 

p1pmg. 

Filtration fj Clarification fj Neutralization 

Once the hot leach slurry has be n discharg d through a pr ure let-down vessel 

and th slurry is cooled allowing the molten sulphur to solidify - the next stage of 

filtration, clarification, and n utral ization takes place. Using a process ailed counter

current d antation (CCD), the waste rock and sulphur are washed in stag s with 

spent process solution and process wat r. Thi ensures that th maximum amount of 

dissolved metals are removed from the waste material. The I ach residue, containing 

stable iron and sulphur compounds, will then be thickened, filt red, and sent to a final 

neutralization stage where limestone and lime are added for pH adjustment prior to 

impounding. Limestone is used to raise the pH and precipitat metals. It has th 

lowest material cost and is the sa£ st and easi st to handle. The r sidue from th 

process is then pump d to a secure containment area. 

The resulting solution contains all three d sirable metals: ni kel, cobalt, and copper, 

but will also include some und sirable m tals such as iron. Air and limestone is 

added to the solution to oxidize iron, n utralize the pregnant leach solution and to 

help precipitate out a mixed iron and gypsum product. ll wat r leaving the plant 

will be processed to remove contaminants. 

The feed will then go through a numb r of chemical purifi ation t ps, nt r s t

tling tanks where it will undergo solid / liquid separation, removal of impurities and 

separation of i, Co, and Cu . 

Solvent Extraction and Electrowinning 
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The iron-free solution is fed into a three stage solvent extraction et-up. In the first 

stage of the metal recovery section, the leach solution will be sent through a copper 

solvent extraction circuit . The unspecified opper extractant is dissolved in an oil 

diluent and contacted in stages with the m tal solution. The copper dissolves in 

the extractant oil, leaving behind nickel, cobalt, and other minor metals. Th oil 

extractant will be brought into contact with an acidic wat r solution wher it will be 

stripped, r suiting in a strong copper solution in a idic water. It is then sent to be 

electroplated in a process known as electrowinning. 

Electowinning takes place in a tank in which two conducting plat s are ins rted and 

an ele tric curr nt is applied. The electricity flows from one plate through the solution 

to the other. The desired metal deposits on one plate to form a olid sheet. sing this 

process, a strong copper solution in acidic water will form into thick, commercially 

viable copp r sh ets. 

The acidic copper-free leach solution together with a portion of th spent nick I 

el ctrolyte solution will react with limestone and lime to neutralize the solu tion and to 

precipitate gypsum. The gypsum solids will be filtered and sent to final neutralization 

and disposal. 

The n utraliz d copper-free solution will be ent to the purification solvent xtraction 

circuit to remove calcium, zinc and other r maining tra impurities. This cir uit 

uses an unspecified organic extractant to sel ctively r mov th impurities, leaving a 

purified nickel-cobalt sulphate solution. The impurities will be stripp d using an acid 

solut ion and sent for final neutralization and disposal. 

The purified nickel/cobalt solution will be sent for cobalt solvent extraction wher 

another organic solvent selectively extracts cobalt . The cobalt will b stripped from 
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the unspecified organic solvent by an acidic solution, producing a concentrated cobalt 

solution, which is then sent to a cobalt recovery circuit. The cobalt will be recovered 

in a cobalt electrowinning circuit. 

The cobalt-free nickel solution will be sent to nickel electrowinning circuit where 

nickel metal will be deposited onto charged electrodes. The remaining product is pure 

nickel product in the form of thick sheets. The majority of the spent nickel electrolyte 

solution will be recycled back to the pre-leach and pressure leach. Oxygen and chlorine 

gas, produced as part of the nickel electrowinning reaction, will be collected and 

returned to the pre-leach. 

The steps of the hydromet process is shown in the following block diagram[10]: 

Figure 2. 7: Conceptual Process F low sheet for the Hydromet Process [11] 

Stated in Voisey's Bay project registration[10] there are a number of inputs and 
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outputs expected from the facility. The major inputs are: 

• Nickel concentrate 

• Oxygen 

• Limestone 

• Lime 

• Air 

• Sodium chloride 

• Hydrochloric acid 

• Sulphuric acid 

• Sodium carbonate 

• Electric powers 

• Water 

• Extractants used to remov impurities or extract valuable species 

The major outputs expected include: 

• Nickel, copper, and cobalt 

• Treated solid residue containing primarily iron oxides and hydroxide, elemental 

sulphur and gypsum with trace amounts of un-reacted nickel concentrate. 

• Treated liquid effluent 
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2.4 Waste Regulations 

The control of toxic metal wastes has become an important issue in recent years due to 

the increasing environmental regulations concerning their disposal. Waste manage

ment responsibilities include disposal, treatm nt, reduction, recycling, segregation, 

and modification. 

The regulations that are impos d for waste management in the mineral industry vary 

depending on t he the province in which the mining takes place and is a function of 

the type of metal that is being processed. There are a number of wastes generated by 

the mining industry, all of which have a varying degree of impact on the surrounding 

environment. Three major wastes considerations in the mining indust ry are acid 

mine drainage, mine tailings, and wastewater effluent . Acid min drainage is low 

pH drainage water from certain mines usually caused by the oxidation of sulphides 

to sulphuric acid. Mine drainage can also contain high concentration of metal ions 

which are harmful to the environment. Mine tailings are the material that remains 

after valuable metals have been removed from the ore during milling. Wastewater 

effluents are raw (untreated) , partially or completely t reated liquids that flow from a 

facility. 

The mine environment neutral drainage (MEND) [16] program is a joint effort betwe n 

Canadian mining companies and provincial/ terri torial and federal departments to 

reduce the liability due to acid mine drainage. Acid mine drainage is th larg st 

environmental liability facing the mining industry and the public through abandoned 

mines. Since the development of this program there has been a larg amount of 

progress with regards to mines that are no longer in use. T he curr nt focus i to 

ensure the development of new mines that will operate without the risk of long term 
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effects upon closure. 

The Environment Protection Act and Waste Management R gulations [17] d al with 

landfills and waste that contains metals. Wast s must be verifi d to be non-hazardous 

through a Toxi ity Characteri tic Leaching Procedure (TCLP) wh re th waste is 

soaked in acidic solution and the amount of contaminants that leach out is measured. 

If this exc ds the CCME (Canadian Council of Ministers of the Environment) guide-

lines the waste will be chara terized as hazardous and would require disposal at a 

hazardous wast disposal site. 

The Mining Act requires a submission of a Development Plan (updated annually) 

which outlin s the mode of development of the project (including any additional 

processing steps), and must demonstrate prudent resource management. 

The maximum con entration of metals that can be discharged into the environment 

is regulated by Environment Canada, Minerals and Metals Division. The Water 

Pollution Prevention and Control in the Canadian Mining Industry outlines the fol

lowing eli posal limits shown in Tab! 2.1 [10, 15]. Limits ar based on b st practical 

technology d termin d by a joint federal-provincial-industrial task force. 

Tabl 2.1: Authorized Levels of Hazardous Substan es [15] 

Substance Max.Authorized Monthly 
(mg/1) 

Arsenic 0.5 
Copper 0.3 

Lead 0.2 
I\ickel 0.5 
Zinc 0.5 
TSS 30 
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2.5 Waste Stream Constituents / Properties 

Specific waste stream constituents and properties could not be fully characteriz d 

for I TCO's hydromet facility. Bas d on th research conducted, the closest exampl 

waste str am is shown in Table 3.3 for a sulfid hydrometallurgical facility. Even with 

this sample information available, the type and concentration of metals along with 

the chemical reactions may not be comparabl to the nickel/cobalt/copper extraction 

process at INCO. Selecting a separation technology on a wast stream that may not be 

comparable to the waste stream of int re t offi rs little value at this stage. Refer to the 

Recommendations s ction of this thesis for areas for future growth and advancement. 

Figure 2.8 shows the block diagram of the hydromet pro ss. Bas d on the figure, 

the two effluent streams that are to be considered for possible metal recovery, toxi ity 

reductions, or both are: 

• stream from impurity removal 

• final neutralization solution 

All steps in the hydromet proc ss serve two major purpos s: to put th metal of 

interest in a liquid form and to separate the desired metals from th unwant d ma

terials in the form of precipitat s. One ach m tal is isolat d in a liquid solu tion, 

electro-chemistry is used to recove th metals as solids [9]. 

Issues to consider in t he treatm nt of dilute metal include limitations imposed by 

low concentrations in the waste stream. The pH of inorganic waste streams, unlike 

their organic counterparts , have variable pH that can be difficult to model when 

considering various separation technologi s. Finally, the pres nee of other inorganic 
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Figure 2.8: Sample Hydromet Block Diagram 
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materials in the waste streams can also have a negative impact on the separation 

efficiency, since they often compete with the metal of interest in the removal process. 

Outputs expected from the facility are shown in Table 2.2: 

Solid waste (non-hazardous) will be trucked by certified waste haulers to approved 

landfill sites. VBNC will have a waste reduction and recycling program during all 

phases of the project in order to minimize waste. The quantities of wastes produced 

at the facility has not been finalized since the project is still in development phases. 
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Table 2.2: VBI\C Project Capacity at the Pilot Plant [11] 

Compon nt Annual Capacity 
(tonnes) 

Concentrate Feed 2000 
l\ickel in Feed 400 

Copper in Feed 28 
Cobalt in Feed 19 
Leach Residue 1800 

Gypsum Residue 1700 

The preliminary ngineering estimates of waste streams and quantities generated at 

the pilot plant are shown in Table 2.3. 

Table 2.3: Pr liminary Engineering Estimates of Waste Str ams for VB -c Project 
[11] 

Item Preliminary Estimated Quantity 
Leach Residue 1800 tonnesjyear 

Gypsum 1700 tonnes/year 
Process Liquid Effluent 20,000 mJ /year 
Total Liquid Effluent 108,000 m3 /year 

(including site run-off) 
Autoclave Vent Gas 700 mJ /year 

(steam + 02) 
Chlorine Scrubber Vent Gas 1000 mJ /year 

(air with trace C l2 ) 

Hydrogen Sulphide Scrubb r Vent Gas 1000 mJ /year 
(air with trace H 2S) 

Process Tanks Vent Gas 1000 mJ jy ar 
(air and water vapor) 

The current plan is to have three residue storage ponds, approximately 7000m 3 each, 

and associated piping to accommodat thr years of residue torag . The residues 

that will be stored in this fashion in tude leach residue (iron oxid and sulphur) 

and gypsum. The ponds will be constructed with a lin r system with a leakage 

detection and collection system to ensure maximum protection of the environment. 
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Also, effluent or polishing ponds of approximately 12,000m 3 and associated piping and 

pumps will be constructed to receive run off and effluent overflow from the residue 

ponds. 

The various waste streams from the demonstration plant will be direct d to the final 

neutralization circuit. At this stage, the residue slurry will be treated in stirT d 

reactors by pH adjustment and oxidation to neutralize the solutions, precipitate the 

trace metals, and stabilize the solids prior to discharge to the tailings pond. 

Life cycle studies have been performed and have indicated that the environmental 

impact of hydrometallurgy is approximately one half of the impact of the traditional 

pyrometallurgy process in almost all categories studied. In using the hydromet pro

cess, there is a reduction in the amount of released airborne particles and gaseous 

emissions and a reduction in energy onsumption compared to conventional smelting 

and refining. Although the methodology used to come to this con lusion is not clear, 

the results of the study have been made public on IN CO's website. 

VBNC considered both hydro- and pyro-metallurgical technologi s, hydrometallurgy 

was chosen for testing at the facility since it had lower capital costs and potential 

for environmental benefits . Another alternative that was considered was the use of 

a bioleaching processing. This option was liminated due to th high quantities of 

residues and neutralizing agents required and the costs of the proces wer considered 

high. 

The components of the waste st ream in the hydromet process is a function of the pro

cess specifics and therefore without knowledge of the operational specific breakdown 

in the Inco hydromet stream it is difficult to determine feasible separation technolo

gies. However, in the following sections of the report some of the common separation 
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technologies that are currently used in industry are outlin d based on a lit ratur 

review on th removal of metals from dilute solutions and soli I se1 aration. 

2.5.1 Toxic Metals 

In the hydromet process, metals and other chemical additives exist in th effluent 

streams at cone ntrations that can b hazardous to th surrounding environment if 

left untreat d. 

Metals that have the greatest concern for the environment are thos which have a toxic 

or inhibitory ffect on living thing . It is important to note that oth r environmental 

conditions such as pH, temp rature, and water hardness will also affect the toxicity. 

Metals that are of concern include cadmium, chromium, copp r , cobalt, lead, ni kel, 

and zin . 

Due to limit d information available sp ific to the hydrom t process it was found 

that in the lectroplating industry the metals that are typically of cone rn include 

cadmium, zinc, copper, chromium, mercury, lead, and cyanid complexes. Achievable 

reduction limits are dependent on a variety of factors including plant size, flow rat 

and the nature of the process consid red. The ultimate goal is a zero di harge poli y 

and complete control of the toxic m tals [5]. 

As trace elements, some heavy-m tals ar ssential to maintain th m tabolism of th 

human body. However, at higher on ntrations they can lead to p isoning. Heavy

metal poisoning could result from drinking-water contamination (e.g. l ad pipes), 

high ambi nt air concentrations near mission sources, or intake via the food chain. 

Heavy-m tals are dangerous because they tend to bioa cumulate. 13ioaccumulation 

means an increase in the concentration of a chemical in a biological organism over 
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time, compared to the chemical's concentration in the environment . Compounds 

accumulate in living things any time they are taken up and stored faster than they 

are broken down or excreted. Heavy-metals can enter a water supply by industrial and 

consumer wast , or from acidic rain breaking down soils and releasing heavy-metals 

into streams, lakes, rivers, and groundwater. The following sections outline som 

metal elements that may be of concern to the hydromet process, their key tocixity 

thresholds, and the potential effects if exposure occurs. 

Cadmium 

Cadmium is a highly toxic metal and can cause serious damage to humans and the 

environment [18]. The World Health Organization has recommended that the p r

missible intake of cadmium should not exceed 0.4 to 0.5 mg per week or 0.057 to 0.071 

mg/day. A maximum acceptabl concentration of 0.005 mg/1 (5 J.I.g/1) for cadmium 

in drinking water has been established on the basis of health considerations [19]. As 

outlined by the Canadian Environmental Quality Guidelines updated in 2002, the 

concentration of cadmium in freshwater and marine environments is 0.012 J.I.g/1 and 

0.12 J.I.g/1 respectively [20] . 

Chromium 

Chromium exists in the aqueous environment in either the hexavalent or trival nt 

form [18]. A maximum concentration of 0.05 mg/1 (50 J-tg/1) for hromium in drink

ing water has been established on the basis of health consid rations [21]. Trival nt 

chromium is the most naturally occurring state of chromium and is not considered to 

be toxic unless present in raw water where it may be oxidized to hexavalent chromium 

during chlorination. Chromium enters the body and becomes immobilized as trivalent 

form and accumulates leading to increased chances of various forms of cancer [18] . 
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Copper 

For humans, copper is an essential element and the body can regulate its level hom -

ostatically, but large, acute doses can have a harmful, sometimes fatal, effect [18]. 

Copper in drinking water should be limited to .:::; 1.0 mg/ L [19]. 

Cobalt 

Cobalt is not generally included in lists of heavy-metals which are harmful to th 

environm nt. However, it is known that cobalt can have divers ffects at high on

centrations [18]. 

Lead 

Lead is toxic to human, aquatic funa, and liv stock. In the aquatic environment it 

exists in the inorganic, dival nt state or in th tetravalent state. As outlined by the 

Canadian Environmental Quality Guidelines updated in 2002, the cone ntration of 

lead in freshwater is 1-7 11g/L depending on the concentration of calcium carbonat 

in the str am [20] . 

Nickel 

Kickel does not have a serious effi ct on humans but has an appr ciable phytotoxi ity 

[18] . The concentration limits in fr shwater is between 25 and 150 11g/L depending 

on t he concentration of calcium arbonate in the stream [20]. 

Zinc 

Zinc is not perceived to pose a serious risk to human health, the limit in drinking 

water is 5 mg/1 [18]. 
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2.6 Separation Criteria 

In order for any waste treatment technology to be a viable pro es in the mineral 

processing industry it must comply with a number of standards. Th most important 

criteria when considering effluent treatments is related to cost ffectiveness and th 

resulting impos d environmental impacts [3]. The effluent clean-up process should 

be: 

• compatible with the existing unit operations 

• cost effective (i.e. not adding to the overall production costs) 

• flexible in handling changes in quali ty and quantity of feed 

• reliable to operate in continuous mode 

• robust to operate with minimal supervision and maintenance 

• s lective in the removal of the metals that are of interest 

• simple to operate to minimize th need for skilled operators 

Separation technologies are develop d for both processing and environmental appli

cations. The effluent treatment proces has to be capable of handling a vari ty of 

feed streams that may vary in quantity and quality. 



Chapter 3 

Ion-Exchange 

"Every y ar thousands of pounds of recov rable m tal valu s ar allowed to go to 

waste" [22] . lot only is t his an economic oversight, but it also contributes to the 

damage of th environment. On solution that is being used to improve how waste 

is managed in industrial facilities is th incorporation of ion-exchanger into process 

design to recover metals and water , and to redu e pollution. Ion-exchangers are a 

potential appli ation for recovery and purification of metals and offer economic and 

technical advantages in treating dilute solutions. 

The goal of any tr atm nt strategy is to obtain the maximum product r clamation 

from the ffiu nt and to redu e the concentration levels below th allowabl limit 

imposed by legislation. The overall economi viability of any tr atment proce s d -

pends on the value of the recovered m tals and th operating osts that are involv d 

in obtaining the e metals [26]. 

Ion-exchange is a spe ial case of adsorption. It is a purification process that r move 

and separates ions in solution. It is a reversible intera tion of ion betwe n th 

resin material and ions in a solution in which no perman nt changes oc ur to the 

32 
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resin structur . Its u e has been stablished in a number of industrial applications, 

including the treatment of wastewater, and has been prov n to be su cessful due to 

its ability to r move trace impuri t ies from effluents. 

3.1 Fundamentals 

The law of electro-neutrality governs t he operation of t he ion- xchange process. It 

dictates that ions of opposite charge will be attracted to one another , and that the 

total number of ions leaving the solution will equal the numb r ntering the solution 

[23, 24, 25]. 

The basic ion-exchange process in ludes passing a liquid stream over a fixed bed whi h 

absorbs th d sir d ions from t he stream. Once t he fixed bed becomes saturated t h 

flow stops and th ab orbed ions are recovered through desorption so that the fix d 

bed can be reused. 

3.1.1 Equilibrium Condit ions 

The equilibrium between the cone ntration of a solute in the liquid phase and the 

concentration on the solid resin can be xpr ssed in terms of adsorption isotherms. 

Data that follows a linear trend can be expressed in the following manner: 

q = Kc (3.1) 

where q is the kg of adsorbate (solute)/ kg adsorbent (solid), c is the kg of adsorbate/ 

m3 of fluid and K is determined experimentally. 
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If the data follows the Freundlich tr nd (non-lin ar) th n the isotherm can be esti

mated by using the following relationship: 

(3.2) 

where J{ and n c are experimental constants. 

A Freundlich isotherm can then be represented by plotting the capacity of the me

dia for the component(Ca/X) versus the equilibrium concentration (C f) as shown in 

Figure 3.1, where X is the mass of the separation media. The shape of the curve 

indicates the feasibility of the separation media in achieving the desired separation 

under the test onditions. 

Figure 3.1: Adsorption Isotherm using Freundlich Trend [28] 

Another relationship for estimating equilibrium isotherms is the theoretically based 

Langmuir model: 
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(3.3) 

where q0 is the kg ad orbate/ kg solid[50]. 

Generally, adsorption processes demonstrate that an incr a e in temperatur de-

creases the amount of adsorbent (metal of interest) that is absorbed by the resin. 

This means that desorption (release of metals) can be obtained by raising the tern-

perature. Knowledge of an adsorption isotherm is important in the haracterization 

of the system and will allow th system to be designed for maximum resin efficiency. 

The ion-exchange process can also be modeled as flow through a porous media. This 

model is more complicated and requires a more in depth study than simply having 

a stream of fluid pass over a fixed bed. In this process, mass-transf r r si tan es ar 

an important consideration and the pro ess is generally consid red unsteady. The 

efficiency of the process is governed by the dynamics of th system and equilibrium 

considerations. 

The concentration of the solute in the liquid phase and the solid in the absorbent ph as 

changes with t ime and position in the porous media. As tim progr sses there will 

be a dynamic cone ntration profile in th porous media with a distin t mass-transf r 

zone. Th di:ffi r nee in cone ntration i a driving force for rna -transf r. On 

the breakpoint is reached, where th con entration propagat s omplet ly through 

the porous media, the concentration at the exit reaches the feed cone ntration v ry 

rapidly. 

Changing the resin matrix shape, or the contact duration will have an affect on 

the breakthrough curve. Parameters such as av rage resin bead size, feed flow rat , 
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resin bed depth , and the operating temp rat ur all play a role in d veloping the 

breakthrough curve. Figure 3.2 shows a sample breakthrough curve depicting the 

concentration of a target ion at the outlet v rsus time. 

c 
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Figure 3.2: Sample Breakthrough Curve for Ion Exchange Process [29] 

To maintain the law of electro-neutrality, the resin must release ions in order to 

have available receptive zones for exchange with the effluent. The following chemical 

reaction is an example of this ion-exchange balance equation: 

(3.4) 

where R represents the insoluable material with binding sit s (resin), A is the ounter 

ion (A and C are exchanged) . The charged ions are in solution and the resin is th 

solid . The left side of the equation represents the effluent solution whereas the right 

side represents the treated solution. 

Equilibrium isotherms have been developed using mass action laws to calculate the 
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equilibrium condition. In the case of the previous ion-exchange react ion , Equation 

3.4, the s le tivity coefficient for A/C ion exchange is: 

(3.5) 

Equilibrium constants have been tabulated for various type of ion- xchange resins 

in order to facilita te ion-exchange design. The selectivity coeffi ient is dependent 

on concentration of both elements, th total ionic strength of t he solution, and the 

temperature (at a constant pressure) . 

A number of factors affect the distribution of metals between the solu tion that is 

being treated and the solid ion- xchange resin. The distribution coeffi ient is used to 

measure th metal distribution for ion-exchange: 

K = [RC] 
D [C] (3.6) 

measured in ml/g. This equa tion is valid when the ion R is present at trace levels 

(i.e. [C] << [A]) . 

Every exchanger has a maximum amount of charged sites per gram of resin. T his 

value is the theoretical specific capa ity, Qc, measured in meqfg. T h capacity is 

identical to the charge density due to ionogenic groups [30]. 

3.1.2 Concentration Profiles and Breakthrough Curves 

The modeling of an ion-exchange process is similar to an adsorption proce s. T h rate 

of ion-exchange depends on t he tran fer of ions from the fluid to the resin surfa e, 
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diffusion of the ions through the pores of the solid to the surface, and the exchange of 

the ions a t th surface back to the solution. The concentration profiles in packed beds 

are also similar to adsorption. The main part of the ion-exchange pro e s occurs in 

a narrow mass-transfer zone. As the mass-transfer zone proc eds down the column, 

the height of th olurnn becomes constant because the ions in the fluid tend to be 

more attract d to the resin rather than remaining in solution. The constant height 

can then be used to scale up the mod l. 

The scale-up methods are necessary becaus of the uncertainty involv d with th oret-

ical prediction due to the complicated flow patterns through the packed bed. Small 

scale laboratory exp riments are necessary. The total stoichiom tri capa ity of the 

packed bed is the area under the br akthrough curve, which can be found using the 

following equation: 

it = rXJ (1 - cj C0 )di 
.fo 

where it is the time equivalent to th total capacity. 

The usable capacity occurs until the breakthrough point ib: 

(3.7) 

(3.8) 

For a total bed length of Hr the length of bed used up to the br ak point is I-!8 : 

(3.9) 

This leads to the determination of the unused bed or the length of the mas -transfer 
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section in meters (m): 

(3.10) 

For scale up, the experimental value of HuNB is measured and Hs is determined 

based on the desired capacity at the break point. The total column length becomes: 

(3.11) 

The above equations are based on binary exchange. Thermodynamic formulation of 

binary cation or anion-exchange equilibrium is simple compared to multi-component 

equilibrium systems, which become increasingly more complicated as the number of 

exchanging components are increased [31] . 

3.2 Ion-Exchange Process 

The ion-exchange process requires a certain amount of basic equipment [23, 24, 25]. A 

shell is necessary to contain the resin and hous the flow of the dilute aqueous solution. 

A typical container size is 1-7 ft in diameter and 4-12 ft in height, however this is 

a function of process facility capacity and cycle times. The ize of the exchang r is 

normally left up to the discretion of the engineer to opt imize the diameter of t he unit 

(for flow distribution) , the height of the unit (for pressure drop) , and t he thi kness 

of the resin. Secondly, the resin must be supported. This is accomplished part ly 

using flow distribution devices and partly by graded coal, gravel, porous metal, or 

ceramic plate. The third component of the unit is the distribution devices themselves, 
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which are used to distribute the flow uniformly over the r sin. Fourth, the r sin will 

tend to swell during use so it is a nee ssary consideration in the design of the unit. 

Backwash space is necessary for the re lamation of the re in when it i expanded 

to flush out all lodged particles. Finally, there is a need for in! t and outlet line 

with in trum ntation for trouble free operation in order to control the flow and ba k 

pressure. 

Th process of ion-exchange takes place in four main steps: service, backwash, r -

generation, and rinse [32, 33]. Figur 3.3 shows a simplifi d diagram of a typical 

ion-exchange operation. 

(o) (~) (d) 9) 

Figure 3.3: Sample Ion-Exchange Op ration a) Service p riod, b) Ba kwash peri 1, 
c) Caustic regeneration, d) Acid regen ration, e) Resin miting [51] 
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3.2.1 Service 

The feed solution to be treated is pas ed through the ion- xchange r sin and mobil 

ions in the solution are exchanged for ions attached to the resin . T his ontinues until 

the resin has absorbed the maximum amount of ions from the solution . The ions 

move from the bulk of the solution, through the laminar film, and into the pores of 

the resin. 

3.2.2 B ackwash 

The backwash step is required for maintenance of the ion-ex hange system. I t is 

required after the init ial installation and following each run. Th purpose of this 

stage is to remove any particles (such as silt, dirt, insoluble matter, or ex s resin) 

which may exist within the ion-exchange bed. Performing t his st p will keep the 

ion-exchange proc ss operating at maximum efficiency by xt nding the life of the 

exchange resin and nsuring prop r flow characteristics. 

Resin manufacturers recommend r moving suspended solids to a negligible lev l prior 

to the ion-exchange operation since the solids will gradually a cumulate within t he 

ion-exchange resin bed. Solid accumulation can lead to poor distribution of th water 

and regenerants within the resin bed and thus leading to incr a ed pr s ur loss [34] . 

3.2.3 R egeneration 

The resin bed is brought in contact with th regenerant solu tion. The fixed ions 

diffuse outward t hrough t he laminar film of th resin and ba k into th bulk of the 

solution. The ions fixed to the r sin ar removed and are replaced with hydroxyl 
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(anion-exchanger) or hydrogen (cation-exchanger) ions. 

It is possible for the resins to experience swelling, shrinkage, or both, during the 

regeneration stage. An additional backwash step may be required to ensure the full 

life span of the resin and to prevent channeling, resin compression, or both. The 

frequency of the regeneration and backwash steps vary depending on the volume 

of resin in the column as well as the quantity of heavy-m tals and other ionized 

compounds present in the wastewater stream. 

Ion-exchange regeneration technologies have evolved over th y ars. As shown in 

Figure 3.4 industries have the option of using either the co-flow or count r-flow re-

generation scheme. 

Feed 

Na• Resin 

Washings 

Expanded 
Resin 

Treated Water Service 

Exhausted Bed Backwash 
Water 

Feed 

Treated Water 

Exhausted Bed 

a. 

b. 

Regeneration 
and Rinse 

Waste 

H+ Resin 

Regenerant 
and Rinse 

Regenerant 
and Rinse 

H+ Resin 

Waste 

Exhaustion 

Exhaustion 

Figure 3.4: Ion-Exchange Operation (a) co- and (b) counter-current-flow regeneration 
(H+ form cation resin; N a+ removal) [35] 
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Co-current Regeneration 

In this proce. s, th resin is regenerated in the same direction as the service flow. The 

vessel has extra space to allow expansion of the resin bed when backwashing takes 

place. 

Counter-Current Regeneration 

Regenerant is in the opposite direction of the service flow. In or ler to obtain low leak

age levels, the ontaminating ions must be kept from the effluent end of the column 

during regeneration and rinse stages. In this process, frequency of backwash is min

imized. Count r-current regeneration system have reduced chemical costs, improved 

water quality, and have ended up with a final product that has less waste volumes as 

compar d to th co-flow technique [35]. Advantages such as incr a d productivity, 

smaller vessel sizes, increased regen ration tim , and fewer mechanical failur s have 

been recognized. 

Figure 3.4 d monstrates the leakage that takes place in the two systems. As can be 

seen, leakage in counter-flow regeneration is reduced since the r sin b d is mostly in 

the regenerated form at the bottom of the vessel [35]. 

3.2.4 Rinsing 

In this step all the excess regenerant solution is removed and the system is prepar d 

for service. 
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3.3 Types of Ion-Exchange Units 

In the ion-exchange process, certain components of the entering fluid are converted 

into insoluble rigid particles that are suspend d in a vessel (batch-type operation), 

packed in a column (column-type operation), or in a fluidized nvironment (moving

bed-type operation). These rigid par tiel s can then be removed for further proc ssing 

and re overy of the m tals of interest [36] . 

3.3.1 Batch Operation 

The resin and solu tion are mixed in a tank until the conditions of equilibrium are 

achieved, after which the resin i separat d from the solu tion. This pro ess is limited 

by the selectivity of the resin und r the conditions of equilibrium [32]. 

The batch ion-exchange uni ts are limited by the selectivity for th ion in solution. 

Disadvantages to this method include inefficient use of regeneration chemicals and 

increased tend ncies to become clogg d with residue which can lead to decreas d 

separation ability [37] . 

3.3.2 Column Operation 

The column-type ion-exchang unit is equivalent to multiple bat h operations in se

ries. Types include downflow, upflow, and counter-flow . Most types used in industry 

are downflow where the feed and the resin pass through the r sin b d. T hese units 

are less expensive in terms of equipm nt needed but uses regenerant chemicals less 

efficiently, has higher leakage concentrations, and cannot achiev as high a product 

concentration in the regenerant. Th upflow system is where the feed and resin are 



45 

raised through a bed, and the ounter-flow operation consists of th f ed flowing down 

from the top and the resin flowing from the bottom to t he top. 

With the use of a column ion-exchange unit , separations are possible d spite poor 

selectivity for the ion being removed. This theory is explained by a simplified diagram 

of the column-type operation, Figure 3.5. Each tank contains 1 equivalent (eq) ofr sin 

in the X ion form. A solution feed containing 1 eq ofY ions is sent into the first tank. 

Assuming that the resin has an equal preferenc for ions X andY, once equilibrium is 

r ached the solut ion phase and th resin in the first tank will contain 0.5 eq of X and 

Y. In the s cond stage, the solut ion exiting tank 1 enters tank 2, whi h also contain 1 

eq of resin in the X form. Following quilibrium, the exiting solution and t he resin will 

contain 0.25 eq of Y ion and 0. 75 eq of the X ion. T he third and fourth tanks follow 

the same procedure, and t he exiting solution would reduce to a value of 0.0625 in the 

Y ion form and 0.9375 in the X ion form. This simplified example sh ws that through 

the use of sufficient stages theY ion oncentration can b reduced to a desired level. 

After a feed solution passes through the system, the resin becomes xhausted and is 

not capable of further ion-exchang at which time t he resin is r generated. 

An option with th column operation is to have the ion-exchangers s t up in a 1 ad

lag format wh re the lead column is where most of the metal is r m v d and passed 

onto th second column where any r sidual metal is removed. One the first olumn 

becomes saturated and breakthrough occurs, t he higher metal l v I an be pas d 

on to t he second column. The lead can then be regenerat d whil th lag becom s 

saturated. 
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Figure 3.5: Concentration Reduction of Y ion using a Column Typ Ion-Exchang 
Unit [32] 

3.3.3 Moving Bed Operation 

Moving bed ion-exchange operations are used where the re in and the solution ftow 

through th sy t m. The resin is contacted counter-currently with the exhausted 

stream and the regeneration stream. Th advantages of this op ration is that th r 

is a continuous product of uniform quantity a t less space, capital, and labor. The 

problem with the system involves the complexity of the design. Fluidized-bed ion-

exchange systems have been used in th tr atment of solutions containing suspend d 

solids. The ion-exchange system splits a liquid effluent into two curr nts , one being 

more concentrated and the other more d pleted of a given compon nt. The syst m 

operates in a s mi-continuous way u ing two multi-stage column , one for loading and 

the other for elution of the resin [37]. 

Figure 3.6 displays a typical ftuidized-b d ion-exchange unit. The columns are divid d 

into four stages and each stage is separated by punched plates. t the base of the 

columns ar two coll ction tanks that ar separated from the olumns by a control 
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valve. When this valv is opened, resin and liquid in the 1st stage of th column falls 

into the tanks and the resin in the other stages drop down one level. In the continuous 

operating mode, load and elution occur simultan ously. Ther is an improved mas -

transfer b tween the liquid and th solid phas . T he counter-curr nt op ration mode 

improv s the efficiency in both the loading and the reg neration columns. 

Figure 3.6: Simplified Moving-B d Ion-Exchang ·nit [37] 

3.4 R esins 

An ion-exchange resin is defined as a polymer that contain fixed lectrically charged 

sites wher one ion on the resin may replace one ion in solution [38]. The literatur 
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available in th area of ion-exchange resins is xtensive demon trating the multitude 

of resins that are commercially available for the selective removal of a wide range of 

metals. Th advancement of technology has enabled resins to b created with superior 

selectivity of valuable species com par d to most other absorbents [39]. Ion-exchang rs 

can be organi , inorganic, or both , and can consist of synthetic or natural materials. 

3.4.1 Inorganic Resins 

Zeoli tes, often referred to as molecular iev s, are microporous crystalline solids that 

contain w 11-defined structures[40]. The framework consist of interlocking tetrahe

drons of Si04 and Al04 . Zeolite are typically anionic, and charge ompensating 

cations populate the pores to maintain cl ctro-neutrality [40]. 

The shape-selective properties of zeolites allow for selectiv adsorption of c rtain 

molecules, while excluding other . Zeolites have large vacant spaces in their structure 

to allow for large cations to be r adily xchanged for other types of metals in an 

aqu ous solution. Some minerals of the zeolite group allow for the spaces to become 

interconnected and form long wide channels of varying sizes which allow for easy 

movement of molecules into and out of voids [41]. 

Zeoliti s ar a simple and inexpensiv olution to the treatm nt of industrial wastew

ater. T hey have proven to succe sfully r mov heavy-m tals. atural zeoli tes hav 

been used for the removal of heavy-metal cations such a opp r ( Cu2+), admium 

(C d2+), zinc (Zn2+), nickel (Ni2+), and lead (Pb2+) [42]. 

Faghihian et al. (1999) [43] describe th use of natural zeolites (specifically clinop

tilolite) for the removal of heavy-metal ions in an ion-exchange process. This paper 

focuses on its use for the removal of cesium ( Cs+), Ni2+, strontium (ST2+), Cd2+, bar-
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ium (Ba2+), and Pb2+ from wastewater. It was found that th ffective pH range for 

metal removal wa between 3.5 and 8.0 even with the pres nee of alkali or alkaline

earth cations. It wa determined that clino1 tilolite is a suitable ion-exchanger to 

decrease t he heavy-metal content of weakly alkaline wastewater from everal thou

sand ppm down to 10-100 ppm [44]. Clinoptiloli te and chabazite hav been used for 

the separation of transition metals from mixed metal contaminant effluents [45]. 

It has been found that the functionality of natural ion- xchangers has limited use in 

some specific indus trial applications. The chemical resistanc o:ffi r d by these types 

of resins is suffici nt for some cases, but at times their microbiological sensitivi ti s 

restrict their use in the hydrometallurgical industry [30] . 

3.4.2 Organic Resins 

Organic resms with a crossed-linked hydrocarbon matrix and d rivatized with an 

inorganic group are common ion-exchange materials us d in a number of industrial 

applications. Some commercial r sins consist of a styrene-divinylbenzene structur 

which is bas d on copolymers of a vinyl compound (styrene) and a cro s-linking agent 

divinylb nzen (DVB) which can range from 4% to 16% [38]. Thi stru ture provid s 

resistanc against physical stres and is stable at relatively high temperatures over a 

large pH rang [30] . 

The use of synthetically produced resins is commonly encount red in industry due to 

its ability to b ustomized to each individual application to target specific metals 

that are of interest in the effluent stream. Each resin has a maximum number of 

available mobile sites capable of exchanging ions within the fluid medium [32]. 

Cationic or anionic exchange is determined by the functional group that is added to 
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the resin . Cation-exchangers have positively charged mobile ions that are available 

for exchange, while anion-exchangers have negatively charg d ions for exchang . By 

entering the structure and at taching to the surface ar a of th r sin, these functional 

groups determine the chemical behavior of the resin. Re ins can be classified into 

strong or weak acid cation-exchangers, and strong or weak base anion-exchangers. 

Figure 3. 7 shows the exchange capacity of weak acid cation and weak base anion resins 

as a function of pH. As shown, the exchange capacity for the weak base anion resin 

is limited over a pH of 7.0, while th weak acid cation resin has a limited capacity 

under a pH of 7.0. 
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Figure 3.7: Exchange Capacity vs . pH for Weak Acid and Base R sins[32] 

Typical regenera tion capacities of commercially available cation and anion r sins ar 

shown in Figure 3.8. As shown, t he capacities are influenced by th quantity of acid 

or base used to r generate th r sin. Weak acid and weak bas systems ar more 

efficient ly regenerated and their capacit ies increase linearly with regenerant amount . 
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T he weak and strong base anion resins were calculated using lb NaOH/ f t 3 (of resin) 

while the weak and strong acid cation used lb HCl/ j t3 (of resin). Weak ionized 

resins require only slightly greater tha n stoichiometric chemical closes for compl te 

regeneration while for the strong acid or strong base resins, efficiency of the regenerant 

chemicals is a primary concern. 
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Figure 3.8: Regeneration Capacities of Commercial Resins for Ion Exchange Process 
[32] 

Strong Acid Cation Resin 

Strong a id cation resins are ionized in both the acid ( R - S0 3H ) and salt (R -

S0 3N a) form . Both the hydrogen and sodium forms of t he strong acid are highly 

detachable and th N a+ and J-I+ ions are available for exchange. After the xchange is 

complete, the resin can be regenerated back to the hydrogen form using a strong acid 

solution, or back to the sodium form using a sodium chloride solut ion. In the hydrog n 



52 

form , these resins would be used for complete deionization whereas in the sodium form 

water softening can be achieved. It has also been u ed in special applications such as 

two-step metal-cyanide recovery treatment of acidic copper or zinc solutions [30]. 

Regeneration with hydrochloric acid (HCl) would result in a highly concentrated 

nickel chloride (NiCl) solution [32] . Resins exchange hydrogen ions H + for positively 

charged ions such as nickel, copper , and sodium. Equation 3.12 shows an example of 

a strong acid cation resin that exchanges the f!+ ions on the resin for Ni2+ ions in 

solution: 

(3 .12) 

where R is the organic portion of the resin and S03 is the immobile portion of the 

ion active group. For every nickel ion with +2 valence, two resin sites are required 

for equilibrium. In the case of trivalent ions, three resin sites are necessary for the 

reaction to take place. The degree that the reaction will proceed to the right depends 

on the resins preference or selectivity for the nickel ions as compared to th hydrogen 

ions [32]. 

In general , most resins are moderately resistant to oxidization, insoluble in solv nt , 

and are hydrophilic. Also, most waste treatment systems operate at 50-80% chemical 

efficiency due to foulants and precipitates that get into the r sin b d [46] . 

Regeneration occurs by contacting the resin with a concentrated solution of sulfuric 

acid (H2S0 4 ) . The following reaction takes place: 

(3. 13) 
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A strong acidic cation-exchanger will successfully remove heavy-metal ions, however 

it may also remove harmless cation such as sodium, calcium and magnesium. These 

background ions ause problems when they are present in con ntrations greater than 

the heavy-metal content in the waste stream since they compete with the heavy-metals 

for exchange site on the resin. 

W eak A cid Cation R esin 

The ionizable group in this type of resin is a carboxylic a id (COOH). Weak acids 

have a high affinity for hydrogen ions therefore regeneration ba k to the hydrogen 

form takes place with reduced amount of acid making it more economically feasible . 

The degree of dissociation of a weak acid ation resin has a limited apacity at pH 

values low r than 6.0 , as shown in Figur 3.7. This resin stru t ur is therefore not 

recommend d ford -ionizing acidic metal finishing wastewater [32]. Weak acid cation 

resins are very selective to divalent cations, particularly copp rand nickel, which make 

them appli able for removal of metals from wastewater [46] . Their use is very effective 

in neutral to alkaline pH environmen ts. Many metals form hydroxide complexes when 

the pH is high , thus by keeping the pH in the 6-8 range prevents pr cipitation of t h 

metals which leads to fouling of th r sin [46]. 

An exampl of a weak acid ion- xchange resin that uses th arboxyli acid radical 

in the sodium form is R-COO- ra, shown in Equation 3.14. As metal ions su h as 

magnesium (Mg) , calcium (Ca), and copper (Cu) pass through the resin th y ar 

exchanged for th N a+ ions. Sodium chloride ( IaCl) can be u d to regenerate th 

resm. 



54 

(R- COO- Na) + Ca2+ ~ (R - COO- Ca) + 2Na+ (3.14) 

Strong Base Anion Resin 

This type of resin is highly ionized and is used over a wide range of pH values. 

In some situations this resin will react with anions in solution and will convert an 

acid into pure water. The hydroxyl ion (OH - ) is used for the water deionization 

process. Regeneration back into the hydroxide form takes place with th use of sodium 

hydroxide ( aOH) . Applications include the removal of anionic metal complexes from 

acidic waters like ZnCli- in spent pickle solutions or Cr(VI) in rinse water after 

chromating [30]. Hydroxyl ions are exchanged for negativ ly charg d ions such as 

sulfates, chromates, and chlorid s . An exampl follows: 

NiS04 + Ca(OH)2 ~ Ni(OH )2 + CaS04 (3.15) 

The nickel ions (Ni2+) of the nick 1 sulfate (NiS04 ) are exchanged for the calcium 

ions (Ca2+ ) of the calcium hydroxid (Ca(OH )2) . 

Weak Base A nion Resin 

This type of resin is useful for a small range of pH valu s, and has minimum ex hang 

rates over a pH of 7.0, as shown in F igure 3.7. 



C helating R esins 

Chelating resins are macroporous polystyrene based resins derivatizcd with iminodi-

acetic acid groups. These types of resins are similar to weak acid cation resins, but 

are highly selective toward heavy-metal ions present in waste treams. The selectivity 

of the resin for a metal depends on th concentration and pre en of other metals, 

and the pH [47]. 

An iminodiacetic acid resin is useful in the removal of metals when a chelate uch as 

ammonia or ethylenediaminetetraacetate (EDTA) is present. A chelate is a chemical 

compound that is composed of a metal ion and a chelating agent [48]. Figure 3.9 

shows an EDTA ch lating agent which can form 4-6 bonds with a m tal ion . It is 

capable of forming chelates with both th transition-metal ions and the main-group 

ions [48]. Du to their capability of attaching multiple bonds to the metal of interest, 

the chelat s tend to be more stable than compl xes form d with monodentate ligands. 

The increased stability can be explained by the bonds that are form d which usually 

have both covalent and ionic characteristics [30]. 

Figure 3.9: Molecular Formula of Ethylen diaminet traa t ic id (EDTA) [48] 

A chela ting re in exists in both the sodium and hydrogen forms, but exhibits great r 

selectivity for h avy-metals in its sodium form. It is possible to convert the resin back 

into its hydrogen form by adding slightly more than stoichiometri amounts of acid 

or base sine heavy-metal complexes are less stable in low pH nvironments [32]. 
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A chelating resin is used in situations where there is a large amount of background 

ions such as magnesium, calcium, or odium that would reduc the fficiency of other 

available resin types. In most waste streams the concentration of various metals in 

solu tion are close to one another and th refore a resin with a high s lectivity toward 

a particular m tal is necessary for eft ctiv separation to tak place. 

Chelating resins ar used in a variety of pro esses; two examples are to lower the 

heavy-metal oncentration in the effluent from a hydroxide treatm nt process, and to 

remove toxic h avy-metal cations from wastewater containing a high concentration 

of nontoxic, multivalent cations. On of the main downfalls of the use of chelating 

ligands is the high cost that corresponds to its use [32]. This typ of resin requires a 

greater amount of r generant solution in the regeneration stage of th process. 

Chelating resins have some qualiti s that make them ideal for removal of dilute metals 

from wa te str ams, but they also hav som negative qualities. Th cost of utilizing 

a chelating resin is very high compar d to conventional methods. The kinetics of a 

chelating resin is also much slower, and therefore requires larger volumes of the resin 

as compar d to conventional r sins [30]. 

3.4 .3 Selectivity of Ion-Exchange Resins 

Table 3.1 gives the selectivity of strong acid and strong base ion-ex hange resins for 

various ionic compounds. As indicated strong acid resins have a pre£ renee for nickel 

over hydrogen. The higher the degree of preference a resin has for an ion, the great r 

the exchange efficiency of removal of that ion from solution. Also, gr ater preferen e 

for a particular ion causes an increase in th consumption of chemicals during the 

regeneration process. 
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Table 3. 1: Selectivity of ion-exchange resins in decreasing order [32] 

Strong acid cation Strong base anion 
exch anger exchanger 

Barium Iodide 
Lead Nitrate 

Calcium Bisulfite 
Nickel Chloride 

Cadmium Cyanid 
Copper Bicarbonate 

Zinc Hydroxide 
Magnesium F luoride 
Potassium Sulfate 

Ammonia Sodium 
Hydrogen 

Table 3.2 shows the sel ctivity coefficients for a commercially available chelating r sin 

for different metals as compared to calcium ions at three pH values. At pi-I = 4, the 

preference for copper is 2300 t imes more than that for calcium, i.e. in a solution 

containing equal amounts of copp r and calcium ions the molar concentration of the 

copper ions on the resin will b e 2300 times the concentration of cal ium ions. The 

affinity for a metal can be altered by changing the pi-I of the solution [47]. 

3.4.4 Effectiveness of Ion-Exchange 

There are a number of factors that contribute to the eff tiv ness of an ion- xchang 

process. Each property has an effect on t h productivity and the qualit of the 

resulting fluid concentration that is observed during operation. Density, mechani al 

resistance, grain size, capacity, and equilibrium rate determine t he functionality of a 

particular ion-exchanger in any industrial application. 
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Table 3.2: Selectivity Coefficients of Serdolit Chelite Resin [47] 
pi-!=2 pH=4 pH= 9 

Metal Ion ]{~ Metal Ion J(~ Metal Ion J(~ 
Fe +a 325000 Hg+z 2800 Ni+2 30 
cu+2 130000 cu+2 2300 Cd+2 14 
Hg+2 > 43000 Pb+2 1200 cu+2 10 
Au+3 > 8100 Ni+2 57 zn+2 57 
Ag+ 4600 zn+2 17 ca+2 17 
Ni+2 3200 Cd+2 15 
Cd+2 620 co+2 6.7 
Fe+2 190 Fe+2 4.0 
Nfn+2 120 Mn+2 1.2 
zn+2 120 ca+2 1.0 
At+3 50 

Nfg+2 20 
ca+2 1.0 

Density 

In the ion-exchange process, water diffuses into the structure, causing it to swell until 

the osmotic forces are satisfied. The density of the water swoll n resin is determined 

by the type of counter-ion present, swelling capacity of the resin (as defined by the 

nature of its polymer structure), and the degree of cross linkage. 

The effectiveness of a particular ion-exchange resin is determin d by cross-linkage, 

which is based on the proportion of different monomers used in the polym rization 

step. The lower the cross-linkage the higher the moisture content of the r sin as 

shown in Figur 3.10. 

Mechanical Resistance 

Mechanical resistance varies with the structure of the resin. An important factor to 

consider during the resin selection stage is that air dried resins can be destroyed with 
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Figure 3.10: Conceptual Linear Plot of Moisture Content vs Crosslinkage [38] 

a certain amount of friction. 

Grain Size 

The size of resin particles is controlled during the polymerization step through t he use 

of various mesh sizes to obtain uniform particle diameters. The partie! size influences 

the time to reach equilibrium conditions. There are two types of diffusion that take 

place in an ion-exchange system. Film difrusion is the movement of ions from th 

surrounding solution to the surface of the ion-exchange partie! . Internal diffusion 

is the movement of ions from the surface to the interior of an ion-exchang particle. 

Film diffusion is normally the controlling reaction in dilute solutions wh r a internal 

difrusion is controlling more concentrated solutions. A fin m sh parti 1 presents 

more surface area for film difrusion and contains less internal volume through which 

an ion must difruse, therefore reducing the time required to reach equilibrium. 
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Cap acity 

Resin capa ity is measured in terms of equivalents available for exchange per unit 

volume (eq/L) of wet resin , or unit weight of dry and wet resin (eq/g). An equivalent 

is defined as follows: 

E 
. l ( ) MolecularWeight(gjmol) 

quwa ent eq = -----=::-:---. ___,.-::,-,.----=.::-'----'
ElectncalCharge 

(3. 16) 

Figure 3.11 shows the typical capacities for resins as a function of cross-linkage. 
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Figure 3.11: Moisture Content vs Cross linkage for Divinyl benzen adsorption[35] 

The capacity of a resin measured on a dry basis drops slightly as cross-linkage is in-

creased. This is xplained by the increased resistance of the resin due to the addition 

of functional groups to its structur . When measured on a wet basis, the capacity 

increases as cross-linkage increases. Fewer functional groups are introduced into the 
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resin therefore th resins are spaced closer together. Since the volume of water is 

reduced by the increased cross linkage, the capacity of the re in in reas . Th max

imum resin capacity, also known as breakthrough capacity is dependent on the pH 

grain ize, olumn size, and flow rate. 

Equilibrium Rate 

The tim for a system to reach equilibrium is influenced by the cross-linkage of 

the resin. The higher the cross-linkag , the more resistant it is to the difFusion of 

ions therefore l ading to increased tim to equilibrium. Pore iz also has an aft ct 

on th operating rate, for example, zeolite exchangers operate slower while an ion

exchang r containing larger pores operat s fast r [38] . The sph rical particles of th 

ion-exchange resin resist the flowing of a liquid through or around th m. T he mall r 

the resin bead ize, the greater the r sistance will be against which t he liquid mu t 

flow. DifFusivity is a controlling factor in th time that it takes for a particular sy t m 

to reach equilibrium. 

3.5 Applications in Industry 

When designing an ion-exchange column, it is important to hav an understanding of 

how the chemical separation proc ss works. Chemical separation is broken down into 

two sections; the specific chemistry of the separation which includ s th affinity that 

the resin has for the target molecul s, and t he engineering of the s paration column 

which consists of the dimensions, flow rates, and other parameters specific to th 

process. It is recommended that an analysis be performed under equilibrium condi

tions. Determination of the equilibrium isotherms allow for comparison between the 
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various r sins that are commercially available, and to explore optimal regen ration 

conditions. Any tests that can b performed using t he exact process stream would b 

valuable in det rmining if the presence of any addition ion in th olution will com

pete for the exchange sites. In industrial applications, most ion-exchange proc sses 

take place in columns to take advantage of multiple equilibrium steps. upon com

pletion of the equilibrium i otherm evaluation a variety of r sins can be chosen and 

tested to pinpoint which resin is the most efficient and also d termine the operation 

parameters for scale-up. This allows for calculation of capital and op rational osts 

of the separation media, and the life exp ctancy of the resin. 

The interest in the ion-exchange proc ss as a solution to wastewater disposal issues 

is due to its ability to remove trace impurities from the bulk of a substance. The 

use of ion-exchange for the recovery of valuabl metals in solution is on of its major 

applications in industry. Metals, such as copper and zinc, are r covered from wa te 

streams, often at a profit, solving waste disposal problems [22]. 

An example where ion-exchange has been used to treat dilu te waste str ams analogou 

to hydrometallurgical waste streams has been presented by Ewing, Evans and Doyl 

(2003) [49]. A study was presented where plating additives were used to recover 

copper from a dilut aqueous solut ion with the chelating resin DOWEX M4195. Ion

exchang was utilized in this study to remove copper from th waste str am in an 

industrial facility involved with the manufacturing of semi-condu tors. Th proce 

stream was used in the manufacturing process and through the u of ion-exchang 

the stream was purified to the point where it could b re-us d . This eliminated 

the ne d for outsourcing the waste control to exterior companies and it was prov n 

to reduc t h need for water which is scare in the locations wher semi-conductor 

manufactur is prevalent. 
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Mijangos and Diaz (1990) [14] present a simple method on how to fit quilibrium 

results for a multi-component system to an analytical equation. Thi can be u eful 

in t he design of process plants to recover the low concentration onstituents in the 

waste stream. The use of ion-exchange to recover metals from the wastewater of a 

hydrometallurgical process is also pr sented. Ion-exchange was utiliz d to reduce con

tamination of the waste and to improve the profitability of the proje t by recovering 

more of the valuable metal from the waste solution. The imp! m ntation of ion

exchange presented various hurdles before it could be designated a viable solu tion. 

The first hurdle was that the ffiu nt stream had a low cone ntration of constituent · 

and is as o iated with high flow rates. Precipitation must also be avoided to allow 

th ion-exchange resin to remain porous and receptive to appropriate ions. Th de

gree to which these issues affect the viability of the ion-exchange process depends on 

the specific components of the waste stream. The complex sulfid hydrometallurgi

cal process reviewed in this study propos s a selection of potential commercial resin 

candidates. The selected resins were placed in the industrial solution for ight hour 

to ensure equilibrium was achieved. The pH of the solution was varied to highlight 

the sensitivity of the equilibrium reaction to pH. 

During experimentation it was found that t he concentrations of rtain metals in the 

solution had to be altered to avoid precipitation. The industrial solution is id ntified 

in Table 3.3. Based on this solution a total of twelve commercial re ins wer id ntified. 

T hey are macroporous and of th polystyrene-divinylb nz ne typ and are list d 

in Table 3.4. In addition to the commercial resins, three h lating ligands w r 

used. These ligands were chosen by the experimenters bas d on availability and their 

selectivity toward certain metals. 

The distribution coefficient, ]( 0 , is defined as the ratio of the con entration of the o-
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lute in the stationary phase to that in th mobile phase under quilibrium condition . 

It is a m asur of the nature and strength of the intermol cu lar for s b tween th 

solute and th two phases. Solutes that interact more strongly with the stationary 

phase will xhibit a larger distribution co fficient and will be r tain d long r. Tab! 

3.5 shows the distribution coefficients of th resin consid r d. 

Table 3.3: Com f lfid h d pOSltlOn 0 SU e y 11 rometa urgy waste-wat r ffiuent [14]) 

Component Composition (mg/L) 
Sodium 37000 
Iron 14000 
Potassium 3000 
Zinc 800 
Calcium 450 
Manganese 400 
-ickel 150 

Copper 130 
Cobalt 120 
Cadmium 70 
L ad 50 
Sulfate 90300 
Chloride 28000 
Solid in Suspension 20 
Average Solution pH 1.80 
Density 1140 kgjm3 

The twelv resin chosen were categoriz d and some wer liminat d bas d on th ir 

attributes. For xample, the quat rnar amin s wer eliminat d from th study based 

on th ir I w distribution coeffici nt indi ating that the anion compl xes will n t form. 

The sulfonic and arboxylic type resin show low retention du to th interferen of 

iron ions. Th r mainder of the study concentrated on iminodia eti r sin which 

were known to be more effective. 

Results from th xperimentation indi ated that it was ne s ary to work in the acidic 

region of th pH ale to avoid pr ipitation of the ba ic sp ci s. S ondary exper-



Group 

Sulfonic Carboxylic 

Resin L S100 LSP112 D C20 DC26 L CMPSO D C464 

Bead size 
distribution 0.3-1.25 0.3-1.2 0.3-1.2 0.3-1.2 0.3-1.2 0.3-1.2 
(mm) 

Ionic form Na Na Na Na H H 

Density 1280 1270 1250 1250 1180 1130 
(kg m - 3 ) 

Total capacity 2.2 1.8 2.0 1.85 4.8 3.5 
(eq 1-1 ) 

Moisture 42-45 40-45 43-50 47-52 45-50 57-62 
content 

Quater. Amidoxine 
Amine 

L .MP500 DES346 

0.3-1.5 0.3-1.1 

Cl chelate free 

1060 1100 

1.2 

55-60 55-60 

lminodiacetic Aminophos. 

L TP207 D ES466 A IRC718 D ES467 

0.3-1.2 0.3-1.2 O.:l-1.2 o.:l t . ~ 

Na Na Na Na 
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2.7 1.0 
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Table 3.5: Distribution coefficients (Ko) of commercial resins (shown in Table 3.4) 
[14] 

Ligand pH Co l\'i Cu Zn 1\h 
Iminodiacetic 3.4 15-55 130-200 1200 17-30 2 
Aminophosphonic 3.9 22 < 1 79 30 5 
Amidoxime 3.9 2 < 1 1200 4 < 1 
Sulphonic 2.4 1 1 2.5 1 1 
Carboxylic 1.7 3 < 1 1 2 2 
Quater. Amine 1.5 2 < 1 6 57 < 1 

imentation was necessary because theor tical equations of solubility did not predict 

the reality of omplex solutions. These xperiments were designed to determine the 

pH levels with a higher degree of accuracy. It wa found that the pii should remain 

below 3.3 to avoid precipitation and clogging of the resin bed, as hown in Figure 

3.12, where C is the concentration of the residue (precipitate) and Co is the initial 

concentration. 
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C/Co 

0.4 -
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.L l l 
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Ni 
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Pb 

Figure 3.12: Residual Cone ntration of Metals as a Fun tion of pH [14] 
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The xperimental results also show the kinetics of the metals for the iminodiacetic 

resin in a stirred tank, shown in Figure 3.13. This figure shows that copper and nick 1 

are retained more effectively than other ions and it takes a longer duration of tim 

for other metals to reach equilibrium. 

c .. 
e 
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~ 0.8 

~ 
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d 

0.4 

US=438 L/kg dry resin 
pH=4.0 

Cu 

10 15 20 25 
time, min 

Figure 3.13: Kinetics of the Simulation Loading of Metals in a Stirred Tank [14] 

Further xperiments were carried out by changing the solid/liquid ratio and the pH 

of th solution at equilibrium. From here, isotherm equations were determined based 

on the assumption that they are binary in nature (for a balance between accuracy 

and simplicity). 

The conclusive results from the studied support the u e of iminodiceti resin to treat 

wastewaters from complex sulfide hydrometallurgy. The resin shows good selectivity 

and has the ability to recover valuable m tals from wast streams. Th proposed 

procedure presented in the study may be us d to study other industrial waste streams 

and the applicability of other commercial resins. Due to the importance of modeling 
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the kinetics, and in fitting equilibrium data, these experiments give an important 

indication of process viability. 

De Villiers, Van Deventer and Lorenzen [39] present a meth d to re over valuable 

metals from sparingly soluble solids in a slurry mixture from a p r alation lea hing 

procedure. Leaching is important in mo t hydrometallurgical xtraction pr cesses as 

it involves t he freeing of metals from olid or s by chemical dissolu tion . 

In the slurry mixture, a dissociation equili brium exists between the dissolved ions 

in the solution and the solid ore. When the ions in the solu tions are removed by 

some process (such as ion-exchange) the solid will continue to dis ociate to regain 

equilibrium (and to satisfy Le Chatelier 's principle) . Complete liberalization of the 

desired ions from the solid ore is possible provided a suffi ient amount of resin is 

available for the exchange. A general representation of the dissociation reaction (Le 

Chatelier 's principle) is as follows: 

[B Y. l I<., B ZB yzv 
11B 11Y solid f---'--7 VB + Vy (3. 17) 

where 

(3. 18) 

where B 118 Yv)' r presents the solid ore being dissolved , B ZB repr sent the constituent 

cation (valuable species), y zY represen ts the anion (contaminant sp i s) , K sp is the 

solubility product , Ci is the solubility phase concentration, ai is t he activity, 'Yi is th 

activity coefficient, v i is the numb r of moles of constit uent i, and z i is the valence of 

the species. 
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During the leaching process the concentration of the constituent cation increases. 

According to th above equation this will cau e an associat d increas in contaminant 

as well. This means that more leaching agent is required to obtain an optimized 

amount of valuable metal recovered. For this reason a multi-stag leaching process 

is employed such that the contaminant removed from one stage will not affect the 

leaching in the next stage. 

In order for the ion-exchange to b successful the stoichiometri equival nt of th 

cation of the mineral species must exist in the resin and migrate during the reaction 

to maintain lectro-neutrality. When this cation is availabl in excess, the r in is 

referred to as a strong acid cation or a weak base anion-exchange resin. Wh n the 

cation is part of the functional group it must b activated in order for the ion-exchange 

process to work. This is known as a weak acid cation or weak base anion-exchang 

resin. When the cation is part of the mineral species it is known as a chelating resin . 

The solubility of the sparingly solubl solid is affected by the change in th h mica! 

composition caused by the exchange of ions from the resin. It an b describ I 

mathematically: 

( 

} ( ) vB!vy S sp 
- liB lly [vale] [vY / Y] 

(3.19) 

The increase in concentration of the valuable speci s ( B Z8 ) and the ontaminant 

(Y zy ) shifts the equilibrium condition by increasing the cone ntration of th ion 

common to the equilibrium r action. This is known as the ommon ion effect. This 

reduces the solubility of the mineral sp ci s as can be shown int h following equation. 
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(3.20) 

where m is: 

(3.21) 

To counteract this behavior it is suggested to try either of the following procedures: 

• Use the prop r counter-ion species to init ially saturat t he resin to transform 

the contaminant species so it doe not take part in the dissolution r action. 

• Precipitate the contaminant ion when ther is no l ctrol t orption. Existen e 

of electrolyt orption would cau e precipitation within the por s of the resin. 

The thermodynamic equilibrium onstant can be written a : 

(3.22) 

where Yi is th resin mole fraction. 

The concent ration of the species is given by: 

Ce 
!Zyl Cy - !ZA! CA 

(3.23) 
!Ze l 

Cy vyS (3 .24) 

CA 
Q ( 1 - f.) D P RV y B 

(3.25) 
!ZA!V 
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where V is the solution volume, DPilV is the volume of the resm, Q i the resin 

capacity, E - volum tric fraction of interstitia l water in a volume of resin beads and 

YB can be found from the thermodynamic equi librium con tan t as a function of th 

concentration of the contaminant pecies. 

The thermodynamic dissolution coefficients for different resin-in-pulp slurries on-

taining ither a cation-exchange resin or an anion-exchange r sin are given in Tabl 

3. 14 

Dissolution Cation ./ 
Reaction Exchange K., ·K: K,.... 

Reaction 
IZBI > tzAJ, !.1. 

lzof - Jzvf fzsVIz ... t - (a.,Xa r ) 
{a.)( a_. ) •· K..,K: 

!L integer (0:}• (a.,) 

lzol > tz ... t, 
tzol/Jz ... t -.e 

integer (a.)'• ( y· a_. 
fzaJ - tzvJ or (a.,Xar) 

(Q:)'"(a.,)'• [K.,J" K: 
Jz ... t > fzsl, 
tz ... VIZBJ-.e 
integer 

tz ... t > fzof, !d. 

lzol - lzvf Jz ... VIzol - (a.Xar) (a.)•• (a_.) !L 

integer (a:) a.,)~ [K., ]•• K! 

lzal = lzvf lzot-tzAJ (a.Xar) 
(a.)( a_.) 

K.,K: (Q;)(a.,) 

lzoi'F-Izvl fzol ~ lzAJ (a.,)''(arY" 
(a.")( a_.) 

K,..[K:)" (a;){ a.,) 
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lzsl-.e lzvf lzof/lz ... t ~ (a.,)''(ar)'" 
!.t. K.(K:)" 

"integer (a:)•· (a.,) 
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integer (a.)'• (a_.)'" 
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integer 
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. !L (K.)•• [K:)" integer ra;xa. )·· 

Figure 3.14: Thermodynamic Dissolution Co fficients [39] 



72 

DeVilliers et al. conducted experiments considering a number of commercial resins in 

various ionic forms. Different combinations of cationic and anionic resins were used 

to study the effect of the electrolyte solutions on the solubility of lead sulfate and th 

equilibrium resin loadings. After preparation of the resins (involving bead selection 

and bed rinsing) the equilibrium experiments were conducted . Diff rent resins wer 

added to one liter PVC bottles along with lead sulfate. The solutions were constantly 

stirred and allowed to react for one month which was felt to be sufficient length of time 

to obtain equilibrium. The mixtur was then separated into a filtrate solution and 

resin beads. The resin beads were rin eel , dried, crushed , weighed, ashed, dissolved 

and put into a crucible. Both filtrate solution and bead remains were analyzed with 

an atomic absorption spectrometer and an ion emission spectrom ter. The filtrate 

was also analyz d with an ion chromatograph. 

The quilibrium isotherms for Pb+2 for a specific resin (Duolite C26) with variabl 

1omc forms are given in Figure 3.15. It shows that a high resin loading can be 

obtained for low solution concentrations. This is important for dilute waste streams. 

The shape of the I-I+, N a+, and I(+ results ar typical behaviors for modern synthetic 

ion-exchange resins. 

Ion-exchange was proven to be a £ asible method to recover valuable mineral sp ci s 

from the sparingly soluble solids due to the availability of 'sel ctive high capacity 

ion-exchanger sins" [39] . 

McGarvey and Siber (1985) [5] discuss the use of ion-exchange units in the elec

troplating industry. Similar to the hydrometallurgical industry, there is a need to 

controlling the amount of toxic wastes that enter the environment. The rinse waters 

in the electroplating industry are dilute in metal concentrations and therefore the 
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Figure 3.15: Equilibrium Isotherms for Sorption of Pb +2 ions for Duoli te C26 Resin 
[39] 

ion-exchange process could be successful wi th the use of ion-exchange resins acting 

as concentrators. 

It is important to know all th components in the waste stream prior to applying 

ion-exchange technology. An example outlined by McGarvery and Siber [5] warns 

that the effectiveness of an ion-exchanger in a metal recovery plant failed to perform 

because the solu tion contained a substantial concentration (about 5%) of sodium 

chloride which was not considered in the initial design of th treatment plant. When 

there is the potential for the occurence of highly dissociated salts such as sodium 

chloride, sulfuric acid, caustic, soda ash, etc. ion-exchange will frequetly be elminated 

as a possible separation technology due to the fomation of various complexes that can 

pass through the resin unaffected. On the other hand , concentrated chloride solu tions 

can be treated to remove iron and other metals which form chloride complexes. 
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Mijangos, Lombrana, et al. (1990) [26] studied the equilibrium and kinetic results for 

the recovery of products from a complex hydrometallurgical effl uent using a chelating 

ion-exchange resin. A chelating resin ontaining iminodiacetic groups was chosen due 

to its capacity for the recovery of heavy-m tals from hydrom t effiu nt . The zin 

industry produces a high flow of liquors with low concentrations of non-ferrous ions 

that have a high metallic value. Experiments were conducted on zinc raffinates where 

the separation of s veral species was considered such as sulphate, iron, copper and 

zinc. It was det rmined that t he recov ry of heavy-metals by ion-exchange resins play 

an important role in wastewater treatment. 

Diaz et al (1998) [37] states that one benefit to the use of fluidized bed ion-exchangers 

over the conventional fixed bed syst m is the issue of clogging that takes place 

when dealing with dirty solutions containing suspended particles. Fluidized-bed ion

exchange operation have been develop d especially for the treatm nt of solutions with 

suspended solids as is the case of hydrometallurgic indus try wastewater. Fixed b d 

columns became clogged as the slurry passed though the column, and thus proved 

to be impractical in some cases. The fluidized bed system allows for better mass

transfer between the solid and the liquid phases due to the increased contact that 

takes place. The issues of concern with this system is the utilization of the regener

ation solu tions since in most cas s, th s solut ions cannot be reused. This leads to 

some environmental and economic concerns. 

Experiments were conducted by Diaz et al (1998) [37] in which t sting a fluidized

bed ion-exchange system with a hydrometallurgical wastewater containing cobalt and 

copper as heavy-metal ions. The resin of choic was the chelating iminodiacetic type, 

Lewatit TP-207. Table 3.6 outlines the specific characteristics of th resin. This resin 

was chosen due to its different sel ctivity toward the two m talli ions (Co 2+ and 



Table 3.6: Characteristics of Lewatit TP-207 Il sin [37] 

Ionic form su ppli s 
Matrix 
Ionogenic group 
Size (mm) 
Apparent density (kg/m3 ) 

Humidity (% weight) 
Color 
Total capacity (mol/1 in H form) 
Thermal stability (° C) 
pH stability 

I\ a 
Polystyr n 
Iminodia etic 
0.3-1.25 
700-800 
45--o 
Beige clear 
2.7 
-20 to 80 
1-14 
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The wastewater that was introduced to th system was a mixture of cobalt (35 mg/ L) 

and copper chlorides (33 mg/L) with 20 g/L of TaCl to adjust the salini ty. The eluent 

solution was 3% HCl wi th 20 g/L of ·acl to maintain the same salinity as the loading 

column. Th flow rate was 110 L/ h in both columns. 

The system op rat es in two modes; elu tion and division . At cyclic steady state, t he 

equipment can split up the wastewater producing an effluent concentrated in cobalt 

in the outlet stream of the loading column (saturation) and a concentrated stream of 

copper in the effluent of the elution column ( lu tion) . 

In the elution mode, shown in Figure 3.16 saturation takes pla e in one olumn, 

while elution with hydrochloric acid (HCl) occurs in the oth r olumn. This set up 

is similar to two fixed-bed operation columns where the function of ach column i 

changing at the end of the opera tion cycle. The solutions (load and elution) enter th 

columns from the bottom and cross the interstage separators in the column. Load 

and regeneration occur at the same time, until the columns ar both saturated and 

regenerated. Then the feed is cu t off and the two valves unci r the olumns are opened 
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causing th resin of each stage to fall on lev 1 b low. The used resin is colle ted in 

a tank at th bottom under the column which then moves to the opposite column to 

undergo regen ration. Cnder ideal conditions, the effluent of th loading olumn i 

where cobalt is concentrated, and the effiu nt of the elu tion column is where copp r 

is concentrated. 

0.0. 0.0. 

0.5 
t..Mool.- a.w·:.~ ~~ n..--

--. ... . .. ......_ 
... . .. 

0.0. -1:1 IDI!i (:o.Ebion 

0~--------------------------~ 

t 

Figure 3.16: Elution Operation Mode for Column Type Ion Exchange [37] 

The division operation mode, shown in Figure 3.17, th wast wat r is introduc d at 

various pH levels into each column. Th ffiuent of the olumn at high pH is dilut d 

with respe t to the initial wastewater and it is more con entrat d in th ion that 

is retain d less by the resin. The effiu nt in the other column (at low pH) is mor 

concentrated with respect to the initial wastewater, and mor concentrated in th ion 

that is retained more by the resin. The operation involves falling and transfer of th 

resin which is the same as the elution mode. 

The experim nts were conducted using the lution operation mode to split-up a hy-
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Figure 3.17: Division Operation Mode for Column Type Ion Exchange [37] 
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drometallurgical wastewater and it was found that cobalt wen t wi th the effluent of 

the loading column and copper wi th the ffiu ent in the elu tion olumn. 90% of cop-

per and cobalt initially in the mixture were recovered from the two stream. It was 

determined tha t this proposed system can be used for separation and concent ration 

of streams that have components wi th different equilibrium isotherms depending on 

system pH or temperature or both. 

3.5.1 Feasibility Considerations 

To determine the feasibility of ion-exchange usage in hydrometallurgy, a sufficient 

number of tests should be conducted to determine important parameters influencing 

the efficiency a t a commercial scale. Developing an ion-exchange process for wast 

t reatment for field implementation has been discussed by Mijangos and Diaz (1989) 
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[14] and Mindler [22] and include the following steps: 

1. Research the specifics of the waste stream. Identification of the most recent and 

efficient types of ion-exchangers and resins available is important at the early 

stages of plant design. A range of commercial resins can be chosen for further 

analysis. 

2. Preliminary lab work. This stage includes determination of working condit ions 

and pH levels where precipi tation may occur. T his is also where the election 

of the resin may occur. 

3. Laboratory tube work. The optimum design condi tions for the resin are estab

lished and studied analytically to determine the reclamation procedure for the 

resin as well as its limitations and capacity. This may involve the development 

of equilibrium isotherms. 

4. Pilot plant testing. When there is no history for treatment of the waste stream 

or design environment then testing at a la rger scale may be helpful in identifying 

any possibility of chemical poisoning or other problems which may occur. 

5. Commercial scale equipment design. 

3.5.2 Process Limitations 

Although ion-exchange processes have been widely accepted as a prominent method 

of recovering metal and purifying waste streams there are some inherent limitations. 

Such limitations have been noted in the literature [22]. 
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Process limitations 

• Interfering ions: can cause a portion of the capacity of t he ion-exchanger to be

come exhausted before th desired expected retention 1 vels have been rea hed. 

• Separation: special processes are neces ary to separate closely related ion . 

• Further processing: recovered metal from ion-exchange generally needs fur ther 

processes for commercial viability to be realized. 

Physical Limitations 

• Temperature: certain exchangers can only wi th tand er tain temperatures for 

short durations which may limit the design or effi ciency of the proce s. 

• Physical poisons: blockages of the por s of the resin may reduc th apacity 

or rate of reaction of the process, or both. 

• Thrbidity: particles in th working solution can cause a high pressure drop or 

chann ling of the solution through the b d such that reclamation of the resin 

may be less efficient. 

Chemical Limitations 

• Limiting Cone ntrations: there may be c rtain maximum concentrations of ion 

for economic feasibility. 

• Chemical Poisons: certain ions, if not removed during regen ration and/or elu

tion can build up and influence the rate of reaction. 
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3.6 Conclusions 

The unavailability of specific det ails regarding the I reo waste stream makes it dif

ficult to make specific conclusions about ion exchange techniqu s. T his chapter dis

cusses literatur available on th technology and specific details that hould be con

sidered wh n modeling ion exchang in any processing facili ty on a general level. It 

is m eant to provide a fundamental knowledge base for more detailed work. Th re 

a re numerous types of ion exchanger techniques available. Further details on 11\CO s 

waste stream are required to determine potential application of any singe ion exchange 

t echnology. 



Chapter 4 

Membranes 

Membrane t chnology is becoming a popular separation and purification process. 

Advancements over the last 30 years have allowed membrane proc sses to become a 

feasible separa tion technology in a number of industrial applications. The increased 

number of synthetic materials identified as commercially viable membrane materials 

offer unique and novel solutions to sp cialized separation problems [52] . Continuous 

research and development has resulted in a b tter understanding of the fundamentals 

of membrane separation, improved transport properties, and enhanced thermal and 

chemical stability of the membrane body [53]. 

Membrane processes have be n used in a variety of application from the desalina

tion of sea and brackish water to tr ating industrial effluents [53]. Th y are apital 

and energy effi ient when compar d to convent ional separation proc sses and can b 

compact and modular [52] . 

Membranes allow for the combination and hybridization of separation technologies to 

improve proce eft ctiv ness leading to innovative solutions for specific applications. 

81 
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4.1 Fundamentals 

Mass transfer i the exchange or movem nt of a component in a mixture from on 

location to another due to a con entration gradient . This exchang o curs in the di-

rection of high to low concentration (although other driving forces may exist). Mass 

transfer occurs by two mechanisms: molecular diffusion and ed ly diffusion. T he 

major difference between the mass diffusion types is th magni tude of movement of 

molecules and in the type of flow (laminar for molecular diffusion and t urbulent for 

eddy diffusion) . Molecular diffusion occurs on the molecular level where microscopic 

movement of individual molecules are considered. Eddy diffusion occurs in the bulk 

fluid motion where large groups of molecule are of interest. This chapter will con

centrate on mol cular diffusion as it i · th most common typ e of mass transfer in 

commercial eparators [36]. 

4 .1. 1 Mass Transfer Laws 

Molecular mass transfer is govern d by Fick's law which is analogou to Fourier 's first 

law of heat onduction. For a mixture with two components A and B, the following 

equations r present the relationship between molar flux and oncentration gradient. 

deB 
JB. =-DBA -. dz 

( 4.1) 

(4.2) 

where Ji, 1s the molar flux, D AB and D aA are t he diffusion coefficients between 
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components A and B, and ~ is the concentration gradient in the z-direction (which 

is negative to the direction of ordinary molecular diffusion) [36] . 

Another mathematical model that can b used to represent mas transport ph nom-

ena is based on an equation t hat connects the fluxes of th el ctrical charges, volume 

(viscous flow) , and individual componen ts wi th the driving for s by a linear rela-

tionship [53] : 

(4.3) 

where J i is the molar flux, X is a generalized driving force, sub ripts i and k refer to 

individual components, volumes, and electrical charges, and L is a phenomenological 

coefficient relating the fluxes to t he driving forces. T his equation is applicable to any 

membrane sine it is independ nt of the m mbrane structure. 

For multi-component systems Equation 4.3 can be wri tten as a matrix in which t he 

diagonal coefficients relate the fluxes directly to the corresponding driving forces, and 

the cross-coefficients express th coupling of fluxes with non onjugated driving forces 

[53]. 

Maxwell and Stefan have developed an expression for membrane bas d processes in 

which the forces are xpressed as a lin ar function of the flux s: 

( 4.4) 

where X is t he driving force, D is the diffusion coefficient, R9 is the gas const ant, C 

is the concent ration , v is the linear velocity, and f is t he friction co fficient. 
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Equation 4.3 and 4.4 are used to provide a complete description of transport pro-

cesses through a membrane separating two homog neous mixtur s. It is limited in its 

application in a h t rogeneous medium with vi cous flow [53] . 

4 .1.2 Mass Transfer Velocities 

The velocities of the molecules in mass transfer is also a usefu l parameter to formulate. 

The velocities an be calcu lated first by looking at the molar average velocity of th 

mixture (vM); 

(4.5) 

where Ni is the molar flux, VA and v8 are component velociti s, and c is the total 

concentration. 

sing the concentration fraction , xi = cdc, th following equation can be found for 

the mixture velocity: 

(4.6) 

Csing the diffusion velocity (viD = Jdci), mixture velo ity (vi = VM + viD), and 

equation 4.5 the molar flow rate per unit a rea can be found to b : 

(4.7) 

and 
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(4.8) 

where ni is the molar flow rate and A is the mass transfer area. Th first term on the 

right represent the bulk flow and the second term represents the ordinary molecular 

diffusion. The two limiting cases which bound th relationships are equimolar counter 

diffusion (EMD) and unimolecular diffusion (GMD). In equimolar diffusion the fluxes 

of A and B are the same in magnitude but opposite in dir tion. This situation 

is approached during distillation procedur s. Unimolecular diffusion is when one 

component is transfered through a stagnant component. 

4 .1.3 Diffu sion Coefficients 

Many correlations exist to estimate diffusion coefficients. Diffu ion coeffici nts for 

liquid mixtur s are not easily estimated b caus there is no rigorous model that 

adequat ly represents the liquid state however some of the more popular approaches 

are mentioned here. 

Diffu sion Coefficients in Liq uids 

The Stokes-Einstein equation assumes t hat a dilute solut (A) has large, rigid, sph ri

ca! molecules transferring through a solvent that is stationary (B) with mall mol cui s 

and with no slip. This equation is limited in terms of its appli ation how ver it a ts 

as a solid bas for other correlations. 

(4.9) 
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where flA is the radius of the solu te molecule, 1-lB is the solvent viscosity, and T is 

the temperatur . 

An extension of this equation is the Wilke-Chan equation: 

( 4. 10) 

where ¢ 8 is th association factor for the solvent which is 2.6 for water, Va is the 

liquid molar volum of the solute at its normal boiling point, and M 8 is th mol cular 

weight. This equation gives good prediction where the solute mol cules are small and 

the solvent is water. 

When dealing with other solvents it is appropriate to use or d rive different corr -

lations to represent diffusion coefficients. For example, a orr lation developed by 

Hayduk and ilinhas shows good agreement wh re methanol, ethanol and unassoci-

ated solvents are used. This equation is split into two parts, th dilute representation 

of one normal paraffin to another and the nonaqueous solu tion. 

Dilute Solution: 

where 

T1.47 1-l~ 
(D AB)oo = 13.3 X 10_8 VO.?l 

A 

= 
10

"
2 

- 0 .791 
VA 

General Nonaqueous Solution: 

(4.11) 

(4.12) 
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( 4.13) 

where P is the parachor defined as P = vCJ
114 and CJ is the surface tension. The 

preceding equations have limitations such as the solvent viscosity should not exceed 

30 cp. 

Limitations for any correlation used to predict diffusion parameters should be under-

stood before undertaking a complete analysis [36]. 

Diffusion Coefficients in Solids 

There are many parameters which must be considered when addressing diffusivity in 

solids. The diffusing atom affects the diffusivity and can be either a molecule or an 

ion. Another parameter is the nature of the solid structure. This includes whether the 

structure is porous or nonporous, crystalline, or amorphous. \i\Thether the structure is 

metallic, ceramic, polymeric, biological, or cellular also affects diffusivity. A number 

of these parameters can be further classified into the types of bonding they may have 

in terms of covalent, or ionic bonding, or both. Even with all of these complexit ies, if a 

diffusion coefficient exists which properly captures the mass transport of the problem 

then Fick 's law can be applied to the situation. 

It is beneficial to mention diffusion in porous solids because the methodology can be 

applied to membrane separation. There are three mass trans£ r mechanisms that may 

take place either individually or in combination with one another. 

1. Ordinary molecular diffusion through pores. 

2. Surface diffusion based on concentration gradients. 
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3. Bulk flow through the pores. 

When it is ad quate to consider that diffu ion only occurs in the pores then an 

effective diffusivity is commonly used. Thi is based on the total eros - ectional area 

of the solid (not the pore) and on a straight path (instead of the pore path). If por 

diffusion can be described in terms of the ordinary diffusion coefficient D, then th 

effective diffusion coefficient can be writt n as: 

D - D EI< 
eff- --

7 
(4. 14) 

where E1< is the fractional porosity and 7 is the pore path tortuosity which is the ratio 

between the pore length and the length of the pore if it were straight in the direction 

of diffusion. These parameters can be determined experimentally [36] . 

There are other solids which can be considered when studying diffusion , such as 

crystalline, m tals, silica, glass ceramics and polymers however they are outside the 

scope of this research. 

4 .2 M embrane Se paration Process 

A membrane separation process involves a mixt ure of two or more components, known 

as the feed, which is partially separated by a membrane (a semi-p rmeable barrier 

that allow select components to pass through it faster than others). Th membrane 

separates the £ ed stream into two streams: the permeate, which is the stream that 

travels through the membrane, and the retentate, which is the stream that does not 

go through the membrane. In some cases, an additional wash or strip stream may be 
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needed on the permeate side to ensure continuous movement of the feed mixture. A 

simplified m mbrane system is shown in Figur 4.1. 

Retentate 
(reject, concentrate, 

,.-- ------ --, residue) 

Sweep 
(optional) 

Permeate 

Figure 4. 1: General Membrane System [36] 

The membrane acts as an interfa e betw n two bulk phas s providing a large surface 

area to volume ratio for separation. In order for separation to take place, one sp cies 

in the mixture must be exchanged in pref r nee for others. One bulk phase i nriched 

while the other is depleted of the component of interest. 

4 .2. 1 Driv ing Forces 

Transport takes place through a membrane by one or more driving forces such as 

convection or diffusion of individual molecules; induce I by an electric field causing a 

migration of ions; or by a concentration, pressure, or temperature gradient leading to 

convection of mass [53, 54] . 

The performance of a membrane in a separation pro ess is d termined by the trans-

port properties for different compon nts in a mixture. Transport rate is determin d by 

the permeability of the component in the membrane and by the driving force. Some of 

the driving forces include: pressure-driven processes (reverse o mo i , utrafiltration, 

and microfiltration); partial-pressure-driv n (prevaporation); concentration-gradi nt-

driven ( dialy is); and electrical-pot ntial-driven (electrolysis an I el trodialysis) [52]. 
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In order for a membrane to be effective in separating a mixtur of chemical com-

ponents it mu t have both a high permeance as well as a high permeance ratio for 

the two species being separated. Permeance for a given species diffu ing through a 

membrane of a given thickness is analogous to a mass transfer coefficient. 

The molar transmembrane flux ( ·) of a species i is: 

(4.15) 

where PM; is the permeance, which is defined as the ratio of PM (the permeabili ty), 

to LM (the effective membrane thickness). Th driving force is described by the use 

of a partial pressure difference (~Pi) or a concentration difference (~ci) across the 

membrane for species i . 

The membrane sel ctivity between two species is defined as the paration factor O'.ij 

for two speci s i and j : 

c";c" 
t J 

aij = C'/C'. 
t J 

(4.16) 

where the prime and double prime represents upstream bulk phase flow (feed or 

retentate) and the downstream bulk phas flow (p rmeate). In some cas s the pressure 

and concentration differences across the membrane are negligible, in which cas , the 

separation factor is equal to the ratio of the p rmeabilities of the two species [52]. 

Figure 4.2 shows the transport of a component through a membrane from phase (') to 

phase (") due to a driving-force gradient. The driving force and transport mode for 

the membran types are also shown [53]. Hydrostatic pressure (p), chemical potential 
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membrane 

process driving force trans~ort mode 

microfiltration t.p oonvection 

ultrafiltration t.p oonvectlon 

reverse osmosis t.p (l'i!lil diffusion 

dialysis t.C (t.a) diffusion 

gas separation t.p(Mj) diffusion 

pervaporatlon t.pi (Mj) diffusion 

electrodialysis t.q> migration 

Figure 4.2: Mass Transport 1odes [53] 

(~ti) , on entration (C), activity (a), partial pr ssure (Pi), fugaci ty (Ji), and el ctrical 

potential ( cPe ) are t he driving forces that take place in various membrane separation 

processes. 

In some situations it is necessary to use a s lective carrier in the membrane. T h 

carrier can have mobility in the membrane or it can be fixed to th membrane stru -

ture . Figure 4.3 shows an exampl of facilitated transport in a liquid membrane. T h 

transport of certain components can be co-current or counter urr nt [-3]. 

Liquid Permeation Membranes 

In order for transport to occur in a liquid permeation membrane b tw en two liquid 

phases divided by a liquid perm ation membrane the solu te molecules must be dif-
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Figure 4.3: Facilitated Transport (Co-current and Countercurrent Transport) [53] 

fused from the first liquid, through the membrane, and into the second liquid. The 

equilibrium distribution coefficient (I<') is defined as: 

( 4.17) 

where c5 and C£ ar the concentration of the solid membrane and the liquid , re-

spectively. The flux equations through each phase are equivalent under steady state 

conditions and are defined in the following manner: 

(4.18) 
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where the subscripts 1 and 2 refer to the sides of the membran (1 is side with a 

high concentration of molecule A), i is at the interface, and k is the associat d mass 

transfer coeffi cient. 

Acknowledging that c1is J(' c2i the following equation can be 

derived: 

(4.19) 

where PM is the permeance of the solid membrane, lM is th thickness, and DAB is 

the diffu ivity. 

Solving these equations for the concentration difference and adding them togeth r 

eliminates the concentrations at the interfaces and yields the following onvenient 

equation for flux through the membrane: 

N 
- cl- c2 

A-
1/kc l + 1/PM + 1/kc2 

(4.20) 

4 .2.2 M embrane Characteristics 

In order to choose which membrane process is appropriate for a desired separation, it is 

necessary to have an understanding of the principal characteristics of commer ializcd 

membrane s paration technologies. The characteristics of m mbran technologi s 

used in industry are outlined in Tabl 4.1 and Table 4.2 which in lucie the following 

parameters [52]: 

1) Separation goal 

2) 1\ ature of the pecies retained (size of the species) 
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3) ·ature of the species transported through membrane (electrolyti or volatile) 

4) Minor or major species of feed solution transported through membrane 

5) Driving force 

6) Mechanism for transport and sele tivity 

7) Phase of fe d and permeate streams 

4.2 .3 Membrane Material 

Most industrial m mbranes are mad from natural or synthetic polymers (macro

molecules). Som xamples of natural polymers include wool, rubb r and cellulose. 

Synthetic polymer are produced by polymerization of a monomer by cone! nsation 

(step reaction) , or addi tion (chain reaction) , or by the copolymerization of two dif

ferent monomers [36] . Membranes can be homogeneous or heterogeneous, symm tric 

or asymm tric in structure, carry positive or negative charge be neutral or bipolar, 

and be any one or a combination of the following: nonporous solid , microporous or 

macroporous solid with a fluid (liquid or solid) in the por s, a liquid phase with or 

without a second phase, a gel, or even a gas [36, 52]. 

Membranes often have a thin layer, call d a skin, support d on a highly porous 

substructure. The separation haracteristics in the thin layer ar d termined by the 

membrane material, pore size and the skin t hickness. Th porous ub-lay r is a 

support for the thin and fragile skin layer , and does not aid in t he eparation process. 

The skin can be homogeneous or porous. Figure 4.4 shows t he typical membran 

materials and structure of various synt hetic membranes. 

Membrane performance is measured by high selectivity and flux s; m chanica!, chem-



TABLE 1-J. Principal Characteristics of Commercialized Membrane Separation Processes. 

Nature of Nature of Species 
Species Transported Minor/Major Mechanism for Phase of Feed 

Separation Retained through Species Transport/ and Permeate 
Process Separation Goal (Size) Membrane Transported Driving Force Selectivity Streams 

Gas permea· Stream/streams en- Larger species re- Gaseous. Smaller Either Concentration Solution-diffusion Gaseous 
tion riched or depleted tained unless species/more grddient (partial 

in a particular highly soluble soluble species pressure differ-
species ence) 

PcJVaporation Same as above Same as above More soluble/ Preferably minor Concentration Solution-diffusion Liquid feed, 
smaller/more species gradient. tern- gaseous per-
volatile perature grd- meate 
nonelectrol ytes dient 

Dialysis Macrosolute solu- >0.02 Jlm re- Microsolute , Minor species. Concentration Sieving. hindered Liquid 
tion free of mi- tained, > 0.005 smaller solute Sol vent trans- gradient diffusion in mi-
crosolute, micro- Jlffi retained in ported under croporous mem-
solute solution hemodialysis osmotic branes 
free of macrosol- unbalance 
ute 

Electrodialysis Solution free of Co-ions. mac- Microionic Minor ionic spe- Electrical poten- Counter-ion trans- Liquid 
microions, con- roions' and species cies, small tial gradient, port via ion ex-
centrated solution water retained amounts of electro-osmosis change mem-
of microions. water by elec- (minor amount) branes 
fractionation of troosmosis 
microions 
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Figure 4.4: Materials and structures of membranes [53] 
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ical, and thermal stability under operating ondit ions; low fouling tendency; compat

ibility with th operational environment; cost-effective; and d feet-free production 

[53]. T he operational requirement of a membrane i that it must not dissolve, break-

down, or disintegrate. 

4.2.4 Membrane Shapes and Modules 

Membran scan be cast as flat sheets, tubes, and fine hollow fib r . F igure 4.5 displays 

the common membrane shapes that are currently found in industrial applications: 

(a) flat asymmetric or thin-composite sheet; (b) t ubular; (c) hollow fib r; and (d ) 

monoli thic. 
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Membranes are in tall d in devices known as m mbran modules. Figure 4.6 shows 

examples of membrane modules including (a) plate and frame; (b) spiral wound; (c) 

four leaf spiral wound; (d) hollow fiber; (e) t ubular ; and (f) monolithi . In som 

special applications, rotating cylind rs and the transv rsal flow capillary modul may 

be necessary [36]. 

Axial flow is the most commonly used flow typ in capillary modul . D spit prob

lems with flow distribution and mass t ransfer, this type of module is u d due to 

its attractively low production costs and high packing d n ity. These modules have 

straight membrane capillaries t hrough the fiber lumen and the sh ll. On the other 

hand , a transversal flow capillary module utilizes perpendicular flow to promote tur-

bulence at the membrane surface allowing for better control of con ntration polar

ization effects compar d to parall 1 flow. Another type of membrane module is the 

spiral-type tubular membrane which involves flow in a curved tube at high velocities 
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causing centrifugal instabilities and increased flow from the membrane to the center 

of the tube. This concept is known as Dean flow or Dean vortices and can lead to an 

increase in flux for processes such as micro and ultrafiltration. Due to the high ost of 

implementing this technology, commercial scale applications hav been limited [-3]. 
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4.3 Membrane Types 

Membrane processes applicable to this study can be grouped into the following cate

gories: 

1. Liquid membrane - The membrane is surrounded by liquid phases on both 

sides. The concentration difference between the liquids drives the diffusion of 

the molecules. 

2. Electrodialysis - Occurs by imposing an electromagnetic field across the mem

brane 

3. Reverse osmosis- A membrane which red uces the flux of low molecular weight 

solute is placed between a solution and a pure solvent. The solvent diffuses into 

the solution by osmosis. When a reverse pressure gradient is imposed the flow 

of the solvent reverses. 

4. Ultrafiltration - A pressure gradient is used to separate molecules on the ba is 

of molecular weight by means of a semipermeable polymeric membrane. 

5. Microfiltration - Similar to ultrafiltration however the molecule size is generally 

larger. 

Liquid Membranes 

Liquid membranes (LM) are capable of selective separation and concentrating pol

lutants from dilute aqueous solutions resulting in high treatment efficiencies [56]. 

Through the use of the LM process it is possible to simul taneously perform extrac

tion and stripping in one stage, and thus achieve mass transfer characteristics that are 
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not limited by the condition of equilibrium. LMs have the potential of r moving toxi 

substances from wastewater down to very low levels. Also, LMs are capabl of r -

ducing the levels of heavy-metal ions su h as Cr6+ H g2+, Cd2+ from several hundred 

ppm to 1 ppm [69]. 

Of the LM processes, the emulsion liquid membrane (ELM) and the supported liquid 

membranes (SLM) have been ext nsively studi d and used in large seal applications. 

The development of the ELM as a selective removal technique has large potential in 

dilu te wast water treatment. 

Emulsion Liquid Membranes 

The use of ELMs was first comm rcialized in 1986 by two researchers simultan -

ously in Austria and China. 13oth applications involved the r moval of contaminants 

from wastewater (zinc and phenol, respectively). Since that time, liquid emulsion 

m mbranes hav become useful in a number of different industries [52]. 

ELMs are unique from other m mbrane in that they involve an ernul ion config

uration (example: water/oil/water or oil/water/oil). ELMs are also referred to as 

surfactant liquid membranes, liquid surfactant membranes, or liquid emulsion mem

branes. This type of membrane is generally prepared by forming an emulsion with 

two immiscible phases and then introdu ing a third continuous phas by agitation. 

During agitation, globules of emulsion form, providing a large surface area for mass 

transport. The membrane is the phase which houses the int rnal droplets of th 

emulsion and separates it from the continuous phase. Th internal droplets and t he 

continuous phase are normally miscible, however, the membran must not be mis

cible in either phase if stability is desired [52] . A schematic of the emulsion liquid 

membrane is hown in Figure 4.7. 
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The transport of mass from one phase to the other may be enhan ed through the use of 

additives and surfactants. Thes substances can provide selectivity and permeability 

through the membrane. Once separation is achieved in the ernul ion, the phases ar 

separated by gravity. The extracted omponent can be separat d from the "loaded" 

phase by breaking the emulsion using an lectrostatic coalescer [52]. 

Figure 4.8 shows a schematic of a continuous ELM process. This process takes place 

in four steps: 

(1) emulsification - formation of globules 

(2) disp rsion of the emulsion in contact with the external, continuous phase for x-

traction 

(3) settling to separate t he emulsion from the external phas 

( 4) breaking th emulsion to recover desired product and th m mbrane phas for 

recycle 

There are two types of driving forces involved with ELM. One type involves the 
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minimization f t h diffusion species in th re eiving stag cr ating a concentration 

gradient 1 ading to a high extra tion rat . T h second type occurs when the diffusing 

species is carried across the membran phase by using a carrier ompound. In this 

type of driving force the reactions take place at the internal and ext rna! interface. 

The high extraction rate is facilitated through the continuous transport from t he 

internal to xternal phase [52]. I3oth t pes allow for extraction an I stripping to take 

place imultan ously. 

ELMs have b n appli d to wat rs containing organic and inorgani pollutants. T his 

process is applicable for heavy-m tal separation from aqueous solutions, as well as 

liquids ontaining contaminants u h as ferrous and non-ferrous m tal , alkaline m t-

als, radioactive elements and rar m tals. Ilo and Sirkar (1992) [-2] list xampl s 

of pro es es wh re LMs have b n used for heavy-metal r overy zinc, admium, 

copper , and I ad, from wastewat r in metallurgical plants. 

Advantages of ELMs include simple quipment and installation pr dures; high 

transfer rates; low r quirements of solv nt/carrier r agent; sing! stage xtra tion and 

stripping; and th potential for the r moval of metal ions from wast water [56, 57] . 

Liquid m mbran sal o provide the advantag of separating impuri ti and recovering 
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water simultaneously [64]. 

The difficul ti s in using this method a rise in the determina tion of reag nt that will 

allow selective extraction of specifi pollu tants to a desired level within a given t ime 

frame. ELMs oc asionally experience emulsion swelling, membrane rupture, and is 

complicated in it operation which includes emulsion formation and br aking steps. 

Membrane ruptur may takes place due to interfacial shear betwe n continuous and 

membrane phases. There is also an issue with demulsification involving the coales

cence of eli ·pers d droplets into larger droplets wi th subsequen t phase separation by 

gravi ty. In some cases it is possible to use el ctric field to avoid this problem , but 

this causes the use of ELMs to be om nergy intensive [56]. 

There are a number of issues that aff ct the rate of extrac tion and p rmeabili ty 

through an emulsion liquid membrane. Membrane thickness has a direct infiuenc 

on t he permeabili ty in that as the membrane t hickness increas s the p rmeabili ty 

decreases. An in rease in temperature leads to an increas in the extraction rate 

of the species of interes t . During the ini tia l stages of mixing, increasing the mixing 

rate leads t o an increase in extraction rate. T his can be xplained by the increase in 

mass transfer coefficient , however , as mixing time increases th extrac tion rate drops 

due to the hydrodynamic insta bility of the membrane at high r spe cis. T he pH is 

an important issue in extraction ra te and permeability,especially for arri r mediated 

transport. High values of the f ed pha e solu t concent ration will d crease the rate 

of separation, t herefore making the ELM process effectiv for dilute wast streams 

where the feed oncentration is lower. High treat ratio (volume ratio of emulsion to 

external phas ) auses the extraction ra te to increase due to the incr ased capacity of 

the membrane and the internal phase leading to enhanced permeation and stripping 

of the solu te. Large amounts of stripping reagen t concentration and volume fra tion 
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of the internal phase has a direct effect on the possibility of emulsion swelling du to 

high osmotic pressure gradients that are created between the int rnal and external 

phases. 

Experiments using emulsion liquid membran separation technology on pollutants 

from wastewaters were aimed to identify factors that influence the mass transfer of 

chemical sp ies from the feed phase to the receiving and concentrating phase. T he 

liquid membrane approach for the treatment of wastewater was simple, rapid and 

efficient. Overall , it was discovered that choosing adequate and efficient r agent , 

hydrodynamic regime, time intervals and energy ranges of ELM resulted in increased 

treatment fficiencies [56]. 

Abou-Nemeh and P teghem (1992) [58] performed a study relating th effect of adding 

tri-n-butyl phosphate (TBP) to di-2-ethylhexyl phosphoric acid (D2EHPA) on extrac

tion efficien y using an ELM process. Th use of ELMs for m tal ion extraction is 

applicable to both dilute and concentrat d solutions. Unfortunat ly, most indus trial 

efflu ents, na tural mining waters or leaching solutions are composed of mor than on 

metallic omponent and this an cause interfer nee in the process of extraction of 

any one metal (known as the masking effect) . The rate of metal extra tion in the 

presence of other metals may also 1 ad to a higher rate of extraction du to th cat

alyzing effect of impurities (the salting-out effect). The pres nee of various ligands 

in the fe d , such as succinate, format , salicylate or acetate, will atalyz the inter

facial reaction of metal extractions in ELMs. Also the salt anions such as sulphates, 

nitrates and chlorides, have been shown to have a certain impact on the kinetics of 

metal extraction. 

Tests were performed on both a model solu tion and an industrial feed containing 
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a mixture of m tallic species including sodium ( ·a+) , magn ium (Mn2+), obalt 

(Co2+) in large concentra tions and ni kel ( ·i2+ ), iron (Fe3+), and Chromium (Cr3+) 

in tra am unt . The goal of p rforming te t on the model solution was to explain 

the effe t of impurities and other compon nts along with th m talli spe ies in th 

indu trial fe d. It was determined that there i an optimal campo iti n of th extract

ing mixture that was required to achieve a maximum extraction efficiency, - .5 vol.% 

D2EHP + 0.5 vol.% TBP. It was also found that the selectitivity an be improved 

by altering the TBP concentra tion in t h membrane phase [58]. 

Dalea at a!. [64] took an analyti a! approa h to onsid ring the r lationship between 

the amount of r agent, time and th hydrodynamic regime to study liquid emulsions. 

Boyadzhiev and Kyuchoukov (1980) [63] have conduct d a number of studies that 

show th advantag to the one-st p extraction and stripping process, a a solution 

to the treatm nt of wastewater in industrial applications. T h tudy hows that t h 

efficiency of th extraction and p rtra t ion process depends on th ize of the contact 

area, the mass tran fer coeffici nts involv d , and the concentration gradi nt creating 

the driving for e. It is stated that th most promising appli ation of emulsion t ech

niques is in wa tewater treatment, including metal ion removal from dilu te aqueou 

solution . 

From the xp riments onducted Figur 4.9 was develop d wh re th kin tic curv 

show the aqueous phase concentration of zin , lead , cadmium, and opp r v r us 

time. 

The extraction process was feasibl over a pH range of 5-7. The extra tion efficiency 

reaches a maximum wh re the destruction of mulsions cau d by the agitation of th 

system o urs. Optimum time requir d for maximum fficiency (approximately 3.-



107 

~exlraclion 
100 after 3 5 min 

1 
3 [i"M~ 
1 

Pb - 95.5% 
Cd - 97.6% 
Cu - 998% 

10 

r 1 

0> l ::; 
u 

!(mini 

Figur 4.9: Kinetic curves for the removal of zinc, lead , cadmium, and copper ions in 
ELMs [63] 

minutes) was found experimentally since it is dependent on a number of prop rties 

and hydrodynamic parameters. It was determined that the large interfacial a rea leads 

to high mass transfer rates even at low concentration gradients. This 1 rocess can b 

applied to solvents with very low extraction capacity or very dilute carrier solut ions. 

In a paper by Draxler , et. a! [62] written on the separation of m tal species by ELM, 

the application was tested on wastewater s treams. An ELM configuration was us I 

to recover zinc from viscous wastes at a pilot plant. T he ELM was prepar d by 

emulsifying t h stripping agent in the liquid membrane phase, and th n disp rsing 

the primary emulsion in the wastewater to be t reated. A stabilizing surface-active 

agent was added to the membrane phase. Some issues that wer overcome during the 

testing phas wa that the emulsion had to be both stable and have the ability to 

be split in order to recover the metal ions from the inner phase. Some attempts had 
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been made to empty this phase without splitting, but it is only possible in special 

cases. It was found that by increasing the frequency of the electric field there was an 

improvement in the effectiveness of emulsion splitting. 

It was also discov red that water can limit the amount of metals that can be absorbed 

by the emulsion. The issue of wat r transport can be eliminated by using surfactants 

and diluent . In an ELM process it might be necessary to reach equilibrium numerou 

times for complet separation to be reach d . 

The experim ntation found that zinc, copper, cadmium, and lead can be separated 

clown to con entration levels that are accepted by most environm ntal agencies. This 

was not found to be true for nick 1 and chromium (VI) du to the fact that the 

residence time in the column in which th tests were conducted was not long enough 

for nickel separation and high amounts of sulphate ions interfere with chromium 

concentration reduction. Sulphate transport is negligible when ther is high chromium 

concentrations, but becomes dominating when chromium cone ntrations are low. 

The experiments conclude that the process of Jiquicl-membran permeation has be

come an industrial scale process, and a number of pilot plants have proven its feasi

bility for the s paration of certain metals. Draxler et. al (1988) [62] indicates that 

wastewater treatm nt using ELM is a very promising field clue to th fact that the 

separation of many metals is as good or better than other proc s and the m tals 

involved do not have to be disposed of, bu t can be recovered. Th importance in 

the selection of surfactant can lead to nhanced stability, incr asecl mass transfer, re

duction in the transportation of water, decomposition of extractant and re istanc to 

bacteria. The development of new and improv cl extractants will enhan e selectivity 

and allow ELM to become an industry standard for dilute waste treatm nt. 
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Supported Liquid Membranes 

Supported liquid membrane (SLM) are membranes that are impr gnated in the pores 

of a microporous polymeric filter. The membrane can be a vari ty of geometries 

including a flat sheet or hollow fiber membrane. The large exchange ar a available 

with the hollow fiber SLM yields rapid transport. 

Supported liquid membranes in combination with selective carriers for the transport of 

components of a mixture is becoming more effective but th r are very few examples 

of this technology in large-scale industrial applications. This can be explained by 

problems r lated to the performance of the membranes including a short life span 

(since carrier and solvent are lost to the feed or strip solution by dissolution and 

micelle formation) . Rate of loss depends on the process conditions. The stability of 

the membrane can be increased by placing a thin polymer layer on top of the liquid 

membrane [53] . 

Marchese, et. al (1995) [61] discuss the transfer and separation of Co2+ and Cu2+ ions 

across a flat sheet supported liquid membrane containing Alamine 336 as the mobile 

carrier dissolved in kerosene solvent. The presented results indicate that both th 

Alamine composition in the organic solution and the hydrochloric a id concentration 

in the feed solution had an effect on the metal transport. It was found that a maximum 

flow of these ions was achieved at -o% Alamine in the diluent. · i kel (Ni 2+) was 

not transported through the range of the experimental onditions. T he results of 

the metal liquid-liquid extraction percentage (%E) as a function of th amount of 

hydrochloric acid is shown in 4.10. 

Percent extraction (%E) is defined as: 
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Figure 4.10: Extraction of Cu 2+, Co2+ and Ni2+ with Alamine 336 vs. HCL concen
tration Using a SLM [61] 

%E = [M ]org * 100 
[Me]org + [Me]aq 

(4.21) 

where [Me] is the concentration of a metal ion of choice. A maximum ion extraction 

took place at approximately 5 M of HCl and 9 M of HCl for Cu 2+ and Co2+ respec

tively. The different behavior of the metals was explained by the formation of stabl 

anionic complexes of the type MeCl~- as explained by the following reaction: 

(4.22) 

From th experiments conducted, copper and cobalt were extracted into the organic 

phase by the anionic metal complex with protonater amine in the hydrochloric acid 

medium. Stripping was achieved with di tilled water. This particular experiment 
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shows that with the proper selection of HCl concentration in the £ d solution ther 

is an associated selective separation of the metals that are involved. 

4.3.1 Dialysis / Electrodialysis 

Dialysi exploits the difference in diffusion rat s of molecule through the membrane to 

separate components from solutions. This process is generally applicable to solutions 

where it is desirable to remove or isolate molecules with an appr ciable diff renee in 

molecular size (their diffusion rates ar very different) . 

Electrolytic membrane dialysis is a technology that was created in a response to the 

demand for a system that will clean up relatively small quantities of water contam

inated with ionic mat ter and separate the dissolved spe ies as nee ssary. Electro

dialysis is a possible method for selectively removing ions by size and harge from 

contaminated solution. 

using direct urr nt electrodes on opposite sides of the m mbrane it is po sible to 

effectively transport charged particles of small sizes through the membrane at an 

increased rat . The anode is immersed in the permeate and the cathode is in the re

tentate. This system causes the anions of small sizes to migrate across the membran 

toward th anode and therefore causing a separation from the original solution. It is 

possible to reverse the flow which will cause th cations to flow a ross th membran 

in the opposite direction. The DC ele tri field improves on the filtration by using 

the membrane to hold back ions of one charge, while ions of the opposite charg are 

encouraged to pass under the influ nee of the electric charg . The electric field influ

ences the distribution of ions by altering the neutrality rule of the hemical species. 

With tim , th efficiency of t he m mbran decreases due to pore plugging or blinding 
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of the m mbrane. It is necessary to us a cleaning chemical or backwash to avoid this 

ISSUe . 

A bipolar m mbrane (BM) proce s is an example of a membrane that onsists of 

a layered ion xchange structure composed of a cation selectiv membrane (with 

negative fix d charge) and an anion s l ctive membrane (wit h positive fixed charge) . 

This process is used for the separation of monovalent and diva! nt ions. BMs are 

considered t o be a simple, energy saving, and environmentally friendly technology. 

Xu (2001) [59] describes the u e of a bipolar membrane for th removal of copper from 

cupric solution (solution in which copp r is present in it lowest proportion) using 

electro-extra tion and back-extraction techniques. As shown in Figure 4. 11 the feed 

containing t he copper rich solution enters compartment 1 and the ion exchange re in 

is filled in compar tment 2 and 3. When a voltage is applied, cupric ions and other 

cations are transported through a cation membrane from compar tment 1 to 2 wh re it 

is selectively xtracted under th weak base condit ion that is controll d by the water 

splitting rate ( lectro-extraction tage) . The copper rich organic phase is circulated 

to compartment 3 where back-extraction takes place and cupri ions are released into 

compartm nt 4 under the conditions of acidity produced from water dissociation. 

T he resul t i a copper rich aqueous solut ion phase contain d in ompartm nt 4. T his 

process operates by a combination of ion exchange, extraction , and water dis ociation. 

In t his parti ular syst m, th ion exchange resins between th ions and t he organi 

phase increases the conductivi ty of th organic phase th refore lowering the opera

t ional voltages required . 

In F igure 4.12, Cobalt (Co2+) andl\ickel (Ni2+ ) separation is ac ompli heel through 

the use of a bipolar membrane electrolyti cell stack (left sid ) and a conventional 
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Figure 4. 11: Bipolar Electro-Extraction Pro ess for Separation f o 2+ and ·i2+ [59] 

cell stack (right sid ). The Co2+ and 1 i 2+ mixture is fed into compartment 2 of 

the left ell whil the complexing agent (HR) is add d to compartment 3. When a 

voltage is applied, both metallic ompon nts join with the ompl xing agent in th 

third compartm nt due to the indu d potential differ nc . Formation of the NiR2 

complex i mor probabl than the CoR2 omplex, thereby allowing the Co2+ t 

be t ransport d through compartm nt 4 and stored in compartm nt -. The iR2 

complex i tran ·port d to compartment 4 on the right sid from ompartment 3 on 

the 1 ft wh re the omplex agent is re over d by ions creat d from wat r dissociation. 

Once the agent is recovered and recy led , rel ased Ni2+ is tran ·ported to the right 

cell into compartment 5. System n utralization is achiev d by using a basi solut ion 

leading to a high concentration of Co2+ and i 2+ in compartm nt 5 of the left and 

right cells r p tively. Mo et al. indicat that the con ntrati n ratio Co: ' i can 
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reach 20:1 in the l ft cell and 1:20 in the right cell if the fe d conta ins equal molar 

concentration of 0.15 mol/1 and the current efficiencies for both el ctrodia lysers ar 

above 70%. 

; ...................................................................... , .......... ·: 
A C ! C C A A C AC ! C A 

Figure 4.12: u se of integrat ed BM and Absorption unit for removal of C o2+ and N i2+ 
ions [59] 

An effective means to recover heavy metal · and enhance product purification is to 

use a BM membrane. This method increases selectivity of a component (s) in the 

effluent where the optimal adsorbent is utilized. Filt ra tion is a required pre treatment 

to remove insoluble materials, sludges, etc. Advantages tot he u e of BMs include t h 

reduction of waste streams, obtains t he product in a purifi d and cone nt ra ted form, 

and performs x tractions not possible through convent ional techniqu s ( uch as the 

separation of ions with the same val nee and sign). 

4 .3.2 R everse-Osmosis 

In osmosis, t ran fer of the solv nt o urs from a dilute to a more cone nt rated area 

across a membrane which imped s the transfer. Solute separation and permeate wat r 

flux is a function of membrane material and the structure of the barrier layer. When 
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enough water pass s through a semi-permeable membrane from th side with low to 

high solvent concentration equilibrium is achieved . At equilibrium the pressure drop 

across the membrane is equal to the osmotic pressure difference. Reverse osmosi 

(RO) occurs when a pressure difference greater than the osmoti pressure is applied 

and causing flow to reverse. 

RO typically occurs at ambient temperature and does not require a phase change. 

This makes it app aling for use with unstable chemicals. The following experimental 

equation repr sents the osmotic pr ssure 1r for dilu te water solut ions: 

n 
7r = VRT 

m 
( 4.23) 

where n is the number of kgmol of solute, V171 is the volume of pure solvent, R is t he 

universal gas constant and T is the temperature. 

As the concentration of the solution incr ases the behavior of th osmoti pressur 

deviates according to an osmotic coefficient </> (the ratio betw n the actual osmotic 

pressure and the ideal osmotic pressure). Numerous membranes ar available for 

industrial u e with reverse osmosis th eory. Examples include the ellulose acetate 

membrane (u d in desalination processes), and the synth tic aromatic polyamid 

membrane known as "Permasep" [52] . Ea h membrane type has its own advantag s 

and drawbacks which cater to specific applications. 

For diffusion through a membrane in a reverse-osmosis pro ess th foll wing equation 

governs the transport of the solvent: 

Nw = [w (6.Ph - 6.1r) = Aw (6.Ph - 6.1r) 
m 

( 4.24) 
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where Nw is th solvent flux , Pw is th m mbrane solvent permeability, Lm is th 

m mbran thi kne s, Aw is the solv ut p rmeability constant, 6.Ph i the hydrostati 

t i pressure differ nee b tw n t h feed and 

the production olutions. 

The following quation govern th transport of the solute: 

Ns = D s ](s ( s 
Lm 

where c1 and c2 are concentrations of t he olu te upstream (1) and downstream (2) of 

the membran . 

A steady state material balance for the solut diffusing through th membrane and 

the solut leaving in the product solution yields: 

w 2 ( 4.26) s-
Cwz 

where Cwz is th solvent concen tration in the product stream. The s !ven t flux rate 

depend on th pressure differenc where th olute flux dep nels on th on entration 

difference. 

One typ of a r v rs osmosis p ro e i nanofil tration which allow for the possibility 

of sel ctively parating hazardous compon nts. Reverse osm i is am mbrane pro-

cess which has been popular in wat r treatment, separation pro es in th food and 

beverage industry, and in the pulp and pap r industry. Rever e o mosis has shown 

potential in treatment of low pressur dilut aqueous wastes that have high fluxes 

over a wide range of pH levels [52]. 
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In addition to the general advantages of membranes, reverse osmo i offers a few 

more advantag s. These processes are generally simple to design and easy to oper

ate. It can b integrated into another process (such as ultrafiltration) to be om a 

hybrid process. Also, processes with high osmotic pressures and high oncentrations 

of monovalent salts, reverse osmosis becomes the ideal solu tion [52]. Separation us

ing the reverse osmosis method does not require phase change which leads possibl 

energy savings and flexibility in design. Ideal RO membranes should resi t chemical 

and microbial attack, and the mechani al characteristics should not change after long 

term operation. Compared to processes such as incineration for waste treatment, 

membrane proces es can provide up to a 50 fold decrea e in waste volumes. 

Technological improv ments have in reased the number of applications of r verse os

mosis in industry processes. lew mat rials are more pH, temperature and chlorin 

resistant as ompared to cellulose ac tat membranes. An incr as d flux performance 

is realiz d through the use of thin-film composite (TFC) membranes which also en

hances separations of organics under lower operating pressures. RO membranes ar 

available as one polymer (asymmetric design) or the TFC structure [52, 36]. 

RO membranes have very small pore stru ture, with the pore diameter ranging from 

approximat ly 0.5nm-1.5nm. Due to the small size of the por s, only the smallest 

molecules can pass through the m mbrane along with the water. 

The important operating variabl s for RO are feed flow rate and oncentrations of 

dissolved solu tes, types of solu tes, tran membrane pressure 6.P, temperature (T), 

pH, and concentration of suspended solids. The RO process is evaluated in terms of 

three paramet rs: observed solute reje t ion Rr , water flux Jw, and water recovery r. 

Observed Solute Rejection , R 
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Rr = 1 - - or 1 - -
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Solvent or Wat r R covery (for batch y terns), r: 

Solvent or Water Recovery (for continuous systems) , r: 

where Jw is volumetric, mass or molar p rm ation rate / m mbrane area 
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( 4.27) 

( 4.28) 

(4.29) 

( 4.30) 

Although not m a urable, the chemical potential gradients across the membrane rep

resent the th rmodynamic driving fore s in solvent and solut tran port through RO 

membrane . lternativel · the driving forces are related to diffi rences in chemical 

concentrati n and pr sure differ n es a ross the membran . 

Bi-polar m mbran s consist of two layers in series, one layer having a fix d positiv 

charge and the other a negative charge. Th ru et al. [60] investigated the usc of 

bi-polar membranes (BMs) in reverse osmosis for the separation of ions with differ nt 

valencie . For ions with equa l valen , the BM process is in ff ctiv . Through the use 

of the bi-polar rever e osmosis membrane it is possible to separat divalent ions from 



119 

monovalent ions for both ca tions and anions. Ji'igure 4.13 part a) shows the eparation 

by a negatively harg d monopolar membrane, while (b) shows the bipolar membrane 

application. The driving fore in rev rse o mo is is pr ssure d iffi r nc ausmg a 

volume flux through the membran . In RO the solutes that ar larg r than pore iz 

of the m mbrane are r jected , while smaller part icles are allow d t p rm at through 

the membrane. A repulsive force on a nions and an attrac tive force on anions occur 

with the negative charged membrane. Ov rail, a negatively charg d membrane has 

good sele t ivi ty toward mono- and divalent anions and poor 1 t ivity toward mono-

and di-val nt ations. 

(a) monopolar membrane (negatively charged) 

(b) bipolar membrana 

Figur 4.13: Rejection model of mono- and bi-polar m ·mbrane in RO [60] 

T he ultimate goal of bi-polar membranes is to separate mono and diva! nt anions and 

cations through r pulsive or attractiv harg . Due to the bi-lay r stru ture divelent 

cations ar · t rongly repulsed by positively charged first layer and diva! nt anions are 
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repulsed by the negatively charged ·econd layer. In the meantime the mono-val nt 

anions and cations permeate through the membrane due to lower repulsive forces. 

Benito and Ruiz [68] apply reverse osmosis in the electroplating industry. In an 

industry that r quires an intensiv wat r supply the results indicat d that betw en 

75-90% of the water could be recovered and n arly all of the metals in the permeate 

could be removed through rev rse o mosi . 

Ozaki et al. (2002) [65] conducted exp erimental studies on the use of aromatic 

polyamide (ES 20) ultra-low-pressure reverse osmosis membrane (CLPRO I) for sep-

arating divalent metals from bulk solu tion. Pressur , fe d concentration, pH, and the 

presence of other ions such as Ca2+ and Ma2+ were explored for effects on perfor-

mance. The experiments were conducted on a synthetic wastewat r and wastewater 

from a heavy-meta l industry. The results indicate that rej ction increas s wit h in

creased feed pressure in reased pH lev 1 . Results indicated that 9-% rejection of 

heavy-metals for the LPROM tested can be achieved and therefore can be appli d 

in industrial applications for r covery of heavy-metals and reclaiming wastewater. 

The removal of a substance is o casionally m asured in t erms of rej tion, which is 

the ratio of the quantity of th target d sub tance in the retentate to that of the £ ed . 

It is expressed as a percentage of the feed concentration and can al o be writt n in 

terms of mass transfer coefficients: 

. . K s 
R eJectwn(R) = 1 - [K w(.6.P - .6.7r)(2 - 2fw)/(2 - F)]+ K s (4.31) 

where fw = fraction of water recovery = QpjQ1, (Qp = quantity of permeate and Qf 

= quantity off ed) , K s = solute mass t ransfer coefficient, ]( w = water m ass t ransfer 
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coefficient, 6.P = t ransmembran pressure gradient, 6.1r = transmembrane osmoti 

pressure gradient. 

Since this is a pressure driven membrane, an increase in transmembran pressure will 

cause an increase in the flux and the subsequent rate of reje tion. Optimal pH range 

for highest rejection is 7-9. The presence of co-ions will decreas the rejection which 

is observed with wastewater solu tions [65] . 

4.3.3 Ultrafiltration 

Membranes used for ultrafiltration are similar to the membranes used in reverse os

mosis. The membrane is comprised of a thin skin reinforc d by a porous layer for 

strength. The equipment is similar to reverse osmosis. Ultrafiltration is driven by 

pressure di:ffi rential and molecular siz whereby larger solute molecules are impeded 

by the membrane. Recommended practice suggests that if the molecular size be

tween the rejection molecules the remaining molecules differ by a factor of 10 then 

ultrafiltration can be applied successfully [55]. 

The small pore siz of the ul trafiltration membrane provides a filter for a given fe d 

stream. If t he impurity is too small the process may be unfeasible. In an effort to 

improve the ultrafiltration process where impurities are very small , is has been pro

posed to utilize water-soluble ligands to form a omplex with th impurities ther by 

increasing their size to be larger than the pore size. This pro es has been particularly 

successful in the r moval of metals from wastewater to m et strict r environmental 

policy and economically reduce fresh water consumption. 

Atamaneko, et al [67] highlight combining sorption and ion exchange processes with 

either ultrafiltration or reverse osmosis. Through experimentation, specific sorbents 
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were pretreat d to nhance the separation. T he membranes us d were OPA ·-K · 

(reverse osmosis) and UPM-20 (ul trafiltration). It was determin d that for a feed of 

25 ppm Co(II) and 1 g/1 of the sorb nt montorillonite, OPAM-KN yielded a retention 

coeffici nt for Co(II) of 0.97-0.98. When the sorbent KC-2-8n was used a retention 

coefficient of 0.91 and 0.92 was found. Compared to the initial r tention coeffici nt of 

0.82 the use of sorbents enhances the process dramatically. The montorillonite had 

no effect on the ultrafiltration process but when u ed in association with the KG-2-8n 

the results were positive. 

Tavar s, et al. p rformed a study indicating that 54% of F and 50% of chemical 

oxygen demand (COD- an indire t measure of organic materia l in the solvent) could 

be remov ·d with a relatively short contact time (24 hours). After 120 hours, up to 

80% of Fe and 53% of the COD was remov d . pH level plays a significant role in 

the effectiven ss of this process. It was determined that th optimal pH level for 

metal removal was approximately a pH of 4. T he combination of ul trafiltration and 

complexation has been shown to greatly improve the removal of metal ion [66]. 

The flux equa tion for ultrafiltration is similar to rev rse osmosi with the exception 

that the osmotic pressure difference can be neglected since ultradiffusion does not 

allow passag of the macromolecules of the solute, and th concentration of the large 

molecules is generally small [54] . The solv nt flux equation an be written as: 

( 4.32) 

This equation holds for low pressure drops and dilute solutions. 

ltrafiltration has been shown to be a promising technique for trace metal removal 

from industrial wastewater. The advantage of using this m thod in lucles the high 
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selectivity available due to binding that takes place between the ions and the polymers 

as well as the low energy requirements. 

4 .3.4 Microfiltration 

1icrofiltration is similar to both reverse osmosis and ultrafiltration in that it is 

pressure-driven but it works to remove particles which range from 0.02 ~tm to 10 

Mm in size. The large particle size generally means t hat osmotic pressure can be ne-

glected. Material and equipment selection for microfiltration is typically application 

specific. 

The flux equation for a microfiltration membrane can be written as: 

( 4.33) 

where M is the viscosity of the solvent, Rm is t he membrane resistance, and Rc is the 

cake resistance. 

Another possible modeling procedure is the use a cross-flow microfiltration mod l. 

This model is similar to that of the ultrafiltration or reverse osmosis mod l. T he bulk 

solution is parallel to the membrane and not perpendicular through the membran . 

T his type of process is efficient in controlling problems such as cake build-up and 

concentration polarization. 
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4.4 Conclusions 

For each m mbran technology a d tail d analysis can b onducted to cletermin 

feasibility. g neral overview of membran technologies has b n pr ented to pro-

vide a fund am ntal base to build upon for future research. Upon further resear h, it 

may be determined that one specifi membrane technology may b better suited for 

!NCO's wa t stream. 



Chapter 5 

Biotechnology 

The expanding world demand leads to the development of lower grade or bodi s. 

New technologies are surfacing to r duce the capital and operating costs to treat and 

handle the dilute wastes created by these processes. During the past two decad 

many advancem nts have been made to help mineral proc ssing, remediation and 

reclamation. Many forms of compounds found on mineral processing sites are harm

ful to human health and the natural ecosystem [77]. It is not uncommon for these 

compounds to reach natural waterways and spread throughout the cosystem in a 

diluted form. atural waters polluted by mineral wastes are often contaminated with 

heavy metals. These metals can be independently toxic or toxic wh n ombined with 

other ions. Treating polluted areas where the contaminant are pr ent in low con

centration can be expensive and difficult. "It (is) known that many microorgani ms 

can remarkably concentrate heavy-metal ions from aqu ous olution" [79]. Some mi

croorganisms have been found to possess the selectivity and binding properties that 

offer an economic and environmentally sound solution to th cleanup of these metals 

[77]. Th se organisms are used more commonly in the remediation of wa te in the 

mineral proce ing industry than ever before [79]. In an era where environmental 
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regulations are tightening it is becoming more important for industry to find wa te 

treatment solutions that are more effi ient, economic, and ffective. 

Treating dilute waste streams is challenging because the volumetric flow rate of th 

effluent str am is generally high wher as the concentration of heavy-m tal ion ar 

low. Targeting specific ions in a medium with a high flow rate poses te hnical and 

economical challenges. Microorganisms pos ess the selectivity and cost effectivenes 

necessary to make biotechnology a viable solution in the removal of heavy-metals from 

dilute aqu ous streams [79]. It is also possible to utilize this technology to recov r 

additional metals, previously uneconomical, from the waste streams. 

Of increasing importance is the identification of biological trains that are effective in 

the removal of desired heavy-metal ions under specific environmental conditions. The 

behavior of the microbes is affected by the presence of competing ions or different 

acidic levels, thus it is important to associate the microbe with its optimal conditions 

such that it may perform its sp cifi duties to its maximum pot ntial [79] . 

Scientists are searching for a bug that will revolutionize the mining industry. Mi

crobes have been found that process ores of copper, gold, lead, zinc, and silver near 

hydrothermal springs. These microbes have evolved in extrem environm nts and 

can withstand conditions unlike microbes which exist at ambient conditions. Mi

crobes that subsist on sulfides and other compounds in an environm nt that has high 

temperature, pre sure, salinity, acidity and toxicity exist and possess some of the 

characteristics necessary to receive interest from researchers. The extrem condition 

force the metabolism of these microorganisms to have accelerated rate . Curr nt 

studies focus on ways to develop microbes to perform under controll d and mor am

bient conditions. To date th process is inexpensive but low. Many compani s ar 
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using this technology in applications such as treating waste h aps[72] . 

It is also important to learn how to mathematically model these bioproc sses. In 

order to optimize the process it is important to understand not only what factors 

affect the proce s, but to what degree[73]. 

Biotechnology can be cat gorized into threes ctors consisting of biomining (including 

biooxidation and bioleaching) , bioremediation, and biosorpotion. t present, biomin

ing and bioremediation ar active in full scale operation and biosorpotion has yet to 

be proven to be viable at a commercial level. The majority of research condu ted has 

concentrated on biooxidation an I bioleaching of sulfides[73]. 

5.1 Types of Microorganisms 

Applications for biotechnology hav surfaced in the treatment of pro ss effluents and 

drainage wat rs containing traces of metals and acids. Th identification of organisms 

which are involved in processes such as biol aching and biooxidation is paramount in 

developing the technology. Research is b ing conducted to genetically engineer t hese 

organisms to better suit their purpose. 

There are many typ s of organisms involved in biotechnology. Most organisms poss ss 

certain traits which allowing them to perform specific mineralogi a! tasks. Unfort u

nately, no one microorganism po sesses the traits requir d to treat all ffiucnt streams, 

therefore ar must be taken in choosing the appropriat microorganism. There are 

three microorganisms which are most common and frequently documented. 

Thiobaccilus ferrooxidans was first documented in 1947. It has been shown to leach 

metals from sulfide effectively. Considerabl effort has been put into d veloping new 
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strains of this microorganism. However, this particular microorganism is genetically 

unstable and thus difficult to attain rep atability in experiments and con istently 

create effective strains. It is still very commonly used and is a well known sulfide 

reducing bacteria [86] . 

Leptosprillum ferrooxidans is an iron oxidizing microorganism. The feature which 

makes this organism popular is its abili ty to survive and p rform at elevated temper

atures. It reache its maximum potential within the temperature range of 45 to 70 °C 

at low pH levels [83]. 

Thiobacillus thiooxidans is a sulfur oxidizing microorganism which al. o performs well 

at elevated temperatures ( 45 to 70°C). It also has the ability to withstand higher pH 

levels and high hydrostatic pressures. 

Other mi roorganisms exist and have the potential to treat effluent streams. For ex

ample, bioma s from aquatic plants has shown the potential to b u eful in biotech

nologies. Different pecies of algae and non-living matter from red and brown seaweed 

has recently been the subject of research [70]. 

5.2 Biomining 

Biomining focuses on processes traditionally involved with conventional mining. Typ

ical tasks performed by microorganisms include bioleaching and biooxidation. 

Table 5.1 lists factors influencing mineral oxidation and mobilization by microor

ganisms [80]. Typical physioch mical parameters affecting mineral oxidation and 

mobilization in a bioleaching environment include temperature, pl-I , oxygen content, 

light , nutri nt availability and p ressur . Microbiological conditions affect the process 
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of bioleaching in several ways. The den ity of the organisms and patial distribution 

will affect th rate of reaction. The microorganism's tolerance to th presence of met

als may also aff ct metal mobilization. Thirdly, the properties of the minerals to be 

leached have an impact. Microorganisms may prefer minerals to hav a c rtain grain 

size or amount of surface area to contact. Porosity of the treat d m dium can alter 

the degre in which the oxidation tak s place. Finally, the typ of processing will also 

affect the mineral oxidation and metal mobilization. The leaching mode, pulp density, 

stirring rate, and heap geometry all have cliff rent advantag s and disadvantage . 

Three exampl of typical biomining applications are irrigation bas d , in-sit u applica

tions, and stirr d tanks. Irrigation ba ·ed bioleaching involves dump / heap leaching 

where large boulder-sized pieces of ore a re put in a mound and expo d to biomaterial 

and irrigated with sulfuric acid . In-situ bioleaching is used in sp nt inoperative mines 

where the mine is fractured and fed acid liquors containing sp cific bacteria through 

the fractures. This liquid is colle ted and the dissolved metals can be recovered. T h 

process of using stirred tanks offers th most controlled environment since it is man 

made. 

5.2.1 Bioleaching 

Bioleaching is "the dissolution of metal from their mineral source by er tain naturally 

occurring microorganisms' [80] . It refers to the conversion of soli I metal ions into 

a water solubl form. Once the metal has been extracted, solvent extraction and 

electrowinning can be used to recover the product from olution. Th microbes can 

liberate metals in one of three ways [80] : 

• the formation of organic or inorganic a ids 
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Table 5.1: Factors Influencing Mineral Oxidation and Mobilization by Microorganisms 
[80] 
Factor Parameter 
Physiochemical parameters of a temperature 
bioleaching environment pH 

redox potential 
water potential 
oxygen content and 

availability 
carbon dioxide content 
rna s transfer 
nutrient availabili ty 
iron (III) concentration 
light 
pressure 
surface tension 
presence of inhibitors 

Microbiological parameters of a microbial diversity 
bioleaching environment population density 

microbial activity 
spatial di tribution of microorganisms 
metal tolerance 
adaptation abilities of microorganisms 

Properti s of minerals to be leach d mineral type 
mineral compo ition 
mineral dissemination 
grain size 
surface area 
porosity 
hydrophobicity 
galvanic interactions 
formation of secondary minerals 

Processing leaching mode (insitu, heap, dump or 
tank leaching) 

pulp density 
stirring rate (in case of tank leaching 

operations) 
heap geometry (in case of heap leaching) 
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• oxidation or reduction reactions 

• excretion of complexing agents 

Once mobilized the metals can be leached by direct or indirect mechanisms. The 

direct mechanism requires close contact between the microorganisms and the reduced 

minerals. For the indirect mechanism, it is necessary to have an electron carrier such 

as ferric iron (Fe3+) originating from the microbial oxidation of ferrous iron (Fe2+) 

compounds present in minerals [80]. 

An example of the direct mechanism is the oxidation of pyrite : 

(5. 1) 

An example of t he indirect mechanism involving pyrite is given next: 

A common application of bioleaching is in t he removal of copp r from industrial 

wastes. The microorganism utilized for this purpose is thiobaccillus ferrooxidans. 

Under optimal conditions between 61 and 96% of copper can be removed [84]. Copper 
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can be produced from mining wastes and low grade ores by bioleaching methods for an 

estimated one-third to one-half the cost of copper produced from high grade flotation 

concentrates in conventional sm elting [86]. 

Bioleaching is used in biohydrometallurgy as an economic and environmentally re

sponsible way to improve the process [87]. Microorganisms can be autotrophs, mixotrophs, 

or heterotrophs. What distinguishes these microbes is where they obtain energy and 

nutrients. All form of microorganisms obtain energy from oxidation but au totrophs 

receive carbon from carbon dioxide. Mixotrophs, on the other hand obtain carbon 

only partially from organic compounds . Heterotrophs obtain carbon from the assim

ilation of organic compounds. 

Autotrophs are considered the most desirable because of their ability to grow in the 

absence of organic matter. Unfortuna tely they tend to grow at a slower rat compar d 

to the other two types. Heterotrophs requ ire one or more organic nutrient(s) for 

energy and carbon consumpt ion . They have potential to be used where metal sulfide 

ores contain a large amount of acid-consuming constitu nts exist. This typically 

causes the pH of the system to flu ctuate and thus acidophiles are unlikely to grow 

well [85]. 

Some bioleaching processes are curr ntly in existence at a comm rcial level. For 

exampl , natural biological sulfur and nit rogen cycles offi r bio onv rsions that ar 

successful at th industrial scale. Wast can b converted (under ambient conditions) 

to a reusable product or harmless by-product [87]. 
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5.2.2 Biooxidation 

Biooxidation is very similar to bioi aching with a few subtle eli~ rences. Th pnmary 

difference in biooxidation is that it leaves th metals in a residue instead of in solution 

[81]. Biooxidation has been identified as a pot ntially low cost way to xtra t metals 

such as copper, lead, zinc, nickel, silver , gold , and uranium while limiting th negative 

effects of traditional processing. It is an oxidation proc ss catalyzed by bacteria and 

generally occurs at near ambient conditions [71]. As of March 2005 there were 22 

biooxidation plants in operation, 8 pending and 6 closed [75]. An example of biooxi

dation is the dissolu tion of pyrite and arsenopyrite which allows for the liberation of 

precious metals by cyanidation[73] . 

Certain condit ions can accelerate the oxidation process. Typically, a higher oxidation 

rate is found by lowering the pH and elevating temperatures in the presence of high 

concentrations of dissolved metals. Unfortunately this limits the type of microor

ganism that can b used. Microorganisms that typically function well under thes 

conditions are single-celled and prokaryotic types. These ells tend to live in highly 

acidic liquors. Most active strains of bacteria with these characteristics have y t to 

be classified[73]. 

5.3 Bioremediation 

Bioremediation uses microorganisms in the r m diation of polluted soil or waters. It 

involves the use of biological ag nts to reclaim soils and waters pollut d by ubstances 

hazardous to human health , the environment, or both. It is an xtension of biological 

treatment processes used to treat wastes in which microorganisms biod grade en-
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vironmental pollutants. Although not applicable in every situation, microbiological 

processes can be used to remediate acidic wastewaters and be an conomic way to 

treat a range of ulfide ores and con entra te [75, 73] . 

Active bior mediation offers sy tem control of the eparation and recovery of metals. 

At full scale, only compost bioreactors and constructed wetlands have b en used. 

Although the maintenance costs are low and solid phase products are retained, they 

can be expensive to install , p rform inconsistently, and require large amounts of 

land . Th potential for t he reuse of metals from waste streams by recovery using this 

method is lower than other processes [73] . 

One succ ssful biorea tor in the J therlands has been in operation since 1992. Thi 

bioreactor uses a Thiopaq proc ss with two distinct microbiologi a! steps: the conver

sion of sulfate to ulfide by sulfur r ducing bacteria and th conversion of hydrogen 

su lfide to sulfur using sulfur oxidizing bacteria. Both proce s s ar used to treat zinc 

rich wastewater [73]. 

High rate bioreactors also operat e with smaller volumes but offer improved process 

control and high r conversion efficiencies. Globally, approximately 2000 bioreactors 

exist and are used mostly in the treatment of high strength industrial wastewat r 

[87]. 

5.4 Biosorption 

Biosorption i considered an alternative to traditional techniques to tr at diluted 

solutions containing heavy-metals. It has been used in experiments to reduce th 

toxicity where traditional methods become l ss economically £ asible (when metals 
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are present in concent rations less than 100 mg/1) [76]. 13iosorption is a biotechnology 

that can occur in two ways. It can occur by adsorption of ions on the II surfa 

(accumulation or precipitation) or as bioaccumulation within the cell [78] . 

Adsorption involving biomaterial has an initial fast and rever ible m tal binding re

action. 13iosorbents are chosen based on th specifics of the application. Some hav 

broader ranges of application and bind with heavy-metals while others target spe

cific ions [7 4]. Accumulation is typically slower, and irreversible and has an ion

sequestration step. This bioprocess has been applied to treat wast s with metals such 

as lead , zinc, and copper (including toxic materials such as m taloids an I radionu

clides) . 

Aquatic plants, both living and non-living, have been found to act as efficient heavy

metal accumulators and are a focus of considerable research [82]. The major differenc 

between using living versus non-living microorganisms is the nutritional requir ment 

is higher for living microorganisms. In som cases the rate of reaction an be dir ctly 

or indirectly tied to t he metabolism rates of the microorganisms and can therefore 

be controlled [88]. When choosing a biotechnology it should be noted that certain 

algal sp cies may be more effective and selective than others for removing particular 

metal ions clue to the difference in cell wall composition [3]. Figure 5. 1 and 5.2 

depicts typical biosorption processes in use for rem diating toxic metal pollution. 

Examples include packed-bed reactors, fluidized-bed reactors Rotating-disk reactor , 

sludge-blanket bioreactors and artificial wetlands/stream m and rs. 

The plants that are used in biosorption are commonly found in ponds and lakes. Gen

erally thes plants absorb nutrients from the surrounding water. T hey are stratifi d 

among the lower depths of t he body of water and along the water's surface. The 
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Figure -.1: Exampl s of Typical Biosorption Pro esses - I [88] 
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cell wall components which possess the metal binding capability ar arboxyl groups 

those with high chi t in content (a polymer of ·-acetyl gluco amin ) [8 ]. Studie hav 

shown that th kinetics of adsorption by any biologi al material an b represented 

by the first-order Lag rgren quation [82]: 
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The second order equation may provide a more accurate representation: 
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(5.6) 

where qe is the m ass of metal adsorbed at equilibrium; qt is the mass of metal adsorbed 

at time t ; kt is the first order reaction rate constant of adsorption; and k' is t he 

pseudo second order rate constant of adsorption. This relationship has proven to be 

a reasonabl fit for the aquatic plant ceratophyllum demersum (coontail or hornwort) 

for the treatment of copper , zinc and lead [82] . 

Four factors have been identified as having a significant impact on the degree of 

success of a biosorption process. First, temperatures outside the range of 20 ac to 
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35°C have positive impacts on the biosorption process. Second , the pH affects the 

activity of th functional groups and competition for m tallic ion ( whi h has the 

most influenc of the four factors). The con entration of biomass in olution also 

influences uptake. T he lower the biomass concentration the higher th uptake to an 

optimal point. Finally, the removal of a specific metal ion may be influenced by the 

presence of another. This may be due to competition for the metal binding sites 

within the biomaterial. Additionally, pretreatment with alkali s acids, d tergents 

and heat prior to utilizing the biomaterial can greatly enhance th effectiveness of 

the biosorption pro ess by intensifying metal affinity. Some of the characteristics of 

biosorption and bioaccumulation are listed in Table 5.2 [3] . 

One experiment used Thiobacillus ferrooxidans as the biosorbent to treat a copper 

perchlorate Cu( Cl04 )2 solution prepared to simulate wastewater. The copper solu

tion was pretr ated with sodium hy lroxide and deionized water until the pH was 

neutral. It was th n suspended in sodium percholate solution. An agitat d tank was 

us d as th xperimental apparatus. The results of the experiment confirmed that 

the most favorabl isotherm ocurred at a pH of 6 and at a pH of 3 the rea tion rate 

was near zero. The chemical pretreatment caused an increase in permeabili ty of th 

cellular walls thereby increasing the availability of binding sites. Finally, elevating 

the temperature from 25 to 37°C increases the capacity by 68% [76]. 

A similar study focuses on the species solanum elaegnifolium (silv rleaf nightshade). 

The metals in the study target lead, copper, nickel, cadmium, zinc and hromium. 

Most m tals increase binding tend ncies to the biomass with an increas of pH up to 

a level of 5 to 6, with the exception of Cr(IV). Most binding occurr in the first 10 to 

15 minutes of th experiment so it is theorized that binding occurs on the cell walls 

of the plant tissue. It was also found that pretreatment with sodium hydroxide leads 
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to an increase in capacity. Additionally, the recovery of metals from the biomass was 

very successful [77]. 

In comparison with tradit iona l treatment processes, biotechnology has advantag s 

and disadvantages. Biotechnology requires a moderate capital invc tment since it 

can take the place of certain non-biological processes and u tilize similar equipment. 

After the capital investment, bioproce. es have very low operating costs. Microor

ganisms are known to be highly selectiv allowing for the targeting of metals with 

low concentrations in effluent streams. They provide an appropriate re overy of met

als from low grade ores and waste materials. A third advantage is the simplicity of 

the procedur s and equipment needed which does not require skilled operators. An

other advantage in terms of environmental protection, is th fact that bioprocesses 

are non-toxic. With biotechnology there ar no toxic additive and th refore no risk 

of making a potential environmental ituation worse [74]. Finally, microorgani ms 

have the ability to tackle two problems simul taneously which i not possible with a 

conventional proc ss. Metal ions can be processed and sulfate ions can be reduced 

and removed in a single operation [3]. 

Biotechnology also has pitfalls. I t has the possibility of having a low reaction time 

and a variability in performance. Consistency can be an issue with bioprocessing as 

the rate of reaction is d pendent upon o many variables. This may cause re overies to 

be lower than other processes. Finally, although some strain of microorganisms are 

robust, adaptable and requir minimal maintenance, t he number of strains available 

is sm all. For a given waste str am there is no certainty that a microorganism exists 

that will satisfy the requirements of the op ration [81]. 

Biosorption xperimentation has prov n that the technology i viable however it still 
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needs full-scale testing in order to b regarded as a olution to th treatment of 

wastewater from industrial proces es. 

5.5 Conclusions 

Future r search is required to determine if biotechnology is a viable technology to 

treat t he specific effluent stream from the INCO hydromet proc ss. As a newer 

technology, there is less historical information available. This makes the research and 

development costs and risks asso iated with this technology greater than th other two 

aforemention d processes. At t his stag , elimination of any bioprocess would require 

additional research and clarification of proj ct parameters (su h as risk tolerance). 



Table 5.2: Metal Biosorption and Bioaccumulation Characteristics [3] 

Feature Biosorption Bioaccumulation 
Metal Affinity High under favorable Toxicity will affect metal 

conditions uptake by living cells, but in 
some instances high metal 
accumulation 

Rate of metal uptake Usually rapid, a few seconds C sually slower than 
for outer cell wall biosorption 
accumulation 

Selectivity Variety of ligands involved, Detter than biosorption, but 
hence poor less than some chemical 

technologies 
Temperature tolerance Within a modest range Inhibited by low 

temperatures 
Versatility Metal uptake may be affected Requires an energy source 

by anions or other molecules 
Extent of metal uptake usually Dependent on plasma 
pH dependent membrane ATP (as an 

energy source) - ase activity; 
Frequently accompanied by 
efflux of another metal 



Chapter 6 

Technology Comparison 

Thi section ummarizes the technologi s and presents a onceptual methodology for 

selecting a eparation technology. 

6.1 Ion-Ex change 

The ion-ex hange process is at hnology that is firmly establi h d , w 11 represent d, 

and demon tratcs significant apital investm nt by industri -s. Re ar h has been 

conducted on various fronts to improve pro ss effectiven ss, a uracy in predictiv 

models, and the life- xpectancy of resins. Analytical r presentation have been d -

veloped and ar ontinuously improving to improve th mod ling and pr diction of 

system p rformance. Resin technology is al o evolving which i vident from the 

growing number of ommercially available resins designed to a hi ve pecific results 

for a number of industrial applications. 

When applying ion-exchange t chnology to any process the ch ic m r in will hav a 

direct ff ct of th results that can be achieved . The effectiven of th ion-exchang 

system dep nd on a number of factors. Thi is advantageous in that adju tments an 
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be mad on d t ail such as resin type, size, shape, process sty] , flow rate, and pH to 

improve syst m op ration. Reg n ra tion allows for reuse of th r sin beds increasing 

t he life span of the resins, lowering th operational costs, and redu ing maintenan e 

complexity. 

There are many options availa ble when hoosing a specific typ of ion-exchang r. 

Options includ batch, column or fluidized t chnologies. The p timal choice depends 

on num rou fa tors including the servic condit ions, and th I ired end results. 

Some limitation to the ion-exchange proces include the fact that the presen e of 

int rfering ions in the system can have a negative impact on th ystems productivity. 

Separa tion of losely related ion can pose to be a probl m , especially if the resin 

chosen has a similar selectivity affini ty to more than one ion. T he ion-exchang 

proces g n rally needs addi tional t p to extract the m tal of int rest from the 

solution ( uch as pr cipi tation or evap ration) . Temperatur , pH and other pro es 

condit ions will have a direct effect on the y terns performan e. 0 asionally a particl 

will block th pores of the resin , t herefore d creasing its separation performan . 

This blockage could lead to t urbidity in the system creating high pres ure drops or 

channeling of th solution through the bed so that t he resins full pot ntial i not 

achieved . 

T he ion- x hange technology has proven to be a viable solu ti n t t h removal of 

dilu te m tals from the waste-water of industries including mining and I ctroplating. 
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6.2 M embrane 

Membrane separa tion is divided into a number of specific technologies that can be ap

plied to various separation requirements. Liquid membranes, lectroclialysis, revers 

osmosis, and, ul tra / microfil tr a tion arc all technologies that fall under the umbrella 

of membrane separa tion. 

Overall membranes are compact and modular, are capital and energy efficient , remove 

toxic metals sub tances to low levels, are not complicated , and hav high s urface 

area for mass t ransfer. Membrane· a re inftu need by a number of driving forces 

including pressure, chemical and concentration gradien ts. M mbrancs a rc available 

in an extensive array of materia ls, shap e , structures, and modul s tha t can be chosen 

for a sp cific separa tion goal. 

Liquid Membranes have an advantag over other membranes clue to their ability to 

conduct extraction and stripping in one phase. T his can a l o be a disadvantage 

because of the instability tha t is caus d wit h t he stripping phase which can lead to 

ruptur of the emulsion. As with most separation technologies, it is important to 

choose the most effective regen t for the particular metal of interest. Temperature, 

membrane thickness, mixing rate, pH , amount of solut in the fe d phase, t r at 

ratio, amount of stripping reagent, volum fraction of internal phase, and presence of 

ligands in the feed will all hav a direct effect on the performance of t he membrane. 

It has been proven tha t LMs are capable of sel ctive separation and oncentration of 

pollutants from dilute aqueous was te streams and have been appli d to h avy-m tal 

recovery. It is capable of reducing metal concent ration from several hund red ppm to 

1 ppm. 
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Electrodialysis r moves ions based on size and charge. The use of electrodes al

lows for increru eel rates of transport to be achieved which leads to enhanced product 

purification. The effectiveness of t hi te hnology is influen d by the ele tromotive 

force, amperage, and the particle charge to be removed. Effe tive ad orbents need 

to be chosen for maximum extraction results. Electrodialysis reduces waste disposal 

amounts an I generates desired product in a purified and cone ntrated form. Bi-polar 

membranes, for example, can perform extractions t hat are not feasible using some 

conventional techniques where it is necessary to separate ions with the same valence 

and sign. 

Reverse Osmosis is simple, has an eas of operation and is easy to integrate with other 

systems such as ultrafiltration to produce a hybrid operation. ew mat rial are b ing 

developed that are more pH, temperature, and chlorine resistant than t raditional 

cellulose ac tat m mbranes. Thin-film-composite membranes have led to incr as 

flux performance and enhanced s paration . T he RO process is affected by the system 

pressure, feed concentration, pH, presence of other competing ions that may afD t 

extractability. 

Ultrafiltra tion and microfiltration are systems that rely on pore size of the membran 

to filter a given fe d stream . They are driven by the difD rential pressure across 

the system. T hese sy terns have been applied to the removal of dilute metals from 

industrial applications. 

An important feature of membrane technologies is the option of hybridization with 

other systems. This allows for the design of a system that is geared solely toward the 

removal of the metal of interest in the most effective and efficient method pos. ibl . 
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6.3 Biotechnology 

Biological systems are most likely to sue eed in areas where established competition 

does not exist or where a significant advantage can be identifi d (e.g. low m tal 

concentrations or where different selectivi ties are required) [3]. 

Biotechnology offers numerous advantages over traditional treatment processes. With 

a moderate capital investment this process a llows for low operating costs, simple 

equipment, and maintenance procedures. Additionally, biotechnology may be abl 

to offer high s lectivity allowing targeting of specific heavy-metal ion . Depending 

onthe micro organism used, perhap the greatest advantage biotechnology has over 

any other technology is the fact that it is completely non-toxic. It can be used to 

treat waste without th risk of leaving behind a more toxic and difficult problem to 

deal with. 

Although biotechnology offers many advantages, it has not b en pu t into practi as 

much as other technologies. This means that there is less industry experien e dealing 

with biomaterials. One of the road blocks biotechnology faces is th potential for 

inconsistency in performance. The many variables that influence th performan e of 

the bioprocess may lead to slow reaction times and less r cover than other proc ss s. 

Additionally, th availability of the most effective microorganism for a particular 

application may b problematic. 

Some commercial-scale bioprocessing facilities are succe sful today. Some of th se 

facilities use biotechnology to treat dilute waste streams. 
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6.4 Qualitative Comparison 

The comparison of wa te tr atment m thods is sensitive to variou parameters in lud

ing chemical composi t ion , flux , d sir d tr atment time and allowabl co t relativ to 

the specific waste b ing treated. d tailed scientific comparison of methods bas d n 

the specifics of the ffiuent stream and the environmental circum tanccs is required 

for treatment type selection. T hi sc tion qualitatively evaluat · the three typ s of 

treatment technologies at a high lev I, outlining typical ompari on parameter . It 

may be used as a guid line to frame a ientific evaluation of treatm nt methods. 

The evaluation riteria can be brok n in to 4 categories: techni al f asibili ty; com

patibility with xisting technology; environmental and safety con idcration and cost 

[89]. 

Technical feasibilit : This category r f rs to the amount of effort r quired to install 

and maintain th technology. If it is technology already in u e and has a respectabl 

track r cord then th effort level to in. tall and maintain it would b minimal. Alterna

tively, a technology without a history of performance may require piloting operation 

and tailoring to the specific application. As such the effort 1 v J would be higher. 

Additionally, whil in operation if the method is au tonomou as opposed to requiring 

multipl operators, the mainten anc ffort i 1 ss. 

Compatibility with existing technology: The impact of th application of a separation 

technology on a waste stream on the operation of a plant must be po itive or minimal. 

Environmental and Safety Considerations: At the separation point, any safety con

cerns (human xposure) due to th t chnology must be on id r I. Past the s p

aration point the ffiuent propertie can be compared on 1 v I f toxi ity, volum , 
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greenhouse ga missions, solid or liquid wast e disposal (transporta tion and/ or stor

age) and total nergy consumption. 

Cost: The overa ll capital and operational ost associated with ea h t hnology a n 

be compared. It is diffi ult to ob tain comparabl cost data for th vari u technologi s 

available in industry for a given ffiu n t treatm nt system. Costs are dependent on a 

number of param ters including: 

• con entration of metals in solu tion 

• op rati nal mode of the equipment 

• pro ess condi tions 

• se ondary treatments needed (. uch as regeneration of ion-exchange resins) 

• 1 t ivi ty of ion-exchange resin , m mbranes, and mi ro-organi m oupled with 

their r p t ive apacit ies for the giv n metal(s) 

• disposal of se ondary wastes such as Judges 

Figure 6.1 ummarizes the high 1 vel comparison. Iote that the tab! is not com

plet ly populated sine some require mor pecific information abou t th wast stream . 

Eccles [3] outlines performanc char a t ristics of heavy m tal r m val using s pa

ration technologi s, some of which were overed in this th si . Paramet rs us d to 

compare the technologies include pii , metal s lectivity, influen of suspend d solid , 

toleran e of organi molecules and the working level for the ap propriat . 

Depending upon the objectiv s of a p r on selecting a separation technology th 

outcome of the evaluation may vary. For example if an owner i n t comfortabl 



Table 6.1: Performance Characteristics of Heavy Metal Removal / Recovery Technologies [3] 
Technology Performance Characteristics 

pH change Metal selectivity Influence of Tolerance of Working level for 
suspended solids organic molecules appropriate metal 

(mg/ 1) 
Adsorption Limited Moderate Fouled Can be poisoned < 10 
Electrochemical Tolerant Moderate Can be Can be accommodated > 10 

engineered to 
tolerate 

Ion exchange Limited Chelate - resins can Fouled Can be poisoned < 100 
be selective 

Membrane Limited Moderate Fouled Intolerant > 10 
Precipitation 
(a) Hydroxide Tolerant -on-selective Tolerant Tolerant > 10 
(b) Sulphide Limited Limited selective Tolerant Tolerant > 10 

pH dependent 
Solvent ext raction Some systems Metal selective Fouled Intolerant > 100 

pH tolerant extractants available 
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Category Criterion Process 
ion Exchanqe Membrane Separation Biotechnolo<Jv 

Proven 
Widely accepted Gaining momentum 

Largely unproven, technology 
TechnoiOQY not at a commercial level 
Process Resin must be matched to Membrane/surfactant must be Biomaterial must be selected to 
Sensitivity application matched to application match application 

Additional Testing Membrane selection requires Identifying the right 

Requirements 
Resin selection requires testing 

testing 
microorganisim is a challenge 
and requires testing 

Installation Well understood installation and 
Modular in construction Dependant upon biomaterial 

Technical maintenance procedures utilized 

Feasability Process requires maintenance 
Maintenance of membrane 

Organic material may need 
Maintenance procedures (rinsing and maintenance however it can be 

backwashing) 
required 

relatively autonomous 

Treatment 
Requires Specific Information 

Capacity 

Treatment With the proper resin this With the proper membrane With the proper biomaterial, this 
EfficiencY 
Flexability 

method offers selectivity, /surfactant this method offers method offers selectivity, 

Selectivity 
efficiency, fiexability selectivity, efficiency, flexability efficiency, fiexability 

Operating temperatures are 
Effective over a larger range of Operating temperatures are 

Impacts on other limited which may interfere with 
pH values limited Compatability operations 

Operations 
Turbidity can cause high 
I pressure drops to overcome 

No more issues identified No more issues identified 

Toxicity of 
Effluent 

Requires Specific Information 
Volume of 
Effluent 

Environment 
Waste Products Not identified 

20-50 times decrease in waste 
Not identified and Safety volumes 

Energy Low energy requirements I Not identified I Low Energy requirements 

Disposal of waste Requires Specific Information 

Safety Issues No safety hazard identified 
Stated as a cost effective 

Capital Cost technology for dilute waste Not identified Moderate capital cost 
Cost streams 

Operational Cost Not identified Not identified Low maintenance cost 

Figure 6.1: Qualitative Technology Comparison 

with piloting new technology it may be ne essary to weight the crit ria for 'Proven 

Technology' highly relative to other criteria which would favor ion ex hang . On the 

other hand, if som evidence supports utilizing biot chnology for th sp ific wast 

stream then the risk involved with testing a new technology may balan e with th 

potential reward of a cheap and efficient system to treat the waste stream. 
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6.5 Conclusions 

This is a gen raJ overview of potential technologies. Elimination of any technology 

requires furth r research and additional information regarding the pecific of I !CO' 

waste str am. Based on research conducted, a qualitative comparison i pre ented in 

Figure 6.1. Four categories were used to compare and contrast the three s paration 

technologies that are the primary focus of this research. Th figure demonstrates 

that ion exchange is the most widely accept d and research d t chniqu . It is al o 

flexible in that resin selection can be altered to meet process demands and has well 

understood installation, maintenance and operational procedures and has low en

ergy r quir ments. This is the personal view of the author and do s not eliminate 

membrane or biotechnologies from future research. With ion xchange, once the 

waste str am constituents are identified , one would hav to d termin a suitable resin 

through labora tory testing and proceed with column design (number of stages, ba k

wash requirements and regeneration specifi s, materials of constru tion, as well as 

process conditions such as temperature, pressure, pH, etc .) based on the details of 

the waste stream. 



Chapter 7 

Conclusions 

Hydrom tallurical processes are in use on a global level to xtract metals from or s, 

con ntrate, and other intermediate products. Although hydrometallurgy is a mature 

technology, numerous advancements in the field have been achieved throughou t th 

past decad . 

These advancements eliminate the smelting of ores, lower operating costs, and in

crease overall quality of metals b ing produced by eliminating the inefficiencies in the 

hydrometallugical process. This 1 ads to the reduction of by-products su h as emis

sion of so2 gas into the environm nt, makes hydrometallugy a more economically 

viable t chnology, and lowers the loss of product potentially decreasing the amount 

of contaminants, toxicity, or both, in the effiu nt stream. 

In a typical hydrometallurgical process, waste treams can potentially b t reated 

for metal recovery. By treating the waste treams using technologies su h as ion

exchang , membrane separation , or bio-technology, it is possible to recov r valuable 

metals previously perceived to be uneconomical. 

It is difficult to obtain comparable cost data for the various t chnologies for a given 

152 



-----------~-----· --------- ----- --- ----

153 

treatment system. Co ts are dep nden t on a number of parameters including: 

• con entration of metal(s) in solut ion 

• operational mode of the equipment (i.e. autonomous or manual) 

• process conditions 

• required secondary treatment(s) (i.e. regeneration) 

• selectivity of ion-exchange resins, membranes, or micro-organisms coupled with 

their capacity for the metal(s) 

• disposal of secondary wastes (i.e . sludge) 

7.1 Recommendations 

This resear h provides the fund am nta l background on a number of treatmen t tech

nologies available for treating effluent str ams from metal pro essing facilities. Once 

the specific detail of the INCO hydromet effiu nt stream b come available, a series of 

analyses can b onducted to prove the viability of each technology and then ompar 

the technologies based on the framework provid d in this thesis. The UlT nt t hesi is 

a qualitative r vi w of treatment technologies. Greater detail and quantitative eval

uation is a major recommendation for fut ure work. This th sis may also be u tilized 

as a compila tion of information available in the a reas of ion ex hange, membrane 

techniques and biotechnology, to avoid duplication of effort in future work. 
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