










































































































































































The product of a quaternion ¢, 1d its conjugate ¢’, is commutative and yields a

scalar. This product is shown in Equation 4.7.
qf =qq=d*+a® + b 4 * (4.7)

The product of a quaternion and its conjugate in Equation 4.7 is referred to as the
norm of the quaternion ¢, and is denoted by /V,. The quaternion q is referred to as a
unit quaternion if the norm of q  unity; i.e., N, = 1. The definition of the norm of

a quaternion is formulated in Eq  ion 4.8.

N,=qq =q'q (4.8)

The reciprocal of a quaternion is defined as its inverse. For any unit quaternion (i.c.,
N, = 1), it can be shown from Equation 4.8 that the conjugate of a unit quaternion
is also its inv  se.

gl=¢ (4.9)

4.2.3 Rotation Representation

Quaternions have been used in robotics and vision for rigid body pose estimation
(e.g., [30, 31]). Let us consider a pure rotation of a rigid body about an axis 7 =
n.t +ny3 +nz/;‘, and through an a1 e ¢. Four parameters can be defined to represent

this rotation (Equation 4.10).

¢

a:nzsina, bznysing, ¢c=n,sin—, d=cos (4.10)

2

ruese four rameterscanbeexp  edin quaternion notation;i.e.,q =d+a j+ck.

This quaternion ¢ represents the rotation about the axis 7 by an angle ¢. Next it will
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be shown that the quaternion ¢ is a unit quaternion; i.e., the norm of the quaternion

N, is unity (Equation 4.11).

~ +nlsin® =

2 ¢
2 2

Ny=d*+a*+ b+ :cos2§+nisinz§+n§sin

= cos® ¢ + sin® é(ni +n2 +n?)
2 2 (4.11)
2¢ 2 ¢)

=cos” o + sin 5 [.- 7 is a unit vector, ||7] = 1]

=1

Let a vector 7 = 7,2 + ry}' + 7,k be transformed through pure rotation about the axis
7 by 1 angle ¢ resulting in the transformed vector 7.  sing quaternion algebra a
general formulation for this transformation will be derived in 1€ Hllowing discussion.
It will be shown that the transformation of a vector by a pure >tation represented
by the unit quaternion ¢ can be accomplished by the quaternic rotation operator;
i.e., q( )g7!, (Equation 4.12).

7 = qrg! (4.12)
In the sthseq nt analysis the vector 7 can be regarded as a quaternion whose scalar
part is zero. The quaternion multiplication in Equation 4.12 1l e performed in two
steps. Firstly, let the partial product quaternion be ¢t = g7. From the general formula

for quaterr1 n multiplication (Equation 4.4), ¢ can be expanded as follows:

t = gF = —sin g(nxrz + nyry, + n,7,) + cos g(frzi + 71,7 + k)

+sin? (4.13)
5[y M .
Ty T'y Ty
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Figure 4.2: Radial and Tange: al Distortion

significant in ¢ casc of wide angled lenses. The lens distorti model in Equation 2.7
provides the undistorted (i.e., ray-traced image co linates) from e distorted image
coordinates. It is often necessary, however, to find an expression for the distorted
image coordinates in terms of the ideal image coordinates. The transformation from
distorted to ideal image coor n is referred to as the reverse distortion model. It is
evident from Equation 2.7 that a closed-form solution for the inverse distortion model

is not read  available. In [33] the following recur e appro. n: on of Equation 2.7
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is considered, Euclidean Reconstruction is emphasized; ther: ire, minimizing the ge-
ometric error is justified when c: Hrating vision based measurement systems. This
geometric distance can be inte re either as e absolute distance between the
actual image oints and the projected image oints or as two separate terms rep-
resenting the coordinate components. Reference 9] postulates that the nonlinear
iterative r nerical techniques perform best when they have a  2ss to the individual
error terms resulting in better accuracy in the camera param rs. In addition, the
geometric stance can be mini  zed in cither the distorted or the undistorted image
space. Since the reverse lens dis  ion model does not have a closed-form solution,
minimizing the error in the undistorted space is preferabl and is the approach that

will be adopted in this thesis.
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Chapter 5

An Accurate vamera Ca i rration

Technique

In this chapter a novel camera . ibration technique is proposed that realizes the
propositions made in Chapter This calibration technique attempts to solve the
general calibration problem numerically given n point correspor mces between the

object space and the distorted image space.

5.1 Formulation ¢ the Calibration Problem

It is necessary to formulate the «  Dbration problem mathematically to develop the
framework for the numerical solution. In Equation 2.12 the per ective projection of
a point in 3-Space [Z., Yu, 2u]T to 1e undistorted image point [u, v]” was established
under the inhole camera model. quation 2.12 is expanded and separated into the
individual u, v coordinate compc mnts in Equations 5.1 and 5.2 respectively. Equa-

tion 2.8 provides the undistorted image coordinates [u’,v]T from the distorted image
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% _ sf(2dzw — 2cyw + 2bzy) + uo(—2bxw + 2ayw + 2dzy)
8d ~ (2ca — 2bd)zy, + (2be + 2ad)yw + (d2 — a2 — b2 4+ c2)zy + t,
_ sf((d® +a? — b — )z + (2ab — 2¢d)yw + (2ca + 2bd) 2w + tr) + up((2ca — 2bd)zy + (2bc + 2ad)yu + (8% — 0 ~ b2 + ¢?)zu + 2)(=2b2y + 2ayu + 2dzy)

((2eca = 2bd)rw + (2bc + 2ad)yw + (d2 — a2 — b2 + %)z, + t;)?

(5.17)

Ofu _ sf(2a~ ' 2byy + 2czy) + uo(2¢Ty + 2dyw — 2azy)
Ba  (2ca - 2bujzw + (2bc + 2ad)yw + (d2 — a2 — b2 + 2)zy + ¢
sf((d? +a? — b% — )z + (2ab — 2ed)yw + (2ca + 2bd) 2y, + t2) + up((2ca — 2bd)zy, + (2bc + 2ad)yw + (@2 — a% = 6% + )2y + t:)(2czy + 2dyw — 2azy)
- ((2ca — 2bd)zy, + (2bc + 2ad)ye + (42 — @2 — 62 + c?)zyy + 15)2

(5.18)
sf(- b2 +2dzu) - (- ,+ — 2bzy.)
" (2ca - ; + (2bc + Yyw + (d% —a? — b2 + c?)zy + t:
B sf((d? + a? = b2 - )z + (2ab — 2cd)yw + (2¢ca + 2bd) 2y ~ tr)  ug((2ca — 2bd)xw + (2bc + 2ad)yw + (d? — a® — b2 + )z + £2)(—2d2y + 2cyn — 2b2y)
o ((2ca — 2bd)x+ + (2bc + 2ad)yw + (d% — a? — b2 + c2)zy +£:)2
oo
(5.19)
Ofu _ $f(—2eTw — 2dyw + 2a2w) + ugp (202w + 2byw + 2czy)
Bc  (2ca — 2bd)xw + (2bc + 2ad)yw + (d2 — a2 — 2 + c2)zy + t;
(sf(d? +a% — b2 — ?)z) + (2ab — 2¢d)yw + (2ca + 2bd) 2 + tz) + uo((2ca — 2bd)z + (2bc + 2ad)yw + (d? — a? — b2 + ¢?) 2y, + t2)(2az4 + 2byu + 2¢24,) 5.20)
((2ca — 2bd)zw + (2bc + 2ad)yw + (d? — a2 — b2 + )2y + t.)2 (5.
dfu sf (5.21)
tz  (2ca - 2bd)zy + (2bc + 2ad)yy + (d2 — a2 = b2 + cD)zu + 12 -
Ofu
— =0 5.22
o 5:22)
ot _ w
Ot (2ca — 2bd)zy + (2bc + 2ad)yw + (d2 — a2 — b2 +¢2)zy + t.
sf((d? +a% — b2 — )z + (2ab — 2ed)yy + (2ca + 2bd) 2y, + t7) + ug((2ca — 2bd)x,, + (2bc + 2ad)yy, + (d? — a% — b2 + %)z + £5) (5.23)

((2ca — 2bd)1 . + (2bc + 2ad)yw + (d? — a? — b2 + )z, +t2)2




O fu
dug

B fv
T (2ca — 2bd)xy + (2bc + 2ad)yu + (d2 —a? — b2 + %)z + t;

ad

dfe

of,
s
Ofe _ (2ab+ 2cd)zw + (d2 — a2 + b2 — )yu + (2bc — 2ad)2u + ty

af (2ca — 2bd)zy + (2bc + 2ad)yn + (d2 — a2 — b2 + c2)zy + 1,

=0

I} . . .
G{U = —(vq — vo)(uj — 2ugup + uf) + v(zi — 2ug4v + vé)
5
Ofv 2 . 2 2 212
ok = —(vqg — vo)(ug — 2ugup + uj + vy — 2vqvo + vg§)
2
8f o, 2 2 2 2
By = —uj + 2uqug — uj — vy + 2vqvg — v§ — 2(vg — vg)
afu
% = —(2uqg — 2ug)(veg — vo)
v ) 2 2 2 -
Fu = —(vg  vo)lk a4 + 2up) + 2k - up + uf + vy — 2vgvg + ) (—2ug+ 2 ) — pr(—2uq + )) + 2p2(ta — vo)
0

1+ kl(uz — 2uqug + u% + v(zi — 2vg4vg + vg) + kz(uz — 2ugqug + u(Z) + v?i — 2vgvg + vg)2 — (vg — vo)(k1(—2vq + 2vg)

+ ‘Zkz(u?i — 2uqug + ug - vﬁ — 2vgqvg + v(:';)(—2vd + 2vg)) — p1(—6vq + 6vg) + 2p2(uq — ug)

f2czy + 2dyy — 2azy vg bry + 2ayy ~ 2dzy,)

2ed)z, + —a? +b% - )y + (2bc — 2ad) 2w — ty) +vo((2ca — 2bd)zy 2_lm 2ad)y,  (d? - a? — b% + 2)zy + t2)(-2bTy + 2ayw +
((2ca — 2bd) zw: + (2bc + 2ad)yw + (d2 — a2 — b2 + )z, + ;)2

f(2bzw — 2ayw — 2dzw) + vo(2czw + 2dyy — 2azy)

da (2ca — 2bd)zy, + (2bc + 2ad)ye + (d? — a2 — 82 — ¢?)zy, + ¢
f((2ab + 2cd)zy + (d? — a? + b2 — ¢®)yy + (2bc — 2ad) 2y + ty) + vo((2ca — 2bd)zw + (2bc + 2ad)yw + (d® — a® — b2 + ) zy + 1) (2cxw + 2dyw — 2a2y)

((2ca — 2bd)zy + (2bc + 2ad)yw + (d2 — a2 — b2 + )2y + t;)?

(5.24)
(5.25)
(5.26)
(5.27)
(5.28)

(5.29)

(5.32)

(5.33)
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8fv _ f(2azq + 2byw + 2¢24) + vo{—2dTyw + 2¢cyw — 2bzy)

b (2ca — 2bd)zy + (2bc + 2ad)yy + (d? — a? — b2 + c2)zy + ¢

F((2ab + 2¢cd)zw + (d2 — a® + b2 — c?)yu + (2bc — 2ad)zy + ty) + vo((2ca — 2bd)zw + (2bc + 2ad)yw + (d? — a% — b% + )2 + t2)(—2dzy + 2cyn — 2b2y)

((2ca — 2bd)x, + (2bc + 2ad)yy ~ (d? —a? — b2 + c2)zy +£;)2

% _ f(2dzw — 2cyw + 2b2y) + vo(2azw + 20y + 2¢24)
dc ~ (2ca — 2bd)zy + (2bc + 2ad)yw + (d2 — a2 — b2 + c?)zy + L,

_ f((2ab + 2cd)zw + (d? — a2 + b2 — )y + (2bc — 2ad)zy, + ty) + vo((2ca — 2bd) Ty, + (2bc + 2ad)yw + (d2 — a® — b2 + ¢?)zy + t2)(2azw + 2byw + 2¢24)

(2ca — 2bd)x+, + (2bc + 2ad)yw + —a? — b2 + ¢2)zy +t5)?

ofy _,

Ofv f

Bty (2ca — 2bd)z + (2bc + 2ad)yw + (d? — a? = b% + )z + L2

o _ o
8t (2ca — 2bd)zw + (2bc + 2ad)yw + (d2 — a2 — B2 ~c2)zy + ¢
f((2ab + 2¢d)zw + (d? - 6 + 0% — )yw + (26¢ — 2ad) 2w + ty) + vo((2ca — 2bd)Tw + (2b¢ + 2ad)yw + (d — a® — b2 + ¢2)zy +t2)

((2ca — 2bd)xw + (2bc + 2ad)yw + (d? — a2 — b2 + c2)zy, + t,)2

(5.34)

(5.35)

(5.37)

(5.38)



ofe

e = ° (5.39)
d/e
-0 5.40
af (5.40)
?f“ =0 (5.41)
Dk,
f’f “=0 (5.42)
Bk
fifi =0 (5.43)
Opy
f’f =0 (5.44)
Op2
fii =0 (5.45)
d‘uo
1] I
,—f' =0 (5.46)
Aug
O _ og (5.47)
dd
% = 2a (5.48)
da
(ff" =2b (5.49)
ob
% =2¢ (5.50)
de
ZTf: =0 (5.51)
ofe _ 0 (5.52)
at,
3{z =0 (5.53)

The te iination criterion for 2 nonlinear iterative search has yet to e deter-
mined. The Newton-Gauss non] least squares analysis proceeds iteratively start-
ing with the initial estimation « e camera para 2ters Ciniiar (Section 5.2) to find
the optim: camera parameters ( 4 that minimize the mc¢ ling discrepancy. In
each iteration of the Newton-Gs algorithm, the current m . parameters Ceyrrent

are corrected by a correction vector 3 which can be calculated as follows:
B=(J"x )t x(—=J" x I) (5.54)
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matrix of dimension n x 5, where the first three columns consist of the world coordi-
nates of the n calibration points in the order of X — Y — Z. The last two columns
consist of the pixel coordinates of the image of the calibration points in the order of

U-V.
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Figure 6.3: Perspective Distortic in the Synthesized Immage of a Square with Strong

Lens Distortion Effect

e
f the Sphere

Figure 6.4: Perspective Distortion  the Synthesized Image of a Circle with Strong

Le istortion Effect
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6.3 Imaging a “phere

In this section the imaging process of a sphere is modeled mathematically. Figure 6.11
presents a 30 model of the perspective projection « asphere. 1 eimage of the sphere
can be produced by drawing tangents on the sphere through the center of projection
C (i.e., optical center of the lens). The points at hich these tangents intersect the

image plane provide the image of the occluded co our of the sphere.

/ decluded Contour of the Sphere
mesmas |mage Plane
®  Projection Center
+  Genter of the Sphere

/ 2 *rojectiol he Sphere

Figure 6 2 Perspective Projec n of a Sphere (Cross-section through a General

!

Plane Containing the Cen  of the Sphere and the center of projection)
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Figure 6.14: Histogram of X and Y Coordinates of the Geor tric Centers of the
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Chapter 7

Performance * valuation o: the
Proposed Car 1_ra Calibration

Techn que

Benchmarking can be defined as the process of comparing quantitative entities against
a similar reference point or stan  d of excellence [46]. Since accuracy is regarded as
the primary performance index for a camera calibration te nic e, benchmarking the
performance of the proposed technique is essentially a comp: .tive study on accuracy
attained against the accuracy pro' led by a standard technique. he term “accuracy”

has two flerent aspects when it  referred to a camera model:

e The curacy of the estimates of the camera parameters compared against their

true values.

e The accuracy of the can model in terms of minimizing the disagreement

between the practical calib  on data and reconstructed calibration data.
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decomposed by Choleski Decompc  tion. Gaussian elimination of Equation A.7 yields

the vector 8. A new estimate « the parameter vector 8 can be calculated as follows:

0="0,+p (A.8)

The algorithm thus continues in an iterative fashion. However, a suitable accuracy
criterion is yet to be defined upon reaching which one considers the estimate of the
parameter vector is of desired a racy. Euclidean norm of the correction vector 3 is

a convenie accuracy criterion.

18 = /82 + 83 + - + 2 (A.9)

It is also nceded to define an error threshold ;. When ¢ > ||#]] the algorithm

terminates iterating.
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