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Abstract 

Photogrammetry has come a long way since cameras were employed for aerial map

ping tasks. In this digital era, photogrammetry evolved to be used in close range 

measurements for industrial purpo e , thanks to inexpen ive and off-the- helf digital 

cameras and superior computing power. But how accurately close range photogram

metry can execute a measurement is a question still unexplored by the researchers. 

This thesis attempts this question to find a vi ion ba ed measurement solution that 

employs conventional sensing means yet produces highly accurate results. In a way, 

the proverbial "pushing the limit" was the main focus of this work. 

It was found that geometrical calibration of digital cameras is the major task in 

developing a vision based measurement system. This work proposes a novel calibra

tion technique with an improved approach towards implementation. Experimental 

results and computer simulation confirmed the accuracy produc d by the proposed 

camera calibration technique. A laser projector emitting a linear pattern was u ed 

as an additional sensing element in complement to the cam ra. Finally a spherical 

surface was digitized in order to assess the performance of the overall system. 
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Chapter 1 

Introduction 

Since t he wheel was invented in the 5th millennium BC, technology has influenced 

and changed human life. There is one thing, however, that remains constant for 

modern and ancient man. Despite all the differences in their physiques, intellects 

and everyday life challenges, both depend on vision as the primary sensory system. 

Though the gift of vision is taken for granted, a closer look reveals how important 

a role it plays in helping us to function effectively. First of all, besides auditory 

system, vision is the only other biologically available remote sensing system in the 

human anatomy. Moreover, it enables us to gather a large volume of data with a high 

acquisition rate. Considering all the advantages and potential of vision as a means of 

sensing, the idea of incorporating silicon based vision systems into machines occurred 

to the inventors since systematic research began in the field of artificial intelligence. 

As a result , Machine Vision emerged as a promising field in engineering. It can be 

defined as the systematic study and development of technologies that primarily aim to 

extract useful information from the images of a real world scene. This particular field 
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of engineering owes its birth and development to mathematics, computer engineering 

and digital signal processing. 

Machine vision tasks include, but are not limited to, robot navigation, medical 

diagnosis, remote sensing, document processing and product inspection in manufac

turing plants. These tasks are usually a general composition of some basic problems 

that are solved by machine vision techniques. 3D model acquisit ion or surface re

construction is one such basic problem that retrieves the depth or the range of an 

object from image input. This particular subfield of vision studies originated from 

photogrammetry. Since the problem was addressed by the vision community, an ex

tensive amount of work has been done and some impressive successes were achieved. 

Despite the invention and the development of a number of techniques for surface re

construction, the landmark of attaining high accuracy is yet to be accomplished. In 

this work this challenge was undertaken with an aspiration to find a highly accurate, 

albeit cost effective, solution. 

1.1 Problem Definition 

The main objective of this work is to develop a vision based surface reconstruction 

system that features the following characteristics: 

• The system may only receive images of the object as the input. 

• It may employ additional means of non-contact nature to gather data that 

complements the image input (e.g., illuminating the scene with structured light). 

This will assist in solving the basic range ambiguity problem associated with 
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monocular vision. 

• The system has to be highly accurate. Attained accuracy should convincingly 

exhibit significant improvement over the existing systems. 

• It should be cost efficient . Off-the-shelf digital cameras and lenses offer greater 

feasibility in this regard. 

• The system is not required to perform in real-t ime since it will be a prototype. 

However , the design should be flexible enough so that it can be easily modified 

to operate in real-time condit ions. 

1.2 Challenges 

Conventional digital cameras capture a 2D interpretation of the 3D world which is 

called the image. Once the 3D world is mapped onto the 2D image plane, the so called 

depth or range dat a is no longer available from the image. The surface reconstruction 

syst em attempts to retrieve the range by triangulation with the input from camera 

besides the laser projector. This is the basic operational principle of the system; 

however , in practice there are some challenges that need to be overcome first in order 

to achieve good performance: 

• In order to recover a 3D model of the object (i.e., reconstruct the surface of the 

object), the camera and the laser projector have to be calibrated a priori. 

• An automated and accurate physical system is needed to produce and to collect 

the da ta for camera calibration , laser calibration and range finding. This system 

Rahman 2009 3 



should also be equipped with necessary control systems to actively control the 

camera and the laser projector. 

• Consistent with the design requirement, the surface reconstruction system re

ceives image input only. Consequently, data mining from the image input is an

other important aspect of the system. Customized image processing techniques 

(i.e., edge detection, blob analysis, fitting geometric primitives etc.) need to be 

developed and implemented to extract the useful data from the image input. 

1.3 System Architecture 

To build a system that meets the requirements stated in the preceding section, an 

off-the-shelf, industrial grade digital camera was chosen as the primary sensor that 

acquires image of the object whose 3D model is to be determined. To complement the 

image input , a laser projector that emits a laser light of linear profile was employed 

to retrieve the range of the object by triangulation. In addition, a desktop computer 

was commissioned to execute the following tasks: 

• Generating the point correspondences for the camera calibration. 

• Acquiring, processing and storing the calibration data. 

• Controlling the calibration of the laser projector. 

• Analyzing the data and subsequently building the 3D model. 

• Providing interface between the user and the system. 
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.--------------------------- --------- - ---

Two auxiliary subsystems; namely, the calibration rig and the illumination source, 

provided additional functionalities to the system. The calibration rig is a physical 

structure that rigidly houses all t he components of the system. It posit ions the object 

in the field of view of the camera accurately with two degrees of freedom in order 

to generate the point correspondences. The illumination source is comprised of four 

LED arrays that emit white light. It ensured uniform and cont rolled illumination 

over the field of view of the camera. Figure 1.1 illustrates the architecture of the 

surface reconstruction system. 

Object 

Camera Calibration Camera Laser Calibration 

Figure 1.1: Architecture of the Surface Reconstruction System 

1.4 Organization of thesis 

This thesis is presented in nine chapters: 

• Chapter 1: This chapter int roduces the thesis. It defines the core problem 
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that the thesis attempts and lists the challenges associated with this problem. 

The architecture of the surface reconstruction system is also discussed. 

• Chapter 2: A geometrical interpretation of the image formation process in 

digital cameras (i.e., camera model) is presented in t his chapter. The effect of 

lens distortion is modeled in order to develop a comprehensive mathematical 

representation of the imaging process. 

• Chapter 3: The conventional camera calibration techniques are reviewed in 

Chapter 3. It also mentions reported comparative experimental studies assessing 

the accuracy of the calibration techniques. 

• Chapter 4: A set of propositions are made to improve the conventionally 

adopted methodologies for camera calibration in this chapt er. The proposi

tions primarily include orientation representation and error minimization in the 

calibration problem. 

• Chapter 5: A novel camera calibration technique is developed in Chapter 5. 

All the mathemat ical formulations of the solution to the calibration problem 

are documented. 

• Chapter 6: This chapter deals with the implementation aspects of the pro

posed calibration technique. The mathematical analyses of various data mining 

techniques along with a brief description of the hardware are presented. 

• Chapter 7: A thorough performance evaluation of t he proposed camera cali

bration technique is conducted in Chapter 7. A comparative study on accuracy 

using computer simulation and as well as practical data is presented. 
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• Chapter 8: A novel and relatively simple laser calibration technique is devel

oped. Following discussions include a significant ly improved method of localiz

ing the laser line in the image space. An object is digitized and the acquired 3D 

model is compared against the geometrical properties of the object determined 

by conventional metrological means. 

• Chapter 9: Finally, Chapter 9 includes the concluding remarks and some 

propositions for future development . 
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Chapter 2 

Camera Model: Mapping of 3D to 

2D 

In order to model the image formation process in cameras; i.e. , perspective projection 

of a 3D real world scene onto a 2D image plane, geometric and optical characteristics 

of the camera and the scene are required to be known a priori. Geometric charac

teristics include knowledge of the position and orientation of the camera relative to 

the world coordinate system, image center and aspect ratio of the discretized image 

plane. Optical characteristics include focal length and distortion characteristics of 

the lens. Experimental determination of these characteristic parameters (henceforth 

referred to as camera parameters) is called camera calibration. These parameters 

constitute an analytical model of the image formation process that is often referred 

to as the camera model. In the following section a nomenclature is presented that is 

followed throughout the thesis. 
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2.1 Nomenclature 

Before proceeding any further it is necessary to adopt a consistent nomenclature to 

avoid confusion. There are some ambiguities regarding usage of some camera model 

terms appearing in the literature. 

• Forward Camera Model: Mapping of 3D world coordinates onto 2D image co

ordinates through perspective projection and lens distortion. This model pro

vides the corresponding 2D image coordinates for given 3D world coordinates 

and camera parameters. 

• Backward Camera Model: Intuitively, this model should provide th 3D world 

coordinates from 2D image coordinates and camera parameters; however, with

out Lhe depth information, it is not possible to solve for the world coordinates 

explicitly. Therefore, this model doesn't have a unique solution. 

• Forward Distortion Model: Adding distortion to the image coordinates given 

by pure forward perspective projection model (i.e. , pinhole camera model) . 

• Backward Distortion Model: Provides undistorted (i.e. , correct d) image coor

dinates; i.e., pure perspective projection, from distorted image coordinates. 

2.2 Pinhole Camera Model 

Machine vision text books and scholarly publications (e.g. , [1, 2, 3, 4, 5, 6]) often use 

the Pinhole Camera Model (Figure 2.1) to develop a geometric interpretation of the 

image formation process. This mapping of 3D world coordinates to 2D image coor-
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dinates is quite simple. The light ray from the point in 3-Space passing through the 

camera projection center is projected onto the image plane. Intersection of the light 

ray and the image plane provides the image point. For example, in Figure 2.3 point 

Pin 3-Space is projected asP'. Though this modeling approach ignores the effects of 

lens thickness and focus of the lens, reasonable approximation is still obtainable [2]. 

In ( [3, 4, 5, 6]) the pinhole camera model was refined to account for image distortion 

due to lens geometry and inaccuracies in lens assembly. 

Figure 2.1: Pinhole Camera Model 
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2.3 Modeling Image Formation 

A typical digital image, when stored, is conventionally defined with respect to a 2D 

coordinate frame UV, the so-called image coordinate frame (Figure 2.2). When the 

image is viewed on a screen, axes U and V are the horizontal and the vertical axes 

respectively. Ot her coordinate frames in the image formation model will be defined 

with a reference to t he image coordinate frame. 

o.--_____ _,.u 

v 

Captured image (as stored) 

Figure 2.2: Field of View of a Camera and Captured Image 

The camera model for this work was set up in the following manner (Figure 2.3): 

• Image Coordinate Frame: This 2D coordinate frame has its origin 0 at the left 

upper corner of the image when stored or viewed. This defini tion agrees with 

the conventional image coordinate frame in computers. 

• Retinal Coordinate Frame: This is a 2D coordinate frame with XiYi axes. The 
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origin of this coordinate frame is at the image center Oi, the intersection point 

of the optical axis of the lens and the image plane. This coordinate frame is 

defined so that Xi and Y; axes are respectively in the direction of axes U and 

V. 

• Camera Coordinate Frame: This coordinate frame X cYcZc has its origin at the 

principal point or the center of projection of the lens Oc. The X cYc plane is 

parallel to the image plane and the Zc axis coincides with the principal axis (or 

the aiming vector) of the lens. Axes X c and Yc are in the opposite direction of 

retinal axes Xi and Y; respectively. The distance from the principal point Oc to 

the image center Oi is the effective focal length f of the camera. It should be 

mentioned that this convention was adopted to more accurately represent the 

actual camera geometry that inverts the image. 

• World Coordinate Frame: This coordinate frame Xw YwZw defines the 3D ob

ject position and orientation in world coordinates. This coordinate frame is 

unconstrained. 

2.4 Forward Camera M odel 

The basic goal of the forward camera model is to find the distorted image coordinates 

from the 3D world coordinates for a given set of camera parameters. This model maps 

3D world coordinates onto the 2D image plane for a given camera. This mapping can 

be decomposed into two Euclidean and one perspective projective transformation and 

one nonlinear transformation for lens distortion. These transformations take place in 
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0 

Yw Zw 

Figure 2.3: Model of Image Formation in Camera 

the order explain d in the following sections. 

2.4.1 Transformation from World Coordinate Frame to Cam-

era Coordinate Frame 

Let the coordinates of point P in Figure 2.3 be (xw , Yw , zw) measur d with respect 

to the world coordinate frame XwYwZw; i.e. , position vector of point P in world 

coordinate frame is [xw Yw zwJT . The goal is to transform this position vector 

to the 3D camera coordinate fram XcYcZc. To facilitate th computation of this 

transformation the homogeneous coordinates w P = [xw Yw Zw l]T is used. This 
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is particularly advantageous as one matrix multiplication can take care of both the 

rotation and the translation parts of the transformation. Thi can be achieved by 

using Equation 2.1. 

cp = cyw X wp 

(2.1) 

Here, 

cyw - 4 x 4 transformation matrix from the world coordinate frame to 

the camera coordinate frame 

cRw 3 x 3 rotation matrix from the world coordinate frame to the 

camera coordinate frame 

ctw Position vector of the origin Ow of the world coordinate frame in 

the camera coordinate frame 

2.4.2 Perspective Projection Transformation from Camera 

Coordinate Frame to Retinal Coordinate Frame 

In this st p, w try to obtain the 2D representation of the 3D world. This 2D 

representation is called the image of the 3D world. Figure 2.4 clarifies the proces 

of projection. ote that t his figure is identical to the model presented in Figure 2.3, 

only viewed from Yc axis. 

From Figure 2.4, we see that 6POcQ "' 6P'Oc0 i. This similarity provides an 

opportunity to establish a geometric relationship between the coordinates of object 

point P (xc, Yc , zc) in the camera coordinate frame X cYcZc and th coordinates of 
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Xc 

P' 

xi 

XI 

Figure 2.4: Camera Model: As Seen from Yc Axis 

the image point P' (xi, Yi) in the retinal coordinate fram X iYi · From equality of 

the ratios of similar sides of similar triangles, we obtain the following relationship 

(Equation 2.2): 

f (2.2) 

Equation 2.2 is true when t he pixel spacings in the horizontal and the vertical direc-

tions in th image sensor are equal which might not be the general case. To account 

for this, a cale factor s will be introduced which is the ratio of pix l spacing in th 

horizontal and the vertical directions. A more general relation i Equation 2.3 which 

includes the scale factor s: 

Xi Xc 
-= s-
f Zc (2.3) 

Using similar reasoning and viewing the model from the negative direction of the axi 
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Xc provides the following relationship (Equation 2.4): 

Yi Yc 

f 
Yc 

=} Yi =- f 
Zc 

Equations 2.3 and 2.4 yield the projective transformation. 

(2.4) 

2.4.3 Transformation from Retinal Coordinate Frame to Im-

age Coordinate Frame 

Since the axes of the retinal and image coordinate frames are in the same direction, 

transformation from the Xi Yi coordinate frame to the UV coordinate frame is pure 

translation. The coordinates of the origin of the Xi Yi coordinate frame are already 

defined as the image center Oi (u0 , v0 ) in the coordinate frame UV. Therefore the 

general transformation can be formulated as in Equation 2.5. 

u 1 0 uo 

v 0 1 Vo X Yi 

1 0 0 1 1 

(2.5) 

Yi + vo 

1 

Henceforth the coordinates (u, v) will be referred to as the undistorted image 

coordinates. ow the camera matrix [2] will be formulated . This is also referred 

to as the perspective projection matrix [4] . Substituting Equations 2.3 and 2.4 in 
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Equation 2.5 yields Equation 2.6. 

u :fJ;. fs + uo 
Z c 

v lk f + vo 
Zc 

1 1 

Xcfs + UoZc 

ycf + VoZc 

Zc (2.6) 

Xc 
sf 0 uo 0 

Yc 
0 f vo 0 X 

Zc 
0 0 1 0 

1 

=Cx cp 

The camera matrix C in Equation 2.6 performs the projective transformation and 

translation of the camera coordinates. In should be noted that, t he product of the 

matrix-vector multiplication in Equation 2.6 yields the homogeneous coordinates of 

the corresponding image point. In order to obtain the equivalent Cartesian coordi-

nates of the image point the third component of the homogeneous coordinates must 

be normalized to unity. 

2.4.4 From Undistorted Image Coordinates to Distorted Im-

age Coordinates 

Lens distortion results from imperfect lens construction and inaccurate lens assembly. 

Distortion causes the theoretical image point provided by the pinhole camera model 
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to be shifted on the image plane either tangentially or radially or both. To model the 

image formation process accurately, one has to compensate for this phenomenon. A 

brief survey of lens distortion modeling is given in Chapter 4. Various mathematical 

models of lens distortion have been proposed in the literature (e.g., [7, 8]). In this 

work the distortion model given in [7] has been adopted since this lens distortion 

model is better suited for conventional lenses. Let the undistorted image coordinates 

of point P' be au = [u vf and the corresponding distorted image coordinates be 

ad = [ud vdf . The relationship between distorted and undistorted image coordinates 

is given by Equation 2.7: 

au= ad+ F(ad , 8) 

= lud] + lud(k1r~ + k2rd + k3r~ + ... ) + (2p1uiiJd + p2 (r~ + 2u~))(l + p3r~ + ... )] 

vd vd(k1r~ + k2rd + k3r~ + ... ) + (PI(r~ + 2v~) + 2p2udvd)( l + p3r~ + ... ) 

(2.7) 

The parameters k1 , k2 , .. . and p1 ,p2 , ... are the coefficients of radial and tangential 

distortion respectively. Since the higher order coefficients of both radial and tangential 

distortion arc very small, they can be neglected without ignificant loss of accuracy 

[9] ; however, for a wide angle len higher order terms might be ignificant. In the 

Equation 2.8 the simplified lens distortion model is presented: 
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As discussed in Section 2.1, the distortion model presented in Equation 2.8 is re-

ferred to as the backward distortion model. Note that a closed-form analytic solution 

for the distorted image coordinates in terms of the undistorted image coordinates (i.e., 

the forward distortion model) is not readily obtainable from Equation 2.8. The for-

ward distortion model, however, must be incorporated into the forward camera model 

for estimating lens distortion effects. To solve this problem, a numerical technique is 

employed to determine the distorted image coordinates from their undistorted coun-

terparts; i.e. , to solve Equation 2.8 for [ud vd] given [u v]. Equation 2.8 provides a 

system of two nonlinear equations which must be solved for the unknown parameter 

vector 1J = [ud vd] (Equation 2.9) : 

(2.9) 

In order to obtain a numerical solution to Equation 2.9 through application of the 

Newton-Gauss method, the Jacobian matrix for the system of equations needs to be 

first calculated. The Jacobian matrix i given by (Equation 2.10): 

(2.10) 
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The elements of the Jacobian matrix are expanded in Equation 2.11. 

Jn = 1 + k1(u2 + ii2) + k2(u2 + ii2)2 + u2(k1 + 2k2(u2 + ii2)) + 2p1ii + 6p2u 

J12 = 2uv(k1 + 2k2(u2 + v2)) + 2p(u + 2P2ii 

J21 = 2uii(k1 + 2k2(ii2 + ·v2)) + 2p1u + 2p2ii 

J22 = 1 + k1(u2 + ·v2) + k2(·u2 + ii2)2 + 2·v2(k1 + 2k2 (u2 + ·v2)) + 6p1ii + 2p2·u 

Here, i1 = ud - u0 and ii = vd - v0 

(2.11) 

The distorted image coordinates [ud vd]T are determined in an iterative fashion from 

the nonlinear system in Equation 2.9. Based on the initial parameter vector 80 

[u v]T, the algorithm converges to a solution in a few iterations. 

2.4.5 Overall Transformation 

The transformations explained in the previous sections can now be combined to form 

the forward camera model. This will be achieved in two steps. In the first step, the 

world coordinates are transformed into undistorted image coordinates. Substituting 

Equation 2.1 into Equation 2.6 yields the first step of the desired transformation. 

u 

V = C X cyw X wp (2.12) 

1 

Subsequently, the distorted image coordinates are estimated from the undistorted 

image coordinates using the forward distortion model; i.e., through the application 
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of the Newton-Gauss method. 

[ ::] Nonlinear Optimization [: ] (2.13) 

2 .5 Camera Parameters 

In t he course of developing the forward camera model, a set of camera parameters 

have been defined that characterize the camera geometrically and optically. These 

parameters are summarized in Table 2.1. 

Since parameter 1 and parameter 2 in Table 2.1 describe the external geometry of 

the camera, they are called the extrinsic camera parameters. The remaining camera 

parameters characterize the internal geometry and optics of the camera; therefore, 

they are referred to as the intrinsic camera parameters. It should also be rioted 

that specifying the orientation of a 3D coordinate frame with respect to another 3D 

coordinate frame requires three independent parameters. Similarly the position vector 

is also composed of three independent parameters; hence, there are six independent 

extrinsic camera parameters. 
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Table 2.1: List of Camera Parameters 

Parameter Definition 

1 CR..w 

3 f 

4 s 

5 [uo vo] 

Rahman 2009 

Rotation matrix defining the orientation of the world coordinate 

frame 

Position vector of the origin of the world coordinate frame in the 

camera coordinate frame 

Focal length of the camera 

Scale factor 

Position vector of the origin of the retinal coordinate frame in 

the image coordinate frame 

Coefficients of radial distortion of the lens 

Coefficients of tangential distortion of the lens 
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Chapter 3 

Camera Calibration Methods: A 

Review 

Accuracy and performance of vision bas d 3D measurement systems largely depend 

upon the quality of the camera calibration sine the camera is the primary and some

times the only s n or in such systems. Over the years in photogrammetry and com

puter /machine vi ion literature an extensive body of work on camera models and 

camera calibration techniques has been proposed and reported. Excell nt reviews of 

the developments in camera calibration in the past years can b found in [10, 11, 12] . 

The history of d veloping camera models and calibrat ion techniqu s clo ely follows 

the history of camera and imaging technology development itself. In the early years of 

photogrammetry, fi lm based cameras were used and aerial photogrammetry was the 

primary fi ld of application, where accuracy was of secondary importance. Moreov r , 

relatively low resolution of the cameras also limited the performance. Eventually 

close range photogrammetry became a prominent research topic that attempted to 
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solve the problem of acquiring metric information from the image of a real world 

scene. By then camera resolution was high enough for the lens distortion to be signif

icant and researchers started to augment camera models with lens distortion terms. 

Camera calibration methods in computer/machine vision have close ties with calibra

tion methods in photogrammetry. Precursory work in close range photogrammetry, 

[13] inspired many of the widely adopted camera models proposed more recently (e.g., 

[3, 4, 5, 6]). It also introduced one of the most popular and widely used calibration 

methods at that time which is known as "self calibrating bundle adjustment" [11]. 

Low cost, off-the-shelf Charged Couple Device (CCD) based digital cameras became 

widely available for machine vision applications with the advancement of the imag

ing technologies. One of the implicit assumptions of the self calibrating method is 

that the centre of the optical axis is very close to the centre of the imaging sensor; 

however, that is not necessarily valid for CCD cameras [12]. Hence the geometry of 

modern CCD cameras was no longer conducive to self calibration. As a result there 

was a renewed research interest for developing stand alone photogrammetric calibra

tion approaches, especially fully automated calibration [11]. In the following sections 

a brief overview of existing models and various calibration techniques is highlighted. 

The camera models reported in the literature generally use a perspective projection 

model; therefore, only the differences in the camera models will be emphasized. 

3.1 Classification of Camera Calibration Methods 

Camera calibration methods and their governing models as reported in the literature 

to date can be classified according to several different criteria. A brief account of 
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camera calibration methods, models and their classification can be found in [10, 11]. 

The subsequent discussions will concentrate on [11] since it provides an excellent 

comprehensive classification of the camera models developed to date. 

Almost all reported camera models are based on the fundamental principles of pro

jective geometry. Reference [11] classifies the camera models based on the modelling 

approach. The two classes are: 

• Camera model based on perspective projection: These models follow the per

spective projection model which is very similar to t he model described in Chap

ter 2. The inherent implication in such models is that the internal orientation 

of the image plane is stable for a given focal length. These models also ac

commodate perturbations from collinearity, both linear and non-linear, mostly 

due to lens distortion. Calibration techniques following these models require 

five or more point correspondences within a multi image network for nonlinear 

least squares bundle adjustment; however, better estimation of the camera pa

rameters is expected when a large number of point correspondence metric data 

is available. An optimum number of points can be experimentally determined 

beyond which the quality of estimation does not significantly increase. Deter

mining the minimum number of correspondences that is required for solving 

the camera model is interesting from a theoretical point of view, but from a 

practical point of view the minimum number of point correspondences does not 

provide an optimal solution. 

• Camera model based on Essent ial & Fundamental Matrices: These models are 

more focused on projective geometry than Euclidean scene reconstruction. They 
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are characterized by the essential and fundamental matrix models and can ac

commodate variable and unknown focal length. Nonlinearities arising from lens 

distortion are difficult to deal with in these models [11]. 

Both [11] and [10] categorize the camera models into two classes, implicit and 

explicit camera models, based on whether or not the process of image formation is 

modeled physically. Implicit camera models try to quantify the mapping of the 3D 

world coordinates to the 2D image coordinates by the multiplication of a column 

vector by a single matrix. The vector is a homogeneous representation of 3D coordi

nates and the matrix is a 3 x 4 matrix that is often referred to as the camera matrix. 

Elements of the camera matrix do not correspond to any physical parameters related 

to camera geometry, orientation or optics. Examples of such models are presented in 

[14] and [15]. On the other hand, explicit camera models try to develop the model 

defined by physical parameters of the camera. Examples are [3, 4, 5, 13]. 

Further classification of camera models is possible by choosing different criteria. 

Whether the calibration method uses 3D rather than planar point arrays can also be 

a basis of classification. While [4] can accommodate both 3D and planar point arrays, 

[5] and [16] uses only planar point arrays. Another possible criterion for classification 

can be parameter estimation and optimization techniques employed in the camera 

calibrat ion method. According to this criterion for classification, camera models and 

calibration techniques can be divided into three major classes as discussed in the 

following. 

• Underlying models of calibration methods using linear techniques neglect the 

nonlinear lens distortion. These methods can be fast and can also include 
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closed-form solutions. They simplify the camera model a great deal but at t he 

cost of accuracy [11]. One example of this class is the well known Direct Linear 

Transformation (DLT) method [17]. 

• Calibration methods using nonlinear opt imization techniques attempt to find a 

rigorous and accurate representation of the camera internal orientation t hrough 

iterative least squares estimation. The governing camera model includes lens 

distortion. Reference [13] is typical of such a calibration method . 

• Some calibrat ion methods use a combination of linear and nonlinear techniques. 

Linear methods are employed to estimate the initial approximations of the cam-

era parameters. These parameters are t hen used as an initial parameter vector 

for a nonlinear search to iterat ively refine the estimation. Linear search for 

initial approximation increases the probability of convergence of the nonlinear 

search. Examples are described in [3, 6, 18, 19] . 

3.2 Camera Calibration Techniques in Computer 

Vision 

Previous sections dealt with camera models and calibration techniques in general. The 

scope of the subsequent discussion will be limited to calibrat ion methods and models 

which are prominent and widely used in computer/machine vision. A comparative 

experimental performance evaluation was carried out in [20] for camera calibration 
I 

techniques presented in [3, 5, 17] . A similar study can be found in [10] on camera 

calibration techniques presented in [3, 6, 15, 18] ; however, the most recent review [11], 
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recognizes [3, 5, 19] as the most commonly adopted calibration techniques in Com

puter Vision. All three techniques are based on a pinhole camera model and include 

terms for radial distortion. They also employ a nonlinear optimization technique for 

parameter estimation. Traditionally these methods employ a so-called calibration 

target; e.g. , checkerboard pattern or an array of circular feature points (also referred 

to as control points in [4]) arranged in either a 3D or a coplanar fashion. 

Tsai developed a two step calibration technique ([3]) for CCD based digital cam

eras. This technique assumes that some of the camera parameters will be provided 

by the manufacturer to reduce the computational cost associated with the initial ap

proximation. Euler angles were employed to represent orientation. Tsai's technique 

also attempted to compensate for the timing error associated with image scanning 

and acquisition in t he camera system. He also assumed that no matter what kind of 

distortion is present in the lens sensor assembly, the total effects of lens distortion are 

compensated for as radial distortion. One or more views of 3D or coplanar calibration 

targets of known world coordinates is used in this technique. A minimum of eight 

feature points per image are required to solve the calibration problem with a set of 

linear equations based on the Radial Alignment Constraint (RAC) . 

Heikkila & Silven developed another two step calibration technique described in 

[19]. Using DLT, the closed form solution gives initial estimates of the camera param

eters. By applying t he Levenberg-Marquardt algorithm this technique then estimates 

the first order gradients (i.e., the J acobian matrix) and the intrinsic parameters and 

lens distortion are refined. This technique, which employs two coefficients for radial 

distortion and two coefficients for tangential or decentering distortion, works with 

either a single 3D calibration target or multiple coplanar calibration grids. Heikkila 
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improved this calibration technique in [4] by implementing implicit correction for the 

projective distortion of the circular control points. 

Zhang's calibration technique [5] uses a 2D checkerboard pattern. Images of this 

calibration target are acquired for at least two different orientations and used for 

calibration. The vertices of the checkerboard pattern are used as control points. The 

relat ive coordinates of the control points are assumed to be known a priori and t he 

algorithm computes the projective transformation of these points to within a scale 

factor. In this method, third and fourth order terms of radial distortion terms are 

recovered. Refinement of the recovered parameters is achieved t hrough nonlin ar 

minimization of the reprojection error solved using Levenberg-Marquardt algorithm. 

Reference [11] remarks that this method is very similar to [16] . 

3.3 Experimental Evaluation of Calibration Tech-

. 
n1ques 

Many attempts to study the performance of different calibration methods experi-

mentally have been reported in the literature. For example, various works such as 

[10, 20, 21 , 22] can be cited. In this section the conclusions of these experiments are 

summarized. Studies which specifically deal with calibration techniques for machine 

vision will be highlighted. 

In [10] the accuracy of both linear and nonlinear calibration techniques was eval-

uated by Armangue et al. based on 3D and 2D measurements. Reference [15] was 

chosen as an example of a typical linear technique while nonlinear examples were 
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drawn from [3, 6, 18]. For 3D measurements two evaluation criteria; namely, distance 

with respect to the optical ray and Normalized Stereo Calibration Error (NSCE) , 

were used. It was found that in terms of these two accuracy criteria, performance 

of nonlinear methods were superior to the linear ones. From the experimental data 

presented in Table 3.1 the authors concluded that, though nonlinear methods are 

computationally expensive and time consuming, improved accuracy justifies their 

use. 

Table 3.1: Accuracy Evaluation of Camera Calibration Techniques: 3D 

Measurements ( Armangue et al.) 

Ref. 3D Measurements (mm) NSCE 

Mean a Max 

Hall [15] 0.1615 0.1028 0.5634 n/a 

Faugeras [18] 0.1811 0.1357 0.8707 0.6555 

Tsai [3, 23] 0.0564 0.0305 0.1626 0.2033 

Weng [6] 0.0570 0.0305 0.1696 0.2064 

A study that dealt with the presence of noise in calibration data and the cor

responding effects on calibration quality was conducted in [21] using two popular 

techniques presented in [3, 5]. Simulation and real-life experiments facilitat d this 

study. Normalized Calibration Error (NCE) [6] was used as the evaluation criterion. 

The main conclusions in [21] were: 

• Performance of [3] degrades as the noise level in the calibration data increases; 
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however, with low noise levels the calibration quality is better than [5]. Achiev

ing a low noise level can be a rigorous process. 

• In terms of the complexity of implementation versus performance, [5] is a good 

choice since data acquisition is simple and the effect of noise level can be negated 

by increasing the number of calibration points. Since this is a method based on 

a planar calibration targets, producing these targets is comparatively easy. 

• Including the higher order terms in the lens distortion model (e.g., fourth 

or sixth order) can potentially degrade calibration quality especially when the 

noise level in the data is comparatively high. Higher order terms only provide 

better accuracy when the noise level is low. 

To assist in the task of localizing the calibration points in the image, the calibration 

target was illuminated by structured light in t he study conducted in [22]. The study 

was conducted using Direct Linear Transform (DLT) as well as the two nonlinear 

methods presented in [3] and [5]. The conclusions presented in [22] are consistent 

with those presented in [10, 21]. 
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Chapter 4 

Propositions for Improvement in 

Methodology 

In machine vision, generic camera calibration techniques attempt to solve the under

lying camera model from the point correspondences between the object space and 

the image space. These techniques provide estimates of both the orientation and 

position of the calibrat ion target (i.e., extrinsic parameters ) as well as the optical 

and geometric properties of the camera defining the perspective projection (i.e. , in

trinsic parameters) . Solving the camera model from the point correspondences is 

approached numerically in the general calibrat ion problem. The following discus

sion proposes some improvements on the existing methodologies for achieving bet ter 

performance in t erms of convergence and accuracy. 
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4.1 Representation of Orientation 

Euler's theorem states that the most general displacement of a rigid body with a 

fixed point in space is equivalent to a single rotation of the body about an axis 

through the fixed point [24]. This displacement is usually termed as pure rotation 

in the literature (e.g. , [25]) . At least three independent parameters are required to 

represent pure rotation; e.g., Euler Angles. In references ([3, 19, 4]) Euler Angles were 

used to quantify relative orientation of one coordinate frame with respect to another 

coordinate frame in Euclidean 3-Space. A rotation matrix was formulated from the 

Euler angles. In reference [26] , it was shown that no 3 dimensional parameterizations 

can be bot h global and non-singular; i.e., every rotation determines some finite values 

of the parameters but these values are not uniquely defined [26]. This phenomenon 

results in gimbal lock singularities where two of the three Euler angles belong to the 

same Degree of Freedom (DOF) with the loss of one DOF [27] . This is the major 

drawback of using Euler angles for parameterizing rotations; however , Euler angles are 

commonly employed to formulate the 3 x 3 rotation matrix used to represent camera 

orientation. This introduces redundancy since any general rotation in 3-Space has 

only three degrees of freedom whereas the rotation matrix has nine elements of which 

only three are independent. The rotation matrix is a special orthogonal matrix which 

has a determinant of + 1 and with rows and columns that are orthonormal [28] . Let 

a generic element of the rotation matrix be represented by ~j where this element 

belongs to the ith row and the ;th column with the following constraint on i and j: 

1 ::::; i ,j ::::; 3 
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Since the rotation matrix is or thogonal, the product of t he matrix by its transpose 

must yield the identity matrix. This additional constraint results in six independent 

equations that can be used to enforce orthogonality on the rotation matrix (Equa

tion 4.1). 

Ri1 + Ri2 + Ri3 = 1 

R~l + ~2 + ~3 = 1 

R~1 + R~2 + R~3 = 1 

RuR12 + R21 R22 + R31 R32 = 1 

Ru R13 + R21 R23 + R 31 R 33 = 1 

R13 R12 + R23 R 22 + R 33 R 32 = 1 

(4.1) 

In a nonlinear optimization problem, explicitly maintaining these six orthogonality 

constraints (Equation 4. 1) is very difficult [29]; hence, it would be desirable to find 

an alternative non-redundant and non-singular parametrization which is not possible 

according to reference [26]. Therefore the most suitable parametrization is the one 

where there is no singularity over the space of 3-Rotations and where the redundancy 

is kept to a minimum [29] . One such parametrization is the unit quaternions. In 1992 

quat ernions were used in t he camera calibration technique proposed by [6] to rep

resent camera orientation. In [6] quaternions were used only for linear optimization 

of the calibration problem in order to obtain an initial approximation of the cam

era parameters for the subsequent nonlinear optimization; whereas this work utilizes 

quat ernions for nonlinear optimization. Besides not being singular over the space of 

rotations, the quaternion representation is more computationally efficient than the 

t raditional Euler angle representation. Unlike Euler angles, rotations represented by 
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quaternions do not involve any computationally expensive transcendental functions. 

A brief mathematical account on the unit quaternions and quaternion algebra is given 

in the following section. 

4.2 Unit Quaternions: Non-singular Representa

tion of Rotation 

Firstly the vector space of quaternions will be defined. Let the set A = {1, i,3,k} 

be a basis of the vector space V of dimension four over the set of real numbers R 

The elements in the basis set are respectively the scalar unit 1 and three mutually 

perpendicular unit vectors i, 3 and k. These elements obey the laws of combination 

as formulated in Equation 4.2. 

i2 = p = k2 = - 1 

i3 = k, 3i = -k 

3k = i, k3 = -i 

ki = 3, ik = -3 

(4.2) 

The quaternion q is a linear combination of the elements in t he basis set A (Equa-

t ion 4.3). 

q = d + ai + b3 + ck, a, b, c, dE IR (4.3) 

4.2.1 Quaternion Algebra 

In this section basic quaternion algebra will be reviewed. Let two quaternions be 

given by q1 = d1 + a1i + bd + c1k and q2 = d2 + a2 i + b23 + c2k. The basic definitions 
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of quaternion algebra are listed below: 

• Equality of two quaternions (i.e., q1 = q2 ) is satisfied if and only if: 

• The sum of two quaternions q1 and q2 is defined as: 

• The difference of two quaternions is defined as: 

• When a quaternion q1 is multiplied by a scalar .A, the product q>. is defined as: 

• Finally, the quaternion q1 is a zero quaternion, if and only if: 

The product of two quaternions, q1and q2 , can be developed using these basic defini

tions and the laws of combination of the unit vectors (Equation 4.2): 
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Applying the distributive law yields: 

Applying the definitions from Equation 4.2, and subsequently collecting common 

terms yields: 

J k 

c1 ( 4.4) 

Let q = q1q2 , where, q = d + ai + b} + ck. Equating the coefficients in t he different 

components of the quaternion from Equation 4.4 yields Equation 4.5. 

(4. 5) 

In general quaternion multiplication is not commutative; i.e., q1 q2 1- q2q1 . The ex-

ception occurs only when the final determinant in Equation 4.4 vanishes. 

4.2.2 Conjugate, Norm, Inverse 

The conjugate of a quaternion q = d + ai + b} + ck, which is denoted by q' , is defined 

as follows (Equation 4.6): 

q' = d - ai- b} - ck (4.6) 
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The product of a quaternion q, and its conjugate q1
, is commutative and yields a 

scalar. This product is shown in Equation 4. 7. 

(4.7) 

The product of a quaternion and its conjugate in Equation 4.7 is referred to as the 

norm of the quaternion q, and is denoted by Nq . The quaternion q is referred to as a 

unit quaternion if the norm of q is unity; i.e. , Nq = 1. The definition of the norm of 

a quaternion is formulated in Equation 4.8. 

N I I 
q = qq = q q (4.8) 

The reciprocal of a quaternion is defined as its inverse. For any unit quaternion (i.e., 

Nq = 1) , it can be shown from Equation 4.8 that the conjugate of a unit quaternion 

is also its inverse. 

- 1 I q = q (4.9) 

4 .2.3 Rotation R epresentation 

Quaternions have been used in robotics and vision for rigid body pose estimation 

(e.g., [30, 31]). Let us consider a pure rotation of a rigid body about an axis n = 

nxi + ny] + nzk, and through an angle ¢>. Four parameters can be defined to represent 

this rotation (Equation 4.10). 

. ¢> 
a= nxsln2, b . ¢> = nysin 

2
, c = nz sin~ ) d =cos ~ (4.10) 

These four parameters can be expressed in quaternion notation; i.e., q = d+ai+b]+ck. 

This quaternion q represents the rotation about the axis n by an angle ¢>. ext it will 
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be shown that the quaternion q is a unit quaternion; i.e., the norm of the quaternion 

Nq is unity (Equation 4.11). 

N = d2 + a2 + b2 + c2 = cos2 ~ + n2 sin2 ~ + n2 sin2 ~ + n2 sin2 ~ 
q 2 X 2 y 2 z 2 

= cos2 ~ + sin2 ~ (n2 + n2 + n2
) 2 2 X y Z 

= cos2 ~ + sin2 ~ [·: n is a unit vector, llnll = 1] 
2 2 

(4. 11) 

= 1 

Let a vector f = rxi + ry] + Tzk be transformed through pure rotation about t he axis 

n by an angle ¢ resulting in the transformed vector f'. Using quaternion algebra a 

general formulation for this transformation will be derived in the following discussion. 

It will be shown that the transformation of a vector by a pure rotation represented 

by the unit quaternion q can be accomplished by the quaternion rotation operator; 

i.e. , q( )q- 1 , (Equation 4.12). 

(4.12) 

In the subsequent analysis the vector f can be regarded as a quaternion whose scalar 
' 

part is zero. The quaternion multiplication in Equation 4.12 will be performed in two 

steps. Firstly, let the partial product quaternion be t = qf. From the general formula 

for quaternion multiplication (Equation 4.4), t can be expanded as follows: 

z j k 

. <P 
(4.13) +sm 2 nx ny nz 

Tx Ty Tz 
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If the quaternion t is expanded as t = td + taz + tb] + tic, equating the coefficients 

from Equation 4.13 yields the following: 

td =-sin ~(nxrx + nyry + nzrz) 

ta = rx cos~+ sin ~(nyrz- nzry) 

tb = ry cos~+ sin ~ (nzrx- nxrz) 

tc = Tz cos~+ sin ~(nxry- nyrx) 

(4.14) 

The inverse of the quaternion q equals its conjugate since it is a unit quaternion. 

Therefore, 

Now substituting the Equations 4.13 and 4.14 into Equation 4.12 yields: 

= tq- 1 

= ld COS~+ sin ~ (lanx + lbny + lcnz) + td sin ~ ( - nxi - ny] - nzk ) 
(4.15) 

~ J k 
¢ ~ ~ ~ ¢ 

+cos 2(lai + tbj + tck) +sin 2 la tb lc 

- nx - ny - nz 

The scalar part of the transformed vector f' can be written as: 

(4.16) 

Rahman 2009 40 



Substituting the expressions for td, ta, tb and tc (from the Equation set 4.14) into 

Equation 4.16 yields: 

S:r' =-sin~ cos ~(nxrx + nyry + nzrz) +sin ~[nx(rx cos~+ sin ~(nyrz- nzry)) 

+ ny(ry cos~+ sin ~(nzrx- nxrz)) + nz(rz cos~+ sin ~(nxry- nyrz))] 

( 4.17) 

Expanding Equation 4.17 reduces it to S:r' = 0. Since the scalar component S:r' of 

the quaternion f ' is zero, the quaternion r ' is a vector. Thus the quaternion rotation 

operator q( )q- 1 transforms a vector to another vector. The norms on the right and 

left sides of Equation 4.12 can be written as: 

(4.18) 

The order of the multiplication can be rearranged on the right side of Equation 4.18. 

Because of the fact that the quaternions q, and q- 1 are both unit quaternions; i.e., 

Nq = Nq 1 = 1, Equation 4.18 simplifies to : 

(4.19) 

It is apparent that the norm of the initial vector f is equal to that of the transformed 

vector r'; i.e., the magnitudes of the vectors are equal. Since this is only possible 

when the transformation is a pure rotation, it can be concluded that the operator 

q( )q- 1 represents a pure rotation. 

Now it will be shown in two steps that this rotation is indeed a pure rotation about 

the axis n = nxi+ ny] +nJ, by an angle </J . First, a rotation matrix will be developed 

from Equation 4.15, which is just an alternative formulation of the transformation 

given by the quaternion rotation operator q( )q- 1
. Secondly, this rotation matrix will 
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be compared to the rotation matrix provided by the axis angle representation of t he 

same rotation. Equality of the two rotation matrices will prove that the quaternion 

rotation operator q( )q- 1 accomplishes the desired transformation. 

Substituting the expressions for td, ta, tb and tc from Equation 4.14 into Equa-

tion 4.15, and subsequent regrouping and rearranging terms yield Equation 4.20. 

The following short hand notat ions are used in Equation 4.20. 

r. = cos P. s = sin P. 
'-'l 2, t 2 

( 4.20) 

Since the vector n representing the axis of rotation is a unit vector , the expression, 

n; + n~ + n; = 1 holds true. From this expression the following relationships can be 

derived: 

(4.21) 

Substituting these expressions into Equation 4.20 yields: 

( 4.22) 
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Substituting Equation 4.10, and the unit quaternion norm condition; i.e., d2 + a2 + 

b2 + c2 = 1, into the i component of the vector f' into Equation 4.22 provides Equa-

tion 4.23. The following trigonometric identity is used in Equation 4.23 to facilitate 

algebraic manipulation: 

( 4.23) 

= (d2 + a2
- b2

- c2 )rx + (2ab - 2cd)ry + (2ca + 2bd)rz 

The 3 and k components of f ' can be expressed in linear combinations of r x, r y and 

rz after executing similar algebraic manipulations and substitutions. 

( 4.24) 

ri = (2ca - 2bd)rx + (2bc + 2ad)ry + (d2
- a2

- b2 + c2 )rz 

Let us consider two coordinate frames; one being the space fixed coordinate frame A 

and the other being the body fixed coordinate frame B. A rotation matrix can now be 

formulated from Equations 4.23 and 4.24. Prior to the rotation both of the coordinate 

frames were aligned with coincident origins. The vector f = 8 r = rxi + ry] + rJ 

is express d with respect to the body fixed coordinate frame B. After rotating the 

vector f about the axis n by an angle ¢, the rotated vector f ' = Ar is expressed 

with respect to the space fixed coordinate frame A. The transformation can now be 

formulated as the following: 
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r-------------·---------------

The rotation matrix A Ra in the above equation is: 

2ab- 2cd 2ca + 2bd 

AHa= 2ab + 2cd 2bc- 2ad ( 4.25) 

2ca - 2bd 2bc + 2ad 

Axis angle representation of the same rotation can be defined by the rotation matrix 

A R'a (Equation 4.26) [32]. The following short hand notations are used for conve-

nience: 

v = 1 - cos</>, s1 = sin</> and c1 =cos</> 

n;v+d nxnyV - nzS I nxn zV + nyS1 

ARI - n xnyv + nzS1 n 2v + c1 I ( 4.26) a- y nynzV- nxS 

nxn zV- nyS I nynzV + nxS1 n;v+d 

To show that the matrices A R'a and A Ra are equal, corresponding elements in A R'a 

and A Ra are required to be equal. Simple trigonometric and algebraic manipulations 

can prove t his equality. For example, the element in A R'a, belonging to the 1 st row 

and the 1st column can be manipulated using half angle trigonometric identities and 

substituting these identities in the Equations 4.10 and 4.11, as follows: 

n;v + c1 = n~ (l - cos</>)+ cos </> 

= 2n2 sin2 1... + 2 cos2 1... - 1 
X 2 2 

= 2a2 + 2d2 
- ( d2 + a2 + b2 + c2

) 
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Thus it was shown that the element in t he p t row and the pt column of the rna-

trix A R's , equals the corresponding element of the matrix A R8 . Similar algebraic 

manipulations and substitutions can show that each element in A R's is equal to t he 

corresponding element in A R8 . This effectively proves that: 

AR _A R' 
-B- B 

It can also be concluded that the quaternion rotation operator q( )q- 1 provides the 

specified rotation given by the quaternion , q. 

4.2.4 In Contex t of the Camera M odel 

Equation 4.25 provides the rotation matrix which t ransforms position vectors in the 

body fixed coordinate frame to the space fixed coordinate frame given a general ro-

tation. This transformation can be incorporated into the camera model (Chapter 2) 

for transforming posit ion vectors (i.e. , coordinates) of the points in the world coor-

dinate frame to the camera coordinate frame. It is preferable to consider t he camera 

coordinate frame C as the space fixed coordinate frame and world coordinate frame 

W as the body fixed coordinate frame. If the relative orientation of the world coordi-

nate frame W with respect to the camera coordinate frame C is specified by t he unit 

quaternion q = d + az + b] + ck, the general rotation matrix of the world coordinate 

frame W with respect to the camera coordinate frame C t hen becomes: 

CR -w -

Rahman 2009 

2ab + 2cd 

2ca - 2bd 

2ab - 2cd 2ca + 2bd 

2bc- 2ad 

2bc + 2ad 

( 4.27) 
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4.3 Modeling Lens Distortion 

The failure of a lens element to produce a mathematically perfect image point is 

referred to as Lens Aberration. In the absence of chromatic lens aberrations (i.e., 

purely monochromatic light), lens aberrations can be broadly classified as follows [7]: 

• Spherical Aberration 

• Coma 

• Astigmatism 

• Curvature of field 

• Distortion 

In the context of a measurement system, distortion is the most important lens aber

ration since only distortion concerns imperfect image location rather than image 

formation. Distortion leads to a variation of the scale of an image as a function of 

position on the image plane which can result in significant measurement error when 

using a camera for metrology. Therefore, it is highly advisable to model lens distor

tion mathematically in critical measurement applications. While compensating for 

lens distortion within the camera model can substantially improve the accuracy of the 

measurement system, the nonlinear nature of such models adds to the computational 

cost and system complexity. 

Lens distortion can be considered as a perturbation of the image coordinates from 

the linear pinhole camera model. For the sake of convenience in the subsequent dis

cussion, the image coordinates provided by the pinhole camera mod l will be referred 
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to as the ray- traced image point. Based on this nomenclature lens distort ion can be 

divided into two major categories: 

• Radial Distort ion: This type of distort ion causes inward or outward displace

ment of the ray-traced image point. This is mainly caused by flawed curvature 

of the lens element. A negative radial distortion effect causes the outer image 

points to crowd to the image center. This phenomenon is referred to as barrel 

distortion. A positive radial distortion effect causes the inner points to spread 

outwardly and is referred to as pin-cushion distortion. In Figure 4.1, the square 

is the ray- traced image of a square grid in the object spac where the image 

plane and the grid plane are parallel. Depending on the type of the distortion 

present in the optics of t he camera, the real image can be either (a) or (b) ; i.e., 

barrel or pin-cushion distortion respectively. In barrel distor tion the scale de

creases, whereas, the scale increases in pin-cushion distortion. Radial distortion 

is strictly symmetrical about the optical axis [6]. 

• Tangential/ decentering Distortion: Tangential or decentering distort ion causes 

the ray-traced image points to be displaced tangentially; i.e., perpendicular 

to the radial lines. Noncollinear alignment of the optical centers of the lens 

elements in a complex lens system results in tangential distortion. It has been 

found that the tangent ial distort ion of any line passing t hrough the image centr 

is nearly symmetric in terms of magnitude and sign [7]. In Figure 4.2, this type 

of distortion effect is shown along with radial distort ion. 

All the prominent camera calibration techniques model lens distortion to some 

degree; e.g. , ([4, 3, 5, 6]) . References [3] and [5] modeled only radial lens distortion; 
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Figure 4.1: Radial Distortion: (a) Barrel distortion (b) Pin-cushion Distortion 

whereas, a comprehensive lens distortion model that includes three types of lens 

distortion (radial, tangential and thin pri m distortion) was used in [6]. The most 

recent calibration technique developed by Heikkila in [4], models both tangential and 

radial distortion. Although it is preferable to model lens distortion as accurately as 

possible, an exhaustive model can render the numerical search for the optimal camera 

parameters to be unnecessarily complicated. Lens distortion modeling thus becomes 

a tradeoff between accuracy and complexity. 

The distortion modeling approach in [4] is described in Section 2.4.4. Heikkila 

m [4] included two radial and two tangential distortion coefficients. Higher order 

terms can be neglected without any significant loss of accuracy since they are only 
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Ideal Position 

Image Center 

Figure 4.2: Radial and Tangential Distortion 

significant in the case of wide angled lenses. The lens distortion model in Equation 2. 7 

provides the undistorted (i.e. , ray-traced image coordinates) from the distorted image 

coordinates. It is often necessary, however, to find an expression for the distorted 

image coordinates in terms of the ideal image coordinates. The transformation from 

distorted to ideal image coordinates is referred to as the reverse distortion model. It is 

evident from Equation 2. 7 that a closed-form solution for the inverse distortion model 

is not readily available. In [33] the following recursive approximation of Equation 2.7 
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was proposed in an attempt to address this problem: 

( 4.28) 

~ 
,.....,_; ... 

This recursive approximation is, however, computation intensive and hence imprac-

tical. Heikkila attempted to resolve this problem by expanding Equation 2. 7 using a 

first-order Taylor series expansion (Equation 4.29). 

( 4.29) 

Heikkila further simplified this approximation by neglecting D (au), since D (au) « 1. 

A novel solution to this problem was proposed in Section 2.4.4 where the Newton-

Gauss method was employed to numerically find the distorted image coordinates 

from the undistorted image coordinates without approximation. A Computer Algebra 

System (CAS) was used to find the exact analytic expression of the Jacobian matrix 

in the numerical iterative search. CAS packages such as Maple TM and Mathematica® 

are very useful software tools for symbolic algebraic calculations in such applications. 

For details, refer to Section 2.4.4. 

4.4 Numerical Solution to the Calibration Prob-

I em 

Depending on whether or not the calibration technique includes terms for lens dis-

tortion the camera calibration technique can be either linear or nonlinear in nature. 
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While linear methods are fast, less computation intensive and without convergence 

issues, nonlinear methods yield a more accurate model of the image formation process 

at the cost of solving a complex nonlinear system. Tradit ional methods [4, 5] often 

resort to the Levenberg-Marquardt algorithm [34]. Reference [35] investigated the 

efficiency and suitability of t his algorithm when applied to machine vision problems. 

Though [35] does not offer any concrete conclusion , the Levenberg-Marquardt algo

rithm is found to be time consuming. Moreover , this algorithm does not compute the 

J acobian of the nonlinear system of equations; rather it approximates it to enhance 

convergence. However, in context of a measurement system, convergence is of sec

ondary import ance while the primary goal is to estimate the camera parameters as 

accurately as possible. In the light of this design philosophy, it is well justified to em

ploy the analytically derived Jacobian matrix in the numerical solution rather than 

approximating it. Admittedly the large number of unknowns and complex nature 

of the equations render the task virtually impossible to accomplish through manual 

algebraic manipulations. The application of CAS systems to derive the J acobian 

analytically is a feasible alternative. 

4.5 Choice of the Error Criterion 

When the camera model is solved numerically, an error term must be minimized it

eratively. This error can be geometric (i.e., the distance between the coordinates of 

the actual image points and the image points provided by the camera model [3, 4]) 

or algebraic (i.e., the difference between two algebraic expressions). The algebraic 

error term usually does not have any physical meaning [5]. When geometric distance 
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is considered, Euclidean Reconstruction is emphasized; therefore, minimizing the ge

ometric error is justified when calibrating vision based measurement systems. This 

geometric distance can be interpreted either as the absolute distance between the 

actual image points and the projected image points or as two separate terms rep

resenting the coordinate components. Reference [29] postulates that the nonlinear 

iterative numerical techniques perform best when they have access to the individual 

error terms resulting in better accuracy in the camera parameters. In addition, the 

geometric distance can be minimized in either t he distorted or t he undistorted image 

space. Since the reverse lens distortion model does not have a closed-form solution, 

minimizing the error in the undistorted space is preferable and is the approach that 

will be adopted in this thesis. 
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Chapter 5 

An Accurate Camera Calibration 

Technique 

In this chapter a novel camera calibration technique is propos d that realizes th 

propositions made in Chapter 4. This calibration technique att mpts to solve th 

general calibration problem numerically given n point correspond nc s between the 

object space and the distorted image space. 

5.1 Formulation of the Calibration Problem 

It is nece sary to formulate the calibration problem mathematically to develop th 

framework for the numerical solution. In Equation 2.12 the p rsp ctive projection of 

a point in 3-Space [xw, Yw, zwf to the undi torted image point [u, v]T was established 

under the pinhol camera model. Equation 2.12 is expand d and separated into th 

individual u, v coordinate components in Equations 5.1 and 5.2 respectively. Equa

t ion 2.8 provides the undistorted imag coordinates [u' , v']T from the distorted imag 
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coordinates [ud , vd]T under the lens distortion model. Equation 2.8 is expanded and 

separated into the individual coordinate components in Equations 5.3 and 5.4. Please 

note that two sets of undistorted image coordinates of the calibration points are ob

tained from Equat ions 5.1, 5.2, 5.3 and 5.4. One set is calculated from the world 

coordinates of the calibrat ion points (Equations 5.1 and 5.2) provided by the pinhole 

camera model. This set represents theoretical 2D location of the pure perspective pro

jection of the calibration point on the image plane in the absence of lens distortion. 

The second set is provided by the backward lens distortion model and it is calculated 

from the distorted image coordinates (Equations 5.3 and 5.4). In a typical calibration 

scenario, the distorted image coordinates are experimentally determined by processing 

an acquired image of a calibration point. In the absence of measurement errors and 

modeling discrepancies, the Cartesian pairs in both of the sets will be coincident in 

undistorted space. In practice the image point locations provided by the two sets will 

not be coincident. The proposed calibration technique computes t he camera parame

ters that minimize the discrepancy between the two sets of image points through the 

nonlinear Newton-Gauss numerical technique. In quantitative terms, the discrepancy 

is represented by the geometric distances between t hese two sets of undistorted im

age coordinates (Equations 5.5, 5.6). Each point correspondence between the object 

space and the distorted image space constitutes a pair of equations as presented in 

Equations 5.5 and 5.6. If n point correspondences are available (n ~ 7), 2n number of 

equations can be formulated; i.e., [!Iu, !Iv, hu, h v, · · · fnu , fnv] · In addition, one more 

equation will be required to enforce the unit quaternion constraint on the rotation 

representation as explained in Section 4.1; i.e., f c = d2 + a2 + b2 + c2
- 1. Altogether 

the general calibration problem becomes an overdetermined system of (2n+ 1) nonlin-
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ear equations given n point correspondences (Equation 5. 7) involving fifteen unknown 

camera parameters (Table 2.1). Fourteen of these parameters are independent. There

fore, at least seven point correspondences are required to generate fifteen equations 

to solve the calibration problem. The objective of the Newton-Gauss technique is to 

estimate these parameters by the nonlinear least squares analysis of the system of 

nonlinear equations (Equation 5. 7). It is necessary to calculate the Jacobian matrix 

(Equation 5.8) of the system of nonlinear equations for the least squares analysis. 

The generic elements of the Jacobian matrix are presented in Equations 5.9-5.53. 
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sf((d2 + a 2 - b2 - c2)xw + (2ab- 2cd)yw + (2ca + 2bd)zw + tx ) + uo((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz ) 
u = (5.1) 

(2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz 

J ( (2ab + 2cd)xw + (d2 - a2 + b2 - c2)Yw + (2bc- 2ad)zw + ty ) + vo ((2ca- 2bd)x ,., + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz) 
v = (2ca- 2bd)xw + (2bc + 2ad)yw + (& - a2 - b2 + c2)zw + tz (

5
.
2) 

u' = ud + (ud -uo)(ki(u~- 2uduo +u5 +v~ -2vdvo +v5 ) + k2(u~- 2uduo + u5 +v~- 2vdvo +v5)2) + 2Pl (ud - uo) (vd - vo ) 

fu = u-u' 

fv = v - v' 

f nu 

f nv 

f c 

+ P2(u~- 2uduo + u5 + v~ - 2vdvo + v5 + 2(ud - uo)2) (5.3) 

(5.5) 

(5.6) 

(5.7) 



~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ !!.l.a ~ 
8s {} j 8k, 8k2 8p, 8p2 8uo 8vo {}d 8a {}b 8c 8tz 8ty 8t: 

~ ~ ~ ~ il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. il.i.JJJ. 
8s 8j 8k, 8k2 8p, 8p, 8uo 8vo {}d 8a {}b 8c 8tz 8ty 8t, 

J = (5.8) 

liiDL !liru._ liiDL !liru._ !liru._ !liru._ !liru._ !liru._ !liru._ !liru._ !liru._ !liru._ liiDL !liru._ !liru._ 
8s {}j 8k, 8k2 8p, 8p2 8uo 8vo 8d 8a 8b 8c 8tz 8ty at, 

llhu_ llhu_ llhu_ llhu_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ iJ..1.n.,_ llhu_ 
8s 8j 8k, 8k2 8p, 8p2 8uo 8vo 8d 8a {}b 8c 8tz 8ty 8t, 

'!.1<.. '!.1<.. !lis. !lis. !lis. !lis. !lis. '!.1<.. '!b '!b '!b '!b '!b '!.1<.. '!.1<.. 
8s {}j 8k, 8k2 8p, 8p2 8uo 8vo 8d 8a {}b 8c 8tz 8ty 8t, 

8fu f ((d2 + a 2 - b2 - c2)xw + (2ab - 2cd)yw + (2ca + 2bd)zw + t ,.) 

8s (2ca- 2bd)x w + (2bc + 2ad)yw + (d2- a2- b2 + c2)zw + tz 
(5.9) 

8fu s((d2 + a 2 - b2 - c2)xw + (2ab - 2cd)yw + (2ca + 2bd)zw + t,.) 

8! (2ca- 2bd)xw + (2bc + 2ad)yw + (d 2 - a 2 - b2 + c2)zw + tz 
(5.10) 

c.n 8fu ( )( 2 2 2 2) - = - u d - uo ud - 2uduo + u 0 + vd - 2vdvo + v0 --1 8kl 
(5.11) 

8fu ( )( 2 2 2 2)2 - = - ud - uo ud - 2uduo + u 0 + vd - 2vdvo + v0 8k2 
(5.12) 

8fu - = -(2ud- 2uo)(vd- vo) 
8pl 

(5.13) 

8fu 2 2 2 2 ( )2 - = -ud + 2uduo - u 0 - vd + 2vdvo - v0 - 2 ud - uo 
8p2 

(5.14) 



c.n 
00 

- ---·- --- - - --- -

& f u Sf (2dxw - 2cyw + 2bzw) + UQ (-2bxw + 2ayw + 2dzw) 

&d (2ca - 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz 

sf((d2 + a2 - b2 - c2)xw + (2ab - 2cd)yw + (2ca + 2bd)zw + tx) + uo ((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a 2 - b2 + c2)zw + tz)( - 2bxw + 2ayw + 2dzw) 

((2ca - 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz)2 

(5.17) 

&f,. sf(2axw + 2byw + 2czw) + uo(2=w + 2dyw - 2azw) 

&a (2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + t z 

sf((~+ a2 - b2 - c2 )xw + (2ab- 2cd)yw + (2ca + 2bd)zw + t x) + uo((2ca - 2bd)x,., + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz)(2=w + 2dyw - 2azw) 

((2ca- 2bd)xw + (2bc + 2ad)yw + (~ - a2 - b2 + c2)zw + tz)2 

(5.18} 

&f,. s f ( -2bxw + 2ayw + 2dzw) + uo( -2dx,., + 2cyw - 2bzw) 

&b (2ca- 2bd)xw + (2bc + 2ad)yw + (~ - a2 - b2 + c2)zw + tz 

s f ((d2 + a 2 - b2 - c2 )xw + (2ab - 2cd)Yw + (2ca + 2bd)zw + tx) + uo((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz )(-2dxw + 2cyw - 2bzw) 

((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2 )Zw + tz)2 

&f,. sf(-2=w- 2dyw + 2azw) + uo(2axw + 2byw + 2czw) 

&c (2ca- 2bd)xw + (2bc + 2ad)yw + (d2- a2 - b2 + c2 )zw + tz 

(sf(d2 + a2 - b2 - c2)xJU + (2ab - 2cd)yw + (2ca + 2bd)zw + tx) + uo((2ca - 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + t z)(2axw + 2byw + 2czw) 
((2ca - 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + tz)2 

&f,. sf 

&tx (2ca- 2bd)xw + (2bc + 2ad)yw + (~ - a2 - b2 + c2)zw + tz 

&fu = O 
Oty 

u o 

(2ca - 2bd)xw + (2bc + 2ad)yw + (d2 - a 2 - b2 + c2)zw + t z 

sf((d2 + a2 - b2 - cZ)xw + (2ab- 2cd)yw + (2ca + 2bd)zw + tx) + uo((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a 2 - b2 + cZ)zw + tz) 
((2ca- 2bd)xw + (2bc + 2ad)yw + (~ - a2 - b2 + c2)zw + tz)2 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23} 



(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

8f, f(2cx,., + 2dy,., - 2az,.,) + vo( -2bx,., + 2ay,., + 2dz,.,) 

ad (2ca - 2bd)xw + (2bc + 2ad)y,., + (d'l - a2 - b2 + c2)z,., + t, 
J((2ab + 2cd)xw + (d2 - a 2 + b2 - c2)y,., + (2bc- 2ad)zw + ty) + vo((2ca - 2bd)x,., + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)z,., + t,)( - 2bx,., + 2ay,., + 2dz,.,) 

((2ca- 2bd)x,., + (2bc + 2ad)y,., + (d'l- a2- b2 + c2)zw + t,)2 

8f, f(2bx,., - 2ay,., - 2dz,.,) + vo(2cxw + 2dy,., - 2azw) 

aa (2ca - 2bd)xw + (2bc + 2ad)yw + (d'l - a2 - b2 + c2)zw + t , 

J((2ab + 2cd)xw + (d2 - a 2 + b2 - c2)y,., + (2bc- 2ad)zw + ty) + vo((2ca- 2bd)xw + (2bc + 2ad)yw + (d2 - a2 - b2 + c2)zw + t,)(2cxw + 2dy,.,- 2az,.,) 

((2ca - 2bd)xw + (2bc + 2ad)yw + (d'l - a 2 - b2 + c2)zw + t,)2 

(5.32) 

(5.33) 



8fv f (2axw + 2by,., + 2cz,.,) + vo( -2dx,., + 2cy,.,- 2bz,.,) 

8b (2ca- 2bd)xw + (2bc + 2ad)y,., + (,{2 - a2 - b2 + c2 )zw + tz 

f((2ab + 2cd)xw + (d2 - a2 + b2 - c2)y,., + (2bc- 2ad)zw + ty) + vo((2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + tz)( - 2dx,., + 2cy,., - 2bzw) 

((2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + tz)2 

8fv f(2dx,.,- 2cy,., + 2bz,.,) + vo(2ax,., + 2by,., + 2cz,.,) 
ac (2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + tz 

f((2ab + 2cd)xw + (d2 - a2 + b2 - c2 )y,., + (2bc- 2ad)zw + ty) + vo((2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + t z)(2ax,., + 2by,., + 2cz,.,) 

(2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2)zw + tz)2 

8fv 

at. 
vo 

8fv = O 
at, 

8fv f 

8ty (2ca - 2bd)xw + (2bc + 2ad)y,., + (,{2 - a2 - b2 + c2)zw + tz 

(2ca- 2bd)x,., + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2 )zw + tz 

f((2ab + 2cd)xw + (d2 - a 2 + b2 - c2)y,., + (2bc - 2ad)zw + ty) + vo((2ca- 2bd)xw + (2bc + 2ad)y,., + (d2 - a2 - b2 + c2 )zw + tz) 

((2ca- 2bd)xw + (2bc + 2ad)y,., + (,{2 - a2 - b2 + c2)zw + tz)2 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 



~------------------------------------------------------------------------------ -- ------ - - -

afc = O 
as 

(5.39) 

aJc = O 
aj 

(5.40) 

afc = O 
akt 

(5.41) 

aJc = O 
ak2 

(5.42) 

afc = O 
apl 

(5.43) 

aJc = O 
ap2 

(5.44) 

afc = O 
auo 

(5.45) 

afc = O 
avo 

(5.46) 

aJc = 2d 
ad 

(5.47) 

aJc = 2a 
a a 

(5.48) 

aJc = 2b 
ab 

(5.49) 

afc = 2c 
ac 

(5.50) 

aJc = O 
atx 

(5.51) 

aJc = O 
aty 

(5.52) 

aJc = O 
at. 

(5.53) 

The termination criterion for the nonlinear iterative search has yet to be deter-

mined. The Newton-Gauss nonlinear least squares analysis proceeds iteratively start-

ing with the initial estimation of the camera parameters Cinitial (Section 5.2) to find 

the optimal camera parameters Coptimal that minimize the modeling discrepancy. In 

each iteration of the Newton-Gauss algorithm, the current camera parameters Ccurrent 

are corrected by a correction vector (3 which can be calculated as follows: 

(5.54) 
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The camera parameters are updated after each iteration (Equation 5.55). 

Ccurrent = fJ + Ccurrent (5 .55) 

In practice computing the inverse of the matrix product (JT x J) - 1 is computa

tionally inefficient. The system of linear equations provided by Equation 5.54 has the 

coefficient matrix ( JT x J) and the constant vector (- JT x Fe). Equation 5. 54 can 

be solved without computing the inverse of the coefficient matrix. Computationally 

a more efficient alternative is the Gaussian elimination of the coefficient matrix and 

the constant vector. Since (JT x J) is a positive definite matrix, it is preferable to de

compose it into the product of a lower triangular matrix and its conjugate transpose 

by applying Cholesky's method. Because, it is relatively easy to solve the Gaussian 

elimination problem when the coefficient matrix is either upper or lower triangular 

matrix. Let ( JT x J) be decomposed into a lower triangular matrix L and its con

jugate transpose L* by Cholesky's method; i.e. , (JT x J) = LL*. Substituting the 

decomposed coefficient matrix into Equation 5.54 yields: 

(5.56) 

Equation 5.56 can be solved in two steps. At first, Gaussian elimination of the 

matrix L and the vector (- JT x Fe) provides L * fJ = y. Subsequently, the Gaussian 

elimination of L * and y produces the correction vector fJ . 

The Euclidean norm of the correction vector ll fJII can be used as one of the ter

mination criteria. llfJII is defined in Equation 5.57. When llfJII is very close to zero; 

i.e., ll fJ II ~ 0, the camera parameters can be considered as optimal. Some predefined 

threshold Emin is chosen to quantify ll fJII being in the vicinity of zero. Usually the 
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value of Emin is chosen such that Emin ::::::: 0. When II,B II > Emin, the iterative search con

tinues to obtain a better estimate of the camera parameters. Otherwise, the search 

terminates and the current camera parameters are considered to be optimal; i.e., 

C optim al = Ccurrent and it is said t hat the iterative search converged to a solution. 

Convergence to a solution largely depends on the quality of the calibration data (i.e., 

point correspondences). If the calibration is attempted with noisy data, a solution 

is not likely to be found. The iterative search will continue indefinitely and II ,BII will 

never come close to zero. In order to avoid this situation, a maximum number of 

iterations imax is defined. When t he number of iterations i in the search exceeds imax 

(i > imax ) , the loop terminates and it is said that a solut ion is not found. 

(5.57) 

5.2 Initial Approximation 

Convergence of the calibration algorithm to an optimal solution (i.e., global mini

mum) largely depends on a good init ial approximation of the camera parameters. 

Prior to calibrat ion, very little information is usually available about the true values 

of the parameters. Hence an initial approximation must be acquired from the readily 

available calibration data (i.e. , point correspondences). In addition to the calibration 

data, the manufacturer of t he camera also provides nominal values for some of the 

camera parameters pertaining to the geometry and optics of the camera; i.e., nominal 

focal length and pixel spacing on the sensor element. The nominal focal length of t he 

camera provided by the manufacturer is usually a good approximation of the effective 

focal length f for the nonlinear iterative search. The ratio of the pixel spacing length 

Rahman 2009 63 



in the horizontal and vertical directions provides a good initial guess for the scale 

factors. Usually the lens distortion coefficients (radial and tangential) are very small 

and they can be initially approximated as zero. All the intrinsic camera parameters 

except the image center (u0 , v0 ) can thus be approximated from information provided 

by the camera manufacturer. The geometrical center of the rectangular image sen

sor is a good initial approximation of the image center coordinates. Approximating 

the intrinsic parameters from the information provided by the manufacturer reduces 

computational cost significantly. The extrinsic camera parameters have yet to be 

approximated with acceptable accuracy. Available calibration data can be used to 

approximate the extrinsic camera parameters through linear least squares analysis. 

Linear least squares analysis was used to estimate the camera parameters in [17]. 

The underlying camera model in [17] was linear since it did not account for lens dis

tortion. As a result , the estimates of the camera parameters from [17] are usually not 

as accurate as expected. This technique is however attractive in applications where 

the emphasis is on computation cost and robustness rather than accuracy. A solution 

is always guaranteed by this technique since there is no issue with convergence. In 

later years this method was used to obtain an initial approximation of the camera 

parameters for many iterative nonlinear camera calibration techniques; e.g., [4], [19]. 

In the proposed calibration technique, approximations of the extrinsic orientative and 

position parameters can be estimated by linear least squares analysis. A simple algo

rithm in [29] was presented for estimating the extrinsic parameters. This algorithm 

was adopted here with minor modification to obtain the initial approximations of the 

extrinsic parameters for the nonlinear iterative search. 
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5.2.1 Estimating Extrinsic Parameters 

Given the distorted image coordinates [ud, vd]T and the corresponding world coordi-

nates [xw, Yw, zwJT of a calibration point, the general problem is to find the orientation 

and position of the world coordinate frame with respect to the camera coordinate 

frame. Since lens distortion effects are neglected, the image points can be considered 

to be produced by ray tracing in a pinhole camera model; i.e. , image coordinates are 

considered to be generated by pure perspective projection. With only six unknown 

extrinsic parameters, the availability of enough point correspondences presents an op-

portunity to approach the problem as an overdetermined system of linear equations. 

A solution can thus be found by linear least squares analysis. 

5.2.2 Linear Least Squares Analysis 

Readily available image coordinates [ud, vd]T can be translated to a coordinate frame 

with origin at the geometrical center of the image sensor (i.e., the initial approxima-

tion of the image center). Essentially this coordinate frame has the same orientation 

as the image coordinate frame. Let the translated image coordinates be [.xi, Yi]r. The 

geometrical center of the image sensor is located at [u' 0 , v' 0JT with respect to the 

image coordinate frame. 

(5.58) 

If the scale factor is assumed to be unity, dividing Equation 2.2 by 2.4 provides the 

following relationship: 

Yi Yc 
(5.59) 
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Note that, Equation 5.59 is independent of the focal length which is particularly 

advantageous since some of the extrinsic parameters can be estimated irrespective of 

focal length from this relationship. The general transformation of the position vectors 

from the world coordinate frame to the camera coordinate frame can be formulated 

as follows: 

Xc Xw lx 

Yc 
=CRw X 

Yw + ty 

Zc Zw t z 

(5.60) 

ru r12 r13 Xw lx 

r21 r22 r23 X 
Y w + ty 

r31 r32 r33 Zw t z 

In Equation 5.60 the rotation matrix c Rw defines the orientation of the world co

ordinate frame with respect to the camera coordinate frame and [tx, ly , tz]T is the 

position vector of the origin of the world coordinate frame with respect to the camera 

coordinate frame. Expanding Equation 5.60 produces the following: 
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Y c = ,.21 Xw + r22Yw + r·23Zw + ly 

Zc = r31Xw + r32Yw + r33Zw + t z 

(5.61) 

(5.62) 

(5.63) 
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------- ----------

Substituting Equations 5.61 and 5.62 into Equation 5.59 and subsequent algebraic 

manipulations yield the following linear equation: 

Xi TnXw + T12Yw + r13 Zw + tx 
Y i r2l Xw + r22Yw + r23Zw + ty 

(5.64) 

Equation 5.64 can be written in matrix form: 

Equation 5.65 is a homogeneous linear equation in eight unknowns: 

For each point correspondence between the object space and t he image space, one 

such equation (Equation 5.65) can be derived and a system of linear equations can be 

formed. The elements of the coefficient matrix of this system of linear equations are 

the products of the components of image and world coordinates. Hence, calculating 

the coefficient matrix is a trivial computational problem. If n point correspondences 

are available and n > 7, the system of linear equations is overdetermined and can be 

solved by linear least squares analysis. It should be noted that if a solution to Equa-

tion 5.67 exists, any multiple of that solution will also be a solution to Equation 5.67 

due to the homogeneous nature of the system. Because of this, it is favorable to 

convert Equation 5.67 to an inhomogeneous equation (Equation 5.66). Arbitrarily 
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setting one unknown to any nonzero real value converts the homogeneous system into 

an inhomogeneous system in t he remaining seven unknowns. A unique solution to 

the inhomogeneous system of linear equations (Equation 5.66) can by estimated by 

linear least squares analysis. The unknown ty is arbitrarily set to unity to realize 

the conversion of the homogeneous system. The corresponding coefficient -xi be-

comes a constant term in the converted inhomogeneous linear system of equations 

(Equation 5.66): 

-XwXi -(Yw + by)Xi -ZwXi] X 

[ru r12 r13 tx r21 r 22 r 33] T = Xi (5.66) 

If the actual value of ty is close to zero, the coefficient matrix of the linear system of 

equations will be poorly scaled. Offsetting t he Yw component by some arbitrary value 

by, will result in a t ranslated version of the linear system presented in Equation 5.65. 

This t ranslation will effectively avoid the possible poor scaling of the coefficient rna-

trix. Due to this offset, the y component of the position vector of the origin of the 

world coordinate frame with respect to the camera coordinate frame will take a new 

value; i.e., ty' = ty + by. Consequently Equation 5.65 will become: 

Equation 5.66 is a system of linear equations of the form X x B = Y . The solution 

to this system can be found by applying the pseudo-inverse method: 
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Let the solution obtained from the least squares analysis of the system of linear 

equations in Equation 5.66 be: 

B* = [B, 1] = [r~ 1 r·~2 r~3 t~ r~1 T~2 r~3 1]T is one of the many solutions to Equa-

tion 5.67; i. e., it is merely a scaled version of the sought after solution. One can use 

the orthonormality property of the rows of a rotation matrix; i.e., r~1 + T~2 + r~3 = 1, 

to determine this scaling factor c. Subsequently the scaling factor c of the solution 

can be estimated from the following equation: 

1 
(5.68) c = ----;====== J r~1 2 + r~2 2 + r~3 2 

Once the scaling factor c is determined estimates of the unknowns tx, ty and the first 

and second rows of the rotation matrix (i.e., tx, ty, k 1 , k 2 ) can be calculated using 

the following equations: 

R- 1 [I I I l 
1 = c . r u r 12 r 13 R- 1 [I I I l 

2 = c · T21 T22 T23 

(5.69) 

(5.70) 

Since there is likely to be an appreciable amount of noise in the available point 

correspondences, the estimates obtained from the linear least squares analysis will 

not be highly accurate. Specifically, the estimates of the first and second rows of 

the rotation matrix will lack orthonormality. These estimates ( i.e., k 1 and R12) 

need to be further refined in order to calculate a reasonably accurate estimation of 

the rotation matrix. In order to obtain a good estimate of the first two rows of the 

rotation matrix, the orthonormality constraint must be enforced on the estimates R1
1 

and k 2 . 
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5.2.3 Forcing Orthonormality 

The basic problem is to find two vectors, a' and b', t hat are orthonormal to each other 

and as close as possible to two given vectors a and b respectively. The orthonormal 

vectors can be estimated as follows: 

a' = a + kb and b' = b + ka (5.71) 

a' o b' = a o b + k(a o a + bob)+ k2a o b = 0 (5.72) 

The solution to the quadratic involving k is usually found to be numerically ill-

behaved especially when t he coefficient a o b is very small. This occurs because a and 

b are already very close to orthonormality. However, assuming a. a and bob to be 

near one offers the opportunity to use the following approximate solut ion: 

1 
k::::::: - - a o b 

2 
(5.73) 

Better estimates of the first two rows of the rotation matrix R1 and R2 can be calcu-

la ted by enforcing orthonormality as explained above: 

5.2.4 Estimating the Rotation Matrix 

1 - -
k = --R'1 · R'2 

2 
(5.74) 

In order to recover the full rotation matrix once the estimates of the first two rows 

have been found , the third row must also be estimated. From the propert ies of 

rotation matrices, it is known that t he cross product of the first and second row of 

the rotation matrix will provide the third row. Hence, the estimate of the third row 
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of the rotation matrix R3 can be calcula ted as: 

(5.75) 

5.2.5 Retrieving the Range of the Target 

The range of the target tz can be retrieved using either or both of the relationships 

given in Equations 2.3 and 2.4. Since the scale factor s is not estimated here, it is 

more logical in a mathematical sense to use the relationship in Equation 2.4 only. 

Substituting Equation 5.63 into Equation 2.4 yields the following: 

Yi = r21Xw + r n Y w + r23Zw + ty J 
r31Xw + r32Y w + r33Zw + tz 

Equation 5. 76 can be rearranged in matrix form: 

(5.76) 

The estimates R2 , ty and R3 can be substituted in Equation 5.77 to solve the overde-

termined linear system of equations (Equation 5. 77) by least squares analysis. A 

solution to Equation 5. 77 will provide the estimat es J and tz for the effective focal 

length f and the range of the target tz respectively. 

5.2.6 Sign Ambiguity 

Sign ambiguity may arise in the estimates from the scale factor c of the solution to 

Equation 5.66. It can be easily seen from Equation 5.68 t hat the scale factor c will 

always have a non negative value. However , when the actual value of ty is negative, 

setting ty arbitrarily to unity will affect the estimates of tx, ty , R1 and R2 sign wise. 
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r-~-------------------------------------------------------

The least squares analysis of Equation 5.66 retrieves good estimates of the absolute 

values of the extrinsic parameters disregarding the sign. Therefore, sign ambiguity 

must be resolved. Solving Equation 5. 77 yields the estimate of the effective focal 

length f besides the range of the data tz. Though the manufacturer provided nominal 

focal length is used as the initial approximation of the effective focal length f, the 

estimated effective focal length from the least squares solution of Equation 5. 77 can be 

used to resolve the sign ambiguity. If sign ambiguity is present in the approximation, 

the estimate of the effective focal length from the solution of Equation 5.77 will be 

negative in sign. When this indication of sign ambiguity is evident, the estimates 

of tx, ty , R1 and R2 can be compensated for accordingly by simply multiplying these 

estimates by - 1. 

5.3 Calibration Algorithm 

The proposed camera calibration technique will be summarized in the form of an 

algorithm. Refer to Figure 5.1 for a graphical representation of the algorithm. The 

algorithm is described in the following steps: 

• Step 1: Input the point correspondences; i.e. , world coordinates of t he calibra

tion points and their respective image coordinates. 

• Step 2: Choose suitable termination conditions; i.e., imax and Emin· 

• Step 3: Initialize the camera model as described in Section 5.2. 
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Ccurrent = Cinitial 

• Step 4: Calculate the undistorted image coordinates from the world coordi-

nates by applying pure perspective projection provided by the camera model 

disregarding lens distortion. 

( ) 
Pinhole Camera Mode! 

Xw , Yw, Zw (u , v) 

• Step 5: Calculate the undistorted image coordinates from the distorted (mea-

sured) image coordinates by applying the lens distortion model. The lens dis-

tortion coefficients are provided by the current camera model. 

( ) 
Lens Distortion Mode! ( 1 ') 

ud,~ u , v 

• Step 6: Evaluate the function vector Fe (Equation 5.7) and the Jacobian matrix 

(Equation 5.8) for the current camera model and the point correspondences. 

Calculate the correction vector (3 for the camera model applying Equation 5.54. 

• Step 7: Update the camera model according to Equation 5.55. 

• Step 8: Check the termination conditions. 

- If ll f311 < Emin, proceed to step 10. 

- If i < imax, go to step 4 else terminate the loop and go to step 9. 

• Step 9: o solution is found. 

• Step 10: A solution is found. The optimal camera model which minimizes 

error is the current camera model. 
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Coptimal = Ccurrent 

The algorithm successfully converges to a solution and terminates. 

Start 

Initialize Camera and Lens Distortion Models 
(Initial Approximation) 

Input Point Correspondences 

(xw,yw,zw ) H (u d, vd) 

Set imax, Emin 

Current Camera Model - Initial Approximation r---------~ 
Ccurrent = Cnitial 

( u d' v d ) __ Le_n_s _o._·st_o,_fio_n_M._'od_e_l--7( u'' v') 

Minimize Fe 
Update Current Camera Model 

Ca.,. •• - p + Ca."""' 

Update Iteration Counter, i 
Calculate Correction Factor, j3 

)--------~Yes------~ 

No 

Optimal Camera Model = Current Camera 
Model 

Yes 

No Solution Found 

Figure 5.1: Proposed Calibration Algorithm 
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5.4 Implementation of the Algorithm 

This algorithm was implemented in MAT LAB®and the algebraic calculations and 

manipulations were performed in Maple TM . T he language onvcrsion tool of Maple TM 

was used to directly generate the algebraic expressions into MATLAB® code. To 

input the manufacturer provided camera information; i.e., initialize the camera, a 

MATLAB® based Gr-aphical User- i nterf ace (C UI) was developed (Figure 5.2) . 

,. stored Camera Settings - Add New Camera Settirgs 

Camera Name: Lunenera ! Camera Name: L Camera Tag ] 
Focal Length (mm): L~ --:J Focal Length (mm): [ 0 J 
Pixel Resolution, X: c 1392 Pixel Resolution, X: [= 0 ~ 
Pixel Resolution, Y: 1 1040 "] Pixel Resolution, Y: 0 ~ 

Pixel Length (mm), X: 0.00465 J Pixel Length (mm), X: 0 __=] 
Pixel Length (mm), Y: ~.00465 J Pixel Length (mm), V: c 0 J 

Delete Entry Add New Entry 
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Figure 5.2: Camera Initialization GUI 

T he calling yntax of the camera calibration routine is: 
\ 

>>calCam( ' cameraName', inputData); 

The two arguments of the calibration routine are 'cameraName ' and inputData. 'cam-

eraName is a unique string that indentifies the part icular camera. inputData i a 
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matrix of dimension n x 5, where the first three columns consist of the world coordi

nates of the n calibration points in the order of X - Y - Z. The last two columns 

consist of the pixel coordinates of the image of the calibration points in the order of 

U-V. 
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Chapter 6 

Implementation of the Camera 

Calibration Technique 

Implementing a typical camera calibration technique in machine vision starts with t he 

acquisition of images of a calibration target. The calibration target is an array of cal

ibration points in 3-Space. Depending on the particular camera calibration technique 

employed it can be coplanar or 3D. Two such widely used calibration targets are 

shown in Figure 6.1. With respect to some world coordinate frame, positions of these 

calibration points are known. In addition, the image coordinates of these calibration 

points are retrieved by analyzing the images of the calibration target by suitable im

age feature extraction technique. Thus a set of point correspondences is generated 

between the object space and the image space. The camera calibration technique 

estimates the camera parameters according to the underlying camera model based on 

these point correspondences. 
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Figure 6.1: Typical Calibration Targets: Checkerboard Pattern (Left) and Dot 

Pattern (Right) 

6. 1 Conventional Calibration Target s 

The most popular calibration targets are arrays of the calibration points arranged 

either in a checkerboard pattern (e.g. [3, 6, 5]) or in a dot pattern (e.g. [19, 4]). T he 

calibration points are represented by the vertices of the squares in the checkerboard 

pattern or the centers of the circles in the dot pattern (Figure 6.1). These patterns are 

usually attached to a planar surface for rigidity to constit ute a 2D calibration target. 

Sometimes multiple planar targets are arranged in a cubic structure comprising a 

single calibration target which is called the 3D calibration target. The color cont rast 

of the calibration targets is usually black and white to facilitate the image feature 

extraction technique in localizing the calibration points in the image space. 

In the literature reported contemporary calibration targets are co-axial circles [36], 

spheres ([37, 38]) and arbitrary symmetrical objects [39] . While calibrating a camera 

using these contemporary targets require relatively less effort and t ime, this conve-
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nience is obtained at the cost of accuracy. One prominent disadvantage of employing 

the contemporary target is that t he image of the target does not cover the entire field 

of view of the camera. Since the lens distort ion coefficients are the functions of t he 

position of th id al image point on the image plane, these targets fails to estimate 

the lens distortion coefficients accurately. Contemporary camera calibration tech

niques such as ([36, 37, 38, 39]) focus on projective geometry rather than Euclidean 

reconstruction. As a result , when the camera is calibrated for applications especially 

designed for highly accurate Euclidean reconstruction, th se calibration targets fail 

to meet the accuracy requirement. The contemporary calibration targets used in cal

ibration techniques ([36 37 38, 39]) are respectively shown in Figur s 6.2(a), 6.2(b), 

6.2(c) , 6.2(d) . 

Generating high quality calibration data requires accurate localization of the cal

ibration points in the image space and as w ll as in the object spa . Unfort unat ly 

there are a number of disadvantages associated with using th conventional calibration 

target in thi regard. The accuracy of the calibration data in the image space and as 

well as in the object space can be potentially compromised when these conventional 

targets are us d . 

6.1.1 Accuracy in the Image Space 

Perspective distort ion can be defined a the distortion of the shape in the image of a 

3D object or a finite planar surface produced by perspective projection. Perspectiv 

projection does not preserve angle, length or ratio of length. Failure to preserve th s 

basic geometrical propert ies impo es a lot of difficulties on the localization of the 
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(a) (b) 

(c) (d) 

Figure 6.2: Contemporary Calibration Targets 

calibration points in the image accurately. These difficulties are unique to each type 

of the calibration target; i.e., checkerboard pattern and dot pattern. 

When the checkerboard pattern is used as the calibration target, the orthogonality 

of the sides of the squares is not preserved in the image. Moreover, lens distortion 

causes the straight lines to be imaged as curves (Figure 6.3) . As a result , localizing 

the vertices in the image space becomes a position of fitt ing a curve along the side of 

the squares and subsequent ly finding the intersection points. This problem is virtually 

unsolvable as the lens dist ortion parameters are not known at this stage of camera 

calibration. 

The centers of t he circles represent the calibration point in the dot patterned 
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calibration target. The projective image of a circle is an ellipse. The amount of 

perspective distortion present in the image of a circle primarily depends on two factors. 

The factors being the relative orientation of the plane on which the circle is lying with 

respect to the image plane and the relative position of the center of the circle with 

respect to the optical center of the lens. Perspective distortion becomes practically 

zero; i.e., the image of a circle is also a circle, when the two planes (i.e., the planes 

containing the circle and the image) are parallel and the center of the circle (in the 

object space) coincides with the optical axis of the camera. Perspective distortion 

increases as the plane encompassing the circle moves further away from being parallel 

to the image plane. In this case, the increased perspective distortion in the image is 

manifested as increased eccentricity of the ellipse. In order to localize the calibration 

point in the image space, it is required to find the projection of the center of the 

circle. As the distance between the center of the circle and optical axis of the camera 

increases, the projection of the center of the circle moves further away from the 

geometrical center of the ellipse in the image space (Figure 6.4). Moreover, the effect 

of perspective projection on each dot in the pattern is not uniform in the image space 

due to the different position and orientation of each dot. As a result, it is difficult 

to localize the calibration points in the image space with acceptable accuracy. The 

presence of non-uniform perspective distortion in the image of the dot patterned 

calibration target was corrected mathematically in [4] in order to compensate for this 

phenomenon. 
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6.1.2 Accuracy in the Object Space 

The conventional calibration target is often produced by consumer grade printers 

which usually can not provide acceptable geometrical accuracy. Assuming that the 

produced calibration target complies with the geometrical design can yield low quality 

calibration data. Therefore, it is required to employ metrological means to measure 

the relative positions of the calibration points in the calibration target. Since these 

targets are printed on paper, they can not be expected to retain uniform geometrical 

properties throughout the calibration process due to thermal expansion. The printers 

discretize the edges of the patterns which results in loss of resolution in the geometric 

shapes. Despite employing metrological techniques to enhance accuracy in the object 

space, the inaccuracy in the geometrical shape due to discretization ultimately adds 

to the noise present in the image. 

6.2 Generating Highly Accurate Point Correspon

dences 

In this work a novel approach towards generating the point correspondences for cam

era was adopted. It employs a calibration system (Figure 6.5) that features a spherical 

calibration target and a calibration rig. The calibration rig is the physical framework 

for acquisition of the calibration data. The heart of the system is a computer that 

hosts a MATLAB® based GUI (Figure 6.6). The GUI autonomously acquires the 

calibration data with little human intervention. It is interfaced with a microcont roller 

through an emulated RS-232 connectivity over a physical USB. The microcontroller 
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hosts the firmware t hat is needed to protocolize the interface and as well as to control 

two stepper motors. The camera to be calibrated is also connected to the computer. 

Manufacturer provided API is used to develop the necessary software to control the 

camera. The computer stores the image dat a and processes the data offiine once the 

data acquisition is completed. In t he following sections the calibration rig and t he 

spherical calibration target is discussed in details. 

6.2.1 The Calibration Rig 

The calibrat ion rig (Figure 6. 7) is a rigid structure with a mechanized calibration 

table with two degrees of freedom of translatory motion. It houses the camera and the 

calibrat ion table and provides a rigid framework for the task of point correspondence 

generation. The camera is mounted on t he calibration rig to ensure rigidity during 

the calibration procedure. In addit ion, the calibration target is mounted on the 

calibration table (Figure 6.8) which is displaced accurately by two orthogonal stepper 

motor driven ball screws in a plane through a rectangular calibration grid. The basic 

resolution of the stepper motor ball screw assembly is 2~00 inch which allows the world 

coordinates of the calibration points to be determined with high accuracy. 
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Figure 6.3: Perspective Distortion in the Synthesized Image of a Square with Strong 

Lens Distortion Effect 

o Data Points 
--Fitted Ellipse 

• Center of the Fitted Ellipse 
• Projection of the Center of the Sphere 

Figure 6.4: Perspective Distortion in the Synthesized Image of a Circle with Strong 

Lens Distortion Effect 
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Figure 6.7: Calibration Rig 
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Figure 6.8: Calibration Table 
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6.2.2 Spherical Calibration Target 

A precisely machined ceramic sphere is used as the calibration target (Figure 6.10). 

The center of the sphere represents the calibration points. A calibration grid is de-

fined to determine the positions of the calibration points. The stepper motor driven 

ball screws displace the calibration target mounted on the calibration table through 

the nodes of the calibration grid. At each node the camera acquires an image of the 

calibration target and stores it in the host computer for future processing. Suitable 

image feature extraction technique localizes the geometric center of the projective im-

age of the occluded contour of the sphere. Primarily this geometric center represents 

the image of the respective calibration point. Additional mechanical fixtures elevate 

the calibration target to different heights to generate a multi planar array of point 

correspondences. 
/ 

There are some distinct advantages that the spherical calibration target can offer 

over conventional targets: 

• The occluded contour of the sphere in the perspective projection is always a 

circle irrespective of the position of the target and is imaged as an ellipse. 

Localizing the contour in the image pace is comparatively simple and can be 

done with greater accuracy. Perspective distortion is also minimized in this 

approach. It is also practically uniform over the field of view of the camera. 

• Unlike the dot pattern or the checkerboard pattern, the sphere can occupy a 

larger area than an image of a single dot or square. Hence, greater number 

of data points can be acquired to localize the image of the sphere with higher 

accuracy. 
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• Since a single calibration target is displaced in the field of view of the cam

era, the calibration grid can be designed to populate greater number of point 

correspondences. The grid spacing can be chosen arbitrarily since the image 

of the target at the neighboring nodes can overlap. On the other hand, the 

conventional target can not offer this kind of flexibility. 

• The geometric center of the sphere in the image space is considered as the 

image of the calibration point which does not coincide the projection of the 

true center of the sphere in actuality. However, the unique geometry of the 

imaging process of a sphere (Figure 6.11) offers an opportunity to compensate 

for this discrepancy mathematically. This is not achievable as accurately in case 

of a conventional target. 

• The radiometric properties of a sphere under controlled illumination is more 

favorable than the conventional target as far as the image feature extraction 

technique is concerned (Figure 6.9). 

• Since the calibration data is generated from greater number of images, the data 

inherently minimizes the effect of the random measurement error introduced by 

the camera (Section 6.4). 
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Sphere Circle 

Figure 6.9: Radiometric Properties of a Spherical Calibration Target and a Circular 

Calibration Target 

Figure 6.10: Spherical Calibration Target Mounted on the Calibration Table 

(Sphere Diameter= 25.4mm) 
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6.3 Imaging a Sphere 

In this section the imaging process of a sphere is modeled mathematically. Figure 6.11 

presents a 3D model of the perspective projection of a sphere. The image of the sphere 

can be produced by drawing tangents on the sphere through the center of projection 

C (i.e., optical center of the lens). The points at which these tangents intersect the 

image plane provide the image of the occluded contour of t he sphere. 

--Occluded Contour of the Sphere 
- Image Plane 

• Projection Center 
+ Center ofthe Sphere 

- Projection of the Sphere 

Figure 6.12: Perspective Projection of a Sphere (Cross-section through a General 

P lane Containing the Center of the Sphere and the center of projection) 
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Figure 6.12 presents a cross-section of the geometrical model (Figure 6.11) through 

a general plane that contains the center of the sphere and the center of projection C. 

This effectively reduces the model from 3D to 2D. CP and CQ are the tangent lines 

on the circle representing the sphere, drawn from the center of projection. It can be 

proven from basic geometrical definit ions that, C P = CQ =e. Since OQJ...CQ and 

OP J...CP , 6 0PC and 60QC are both right angled triangles. Letting OC = d and 

0 P = OQ = r and applying the Pythagorean theorem on either of the right angled 

triangles yields the following expression for £: 

(6.1) 

It can be easily shown that the triangles 6 0QC and 60PC are congruent; i.e., 

6 0QC ~ 60PC. Therefore, LPOC = LQOC =B. Subsequently, congruency of 

the two triangles 60PR and 60QR can be proven from LPOC = LQOC = B. 

This eventually leads to the conclusion that OC J...PQ. OC and PQ intersect each 

other at point R. In order to find the position of the point R, C R = dr is defined in 

the following equation: 

dr = f COS () 

£2 
d 

(6.2) 

The points P and Q can be found by intersecting the circle centered at point 0 

with another circle centered at the projection point C with radius e . If the model is 

extended to 3D from 2D, the locus of the points P or Q in 3D will be the intersection 

points of the spherical calibration target centered at point 0 and another sphere 

centered at the project ion point C with radius e. Since e + r > d, the intersection 

points will constitute a circle I centered at point R with radius P R = QR = ro . The 
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length of the radius r0 can be determined according to the following equation: 

ro = .fsin e 
.er 
d 

(6.3) 

In order to locate t his intersection circle I with respect to the camera coordinate 

frame C (originated at the center of projection C), another coordinate frame C ' is 

defined whose Z axis is along the vector CO. X andY axes of the coordinate frame 

C ' lies on t he plane that contains t he intersection circle I . T he direction of either of 

the two axes X and Y can be chosen arbitrarily. If the direction of X axis is chosen 

arbitrarily, subsequently Y axis can be found by the cross product of the axes Z and 

X ; i.e., Y = Z x X . Let the unit vectors along t he axes of the coordinate frame C' be 

u, v, w respectively. The general expression for the position vector of the intersection 

point P or Q with respect to t he coordinate frame C ' is provided by Equation 6.4. 

RP = r0 cos t u + r0 sin tv + 0 w [·. · Point P lies in the X - Y plane of C'] 

= r0 cost u + r0 sin tv 

(6.4) 

In Equation 6.4, t is an independent parameter defined within the real interval [-1r, n]. 

The posit ion vector of the point P with respect to the camera coordinate frame C is 

calculated in accordance with Figure 6.12 (Equation 6.5). 

CP=CR +RP (6.5) 

Let i, 3 and k be the orthogonal unit vectors along X , Y and Z axes of the coordinate 

frame C respectively. The orthogonal unit vectors u, k and k of the coordinate frame 
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C' can be expressed with respect to the camera coordinate frame C': 

u = uxi + uy] + u);; 

V = Vxi + Vyl + Vzk 

w = Wxi + Wyl + wJ 

(6.6) 

(6.7) 

(6.8) 

Please note that, CR = dr(wxi + wy] + wJ). Expressing the vectors in Equation 6.5 

with respect to the camera coordinate frame C yields the position vector of point P 

with respect to the same coordinate frame (Equation 6.9). 

CP = clr(wxi + wy] + wJ) +(To cos tu +To sinl v) 

= dr(wxz + wy] + wJ) +To cost (uxz + uy] + uJ) +To sin t (vxi + vy] + vJ) 

Ux Vx Wx To cost 

= Uy Vy Wy X To sin t 

Uz Vz Wz dr 

(6.9) 

Equation 6.9 provides the general position vector for all the points on the intersection 

circle I . Projective transformation of this position vector will produce the undistorted 

image of the occluded contour of the sphere. Subsequently addition of lens distortion 

components will yield the distorted image of the sphere. 

6.4 Measurement Error of the Camera 

The digital camera is incapable of producing identical images of the scene in mul

tiple exposures even with controlled ambient illumination . This can be attributed 

to photon noise and the internal electronics associated with the discretization of the 
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CCD signal. In this section this phenomenon is studied with an aim to quantify the 

accuracy associated with the localization of the geometric center of the image of the 

sphere. 

Two sets of one thousand images at the same position are sampled by the camera 

for two different spherical calibration targets of the same radius but made of two 

different materials; namely, delrin and ceramic. It should be noted that according to 

the vendor t he ceramic sphere is relatively more accurate in terms of sphericity due 

to its sophisticated manufacturing process. The image feature extraction technique 

retrieves the geometrical center of the sphere in each image. The distributions of 

the centers are presented in Figure 6.13. Since the histograms of the X and Y 

coordinates of the geometric centers in Figure 6.14 exhibit normally distributed data, 

the measurement error can be considered to be a random occurrence. The statistical 

measures of the distributions are presented in Table 6.1. In order to minimize the 

presence of t he random error, it is preferable to acquire multiple images at each node 

of the calibration grid and subsequently averaging them to a single image. The center 

localized in the average image provides a better estimate of the true geometric center 

of the image of the sphere. 

It is evident from the above discussion that the measurement error introduced 

by t he camera can appreciably contribute to the noise present in the calibration 

data . The noise becomes more prominent when only a few images of the calibration 

target are analyzed to generate the point correspondences. Therefore, it is highly 

recommended that multiple images of the calibration target at each grid node be 

acquired to attain higher accuracy in the calibration data. 
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Figure 6.14: Histogram of X andY Coordinates of the Geometric Centers of the 

Images of the Spheres (Ceramic & Deh·in) 
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Table 6.1: Statistical Measures of the Distributions of Center Locations in the 

Image Space 

f..l (}" 95% C.I. 

Delrin (X) 659.1445 0.0137 659.1445±0.0009 

Ceramic (X) 658.8199 0.0189 658.8199±0.0012 

Delrin (Y) 500.1925 0.0319 500.1925±0.0020 

Ceramic (Y) 500.1375 0.0295 500.1375±0.0018 

6.5 Localization of the Calibration Points in t he 

Image Space 

A customized image feature extraction technique was developed to localize the oc

cluded contour of the spherical target in the image. The contour thus localized was 

fitted to an ellipse by least squares analysis. The geometric center of the ellipse was 

approximated as the image of the calibration point . The image extraction technique 

is presented in Figure 6.15. 
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Figure 6.15: Image Feature Extraction Technique 
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Figure 6.16: 3D Plot of the Gray Scale Image (Gray Values are Plotted in 3D 

Against Their Respective Pixel Positions) 

Otsu's Thruhold 

Figure 6.17: Histogram of a Generic Gray Scale Image of the Calibration Target 
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Figure 6.18: Gradient Image with the Peaks Localized 
60r-------~------~------~------~------~------~ 

50 

Original Image 

Ma)[imum Gradient 

Distance from Center 

Figure 6.19: Gray Scale Intensity and the Corresponding First Derivative of the 

Spatial Signal in the Radial Direction 
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The RGB image of the calibration target can be desaturated by averaging all the 

three color channels to convert it to a gray scale image (Figure 6.16). Subsequently 

segmenting the gray scale image by Otsu's method [40] (Figure 6.17) yields the binary 

image of the calibration target (Figure 6.20). 

Since occurrence of the random noise is inevitable, the binary image contains a 

number of noisy blobs; however, the largest blob always represents the image of the 

calibration target. Blob analysis of the binary image provides the geometric properties 

of the image of the spherical target. These properties include the centroid of the blob, 

the principal axes of inertia, location and dimensions of the rectangle bounding the 

blob with minimum area (i.e., minimum bounding rectangle). All these parameters 

provide a good initial approximation for fitting the ellipse by nonlinear least squares 

analysis. 

Figure 6.20: Segmented Image (Localized Contour, Minimum Bounding Rectangle, 

Major Axis of Inertia) 
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In order to localize the edge points of the occluded contour with sub pixel accuracy, 

the gray cycle image is convolved with a Sobel Kernel to yield the corresponding 

gradient image (Figure 6.18). Since the direction of the edge is radial at all points, an 

exhaustive search is executed to detect the peaks in the radial direction that represent 

the edge points of the contour of the calibration target in the image (Figure 6.19). 

Subsequently these edge points are fitted to an ellipse by least squares analysis. Since 

the fitting of an ellipse by least squares analysis is crucial in terms of sub pixel 

localization of the edge and consequently the geometric center, in the following section 

a detailed description is presented. 

6.6 Fitting Ellipse by Least Squares Analysis 

Fitting geometric primitives (e.g., lines, circles, ellipses etc.) to a given set of data 

points is one of the classic problems encountered in computer graphics. Since the 

projective image of a sphere or a circle is an ellipse, fitting an ellipse to the edge 

points located by t he image analysis will effectively localize the projection of the 

sphere or the circle in the image space. This problem is attempted in two different 

approaches in the literature; however, either the linear or the nonlinear least squares 

analysis is adopted as the general method of solution. These two approaches are 

generally termed as the algebraic approach and the geometric approach. 
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6.6.1 Algebraic Fit 

In the algebraic approach, the data points are fitted to the general conic section 

equation (Equation 6.10) by least squares analysis. 

ax2 + bx y + cy2 + dx + ey + f = 0 with, a2 + b2 + c2 
-=/=- 0 (6.10) 

The quadratic in Equation 6.10 encompasses all the four types of conic sections; 

namely, ellipse, circle, parabola and hyperbola. If b2 - 4ac < 0, Equation 6. 10 rep

resents an ellipse; hence, algebraically fit t ing an ellipse to a number of data points 

essentially becomes a constrained least squares analysis problem with the constraint 

being b2 
- 4ac < 0. References ([41 , 42, 43, 44]) adopted this algebraic approach for 

ellipse fitting; however, these references mainly differ in constraining the quadratic 

equation (Equation 6.10) in different unique forms. 

6.6.2 Geometric Fit 

The geometric distances between the given data points and the fitted ellipse are 

minimized in the geometric approach. This approach fi ts an ellipse to the general 

parametric form of the equation of an ellipse. Essentially this approach is iterative; 

therefore, it is computation intensive. While the algebraic approach is direct and 

computationally inexpensive, the geometric approach yields better accuracy at the 

cost of greater computational effort . From the standpoint of accurately calibrating 

the camera, adopting this approach in this work is therefore well justified. In [45], 

a detailed comparative account on fitting ellipse by least squares analysis is offered 

highlighting both the geometric and the algebraic approach. 
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6. 7 Geometric Fit of Ellipse in Parametric Form 

T he parametric equation of an ellipse in the canonical position (i.e., the ellipse is 

centered at the coordinate origin and the axes coincide with the coordinate axes) is 

provided by: 

E = [acos'I/Jl 

bsin '1/J 

(6.11) 

In Equation 6.11 the parameter '1/J is the eccentric anomaly independent ly defined 

within the interval [0, 21r]. At any point (x, y) on the ellipse, the expression for '1/J is: 

'1/J =arctan !!11. bx 

The general ellipse is unconstrained; i.e., it is centered at any arbitrary point and the 

axes are also oriented arbit rarily. Let the center of the ellipse in Equation 6.11 be 

translat ed to an arbitrary point (tx, ty) · It is subsequently rotated such t hat the major 

axis of the ellipse produces an angle () with the coordinate X axis. The t ransformation 

of the canonical ellipse by the aforement ioned translat ion and subsequent rotation 

provides the unconstrained general ellipse (Equation 6.12). 

E = [tx] + R(()) x [a cos '1/Jl 
ty bsin '1/J 

[

tx + a cos '1/J cos () - b sin '1/J sin ()] 

- ty + a cos '1/J sin () + b sin '1/J cos () 

In Equation 6.12 R(()) is the 2D rotation mat rix for counterclockwise rotation. 

[

cos () - sin ()] 
R(()) = 

sin() cos () 
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Given a set of n data points S = {(x1, YI), (x2, Y2) , (x3, y3) ... (xn, Yn)} the general 

problem is to find an ellipse E that minimizes the geometric distances between the 

data points and the fitted ellipse. The parameters that define the ellipse E completely 

are the position of the center (tx, ty), half length of the axes a and b and the angle 

between the major axis and the coordinate X axis e. If n > 5, these parameters can 

be estimated by the Newton-Gauss nonlinear least squares analysis. 

Since the eccentric anomaly 1/J at the given data points can't be determined 

because of the init ial unavailability of the location of the center and the orienta

t ion of the axes, for each data point '!/; is considered to be an additional unknown. 

Hence, for n given data points t he unknown parameter vector to be estimated is 

['l/;1 'l/;2 'l/;3 .. . 'l/Jn tx ty a b ef. 

An initial approximation of the ellipse parameters is required to init iate the iter

ative search for better estimates. The geometric properties of the blob representing 

the sphere in the image can provide good approximations of the ellipse parameters. 

The centroid of the blob approximates the center of the ellipse. In addition, the ori

entation and the length and width of the minimum bounding rectangle provide good 

approximations for the parameters a, b and e. 

The Jacobian matrix for the least squares problem becomes singular when b =a. 

If initial approximations of b and a are very close (a ::::::; b) , this singularity can be 

avoided by arbitrarily setting b = ~a. However, the analysis still may fail to converge 

to a solution when the surface of the occluded contour of t he sphere is practically 

parallel to t he image plane resulting in a circular image. The unavailability of a 

solution is duly handled in the image analysis by fitting a circle to the edge points. 

Figure 6.21 presents an ellipse estimated by the aforementioned analysis. 
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Figure 6.21: Fitting Ellipse to the Edge Points 

6.8 Practicalities in Camera Calibration 

The nodes of a multiplanar rectangular calibration grid were considered to represent 

the position of each calibration point in the object space. The calibration system 

positioned the calibration target (Figure 6.10) at the nodes. The camera acquires 

multiple images at each position and averaged them into a single image to minimize 

the measurement error of the camera . The averaged images were stored in the host 

computer for off line processing. Once all the images were acquired, the image feature 

extraction technique approximated the locations of the calibration point in the image 

space as the geometrical centers of the contour of the calibration target. The calibra-

tion data thus produced were used to obtain the unrefined camera model. Since in a 

strict sense the geometrical center and the projection of the center of the sphere do 
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Figure 6.22: Superimposed Fitted Ellipse on Actual Calibration Image 

not coincide, subsequent refinement is required to compensate for this discrepancy. 

The ellipse fitted by the least squares analysis represents the image of the occluded 

contour of the calibration target. The optical center of the lens and the fitted ellipse 

constitute an oblique cone whose axis represents the projection ray of the center of the 

spherical target. The point at which the projection ray intersects the image plane is 

the actual image point of the center of the sphere. Using the unrefined camera model, 

these image points can be estimated to refine the calibration data. The modified data 

is then calibrated to obtain the refined camera model. 
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Chapter 7 

Performance Evaluation of the 

Proposed Camera Calibration 

Technique 

Benchmarking can be defined as the process of comparing quantitative entities against 

a similar reference point or standard of excellence [46]. Since accuracy is regarded as 

the primary performance index for a camera calibration technique, benchmarking the 

performance of the proposed technique is essentially a comparative study on accuracy 

attained against the accuracy provided by a standard technique. The term "accuracy" 

has two different aspects when it is referred to a camera model: 

• The accuracy of the estimates of the camera parameters compared against their 

true values. 

• The accuracy of the camera model in terms of minimizing the disagreement 

between the practical calibration data and reconstructed calibration data. 
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This chapter visits both of these two aspects of accuracy of a calibra ted camera model. 

In practice it is difficult , if not impossible, to physically measure the camera pa

rameters. Even if such measurement technique existed which is capable of measuring 

the camera parameters physically, the presence of random error in the measurements 

can never be entirely eliminated. In consequence, the true values of the camera pa

rameters in a strict sense can never be known. This nullifies th id a of assessing the 

accuracy of the estimates of the camera parameters against the respective true values. 

However, accuracy assessment of this nature is still possible by computer simulation 

where a reasonable analytic camera model is employed to synthesiz images of a vir

tual calibration target . Thus point correspondences can be generated between the 

object space and the image space which in turn, can be used as an input to the cam

era calibration technique. The comparison of the calibrated camera model against 

the analytic camera model provides an index for the performance of the respective 

camera calibration technique. Since t he presence of random error can not be helped 

in physical measurements, in the simulation the occurrence of the random error is 

treated as a stochastic process under Monte-Carlo method. 

Unlike computer simulation, in a practical calibra tion scenario the t rue values 

of the camera parameters are usually not available. Hence, performance evaluation 

of a camera calibration technique in practice is based on 2D or 3D measurements. 

The calibrated camera model is used for vision based measurements of some geo

metric quantity. The comparison between the vision based measurements and the 

conventional physical measurements provides an index for performance. The accu

racy attained by the proposed technique using practical calibration data is compared 

against that provided by a standard technique to assess the performance of the pro-
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posed technique (Section 7.2). 

P erformance evaluation always involves a predefined st andard against which t he 

comparison is made. In t his study, the camera calibrat ion technique by Heikkila [4] 

is chosen as the reference calibration technique, since it is recognized as one of the 

prominent techniques for camera calibration [11]. Moreover, a MATLAB® based 

implementation produced by Heikkila himself is available online. It is part icularly 

convenient since Heikkila's code can be seamlessly integrat ed with t his work. There

fore, this technique is used for t he simulation and as well as for practical calibration. 

The code is available online at http : //www.ee.oulu .fi/-jth/calibr/. 

7.1 Performance Evaluation by Monte-Carlo Sim

ulation 

Any real measurement involves errors that can be divided into four classes [7] : 

• Blunders 

• Constant Errors 

• Systemat ic Errors 

• Random Errors 

Blunders and const ant errors are irrelevant in the context of computer simulation. 

On the other hand, known systematic error in a vision based measurement system 

is caused by lens distortion, which is duly compensated for in the camera model. 
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Occurrence of random errors can be attributed to inherent incapability of the instru

ments, but their occurrence can be modeled in the computer simulation by employing 

pseudo-random numbers. 

A Monte Carlo simulation is defined as the method of calculating some physical 

quantity that involves deliberate use of random numbers that has the structure of a 

stochastic process [47]. In synthesizing the image of a virtual calibration target by 

an analytic camera model, pseudo-random numbers are used to introduce random 

error in the imaging process. Hence, this computer simulation can be treated as a 

Monte-Carlo simulation process. 

7 .1.1 Synthesizing the Image of a Virtual Calibration Target 

The following steps are generally followed to generate the synthetic image (i.e., cali

bration data) of a virtual calibration target: 

• Step 1: Assume an analytic camera model. The camera model should fully 

define the image formation process. Therefore, reasonable values for all the 

camera parameters that are listed in Table 2.1 must be chosen. 

• Step 2: Choose a virtual calibration target. The range and the geometry of 

the target should be such that the image of the target covers the whole field of 

view of the analytic camera. The target should contain an array of calibration 

points. With respect to some world coordinate frame the coordinates [xwywzw]T 

of all t he calibration points are known. 

• Step 3: Introduce random noise Er to the world coordinates of the calibration 

points to generate the noisy world coordinates [x~y~z~]T (Equation 7.1) of the 
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calibration points. The probability distribution function of the random error is 

assumed to be uniform. This error is defined within an error bound h + Eb- l· 

The pseudo-random number representing the random error is normalized over 

the predefined error bound to ensure that the random error is always within 

that range. 

x' w Xw Erx 

y~ Yw + Ery (7.1) 

z' w Zw Er z 

• Step 4: Generate the distorted image of the calibration target as described 

in Section 2.4 from the noisy world coordinates [x~y~z~]T of the calibration 

points. The distorted image coordinates of t he calibration points [udvd]T are 

stored for future analysis. 

• Step 5: Input the noise-free world coordinates [xwywzwJT and the distorted 

image coordinates [udvd]T (provided by the analytic camera using the noisy 

world coordinates of the calibration points) to the calibration technique. The 

calibration process yields estimates of the camera parameters. 

• Step 6: Repeat steps 3, 4 and 5 for any arbitrary number ( n) of times. A large 

value of n yields better statistical inferences from the simulated data. Each time 

the estimates of the camera parameters from Step 5 are stored in the simulated 

data matrix S. 

The simulated data matrix S contains n x 15 elements where each element represents 

the estimate of the respective camera parameter. Two such simulated data matrices 
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are generated, each one for the proposed and Heikkila's camera calibration technique. 
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Figure 7.1: Virtual Calibration Target with 40 x 40 x 3 Calibration Points 

7.1.2 Simulation Parameters 

All the camera parameters except the lens distortion coefficients for the analytic 

camera are listed in Table 7.1. Two different lenses were considered, one with a weak 

lens distortion effect ( Lw) and the other with a strong lens distortion effect ( L s). 

T he values of the distortion coefficient for the lens Ls were obtained from [4] . On 

the other hand, the values of the distortion coefficients for the lens Lw were assumed 
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Figure 7.2: Defined Bound for Random Error 

to be 10 times greater than that of the respective lens distortion coefficients of the 

lens L8 . These values are listed in Table 7.2. Additional simulation parameters are 

listed in Table 7.3. 

7.1.3 Simulation Data Analysis 

Each simulation run consists of 1000 trials where each trial provides different estimates 

of the camera parameters. Thus a distribution of estimates of each camera parameter 

is generated by each simulation run. The statistical means of these distributions 

approximate the analytic value of the respective camera parameter. To quantify the 

performance of the particular camera calibration technique in terms of accurately 

estimating t he true values of the camera parameters, absolute percent error (APE) 

is used. APE is calculated according to the formula provided in Equation 7.2. In 

addition, the standard error of the mean (SEM) of the distributions provides an index 
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Figure 7.3: Image of the Virtual Calibration Target 

of the sensitivity to noise for that particular camera parameter. In general, the higher 

1s the value of SEM, the more the camera parameter IS influenced by the random 

noise. SEM of the estimates of the camera parameters are calculated by the formula 

presented m Equation 7.3. 

x-x 
APE= 1--1 x 100% 

X 

SEM = _!!_ 
Jri 

(7.2) 

(7.3) 

In Equation 7.2, x and x refer to the analytical value and the estimated value of 

a camera parameter. O" and n in Equation 7.3 respectively represent the standard 

deviation of an estimate and the number of data points. 
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Table 7.1: Camera Parameters for the Simulation (Analytic Camera) 

Camera Parameter Symbol Value Unit 

Scale factor s 1.00 n/a 

Effective focal length f 8.50 mm 

Image center ( uo , vo) (650, 500) pixels 

0:' -1.5000° degrees 

Euler angles, XY Z {3 +0.5000° degrees 

I +0.7500° degrees 

d + 0.9999 n/a 

a -0.0131 n/a 
Equivalent quaternion (Appendix B) 

b +0.0043 n/a 

c +0.0066 n/a 

lx - 75.00 mm 

Position vector ty -55.00 mm 

lz + 220.00 mm 

Table 7.2: Lens Distortion Coefficients for the Analytic Lenses 

Lw Ls Unit 

kl 3.30 X 10- 03 3.30 X 10- 02 mm- 2 

k2 - 2.60 X 10- 05 - 2.60 X 10- 04 mm- 4 

P1 - 1.30 X 10- 06 - 1.30 X 10- 05 mm-1 

P2 4.00 X 10- 05 4.00 X 10- 04 mm-1 
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Table 7.3: Simulation Parameters 

Parameter Remarks 

Calibration Target 3 parallels planes, each plane consisting uniformly 

spaced grid of calibration points over the rectan

gular area of 150.0 x 110.5 mm2
. Height difference 

between the planes assumed to be 6.35 mm (Fig

ure 7.1). 

Simulation Runs 6 simulation runs (51 W , 515 , 52 W, 525 , 53 W and 

535), each comprised of 1000 trials. Simulation 

runs 51 W , 52 W and 53 W were conducted with the 

lens Lw for 40 x 40 x 3, 20 x 20 x 3, and 10 x 10 x 3 

calibration points respectively. On the other hand, 

simulation runs 515, 525 and 535 were conducted 

for the lens Ls with equal number of calibration 

points. 

Rahman 2009 

Random Error Uniformly distributed random error within the 

bound ±0.1 mm in each coordinated component 

X, Y and Z (Figure 7.2). 
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Table 7.4: Simulation Results (Run 5 1 W) 

Heikkila Proposed 

X XH APEH SEMH Xp APEp SEMp 

s 1.0000 1.0000 0.0002 0.0000 1.0000 0.0006 0.0000 

f mm 8.5000 8.4998 0.0026 0.0002 8.4999 0.0016 0.0002 

uo pixels 650.0000 650.0012 0.0002 0.0216 650.0475 0.0073 0.0222 

vo pixels 500.0000 500.0153 0.0031 0.0172 500.0671 0.0134 0.0179 

kt xlo- 3 mm- 2 3.3000 3.3040 0.1208 0.0000 3.2840 0.4855 0.0000 ..... 
tV 

k2 xlo-5 mm-4 -2.6000 -1.5396 40.7856 0.0000 -2.5030 3.7323 0.0000 0 

PI x1o - 6 mm- 1 -1.3000 -1.5731 21.0108 0.0000 -1.7750 36.5410 0.0000 

P2 x 10- 5 mm- 1 4.0000 4.2049 5.1236 0.0000 3.9344 1.6398 0.0000 

d 0.9999 0.9999 0.0000 0.0000 0.9999 0.0000 0.0000 

a -0.0131 -0.0131 0.0174 0.0000 -0.0131 0.1207 0.0000 

b 0.0043 0.0043 0.0264 0.0000 0.0043 0.3324 0.0000 

c 0.0066 0.0066 0.0004 0.0000 0.0066 0.0035 0.0000 

tx mm -75.0000 -75.0000 0.0000 0.0026 -75.0058 0.0078 0.0027 

ty mm -55.0000 -55.0018 0.0033 0.0021 -55.0082 0.0150 0.0022 

t. mm 220.0000 219.9923 0.0035 0.0047 220.0034 0.0016 0.0046 



Table 7.5: Simulation Results (Run S1S) 

Heikkila P roposed 

X XH APEH SEMH xp APEp SEMp 

s 1.0000 0.9993 0.0657 0.0000 1.0000 0.0005 0.0000 

f mm 8.5000 8.8316 3.9009 0.0002 8.4993 0.0078 0.0002 

uo pixels 650.0000 662.3806 1.9047 0.0056 650.0439 0.0068 0.0186 

vo pixels 500.0000 529.0059 5.8012 0.0075 499.9954 0.0009 0.0175 

kt x10- 2 mm- 2 3.3000 6. 306 106.9864 0.0000 3.2959 0.1242 0.0000 ..... 
"" k2 x10- 4 mm- 4 -2.6000 -22.7041 773.2362 0.0000 -2.5660 1.3078 0.0000 ..... 

Pl x10-5 mm-1 -1.3000 572.8647 44166.5125 0 .0000 -1.3426 3.2802 0.0000 

P2 x l0- 4 mm- l 4.0000 31.3140 682.8503 0.0000 4.0464 1.1605 0.0000 

d 0.9999 1.0000 0.0089 0.0000 0.9999 0.0000 0.0000 

a -0.0131 -0.0036 72.6557 0.0000 -0.0131 0.0119 0.0000 

a 0.0043 -0.0006 114.8913 0.0000 0.0043 0.2344 0.0000 

c 0.0066 0.0065 1.2659 0.0000 0.0066 0.0031 0.0000 

t:z; mm -75.0000 -76.4991 1.9987 0.0007 -75.0053 0.0071 0.0023 

ty mm -55.0000 -58.4735 6.3155 0.0009 -54.9996 0.0008 0.0021 

tz mm 220.0000 219.0583 0.4281 0.0046 220.0014 0.0006 0.0045 



Table 7.6: Simulation Results (Run S2 W) 

Heikkila Proposed 

X XH APEH SEMH xp APEp SEMp 

s 1.0000 1.0000 0.0002 0.0000 1.0000 0.0006 0.0000 

f mm 8.5000 8.4998 0.0026 0.0002 8.4999 0.0016 0.0002 

uo pixels 650.0000 650.0012 0.0002 0.0216 650.0475 0.0073 0.0222 

VQ pixels 500.0000 500.0153 0.0031 0.0172 500.0671 0.0134 0.0179 

kl x10- 3 mm- 2 3.3000 3.3055 0.1655 0.0000 3.2820 0.5457 0.0000 ..... 
tv k2 x10-5 mm- 4 -2.6000 -1.5458 40.5452 0.0000 -2.4876 4.3249 0.0000 tV 

PI x10- 6 mm- 1 -1.3000 -1.9147 47.2815 0 .0000 -2.3115 77.8059 0.0000 

P2 x10- 5 mm- 1 4.0000 4.3088 7.7212 0.0000 3.9396 1.5112 0.0000 

d 0.9999 0.9999 0.0000 0.0000 0.9999 0.0000 0.0000 

a -0.0131 -0.0131 0.0174 0.0000 -0.0131 0.1207 0.0000 

a 0.0043 0.0043 0.0264 0.0000 0.0043 0.3324 0.0000 

c 0.0066 0.0066 0.0004 0.0000 0.0066 0.0035 0.0000 

tx mm -75.0000 -75.0000 0.0000 0.0026 -75.0058 0.0078 0.0027 

ty mm -55.0000 -55.0018 0.0033 0.0021 -55.0082 0.0150 0.0022 

tz mm 220.0000 219.9923 0.0035 0.0047 220.0034 0.0016 0.0046 
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Table 7.7: Simulation Results (Run 5 25) 

Heikkila Proposed 

X XH APEH SEMH xp APEp SEMp 

s 1.0000 0.9993 0.0732 0.0000 1.0000 0.0004 0.0000 

f mm 8.5000 8.8247 3.8197 0.0004 8.4991 0.0102 0.0003 

uo pixels 650.0000 652.7904 0.4293 0.0109 650.0735 0.0113 0.0389 

vo pixels 500.0000 523.7585 4.7517 0.0148 499.9767 0.0047 0.0356 

kl x10- 2 mm- 2 3.3000 6.8006 106.0781 0.0000 3.2957 0 .1317 0.0000 
1-' 
tv k2 x 10- 4 mm- 4 -2.6000 -23.0898 788.0683 0.0000 -2.5635 1.4040 0.0000 w 

P1 x10-5 mm- 1 -1.3000 465.6876 35922.1222 0.0000 -1.6155 24.2698 0.0000 

P2 x 1o- 4 mm- 1 4.0000 12.2026 205.0649 0.0000 4.0812 2.0303 0.0000 

d 0.9999 1.0000 0.0077 0.0000 0.9999 0.0000 0.0000 

a -0.0131 -0.0054 58.9805 0.0000 -0.0131 0.0109 0.0000 

a 0.0043 0.0028 34.7248 0.0000 0.0043 0.3821 0.0000 

c 0.0066 0.0066 0.1336 0.0000 0.0066 0.0148 0.0000 

tx mm -75.0000 -75.3390 0.4520 0.0013 -75.0091 0.0121 0.0048 

ty mm -55.0000 -57.8531 5.1874 0.0018 -54.9972 0.0052 0.0043 

t. mm 220.0000 219.5744 0.1934 0.0091 219.9968 0.0014 0.0087 



Table 7.8: Simulation Results (Run S3 W) 

Heikkila Proposed 

X XH APEH SEMH xp APEp SEMp 

s 1.0000 1.0000 0.0006 0.0000 1.0000 0.0001 0.0000 

f mm 8.5000 8.5002 0.0029 0.0007 8.5012 0.0144 0.0007 

uo pixels 650.0000 650.1455 0.0224 0.0906 649.9109 0.0137 0.0909 

VQ pixels 500.0000 500.0756 0.0151 0.0715 500.0038 0.0008 0.0699 

kl x10- 3 mm- 2 3.3000 3.3051 0.1547 0.0000 3.2852 0.4495 0.0000 
1-' 
l'V k2 xl0- 5 mm- 4 -2.6000 -1.5473 40.4896 0.0000 -2.4990 3.8849 0.0000 ~ 

PI x10-6 mm- 1 -1.3000 -1.4656 12.7347 0.0000 -0.6087 53.1755 0.0000 

P2 x 1o- 5 mm- 1 4.0000 4.1723 4.3086 0.0000 3.9678 0.8039 0.0000 

d 0.9999 0.9999 0.0000 0.0000 0.9999 0.0001 0.0000 

a -0.0131 -0.0131 0.0997 0.0000 -0.0131 0.0955 0.0000 

a 0.0043 0.0043 0.5810 0.0000 0.0043 0.3690 0.0000 

c 0.0066 0.0066 0.0081 0.0000 0.0066 0.0019 0.0000 

t., mm -75.0000 -75.0171 0.0227 0.0110 -74.9892 0.0144 0.0110 

t y mm -55.0000 -55.0092 0.0167 0.0086 -55.0002 0.0004 0.0085 

t . mm 220.0000 219.9985 0.0007 0.0181 220.0429 0.0195 0.0184 



Table 7.9: Simulation Results (Run S3S) 

Heikkila Proposed 

X XH APEH SEMH xp APEp SEMp 

s 1.0000 0.9993 0.0732 0.0000 1.0000 0.0004 0.0000 

f mm 8.5000 8.8247 3.8197 0.0004 8.4991 0.0102 0.0003 

uo pixels 650.0000 652.7904 0.4293 0.0109 650.0735 0.0113 0.0389 

vo pixels 500.0000 523.7585 4.7517 0.0148 499.9767 0.0047 0.0356 

kl x10- 2 mm- 2 3.3000 6.6814 102.4658 0.0000 3.2968 0.0977 0.0000 
...... 
1:--J k2 x10- 4 mm- 4 -2.6000 -24.3565 836.7880 0.0000 -2.5710 1.1149 0.0000 c.n 

Pl x10- 5 mm- l -1.3000 114.6791 8921.4729 0.0000 -1.2116 6.7996 0.0000 

P2 x 10- 4 mm- 1 4.0000 -37.2873 1032.1813 0.0000 4.0736 1.8388 0.0000 

d 0.9999 1.0000 0.0077 0.0000 0.9999 0.0000 0.0000 

a -0.0131 -0.0054 58.9805 0.0000 -0.0131 0.0109 0.0000 

a 0.0043 0.0028 34.7248 0.0000 0.0043 0.3821 0.0000 

c 0.0066 0.0066 0.1336 0.0000 0.0066 0.0148 0.0000 

tx mm -75.0000 -75.3390 0.4520 0.0013 -75.0091 0.0121 0.0048 

ty mm -55.0000 -57.8531 5.1874 0.0018 -54.9972 0.0052 0.0043 

tz mm 220.0000 219.5744 0.1934 0.0091 219.9968 0.0014 0.0087 



Table 7.10: Comparison of t he Estimates of the Intrinsic Camera Parameters Based on APE 

s1w s2w SaW s1s s2s SaS 

APEH APEp APEH APEp APEH APEp APEH APEp APEH APEp APEH APEp 

s 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.00 0.17 0.00 

f 0.00 0.00 0.00 O.Ql 0.00 O.Ql 3.90 0.01 3.82 0.01 3.27 0.01 

uo 0.00 0.01 0.00 0.01 0.02 O.Ql 1.90 0.01 0.43 0.01 3.47 0.01 
..... 
t-.:) vo 0.00 0.01 0.01 0.02 0.02 0.00 5.80 0.00 4.75 0.00 1.28 0.00 0) 

k l 0.12 0.49 0.17 0.55 0.15 0.45 106.99 0.12 106.08 0. 13 102.47 0.10 

k2 40.79 3.73 40.55 4.32 40.49 3.88 773.24 1.31 788.07 1.40 836.79 1.11 

Pl 21.01 36.54 47.28 77.81 12.73 53.18 44166.51 3.28 35922.12 24.27 8921.47 6.80 

P2 5.12 1.64 7.72 1.51 4.31 0.80 682.85 1.16 205.06 2.03 1032.18 1.84 
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Figure 7.9: APE of the Estimates of the Image Center Coordinate u0 (Ls) 
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Figure 7.10: APE of the Estimates of the Image Center Coordinate v0 (Lw) 
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Figure 7.11: APE of the Estimates of the Image Center Coordinate v0 (Ls ) 
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Figure 7.12: APE of the Estimates of the Radial Lens Distortion Coefficient k1 

(Lw ) 
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Figure 7.13: APE of the Estimates of the Radial Lens Distortion Coefficient k1 ( Ls) 
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Figure 7.18: AP E of the Estimates of the Radial Lens Distortion Coefficient p2 
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Figure 7.19: APE of the Estimates of the Radial Lens Distortion Coefficient p2 (Ls) 
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Figure 7.21: APE of the Estimates of the Quaternion Component d (Ls) 
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Figure 7.22: APE of t he Estimates of the Quaternion Component a (Lw) 
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Figure 7.23: APE of the Estimates of the Quaternion Component a (Ls) 
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Figure 7.24: APE of the Estimates of the Quaternion Component b (Lw) 
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Figure 7.25: A P E of the Estimates of the Quaternion Component b (Ls) 
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Figure 7.26: A P E of the Estimates of the Quaternion Component c (Lw) 
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Figure 7.27: A P E of the Estimates of the Quaternion Component c (Ls) 
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Figure 7.28: APE of the Estimates of the Extrinsic Position Vector Component tx 
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Figure 7.34: Average Standard Error in Pixels (X Axis) 
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Figure 7.35: Average Standard Error in Pixels (Y Axis) 

7.1.4 Inferences from the Simulation Results 

In Tables 7.4, 7.5, 7.6, 7.7, 7.8 and 7.9 the simulation results provided by runs S1 W, 

S1S, S2W, S2S, S3 W and S3S) are presented in the stated order. In Figures 7.4-7.33 

the APEs of the different camera parameters provided by Heikkila 's technique and 

the proposed technique are presented graphically for comprehensive interpretation of 

the data. 

A review of the data presented in the tables shows that in contrast to the AP Es 
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Table 7.11: Comparison of the Standard Errors in Pixels (Simulated Camera 

Calibration) 

X Axis Y Axis 

H p H p 

81W 0.4940 0.4941 0.4933 0.4934 

82W 0.4927 0.4932 0.4922 0.4921 

53w 0.4888 0.4894 0.4879 0.4884 

515 1.5199 0.4184 1.2988 0.4303 

525 1.4579 0.4178 1.2436 0.4298 

535 1.3307 0.4151 1.1161 0.4271 

of the extrinsic camera parameters provided by Heikkila's technique, the proposed 

technique performs better especially in presence of strong lens distortion effect. When 

the lens distortion effect is weak, both of the techniques produce comparable accuracy. 

The APEs of the estimates of the intrinsic parameters provided by both techniques 

are compiled together in Table 7.10. Studying the data presented in Table 7.10 reveals 

the following: 

• For the lens Lw (i.e., in the presence of weak lens distortion effect), the estimates 

of the parameters s, f, u0 , v0 and k1 provided by both techniques are similarly 

accurate. 

• The accuracies of the estimates of the parameters k2 and p2 with weak lens 

distortion effect provided by the proposed technique are comprehensively better 

than those provided by Heikkila's technique. 
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• The estimates of the tangent ial lens distortion coefficient p1 provided by the 

proposed technique for the lens Lw are worse than that provided by Heikkila's 

technique. This can be at tributed to the large random error which had a greater 

impact on the imaging process than the parameter itself. 

• For the estimates of all t he lens distortion coefficient ( k1 , k2 , p1 , p2 ) and the pa

rameters ·u0 , v0 and f under strong lens distortion effect ( L s), the proposed 

techniques exhibit an inclusively higher order accuracy than Heikkila's tech

nique. This can be att ributed to the Taylor series approximation of the lens 

distortion model in Heikkila's camera model [4] . The proposed technique does 

not approximate the lens distortion model; rather the minimization of t he er

ror is conducted in the undistorted space which consequently produced better 

accuracy in the estima tes of those particular camera parameters. Greater inter

action between the image center , effective focal length and the lens distortion 

coefficients resulted in larger errors in the estimates of the image center and the 

effective focal length yielded by Heikkila's technique. 

Upon compiling the aforementioned observations one can conclude with fair justifica

tion that the proposed technique is more robust in t erms of accurat ely estimating t he 

camera intrinsic and extrinsic parameters regardless of the amount of lens distortion 

present in the imaging system. 

The standard errors in pixels provided by both of the calibration techniques are 

graphically presented in Figures 7.34 and 7.35 and listed in Table 7.11. In agreement 

with the previous observat ions, Heikkila's calibration technique produces more than 

three times as much standard error in pixels provided by the proposed technique 

Rahman 2009 139 



-----------

when strong lens distortion effect is present. From the standpoint of a practical 

calibration scenario, this is particularly attractive since the proposed technique can 

better minimize the discrepancy between the pract ical observations and reconstructed 

observations regardless of the optical properties of the lens. 

7.2 Accuracy in Practical Camera Calibration 

Besides computer simulation, an industrial grade digital camera was calibrated using 

the proposed calibration technique to assess the performance of the camera calibra

tion. Additionally Heikkila's technique was also used to calibrate the camera based 

on t he identical calibration data for benchmarking purposes. The calibration data 

were acquired by the method described in Chapter 6. In Table 7.12 the calibrated 

camera models are presented. It can be easily seen that the camera models estimated 

by the proposed technique and Heikkila's technique is almost similar. This observa

tion is consistent with the computer simulation for a camera with a lens with weak 

distortion effect. 

The residuals of the calibrated camera models are presented in Figure 7.36. 

7.2.1 Accuracy Evaluation 

Armangue et al. in [10] reviewed major calibration techniques with accuracy assess

ment based on practical camera calibration. The evaluation criteria were both 3D 

and 2D measurements of known world points and the corresponding measured image 

points. In t his work only 2D measurements were adopted as a means of accuracy 

evaluation. These measurements were carried out in the distorted space and as well 
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Table 7.12: Comparison of the Standard Errors in Pixels 

Proposed Heikkila 
Parameter 

Unrefined Refined Unrefined Refined 

s 1.0018 1.0017 1.0018 1.0017 

f mm 36.6594 36.6708 36.6597 36.6738 

kl x 10- 4 mm- 2 -1.4368 -1.6453 -1.3854 -1.5913 

k2 x 10- 6 mm- 4 1.1082 1.3280 0.7445 0.9592 

P1 x 10- 4 mm- 1 -1.8052 -1.9782 -1.8371 -2.0076 

P2 x 10- 6 mm- 1 9.2414 -25.4319 8.5677 -25.3948 

uo pixels 755.7412 772.2868 756.2747 772.4660 

vo pixels 628.4292 635.7743 630.3798 637.5887 

d 0.9999 0.9999 0.9999 0.9999 

a 0.0132 0.0137 0.0133 0.0138 

a -0.0027 -0.0038 -0.0027 -0.0038 

c -0.0048 -0.0048 -0.0048 -0.0048 

lx mm -65.6299 -67.5439 -65.6915 -67.5645 

ty mm -54.0298 -54.8800 -54.2559 -55.0902 

tz mm 913.0139 913.2917 912.9815 913.3282 

Standard Error in Pixels (X & Y) 

Ex pixels 0.3041 0.3107 0.3041 0.3107 

Ey pixels 0.1761 0.1914 0.1761 0.1913 
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Figure 7.36: Residuals of the Calibrated Camera Models (Proposed & Heikkila) 

as the undistorted space: 

• Distorted Measurement: The distorted image points of the known world points 

are calculated according to the calibrated camera model. The discrepancy be-

tween the estimated distorted image points and the measured image points 
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provides an index for accuracy of the calibration technique. 

• Undistorted Measurement : The undistorted image points are calculated by re

moving distortion from t he corresponding measured image points using the 

calibrated lens distortion model. The ray traced undistorted image points of 

the known world points are subsequently calculated according to the calibrated 

camera model under pure perspective projection. The distances between the 

undist orted versions of the measured image points and the reconstructed undis

torted image points quantify t he accuracy of the calibration. 

In Table 7.13 the 2D measurements of the calibrated camera models (Table 7.12) are 

presented. Since the calibra ted camera models by both techniques are almost similar, 

the measurement data are also consistent with the previous observation. 

max 
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Table 7.13: 2D Measurements (pi.xels) 

2D Undistorted Measurements 2D Distorted Measurements 

Proposed 

0.3195 

0.1759 

0.9906 

Heikkila 

0.3194 

0.1759 

0.9898 

Proposed 

0.4602 

0.2839 

1.7058 

Heikkila 

0.4644 

0.2873 

1.7212 
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Chapter 8 

Surface Reconstruction 

Retrieving 3D metric information from image data is the main focus of this work. 

When 3D world is projected on to an image plane, the so called depth or range infor

mation is no longer available from the image input only. For example, in Figure 8.1 

the points P and Q in 3-Space are imaged as the same point P' on the image plane. 

Even with a calibrated camera it is not possible to determine the ranges of the points 

P and Q from t heir common image point P'. This phenomenon is often referred to as 

loss of information of depth during perspective projection. The loss of depth or range 

information can be generally termed as the reconstruction problem that deals with 

acquiring a 3D model of the scene from the image. From Figure 8.1 it is clear that a 

single image of a point in 3-Space is not sufficient for unique localization of that point 

in 3-Space by back projection. Hence additional sensing techniques are required to 

complement the image data. One such sensing technique is the stereoscopic approach 

where two or more cameras are employed to acquire multiple images of the object 

to retrieve the range data by triangulation. But due to the correspondence problem 
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0 

Figure 8.1: Range Ambiguity in Perspective Projection 

in the images, this approach usually yields inaccurate reconstruction of the scene at 

a high computational cost. Besides the stereoscopic approach, other reconstruction 

techniques include shape from shading [48], shape from motion [49], shape from tex-

ture [50], etc. Unfortunately these techniques do not provide the desired accuracy. 

Please note that, these technique are also called passive techniques since the involved 

reconstruction system does not interact with the object. Whereas active techniques 

use specialized illumination sources and detectors to overcome the fundamental am-

biguities associated with the passive techniques [51]. Some active techniques use laser 

I 

radar [52 , 53], others use various forms of Structured Light [54, 55]. 
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In this work to solve the problem of reconstruction input from a structured light 

source (laser projector emitting a linear pattern) is used to complement the image 

data to retrieve the range of the object by triangulation. 

8.1 Basic Principle of Structured Light Based Re

construction 

The camera needs to be calibrated to provide a complete geometrical interpretation 

of the image formation process prior to the range determination by triangulation is 

attempted. Let the image point P' be defined by the coordinates [ud vd]T with respect 

to the image coordinate frame UV. The image coordinates [ud vdjT are essentially the 

distorted image coordinates of the image point P'. The lens distortion present in the 

image can be removed by refining the distorted image coordinates [ud vdjT to provide 

the undistorted image coordinates [u v]T according to the calibrated lens distortion 

model. 

The undistorted image coordinates [u v]T of the image point P' provides the di

rection vector of the light ray P'OcP (Figure 8.1). Let a point be on the light ray 

P'OcP whose coordinates are [xcYc fJT. From Equation 2.6 it can easily shown that 

Xc = (u~uo) and Yc = (v- v0 ). The image coordinates are usually expressed in pixel 

units. In order to express the image coordinates in absolute unit conversion factors 

Ax and Ay are used (Equation 8.1). Ax and Ay are the lengths of the pixel in the 
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horizontal and vertical direction respectively. 

(u- uo)_x. 
S X 

Yc (v- v0 ),-'.y (8.1) 

f 

The position vector in Equation 8.1 can be normalized to yield the unit direction vee-

tor representing the light ray associated with the undistorted image point [u v]T. Any 

point on this light ray can be represented by the general position vector r[xc Yc zc f· 

Here T is a scalar that uniquely defines the position of a particular point on the light 

ray. To determine the position of the point P in 3-Space uniquely the corresponding 

value of T must be determined first. If it is known that the point P lies in the laser 

plane, from the position and orientation of the laser plane the value ofT corresponding 

to the position vector of P can be determined. 

Let the equation of the laser plane with respect to the camera coordinate frame 

be nxx + nyy + nzz + nd = 0. Since the point Plies in this plane Equation 8.2 must 

also hold. 

Solving Equation 8.2 for T yields: 

- nd 
T=----.::...._ __ 

(8.2) 

(8.3) 

Hence Equation 8.3 yields the value ofT that uniquely defines the position of point 

P. This provides an effective solution for the reconstruction problem. 

Please note that, a priori knowledge of the position and the orientation of the 

laser plane must be available before the reconstruction problem is attempted. The 

task of localizing the laser plane in 3-Space with respect to the camera coordinate 
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frame is called laser calibration. In the following section the methodology for laser 

calibration is discussed. 

Figure 8.2: Surface Reconstruction System Equipped with Laser Projector 

8.2 Laser Calibration 

To define a plane in 3-Space uniquely the coordinates of at least three non-collinear 

points lying on that plane must be known. In other words, a line in that plane and a 

point which is not collinear to that line is sufficient for defining the plane completely. 

In the past years a number of laser profiler calibration techniques have been presented 
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in the literature. For example the calibration techniques presented in [51, 56] can be 

cited. Reference [51 J takes an implicit approach towards the laser projector calibration 

problem where the range is expressed as a function of the location of the laser point 

on the image plane. Whereas [56] employs the invariant property of cross ratio under 

perspective projection to obtain a solution. From a practical point of view, the primal 

challenge is to determine the accurate position of a laser point in t he object space. 

In an effort to address this challenge a novel approach was adoptesf in this work to 

calibrate the laser projector. 

Figure 8.3: Calibration Target for Laser Projector (Step Height 0.25 inch) 

The geometry and the motion of the calibration rig that was employed to calibrate 

Rahman 2009 149 



the camera offer an opportunity to determine the position of the laser point the 

object space accurately. The position and the orientation of the calibration table can 

be determined robustly from the calibrated camera model. In addition, a specially 

designed laser calibration target (Figure 8.3) can be illuminated by the laser projector 

to produce the laser points visible to the camera. The calibration target provides a 

set of planes (in this case, four) which are parallel to the calibration table when 

the target is mounted on the calibration table. By conventional metrological means 

the relative positions of these planes with respect to the calibration table can be 

determined. The extrinsic parameters of the calibrated camera model provide the 

necessary transformation to obtain the position and the orientation of the planes 

with respect to the camera coordinate frame. The image coordinates of the laser 

point can be determined by applying suitable image processing techniques. These 

image coordinates in turn provides the direction of the light ray associated with the 

image of the corresponding laser point. The intersection point of the light ray and the 

parallel planes on the calibration target provides t he world coordinates of the laser 

point with respect to the camera coordinate frame. If one can acquire the positions 

of at least three such noncollinear laser points in 3-Space, a unique solution can be 

obtained for the laser calibration problem. Availability of more number of laser points 

provides an opportunity to solve the problem by least squares analysis. Though in 

the described setup it is possible to find a unique solution with the help of two parallel 

planes on the laser calibration target, other two planes provide the additional laser 

points required to treat the problem as an overdetermined problem of optimization. 
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8.2.1 Mathematical Formulation 

Let the common surface normal to the parallel planes on the laser calibration target 

and the calibration table be [Px Py PzJT , expressed in the camera coordinate frame. 

Hence, the general equation of the parallel planes is provided by Equation 8.4. 

(8.4) 

In Equation 8.4, di is a scalar for 1 ::; i ::; 4. The scalar di can be determined from the 

geometrical design of the laser calibration target and the extrinsic parameters of the 

calibrated camera model. Subsequently it can be confirmed by metrological means. 

The direction vector [fx f y fz ]T of the light ray associated with the undistorted 

image coordinate [uv]T of a laser point can be obtained as discussed to Section 8.1. 

The intersection point of the light ray [fx f y .ezJT and the plane of the calibration target 

provides the corresponding world coordinates [xc Yc zc]T of that laser point. Since this 

point lies in the laser plane the following equation must hold. 

(8.5) 

Since all the laser points must satisfy Equation 8.5 a system of linear equations can 

be formed when n data points are available (Equation 8.6). 

n x 
0 

ny 
(8.6) 

n z 
0 

nd 

Equation 8.6 is a homogeneous system of linear equations of the form Ab = 0. The 

least squares solution that minimizes IIAbll 2 is given by the right singular vector of A 
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that have the smallest singular value. Singular value decomposition of the coefficient 

matrix A provides the sought after solution. 

8.3 Localizing the Laser Points 

When the laser projector illuminates a planar surface the resultant line exhibits a 

Gaussian distribution in the lateral direction of the line in the image. Unfortunately 

the digitization noise and t he speckle noise present in the image cause the distribution 

to be perturbed from t he ideal Gaussian curve. The image processing technique, 

therefore, employs nonlinear least squares analysis to fi t a Gaussian curve to the 

intensity distribution across the laser line in the image. 

The Gaussian function in Equation 8. 7 is defined by the parameters a, b and c 

representing respectively the height of the peak of the Gaussian curve, the location 

of the mean of the curve and the standard deviation of the curve. 

(x - b)2 

G(x) = ae-""2T (8.7) 

One important property of the Gaussian function is that it approaches zero as the 

independent variable moves further away from the mean. In the real laser image the 

gray level intensity distribut ion across the laser line is offset by some gray cycle value 

8 from the ideal Gaussian curve (Equation 8.8) in t he direction of the dependent 

variable. 
(x- b)2 

G(x) = ae-""2T + 8 (8.8) 

Equation 8.8 models the intensity distribution in the real laser image sufficiently. 

The image processing technique acquires a sample of intensity distribution from each 
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discrete cross-section of the line. The acquired data is subsequently fitted to the 

modified Gaussian function in Equation 8.8. 

Least squares analysis of a set of data points requires some error criterion on which 

the analysis operates to minimize that error. The algebraic distance of the analytic 

Gaussian curve and the actual data point (x, y) can be one such error criterion. 

(x - b)2 

E = ae-"""2c2 + 8 - y (8.9) 

During the actual data mining process t his error criterion was found to be more 

sensitive to noise and hence, performed inconsistently. As a result an alternative 

error criterion was developed that was more robust to noise. 

The tangent on the Gaussian curve at the point (x , G(x)) is represented by Equa-

tion 8.10. 

dG 
y = dx x + Ct (8.10) 

The geometric distance (i.e., perpendicular distance) of the data point (x , y) from the 

tangent line is provided by Equation 8.11. 

(8.11) 

Minimization of this geometric distance by nonlinear least squares analysis finds an 

optimal Gaussian curve that best fits the data. Figure 8.4 demonstrates both the 

geometric and the algebraic error minimization for a set of data points sampled from 

a real image. 
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Figure 8.4: Fitting Gaussian Curves to Data Points 

8.3.1 Initial Approx imation 

The nonlinear least squares analysis requires good initial approximations of all the 

unknowns a, b, c and 8 in order to converge to a solution. Let the given set of data 

contain n Cartesian coordinate pairs (x1 , y1 ), ... (xn, Yn)· The initial approximat ions 
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for 8, a and b can be calculated as described in Equation 8.12. 

e = Y1 + Yn 
2 

a= max(y) - e 

b = max(xVG(x) =a+ 8 ) 

(8.12) 

FUll width at half maximum (FWHM) of a function is the difference between two 

extreme values of the independent variable at which the function has half the global 

maxima of the function. For a Gaussian curve, FWHM ~ 2.3548c. From the given 

data set the FWHM is estimated and subsequently the initial approximation of c can 

be provided by the following equation. 

FWHM 
(8.13) C=---

2.3548 

8.3.2 Data Reduction 

Noise in the measurements, especially in the image space, can result in inaccurate cal-

ibration of the laser which is not suitable for applications that demand high accuracy. 

Hence, the calibration data mined by the image processing technique is preprocessed 

to discard the potential outliers prior to the actual calibration. Since the intersection 

of the laser plane and the plane of the calibration target is a line, the data points 

mined by the image processing technique were fit ted to a straight line by least squares 
/ 

analysis. Any data point that had a perpendicular distance from the fitted line greater 

than some predefined threshold v was discarded. The rest of the data was fitted to a 

plane to calibrate the laser projector. 
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8.4 Experimental Surface Reconstruction 

The surface of a sphere was reconstructed. The camera and the laser projector were 

at rest while the sphere was displaced accurately by t he calibration rig through a 

predefined discrete distance to acquire each sample of the spherical surface. The 

laser illuminated the sphere and the camera captured the image. During the data 

mining process, the points that did not correspond to the spherical surface were 

considered unreliable. These points were discarded before the surface reconstruction. 

The digitization process produced a point cloud. Delaunay triangulation was used to 

render the point cloud (Figure 8.5). The best fit sphere to the produced data points 

Figure 8.5: Reconstruction of A Spherical Surface (Sphere Diameter = 25.4 mm) 

provided a radius of 12.56 mm whereas the actual radius was 12.70 mm as confirmed 

by conventional measurements. 

A laser projector calibration technique is presented [57] that employed a digi

tized spherical surface for accuracy evaluation based on the sphericity error metric 
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(Equation 8.14). 

(8.14) 

The distance of a point from the center of the best fit sphere is fi and r is the 

actual radius in Equation 8.14. A comparison of the minimum sphericity error that 

was reported in [57] and the sphericity error resulting from the digitization of the 

spherical surface is provided in Table 8.1. 

Table 8.1: Comparison of Sphericity Error 

[57] Proposed 

Number of Points 19861 3426 

Sphericity Error (mm2
) 0. 130 0.043 

Rahman 2009 157 



Chapter 9 

Conclusion 

This thesis endeavored to answer the question whether or not higher accuracy is at

tainable in a vision based measurement system that employs only off the shelf sensing 

elements. In our pursuit for an answer, the greatest challenge was ident ified as the 

accurate geometrical calibration of the camera, the primary sensor of the surface 

reconstruction system. A novel camera calibration technique was developed to ad

dress this challenge. Performance benchmarking proved this proposed technique to 

be more robust to the distort ion effect of real lens elements. A novel implementa

tion methodology for camera calibration was also proposed. Though the proposed 

implementation methodology required rigorous effort, it was fairly justified when the 

improved performance was considered . Finally a novel laser projector calibration 

technique was developed . The geometric approach that was adopted in the laser cal

ibration technique yielded better results in comparison to the performance of similar 

systems reported in the literature. This was confirmed by digitizing a spherical sur

face. The experimental results convincingly showed improvements over the existing 
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techniques in terms of accuracy. 

Because of the time intensive nature of the solution to the reconstruction problem 

proposed in this work, one can crit ically remark t hat the solution is not feasible in an 

industrial scenario. A superficial review might also validate this argument. But an 

in depth look reveals that, there are a lot of opport unit ies to streamline the solution 

to make it applicable for industrial usage. A list of possible fut ure developments and 

proposit ions for streamlining the solut ion can be found below: 

• Experimental calibration of a real fish-eye lens camera can validate the claimed 

robustness of the proposed camera calibration technique. If the results imply 

otherwise, the existing framework of t he numerical analysis can be used to make 

necessary modifications. 

• The algorithms that were developed for image processing were generally imple

mented in MATLAB®. Higher processing speed is generally guaranteed when 

the algorithms are implemented in digital hardware or in binary executables. 

• In order to minimize the t ime required for the calibration of the camera spe

cially designed calibration targets can be used. A study focusing on finding 

the minimum number of point correspondences that is required to calibrate the 

camera with acceptable accuracy might cont ribute significantly in minimizing 

the calibration time. 

• In a dynamic reconstruction scenario t he laser projector might need to adjust 

its luminance according to t he radiometric nature of the surface. The effect of 

the dynamic luminance on the calibration parameters of the laser projector can 
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be studied to confirm whether or not the calibration parameters for the laser 

projector are dependent on the luminance of the laser source. 

• The conventional lens distortion model can be reviewed experimentally with an 

aim to improve it further. 

• The proposed camera calibration technique estimates the optimized camera pa

rameters rather than their true values. Though the calibrated model works 

fairly well for the calibration scene, in an unstructured environment the cali

brated model might fail to produce the required accuracy. It would be worth

while to identify the camera parameters that have high interaction and to devise 

an experimental method to estimate them separately. 

In addition to these possible future developments, all the aspects of the measurement 

system can be further evaluated to find better and faster solutions to handle the 

challenges of close range photogrammetry of the twenty first cent ury. This necessarily 

means reviewing the entire solution to identify potential bottle-necks, ill conditioning 

of equations and over parametrization. 

This work showed that higher accuracy in a vision based measurement system is 

definitely attainable, though the effort required for it can be exponentially greater. 

In contrast to this conclusion, the following quote is worthy of citation: 

"Just how much more closely the numbers can approach ·the 'true values' depends on our knowledge of the truth. 

One approaches truth asymptotically, sometimes at the cost of great effort; nevertheless, it is necessary to examine 

the path toward this ultimate goal and select reasonable limits of achievement." 

- Chester C. Slama, 1980 {Manual of Photogmmmetry} 

Rahman 2009 160 



Bibliography 

[1] 0. Faugeras, Three-Dimensional Computer Vision A Geometric View Point, 

1st ed. MIT Press, 1993. 

[2] R. Hart ley and A. Zisserman, Multiple View Geometry in Computer Vision, 

2nd ed. Cambridge University Press, 2004. 

[3] R. Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy 3D 

Machine Vision Based Metrology Using Off-the-Shelf TV Cameras and Lenses," 

IEEE Journal of Robotics and Automation, vol. 3, no. 4, pp. 323- 344, 1987. 

[4] J. Heikkila, "Geometric Camera Calibration Using Circular Control Points," 

IEEE Transactions On Pattern Analysis And Machine Intelligence, vol. 22, 

no. 10, pp. 1066- 1077, 2000. 

[5] Z. Zhang, "A Flexible New Technique for Camera Calibration," IEEE Transac

tions On Pattern Analysis And Machine Intelligence, vol. 22, no. 11, pp. 1330 

1334, 2000. 

[6] J. Weng, P. Cohen, and M. Herniou, "Camera Calibration with Distortion Mod

els and Accuracy Evaluation," IEEE Transactions On Pattern Analysis And 

Machine Intelligence, vol. 14, no. 10, pp. 965 980, 1992. 

161 



[7] C. C. Slama, C. Theurer, and S. W. Henriksen, Eds. , Manual of Photogrammetry, 

4th ed. American Society of Photogrammetry, 1980. 

[8] J. Kannala and S. S. Brandt, "A generic camera model and calibration method 

for conventional, wide-angle, and fish-eye lenses," IEEE Transactions on Pattern 

Analysis and Machine Intelligence, val. 28, no. 8, pp. 1335- 1340, 2006. 

[9] J. A. Gutierrez and B. S. Armstrong, Precision Landmark Location for Machine 

Vision and Photogrammetry Finding and Achieving the Maximum Possible Ac

curacy, 1st ed. Springer-Verlag London Limited, 2008, p. 33. 

[10] J. Salvi, X. Armangu, and J. Batlle, "A comparative review of camera calibrating 

methods with accuracy evaluation," Pattern Recognition, val. 35, no. 7, pp. 1617 

1635, 2002. 

[11] F. Remondino and C. Fraser, "Digital Camera Calibration Methods: Considera

tions and Comparisons," ISPRS Commission V Symposium 1Image Engineering 

and Vision Metrology', val. 26, no. 5, pp. 266- 272, 2006. 

[12] T. A. Clarke and J. G. Fryer, "The Development of Camera Calibration Methods 

and Models," The Photogrammetric Record, vol. 16, no. 91, pp. 51- 66, 1998. 

[13] D. C. Brown, "Close-Range Camera Calibration," Photogrammetric Engineering 

f3 Remote Sensing, val. 37, no. 8, pp. 855 866, 1971. 

[14] G.-Q. Wei and S. D. Ma, "Implicit and Explicit Camera Calibration: Theory 

and Experiments," IEEE Transactions On Pattern Analysis And Machine Intel

ligence, val. 16, no. 5, pp. 469- 480, 1994. 

Rahma n 2009 162 



[15] E. L. Hall, J. B. K. Tio, C. A. McPherson, and F. A. Sadjadi, "Measuring Curved 

Surfaces for Robot Vision," Computer, vol. 15, no. 12, pp. 42- 54, Dec 1982. 

[16] B. Triggs, "Autocalibration from planar scenes," in In Proc. ECCV, 1998, pp. 

89- 105. 

[17] Y. Abdel-Aziz and H. Karara, "Direct linear transformation from comparator 

coordinates into object space coordinates in close-range photogrammetry," Pro

ceedings of the Symposium on Close-Range Photogmmmetry, pp. 1- 18, 1971. 

[18] 0 . Faugeras and G. Toscani, "The calibration problem for stereo," Proceedings 

of the CVPR, IEEE, pp. 15- 20, 1986. 

[19] J. Heikkila and 0. Silven, "A Four-step Camera Calibration Procedure with 

Implicit Image Correction," in CVPR '97: Proceedings of the 1997 Conference 

on Computer Vision and Pattern Recognition (CVPR '97}. Washington, DC, 

USA: IEEE Computer Society, 1997. 

[20] H. Zollner and R. Sablatnig, "Comparison of Methods for Geometric Camera 

Calibration using Planar Calibration Targets," in Digital Imaging in Media 

and Education, Proceedings of the 28th Workshop of the Austrian Association 

for Pattern Recognition (OAGM/ AAPR), vol. 179, 2004, pp. 237 244. [Online] . 

Available: http:/ /www.prip.tuwien.ac.at/people/sab/papers/oagm04b.pdf 

[21] W. Sun and J. R. Cooperstock, "Requirements for Camera Calibration: Must 

Accuracy Come with a High Price?" Applications of Computer Vision and the 

IEEE Workshop on Motion and Video Computing, IEEE Workshop on, vol. 1, 

pp. 356- 361, 2005. 

Rahman 2009 163 



[22] X. Feng, M. Cao, H. Wang, and M. Collier, "The Comparison of Camera Calibra

tion Methods Based on Structured-Light Measurement," in CISP '08: Proceed

ings of the 2008 Congress on Image and Signal Processing, Vol. 2. Washington, 

DC, USA: IEEE Computer Society, 2008, pp. 155- 160. 

[23] R. Lenz and R. Tsai, "Techniques for Calibration of the Scale factor and Image 

Center for High Accuracy 3-D Machine Vision Metrology," IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 713 720, 1988. 

[24] L. Euler, "Formulae generales pro translatione quacunque corporum rigidorum," 

Novi Commentari Academiae Scientiarum Imperialis Petropolitanae, vol. 20, pp. 

189- 207, 1775. 

[25] S. B. Kang and S. Member, "Error analysis of pure rotation-based self

calibration," in In Proc. 8th International Conference on Computer Vision, 2001, 

pp. 464- 471. 

[26] J. Stuelpnagel, "On t he Parametrization of the Three-Dimensional Rotation 

Group," SIAM Review, vol. 6, no. 4, pp. 422- 430, Oct., 1964. [Online]. 

Available: http:/ jwww.jstor.org/stable/2027966 

[27] J. Schmidt and H. Niemann, "Using Quaternions for Parametrizing 3D Rotations 

in Unconstrained Nonlinear Optimization," in Vision, Modeling, and Visualiza

tion 2001. AKA/lOS Press, 2001, pp. 399- 406. 

[28] S. L. Altmann, Rotations, Quaternions, and Double Groups, 1st ed. Oxford 

University Press, 1986. 

Rahman 2009 164 



[29] B. K. Horn, "Tsai's camera calibration method revisited ," 2004. [Online]. 

Available: http: / jpeople.csail.mit .edu/bkph/articles/TsaLRevisited.pdf 

[30] B. K. P. Horn, "Closed-form solution of absolute orientation using unit quater

nions," J. Opt. Soc. Am. A , vol. 4, no. 4, pp. 629- 642, 1987. 

[31] N. Krouglicof, "Rigid-Body Pose Measurement from a Single Perspective View," 

in Intelligent Autonomous Systems: Proc. of the International Conference IAS-

3, F. C. A. Groen, S. Hirose, and C. E. Thorpe, Eds. Washington: lOS Press, 

1993, pp. 368- 377. 

[32] C. D. Crane and J. Duffy, Kinematic Analysis of Robot Manipulators, 1st ed. 

The Press Syndicate of The University of Cambridge, 1990, pp. 13 15. 

[33] T . Melen, "Geometrical Modelling and Calibration of Video Cameras for Un

derwater Navigation," Ph.D. dissertation, Norwegian University of Science and 

Technology, 1994. 

[34] K. Levenberg, "A Method for the Solution of Certain Non-linear Problems in 

Least Squares," Quarterly of Applied Mathematics, vol. 2, no. 2, pp. 164 168, 

1944. 

[35] M. I. A. Lourakis and A. A. Argyros, "Is levenberg-marquardt the most efficient 

optimization algorithm for implementing bundle adjustment?" in !CCV '05: 

Proceedings of the Tenth IEEE International Conference on Computer Vision. 

Washington, DC, USA: IEEE Computer Society, 2005, pp. 1526 1531. 

R a hman 2009 165 



[36] C. Colombo, D. Comanducci, and A. D. Bimbo, Computer Vision ECCV 2006. 

Springer Berlin / Heidelberg, 2006, ch. Camera Calibration with Two Arbitrary 

Coaxial Circles, pp. 265 276. 

[37] M. Agrawal and L. S. Davis, "Camera calibration using spheres: A semi-definite 

programming approach," in !CCV '03: Proceedings of the Ninth IEEE Interna

tional Conference on Computer Vision. Washington, DC, USA: IEEE Computer 

Society, 2003, p. 782. 

[38] X. Ying and H. Zha, "Linear Approaches to Camera Calibration from Sphere 

Images or Active Intrinsic Calibration Using Vanishing Points," in ! CCV '05: 

Proceedings of the Tenth IEEE International Conference on Computer Vision 

(ICCV'OS} Volume 1. Washington, DC, USA: IEEE Computer Society, 2005, 

pp. 596- 603. 

[39] K.-Y. K. Wong, P. R. S. Mendon<_;a, and R. Cipolla, "Camera Calibration from 

Symmetry," in Proceedings of the 9th IMA Conference on the Mathematics of 

Surfaces. London, UK: Springer-Verlag, 2000, pp. 214- 226. 

[40] N. Otsu, "A threshold selection method from gray-level histograms," IEEE 

Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62 66, January 

1979. 

[41] A. Fitzgibbon, M. Pilu, and R. B. Fisher, "Direct Least Square Fitting of 

Ellipses," IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 21 , no. 5, pp. 476- 480, 1999. 

Rahman 2009 166 



[42] V. Pratt, "Direct least-squares fit ting of algebraic surfaces," SIGGRAPH Com

put. Graph. , vol. 21 , no. 4, pp. 145 152, 1987. 

[43] R. Halir and J. Flusser, "Numerically Stable Direct Least Squares Fitting 

of Ellipses," 1998. [Online]. Available: http:/ /citeseerx.ist.psu.edu/viewdoc/ 

summary?doi=10.1.1.1.7559 

[44] A. Fitzgibbon, M. Pilu, and R. B. Fisher, "Direct Least Square Fitting of 

Ellipses," IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 21 , no. 5, pp. 476- 480, 1999. 

[45] T. B. Ay, W. Gander, G. H. Golub, and R. Strebel, "Least-squares fitting of 

circles and ellipses," BIT, vol. 43, pp. 558 578, 1994. 

[46] R. L. Barker, The Social Work Dictionary, 5th ed. Washington, DC: NASW 

Press, 2003, p. 41. 

[47] M. H. Kalos and P. A. Whitlock, Monte Carlo methods. Vol. 1: Basics. New 

York, NY, USA: Wiley-Interscience, 1986, p. 2. 

[48] E. Prados and 0 . Faugeras, "Shape From Shading," in Handbook 

of Mathematical Models in Computer Vision, Y. C. N. Paragios and 

0. Faugeras, Eds. Springer, 2006, ch. 23, pp. 375- 388. [Online]. Available: 

http:/ f perception.inrialpes.fr / Publications/2006 / PF06a 

[49] C. Tomasi and T. Kanade, "Shape and Motion from Image Streams: a Factor

ization Method," International Journal of Computer Vision, Tech. Rep., 1991. 

Ra hman 2009 167 



[50] M. Clerc and S. Mallat, "The T exture Gradient Equation for Recovering Shape 

from Texture," 2002. 

[51] F. W. DePiero and M. M. Trivedi, "3-D Computer Vision Using Structured 

Light: Design, Calibration, and Implementation Issues," Advances in Computers, 

vol. 43, pp. 243 278, 1996. 

[52] R. A. Jarvis, "A Perspective on Range Finding Techniques for Computer Vision," 

Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-5, 

no. 2, pp. 122 139, March 1983. 

[53] P. J. Besl, "Active, optical range imaging sensors," Machine Vision and Appli

cations, vol. Volume 1, no. 2, pp. 127- 152, 1988. 

[54] L. Zhang, B. Curless, and S. M. Seitz, "Rapid shape acquisition using color 

structured light and multi-pass dynamic programming," in In The 1st IEEE In

ternational Symposium on 3D Data Processing, Visualization, and Transmission, 

2002, pp. 24 36. 

[55] M. Aldan and 0. Strauss, "3d surface segmentation using active sensing," Jun 

1991, pp. 1371 1376 vol.2. 

[56] D. Q. Huynh, R. A. Owens, and P. E. Hartmann, "Calibrating a Structured 

Light Stripe System: A Novel Approach," Int. J. Comput. Vision, vol. 33, no. 1, 

pp. 73 86, 1999. 

[57] K. Yamauchi, H. Saito, and Y. Sato, "Calibration of a structured light system 

by observing planar object from unknown viewpoints," in !CPR, 2008, pp. 1 4. 

Rahman 2009 168 



Appendix A 

Newton-Gauss Algorithm for 

Non-Linear Least Squares Analysis 

T he system of n nonlinear equations is repr s nted by the vector F(1J) (Equation A.l). 

h(B) fh 

F(1J) = fa(1J) where, 1J = (}3 (A.l) 

fn(1J) 

The vector 1J repr sents the unknown parameters 01 , 02 , 03 , · · · Bn· Fir t order Taylor 

series expansion of F(1J) about an initial parameter vector 1J0 is: 

F(1J) = F(1Jo) + J(1Jo) x [1J -1io] 
(A.2) 

Here, J(1J0 ) is the Jacobian of F(1J) evaluated at 1J0 

169 



The objective is to find the zeros or the roots of F(O). 

F(O) = 0 
(A.3) 

=*F(Oo) + J(Bo) x [0- Oo] = 0 

Substituting {3 = (0- 00 ) in Equation A.3 yields the following: 

F(Bo) + J(Bo) x {3 = 0 (A.4) 

A practical nonlinear system is usually overdetermined, i.e., number of available data 

points or equations is more than the unknowns. Moreover, Equation A.4 can not be 

explicitly satisfied for all data points due to error. Hence, an error term c will b 

introduced. 

F(1Jo) + J(1Jo) x {3 = c (A.5) 

The sum of squares of the individual errors is an appropriate error criterion q which 

can be readily minimized. 

q = [€f X [€] 
(A.6) 

- - T - -= [F(00 ) + J( 00 ) x {3] x [F(00 ) + J( 00 ) x {3] 

In order to minimize q the partial derivative of Equation A.6 with respect to each 

of the unknown parameters has to be calculated and subsequently has to be set to 

zero. Taking the partial derivative and subsequent algebraic manipulations yield the 

following: 

[J(Bof x J(1Jo)] x {3 = - [J(1Jo)f x [F(1Jo)] (A.7) 

Equation A. 7 is of the linear form, Ax = b . This system solved by Gaussian Elim-

ination. To facilitate the Gaussian elimination the matrix, [J(1J0)T x J(B0 )], can be 
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decomposed by Choleski Decomposition. Gaussian elimination of Equation A. 7 yields 

the vector (3 . A new estimate of the parameter vector 0 can be calculated as follows: 

(A.8) 

The algorithm thus continues in an iterative fashion. However , a suitable accuracy 

criterion is yet to be defined upon reaching which one considers the estimate of the 

parameter vector is of desired accuracy. Euclidean norm of the correction vector (3 is 

a convenient accuracy criterion. 

11 !3 11 = J !3? + f3i + ... + (3'; (A.9) 

It is also needed to define an error threshold Ct . When Ct > 11 !311 the algorithm 

terminates iterating. 
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Appendix B 

Conversion Between Euler Angles 

and Quaternions 

Let a general rotation is expressed by the Euler angles ¢, B, and 1/J, in X - Y - Z 

convention. The rotation matrix given by the Euler angles in X - Y - Z convention 

is: 

cos () cos 'ljJ - cos ¢ sin 'ljJ + sin ¢ sin () cos 'ljJ sin ¢ sin 'if; + cos ¢ sin () cos 'ljJ 

R = cos () sin 'if; cos ¢ cos 'ljJ + sin ¢ sin (} sin 'if; - sin ¢ cos 'if; + cos ¢ sin () sin '1/J 

- ~{} ~¢~ () ~¢~() 

(B.l) 

This general rotation in quaternions can also be expressed as, q = d + az + b) + ck. 

The corresponding rotation matrix is given in Equation B.2. 

2ab + 2cd 

2ca- 2bd 

2ab - 2cd 

d2 - a 2 + b2 - c2 

2bc + 2ad 
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2ca + 2bd 

2bc- 2ad 

d2 - a2 - b2 + c2 

(B.2) 



.--------------------------------------------------- ------

In the following discussion conversion between these two representations of rotation 

will be derived. 

B.l Euler Angles to Quaternions 

Quaternions corresponding to each Euler angle rotations are: 

cp . ¢~ 
qx = cos 2 + sm 22 

e eA 
qy = cos 2 + sin 2 j 

(B.3) 

'1/J • '1/J A 

qz = cos 2 + sm 2 k 

By combining these quaternion elements the net rotation given by the Euler angles 

in quaternion representation is achieved. 

(B.4) 

B.2 Quaternions to Euler Angles 

This conversion can be derived from the element correspondence in rotation matrices 

in Equations B.2 and B.l. One can easily derive the following: 

( 
2bc + 2ab ) 

cp = arctan d2 2 b2 2 -a - +c 

e = arcsin ( 2bd - 2ca) (B.5) 

( 
2ab + 2cd ) 

'ljJ = arctan d2 2 b2 2 +a - -c 
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Appendix C 

Rotation Matrix to Quaternions 

Conversion 

The problem is to find the quaternion repre enting the rotation given by the rotation 

matrix R. Let r ii be the element of the rotation matrix R in the ith row and the yth 

column. The rotation matrix corresponding to the quaternion q = d + ai + b} + ck is 

given in Equation B.2. One can easily show that: 

(C.l) 

Other components of the quaternion can b calculated by th following formulae: 

(C.2) 

(C.3) 

(C.4) 
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