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Abstract 

Produced water (PW) is the most significant source of waste discharge from the oil and 
gas operations. As such, development of an effective PW management system is 
important to minimize/mitigate the environmental impacts. However, there are challenge 
with respect to the selection of the best option due to competing and conflicting criteria. 
Selection of the best alternative often involves multiple criteria, which requires 
sophisticated multiple-criteria decision making (MCDM) methods. The Analytical 
Hierarchy Process (AHP) has widespread application in MCDM problems. It can 
effectively handle both qualitative and quantitative data. In this study AHP is integrated 
with an additive value model to enhance the decision making process. Linguistic terms 
are used to capture the subjective judgment of decision makers in the absence of 
quantitative data. 

However, the traditional AHP involves human subjectivity which leads to decision 
uncertainty. The vagueness type uncertainty associated in the decision making process is 
considered using the fuzzy based technique. The traditional AHP is modified to fuzzy 
AHP using extent analysis and integrated with the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS) algorithm to solve the decision matrix. A 
hypothetical case study for PW management is demonstrated to illustrate and compare 
both traditional AHP and fuzzy based AHP methodology. 

The ecological risk assessment (ERA) of PW is conducted for this study and the ERA 
results for different PW management options are used in the integrated MCDM model 
under ecological risk criteria. 

This study has provided a framework for a decision support system which will be helpful 
for oil and gas industry persons to seclect the best PW management options with 
minimum efforts. 
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Chapter 1 

INTRODUCTION 

The main purpose of this research was to develop and apply a multi-criteria decision 

making (MCDM) approach to evaluate offshore produced water (PW) management 

technologies. During evaluation the major components considered in this study were 

environmental, technical feasibility, cost and safety. This study focuses on all these 

components to evaluate offshore PW management technologies. A hypothetical case 

study is also presented to demonstrate the developed methodology. 

1 .1 Background 

The discharge of PW from the offshore oil and gas production characterizes the main 

source of toxicity into the marine environment; it is by far the largest volwne of 

byproducts or waste stream associated with oil and gas production. PW, which naturally 

occurs in the reservoir, is commonly known as formation water. During oil and gas 

production, the formation water reaches the production wells to maintain the hydraulic 

pressure and is brought up from the hydrocarbon bearing strata during the extraction of 

oil and/or gas. PW includes fotmation water, injection water, small volumes of 

condensed water and trace amounts of treatment chemicals (CAPP, 2001 ). 

The composition of PW is strongly field-dependent and includes a variety of inorganic 

and organic compounds. PW contains small amounts of emulsified oil, organic 



compounds including dissolved hydrocarbons, orgamc acids, phenols and traces of 

chemicals added during production, inorganic compounds, suspended solids, dissolved 

solids and natural low-radioactive elements. 

According to the National Research Council (1985), worldwide petroleum hydrocarbon 

input to the oceans from PW represents less than 0.4% of the total amount of petroleum 

hydrocarbons entering the world's oceans from all sources. This implies that PW 

discharges are unlikely to have large-scale environmental impacts. Other ingredients in 

PW such as heavy metals and radionuclides also are of environmental concern. 

The main contributors to acute toxicity (short-tenn effects) of PW have been found to be 

the phenolic and aromatic fractions of the dissolved hydrocarbons (Frost et al., 1998). 

The existing separation equipment cannot remove all of the oil and grease to meet 

regulatory limits particularly with deep offshore operations. In these cases, chemicals are 

used, but some of these chemicals have toxic effects. The impacts of PW constituents in 

the short term largely depend on concentration at the discharge point, discharge location 

and other hydrodynamic characteristics of the receiving water body. For example, where 

there is a rapid dilution, it may linut the potential biological effects. Studies have shown 

that the acute toxicity effects of PW to marine organisms are generally low, except 

possibly in the mixing zone, due to rapid dilution and biodegradation of the aromatic and 

phenol fractions (Frost et al., 1998). The international agreement peacetime airborne 

reconnaissance program (P ARCOM) limited the effluent concentration with the 

hydrocarbon content to 40 mg/1. Additionally some countries have also developed their 

own regulatory discharge standards for the effluent with oil and grease limit, as example 
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a 30 days average of 40 mgll for Canada, a monthly average 29 mgll for U.S., a 40 ppm 

monthly average for U.K., and a 40 ppm monthly average for Norway (CAPP, 2001). 

1.2 Scope 

In the first stage of this research, management teclmologies for PW, both currently in use 

and under development, are studied in detail. Particular focus was given to: 

• Technologies to manage PW during the on-going production operations 

• Technologies suitable or having potential for offshore applications, and 

• Technologies which were able to meet the standard discharge limits for PW. 

Secondly an integrated MCDM methodology is developed on the basis of three levels 

criteria hierarchy structure, and finally the proposed methodology is used to compare the 

selected PW management technology based on the established set of criteria. Technical 

feasibility, environmental, cost, and health and safety aspects were the main factors used 

to compare the options. Due to the large number of options and criteria, a deterministic 

decision making approach was applied, and uncertainty and sensitivity analysis were also 

conducted for this study. 

1.3 Objectives 

The objectives of the research are: 

• To identify baseline management technologies for offshore platform as well as some 

innovative PW management technologies. 
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• To evaluate selected PW management technologies using MCDM analysis. The 

focus of the evaluation was on offshore-based applications with consideration of 

environmental, technical feasibility, marine ecology, cost, and health and safety 

ISSUeS. 

• To integrate ecological risk assessment methodology with proposed MCDM method. 

• To recommend the optimum PW management technologies according to the 

evaluation. 

• To identify the most important factors affecting the evaluation. 

1.4 Structure of the thesis 

This study consists of seven chapters. Chapter 1 presents the problems background, scope 

of the study, and objectives of this research. The background of PW, available 

management options of PW and other information which are related to this research are 

presented in Chapter 2. Information, specifically on the mathematical techniques, used to 

develop the MCDM framework are presented in Chapter 3, and this chapter also presents 

an overview on widely used MCDM techniques. Chapter 4 describes the ecological risk 

assessment methodology for PW discharge into sea. As the major part of this study 

Chapter 5 introduces the development process of the proposed methodology. The 

proposed methodology is applied on a hypothetical example and its efficacy is 

demonstrated through an application dealing with the selection of PW management 

systems for offshore oil and gas operations and this information is presented in Chapter 6. 
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Introduction 
(Chapter I) 

.. 
Overview of PW management options 

(Chapter 2) 

• 
Review ofMCDA techniques (Chapter 3) 

I • .. 
Methodology of ecological risk Evaluation methodology for PW 

assessment for PW management 
(Chapter 4) (Chapter 5) 

I J • 
Application of proposed methodology: a hypothetical case 

study 
(Chapter 6) 

• 
Conclusions and recommendations 

(Chapter 7) 

Figurel.l: Structure of the thesis 

This study is concluded in Chapter 7 and some recommendations for future works are 

also highlighted in this section. Figure 1.1 schematically shows how the various chapters 

are organized in the study. 
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Chapter 2 

OVERVIEW OF PRODUCED WATER MANAGEMENT 
OPTIONS 

A number of studies (CAPP, 2001; OGP, 2005; Frost eta!. , 1998) have been conducted 

to address concerns about the environmental impacts associated with PW. The studies 

can be classified into two main categories: studies on the marine environmental impacts 

from PW discharges, and studies on PW management. This chapter discusses the most 

common approaches to managing PW. Management of PW at a given location depends 

on several factors, including site characteristics, regulatory acceptance, technical 

feasibility, cost, and availability of infrastructure and equipment. The main management 

alternatives being used today are underground injection, surface discharge, and beneficial 

re-use. 

2.1 Background of produced water 

2.1.1 Definition of produced water 

The reservoir rocks normally contain both petroleum hydrocarbons (liquid and gas) and 

water. Sources of PW may include flow from above or below the hydrocarbon zone, flow 

from within the hydrocarbon zone, or flow from injected fluids and additives resulting 

from production activities. This water is frequently referred to as "connate water" or 
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"formation water" and becomes PW when these fluids are brought to the surface (Veil et 

al. , 2004). 

2.1.2 Composition of produced water 

Physical and chemical properties of the PW mainly depend on the geographical location, 

geological formation and type of hydrocarbons of the field and may differ from one place 

to another. Since the PW has been in contact with geological fonnations for millions of 

years, its composition is strongly field-dependent (OGP, 2005). 

Table 2.1 : Typical composition ofPW discharged from an oil field 

(I) 
Materials Range Median 
Dispersed oil 15-60 44 
BTEX 1-67 6 
NPD 0.06-2.3 1.2 
PARs 130-575 468 
Organic Acids (<C6) 55-76 1 368 
Phenols (CO-C4) 0. 1-43 8 
Arsenic (As) - -
Barium (Ba) 0 .2-228 87 
Cadmium(Cd) 0.5-5 2 
Chromium (Cr) - -
Copper (Cu) 22-82 10 
Lead (Pb) 0.4-8.3 1.9 
Merclll)' (Hg) <0.1-26 0.7 
Nickel (Ni) 0.02-0.3 0. 14 
Zinc (Zn) 0.5-1 3 7 
Radium (226RA) 1.66 1.66 
Radium {228RA) 3 .9 3.9 
Manganese (Mn) 0.1 -0.5 0.45 
Berllium (Be) 0.02 0 .02 
Cobalt (Co) 0.3-1 0.35 
Vanadium(V) 0.02-0.5 0.24 

(!)Compiled from Frost / 998, section 1.2 and E& P 1994, ?.4 
(2) Neff, J. M ( /997). 

(2) 
Unit Range 
mg/1 
mg/1 
mg/l 

~-tg/1 
mg/1 
mg/1 

- <0.11-320 
mg/1 1.0-650000 
J.lg/1 0.06-98 
~-tg/1 <0.0 1-390 
J.lg/1 <0.05-2 10 
J.l.g/1 <0.08-5700 
J.lg/1 0.06-0.19 
mg/1 0. 1-1674 
mg/1 7 .3-10200 
Bq/1 0- 1565 
Bq/1 0-1 509 
mg/1 -

mg/1 -
mg/1 -
mg/1 -

Unit 

llg/1 
J.lg/1 
J.lg/1 
llg/1 
J.lg/1 
llgl l 
J.lg/1 
J.lg/1 
llg/1 
J.lg/1 
J.lg/1 
-
-
-
-

The major part of the PW is water, and the minor amounts are organic and inorganic 

constituents including dissolved hydrocarbons, organic acids, phenols and traces of 
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chemicals added during production, inorganic compounds, suspended solids, dissolved 

solids and natural low-radioactive elements from the source geologic formation and the 

associated hydrocarbons (Veil. et al. , 2004; CAPP, 2001; OGP, 2005). The composition 

of PW changes through the production lifetime of the reservoir, because more water is 

injected to maintain the pressure of the reservoir. PW may also contain small amounts of 

chemicals that have been added during the treatment of water. These treatment chemicals 

could be listed as: hydrate inhibitors, dehydrators, scale inhibitors, corrosion inhibitors, 

bactericides, emulsion breakers, coagulants, flocculants , defoamers, paraffin inhibitors 

and solvents (CAPP, 2001). In terms of salinity, most PW is more saline than sea water 

(Neff, 1997). Table 2.1 reports the typical composition of PW with their concentration. 

2.1.3 Impacts of produced water discharges in a marine environment 

The previous sections outlined many chemical constituents found in PW. These 

chemicals, either individually or collectively, when present in high concentrations in PW, 

could be a tlu·eat to aquatic life when they are discharged in the environment. PW can 

have different potential impacts depending on where it is discharged. For example, 

discharges to small strean1s are likely to have a larger environmental impact than 

discharges made to the open ocean by virtue of the dilution that takes place. Numerous 

variables determine the actual impacts of PW discharges. These include the physical and 

chemical propetiies of the constituents, temperature, content of dissolved organic 

material, presence of other organic contaminants, and internal factors such as 

metabolism, fat content, reproductive state, and feeding behavior of aquatic organisms 
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(Frost et al., 1998). The following sections discuss the potential impact of PW discharges 

in a marine environment. 

Impacts are related to the exposure of organisms to concentrations of various chemicals. 

To understand the environmental impact of PW when discharged to the sea, it is 

necessary to consider the fate of the individual components and how their concentrations 

vary with time. Physical and chemical mechanisms determine the dilution, volatilization, 

chemical reaction, adsorption on suspended solids, and biodegradation affect the fate and 

transport ofPW (Stephenson et al., 1994). According to Georgie et al. , (2001) factors that 

affect the amount of PW constituents and their concentrations in seawater, and therefore 

their potential impacts on aquatic organisms include the following: 

• Dilution of the discharge into the receiving environment, 

• Instantaneous and long-term precipitation, 

• Volatilization oflow molecular weight hydrocarbons, 

• Physical-chemical reactions with other chemical species present in seawater that 

may affect the concentration of produced water components, 

• Adsorption onto particulate matter, and 

• Biodegradation of organic compounds into other simpler compounds 

Numerous studies have been conducted on the fate and effects of PW discharges in the 

marine environments. These studies have shown that PW can contaminate sediments and 

the zone of contamination positively correlates with PW discharge volume and 

hydrocarbon concentration (Rabalais et al. , 1992). The aromatic and phenolic fractions of 

the dissolved hydrocarbons are the main contributors to acute toxicity of PW (Frost et al. , 
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1998). Besides these, chemicals used by the existing separation equipment particularly 

with the deep offshore operations may have toxicity effects (CAPP, 2001). The acute 

impacts of PW depend largely on the concentration of contaminants and discharge point 

and discharge location (Frost et al., 1998). 

2.2 Produced water management options 

The oil and gas industry produces large amounts of PW as one of the by products of 

production. The handling and disposal of PW is critical, as it must adequately protect the 

environment and should be the least costly (Janks and Cadena, 1992). PW treatment and 

purification has been accomplished through a variety of chemical and physical separation 

techniques. Since PW composition varies from location to location, a proven purification 

method is difficult to develop. Therefore companies are trying to develop new 

technologies to minimize the production of PW and consequently reduce the costs of PW 

treatment, and at the same time they are looking for ways that existing facilities can 

handle larger volumes of water. The handling of PW depends on its composition, 

location, quantity and the availability of resources. There are different ways for managing 

PW that can be summarized as follows: 

A void production of water onto the surface: Using polymer gels or mechanical 

devices, water can be separated from oil or gas streams down hole and re-injected into 

suitable formations. This option reduces waste water and is one of the most elegant 

solutions, but not always straightforward because it depends on the fonnation 

characteristics. 
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; 

Re-inject produced water: PW can be re-injected into the same fonnation or another 

suitable formation. It involves transportation of water from the producing zone to the 

injection site. Treatment of PW is necessary to reduce fouling and scaling agents and 

bacteria before re-injecting. 

Table 2.2: Offshore PW discharged Standards (CAPP, 1991) 

Country Effluent Limits Monitoring Routine 
Requirements Reporting 

USA 29 mg/L monthly avg. 42 Total O&G Annual 
mg/L daily max. Gravimetric 

UK 40 ppm monthly avg. 30 Dispersed O&G !/day MonthlyO&G 
ppm annual avg. composite O&G 1/yr Annual 

comprehensive Comprehensive 

Norway 40 ppm monthly avg. Dispersed O&G Quarterly O&G 
1/day composite O&G Atmual 
1/yr comprehensive Comprehensive 

Canada 40 ppm 30 day avg. 80 Dispersed O&G Monthly 
ppm 2 day avg. 2x/day 

Discharge produced water: This involves discharging PW into the environmental media 

like, ocean, river, lakes etc. There is a necessity to treat the produced water to meet 

onshore or offshore discharge regulations. 

Reuse in oil and gas operations: Treated PW can be reused for drilling, stimulation, and 

work over operations if it meets the standard water quality requirements. This option is 

not feasible for offshore platfonns. 

Consume in beneficial uses : Ensuring the standard water quality requirements, the 

treated PW can be used for beneficial purpose such as irrigation, rangeland restoration, 
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road construction work, cattle and animal consumption, and drinking water for private 

use or in public water systems. This option is not feasible for offshore platforms. 

It should be noted that the choice of PW disposal methods depends on several factors 

(mentioned in previous sections) and is strictly controlled by the legislation. Besides 

some international rules, some countries have their own tough and strict regulations 

which prevent companies from discharging contaminated PW into the environment. 

According to rules, the amount of discharged water per day should be controlled and 

limited. Table 2.2 compares existing PW discharged standard for USA, UK, Norway and 

Canada. 

2.2.1 Water Minimization Techniques 

In a producing fonnation, water and petroleum hydrocarbons are not fully mixed; they 

exist as separate adjacent fluid layers. The hydrocarbon layer typically lies above the 

water layer by virtue of its lower specific gravity (Veil et al. , 2004). When hydrocarbons 

are pumped out from the formation, the pressure gradient changes and the water layer 

rises up in the vicinity of the well . As production continues, the water portion in the 

production well is increased (Veil et al. 2004). It is challenging to minimize the amount 

of water produced into the well , but there are some techniques that can be used to restrict 

water from entering the well bore. Some of these techniques are described below: 
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Down hole oil-water separation (DOWS) 

Down hole oil water separation is a teclmique in which the oil-water mix is separated at 

the bottom of a production well. DOWS technology reduces the quantity of PW that is 

handled at the surface. This system separates water from the oil at the bottom of the well 

and simultaneously injecting it underground. A DOWS system includes many 

components, but the two primary ones are an oil/water separator and at least one pump to 

lift oil to the surface and inject the water (Veil et al., 2004). Two basic types of DOWS 

have been developed, one type using hydrocyclones to separate oil and water and another 

one relying on gravity separation that takes place in the well bore. 

Production pump 

Casing 

Shaft sealing 

Injection pump 

Hydrocyclone 
(Oil water separator) 

Figure 2. 1: Schematic of DOWS (modified from OSP AR, 2002) 

Hydrocyclones use centrifugal force to separate fluids of different specific gravity 

without any moving parts. A mixture of oil and water enters the hydrocyclone at a high 
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velocity from the side of a conical chamber. The subsequent swirling action causes the 

heavier water to move to the outside of the chamber and exit through one end, while the 

lighter oil remains in the interior of the chamber and exits through another opening. The 

water fraction, containing a low concentration of oil (typically less than 500 mg/L), is 

then injected to the underground formation, and the oil fraction along with some water 

are pumped to the surface (Veil et al., 1999). 

Gravity separator type DOWS are designed to allow the oil droplets that enter a well bore 

through the perforations to rise and form a discrete oil layer in the well (Veil et al. , 2004). 

Most gravity separator tools are vertically oriented and have two intakes, one in the oil 

layer and the other in the water layer. This type of gravity separator DOWS uses rod 

pumps. The sucker rods move up and down, the oil is lifted to the surface and the water is 

injected. DOWS have a capacity to reduce the amount of PW more than 50%. (Ekins et 

al. , 2005). Figure 2.1 describes the principle of DOWS technique. This method claims 

higher oil production, a relatively low water production and the use of fewer chemicals 

comparing than the traditional method without the downhole operations. 

Chemical water shut off 

When water breakthrough occurs with oil or gas production, the zones with high water 

cuts can be sealed by the placement of special polymers as shown in Figure 2.2. In 

chemical shut-off process polymers are injected into the reservoir to increase the water 

viscosity by forming a stable gel (Green et al. 2001). When injected, the gel solutions 

secretly enter the cracks and pathways that the water follows displacing the water. The 
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gels set up in the cracks and block most of the water movement to the well while 

allowing oil to flow to the well. Chemical sealing is often applied in higher production 

zones (Green et al. 2001). 

Injected gel plug 

Oil + water 

Oil + water 

Water carrying 
zone 

Figure 2.2: Schematic of chemical water shut-off (modified from OSP AR, 2002) 

Different types of gels are usmg, depending on the type of water flow and its 

compositions. Thomas et a!. (2000), Seright et a!. (2001) and Green et a!. (2001) have 

suggested several factors to be considered when designing and conducting a gel treatment 

as: 

The component ingredients such as: 

• Type of gel polymer (polyacrylamide polymer; microbial products or 

lignosulfonate) 

• Type of cross linking agent (metal ion or organic) 

• Fluid used to mix the gel (freshwater or produced water) 
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The properties of the gel like, 

• Concentration of polymer 

• Molecular weight of polymer 

• Degree of cross linking 

• Viscosity (affects the size of cracks or fractures that can be penetrated at a given 

pressure; can inject as pre-mixed gel or as gelant) 

• Density (if gel is heavy, it can sink too far into the water layer and lose 

effectiveness) 

• Set-up time (this detennines how far into the cracks or fractures the gel will 

penetrate) 

The treatment procedure depends on the factors, such as: 

• Preparation of well before treatment 

• Volume of gel used 

• Injection pressure 

• Injection rate. 

Many successful gel treatment jobs have been reported in the literature. Seright et al. 

(2001) reported on 274 gel treatments conducted in naturally fractured carbonate 

formations. The disadvantage is that the gel normally cannot be removed anymore water 

when production proves Jess (OSP AR, 2006). 
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Mechanical water shut-off 

The basic principle involved in this process is to reduce the water flow to the well 

production zones with the help of a mechanical device shown in Figure 2.3. During 

mechanical shut-off, mechanical devices block the water pathway by plugging the 

perforated production section. Dependent on well configuration, this may be achieved by 

mechanical or inflatable plugs, cementing, placement of a patch (expansion pipe) or 

pack-off. If total sealing of the water production is not desired, a regulating mechanism or 

restriction plate may be placed in the well. This is a best available technology (BAT) 

candidate (OSPAR 2006, 2002). According to Seright et al. (2001) mechanical 

approaches can be used to treat the block casing leaks. 

Production 
zone 

Production 
zone 

Production 
zone 

Oil + water 

Oil + water 

Water 
carrying zone 

Mechanical devices used for plugging 

Figure 2.3: Schematic of Mechanical water shut-off(modified from OSPAR, 2002) 
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2.2.2 Treatment system of produced water 

Produced water is the largest wastewater stream m oil and gas production. With the 

increasing amount of produced water, handling of produced water has become one of the 

main issues in the petroleum industry. Treatment of PW is important to ensure the 

regulatory standard before re-injection to the fom1ation, discharge or re-use. Treatment of 

PW begins with primary three-phase separation where water is removed from the bulk 

produced fluid. The components included in a PW treatment system will depend on the 

site specific characteristics of the producing field, characteristics of the produced fluids , 

and the space available on the platform (CAPP, 2001). The components of PW a 

treatment system is shown in Figure 2.4. Depending on the exact characteristics of the 

particular source ofPW, different treatment processes are applied. 

Primary 
Separation 

2 and 3 phase 
separators 

Primary 
Treatment, generally 

gravity separation 
(Skim Tank), 
Hydrocyclone 

Solids handling 

Secondary 
Treatment, generally Parallel 

Plate separation, gas 
flotation, Hydrocyclone 

Tertiary 
Treatment, like Filtration, 
Membrane filtrations, Gas 

stripping etc. Hydrocyclone 

Water discharge or 
Re-use 

Figure 2.4: Produced water treatment system sequence (CAPP, 2001) 
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Hydrocyclones, centrifuges, membrane filtration, and activated carbon or depth filters are 

all techniques that have been tested to perform PW treatment (Roy and Johnsen, 1996; 

Rey et al., 1996). The review of various PW treatment technologies are considered as 

options in the evaluation. The following sections discuss widely used PW treatment 

technology. Some emerging technologies are also reviewed. 

Primary Separation technologies 

Primary separation mainly removes suspended solids from PW which exists as distinct 

particles of varying sizes and densities. The suspended solids have a tendency to plug the 

injection fonnation or filtration media. Particles that are heavier than water will tend to 

drop to the bottom of the pipe, vessel or other type of container at various rates. Stokes's 

Law describes the vertical velocity at which a particle falls through a liquid phase. In 

separation process relatively large, high-density solids are settled by gravity to the bottom 

of a tank or vessel. This is termed gravitational settling. This is the most simple and least 

costly solution to solids removal. Following technologies are used to separate suspended 

solids: 

Skimmer tanks 

Gravitational settling can be accomplished by using settling tanks or skimmer tanks. This 

is the simplest form of PW treatment. A skimmer tank is a simple vessel with enough 

capacity to allow adequate retention time to separate heavier solids, oil and water. Some 

vessels may be equipped with a heat source, electro-magnetic field source, or baffles and 
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weirs to improve efficiency or treat emulsions. The primary limitation of a skimmer tank 

in offshore operations is the size and weight of the vessel. However, almost any treatment 

system can gain significant benefits from inclusion of a gravity separator in the primary 

stage of PW treatment. The treatment and installation cost of a skimmer tank is relatively 

low. This technique is suitable only for non-dissolved components such as dispersed oil 

with a sufficiently large particle size. Dissolved materials such as benzene and heavy 

metals cannot be separated using this teclmique (Ekins et a!., 2005). By-product 

hydrocarbons are skimmed off at the top. The sludge at the bottom is potentially toxic 

and requires special attention. 

API Separator 

API is gravity type oil-water separator tank that is designed to promote the quiescent 

separation of water and free oil. Oil is mechanically collected as a floated material or as a 

settled mass in the process. The treatment is often used in conjunction with chemical pre­

treatment employed to break emulsions. The system is useful as a first line treatment 

process. Some systems use corrugated plates to collect oil. The treatment process can 

achieve 50-99% of free oil, and suspended solid particulates above 150 ~-tm are removed 

(Hayes and Arthur, 2004). Dissolved or emulsion components are not efficiently removed 

with the process. By product hydrocarbons are skimmed off at the top. Sludge at the 

bottom is potentially hazardous. 
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Parallel Plates Separator 

The speed of solids removal via gravitational settling can be greatly enhanced by use of 

inclined parallel plates (Figure 2.5) . In this system a section of closely spaced, inclined 

parallel plates are placed in a rectangular tank or in a cylindrical vessel. The PW stream 

containing suspended solids flows through these plates. This is also called a parallel plate 

interceptor (PPI) or a corrugated plate interceptor (CPI). The main advantage of the plates 

pack is it shortens the distance that a solid particle must travel before it reaches a settling 

surface; and it provides plenty of surface area for solids to settle out from the water 

stream. This equipment is lighter and the area required is smaller than for a skimmer 

tank. However, the capital cost of the equipment may be more than a simple gravity 

separator. 

Hydrocyclone 

Coalescing plate 0 
Larger droplets rise to 

collection surface 

Oil sheet velocity 

Production of oil 
droplet 

Figure 2.5: Parallel plate separator 

Hydrocyclone is a cylindrical device that is fitted with one or more tangential inlets 

which cause the fluid entering the cyclone to follow a circular path around the wall of the 
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equipment. Rotation of the fluid generates a centrifugal acceleration field which is 

thousands of times greater than earth's gravity (Hayes and Arthur, 2004). Heavier water 

and solids move toward the outer wall, lighter material moves toward the center and the 

light oil is rejected from the process. A liquid/liquid hydrocyclone is one of the most 

popular devices used in offshore platforms for oil/water separation. It provides maximum 

separation efficiency for the smallest space impact on the platfonn. 

Hydrocyclones operate under system pressure, and use pressure drop as the primary 

source of energy. Each hydrocyclone liner in a vessel is fed tangentially to initiate a high 

radial velocity. The spinning motion of the fluid is accelerated by the tapered shape of the 

hydrocyclone liner, and the spinning motion creates a centrifugal force up to 4000 times 

or more of gravity which causes the oil and water to separate rapidly. The oil forms a 

core at the axis of the hydrocyclone and is forced out via a centered opening. The water 

hugs the walls and exits through the opposite end. A hydrocyclone is a very compact, 

oil/water separator with no moving parts. 

Polishing technologies 

Polishing technologies are suitable for the removal of dissolved aromatic hydrocarbons. 

These technologies are used for tertiary separation. Polishing technologies are basically 

integrated with a system of technology. Table 2.3 shows the commercially available 

polishing technologies. The advantages and disadvantages of several polishing 

technologies are briefly discussed here. 
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Table 2.3: Integrated system of PW management 

No System of technologies Comments 

I H ydrocyclone + Absorption Commercially available and known as 
MPPE based technology 

2 Hydrocyclone +Produced water re- Commercially available and known as 
injection Produced water re-injection 

3 Gravity separation + Steam/Air Commercially available and known as 
stripping Steam/ Air stripping 

4 Hydrocyclone + Solvent extraction This is commercially under development 
and known as C-Tour 

5 Hydrocyclone + Gas flotation Commercially available and known as 
Compact Flotation Unit 

Gravity separation+ filtration + This is commercially under development 
coalescence and known as Total Oil Recovery and 

Remediation (TORR) 

The Macro Porous Polymer Extraction (MPPE) 

MPPE system is based on Macro Porous Polymers (MPP). The porous polymer particles 

have a diameter of 1000 micron, with pore sizes of 0.1- 10 micron and the porosity is 70 

to 80% (Meijer & Kuijvenhoven 2001). In the MPPE process, hydrocarbon-contaminated 

water is passed through a column packed with MPP particle beads, which contain a 

specific extraction liquid. The extraction liquid immobilize the MPP matrix and removes 

the hydrocarbons from the water (OSP AR 2002). Only the hydrocarbons, which have a 

high affinity for the extraction liquid, are removed by the bed (Meijer & Kuijvenhoven, 

2001). 

The main advantage of this process is regeneration of extraction liquid. The regeneration 

of the extraction liquid is accomplished by stripping the hydrocarbons with low-pressure 

steam (Meijer 2007). The stripped hydrocarbons are condensed and then separated from 

the water phase by gravity. The condensed aqueous phase is recycled within the system. 
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A typical cycle of MPPE system is shown in Figure 2.6. The application of two columns 

allows continuous operation with simultaneous extraction and regeneration. A typical 

system cycle takes one to two hours for extraction and regeneration (OSP AR, 2002). 

Steam 
generator 

Extraction 

Produced 
water 

Pump 
Condensate water 

recycles 
Heavy 

Organics 

Condenser 

Light 
Organics 

Clean 
water 

Figure 2.6: Process diagram ofMPPE (modified from Meijer, 2007) 

MPPE systems have been proven to remove of dissolved and dispersed aromatic 

hydrocarbons, BTEX components (Benzene, Toluene, Ethylbenzene, Xylene) 

Polyaromatic hydrocarbons (PAHs), and NPD (naphtalenes, phenanthrenes, 

dibenzothiophenes). The MPPE process has performance of removal of all BTEX 

components from PW streams of 90% to 99.99%. There are no negative effects of salt, 

heavy metals and other present polyaromatic and aliphatic hydrocarbons. The MPPE has 

removal efficiency for PAHs and NPD's of 98 to 99.99% and for total dispersed oil from 

PW streams > 99% (OSP AR 2002, Meijer 2007). 
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Re-injection of produced water 

Re-injection of PW is a management system which combines the hydrocyclone and 

injection pump. In this system PW and sea water are mixed and injected under high 

pressure to the production aquifers or another suitable zone. In some cases treatment of 

PW is required before injection. PW is injected directly into the producing reservoir in 

order to replace the voids in the formation layer to maintain reservoir pressure or water 

flooding (OSP AR, 2002). During re-injection, attaining the pressure is important because 

it affects the life span of the wells and the amount of oil and gas that will be extracted. 

Re-injection has been successfully applied since the 1980's in several areas around the 

world such as in North America and the North Sea area (Abou-sayed and Guo, 2002). 

Deep-well injection is the most frequently practiced management alternative in oil and 

gas production and it occurs where underground geology makes it feasible and cost 

effective (Fillo et a!., 1992). The main environmental concern is that the contaminant 

may reach into the seabed surface and pollute aquifers. The restriction of the deep well 

re-injection is mainly covered by the characteristics of the disposal zone. If the receiving 

zone is a drinking water source, PW can only be injected after meeting the regulatory 

standard. This may increase the costs of deep well injection. According to Murray (1996), 

there are serious concerns about injectivity losses and fonnation damage by the 

contaminants. Plugging effects of the dissolved organics could for example interrupt the 

injectivity and can cause production delay. Further scale formation can lead to permanent 

loss of injectivity and the cost involved to control this effect can be tremendous (Murray, 

1996). The re-injection process starts with selection of a suitable formation, or an 
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injection zone. The selected receiving formation should have the capability of receiving 

the specific volume. Other factors including well location and depth and injection 

pressure should be consider during selection of a receiving formation. The re-injection 

process consists of a few steps. Figure 2.7 describes the detailed steps involve in re 

injection. 

Oil remover 

Oil 

Rig shakers 

Well head 

Production well 

Multi shear 
Pump 

Re-injection 

High pressure 
injection pump 

Holding 
tank 

Figure 2.7: Process diagram of re-injection (Modified from OSPAR, 2002) 

According to Saasen et a!. (2000) and Bruno et a!. (2000) the best receiving zone should 

be a highly porous sand formation with a confined impermeable layer to keep the injected 

waste in a confined zone. The high pressure of the slurry injection creates a facture in the 

receiving fonnation, where the cuttings particles are retained while the fluid phase in the 

slurry leaks off through the sand layer (Saasen et a!., 2000). The rate of injection ranges 

from 0.6 to 1.75 m3/min and the pressure ranging from 63 to 100 bars (Wilson et at., 

1993). According to the United Kingdom offshore operators Association (UKOOA, 
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2000), health and safety issues from re-injections are comparable to normal offshore 

operations. However, the maJor environmental concerns are related to mitigation of 

reinjection wastes to environment. 

This technology has the following limitations (UKOOA; 2000): 

• Pre treatment is required 

Requires a suitable injection zone. 

• Requires high energy to maintain high pump pressure. 

High emissions of greenhouse gases. 

The contaminant may reach into the seabed surface and pollute aquifers. 

Stripping Method (Stream Stripping) 

A stripping method is suitable for removing dissolved volatile organic compounds from 

wastewater. The removal is accomplished by passing air or steam through the agitated 

waste water stream. The primary difference between air stripping and steam stripping is 

that steam stripping is operated at higher temperatures and the resultant off-gas stream is 

usually condensed and recovered or incinerated. The off-gas from air stripping contains 

non-condensable air which must be either passed through an adsorption unit or 

incinerated in order to prevent transfer of the volatile pollutants to the environment. 

Hydrocarbons and dissolved volatile organic compounds from PW can be removed on 

gas platforms by means of stean1 stripping (Ekins et al., 2005; OSPAR, 2006). The 

removal is accomplished by passing high volumes of steam through the agitated 

wastewater stream. The process results in a contaminated off-gas stream which is 

condensed and recovered. Stripping is perfonned in tanks or packed towers. Treatment in 
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packed towers is the most efficient application. The packing typically consists of metal 

rings or saddles. The two types of towers that are commonly used are cross flow and 

countercurrent, and they differ in design only in the location of the stream inlets. In the 

cross-flow tower, the stream is drawn through the sides for the total height of the 

packing. 

Produced 
water 

Oil 

Buffer tank 

Steam stripping 
Column 

Circulation 
chamber 

Excess off gas 

Boiler 

Figure 2.8: Process diagram of steam stripping (modified from OSPAR, 2002) 

The countercurrent tower draws the entire steam flow from the bottom. Cross-flow 

towers have been found to be more susceptible to scaling problems and are less efficient 

than countercurrent towers. Figure 2.8 shows a countercurrent steam stripper. In stream 

stripping, mass transfer follows the Henry's Law. When the waste water is fed into a 

packed column and brought into intense contact with steam flow, the pollutants are 

transferred from the more concentrated wastewater stream to the less concentrated steam 

flow until equilibrium is reached. 
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This technique is suitable for the removal of dissolved oil (BTEX), but will also remove 

aliphatic hydrocarbons (Ekins et al. 2005, OSP AR 2006). Steam and hydrocarbon off gas 

are condensed and separated easily. Hydrocarbons that have been separated by steam can 

be directed to the condensate treatment system and the water can then be discharged. The 

steam stripping process is adversely affected by low temperatures. For this reason, 

depending on the location of the tower, it may be necessary to preheat the wastewater. 

The column and packing materials must be cleaned regularly to ensure that low effluent 

levels are attained. 

Compact Flotation Unit (CFU) Technologies 

The CFU is a proven technology in the treatment of PW. The CFU is a vertical pressure 

vessel, highly efficient in the separation of water, oil and gas to achieve a high standard 

of treated water. The CFU has a smaller volume with a shorter retention time down to 0.5 

minutes (OSPAR 2006, Juliussen 2007). Several combined processes, including gas 

flotation and induced centrifugal inertia forces, act on the fluid components of different 

specific gravities (Juliussen 2007). The small oil droplets are made to agglomerate and 

coalesce, facilitating separation from the water. The separation process is aided by 

internal devices in the chamber. The technology is flexible, and can be optimized for site 

specific conditions, and is simple in operation. Several stages can easily be added in 

series or in parallel to improve treated quality, to account for changes in upstrean1 

facilities or to increase capacity according to the flexibility needed on site. Figure 2.9 

shows the parallel unit CFU system. Smaller units can be used to treat problematic fluids 
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separately from the bulk fluid. The oil and gas together with a small amount of water is 

skimmed from the surface by a pipe suspended in the tank. The oil content in the reject 

fluid varies from 10 to 50 %. Typically, the reject fluid is approximately 1 % of the total 

flow (OSP AR 2006). Treated water exits to the vessels at the bottom of the outlet for 

discharge to sea or re-injection. The reject fluid is routed to the closed drain or to a 

separate treatment stage depending on local requirements. The effectiveness of flotation 

depends on the amount of residual gas present in the PW. 

r---• Oil 

Gas & oil 

water 

Gas 
Hydro cyclone 

. . . . . . . . 
Discharge 

Figure 2.9: Process diagram of CFU technique (modified from OSP AR, 2002) 

When limited or no gas is available in the system, the effectiveness of the flotation 

process is maintained by injecting additional gas (nitrogen or fuel gas) upstream of each 

CFU vessel (OSP AR, 2006). Normal operation pressure is required from 0.5 bars or 

upwards (OSP AR, 2006). Flocculants occasionally aid the effectiveness of the separation 

process. 
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The CFU treatment technology is suitable for removmg hydrocarbons, hydrophobic 

substances, aromatic compounds and small particles from PW. This technology also 

reduces depressed oil 80-95%, NPD 45-60%, PAH 60-85%, and BTEX 40-80% 

depending on the size of oil droplets (OSP AR, 2006). The BTEX removal efficiency 

depends on the gas rate used and the cleanliness of the gas with respect to BTEX. 

2.2.3 Innovative treatment system of produced water 

The technologies in this section are new technologies which are currently under 

development. Some of these teclmologies have completed lab experiments or trial in 

offshore for PW treatment. Therefore, these technologies have very high potential for 

offshore use. However, as the technologies are under development, most information is 

limited and data regarding field operations is not available. 

C-Tour Process 

The C-Tour Process enhances the traditional hydrocyclone process by injection of 

a solvent, i.e., condensate or Natural Gas Liquid (NGL), into upstream water of the 

hydrocyclone. This process was invented by Rogaland Research Norway in the 

mid 1990s.The principle of the C-tour Process is rooted in solvent extraction using 

a condensate hydrocarbon as a solvent. The extraction process is based on thermo 

dynamical equilibrium between two liquid phases and is thus dependent on the actual 

composition of the extraction-solvent (OSPAR, 2002). In the C-tour process the 

extraction solvent is the gas condensate taken from the scrubber. The actual efficiency of 
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the extraction process will therefore depend on the composition of the condensate, which 

depends on the operating pressure and temperature of the scrubber. The condensate acts 

as a solvent, and the oil has a high affinity towards the condensate. The condensate and 

the oil form large, low-density droplets that are easily removed by the downstream 

hydrocyclone (Henriksen, 2001 ). 

Gas 

151 stage separation Compressor 

Hydro cyclone Extraction Liquid 

Water 

Figure 2.10: Process diagram of C-tour technique (modified from OSP AR, 2002) 

The compact test system weighs about four tons and has dimensions of3.7 m x 1.6 

m x 2m shown in Figure 2.10. It can achieve an oil-in-water content of 1-4 ppm, 

and also removal efficiencies of 90% (dispersed oil) and 95% (BTX, PAH) have been 

reported under laboratory and pilot scale conditions (OSPAR 2002). C-tour is not yet 

generally applicable for reducing the amount of aromatics in PW from offshore 

installations. However, the test results are promising and it is expected that future 

development may resolve the current problems. There might be a need for auxiliary 
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equipment in order to reduce the potential transfer of light components (such as BTX 

components) from the condensate to the discharge stream. 

Total Oil Recovery and Remediation (TORR) Technology 

Considering the overboard discharge regulations. EARTH (Canada) Corporation has 

developed alternative technology TORR for the treatment of offshore PW. The new 

technology is based on the filtration, coalescence and gravity separation processes. The 

multi-stage separation system is able to remove gas, free floating and emulsified oil from 

water. To achieve separation, a reusable petroleum adsorbent is used as a filtration 

medium in the teclmology which is a unique self-cleaning system. The media being 

highly oleophillic, allows the absorption of very fine dispersed oil emulsions. Another 

characteristic of the media lies in its capacity to continue to absorb fine emulsions even 

when it's fully saturated with oil (Plebon et al. 2005). The media has the ability to adsorb 

the free-floating and the dispersed oil on its surface. It coalesces the fine emulsions into 

larger globules. When fully saturated with oil, the drag forces resulting from the flow of 

water through the media bed promotes the release of the large oil globules while 

continuing to adsorb the smaller incoming oil emulsions (Plebon et al. , 2005). The 

released coalesced oil is then recovered in the adjacent empty compartments. Here the 

large oil globules that have been formed are skimmed into a collection header and sent to 

an oil recovery chamber for quick and easy separation. 

33 



This technology recovers dispersed hydrocarbons with a rise velocity of 0.8mmlhr or 

greater without the additional heat, chemicals or pH adjustment (Plebon et al. 2005). 

Oil &Gas Oil &Gas 

PW Pump Retention tank 

...... ..... . 
:-:-:·:·:·:·:·:·:·:·:·: 

Filtration 
medium 

Drain 

Figure 2.11: Process diagram of TORR technique (modified from Plebon et al. , 2005) 

The technology has the ability to treat PW with oil concentrations in the range of 150 

mg!L down to an average of 3 mg/L, without being affected by sudden flow surges and 

fluctuations in feed oil concentrations (Plebon et al., 2005). During testing the 

technology has shown superior control in managing and optimizing PW treatment 

(Piebon et al. , 2005). The volumes of oily water to be treated depend on the 

transfonnation of the oil droplets and the recovery of oil. The self-cleaning action of the 

media (absorption /de-sorption process) allows continuous operation over extensive 

periods. The treated PW from the demonstration unit is sent to an existing holding tank 

prior to discharge. Figure 2.11 describes the main components of the technology. An API 
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type separator is generally used to separate oil from the water. The technology has the 

capacity of performing multi-phase separation by incorporating the physical principles of 

adsorption, coalescence, desorption and gravity separation in each treatment stage. The 

technology can treat PW from a wide range of production processes. Crude oil 

characteristics, PW properties, solids loading, and chemical processes play a major factor 

in the performance of the technology. 

The drawback of the technology is that it requires adequate solids removal systems, to 

prevent particles larger than 10 microns. The oil coalescing properties should be 

maintained frequently, increasing the maintenance cost. 

2.3 Summary 

The management of PW depends on the selection of appropriate technology or system of 

technologies. Removal of suspended solids, oil and grease is the first step ofthe treatment 

process. The primary separation can be accomplished by either mechanical or gravity 

separation. For offshore installation a mechanical separator like centrifuge/hydrocyclone 

is more effective than gravitational separation. To meet regulatory discharges several 

standard integrated systems have been developed which described in the previous section. 

The summary of integrated systems is reported in Table 2.4. In MPP process the 

hydrocarbon-contaminated water is passed through a column packed with MPP particles 

beads, which contain a specific extraction liquid. The main advantage of this process is 

regeneration of the extraction liquid. It has good pollutants' removal efficiency. 
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PW 
Management 

Method 
Hydroclone 

CFU 

C-Tour 

Re-injection 

ofPW 

DOWS 

Steam 
Striping 

MPPE 
Technology 

Table 2.4: Summary ofPW management systems 

Description 

A device of cylindrical construction 
that is fitted with one or more 
tangential inlets whjch cause the fluid 
entering the cyclone to follow a 
circular path around the wall of the 
process. Rotation of the fluid generates 
a centripetal acceleration field that 
separates heavier water and solids. 
(CFU) is the combination of a 
hydrocyclone and flotation unit. 
Several combined processes, including 
gas flotation and induced centrifugal 
inertia forces, act on the fluid 
components of different specific 
gravities. 

The C-Tour Process enhances the 
traditional hydrocyclone process by 
injection of a solvent, i.e., 
condensate or Natural Gas Liquid 
(NGL), into upstream water of the 
hydrocyclone. 
Combination of hydrocyclone and re­
injection pumps. In this system PW 
and sea water are mixed and injected 
under high pressure to the production 
aquifers or another suitable zone 

In this system oil and water mix is 
separated at the bottom of the 
production well by means of a 
hydrocyclone. 

Combination of gravity separation+ 
steam/air stripping. The removal is 
accomplished by passing air or steam 
through the agitated waste water 
stream. 

Developed by Akzo Nobel, is an 
integral system that makes use of 
Macro Porous Polymer-
Extraction. Used for removal of 
dissolved and dispersed hydrocarbons 
at commercial scale from offshore 
produced water. 

Advantages 

Capable of reaching 
low levels of free oil 
below 10 ppm. Low 
space requirements. 

The CFU 
system is 
suitable for 

treatment 
especially 
removing 

hydrocarbons, aromatic 
compounds and small 
particles from PW. 

It can achieve an oil-in­
water content of 1-4 
ppm, and also remove 
dissolved components 
such as BTEX, P AH 
etc. 
Removes BTEX, P AHs, 
dissolved and dispersed 
hydrocarbons from PW. 

Reduces PW production, 
by this way it reduces, 
depressed oil 50%, 
BTEX 50%, NPD 50%, 
and PAH 50%. 
Remove BTEX, P AH , 
dissolved and dispersed 
hydrocarbons from PW. 

Used for removal of 
dissolved and dispersed 
hydrocarbons 
99.99%.and based on an 
extraction liquid 
immobilization in an 
MPP bed. 

Disadvantages 

Highly soluble oil 
components such as 
naphthenic acids are 
not removed. Not 
permit effluent oil and 
grease limitations. 

Large footprint 
weights. 

It is suitable for 
treating large 
volumes of PW. 
High cost 

Costly and generates 
high air emissions. 

DOWS installations 
are expensive and not 
cost effective for all 
wells 

Highly soluble oil 
components such as 
naphthenic 
acids, are not 
removed. 

Costly for small 
production 
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However by-products solids and liquids are toxic. Reinjection of PW is commercially 

practiced but this system consumes high energy and emissions are noticeable. The 

stripping system uses gravitational separator to separate suspended solids and oils. 

Pollutants removal is accomplished by passing air or steam through the agitated waste 

water stream. The removal efficiency of this system is also high, but packing materials 

require frequent cleaning that increase operational cost. The C-Tour process utilizes 

hquid condensate from the gas scrubbers and injects it into the PW upstream of the hydro 

cyclones. The dispersed and dissolved hydrocarbons, which have higher solubility, are 

separated by the hydrocyclone. This equipment is in the development stage. The process 

is very sensitive to the available condensate quality and can be considered as an emerging 

technology. 

TORR is the new technology still under development. This is based on the filtration, 

coalescence and gravity separation processes. The multi-stage separation system is able 

to remove gas, and free floating and emulsified oil from PW. The test results of this 

system have shown good performance in PW cleaning. It can be considered as a future 

candidate for PW management. 
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Chapter 3 

REVIEW OF MULTI-CRITERIA DECISION MAKING 
TECHNIQUES 

Decision making is the study of identifying and choosing alternatives based on the values 

and preferences of the decision maker. MCDM analysis is a method widely used in 

decision making problems that covers most of the economical, industrial, financial or 

political decisions that are of a multi-criteria nature (Lahdelma et al., 2000). The aim of 

MCDM analysis is to recommend an action, where the several alternatives can be 

evaluated in terms of many criteria. This compromised solution depends strongly on the 

decision maker 's personality, on the circumstances of the decision aiding process, on the 

way the problem is presented and on the method that is used (Vincke, 1992). Two key 

advantages of MCDM are that it allows greater stakeholder involvement and provides 

greater transparency to the decisions being made at all levels of appraisal (RP A 2004). 

This chapter reviews widely used MCDM methods, and selected the most appropriate 

MCDM methods for the present study. 

3.1 Introduction of multi-criteria decision making 

According to Lahdelma et al. (2000), MCDM is characterized by methods that support 

planning and decision processes through collecting, storing and processing different 

kinds of information to construct a viable idea of how to solve a multi-criteria problem. 

MCDM is a mathematical model and also a systematic procedure which helps in the 
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comprehensive compansons between potential actions and provides compromised 

solutions considering economic, environmental, technological, and socio-cultural related 

factors. MCDM methods are suitable fo r a wide variety of decision situations. 

Furthermore, several weighting techniques have been developed to help decision makers 

in articulating their preferences. However, certain structural elements are common in the 

MCDM method. 

Step I 
Define problem 

Step 4 Step 3 Step 2 
Identify altematives to 

~ 
Establish goals that solve 

+---
Determine the requirements 

be evaluated the problem of the solution to the 
problem 

Step 5 Step 6 
Develop evaluation criteria r-. Select a decision-making 

tool 

Step 7 
Apply the tool to select a 

preferred altemative 

l 
Step 8 

Check the robustness of the 
evaluation 

Figure 3.1: General decision making process (Baker et al. 2001) 

According to Baker et al. (2001), decision making should start with the problem 

identification and discussions between decision makers and stakeholders that reduce the 

possible disagreement about goals and criteria. The core structural elements in the 
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MCDM problem are the set of alternative actions and their criteria in line with which 

these actions have to be evaluated. 

However, there are a number of structural and external charactetistics that go beyond the 

definition of these basic elements. There are several approaches available to help these 

characteristics in a consistent and systematic way. According to Baker et a!. (200 1 ), a 

MCDM approach proceeds step-wise, typically with active involvement of decision 

makers and stakeholders. Figure 3.1 shows the fundamental steps involved in the 

MCDM process. 

Step 1 Define the problem 

This process involves defining the problems and goals, limiting assumptions to achieve 

the goals, system and organizational constraints, and stakeholder issues and involvement. 

The problem definition must be a concise and unambiguous and agreed upon by all 

decision makers and stakeholders. It is a crucial and necessary step before proceeding to 

the next step. 

Step 2 Determine requirements 

Requirements are conditions that any acceptable solution to the problem must meet. In 

mathematical form, these requirements are the constraints describing a set of feasible 

solutions. It is important that even if subjective or judgmental evaluations may occur in 

the problem, the requirements must be stated in the exact quantitative form. 
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Step 3 Establish goals 

Goals are broad statements of intent and desirable programmatic values (Baker et al. 

2001).The goals may be conflicting but this is natural in practical decision-making 

situations. 

Step 4 Identify alternatives 

Alternatives offer different approaches for changing the initial condition into the desired 

condition (Baker et al. 2001). Alternatives must meet the requirements. If there are 

possible alternatives, these should be screened one by one to check the requirements and 

to screen out infeasible alternatives from further consideration. 

Step 5 Define criteria 

Criteria are the controlling factors that represent the decision makers' or other 

stakeholders' points of view required to establish adequate comparisons of alternatives 

(Bouyssou, 1986).A consistent set of criteria should avoid redundancy but must be 

exhaustive and covering issues by all parties. Decision criteria, which will be 

discriminated from alternatives, must be based on the goals (Baker et a!., 2001).It is 

usual to arrange the groups of criteria, sub-criteria, and sub-sub-criteria in a tree-structure 

(UK DTLR, 2001 ). Grouping criteria can help in the process checking; calculating 

weights in some methods, and facilitating the emergence of higher level views of the 

issues (UK DTLR, 2001). Keeney and Raiffa (1976), Keeney (1992), and Saaty (1980) 

suggested a hierarchical way of constructing the criteria structure. The bottom-up and 
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top-down approaches can be used to identify the set of criteria (Lahdelma et al., 2000). 

The bottom up approach is used to identify the set of criteria in decision aid studies. 

According to Baker et al. (2001), and Keeney and Raiffa (1976) the criteria should be 

complete, meaningful, non-redundant, and manageable. 

Step 6 Select a decision making tool 

The selection of an appropriate tool is not an easy task and depends on the concrete 

decision problem, as well as on the objectives of the decision makers. According to 

Lahdelma et al. (2000) the method that suits most of the following objectives should be 

considered: 

• It should be easy to understand 

• The approach should be capable to support the necessary number of decision makers 

• It should be able to manage the number of alternatives 

• The methodology should be able to handle inaccurate and uncertain information 

• The methodology should cover the lowest need of preferences from the decision 

makers. 

Step 7 Evaluate alternatives against criteria 

To evaluate the alternatives against the criteria requires input data. Depending on the 

criteria, the assessment may be objective, or it can be subjective (judgmental), reflecting 

the assessment of the evaluator. The selected decision making tool can be applied to rank 

the alternatives or to choose a set of most promising alternatives. 
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Step 8 Validate solutions based on problem statement 

The selected alternatives always have to be validated against the requirements and goals 

of the decision problem. In complex problems the selected alternatives may also call the 

attention of the decision makers or stakeholders. 

3.1.1 Structure ofthe MCDM problem 

A general MCDA problem can be expressed in matrix form as: 

AI A z Am 

XI ell el2 elm 

D = 
X z e z1 Czz e2111 

(3.1) 

X, e,l e,z clllll 

Where 

Ai; i = 1, 2 . .. , m denote the alternatives; 

Xj; j = 1, 2 . . , n represent attributes or criteria; 

Cij = Crisp or fuzzy values indicating the perfonnance rating of each alternative Ai with 

respect to each criterion Xj. 

Wjj = 1, 2, ... , n are the weighting factors and represent relative importance of the criteria 

The practical assessment of Cij is critical due to unquantifiable, incomplete and non 

obtainable information and partial ignorance. The unquantifiable information leads to 

subjective rankings, for examples good, poor, high, low, etc. These subjective rankings 

lead to vagueness and uncertainty in the decision-maker's judgment. This limitation in 
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MCDM methods can be addressed through fuzzy based approaches. The strength of the 

MCDM methodology lies in the dynamic connection of all the steps described in the 

previous section, however, a fonnal description of the available MCDM tools that have 

been broadly used in decision making problems is discussed below. 

3.2 Fuzzy multiple criteria decision making 

The MCDM tools, which are commonly used in decision making problems, are based on 

crisps values. The main limitations of these teclmiques are that, they can not handle the 

vagueness and uncertainty in the decision-maker's judgment. This limitation in MCDM 

methods has lead to a fuzzy based approach. The proposed MCDM approach is fuzzy 

composite programming involving the extension of a analytical hierarchy process called 

fuzzy analytical hierarchy process (FAHP). The following section describes the details of 

the proposed approach. 

In (1965) Zadeh presented fuzzy sets theory and Bellman and Zadeh (1970) applied this 

theory to MCDM problems. There has been a great deal of literature and books in this 

field in the last two decades, such as Chen et a!. (1992) and Zimmennan (1985 ; 1987). 

Fuzzy Multiple Criteria Decision Making (FMCDM) basically comprises two phases 

(Dubois and Prade, 1980) Phase 1 aggregates the performance score with respect to each 

alternative/strategy, and in Phase 2 all alternatives are ranked according to their synthetic 

value (or uti lity value) from Phase 1. The hierarchical process of FMCDM can be 

summarized as follows: 

Step 1 Define the natUre of the problem; 
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Step 2 Construct the hierarchy system for evaluation (Figure, 3.2); 

Step 3 Select the appropriate evaluating method; 

Step4 Determine the relative weights or performance score of each criterion when 

necessary. 

Step 5 Calculate the synthetic utility values, which are the aggregation value of relative 

weights and performance scores corresponding to alternatives; 

Step 6 Rank the alternatives refening to their synthetic utility values from step. 5. 

Goal 
Overall Objectives 

Aspects 

Criteria 

Alternatives 

Figure 3.2: Hierarchy system for FMADM 

3.2.1 Classification of Fuzzy MCDM Methods 

The taxonomy of fuzzy MCDM methods is shown in Figure 3.3. Chen et al. (1992) have 

classified MCDM models based on the following four stages: 
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1. Problem size; 

2. Data type; 

3. MCDM methods; and 

4. Techniques 

1. According to Chen et a!., (1992) fuzzy methods are suitable for alternatives and 

attributes less than 1 0, and 

2. The data could be in the form of(a) all fuzzy, (b) all fuzzy singletons (single value and 

its con·esponding membership function), (c) all crisp and (d) mixture of fuzzy and crisp. 

3. The concepts of fuzzy methods are derived from classical methods of MCDM: simple 

additive weighting (SAW), analytical hierarchy process (AHP), multiple attribute utility 

functions (MAUF), etc. 

4. The final stage provides the techniques required for applying fuzzy MCDM methods 

that include the a-cut method, fuzzy arithmetic operations possibility and necessity 

measures, eigenvector method etc. The details of references and sources of these 

approaches can be seen in Chen et a!. (1992). 

3 .2.2 Concept of fuzzy set 

A major contribution of the fuzzy set theory is its capability of representing vague data. A 

fuzzy set is a class of objects with a continuum of grades of membership. A fuzzy set is 

characterized by a membership function which assigns to each object a grade of 

membership ranging between zero and one (Zadeh, 1965). 
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Fuzzy Numbers 

Fuzzy numbers are the special classes of fuzzy quantities. A fuzzy number is 

characterized by a given interval of real numbers, with a membership function between 0 

and 1 (Deng, 1999). 

M 

m n 

Figure 3.4: Construction of triangular membership function. 

Triangular fuzzy numbers (TFN) M, shown in Figure 3.4 are defined by three real 

numbers, expressed as (l ,m,u). The parameters I, m, and u, respectively, indicate the 

smallest possible value, the most promising value, and the largest possible value that 

describe a fuzzy event. The TFNs can be described as; 

(x-l)j(m-l), x ::; m, 
f.la(x) = ( )/( ;'\ < < u-x u-m"m _ x _ u, (3.2) 

0, otherwise 

In applications it is convenient to work with TFNs because of their computational 

simplicity, and they are useful in promoting representation and information processing in 
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a fuzzy environment. In this study TFNs are applied to calculate the relative importances 

of criteria. 

Algebraic Operations on TFNs 

When using fuzzy sets in applications, the algebraic operations deal with fuzzy numbers. 

There are various operations on TFNs, but only three important operations are used in 

this study. For example, two TFNs A and B are defined by the triplets A = {11,m1,u1 ) 

and B = (/2 ,m2 , u2 ), then 

• Addition: 

• Multiplication: 

• Inverse: 

A.B = {11, m1, u, ).(/2 , m2 , u2 ) 

= {11./2 , m1.m2 ,u1.u2 ) 

{11,m1,u,r1 :::!(1/u1,1jm1,1j/1 ) 

3 .2.3 Conver ion of linguistic variables to fuzzy numbers 

(3.3) 

(3.4) 

(3.5) 

Linguistic variables are values that are not numbers but words or sentences in a natural or 

artificial language (Kickert and Walter, 1978). In environmental and social studies, most 

of the information is imprecisely defined due to the unquantifiable nature of data or lack 

of proper knowledge. The experts often use linguistic scales (high, moderate, low or very 

good, good, and bad etc.) to express the existing scenarios. Chen et al. (1992) has defined 
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eight scales to convert linguistic terms into fuzzy numbers. Three important scales are 

reported in Figure 3.5 (a), Figure 3.5 (b) and Figure 3.5 (c). The first scale has 3 levels, 

whereas the second and third scales contain five levels. The linguistic terms for the first 

scale are "low", medium" and "high". In the second and third scales, two additional 

degrees - "very low" and "very high" and "medium low" and "medium high" respectively 

- are introduced. The same linguistic terms contain different meaning at different scales. 

For example "high" in the first scale means [(0.6, 0), (0.8, 1.0), (1.0, 1.0), (1.0, 0)] i.e. the 

most likely interval is between 0.8 and 1.0 (when the membership function 1-L is 1) and the 

largest likely interval is in between 0.6 and 1.0 (when the membership function 1-L is 0). 

But in the second scale the "high" means be [(0.6, 0), (0.70, 1.0), (0.9, 0)]. This reflects 

the fact that the same linguistic terms may possess different meanings for different 

occasions. 
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Figure 3.5(a): Conversion scales of linguistic terms into numerical scores 
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Figure 3.5(b): Conversion scales of linguistic terms into numerical scores 
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Figure 3.5 (c): Conversion scales of linguistic terms into numerical scores 
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3.2.4 Fuzzy ranking methods 

In general, the MCDM method assumes all performance ratings (Cij) and relative 

importance of attributes (Wj) are crisp values. A utility function U(x 1, x2,. •. ,x 111) is defined 

by the Cij and Wj values. For alternatives Ai, the utility function aggregates its 

performance ratings into a final rating. This final rating determines how well one 

alternative satisfies the decision-maker's utility. The alternatives with higher final ratings 

are said to be preferred alternatives. 

The alternative performance rating Cj can be crisp, fuzzy, and/or linguistic. When fuzzy 

data are incorporated into MCDM problems the final ratings are no longer crisp numbers, 

rather they are fuzzy numbers. It is not straightforward to compare the alternatives with 

fuzzy numbers. In MCDM applications when the final ratings are fuzzy, different ranking 

methods can be used to compare these fuzzy utility values. Chen et al. (1992) have 

classified fuzzy methods into four major groups as shown in Figure 3.3. Fuzzy scoring 

techniques are the most popular in defining left/right scores of TFN. There are several 

methods widely used in defining the scores of TNF such as, Chen's ranking method 

( 1985), Yager's (1980, a b) centroid value method, alpha cut methods etc. Details of 

these methods are given in the next section. 

Chen Ranking Method (1985) 

The Chen ranking method (1985) is based on left and right scores of the membership 

function. The left and right scores refer to the intersection of a fuzzy number M with the 
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Chen fuzzy min and Chen fuzzy max respectively. Figure 3.6 illustrates the details of 

Chen's fuzzy min and Chen's fuzzy max. 

Chen fuzzy min M Ml Chen fuzzy max 

!la(x) 

1.0 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 

-~ r~rJ ~~~~:;l -r I 

I : 

0 0.1 X . 0.3 0.5 0.7 X 0.9 X 
mm max 

Figure 3.6: Chen ranking method applied to TFNs 

The maximizing set is a fuzzy subset with membership function ).! max (x) defined as: 

Jlmax (x) = [ X-~min ]k 
xmax xmin 

(3.6) 

Where k is an integer indicating the decision maker's attitude towards risk; and xmin and 

xmax are the minimum and maximum numbers at the supports set of M. Then the right 

score ).!L (R) for M is defined as the intersection of a fuzzy number M with the Chen 

fuzzy max as follows: 

(3.7) 
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The minimum set is a fuzzy subset with membership function 1-l min (x) defined as: 

[ ]

k 

( ) 
X- X max 

Jlmin X = ' 
xmin - xmax 

(3 .8) 

The left side score IlL (L) forM is defined as the intersection of a fuzzy number M with 

the Chen fuzzy min as follows: 

sup A 

IL L (L) =-[!-La (x) 1-Lmin (x)) (3.9) 
X 

sup 
Where, = intersection point between two lines and f-La (x) = membership value of 

X 

fuzzy number M . 

Finally the total scores are defined as IlL (T) and can be computed as : 

fl L (T) = [JIL (R) + 1- JIL (L)] / 2 (3.1 0) 

Chen et al. (1992) Method 

To convert fuzzy number to cnsp scores, Chen et a!. (1992) introduced a numerical 

approximation conversion scale. This is a modification of the Chen ( 1985) fuzzy ranking 

approache. The left and right scores refer to the intersection of a fuzzy number M with 

the fuzzy min and fuzzy max respectively. Figure 3. 7 illustrates the details of the fuzzy 

min and fuzzy max. 

The method can be described as: 

The maximizing and minimizing sets are fuzzy subsets with membership functions 

defined as: 
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{

x , O~x~l 

flmax (x) = 
0 , Otherwise 

{

1-x, 0 ~ x ~ 1 

flmin(x) = 
0, Otherwise 

Fuzzy min 
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Figure 3.7: Left and right score of Chen et al. (1992) method 

(3.11) 

(3.12) 

The crisp score of fuzzy number M can be obtained by the intersection of M with the 

fuzzy min flmin (x) and fuzzy max fl rmx (x) respectively as follows . 

The right leg score of f-L L (R) can be detem1ined as: 

sup A 

f-LL (R) = -[,un (x) flma x (x)J (3.13) 
X 

The left leg score of flL (L) can be determine using 
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,---------------------------------- ------- --

sup A 

f-L L (L) = -[f.la (x) f-lmin (x)] (3 .14) 
X 

Finally the total score flL (T) can be computed as: 

fla (T) = [pL (R) + 1- fl L (L)] / 2 (3.15) 

Yager's Centroid Index Ranking Method (1980b) 

This method determines the centroid of the fuzzy number as follows : 

1 g(x)p; (x)dx 
Xo = 1 ft;(x)dx 

(3.16) 

Where g(x) is treated as a weight function that measures the importance of the value x. 

The denominator serves as a nonnalizing factor whose value is equal to the area under 

the membership function fli· When g(x) = x (linear weight), equation 3.16 gives the x0, 

(geometric centre).The value of x0 is the weighted mean value of fuzzy number L(x) and 

higher X0 values are considered better. Figure 3.8 shows the concept of centroid point of 

fuzzy numbers M 1 and M. Since XMt > XM; M 1 is representing better that M. When both 

fuzzy numbers have the same centroidal distance, a fuzzy number with a larger mean and 

smaller spread should be the higher ranked (Lee and Li, 1988). 

For example assuming g(x) = x, the crisp values of fuzzy number M shown in Figure 5.8 

can be determined as follows: 

{ 

X - 0.
2

, 0.2 ~ X ~ 0.3 .... (Left leg) 
ft (x) = O.l 

M 0.5 - x 
--, 0.3 ~ x ~ 0.5 .... (Right leg) 

0.2 
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Figure 3.8: Centriod point of fuzzy numbers M and M 1 

Ranking using a- cuts 

X 

According to Wang (1997), in order to make crisp scores among the alternatives, an a-

cuts based method can be used for checking and comparing fuzzy numbers. According to 

Adamo (1980) the a-cut methods depends on the alpha values which are called a-

preference indexes. The decision maker is to specify the minimum acceptable degree of a 

for a fuzzy set. The fuzzy sets with higher a-cut values are considered better (Chen et al., 

1992). Mabuchi (1988) used the a-cut method to derive the degree of dominance of one 

fuzzy set over another. According to Buckley (1987) the a- cuts method can be stated as: 

If A and B be fuzzy numbers with a-cuts, Aa = [a1, bi] and Ba = [a2, b2] then the ranking 

order can be determined by the condition; 
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(3.17) 

For example as shown in Figure (3.9) if we set a-cut =0.9 then Ax left and Aa right can be 

calculated as: 

A B 

1.0 

0.9 

0.8 

0.7 

0.6 
"' Q) 

;:3 

~ 0.5 

i! 
0.4 ..9' 

..0:: 
0.3 

0.2 

0.1 

0.0 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .9 1.0 

Fuzzy number 

Figure 3.9: Principle of alpha cut method 

Ao.9 = [0.4, 0.44] and similarly at Bo.9 = [0.48, 0.52]. Based on equation 3.17 B>A, 

because a2 = 0.48 > b 1 = 0.44. 
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Jie et al. (2006) applied alpha cut analysis to transform the total weighted performance 

matrices into interval performance matrices. According to the Jie et al. (2006) the alpha 

left and alpha right values can be calculated as follows: 

a Lefl = [a*(m-1)+1] 

a Right = n - [a * ( n - m)] 

(3 .18) 

(3.19) 

Where the parameters I, m, and n, respectively, indicate the smallest possible value (left), 

the most promising value (middle), and the largest possible value (right) of a fuzzy TFN. 

The alpha cut analysis introduces two values, namely alpha right (maximum range) and 

alpha left (minimum range) which need to be converted into crisp values (Jie et al. , 

2006). It can be done with the lambda function , which represents the attitude of the 

decision maker. Jie et al. (2006) suggested the range of the lambda (A.) function to be 0 to 

1. According to Jie et al. (2006) the attitude of the decision makers may be optimistic, 

moderate or pessimistic. A decision maker with an optimistic attitude will take the 

maximum values of the range; the moderate person will take the medium value and the 

pessimistic person will take the minimum value of the range. After assigning the A. values 

the crisp scores can be computed by the equation 3.20 (Jie et al. , 2006). 

ci). = A* a Right +lo-A.)* aLejl J (3.20) 

Where C 1.. is the crisp score of i1h criteria 
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The crisp values need to be normalized, because the elements of the pair wise comparison 

matrix (PCM) do not have the same scale. The normalization can be done by the equation 

(3 .21) 

(3.21) 

Where C;~ is the normalized crisp score of ith criteria. 

3.2.5 Weighting methods 

Assigning weights is an important process as it can make a significant difference in the 

results (Hobbs and Meier, 2000). According to Hobbs and Meier (2000), weights should 

be constant with tradeoffs that decision makers are willing to make among criteria. In 

other words, weights should represent the value that the decision maker willingly trades 

off one criterion for another or the relative importance of unit changes in the criterion 

values. Different weighting methods can possibly give different weights and in tum, 

different results (Hobbs and Meier, 2000). Commonly used weighting methods are 

described below: 

Equal weights 

In this method all criteria are considered equally important thus equal weights are 

assigned to all of them. This method is the simplest; however, it is not quite realistic that 

all the criteria have the same importance (Hobbs and Meier, 2000). 
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Direct weighting method 

Using this method, the decision makers directly ass1gn weights according to their 

judgment. This method is simple but requires careful attention. There are various ways to 

directly assign weights, point allocation, categorization of criteria based on their 

importance, ranking before assigning weights, defining ratios of importance of each pair 

of criteria, and rating or scaling the criteria (Hobbs and Meier, 2000). In case of a large 

number of criteria, a "hierarchical approach" can be applied to help in this process 

(Hobbs and Meier, 2000). In a hierarchical process, criteria are grouped into major 

categories and weights are then assigned to each criterion. This method is better than the 

non-hierarchical method and provides more variable weights. However, the structure of 

the hierarchy can affect the defined weights (Hobbs and Meier, 2000). 

Swing weights Method 

The swing method was first introduced by Von and Edwards (1986). Using this method, 

criteria are compared by considering a hypothetical alternative which has been assigned 

the worst values for all criteria (Hobbs and Meier, 2000). Another hypothetical 

alternative is then set up that would be improved. This criterion is then given a swing 

weight of 100. Team members similarly select the next criterion and detennine the 

relative importance of swinging, and order the first criterion over second one. The 

process is then repeated until all criteria have been ordered. After ranking the alternatives 

according to preference, weights are then assigned to alternatives such as 100 are 

assigned to the most preferred alternative and zero is assigned to the worst (Von and 
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Edwards, 1986). The weights are then normalized to obtain total weights of one (Baker et 

al., 2001). This method is not too difficult for decision makers (Hobbs and Meier, 2000). 

The Analytic Hierarchy Process (AHP; Saaty, 1980) 

The Analytic Hierarchy Process (AHP) is a powerful technique that has proven to be 

useful in structuring complex MCDM problems in engineering, economics and social 

sciences. This popular process was introduced by (Saaty 1977, 1980). Since its 

introduction, the AHP has become one of the most widely used MCDM methods, and has 

been used to solve unstructured problems in different areas of human needs and interests, 

such as political, economic, social and management sciences (Modarres 2006). AHP is a 

quantitative comparison method used to select a preferred alternative by using pair-wise 

comparisons of the alternatives based on their relative performance against the criteria. 

Table 3.1: The pair-wise comparisons preference index scale 

How important is A relative to B? Preference index assigned 

Adopted (Saaty 1980) 

Equally important 1 

Moderately more important 3 

Strongly more important 5 

Very strongly more important 7 

Overwhelmingly more important 9 

The method requires decision maker comparison for every possible pair of criteria and 

provides their importance ratio (Hobbs and Meier, 2000). The pair-wise comparisons can 
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be made using a nine-point preference index scale as shown in Table 3.1 where "1" 

represents that two criteria are equally important, while the other extreme ''9'' represents 

that one criterion is absolutely more important than the other, the values 2, 4, 6 and 8 are 

intermediate values that can be used depending on judgement (Saaty 1980). Using the 

scales of importance, the pair wise comparison for priority of different hierarchy level 

attributes is perfonned and the relative matrix is formed. The pair wise comparison 

matrix (PCM) is developed by defining the weight for each pair denoted by Wi for ith pair 

and a vector W is defined such that 

Where 

(3.22) 

With n criteria, a 112{n (n-1)} comparisons matrix can be conducted. The PCM can be 

solved by using eigenvalues (Michael et al., 2000). For example, if the PCM is 'A' then 

the eigenvalues can be written as: 

A w=t.. w (3.23) 

Where A= the binary importance matrix, 

W = weight vectors and 

A. = eigenvalues. The equation 3.23, can be written in the following general form 
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1 1 I c12 1/c, t WI ~ 
C12 1 11 c,2 w2 

= A-max 
w2 

(3.24) 

c,t c,2 1 W,, W,, 

Where, Cij is the pair wise comparison of the criteria. Each element of the lower triangle 

in the matrix is reciprocal to the upper triangle (Saaty, 1980). The solution to equation 

(3.24) yields the eigenvector matrix W , which represents the normalized weights for the 

criteria. 

It is necessary to estimate the consistency of the judgment matrix. To do this, it is 

necessary to find its consistency index (CI), average CI and consistency ratio (CR), 

which can be defined (Saaty, 1980) as: 

C.J = Amax -n 
n - l 

C.R = C.! 
R.I 

(3 .25) 

(3 .26) 

Where C.I = consistency index, C.R = consistency ratio, ~nax = maximum eigen value, n 

= number of parameters in the matrix, and R.l = random index. Saaty (1980) suggested 

the R.I values given in Table 3.2. 

Table 3.2: Random index (Saaty, 1980) 

N I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 

R.I 0.0 0.0 0.58 0.9 1.1 2 1.24 1.32 1.4 1 1.45 1.49 1.51 1.48 1.56 1.57 1.59 

64 



When CR S 0.1 0, the judgment matrix can be considered as having a satisfactory 

consistency (Saaty, 1977; 1980) that is, the weight vector is reliable. Otherwise, we must 

reconstruct the judgment matrix. 

Fuzzy Analytical Hierarchy Process 

Fuzzy AHP is an efficient tool and is widely used to handle the fuzziness of the data 

involving vagueness and uncertainty in the decision-maker's judgment. In general the 

AHP use of crisp values to obtain the PCM may introduce subjective uncertainty, which 

can be addressed through assignment of fuzzy data in the PCM. Kahraman et al. (2003) 

used the fuzzy AHP for comparing supplier selection for a firm. Triangular fuzzy 

numbers were used in that case. So et al. (2006) used the fuzzy AHP for service quality 

assessment. Lee et a! (2008) used the fuzzy AHP for performance evaluation of an IT 

depatiment in the manufacturing industry. Many studies have been done with the 

application of fuzzy AHP, and different fuzzy AHP models have been developed (Cheng, 

1996; Cheng, 1 999; Lee et al., 2006). To calculate the relative weights of each criterion, 

this study used extent fuzzy AHP analysis (Lee et a!. 2006) which is based on fuzzy 

algebraic operations. Triangular fuzzy numbers are used for the fuzzification of a 

decision maker's judgment. The crisp values raging from 1/9 to 9, suggested by Saaty 

(1980) are fuzzified using the triangular fuzzy number f = (1 , m, u) where the parameters 

1, m, and u, respectively, indicate the smallest possible value, the most promising value, 

and the largest possible value and that represent the uncertain range (Lee et al., 2006). 

The fuzzified numbers are reported in the Table 3.3. 

65 



Table 3.3: Conversion ofCrisp PCM to FuzzyPCM 

How important is A relative to B? Preference index Fuzzy value 

(Saaty 1988) (Lee et al. 2006) 

Equally important I (1 , I , I) 

Moderately more important 3 (I ,3,5) 

Strongly more important 5 (3,5,7) 

Very strongly more important 7 (5,7,9) 

Overwhelmingly more important 9 (7,9,11) 

Intermediate values (Need to judge 2 (1 ,2,4) 

two) 4 (2,4 ,6) 

6 (4,6,8) 

8 (6,8, I 0) 

A simple example is considered to demonstrate the fuzzy AHP analysis. Consider three 

criteria C 1, C2 and C3. Each element of the lower triangle in the PCM is reciprocal to the 

upper triangle (Ijk= l /Ijk). The fuzzy pair wise comparison matrix with respect to this goal 

is shown in Table 3.4 

Table 3.4: Fuzzy PCM with respect to goal 

Cl 

C2 

C3 

Cl 

I , 1, I 

I , 3, 5 

I , I , I 

C2 

1/5, 1/3, 1 

I , I , I 

I, 2, 3 

C3 

I , I , I 

1/3,1/2, I 

I , I , I 
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After constructing the fuzzy pair wise comparison matrices, the Fuzzy extent analysis is 

applied as follows: 

Total sum of the whole fuzzy PCM:-

Left = 1 + 1/5+ 1 + 1 + 1/3+ 1 + 1 + 1 + 1 =7.5 

Middle = 1 + 1/3+ 1 +3+ 1 + 1/2+ 1 +2+ 1 = 10.83 

Right = 1+1+1+5+1+1+1+3+1 = 15.0 

The first row sum (for C1) 

Left = 1 + 115+ 1 

Middle = I+ 1/3+ 1 

Right = I+ 1 + 1 

= 2.20 

= 2.33 

= 3.0 

First row sum I Total sum 

Left = a 1/ c = 2.2115.0 = 0.147 

Middle = a 2/ b1 = 2.33/ 10.83 = 0.215 

Right = a3/ a = 3/7.50 = 0.40 

The same calculation above applies to criteria C2, and C3 and the results are summarized 

in Table 3.5. 

Table 3.5: Criterion Weights (after Fuzzy Extent Analysis) 

Criteria Overall weights 

left Middle Right 

C l 0. 147 0.215 0.40 

C2 0. 155 0.416 0.934 

C3 0.200 0.369 0.667 
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The principle criteria weights from the fuzzy extent analysis are also fuzzy data. To 

obtain crisp values any fuzzy ranking methods described previously can be used. In this 

study the ranking method described by Yager (1980b) is used to calculate the crisps 

scores. 

3 .2.6 Other multi-criteria decision making methods 

Beside the previously mentioned MCDM methods, there are other teclmiques frequently 

using in decision making problems, as discussed in this section: 

TOPSIS Method 

Hwang and Yoon (1981) have developed the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) method based on the concept that the chosen 

alternative should have the shortest distance from the ideal solution and the farthest 

distance from the negative-ideal solution. There are many applications of fuzzy TOPSIS 

in the literature. For instance, Triantaphyllou and Lin (1996) developed a fuzzy version 

of the TOPSIS method based on fuzzy arithmetic operations, which leads to a fuzzy 

relative closeness for each alternative. Chen (2000) extended the TOPSIS to the fuzzy 

environment and used it for selecting a systems analysis engineer for a software 

company. Tsaur et al. (2002) applied fuzzy set theory to evaluate the service quality of an 

airline. Chu (2002) presented a fuzzy TOPSIS model involving a group decision for 

solving a plant location selection problem. Chu and Lin (2003) proposed the fuzzy 

TO PSIS method for robot selec6on. Lai et al. (1994) applied this compromised solution 

68 



concept in multiple objective mathematic programming. When using TOPSIS to deal 

with a MCDM problem, the process includes six steps (Chen et al. 1992; Olson, 2004, 

Mahmoodzadeh et al., 2007) as follows: 

Step 1 Construct a decision matrix for the ranking. 

Step 2 Calculate the normalized decision matrix 

Step 3 Calculate the weighted normalized decision matrix by multiplying the normalized 

decision matrix by its associated weights. 

Step 4 Calculate the positive ideal (PIS) and negative ideal (NIS) solutions 

Step 5 Calculate the separation measures 

Step 6 Rank the preference order. 

The detailed procedure of this method can be found elsewhere like (Chen et al. 1992; 

Olson, 2004, Mahmoodzadeh, 2007). The application of this method can be illustrated in 

as follows: 

Construction of decision matrix: A decision matrix is basically an array, presenting on 

one axis a list of alternatives, and on the other axis, a list of criteria. The decision matrix 

for a problem can be established presenting alternatives on the X axis and criteria values 

on theY axis. To form a nonnalized decision matrix, the equation 3.27 can be used. 

(3.27) 

Where Cij is a crisp value indicating the performance rating of each alternative Ai with 

respect to each criterion Xj 
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The positive ideal solution (PIS) and negative ideal (NIS) solution are determined by 

equation 3.28 and equation 3.29 as: 

v + = {vt ....... v:} = [(Max vij IJ E 1), (Min vij IJ E f)] (328) 

v- ={v~ .. ..... v; } = [(Min vuiJ E l),(Max viJ IJEf)] (3.29) 

Where V associated with the positive sign indicates benefit criteria and V associated with 

the negative sign indicates loss criteria. J = I , 2 ... n are associated b nefit criteria and J' = 

1, 2 .. . n are associated loss criteria. 

The separation measures between each alternative can be measured by, using the ' m ' 

dimensional euclidean distance. The separation measure Dt of each alternative can be 

calculated by equation 3.30 as: 

.-----2 

D;+= I(viJ- v; ), i = l, ..... ... ,m (3.30) 
J=l 

Similarly, the separation measure D;- of each alternative can be calculated by equation 

3.31 as: 

r-------2 

D;- = I(viJ - vj ) , i = l, .. .. .... ,m (3 .31) 
J=l 

The relative closeness of the alternative Ai with respect to PIS/NIS ts expressed by 

equation 3.32 as: 
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i = l, ... .... . m (3.32) 

Where the index value of Ci lies between 0 and 1, with the larger index values indicating 

the better performance of the alternatives. 

Overall value model 

Overall value models are mathematical models which are used to evaluate alternatives 

consistently with the preferences of the decision maker (Clemen, 1996). Some of the 

models, such as the additive value function, provide a single index which enables the 

decision maker to rank alternatives. The additive value function is the most commonly 

used function as it is simple and easily understood. This function is basically a weighted 

average of scoring functions. The evaluation measures for each criterion were linearly 

averaged to provide a single number or index, which represents the decision maker 's 

preferences. The overall preference score for each option is simply the weighted average 

of its scores on all the criteria. The preference score for option i with criterion j is 

represented by Xij and the weight for each criterion is represented by Wj, and for n criteria 

the overall score for each option, Vi, is given by equation 3.33. 

II 

V; = xil w1 + x i2 w 2 + ..... + xin w, = L wix !i (3.33) 

Where, Xi represents the score under the i111 criterion, and wi is the corresponding weight 

factor. 
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Simple additive weighting method (Hwang and Yoon, 1981) 

This method is a very widely used method which involves weighting attributes, scaling 

attribute values, and then calculating the total score, which is the sum of the products of 

weights and scores for all the attributes. The option attaining the highest score is to be 

selected. According to Hwang and Yoon (1981), the most preferred option (A*) is 

selected such that: 

(3.34) 

n 

L w 1 = 1 
j = i 

Where xu is the level of the i111 option attained for the/' criterion on a numerically 

comparable scale. The weights (w1) normally add up to 1 (Hwang and Yoon, 1981). This 

method may be extended to include hierarchical consideration of criteria as in the method 

called the Hierarchical Additive Weighting Method (Hwang and Yoon, 1981) where the 

criteria are classified into levels and the weights of criteria in the lower levels are 

assigned based on the weights of the criteria in the higher levels. 

Multi-Attribute Utility Theory (MAUT) 

MAUT is a quantitative comparison method used to combine dissimilar measures of 

costs, risks, and benefits, along with individual and stakeholder preferences, into high-

level, aggregated preferences. The foundation of MAUT is the use of utility functions. 

Utility functions transform different criteria to one common, dimensionless scale (0 to 1) 
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known as the multi-attribute utility (Michael et al. 2000, Baker et al. 2001). Once utility 

functions are created, the objective or subjective data of an alternative can be converted 

to utility scores. As with the other methods, the criteria are weighted according to 

importance. To identify the preferred alternative, each normalized alternative's utility 

score results are multiplied by criteria weights. The preferred alternative will have the 

highest total score. MAUT comparisons are typically used when quantitative information 

is known about each alternative, which can result in firmer estimates of the alternative 

performance. The MAUT evaluation method is suitable for complex decisions with 

multiple criteria and many alternatives. 

3.3 The selection of MCDM techniques for this study 

The present chapter describes the different MCDM techniques, and their advantages and 

limitations. After careful review of the MCDM techniques, the most suitable methods 

were selected for the present study. The MCDM framework of this study is divided into 

two groups, the traditional method, which integrated the AHP with an overall value 

model and the fuzzy based method that combines the F AHP and TO PSIS techniques. The 

advantage of the selected methods can be addressed as: 

The AHP method was found to be the most appropriate, for its simplicity, transparency, 

consistency, and adaptability to the varying number of criteria and its sensitivity to the 

impact range. The AHP was integrated with an overall value model to solve the decision 

matrix. The overall value model was found to be the best suited technique for this study, 

because it can handle large numbers of criteria, and it is simple and easy to understand 
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To compare the results, this study also conducted another set of MCDM operations; in 

this case, FAHP was added up the TOPSIS algorithm. The advantage of this MCDM set 

is that it will be able to handle the uncertainties associated with the assignment of weights 

and subjective scoring. The advantage of the proposed approach is that it will validate the 

final evaluation. The results from two different frameworks will make the final 

evaluation more reliable. This approach has a few basic and required steps which ar 

generally used in MCDM problems. The proposed approach can be extended depending 

on the preferences of the problems in a variety of directions such as, financial , social, and 

environmental decision making problems. 
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Chapter 4 

METHODOLOGY OF ECOLOGICAL RISK ASSESSMENT 
FOR PRODUCED WATER 

4.1 Introduction 

The te1m ecological risk assessment (ERA) can be defined as a process that evaluates the 

likelihood of adverse ecological effects, which may occur or are occurring as a result of 

exposure to one or more stressors (US EPA, 1998; CCME, 1999). The purpose of ERA is 

to contribute to the protection and management of the environment through scientifically 

credible evaluation of the ecological effects of human activities (Suter, 1993). Once PW 

is discharged into the ocean, it starts mixing with ambient water and becomes diluted. 

The mixing of the pollutant in the recipient water may be expressed through a dilution 

factor (Rye et al. , 1996). Various factors like an1bient current, discharge depth and 

velocity, discharge direction, and density of PW affect the dilution (Huang et al. , 1996; 

Mukhtasor, 2001 ). The risk associated with the PW is strongly related to contaminants 

fate and distribution in the ambient seawater (Kannan and Reerink, 1998), which mainly 

depends on the hydrodynamic characteristics, discharge geometry, and the ambient water 

flow characteristics. To assess contaminants' concentrations for risk assessment purposes 

hydrodynamic modeling plays an important role (Lee and Cheung, 1991; Huang et al. 

1996; Mukhtasor, 2001 ). This chapter reviews dilution and dispersion modeling which 

has been widely used for ocean outfalls. An ERA frame work for PW discharges from 

offshore petroleum operations is also introduced in this chapter. 
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4.2 Dilution and dispersion modeling for ocean outfalls 

PW from oil and gas industries contains significant amounts of pollutants including the 

P AHs, NPD, volatile BTEX components, heavy metals, non-volatile and semi-volatile 

chemicals, and the process chemicals; some of these are highly toxic and may pose risk to 

ecological entities and health hazards to humans through food chains. Factors that govern 

the toxicity of the pollutant when mixed into the recipient water should be considered 

carefully. The mixing of the release in the recipient water may be expressed through a 

dilution factor (Rye et al. 1996). The field studies and dispersion modeling of the fate of 

PW in the North Sea shows a typical initial dilution of 1000 folds within 50 to 100 m of 

the discharge point (Furuholt, 1996). According to the Rye et al. (1996), the initial 

dilution can be considered 1:1000 at a distance of 500 meters. Several factors affect the 

mixing and dilution, such as discharge velocity, ambient water velocity, wind direction 

etc. The outfall discharge velocity is much higher than the ambient velocity and the point 

of discharge is located at sufficient depth below the water surface to enhance the dilution 

(Mukhtssor, 2001 ). The plume trajectory and turbulent diffusion, in addition to initial 

dilution, is also an important measure for hydrodynamic modeling (Mukhtssor, 2001). 

According to USEP A (1991) "a mixing zone is an area where an effluent discharge 

undergoes initial dilution and is extended to cover the secondary mixing in the ambient 

waterbody." A mixing zone is an allocated impact zone where acute and chronic water 

quality criteria may be exceeded a higher number of time than the protection areas 

(Huang et al., 1996). Developing hydrodynamic models, the mixing of PW has been 

conceptualized as two separate regions (Lee and Cheung, 1991 ; Mukhtasor, 2001 , Jirka et 
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al. 1996). In the first region, the initial jet characteristics such as momentum flux, 

buoyancy flux, and outfall geometry influence the jet trajectory and mixing. This region 

is known as near-field (NF). On the other hand when the plume travels away from the 

source, the source characteristics become less important, and this region is known as far­

field (FF), in which ambient conditions such as strength and direction of sea water 

currents, buoyant spreading motions and passive diffusion control trajectory and dilution 

of the turbulent plume (Jirka et al. 1996). 

4.2.1 Various dilution models 

Numerous dilution models are available for initial dilution prediction. The available 

models, and their scope and applications are discussed in this section. 

Dilution model by Lee and Cheung (1991): This model is basically an asymptotic 

solution in the two limits flow regime; buoyancy dominated near field (BFNF) and 

buoyancy dominated far field (BFFF). The BDNF and BDFF can be classified by the 

ratio of the depth above discharge, H (m) to the plume/cross length flow scale lb. The 

length scale is defined by lb = B/u3 where u = average ambient current speed (m/s) and B 

is the effluent buoyancy defined as Qg' , where Q is the discharged flow rate (m3/s) and 

equal touemi 2 I 4, where Ue is the exit velocity (m/s) of the jet and d is the diameter (m) 

of the exit pipe, and g' ts the reduced gravitational acceleration defined 

by g'= (Pn- Po)* g I Pn, where pa and Po= densities of ambient sea water and effluent 

water, and g = gravitational acceleration . The jet behavior for a buoyancy dominated 
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discharge is governed by the dimensionless depth Hu31B. According to Lee and Cheung 

(1991) and Wood et al. (1993) the BDNF is the regime where H I lb << 1 and the BDFF is 

the regime where HI 1b >> 1. The transition between the BDNF and BDFF can be 

considered HI lb =0(1 ). Two length scales are used in the Lee and Cheung (1991) model 

in which lq is the measure of direct effect of jet geometry on the flow characteristics and 

lm is the measure of the distance where buoyancy becomes more effective than the jet 

momentum. The mathematical expression of this model can be ex pre sed as: 

( )

1/ 2 

l = d rc 
q 4 

For H I lq>> 1 the volume flux is not important, so the dilution changes to 

Where, S = the centerline dilution (dimensionless) 

For H I lq<<1 the dilution equation for the BDNF is given as 

For H I lq>> 1 the dilution equation for the BDFF is given as 

( J
513 

SQ -C H 
J - 2 

ul'b lb 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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The average values for C1 and C2 were suggested to be 0.1 and 0.51 respectively. The 

dilution characteristics with this model can represent the BDNF and BDFF. No specific 

solution was incorporated to predict the dilution in the transition zone. 

Dilution model by Lee and Neville - Jones (1987): During the study of a number of 

United Kingdom outfalls, Lee and Neville- Jones (1987) developed dilution models for 

the minimum surface dilution based on field data for horizontal buoyant jets. These 

models can be expressed as: 

8mf = 0.31 H for BDNF, H I lq<5 
( ]

5 / 3 

ulb lb 
(4.6) 

and 

8mf = 0.32(HJ

2 

for BDFF, HI lq~ 5 
ulb lb 

(4.7) 

Where, Sm = mmtmum dilution in the surface boil generated by the discharge and 

H = water depth above the discharge. In this model there is a discontinuity in the 

predictions at (H I lq= 5). 

Dilution model developed by Huang et al. (1998): Huang et al. (1998) developed a 

dilution model for both centerline and minimum surface dilution that covers all the 

regimes, from the buoyancy dominated near field (BDNF) through the intermediate 

regime to the buoyancy dominated far field (BDFF) with a single equation. The model 

equation used to represents the centerline dilution is as follows: 
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( )

-1/3 

SeQ- C H + C2 
uH - I lb (H) -az 

1+a -
I f 

b 

(4.8) 

Where Sc = centerline dilution, H =water depth above the discharge, and C1, Cz, a1, and 

a2 are model constants. The constants C1 and Cz are 0.1 and 0.51 as given by Lee and 

Cheung (1991) in equations 4.4 and 4.5, and the constants a1 and a2 are selected as 0.1 

and 2 respectively. 

The single equation used to represents the minimum surface dilution is as follows: 

( )

-1/3 

~1 = C3 Z + C(~) -a. 
1+a -

3 l 
b 

(4.9) 

where Sm =centerline dilution (dimensionless), H =water depth above the discharge (m), 

and C3, C4, a3, and ~ are model constants. The constants C3 and C4 are 0.08 and 0.32 

and the constants a1 and a2 are as 0.2 and 0.5 respectively. 

Dilution model proposed by Rye et al. (1996): Rye et al. (1996) proposed an analytical 

method for initial dilution. The mixing of the release in the recipient water is expressed 

through dilution factor. The model equation used to represents the dilution is as follows 

Dilution~ C" ~ UUJ ~~~96K x' 
C Qo Qo z U 

(4.10) 
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where, x = distance from the source (m), V =horizontal diffusion velocity (rnJs), Kz = 

vertical diffusion coefficient (m2/s), U = average ambient current velocity (m2/s), L = 

width of the plume diluted in the sea water (m), C = concentration of pollutants measured 

in the recipient water (g!m\ C0 = concentration of pollutants measured in the outlet 

opening (g!m\ Qo =the release rate through the outlet opening (m3/s) and H =height of 

the plume diluted in the sea water (m). 

4.2.2 Parameters for the selected model 

From the review of several initial dilution models, the model presented by Rye et al. 

(1996) was found to be more realistic, and has been used for predicting PW initial 

dilution. Because this model simplest among the others and data for this model were 

found from a practical application in the Ocean outfalls dilution analysis Rye et al. 

(1996). For the Rye et al. (1996) model the required parameters are discussed briefly in 

the following section. 

Distance from the source (x) 

For PW discharged, based upon worst-case platform characteristics Karman and Reerink, 

(1998) used a default values at 500 m from the platform, to calculate the concentration of 

a chemical in the water. The same values were used to calculate the concentration of 

pollutants measured in this study. 
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Vertical diffusion coefficient (Kz) 

The vertical diffusion coefficient CKz) is about 0.01 m2/s for a wind velocity 10 m/s (Rye 

et al., 1996) . The vertical diffusion coefficient may be affected by the plume depth. A 

plume depth of more than 25 m tends to form vertical turbulence; in this case a lower 

vertical diffusion coefficient may be considered given (Rye et al., 1996). For the present 

study Kz was 0.01 m2/s. 

Effluent discharge rate (Q0 ) 

The release rate through the outlet opening is an important parameter used in the outfall 

modeling. The average PW discharge from one platform is 0.0174 m3/sec (GESAMP, 

1993). Studies from 30 oilfields have shown the range ofPW discharge to be 3.68 x 10-6 

m3/sec to 0.276 m3/sec (USEPA, 1993). Rye et al. (1996) used an effluent discharge rate 

0.007 m3/sec for his study, and a same value was used in this study. 

Ambient water velocity (U) 

Ambient water velocity at the offshore platform location varied between 0.03 and 0.3 m/s 

(Brandsma and Smith, 1996).The USEPA (1995) used an ambient velocity of0.05 m/sec 

for the open bay in Louisiana, and the same value was used for this study. 

Horizontal diffusion velocity (V) 
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Rye eta!. (1996) used lateral diffusion velocity 0.013 1n!sec during the application of his 

model, and the same value was used for this study. 

4.3 Framework for ecological risk assessment for produced water 

The comprehensive framework for ecological risk assessment (ERA) developed by 

USEPA (1998) is presented in Figure 4.1. 

Planning 
(Risk 
Assessor/ 
Risk 
Manager/ lnte 
rested Pm1ies 
Dialogue) 

Ecological Risk Assessment 

Problem Fonnulat ion 

Risk Characterization 

Communicating Results to the Risk Manager 

Risk Management and Communicating Results to 
Interested Pat1ies 

Figure 4.1: Ecological Risk Assessment Framework (USEPA 1998) 

This framework consists of the following four basic steps: 

• Problem Formulation; 

Analysis; 

• Risk Characterization; and 

Risk Management and Communication. 
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4.3.1 Problem formulation 

Problem formulation is a process for generating and evaluating preliminary hypotheses 

about the occurrence of ecological effects from human activities. It provides the 

foundation for the entire ERA. Problem formulation is the outcome of three components: 

(a) assessment endpoints that adequately reflect management goals and the ecosystem 

they represent, (b) conceptual models that describe key relationships between a stressor 

and an assessment endpoint and (c) an analysis plan. 

Conceptual models 

A conceptual model in the problem formulation phase is a description and representation 

of relationships between ecological entities and stressors. It may describe primary, 

secondary and tertiary exposure pathways, or co-occurrence among exposure pathways, 

ecological effects and receptors. Conceptual models for ecological risk assessments can 

be developed from information about stressors, potential exposure, and predicted effects 

on an ecological entity. Figure 4.2 describes a conceptual model for potential risk from 

PW discharged. There are several potential stressors present in the PW. For this study 

only two types of stressors are considered to calculate the ecological risk, namely, 

organic P AHs, and inorganic metals, like cadmium (Cd), copper (Cu), and zinc (Zn). 

The metal compounds were chosen due to there toxicity and high concentration in PW, 
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and since P AH compound have rarely been used to represent ecological risk from PW, 

they were selected for this study. P AHs could bioaccumulate due to accumulation in 

sediments or particulate matter. 
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Figure 4.2: Conceptual model of potential risks for produced water discharged (From 
NAS 1984) 

The acute stressors data are generally expressed as EC5o (for aquatic plants) or LC50 (for 

aquatic animals). The EC5o or LC5o is the measure of the lethal concentration at mortality 

of 50% of exposed organisms during the specified time. For this study the acute toxicity 
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data were collected from different sources and tabulated in Appendix-B. According to 

Neff et a!. (2006), 2-ring and 3-ring P AHs are the main contributors to the ecological risk 

of PW discharges. These compounds are relatively more soluble in water than the higher 

molecular weight P AHs (Neff et al., 2006). From the literature it has been found that 

acute toxicity data for P AHs in estuarine and marine environments is related to the lower 

molecular weight P AHs, containing 3 or less benzene rings in their structure. The acute 

and lethal toxicity data for the lower molecular weight P AHs are collected from different 

sources and reported in Appendix-B. The P AH concentrations causing lethal effects in 

marine organisms vary widely, with the lowest 96-h LC50 of 40 IJ.g/L was recorded for 

juvenile mysid shrimp (Mysidopsis bahia) exposed to fluoranthene (USEPA, 1978). For 

this study, it was hypothesized that the data available (Appendix-B) are representative of 

the ecological entities in the marine environment. 

The toxicity data in Appendix- B are at various exposure times. To use this data for 

further analysis, the following assumptions were made which are described with the help 

of a flowchart in Figure 4.3. 
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No 

Exposure time (t) is a 
range? 

Yes 

Take GM of (t) 

Dilution I dispersion modeling 

No 

Find PN EC of a group or species 

Develop EDF of PNEC 

Calculate lowest I O'h percentile 

Figure 4.3 : Structure of ecological risk calculation (modified from Sadiq et al. , 2003) 

1. If the range of LC5o or EC50 data were gtven, the data were converted into their 

geometric mean ( GM = ~lowest x Highest ) using lowest and highest values (French 

and French, 1989). 
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2. The exposure time for this study was assumed 4 days (96 hrs), and when the exposure 

time was other than 4 days then the relationship in equation 4.11 was used to convert 

LC5o to 96hrs ( French and French, 1989). 

(4.11) 

where (LCso) 1 = LCso at any time t 

3. The PNEC values were calculated from (LC50) 4 data by dividing an uncertainty factor 

of 1 00 as suggested by Thatcher et al. (1999). 

4. NOEC values were directly used as a PNEC. In case of ranged data the GM of 

NOEC values were as PNEC. 

5. lfNOEC values were given other than 96 hours exposure, it was assumed as 96 hours 

exposure time. 

The analyzing plan was the fmal component in the problem formulation which included a 

description of the assessment design, data needs, measures, and methods for conducting 

the analysis phase of the risk assessment. The analysis plan included pathways and 

relationships identified during the problem formulation that would be pursued dming the 

analysis phase. 

4.3 .2 Analysis phase 

The second phase of the risk assessment process examines two primary components such 

as, exposure and effects, and their relationships with each other and the ecosystem 

characteristics. There are three steps to be considered during analysis phase: 
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• Selecting the data and models to be used in the analysis 

• Analyzing and characterizing the exposure by examining the sources of stressors. 

• Characterization of ecological effects 

At the beginning of the analysis phase, it is necessary to evaluate the data and model to 

be used for analysis. For this study the toxicity data for PW were collected from 

published sources and reported in Appendix- B. The models, like dilution/dispersion or a 

conceptual model for ERA, have been discussed in the previous section. 

Characterization of exposure describes potential or actual contact of stressors with 

receptors. It is based on measures of exposure, and also on receptor characteristics and 

their distribution in the environment. It analyzes sources of pollution, distribution of 

contaminants, and modes of contact between stressors and receptors. This stage also 

focuses on the identification of pollutant sources, the exposure pathways, and the 

intensity and distribution of stressors spatially and temporally. 

Source identification is the first objective of exposure analysis. There are two types of 

sources, and the first one is the original source of the stressors or location from where 

PW is discharged. The other source is the present location of stressors, e.g. the location 

where the receptors are exposed (USEP A, 1998). The second objective of exposure 

analysis is to describe the spatial and temporal distribution of stressors in the 

environment, which may be defined as the predicted environmental concentration (PEC). 

The PEC is an estimate of the expected concentration of a chemical to which the 

environment will be exposed after discharge. The actual exposure will depend upon the 

fundamental properties of the chemical such as the partition coefficient, degradation and 
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bioconcentration factor, the concentration in the discharge stream, and the dilution in the 

receiving environment. For this research the PEC was calculated from the pollutants' 

concentration in the PW (Appendix-D) with the help of Equation 4.1 0. The geometric 

mean (GM) values were used when the concentration was as a given range of values. In 

the case where the individual pollutant concentration was not found, the total 

concentration was used. For example if the concentration of an individual P AH was not 

found then the total P AHs concentration in PW was used to calculate the PEC. The 

organisms do not necessarily stay close to the impact zone as they can move within the 

whole area or beyond the area under study (Sadiq, 2001). Stansbury (1991) considered 

the mitigation rate of finfish and shellfish to determine the exposure probability (p) for 

characterization of ecological risk. The US EPA (2000) calculated exposure probability 

as the ratio of the impact zone to the area under study. For simplicity this study used 

I 00% exposure probability. 

Bioavailability of the stressors is another factor and although the solubility of P AHs and 

other organics very widely, all contaminants in PW except metals were assumed to be 

completely dissolved in water and thus 100% bioavailable to the marine species (US EPA, 

2000). The USEPA (2000) used a leaching factor (LF) to determine the bioavailable 

fraction (BF) of metals in the pore water. The USEP A (1996) introduced conversion 

factor (CF) factor to determine the bioavailable fraction (BF) of metals in the drilling 

waste discharge. Table 4.1 provides a summary of USEP A leaching factors (LF) and 

conversion factors (CF). To calculate the exposure concentration (EC), the PEC is 

adjusted as follows: 
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EC = PEC X p X BF ( 4.12) 

Where, EC = exposure concentration; PEC = predicted environmental concentration; 

(calculated from equation 4.10); P = exposure probability, (assumed for this study to be 

100%); and BF = bioavailable fraction (100% for organics and CF in Table 4.1 for metals 

were used for this study) 

Table 4.1: Factors to determine bioavailability fraction of contaminants 

Metals Leaching factor (LF) Conversion factor (CF) USEPA 

USEP A (2000) 
(1996) 

As 0.005 1.00 

Cd 0.110 0.994 

Cr 0.034 0.993 

Cu 0.0063 0.830 

Hg 0.018 0.850 

Ni 0.043 0.990 

Pb 0.020 0.951 

Zn 0.0041 0.946 

The PEC values and then EC were calculated for different locations from the discharged 

point and are reported in Table 4.2. The predicted no effect concentration (PNEC) is an 

estimate of the highest concentration of a chemical in a particular environmental media at 

which no adverse effects are expected. In general the PNEC represents a toxicity 

threshold, derived from standard toxicity data such as NOECs, LC50 and EC50 . For this 

study the toxicity data were collected from different sources (Appendix - B). 
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According to Husain et a!. (2002) selection of a PNEC value, which is representative of 

the whole community, is a difficult task from a management goals and risk assessment 

point of view. Lenwood et a!. (1998) have recommended the lowest 1 01
h percentile of 

PNEC values of response as the representative values (RE). 

Table 4.2: Calculated PEC and EC (J..Lg/1) 

50 m from discharge I 00 m from discharge 500 m from discharge 
point point point 

Toxicant PEC EC PEC EC PEC EC 
NA 0.05484 0.05484 0.01939 0.01939 0.00173 0.00173 
1-MNA 0.03932 0.03932 0.01390 0.01390 0.00124 0.00124 
2-MNA 0.01572 0.01572 0.00556 0.00556 0.00050 0.00050 
d-MNA 0.00853 0.00853 0.00302 0.00302 0.00027 0.00027 
ANA 0.00005 0.00005 0.00002 0.00002 0.00000 0.00000 
FL 0.00123 0.00123 0.00044 0.00044 0.00004 0.00004 
PH 0.00014 0.00014 0.00005 0.00005 0.00000 0.00000 
FLAN 0.00004 0.00004 0.00002 0.00002 0.00000 0.00000 
Cd 0.00055 0.00055 0.00019 0.00019 0.00002 0.00002 
Cu 0.01476 0.01225 0.00522 0.00433 0.00047 0.00039 
Zn 0.88615 0.83830 0.31330 0.29638 0.02802 0.02651 

0.05484 0.05484 0.01939 0.01939 0.00173 0.00173 

TheRE values are also highly uncertain and change (increasing or decreasing) with the 

availability of data. For this study the PNEC values were fitted to different statistical 

distributions. A lognormal distribution was found to be the best fit for defining the 

response variability among the candidates. The PNEC fitted lognormal distribution is 

shown in Figure 4.4. A safety level at the lowest 1 01
h percentile on the response 

distribution was selected to save 90% of the ecological community. 

To calculate the 10111 percentile response and associated uncertainty, 1000 times bootstrap 

re-sampling was performed on the PNEC data. The use of re-sampling methods in 

ecological risk assessment has been discussed in Suter (1993). 
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Figure 4.4: Lognormal distribution fit to the PNEC empirical CDF of (Cd). 

To demonstrate bootstrapping it was asummed that the available PNEC data was a 

statistically random sample. Bootstrapping is quite accurate, with an adequate re-

sampling size and enough iteration (Manly, 1991). This method has the advantage of 

mathematical simplicity and ease of implementation with a computer. The greatest 

advantage of bootstrapping, however, is that no special distribution of data values is 

required, and the uncertainty of the estimate can be calculated easily (Manly, 1991). For 

this study a bootstrapping macro was written in MINIT AB version 15 notepad (Appendix 

-C) to develop cumulative distribution function (CDF) of the PNEC values. A set of 
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equation 4.13 was used in the bootstrapping macro to calculate lowest 10111 percentile of 

values. The calculated representative (RE) value is reported in Table 4.4. 

Y; = log(X;) 

f..Lr = mean(Y;) 

CTy =Std.(Y;) 

X P =e(f..L y -ZCTy) 

f..Lt o = _Lxto I B 

CTIO = _L(XIO -j..Ll0)2 /(B-l) 

(4.13) 

Where, Xi = PNEC values; P = percentile values (in this case 101
h percentile); Z =values 

from standard normal table corresponding to the percentile, in this case Z = 1.282; B= 

No. of bootstrap runs (1 000); )l1o = mean of lowest 1 01
h percentile values of PNEC (RE) 

and cr 10 = standard deviation of lowest 101
h percentile values of PNEC. The toxicants data 

and their PNEC values are reported in Tables 4.3. 

The lowest 101
h percentile values for all toxicants (or protection level of 90%) were 

determined and were compared with the U.S federal water quality criteria (USEPA, 2000 

and CCME, 1999) as shown in Table 4.4. 

Characterization of the ecological effects describes the effects induced by a stressor, links 

them to the assessment endpoints, and evaluates how they change with varying stressor 

levels (USEP A 1998). The ecological effects from the PW may be acute or chronic. The 

primary focus of this study is to characterize the acute effects on the marine species from 

PW. Associated uncertainties for the evaluation were determined by bootstrapping. 
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Table 4.3: Data statistics ofPNEC 

Toxicant Data Point Mean PNEC Stdev. ofPNEC 

(~g/L) (~-tg/L) 

Cadmium (Cd) 23 34 65.2 
Copper (Cu) 23 11.37 22.33 
Zinc (Zn) 23 50 75.5 
P AHs Compounds 
NA 15 162 507 
1-MNA 5 19.5 16.92 
2-MNA 7 10.23 8.82 
d-MNA 8 9.6 9.43 
ANA 6 14.0 9.89 
FL 4 9.00 5.90 
PH 3 3.40 2.430 
FLAN 5 2331 2990 

Notes: NA = naphthalene; 1-MNA = 1-methy lnaphthalene; 2-MNA = 2-
methylnaphthalenes; d-MNA = dimethylnaphthalenes; ANA = acenaphthene; FL = 
fluorine; PH = phenanthrene; FLAN = jluoranthene. 

4.3.3 Risk characterization 

Risk characterization is the final step m ERA and is the combination of planning, 

problem formulation, and analysis of predicted or adverse effects related to assessment 

endpoints. TI1e conclusions explained in the characterization provide information for 

environmental decision making. The associated uncertainties in the models are also 

discussed in this section. The hazard quotient (HQ) represents the ratio of the exposure 

concentration (EC) and the representative response values (RE). The HQ is a single 

number that represents the likelihood that a chemical will cause harm when the 

environment is exposed to it. The HQ of each contaminant can be calculated by the 

equation 4.14 as follows: 
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HQ=EC 
RE 

(4.14) 

Where, EC = exposure concentration calculated by equation (4.12) and RE = 

representative values. 

Table 4.4: Comparison ofRE values with standard water quality criteria ()..lg/L) 

Toxicant Lower lOth Stdv. ofRE (USEPA, (CCME, I 999) 
percentile PNEC (~Lg/L) 2000) 

(RE) (~g/L) FWQA 
Cadmium (Cd) 1.324 0.564 9.30 0.12 
Copper (Cu) 0.029 0.021 2.4 4.0 
Zinc (Zn) 1.203 0.19 81.0 30.0 
NA 4.30 - 1.4 
1-MNA 2.63 1.4 - -
2-MNA 3.02 1.40 - -
d-MNA 0.753 0.568 - -
ANA 6.558 0.435 - -
FL 3.49 1.010 - -
PH 1.2 10 0.570 - -
FLAN 1.72 0.20 - -

For risk management purposes it may be interesting to know the risk of a group of 

chemicals. The toxicities of individual hydrocarbons or hydrocarbon fractions are 

approximately additive in nature (Warne et al., 1989 and Van Wezel et al. , 1996). HQs 

for all the target organic chemicals in receiving waters can be summed which is 

equivalent to the total hazard of the target hydrocarbons. 

The assumption of an independent mode of action enables the use of statistical 

calculation rules for combining the independent probabilities (Jooste, 2000). For 

example, for the mixture of three chemicals, the total risk can be calculated by the 

following equations: 

Risk(A +B)= Risk(A) + Risk(B) - Risk(A) x Risk (B) ( 4.15) 
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Risk(A + B +C)= Risk(A +B)+ Risk( C)- Risk(A +B) x Risk( C) (4.16) 

Where, A, B, C = risks of contaminants A, B, and C respectively. Similar relation can be 

applied for more pollutants. 

4.3.4 Risk description 

The ecological risk is characterized by calculating the HQ. The HQ for exposure 

concentrations were calculated for selected stressors at different locations (Table 4.5). 

Table 4.5: Calculated risk from PW discharged in to a marine environment 

Toxicant HQ (50 m from HQ (100m HQ (500 m from 
discharge point) from discharge discharge point) 

point) 
Cadmjum (Cd) 0.00041 0.00015 0.00001 
Copper (Cu) 0.42252 0.14938 0.01336 
Zinc (Zn) 0.69684 0.24637 0.02204 
NA 0.01275 0.00451 0.00040 
1-MNA 0.0 1495 0.00529 0.00047 
2-MNA 0.00521 0.00184 0.00016 
d-MNA 0.01133 0.00401 0.00036 
ANA 0.0000 I 0.00000 0.00000 
FL 0.00035 0.00012 0.00001 
PH 0.00012 0.00004 0.00000 
FLAN 0.00003 0.00001 0.00000 

The HQs of individual P AH compounds were added together to obtained the combined 

risk. Figure 4.5 shows the ecological risks for different pollutants. The ecological safety 

level in the marine system is defined by HQ< 1. The HQ> 1 represents a level, at which 

marine ecological entities are in danger. 
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Figure 4.5: Acute risks from PW discharged in different cenanos 

4.4 Summary 

This chapter develops a methodology for ecological risk calculation from PW discharged 

to the ocean. Acute toxicity data of Cd, Cu, Zn and P AHs were used to characterize the 

risk. Based on the acute toxicity data PNEC values were derived. A safe level at the 

lowest 10111 percentile of PNEC was selected to save 90% of the ecological community. 

The lowest 10111 percentile values were assumed to the representative values (RE) for the 

whole ecosystem. The REs for Cd, Cu, Zn and P AHs were calculated and are reported in 

Table 4.4. The GMs of different discharge scenario were used to calculate exposure 

concentrations (ECs). The risk is characterized by HQ, which is the ratio of EC andRE. 

HQs less than one assumed the ecosystem was safe from acute toxicity. From this study 

even though the calculated acute risk seemed to show that the ecological community was 
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safe, but PW contained some carcinogenic pollutants like arsenic, P AHs with higher 

benzene ring (4-6), etc. These highly toxic pollutants at even very low concentrations can 

change the ecological balance. They have high bioaccumulation capability and they can 

easily enter to the human body through food chains. Detailed study is necessary to know 

the accurate risk from PW. 

The hazard quotients (HQ) for different PW management options were calculated and 

these values were used in the MCDM model to evaluate the PW management options. 
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Chapter 5 

EVALUATION METHODOLOGY FOR PRODUCED WATER 
MANAGEMENT 

This chapter deals with the various steps involved in the development of decision making 

tools for PW management. Unlike simple decision making problems in the real world this 

framework is designed for more than one criterion and alternative. With this 

consideration, the decision making tool can be considered as the MCDM technique 

(Turban and Meredith, 1991 ). Two separate analyses were conducted for this study, one 

with crisp values and another used fuzzy data. A crisp value is a less complex 

deterministic MCDM approach which uses single estimates of decision variables 

(Stansbury et a!., 1999), but it leads to uncertainty, and so fuzzy analysis was conducted 

to handle the uncertainty of the evaluation. Finally, comparing both results, the best 

management system was outlined. 

5.1 Structure of the methodology 

The organization of the methodology is shown in Figure 5.1. The evaluation of produced 

water management techniques is the major objective of this study. 
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5.1.1 MCDM models for this study 

The MCDM models for this study can be divided into two groups; The AHP technique 

that is integrated with the overall value model to develop the first model, and the F AHP 

method that is combined with the TOPSIS technique. Figure 5.2 shows the detailed 

MCDM models used in this study. 

Assign weights 
to criteria 

No 

Ecologi cal risk 

Apply 
MCDM models 

Identification of 
the problem 

Define goals and 
objectives 

Figure 5.1: Structure of the methodology 

5.2 Scoring schemes and criteria evaluation 

Final 
Decisio 

n 

The first step of MCDM is to identify the evaluation criteria. The criteria are the 

controlling factors in which PW management options will be scored in the evaluation. 

Therefore, the criteria must be chosen in such a way, so that they accurately reflect the 
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Issues with respect to PW management. The system that achieves the maxtmum 

objectives with the minimum cost is desirable. According to Gladwell and Loucks (1999) 

the selection of a PW management system should identify a set of evaluation criteria 

considering all the beneficial and adverse environmental, economical and social 

environmental effects. Haq et al. (200 1) recommended independent technology 

assessments in the decision making process to identify the potential technology to meet 

regulatory standards and innovation competitiveness. 

Figure 5.2: MCDM models for the study 
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5.2.1 Scoring scheme 

Scores are assigned numbers which represent the options' properties under each criterion. 

The scoring schemes used in the evaluation are divided into two types, subjective and 

quantitative. The first type of data provides qualitative information and linguistic 

variables are used to convert the scores, and the second type provides quantitative data. 

These scoring schemes are described below: 

Quantitative scheme 

Quantitative data such as the weight, footprint etc. are normalized to unit interval scaled 

values before being used in the evaluation. The normalization was conducted using linear 

value functions as shown in equation 5.1. As this type of data may have either increasing 

or decreasing values, two ranges of normalized scores were used. Positive scores with a 

range of 0 to 1 were given to those with increasing values and negative scores with a 

range of -1 to 0 were given to those with decreasing values. 

c 
r=±--~-

1 II (5.1) 

Ici 
i= l 

Where ri is the normalized value of the criteria Ci. 

An example of a quantitative scoring scheme and its calculation are given here for the 

'weights ' criterion which are considered loss criteria (the less weight, more preferable for 

an option). It is then assumed that the weights of the three alternatives A, B, and C are 15 
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ton, 18 ton, and 12 ton. Therefore, using equation 5.1 , the normalized scores for option 

'A' having weights 15 ton can be calculated as below. 

Normalized scores for A = -15/ (15+ 18+ 12) 

= -0.334 (negative sign indicating loss criteria) 

Calculation of unknown data 

In the case, where authentic quantitative data for an alternative were not found, the mean 

value of that criterion was calculated. The criteria mean values were assumed, and the 

alternative value and associated uncertainties were assigned 20% for that criteria score. 

The mean values of a criterion can be calculated by equation 5.2 as: 

Mean values (5.2) 

Where, X Mean unknown values; Cu criterion values for the corresponding 

alternatives and n = number of data point 

Subjective rankings 

Where quantitative data is not available, subjective rankings are used to measure the 

option. The subjective rankings are then converted into numbers with the help of a 

conversion scale. The conversion scale is divided and marked with the numbers of 0 to 1. 

Scores are then directly obtained by comparing the characteristics of each option with the 

conversion scale. Linguistic tenns are used to capture the subjective ranking. 
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Linguistic terms are not numbers but words or sentences in natural or artificial language 

(Kickert and Walter, 1978). In environmental and social studies, most of the information 

is imprecisely defined due to the unquantifiable nature of data or lack of proper 

knowledge. The experts often use linguistic scales (high, moderate, low or very good, 

good, and bad etc.) to express the existing scenarios. In this study, four linguistic terms: 

low (L), moderate (M), high (H) and extremely high (E), have been used. Too many 

linguistic terms make the evaluation process complex (Lee, 1996). Figure 5.3 shows the 

linguistic scales for this particular case. 

Scores 
1.0 

0.9 

0.7 

0.5 

0.3 

0 
E H M L 

Figure 5.3: The conver ion scale of linguistic variables 

To capture the subjective scores, the conversion scale as shown in Figure 5.3 is used 

unless otherwise mentioned. 
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5.2.2 Criteria evaluation 

In this study, criteria were divided into two distinct groups, threshold criterion and 

decision making criterion. 

Threshold Criterion 

The threshold criterion is used to screen out inappropriate options which are not likely to 

be selected as the optimum option at the end of the evaluation. The options that were 

unable to meet the regulatory oil and grease discharge standard limit described in Chapter 

2 (Table 2.2) were rejected and not considered for further evaluation. 

Decision Making Criteria 

The criteria which were used to evaluate and compare options are called decision making 

criteria. To compare PW management options, the decision making criteria were divided 

into four major categories. These are technical feasibility, environmental effects, cost, 

and health & safety. The detailed criteria hierarchy is shown in Figure 5.4. For the criteria 

hierarchy figure number in the bracket, the first digit represents the principle criteria and 

other digits are indicating the sub-criteria. The criteria used in this evaluation are briefly 

described below: 

Technical feasibility (C 1) 

Technical characteristics play an important role within the evaluation of any management 

system. Technical feasibility is a criteria category used to assess the options in tenns of 
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their technical performance. These criteria were sub-divided into lower level criteria as 

shown below (Modified from Worakanok, 2003). 

I Overall Scores (V) I 
I 

I I I l 
Technical Feasibility Environment Cost Health & safety 

I (CI) (C2) (CJ) (C4) 

Design Criteria H Ecological risk (C21) H Capital (C31) 

--f 
Human exposure I 

(C41) 

~ Technical H Energy H Operational 

Lf 
Ri k of Accident 

I convenience (C 11 ) consumption (C22) Cost (Cn) (Cd 

Foot print (C 12) -4 Associated Waste - Disper ed oil 

- Weight (C 13) 1- removal co t 

Solid wa te CC23) [per/kg] (C33) 
Capacity (CI4) I-I--

'---
Chemical uses 1-Liquid wa tes (C24) Dissolve oil 

(Cis) removal co t -
Gaseous emissions [per/kg] (C34) 

~ Chemical removal 
'--

efficiency 

1-
Green house gases 

BTEX removal (C2s) __, 
(CI6) Non green house 

PAH removal 

I 
-

gases (C26) __, 
(C!7) 

H NPDs removal 
(C,s) 

1-
Di persed oil 
removal (C19) 

Disssolve oil 
1-

removal (C110) 

~ Metal removal 
(CJII) 

y Pre or post 
treatment (C112) 

Figure 5.4: Criteria hierarchy structure 
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Technical convenience (Ctt) 

The technical convenience is an important criterion in evaluation of the technology. The 

technical convenience can include the minimum number of moving parts, easy access for 

inspection and minimum sensitivity to other activities on the platform. Impacts might be 

effect when the technology is under operation or idle. For example, other activities that 

might be affected by the technology are vessel movement particularly in offshore 

operations. This criterion was evaluated subjectively, considering the levels of 

convenience and positive values were used for the assigned scores. To calculate the score 

the conversion scale shown in Figure 5.5 was used. 

Scores 
1.0 

0.9 

0.7 

0.5 

0.3 

0 

------------------------------------------4 

Lc Me He VHc 

Legend 
Lc = low convenience 
Me = moderate 
convenience 
He = high convenience 
VH c = very high 
convenience 

Figure 5.5: Conversion scale for technical convenience criteria 

Foot print (C12) 
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As offshore platforms nonnally have area constraints, the total area of a management 

system is also important for the offshore application. This criterion was evaluated 

quantitatively and negative values were used for the assigned scores. 

Weight (C 13) 

As offshore platforms normally have weight constraints, the total weight of a 

management system is also important for the offshore application. This criterion was 

evaluated quantitatively and negative values were used for the assigned scores. 

Capacity (C14) 

This option was scored and the criterion was evaluated based on the designed PW 

handling capacity by the technology. The capacity of the system IS desirable hence 

positive values were used for its scores. 

Chemical usage (Cis) 

According to the (UKDTLR, 2001), a considerable amount of chemicals are used for 

treatment of PW that are entering the marine waters (Henderson et al ; 1999). The amount 

of chemicals required for the implementation of a management system was a criterion for 

this evaluation. During the separation process of PW, several chemicals are added at 

various stages to aid the oil and water separation and to mitigate operational problems 

such as corrosion and scale formation. With an increasing water production the amount of 

chemicals is increased, that has a significant environmental effect (Hendersson et al , 
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1999). The most commonly used production chemicals are flocculants, emulsion 

breakers, corrosion inhibitors, scale inhibitors and antifoam where injection chemicals 

include biocide, antifoam, oxygen scavenger and scale inhibitor and most of these 

chemicals are toxic (Hendersson et al, 1999). The use of chemicals totally depends on 

PW quality which may change from field to field and depending on the well life and 

property of drilling fluids. The criterion was evaluated subjectively by considering the 

quantity of chemicals used by the technology. The scores can be obtained directly by 

comparing the technology with Figure 5.3. Positive values were used for this score. 

Chemical removal efficiency 

BTEX removal efficiency (C t6) 

BTEX (benzene, toluene, ethylbenzene and xylenes) compounds are highly volatile 

aromatic compounds found in PW. BTEX compounds are moderately soluble in seawater 

and biodegrade rapidly in the water column (OGP 2005). BTEX compow1ds have a 

moderate affinity for partitioning into lipid tissues of aquatic organisms and sorption to 

organic matter (OGP 2005). Exposure to BTEX can occur by ingestion (conswning 

water contaminated with BTEX), inhalation (exposure to BTEX present in the air) or 

absorption through the skin. Absorption of these chemicals may be by spilling PW onto 

one's skin. There is sufficient evidence to believe that benzene is a human carcinogen. 

Workers exposed to high levels of benzene were found to have an increased incidence of 

leukemia. Considering the environmental impact, BTEX removal efficiency by the 

system is included as decision criteria in the evaluation. This criterion was evaluated 
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quantitatively. The BTEX removal efficiency of the technology 1s considered with 

positive scores. 

PAHs removal efficiency (C 17) 

PAHs are hydrocarbon molecules with several cyclic rings present in PW. They are 

relatively insoluble and their potential for bioaccumulation increases with increasing 

molecular weight (OGP, 2005). PAHs increase biological oxygen demand, and are highly 

toxic to aquatic organisms. Some of the PAH compounds are carcinogenic to man and 

animals (Veil et al., 2004). PAHs are potentially hazardous substances in the 

environment. They may have acute and chronic toxic effects on survival, feeding, 

reproduction and behavior of organisms (Bispo et al., 1999). The concentration of higher 

molecular weight P AHs with four rings or more in crude oil are low and are usually 

present at very low concentrations in PW (OGP, 2005). They bind strongly to organic 

matter contributing to their persistency (Neff, 2002). Considering the environmental 

impact of P AHs, they are included as a decision criterion in the evaluation of PW 

treatment technology. This criterion was evaluated quantitatively. P AH compounds 

should be as low as possible in the environment, and hence the P AH removal efficiency 

of the technology is considered positive scores. 

NPD removal efficiency (CIs) 

Some treatment systems can remove NPD (naphthalene, phenanthrene and 

dibenzothiophene), 2-3 ring aromatic compounds, including their Cl-C3 alkyl 
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homologues. The percentages of removal efficiency were used as scoring values. For 

those treatment systems that can not remove NPD, this study used 0%. This criterion was 

evaluated quantitatively in the same way as PAHs. 

Dispersed Oil removal efficiency (C19) 

Oil is an important discharge contaminant, because it can create potentially toxic effects 

near the discharge point. Dispersed oil consists of small droplets suspended in the 

aqueous phase. If the dispersed oil contacts the ocean floor, contamination and 

accumulation of oil on ocean sediments may occur, which can disturb the benthic 

community (Veil et al., 2004). Dispersed oils can also rise to the surface and spread, 

causing sheening and increased biological oxygen demand near the mixing zone 

(Stephenson, 1992). Factors that affect the concentration of dispersed oil in PW include 

oil density, interfacial tension between oil and water phases, type and efficiency of 

chemical treatment, and type, size, and efficiency of the physical separation equipment 

(Stephenson, 1992; OGP, 2005). This criterion was evaluated quantitatively and positive 

values were assigned to scores. 

Dissolved Oil removal efficiency (C110) 

Dissolved Oil are likely contributors to PW toxicity, and their toxicities are additive, 

although individually the toxicities are insignificant, when combined, aquatic toxicity 

may occur (Stephenson, 1992). Reduction of dissolved oil is essential before being 

discharged. This criterion was evaluated quantitatively depending on the percentage 
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removal efficiency by the management system, and positive values were assigned to 

criterion scores. 

Metals removal efficiency (C 111) 

There are scientific concerns about the significant amount of heavy metals introduced 

into the marine environment by the petroleum industry during the exploration and 

production phases. The concentration of metals in PW depends on the field, particularly 

with respect to the age and geology of the fonnation from which the oil and gas are 

produced (Veil eta!. 2004). Metal typically found in PW include zinc, lead, manganese, 

iron, mercury and barium. Metals concentrations in PW are often higher than those in the 

seawater (OGP 2005). However, potential impacts on marine organisms may be low, 

because dilution reduces the concentration (Stephenson, 1992). Many trace metals are 

found in PW and a few have been shown to accumulate in marine organisms significantly 

(Neff, 2002). Besides toxicity, metals can cause production problems. For example, iron 

in PW can react with oxygen in the air to produce solids, which can interfere with 

processing equipment, such as hydrocyclones, and can plug formations during injection. 

This criterion was evaluated quantitatively and scored positively. 

Requirement of pre- or post-treatment (C 112) 

Most of the treatment technologies require pre- or post-treatments to improve efficiency, 

to achieve better quality, to handle byproducts, etc. The extent of such requirements 

significantly contributes to the overall performance but also adds to the cost, facilities, 
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and technological complexity. This criterion was evaluated subjectively by the five 

categories shown in Table 5.1 and scored positively. 

Table 5.1 : Subjective scoring of pre- or post-treatment requirement criteria 

Pre/Post treatment requirement 
Scores 

Basic: cooling, heating, settling, impoundment, etc. 0.9 
Primary: pH adjustment, softening, de-oiling, suspended solid 
removal, + technologies 0.7 

Primary: pH adjustment, softening, chemical addition, de-oiling, 
suspended solids removal, sand filtration, etc. + technologies 0.5 

Moderate: regeneration, fouling prevention, trickling filter, 
constructed wetlands, ionization and removal, UF, Nano - Filtration, 0.3 
low pressure RO, etc. + technologies 

Significant: high pressure filtration, high pressure RO, NORM 
treatment, etc. + technologies 0.1 

Environment (C2) 

Ecological risk (C21) 

One objective of the water treatment technology regarding the environmental impact is to 

mtmmtze negative effects in the immediate marine environment. Concerning the 

treatment of PW, the effects to the marme environment can be determined by the 

concentration of the constituents discharged to the ocean by technology. Ecological risk 

assessment is an important tool used to determine the ecological impact. For this 

ecological risk assessment a tool was used to detennine the ecological risk in the marine 

environment posed by the management systems. The hazard quotient (HQ) is the ratio of 

the predicted environmental concentration (PEC) and the predicted non-effect 

concentration (PNEC). The PEC/PNEC ratio is used to characterize the maximum 
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environmental risk for the ecosystems. This criterion was evaluated quantitatively based 

on the calculated risk and negative values were used for the assigned scores. 

Energy consumption (C22) 

The energy consumption of each technology was considered the total energy used in the 

treatment process to treat a specific amount of PW. Due to lack of proper information 

linguistic terms like low, moderate, high etc. are used to express the energy consumption 

by the technology. Figure 5.3 in previous section was used to calculate the scores. 

Solid wastes (C23) 

During the treatment of PW, some treatment processes or other associated processes 

generate solid wastes. These wastes are, for example, process sludge and filter media 

which require further treatment or appropriate disposal. This criterion was evaluated 

subjectively based on the quantity and toxicity of solid wastes. The linguistic tenns were 

directly mapped with Figure 5.3 in previous section to calculate criterion scores. Positive 

values were used for the assigned scores. 

Liquid wastes (C24) 

Some treatment processes or other associated processes generate liquid wastes, such as 

washing liquid and solvents used to extract contaminants from the PW or gas stream. 

These liquid wastes may or may not require appropriate treatment or disposal. This 
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criterion was subjectively measured similarly to the solid wastes but in this study only the 

toxicity of the wastes was considered. 

Gaseous emissions 

The reduction of the total emission into the air has a high priority and is one of the most 

important environmental challenges connected to the oil and gas industry. At the PW 

treatment technology, the main greenhouse gas emissions are methane and carbon 

dioxide. Each greenhouse gas molecule adsorbs different quantities of radiation and has 

different life spans in the atmosphere. Therefore, different greenhouse gases have 

different contributions to the greenhouse effect. According to Hendriksen (2001 ), the 

global warming potential and acid air emission could be included as a decision criterion 

in the evaluation of PW treatment technology. This criterion is further divided as follows : 

Green house gases emissions (C25) 

This criterion considers the amounts of greenhouse gases generated from the treatment 

process. This criterion was evaluated subjectively based on the quantity of greenhouse 

gas emissions by treatment process. Linguistic terms like low, moderate, high etc. were 

used to express the quantity of gases emitted. Figure 5.3 (in previous section) was used to 

calculate the scores. Positive values were used for the assigned scores. 

Non green house gases emissions (C26) 
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This criterion was evaluated subjectively based on the quantity of non greenhouse gase 

(particulate matter (PM), ammonia, and total hydrocarbons) generated from the treatment 

process. Linguistic terms like low, moderate, high etc. are used to express the quantity of 

gases generated by the technology. Figure 5.3 was used to calculate the scores. Positive 

values were used for the assigned scores. 

Costs (C3) 

Under the costs category, capital and operational costs of the options were considered. 

Capital costs (CJt) 

The rental or purchase cost in using a technology is considered under this criterion. This 

criterion was evaluated quantitatively by considering the actual cost required by the 

technology. Negative values were used for the assigning the criterion scores. 

Operational costs (C32) 

Operational costs for PW treatment systems consist of the costs involved in running the 

plant. These include costs for chemicals, electrical power, operation, control and 

maintenance. The operational cost is one of the most important factors of any treatment 

plant and for this reason the operational costs criteria was considered as the decision 

making criteria .The operational cost of a treatment system was con idered based on the 

cost of handling a specific amount of PW. This criterion was evaluated quantitatively by 

considering the actual cost required by the systems. Negative values were used for the 

assigning the criterion scores. 
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Per kilogram (kg) dispersed oil removal costs (C33) 

This cost of a technology was considered based on the actual amount of money required 

to remove per kg of dispersed oil from PW. This criterion was evaluated quantitatively by 

considering the actual cost required by the technology and negative values were used for 

the assigned scores. 

Per kilogram (kg) dissolved oil removal costs (C34) 

This cost of a technology was considered based on the actual amount of money required 

to remove per kg of dissolved oil from PW. This criterion was evaluated quantitatively by 

considering the actual cost required by the technology and negative values were used for 

the assigned scores. 

Health and Safety (C4) 

In industrial operations health and safety factors should be taken care of in a special way. 

The possible safety impacts shall be reduced as low as possible in a reasonable manner. 

For a safer design the management principle should be the elimination and minimization 

of hazards (UKOOA, 1999). The safety and risk is dealt with a design and operational 

parameter in the same way as economy, production capacity and functionality (Skramstad 

et al. 1998). Safety aspects are of high importance in the decision of the selection of the 

main layout and arrangements, operational aspects and structural elements. In PW 

treatment, the objective is to ensure that accident and hazardous incidents such as fires, 

leaks or material damage have a minimum frequency of occurrence (Vinnem, 1999). 
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From the literature it is clear that any accident can destroy the environment and 

ecosystem. Considering its importance, the health and safety criterion is considered as a 

decision criterion in selecting the PW management system. This criterion is divided into 

human exposure and risks from accident as described below. 

Human exposure (C4t) 

The evaluation measure for this criterion was human risks associated with handling and 

operating the PW treatment process. For example, the systems whose parts are covered 

and do not require close control by humans were assigned high scores as they prevent 

operators from direct contact with wastes or inhalation of volatile contaminants. This 

criterion was evaluated subjectively by considering the tisk levels of operators. Linguistic 

terms such as low, moderate, high etc. were used to express the risk level by the 

technology, with low meaning the level of risk for an operator was minimal. Figure 5.3 

was used to calculate the scores. Positive values were used for the assigned scores. 

Risks of accident (C42) 

Under this criterion, accidents which were associated with the PW management system 

were considered. This included fires, leaks or material damage, and spills etc. This 

criterion was evaluated subjectively by considering the levels of accident; Linguistic 

terms such as low, moderate, high etc. were used to express the accident levels by the 

teclmology, with low mean the level of accidents was minimal. Figure 5.3 was used to 

calculate the scores. Positive values were used for the assigned scores. 
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5.2.3 Evaluation measure 

The evaluation measure is an important tool uses in decision problems, and it describes 

the performance of an action with respect to criteria, scenarios and decision makers 

(Beroggi, I 999). In this study evaluation measures were used to measure alternatives 

under the corresponding criteria, and divided into two groups. The first group included 

those providing quantitative values while the other provided qualitative values. The 

quantitative values were then normalized using single value functions, and the qualitative 

values were subjectively ranked and converted into numbers by conversion scales. The 

evaluation measures of the 24 criteria used in this study are summarized in Table 5.2. 

5.3 Selection of alternatives 

Alternatives are distinct potential solutions, which conveti the initial state to the desired 

state. Alternatives should differ from each other. Alternatives can be discovered in many 

ways such as through brainstonning, by examination or because of requirements (Baker 

et al., 2001). Alternatives must be defined at a level that enables comparative analysis. 

This may take a good written description or diagram of the specific functions performed 

by the alternatives. The diagram should be adequately detailed to describe the differences 

between the alternatives. Generally, the alternatives should have the ability to meet the 

requirements and goals. 
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Table 5.2: Criteria and evaluation measures 

No Criteria Measures Scores 
sign 

Technical feasibility (C1) 

I Technical convenience (C11 ) Subjective ranking: Considering the levels of (+) 
convenience 

2 Foot print (C12) Quantitatively: Total area (m2) (-) 
3 Weight (C13) Quantitatively: Total weight (ton) (-) 
4 Capacity (C14) Quantitatively: Design capacity (M3/hr) (+) 
5 Chemical usage (C 15) Subjective ranking: Level of acceptance (+) 

depending amount and type of chemicals use. 
6 BTEX removal efficiency (C16) Quantitatively: Removal Efficiency_(_%) (+) 
7 PAHs removal efficiency (C17) Quantitatively: Removal Efficiency(%) (+) 
8 NPD removal efficiency (C18) Quantitatively: Removal Efficiency(%) (+J 
9 Dispersed Oil removal Quantitatively: Removal Efficiency(%) (+) 

efficiency (C,9) 
10 Dissolved Oil removal Quantitatively: Removal Efficiency(%) (+) 

efficiency (C110) 
II Metals removal efficiency Quantitatively: Removal Efficiency(%) (+) 

(CIII) 
12 Requirement of pre- or post- Subjective ranking: (+) 

treatment (C112) 
Environment (C2) 

13 Ecological risk (C21) Quantitatively: Calculated risk ( -) 
14 Energy consumption (C22) Quantitatively: Total energy consume per m3 (+) 

ofPW (KJ/M3) 
15 Solid wastes (C23) Subjective ranking: Quantity and toxicity. (+) 
16 Liquid wastes (C24) Subjective ranking: Volume and toxicity. (+) 
17 Green house gases emissions Subjective ranking: GHG emitted (+) 

(C2s) 
18 Non green house gases Subjective ranking: Non GHG emitted (+) 

emissions (C26) 
Costs (C3) 

19 Capital costs (C31) Quantitatively: Rental or purchased cost (-) 
(Euro) 

20 Operational costs (C32) Quantitatively: Operational cost (Euro/yr) (-) 
21 Per kilogram (kg) dispersed oil Quantitatively: per kg removal cost (Euro/kg) (-) 

removal costs (C33) 
22 Per kilogram (kg) dissolved oil Quantitatively: per kg removal cost (Eurolkg) (-) 

removal costs (C34) 
Health and Safety (C4) 

23 Human exposure (C41) Subjective ranking: Type and level of (+) 
exposure 

24 Risks of accident (C42) Subjective ranking: Type and level of (+) 
accident. 
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The PW management options which were unable to meet the regulatory oil and grea e 

discharge standard described in Chapter 2 were not considered for further consideration. 

5.3.1 Screening 

Generally, the screening of selected alternatives focuses more on potential alternatives. 

However, as one of the purposes of this study was to provide a general idea of the PW 

management options suitable for offshore platform, screening the offshore applicability 

and regulations was given more preference. 

5.4 Data Acquisition 

The data required to perform the evaluation were collected from sources such as joumal 

papers and reports. The quantitative data were collected from literature sources and 

qualitative data were generated through subjective judgment by a questionnaires format 

in Appendix-E. 

5.4.1 Data Modifications 

The data, which were collected from vanous sources, have mixed characteristics. 

Therefore, some modifications were needed to be made in order to u e the data in this 

study. Some assumptions were also made in order to score the options, where data was 

missing. Some necessary assumptions and calculations of data for the evaluation are 

presented in detail in the case study in Chapter 6. 
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5.5 Assignment of Weights 

Among many weighting methods described in Chapter 2, the AHP was selected for this 

evaluation when dealing with traditional methods, and the AHP weighting method, the 

pair wise comparison for priority of different hierarchy level was performed and the 

relative matrix was formed . An eigenvalue problem is considered to solve the pair-wise 

comparison matrix. On the other hand, when dealing with the fuzzy based approach, the 

F AHP was used to calculate the weighting factors. Details of this process were described 

in Chapter 3. 

5.6 Overall Scoring 

Overall scores are numbers used to represent the final ranking of the management system. 

Higher overall values indicate the better performance of the management system. Due to 

their simplicity, easily understood additive mathematical models were used to calculate 

overall scores, when the traditional AHP method was used. However, when the fuzzy 

based approach was considered, the TOPSIS technique was used for the overall scores 

calculation. Details of these approaches were discussed in Chapter 3. 

5. 7 Uncertainty analysis 

In order to identify the reliability of the final results, the study also conducted uncertainty 

analysis. The general equation 5.3 for uncertainty analysis (Coleman and Steele, 1989) 

was used for this purpose, where, r is the overall value as shown in equation 5.4. After 
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detennining the values of r the simplified from of equation 5.3 is equation 5.4, was used 

to calculate the uncertainty. 

U , = [(..E!.__u x )

2 

+ (~u x, )

2 

a xl I a x 2 . 

2]1 /2 
+ • · • · + [ :;•j u X j l (5.3) 

II 

r = LCuW; 
i = l 

[ ]
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Where, r = data reduction factor, n is equal to number of criterion, and Ui is equal to 

uncertainty under the rir criteria. In this study, it is assumed that the uncertainties follow 

a normal distribution function with a variance of 20%. According to this assumption, the 

uncertainties for any mean value Ci will be 0.2Ci. From equation 5.4 substituting the 

values of Ci with 0.2Ci will give the final uncertainties. Where Ci = the criterion scores. 

5.8 Sensitivity analysis 

To detennine the sensitivity of the evaluation results, this study varied the criteria 

weights to observe new overall values and alternative ranks. In addition this analysis 

assured that the weights used in the evaluation were well defined among the criteria. 

Table 5.3: Alternative weights structure 

Case Criteria Change in criteria weights 
I Technical Feasibility 30% increase others decreased 
2 Environment 30% increase others decreased 
3 Health & safety 30% increase others decreased 
4 Cost 30% increase others decreased 
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Figure 5.6: Alternative weights calculation for the criteria 

Four sets of analyses (Table 5.3) were conducted by specifying new weights for one 

criterion or a group of criteria and adjusting the weights of the other criteria 

proportionally. In all cases, the total weights sumed to one. Therefore, once one criterion 

weight was increased, the others were decreased. For example, as shown in Figure 5.6, 

the weight of technical feasibility criteria 0.30 was increased by 30% and other criteria 

were decreased proportionally in order to make the sum of the total weights equal to one. 

5.9 Summary 

This chapter has discussed the evaluation methodology for the PW management system. 

To develop the MCDM methodology two MCDM approaches, the traditional method and 

the fuzzy based technique were used. Each criteria and relation to this study was 

discussed in detail. To determine the uncertainty it was assumed that the variance of the 
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mean values were 20%. Sensitivity analysis was done by changing the criteria weights. 

In this methodology the original criteria weights were changed by 30%. Once a criterion 

weight was increased by 30%, others criteria weights were decreased proportionally so 

that the sum of all criteria weights remained one. 
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Chapter 6 

APPLICATION OF THE PROPOSED METHODOLOGY: A 
HYPOTHETICAL CASE STUDY 

6.1 Introduction 

To demonstrate the proposed methodology a simple hypothetical case study applicable 

for PW management in offshore oil and gas industries was introduced. Depending on the 

data availability six PW treatment technologies, namely macro porous polymer extraction 

(A1), steam stripping (A2), produced water reinjection (A3), compact flotation unit (A4), 

C- tour process (A5), and downhole oil water separation (A6) were evaluated using 24 

selected criteria. The details of these technologies were discussed in Chapter 2. Two 

MCDM models described in Chapter 3 were applied to rank the selected alternatives 

according to their performance in the oil and gas field. The following section discusses 

the detailed steps involved in both methodologies. 

6.2 Application of traditional method 

In traditional frameworks an additive value model was integrated with the AHP to 

enhance the decision making process. The linguistic approach was applied to capture the 

subjective judgment of decision makers in the absence of quantitative data. This 

framework is the combination of the following steps. 
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6.2.1 Defining criteria 

The criteria were the controlling factors under which the options were scored during the 

evaluation. This study used four major criteria namely, technical feasibility, 

enviromnental, costs effects, and health and safety. 

Table 6.1: The criteria hierarchical structure of the case study 

No Criteria Criteria symbol 
Technical feasibility c, 

I Technical convenience c,, 
2 Foot print c,2 
3 Weight cl3 
4 Capacity c,4 
5 Chemical usage C,s 
6 BTEX removal efficiency c,6 
7 P AHs removal efficiency cl7 
8 NPD removal efficiency C,s 
9 Dispersed Oil removal efficiency c,9 
10 Dissolved Oil removal efficiency CttO 
II Metals removal efficiency C11t 
12 _pre- or post-treatment Ctt2 

Environment Cz 
13 Ecological risk C2t 
14 Energy consumption Cn 
15 Solid wastes C23 
16 Liquid wastes C24 
17 Green house gases emissions C2s 
18 Non green house gases emissions Cz6 
19 Costs c3 

Capital costs C31 
20 Operational costs C32 
21 Per kilogram (kg) dispersed oil removal costs C33 
22 Per kilogram (kg) dissolved oil removal costs C34 
23 Health and Safety c4 

Human exposure C4t 
24 Risks of accident C42 

The criteria were selected based on the literature review and experience. Table 6.1 shows 

the criteria structure for this study. The criteria were evaluated both quantitatively and 
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subjectively. The criteria C12, Ct3, C14, C, s, C1 6, CI7, C, s, C,9, C,, o, C,,, , C21, C31 , C32, C33, and 

C34 were considered quantitative and the other criteria were treated subjectively. 

Depending on the course of action the criteria were given positive (+) or negative (-) 

scores. For positive (+) scores it was assumed that the high values for the criteria were 

preferable, on the other hand negative (-) signs indicated low values of the criteria, less 

desirable. For example weight criteria, for offshore installations should be as low as 

possible and low values were preferred for the criteria. 

6.2.2 Data Acquisition 

Two types of data were used in this study; quantitative and qualitative. Quantitative data 

are measurable numerical values which can be expressed by a unit such as ton, meter, etc 

and the qualitative data are non measurable and represent the quality of the products. 

Linguistic terms like very good, good, bad, very bad etc were used to represent the 

qualitative data. The linguistic judgement was converted to numeric values by the 

appropriate conversion scale. 

Quantitative data 

Quantitative data such as the weight and size were collected from different sources 

including OSP AR (2002, 2006) and Ekins et al. (2005) and reported in Appendix-A. In 

the case where authentic quantitative data for an alternative was not found the criteria 

mean values were calculated with equation 5.2 and used as alternative values, and at the 

same time the associated uncertainties were assigned 20% for these criteria. The data 
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were then normalized to unity with the equation 5.1 . Normalized values for different 

alternatives are reported in Table 6.2. 

Table 6.2: Aaltematives' normalized scores for quantitative criteria 

Normalized scores 

c) Technical Feasibility AI A2 A3 A4 AS A6 

c12 Foot print -0.248 -0.331 -0.265 -0.113 -0.044 0.000 
Cl3 Weight -0.268 -0.244 -0.244 -0.195 -0.049 0.000 

C14 Capacity 0.011 0.007 0.007 0.592 0.192 0.192 

cl6 BTEX removal efficiency 0.248 0.226 0.251 0. 150 0.000 0.125 

c11 P AHs removal efficiency 0.237 0.215 0.239 0.094 0.094 0. 120 

C1s NPD removal efficiency 0.232 0.21 1 0.235 0.040 0.164 0. 117 

C19 Dispersed Oil removal 
efficiency 0.217 0. 186 0.219 0.137 0.131 0.110 

c11o Dissolved Oil removal 
efficiency 0.292 0.265 0.295 0.000 0.000 0.147 

c))) Metals removal 
efficiency 0.000 0.000 0.667 0.000 0.000 0.333 

c2 Environment - - - - - -

c 21 Ecological risk -0.217 -0.218 -0.002 -0.224 -0.224 -0.114 

c3 Costs - - - - - -
C31 Capital costs -0.039 -0.064 -0.465 -0.167 -0. 167 -0.098 

C32 Operational costs -0.048 -0.075 -0.402 -0.167 -0.167 -0.142 

C33 Per kilogram (kg) 
dispersed oil removal 
costs -0.035 -0.055 -0.383 -0.167 -0.167 -0.1 93 

c 34 Per kilogram (kg) 
dissolved o il removal 
costs -0.110 -0.0 18 -0.534 -0.167 -0 .1 67 -0.004 

Qualitative /Subjective data 

For this study the subjective criteria were judged according to questionnaires in Appendix 

E. Details of subjective rankings were discussed in Chapter 5. Three expert's judgments 

were proposed to eliminate the judgment ambiguity. The linguistic terms described in 

Chapter 5 were used to assign the subjective judgments. The detailed judgments are 
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reported in Table 6.3. To calculate the cnsp scores the linguistic terms are directly 

mapped with the respective conversion scales described in Chapter 5. 

Table 6.3: Subjective judgment of alternatives 

Altern c,, C,s cll2 C22 C23 C24 Czs Cz6 c4, C42 
atives 

Expert -I A, MC L B L M M L M M L 

A z HC L B L L L L M M L 

A3 MC M c H M M H H M M 

A4 HC M B L M M L M M M 

AS HC M B M L L M M M M 

A6 LC M 0 H M M H H M M 

Expert -2 A, HC M B L M M M M L M 

Az MC M B L L L M L L M 

A3 LC M c H M M M M M M 

A4 HC L B L L L M M M L 

AS MC M B M M M M M L M 

A6 LC M 0 H M M H M M M 

Expert -3 A, MC M B M L L M M M M 

A2 HC L B M L L M L M M 

A3 LC M c M L L M M M M 

A4 MC L B L L L M M M L 

AS HC M B M M M M M M M 

A6 MC L c M M M M M M M 

The average crisp score was considered the criteria score. For example the subjective 

scores for criteria C11 for alternative A1 were calculated as: 

Score Cts = - (L+M+M)/3 = (0.9+0.7+0.7)/3 = 0.767. 

Similarly all subjective judgments were scores for different criteria and are reported in 

Table 6.4. 
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Table 6.4: Alternatives scores for subjective criteria 

Alternative c,, C,s c112 c22 C23 C24 C2s C26 c4, c42 
s 

A, 
0.633 0.833 0.700 0.833 0.767 0.767 0.767 0.767 0.767 0.767 

A2 0.633 0.833 0.700 0.833 0.900 0.900 0.767 0.833 0.767 0.767 

A3 0.367 0.700 0.500 0.567 0.767 0.767 0.633 0.633 0.700 0.700 

A4 0.633 0.833 0.700 0.900 0.833 0.833 0.767 0.700 0.700 0.833 

AS 0.633 0.700 0.700 0.700 0.767 0.767 0.700 0.700 0.767 0.700 

A6 0.367 0.767 0.367 0.567 0.700 0.700 0.567 0.633 0.700 0.700 

6.2.3 Weights calculation 

Once the decision hierarchy was constructed, the next important task was the weight 

calculation for the criteria. When dealing with the traditional method, the AHP mentioned 

in Chapter 3 was used to calculate criteria weights. Pair-wise comparisons were made 

between the elements at each level of the hierarchy with respect to the connected element 

in the level above. In order to make comparisons between the elements at each level of 

the hierarchy, the pair-wise comparisons matrix (PCM) was judged for different 

hierarchy levels as matrixes AG for the top level, and matrix Ac1, Ac2, and Ac3 represented 

the PCM under criteria C 1, C2, and C3 respectively. It was assumed that the sub-criteria 

under criterion C4 were equally important. The individual PCM with consistency ratios of 

less than 0.1 were aggregated using the geometric mean method discussed in Chapter 3. 

The matrix AG represents the PCM with respect to a goal. The maximum eigenvalue of 
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AG was found to be Amax = 4.29 and the corresponding eigenvectors are shown in Table 

6.5. 

Matrix AG 

C1 C2 C3 C4 

C1 1 1.0 4 2 
C2 1.0 1 2 3 
C3 0.25 0.5 1 5 
C4 0.5 0.333 0 .2 

Table 6.5: Eigenvector ofPCM AG 

Matrix Ac1 

c11 

c12 

cl3 
C14 
C1s 

cl6 

Cn 

C1s 
C19 
c11o 

c111 

c11 2 

1 

0.79 

1.09 

0.97 

1.04 

1.04 

1.03 

1.02 

1.01 

1.03 

1.02 
1.0 I 

1.27 0.91 

1 0.79 
1.27 I 

0.92 0.79 

1.00 0.97 

1.00 1.00 

0.99 0.99 

0.99 0.99 

1.00 1.00 

0.99 0.99 

0.99 0.99 
1.00 1.00 

Matrix AC2 

I 
0.789 
1.093 
0.965 
1.04 
1.04 

1.04 0.96 

1.09 1.0 I 

1.27 1.04 

1 0.86 

1.16 I 

1.04 1.00 

1.03 0.99 

1.02 0.99 

1.01 1.00 

1.03 0.99 

1.02 0.99 
1.0 I 1.00 

-
1.267 

I 

1.266 
0.920 
0.995 
0.995 

0.96 0.97 0.98 0.99 

1.0 I 1.0 I 1.0 I 1.01 

1.0 I 1.01 1.0 I 1.0 I 

0.96 0.97 0.98 0.99 

1.01 1.01 1.0 I 1.0 I 

I 1.27 0.91 1.04 

0.79 1 0.79 1.09 

1.09 1.27 I 1.27 

0.97 0.92 0.79 I 

0.79 0.79 0.79 0.79 

1.09 1.09 1.09 1.09 

0.97 0.97 0.97 0.97 

-
0.915 1.036 0.962 
0.790 1.087 1.005 

I 1.272 1.036 
0.786 1 0.859 
0.965 1.164 I 
0.995 1.040 0.995 

0.97 0.98 0.99 

1.01 1.01 1.0 I 

1.01 1.01 1.01 

0.97 0.98 0.99 

1.0 I 1.0 I 1.0 I 

1.27 0.91 1.04 

1.27 0.91 1.04 

1.27 0.91 1.04 

1.27 0.91 1.04 

I 0.91 1.04 

1.09 I 1.04 

0.97 0.97 1 

0.962 
1.005 
1.005 
0.962 
1.005 

I 
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The consistency ratio (CR) was calculated with equations 3.25 and 3.26 and found for 

matrix Aa to be 0.080, which is Jess than 0.1, so the matrix Aa with respect to the goal 

can be considered to be consistent. The eigenvector of the PCM was considered to be the 

normalized weight factors of the corresponding criteria. Similarly the maximum 

eigenvalue (A-max) of the remaining PCM Ac1 , Ac2, and ACJ, were found to be 12.035, 

6.012 and 4.029 respectively. 

Matrix Ac3 

C31 c32 C33 c34 

C31 1 1.267 1.093 1.036 

c32 0.789 1 1.266 1.088 

c33 0.915 0.79 1 1.272 

c34 0.965 0.92 0.786 

The weighting factors of these matrixes were calculated from the corresponding 

eigenvector and normalized to the upper level weight factors. A simple example is given 

here to show the weighting calculation procedure. For the matrix AC3 the eigenvectors 

were found to be 1.09, 1.019, 0.979 and 0.911 for the criteria C31, C32, C33 and C 34 

respectively, and then the weighting factors were calculated as shown in Table 6.6. 

Table 6.6: Example for weight factors calculation 

Criteria eigenvector Weights factors 

C31 1.090 = ( 1.090*0.2)/4.0 = 0.055 

C32 1.019 = (I .019*0.2)/4.0 = 0.051 

C33 0.979 = (0.979*0.2)/4.0 = 0.049 

C34 0.911 = (0.911 *0.2)/4.0 = 0.046 

Sum= 4.000 
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Similarly all weighting factors were calculated and reported in Table 6.7. The CR of the 

PCM Ac1, Ac2, and Ac3, were found to be 0.002, 0.01 and 0.003 respectively which 

indicates that the PCMs Ac 1, Ac2, and Ae3, have adequate consistency. 

Table 6.7: Weighting factors of criteria and subcriteria 

Criteria Criteria symbol Weights 
Technical feasibility Ct (0.40) 

Technical convenience c1 1 0.033 
Foot print C12 0.032 
Weight Ct3 0.035 
Capacity Ct4 0.03 1 
Chemical usage Cts 0.034 
BTEX removal efficiency Ct6 0.035 
P AHs removal efficiency C 11 0.033 
NPD removal efficiency Cts 0.036 
Dispersed Oil removal efficiency C19 0.033 
Dissolved Oil removal efficiency c1 1o 0.03 1 
Metals removal efficiency Ct t t 0.035 
pre- or post-treatment cll2 0.033 
Environment C 2 (0.32) 
Ecological risk c 21 0.054 
Energy consumption c22 0.050 
Solid wastes c23 0.059 
Liquid wastes C24 0.049 
Green house gases emissions C2s 0.055 
Non green house gases emissions C26 0.054 
Costs c 3 (0.2) 
Capital costs C31 0.055 
Operational costs c 32 0.051 
Per kilogram (kg) dispersed oil removal costs C33 0.049 
Per kilogram (kg) dissolved oil removal costs c34 0.046 
Health and Safety c4 co.os) 
Human exposure C41 0.04 

Risks of accident c42 0.04 

6.2.4 Determining the overall score for each alternative 

The overall scores ~ are dimensionless numbers, where higher V; values indicate better 

performance of the alternatives. By comparing V; 's the decision maker can directly 
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identify the best alternatives. For the traditional method, V; for each alternative was 

computed by using equation 3.33 and they are reported in Figure 6.1. 

Final ranking of the alternatives 

I I I 

A5 t::i:::i:::i::t::i:::i:::i:::i:::i:::i:::i:::i:::i:::i::t:t:t::i:::t:t:t:t::i:::i:::i:::i:::i:::i:::i:::i:::i:::U .291 

K3 '.l1ZZZZZZZZ ·zzzzz 1ZZZZZZZZ.l 0.247 

A1 

A1 = Macro porous 
polymer extraction; 

A2 = Steam stripping; 
A3 = Produced water 

reinjection; 
~= Compact flotation 

unit; 
A 5 = C- tour process; 
A6 = Downhole o il water 

separation. 

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 

O verall values 

Figure 6.1: Final overall scores and ranking of the alternatives 

According to the calculated overall scores for each PW management option presented in 

Figure 6-1 , the three best alternatives were A2, A 1 and A4 ,The technologies attained the 

overall values of 0.355, 0.343, and 0.325 respectively. Therefore, based on the overall 

values alone, these three options can be considered the optimum alternatives for PW 

management under the established set of criteria. The alternative As, which ranks fourth 

in this evaluation, obtained slightly lower overall scores than alternative ~- This option 

is in the development stage, so only a few pilot tests have been conducted on offshore 

platforms, so alternative As can be considered the most promising option for future 
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offshore applications. To determine the dominating criteria the overall scores for the each 

principle criteria were calculated as shown in Figure 6.2. 

A6 

AS 

A4 

A3 

A2 

AI 

-0. 100 0.000 0.100 0.200 0.300 0.400 

• Cl = Technical feasibility • C2 = Environmental 

El C3 = Costs l!ll C4 = Health and Safety 

Figure 6.2: Criteria scores of each alternative 

Analyzing Figure 6.2 it is found that the loss criteria scores for the alternative A3 are the 

highest which indicated the alternative A3 is more costly than the other alternatives. The 

higher loss scores also indicated alternative A3 occupies the largest footprint and has 

more weights than the other alternatives. For the criteria C2, the reverse scenario is found 

as, in this case alternative A3 has gained the maximum overall scores meaning the 

alternative A3 is technically better than the other alternatives. The overall scores of 

criteria C3 indicated that alternative A2 had gained the maximum values, which means 

alternative A2 is the most environmental friendly alternative. In this case alternative A3 
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had the least overall scores because A3 generated large volumes of waste and the air 

emission from this technology was also more than the other alternatives, because it 

consumed high quantities of energy during operations. For criteria C4 all alternatives 

gained approximately the same overall values meaning the health and safety issues for all 

alternatives were almost equal. 

6.2.5 Uncertainty analysis 

Uncertainty of this study could have arisen due to subjective judgments and unknown 

data. According to Modarres (2006) the variance ( cr Ai) of the data distribution can be 

considered as the uncertainty. In this study it wsa assumed that the uncertainties followed 

a normal distribution. By this assumption the uncertainties were considered 20% for all 

unknown data scores and the mean criteria scores were used to calculate uncertainty. 

Table 6.8 provides a simple example of an uncertainty calculation. 

Table 6.8: Variance of criteria 

Alternatives (A1 ) 

Criteria Mean scores (JlAI) Criteria uncertainty (Cu)= 
20% ofuA, 

c4, 0.76 0.15 
C42 0.76 0.15 

The uncertainties for the overall values were calculated by usmg equation 5.4 and 

replacing Ci with Cu and Wi by weighting factors of the corresponding criteria. The 

estimated uncertainty values for the alternatives are listed in Table 6.9. These values are 

relative uncertainties because in this study the uncertainty was assumed to be 20% for 
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unknown data and the subjective scoring these values might have varied depending on 

the data availability and subjective judgements. The calculated uncertainties for different 

alternatives were added and subtracted with the overall scores to find the variations of the 

overall scores. Figure 6.3 is re presents the variation of overall scores. 

Table 6.9: Associated uncertainties of evaluation options 

Alternatives Uncertainty 

A, 0.027 

A2 0.027 

A3 0.022 

~ 0.033 

A s 0.032 

~ 0.02 1 

Range of overall values 

0.450 -

"' +-
- A1 

Q) 

I - A2 ::;) 

I <ii 0.350 -
- A3 > 

<ii t l 
- A4 

Q; - A5 > 
0 r - As 

0.250 - - -

0.150 

Alternatives 

Figure 6.3 : Variation of the overall scores 
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According to Figure 6.3, the alternatives A1 and A2 provided the highest overall values 

with the same uncertainty. Though the overall scores for alternatives A6 were slightly 

lower than forth ranked alternative As it had the lowest uncertainty. Considering 

uncertainty, the alternative A6 was the forth ranked option. 

6.2.6 Sensitivity analysis 

To determine the sensitivity of the evaluation, the criteria weights were varied and new 

overaii values and alternative ranks were determined. According to the principle 

described in Chapter 5 (Table 5.3) four sets of analyses were conducted by increasing the 

weight for one criterion or a group of criteria and proportionally decreasing the weights 

of the other criteria. In all cases, the total weight remained constant. In this case, the 

criteria weights were increased by 30% and other criteria weights were decreased 

proportionally. The results of the sensitivity analysis are shown Figure 6.4. 

IJI 
Q) 
::l ro 
> 
ro 
~ 
> 
0 

Sensiti'.!ity of the results 

0.450 ,----------------, 

0.350 ° -

0.250 

0.150 +---.----.---.---,--...,.--~ 

A1 A2 A3 A4 A5 A6 

Alternatives 

-+-- Overall values 

--30% increased (C1) 

30% increased (C2) 

~30% increased (C3) 

___.....__ 30% increased (C4) 

Figure 6.4: Sensitivity analysis of the overall values 
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6.3 Application of the fuzzy based concept 

The traditional AHP was modified to give a fuzzy AHP. This methodology integrated the 

TOPSIS algorithm with the fuzzy AHP to solve the decision matrix. The essential steps 

of this framework can be described as follows: 

6.3 .1 Collection and ranking of the subjective data 

The fuzzy scores were generated according to the subjective judgments shown in Table 

6.3. The triangular fuzzy numbers (TFNs) shown in Figure 6.5 were used to generate 

fuzzy data from the subjective judgments. The linguistic terms used in the subjective 

judgments were directly converted to fuzzy scoring with the help of conversion scales 

shown in Figure 6.5. The average values of the judgments (shown in Table 6.3) were 

used to form fuzzy data. The detailed fuzzy data for the alternatives are reported in Table 

6.10. 
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Figure 6.5: Linguistic variable conversion scales for the fuzzy method 
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Table 6.10: Fuzzy average data values 

z A, A2 A3 A4 AS A6 
s 

a 
c,, 

0.43 0.63 1.0 0.43 0.63 1.0 0.1 0.37 0.57 0.43 0.63 0.90 0.43 0.63 0.90 0.1 0.37 0.57 

c,s 0.63 0 .. 90 1.0 0.43 0.63 1.0 0.5 0.7 1.0 0.63 0 .. 90 1.0 0.5 0.7 1.0 0.57 0.8 1.0 

cll2 0.5 0.7 1.0 0.5 0.7 1.0 0.3 0.5 0. 7 0.5 0.7 1.0 0.5 0.7 1.0 0.1 0.37 0.57 

c22 0.63 0.90 1.0 0.63 0.90 1.0 0.37 0.57 0.80 0.7 1.0 1.0 0.5 0.7 1.0 0.37 0.57 0.80 

C23 0.57 0.8 1.0 0.7 1.0 1.0 0.57 0.8 1.0 0.63 0.90 1.0 0.57 0.8 1.0 0.5 0.7 1.0 

C24 0.57 0.8 1.0 0.7 1.0 1.0 0.57 0.8 1.0 0.63 0.90 1.0 0.57 0.8 1.0 0.5 0.7 1.0 

C2s 0.57 0.8 1.0 0.57 0.8 1.0 0.43 0.63 1.0 0.57 0.8 1.0 0.5 0.7 1.0 0.3 7 0.57 0.80 

C26 0.57 0.8 1.0 0.63 0 .. 90 1.0 0.43 0.63 1.0 0.5 0.7 1.0 0.5 0.7 1.0 0.43 0.63 0.90 

c4, 0.57 0.8 1.0 0.57 0.8 1.0 0.5 0.7 1.0 0.5 0.7 1.0 0.57 0.8 1.0 0.5 0.7 1.0 

C42 0.57 0.8 1.0 0.57 0.8 1.0 0.5 0.7 1.0 0.63 0 .. 90 1.0 0.5 0.7 1.0 0.5 0.7 1.0 

6.3.2 Ranking of fuzzy data 

The data shown in Table 6.10 are also fuzzy; the straight forward addition is not 

applicable. Crisp values are necessary to compare the criteria. The crisp values for fuzzy 

data were calculated by Yager's Centroid Index Ranking Method (1980b) described in 

Chapter 3. A sample example is given here to demonstrate this method. Consider the 

fuzzy numbers 0.43, 0.63, and 1.0 from Table 6.1 0, which can be characterized by the 

membership function as: 
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,---------------------------------------------

{

_x_- _0_.4_3 , 0.43 ~ x ~ 0.63 .... (Left leg) 
p (x) = 0.20 

M 1.0 -x 
- - , 0.63 ~ x ~ J.O .... (Right leg) 

0.37 

The crisp value XM can be computed by equation 3.16 as: 

f-6\x* x-0.43)dx+ r-o (x* 1-x)dx 
X - 1 .43 0.20 1 .63 0.37 

M - f ·6\X-0.43)dx+ r (1.0- X)dx 
1.43 0.20 1.63 0.37 

X = 0·
196 

= 0.687 
M 0.285 

Similarly the crisps scores for all fuzzy data (in Table 6.1 0) were calculated and they are 

reported in Table 6.11 

Table 6.11: Crisp scores of fuzzy average data 

z AI A2 A3 A4 A5 A6 

a 
c11 0.687 0 .687 0.347 0.653 0.653 0 .347 

C1 s 0.843 0.687 0.733 0.843 0.733 0 .790 

c112 0.733 0 .733 0.500 0.733 0.733 0.347 

c 22 0.843 0.843 0.580 0.850 0.733 0.580 

C23 0.790 0.850 0.790 0.843 0.790 0 .733 

C24 0.790 0.850 0.790 0.843 0.790 0.733 

C2s 0.790 0 .790 0.687 0.790 0.733 0.580 

C26 0.790 0 .843 0.687 0.733 0.733 0.653 

C41 0.790 0.790 0.733 0.733 0.790 0.733 

C42 0.790 0.790 0.733 0.843 0.733 0 .733 
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6.3.3 Weight calculation using the fuzzy AHP 

To form the fuzzy pair wise comparison matrix (FPCM), the original PCM Aa was 

fuzzified according to the TFNs described in Chapter 3 (Table 3.3), and formed the 

FPCM AFG· Fuzzy extent analysis described Chapter 3 was applied on the AFG to 

calculate fuzzy weight factors. The following section describes the detailed steps 

involved in the fuzzy extent analysis. 

Matrix A FG 

Cl C2 C3 C4 
Cl I I I I I I 246 124 

C2 I I I I I I 1 2 4 I 3 5 

C3 0.17 0.25 0.5 0.25 0.5 I I I I 3 57 

C4 0.25 0.5 I 0.2 0.34 I 0.14 0.2 0.34 I I I 

Calculating element wise and row summing of the FPCM AFG: 

Left = 1 + 1 +2+ 1 + 1 + 1+ 1 + 1 +0.17+0.25+ 1 +3+0.25+0.2+0.14+ 1 =15.04 

Middle= 1 + 1 +4+2+ 1 + 1 +2+3+0.25+0.5+ 1 +5+0.5+0.34+.02+ 1 =23.79 

Right = 1+ 1+6+4+1+1+4+5+0.5+1+1+7+1+1+0.34+1 =35.84 

first row 

2nd row 

3rd row 

4th row 

Row sum of the FPCM AFG: 

L fi e t M'ddl I e . h ng t 

5.00 8.00 12.00 

4.00 7.00 11.00 

4.45 6.75 9.50 

1.59 2.04 3.34 

The lower values ofthe weighting factors for Cl = 5.0/35.84 = 0.14 
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The middle values of the weighting factors for Cl = 8.0/23.79 = 0.336 

The right values of the weighting factors for C1= 12.0/15.04 = 0. 798. Similarly weighting 

factors C2, C3, and C4 were calculated and they are reported in Table 6.12. 

Table 6.12: Fuzzy weighting factors for PCM AFG 

Criteria Left Middle right 
Cl 0.140 0.336 0.798 
C2 0.112 0.294 0.731 
C3 0.124 0.284 0.632 
C4 0.044 0.086 0.222 

The calculated weights are also fuzzy. To obtain crisp values equation 3.16 was used. 

The crisp values W were than normalized to unity to get the final normalized weighted 

values. 

0.425 c, 0.335 c, 
0.379 c2 wr= 0.299 c2 W= (6.1) 
0.347 CJ 0.274 CJ 

0.117 c4 0.092 c4 

Where, W T are the normalized weights for the criteria. To calculate the subcriteria 

weights the PCM Ac 1, Ac2 and Ac3 were used and normalized to the corresponding upper 

level weights. It was assumed, the sub criteria under C4 were of equal importance. Table 

6.13 is shows the calculated weights from the fuzzy analysis. 
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Table 6.13: Criteria weights for fuzzy analysis 

Criteria Criteria ~mbol Weights 
Technical feasibility c. (0.335) 
Technical convenience c •• 0.028 
Foot print c12 0.027 
Weight cl3 0.029 
Capacity c.4 0.026 
Chemical usage C1s 0.028 
BTEX removal efficiency cl6 0.029 
P AHs removal efficiency cl7 0.028 
NPD removal efficiency C1s 0.030 
Dispersed Oil removal efficiency C19 0.027 
Dissolved Oil removal efficiency c11o 0.026 
Metals removal efficiency c))) 0.029 
pre- or post-treatment c112 0.027 
Environment c2 (0.299) 
Ecological risk c 21 0.051 
Energy consumption c 22 0.047 
Solid wastes c 23 0.055 
Liquid wastes C24 0.045 
Green house gases emissions C2s 0.051 
Non green house gases emissions C26 0.050 
Costs c3 (0.274) 
Capital costs C31 0.075 
Operational costs C32 0.070 
Per kilogram (kg) dispersed oil removal costs C33 0.067 
Per kilogram (kg) dissolved oil removal costs C34 0.062 
Health and Safety c4 (0.092) 
Human exposure C41 0.046 
Risks of accident c42 0.046 

6.3.4 Application of the TOPSIS 

The decision matrix (DM) for this problem was established presenting alternatives on the 

X axis and criteria values on Y axis. To form the DM the values in Table 6.11 and 

Appendix- A were used. The DM was then normalized by equation 3.27. The normalized 

matrix (Table 6.14) was than multiplied by the weighting factors (in Table 6.13) to form 

the weighted normalized decision matrix as shown in Table 6.15. After constructing the 

weighted nonnalized DM the positive ideal solution (PIS) and negative ideal (NIS) 
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solution values were determined with equations 3.28 and equation 3.29 and they are 

reported in Table 6.16. The separation measure Dt and n,- were calculated by using 

equations 3.30 and equation 3.31 and they are reported in Table 6.17. 

Table 6.14: Normalized decision matrix for the problem 

~ 
A, A2 A3 A4 AS A6 

a 

c" 0.687 0.687 0.347 0.653 0.653 0.347 
*C12 0.248 0.331 0.265 0.113 0.044 0.000 
*C,J 0.268 0.244 0.244 0.195 0.049 0.000 
c,4 0.01 1 0.007 0.007 0.592 0.192 0.192 
C,s 0.843 0.687 0.733 0.843 0.733 0.790 
c ,6 0.248 0.226 0.251 0.150 0.000 0.125 
CI7 0.237 0.215 0.239 0.094 0.094 0.120 
C,s 0.232 0.211 0.235 0.040 0.164 0. 11 7 
c,9 0.2 17 0.186 0.2 19 0.137 0.131 0.1 10 
c,,o 0.292 0.265 0.295 0.000 0.000 0.147 
c,,, 0.000 0.000 0.667 0.000 0.000 0.333 
cll2 0.733 0.733 0.500 0.733 0.733 0.347 
*C21 0.217 0.218 0.002 0.224 0.224 0.114 
c22 0.843 0.843 0.580 0.850 0.733 0.580 
C23 0.790 0.850 0.790 0.843 0.790 0.733 
C24 0.790 0.850 0.790 0.843 0.790 0.733 
C2s 0.790 0.790 0.687 0.790 0.733 0.580 
c26 0.790 0.843 0.687 0.733 0.733 0.653 
*C31 0.039 0.064 0.465 0. 167 0.167 0.098 
*C32 0.048 0.075 0.402 0.167 0.167 0.142 
*C33 0.035 0.055 0.383 0.167 0.167 0.193 
*C34 0.110 0.0 18 0.534 0. 167 0.167 0.004 
c4, 0.790 0.790 0.733 0.733 0.790 0.733 
C42 0.790 0.790 0.733 0.843 0.733 0.733 

* indicate loss cntena 
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Table 6. 15: Weighted nonnalized decision matrix for the problem 

~ 
At A2 A3 A4 AS A6 

a 
Ctt 0.019 0.019 0.010 0.018 0.018 0.010 

*C12 0.007 0.009 0.007 0.003 0.001 0.000 
*CI3 0.008 0.007 0.007 0.006 0.001 0.000 
Ct4 0.000 0.000 0.000 0.015 0.005 0.005 
Cts 0.024 0.019 0.021 0.024 0.021 0.022 
Ct6 0.007 0.007 0.007 0.004 0.000 0.004 
cl7 0.007 0.006 0.007 0.003 0.003 0.003 
Cts 0.007 0.006 0.007 0.001 0.005 0.004 

Ct9 0.006 0.005 0.006 0.004 0.004 0.003 

CttO 0.008 0.007 0.008 0.000 0.000 0.004 

Cttt 0.000 0.000 0.019 0.000 0.000 0.010 

Ctt2 0.020 0.020 0.014 0.020 0.020 0.009 
C2t 0.011 0.011 0.000 0.011 0.011 0.006 
c22 0.040 0.040 0.027 0.040 0.034 0.027 
C23 0.043 0.047 0.043 0.046 0.043 0.040 
C24 0.036 0.038 0.036 0.038 0.036 0.033 

C2s 0.040 0.040 0.035 0.040 0.037 0.030 

C26 0.040 0.042 0.034 0.037 0.037 0.033 
*C31 0.003 0.005 0.035 0.013 0.013 0.007 
*C32 0.003 0.005 0.028 0.012 0.012 0.010 
*C33 0.002 0.004 0.026 0.011 0.011 0.013 
*C34 0.007 0.001 0.033 0.010 0.010 0.000 
C4t 0.036 0.036 0.034 0.034 0.036 0.034 
c42 0.036 0.036 0.034 0.039 0.034 0.034 

The final scores of each alternative were obtained using equation 3.32. For example the 

final score of alternative A 1 can be calculated as: 

A = 0
·
024 = 0.240 

I (0.077 + 0.024) 

The final scores of all the alternatives were similarly calculated and they are shown in 

Figure 6.6. 
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Table 6.16: Determination of positive and negative ideal solutions 

y + y · 

Criteria 
c11 0.019 0.010 

*C12 0.000 0.009 
*CI3 0.000 0.008 
C14 0.015 0.000 
C1s 0.024 0.019 
cl6 0.007 0.000 
Ci7 0.007 0.003 
C1s 0.007 0.001 
CJ9 0.006 0.003 
ella 0.008 0.000 
CJJJ 0.019 0.000 
cll2 0.020 0.009 
c21 0.000 0.011 
c 22 0.040 0.027 
C23 0.047 0.040 
C24 0.038 0.033 
C2s 0.040 0.030 
C26 0.042 0.033 

*C31 0.003 0.035 
*C32 0.003 0.028 
*C33 0.002 0.026 
*C34 0.000 0.033 
C41 0.036 0.034 
c42 0.039 0.034 

Table 6.17. Separation measure o,+ of each alternative 
Alternatives separation measure separation measure 

n+ 
I 

D.-
I 

AI 0.077 0.024 

A2 0.087 0.028 

A3 0.131 0.075 

~ 0.102 0.043 

As 0.099 0.042 

~ 0.092 0.043 
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Figure 6.6: Rank of the alternatives from fuzzy methods 

From the overall scores for each PW management option presented in Figure 6-6, the two 

best alternatives A2, and A 1 were found to be similar in rank with the traditional method 

described in the previous sections. The technologies A2, and A 1 attained overall values of 

0.672 and 0.668 respectively, the third rank was found changed from the previous 

analysis. The Figure 6.6 shows the alternative ~and A6 gained almost the same scores. 

Therefore, based on the overall values alone, these options A2, and A 1 can be considered 

the optimum alternatives for PW management under the established set of criteria. The 

alternative As is at the developmental stage, but was ranked fifth with overall scores of 

0.560. Alternative As can be considered the most promising option for future offshore 

applications. 
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6.4 Final ranking 

The additive ranking rule was used to determine the average ranking order of an 

alternative (A), which is the arithmetic mean of the rankings made by all the ranking 
I 

methods. 

6.5 Summary 

A hypothetical case study related to PW management for an offshore platform was 

considered to illustrate the proposed framework. The traditional and fuzzy based 

techniques were applied on the same case study. The results form both techniques are 

summarised in Table 6.18. The results shown almost similar ranking in the two methods. 

Table 6.18: Ranking order of various PW management options 

Alternatives Traditional method Fuzzy based method Final 

Overall Overall ranking 
Order Order 

Scores ( V; ) scores (V; ) order, R A; 

A, 0.343 2 0.668 2 2 

A2 0.355 I 0.672 I I 

A3 0.247 6 0.299 6 6 

~ 0.325 3 0.601 3 3 

As 0.291 4 0.560 5 4 

~ 0.285 5 0.605 4 4 
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From the traditional analysis the three best altematives A2, At and ~were ranked first, 

second and third respectively. The first, second and third ranked altematives from the 

fuzzy based analysis were also A2, At and ~ expecting. The forth and fifth ranked 

altematives from traditional analysis were found As and A6, but for fuzzy based analysis 

these were two ranked differently. The sixth rank for both analyses was similar. 

The fuzzy based methodology is a combination of F AHP and TO PSIS. The fuzzy 

technique is sophisticated and widely used but it has a limitation with respect to the 

problem size. According to Chen eta!. (1992), the fuzzy method is not convenient when 

the criteria are more than 10. It requires enormous computational efforts. The proposed 

fuzzy based methodology can handle both qualitative and quantitative data. The TOPSIS 

was used to determine the crisp rank or a dimensionless number by which the DM can 

easily be compared the altematives. 

On the other hand the traditional methodology is a combination of the AHP and the 

additive value model. It can handle both qualitative and quantitative data. This technique 

can readily handle more altematives and criteria than fuzzy based approach. The 

sensitivity and uncertainty analysis were also covered by this methodology. It required 

Jess computational efforts than the fuzzy based approach. In the present case study; six 

altematives were evaluated by 24 criteria. Since the results from both analysis techniques 

were found to be similar any methodology can be used in this case but considering the 

number of criteria for this case, the traditional methodology is more suitable than the 

fuzzy based approach. However, for less criteria and a more sophisticated problem, the 

fuzzy based approach is more realistic than traditional methods. 
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Chapter 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

This thesis presents an evaluation of a PW management system for an offshore platform. 

A multi-criteria decision making technique was used to evaluate the PW management 

options. After screening by threshold criteria six PW management systems, including a 

macro porous polymer extraction (A1), steam stripping (A2) , produced water reinjection 

(A3) , compact flotation unit (A4), C- tour process (A5) , and downhole oil water separation 

(A6) were evaluated. Technical feasibility, environmental, cost effects, and health and 

safety aspects were considered as the decision making criteria in the evaluation. The main 

decision making criteria were subdivided into 24 sub-criteria. The options were compared 

using a deterministic MCDM model where the individual criteria were weighted 

according to their importance. To calculate weighting factors, pair-wise comparisons 

were made between the elements at each level of the hierarchy with respect to the 

connected elements in the above level. Two separate MCDM frameworks namely, the 

traditional concept, that integrated the AHP technique with the additive value model and 

the fuzzy concept, which combined the F AHP and TOPSIS. Keeping the objectives in 

perspectives, the following are the conclusions from this study: 

154 



Based on the evaluation results, three PW management options namely, steam stripping 

(A2), macro porous polymer extraction (A1), and produced water reinjection (A3) were 

found to be the best fitted for the offshore platfonn. 

The technical feasibility, environmental, and cost effectives were found to be the 

dominant criteria, in the offshore platform to assess the PW management options. 

Uncertainty and sensitivity analyses were conducted to verify the robustness of the 

results. Uncertainty reflects the reliability of the overall scores due to the limited 

availability of data. The reliability was most affected by the data available for the various 

options. 

The selected best three options were found to have the highest scores when uncertainty 

values were considered along with the overall scores. They also had relatively low 

uncertainties, as the data for these options were readily available for offshore application. 

In addition to the best three options, the forth-ranked option the C-tour process (As) was 

considered to be the most promising technology future for offshore applications. Since 

this management system is under development, the information is rarely available and 

that leads to be higher uncertainties during the evaluation. The size, weight, pollutants 

removal efficiency, energy consumption etc of the C- tour process were the most 

important uncertainties that should be considered if it is to be selected as a possible 

offshore management system. 

The effects of changes to the criteria weights on the ranks of the options were observed 

through a sensitivity analysis. It was shown that the three highest ranked technologies 

were unchanged in most cases. It can therefore be concluded that the best three options 
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do not change significantly with the assignment of different weights. This is largely due 

to the fact that the top three options were obviously superior in important criteria, which 

resulted in the options scoring higher regardless of the weight alterations. Another 

possible reason was that there were many criteria used in the evaluation and the total 

weight was distributed among a larger number of criteria. This makes the weights for 

individual criteria small and therefore rankings are less sensitive to changes in the 

criterion weights. 

As mentioned, the number of criteria has a considerable effect on the quality of the 

evaluation. Therefore, criteria should be selected so that only criteria that are significant 

in comparing the options are included. The dominating criteria for this evaluation 

included costs, ecological risk, waste generation, treatment capacity, treatment efficiency, 

size, and weight. This was because these criteria contributed relatively more to the 

difference among the overall scores of the options compared with other criteria. 

The reliability and validity of the evaluation results were influenced by many factors. The 

validity of the results depended considerably on the discharge regulations that were used 

as the threshold criterion in this evaluation. As regulations for PW discharge vary from 

place to place and are moving toward zero discharge in some jurisdictions, the results of 

this evaluation are only valid for the specified regulations mentioned in this study. 

The reliability of the results is limited by the availability and the quality of the data. As 

some options have never been used in offshore (under development), some data used in 

the evaluation were generated through criteria mean values, rather than practical data, and 

therefore the application might be different when they are used offshore. As a 
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consequence, the ranks of the technologies might change when data from offshore 

applications are available and would be used instead of generated data. 

Another factor affecting the reliability of the evaluation results was the subjective 

consideration, for example to assign weights and to subjectively score the options. These 

processes might contain biased values, which may have changed the final results. To 

minimize the biased-ness, the fuzzy approach was used, but subjectivity still exits in the 

defuzzification. The biases from the weight assignments were minimized by making pair­

wise comparisons; the weight distributions were also made consistent with the help of a 

specific consistency ratio. Furthermore, the errors due to the subjectively assigned 

weights were tested through the sensitivity analyses, which showed that the best three 

options were unchanged with the altered weight distributions. On the other hand, the 

subjective scoring that was performed in the evaluation might have had a larger effect on 

the results. This is because the ranges of the qualitative characteristics were large, and so 

there is a possibility that the score assigned to an option based on a linguistic terms did 

not provide an appropriate value for comparison. However, the subjective scoring for all 

the altematives did not differ significantly. Hence, the bias initiated from the subjective 

scoring was considered less significant compared to the quantitative scores of the options, 

and did not affect the rankings to a large extent. 

Innovative technologies, like TORR, were not included as evaluation options in this study 

as they are in the development stage and data are rarely available and did not meet the 

screening criterion. However, the technologies were reviewed on their status, general 

process, and potential for offshore applications. From the technology reviews, it was 
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found that, the important factors in development of new technologies include compact 

size and very high treatment efficiency (to meet progressively more stringent discharge 

regulations). All of the reviewed innovative teclmologies involve use of chemicals to 

provide advanced fluid separation from the PW. As they involve chemical treatment 

processes, the issues in applying these innovative technologies are mostly related to the 

types of chemicals used and the environmental safety. Chemicals that are 

environmentally friendly (for example non-toxic and biodegradable) are preferable. From 

the reviews, the major limitation on most of the reviewed innovative teclmologies is cost, 

which is relatively high compared with conventional system. However, costs of treatment 

are expected to be reduced when technologies become more widely used. 

This evaluation was designed to provide a simple but comprehensive methodology to 

initially assess PW management systems. As selecting the most suitable management 

system, many parameters influence the validity of the evaluation results, including the 

availability of data and the distribution of weights. Two parallel MCDM frameworks 

namely, the traditional method and the fuzzy based technique were used to make final 

results more reliable. In a real situation, selecting a management system is not simple or 

straightforward and depends on many site-specific issues. Good upfront planning is 

crucial to properly assess the problem and select the correct process. Decision making 

should be performed with care and a good understanding among decision makers and 

stakeholder. Modifications of some details of the methodology, such as the evaluation 

criteria, may also be required on a case by case basis. Use of more accurate or specific 

data will also provide better evaluation results. 
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7.2 Recommendations for future work 

1. This study should be used as a basis in the evaluation of PW management systems 

using multicriteria decision making. Therefore, this method can be applied as an 

initial screening process to be followed by more detailed evaluation for specific 

conditions. The results of the study and the reviews of technologies can also be 

used to facilitate different PW management decision making problems. 

2. In the detailed evaluation, uncertainty should be considered if the data distribution 

is used . 

3. The evaluation should be modified by changing the evaluation criteria as well as 

weighting factors. 

4. As the data for the evaluating options significantly affect the reliability of the 

evaluation results, improving data quality is critical to enhance perfom1ance of the 

evaluation. More reliable data, especially those specifically for offshore PW 

management, should be used. Updates of the existing data and collection of newly 

available data should be done in the future. These data additions can easily be 

incorporated into this method. 

5. The weights and scores assigned m the evaluation should be verified or re­

assigned by the people with expertise in PW management in order to obtain better 

results. 

6. The PW discharge standards are becoming more stringent and there are no current 

offshore PW treatment teclmologies that can provide zero discharge conditions. 

159 



The studies and the results of the evaluation should be used to determine the 

direction in the development ofPW management systems. 

7. Detailed studies on potential technologies or management mechanisms should be 

conducted in order to further develop or reduce limitations. 

8. After modification the innovative technologies can be used as new technologies 

that may be useful in offshore applications in the future. These technologies 

should be studied further to detennine effective alternative. 

9. A detailed risk assessment study is needed to know the environmental impact of 

PW. 

I 0. Criteria should be selected so that only criteria that are significant in comparing 

the options are included. 

7.3. Originality of this study 

The originality of this research can be viewed from the following perspectives: 

This research develops a new decision making framework for PW management that will 

guide the decision makers during selection of the best alternative. The most widely used 

AHP and fuzzy AHP models were used to develop this decision making framework. The 

decision making tool attempts to minimize the conflicts that occur due to various 

opinions and subjective assessments by decision makers. The application of the proposed 

methodology was conducted by collecting data from different sources. The detailed 

database for the management options is given in Appendix-A. To calculate the ecological 

risk from PW this research has been used the toxicological data of different contaminants 
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like group of P AHs which were rarely considered before in PW. The detailed data base 

for the PW contaminants is provided in Appendix-B. 

The application of this methodology can be extended to the variety of decision 

management and environmental studies including project evaluation, waste management, 

and other practical fields related to multicriteria problems. 
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Appendix 

Appendix-A 

Technology data base 

Continue appendix-A : 

Criteria Data References 

Technology : Macro porous polymer extraction (End stream) (Al) 

c. Technical Feasibility 

c12 Size m3 67.5 OGP, 2002 

cl3 Weight (tons) 22 OGP, 2002 

c.4 Design capacity m3/hr 10 OGP, 2002 

Pollutants removal efficiency %-

c.6 BTEX removal efficiency 99 OSPAR, 2002 

cl7 P AHs removal efficiency 99 OSPAR, 2002 

C1s NPD removal efficiency 99 OSPAR, 2002 

c.9 
Dispersed Oil removal 

99 
OSPAR, 2002 

efficiency 

c •• o 
Dissolved Oil removal 

99 
OSPAR, 2002 

efficiency 

c ••• Metals removal efficiency 0 OSPAR, 2002 

Cz Environment - -

c 21 Ecological risk - Calculated in Chapter 4 

c 22 Energy consumption - Assigned in Table 6.4 

c3 Costs - -
C31 Capital (new) million € 51.80 OSPAR, 2002 

C32 Operation cost million € /yr 17.55 OSPAR, 2002 

C33 Benzene removal cost [€/kg] 145 OSPAR, 2002 

C34 
Dispersed oil removal cost 

1193 
OSPAR, 2002 

rEikgJ 

Technology : steam stripping (end flow) (A2) 

c. Technical Feasibility 

c12 Size m3 90 OSPAR, 2002 

cl3 Weight (tons) 20 OSPAR, 2002 

c.4 Design capacity m3/hr 6 OSPAR, 2002 

Pollutants removal efficiency%-

c.6 BTEX removal efficiency 90 OSPAR, 2002 

cl7 P AHs removal efficiency 90 OSPAR, 2002 

C1s NPD removal efficiency 90 OSPAR, 2002 

c.9 Dispersed Oil removal 85 OSPAR, 2002 

I 



Continue appendix-A: 

Criteria Data References 

efficiency 

c,,o 
Dissolved Oil removal 90 OSPAR, 2002 
efficiency 

c"' Metals removal efficiency 0 OSPAR, 2002 

Cz Environment - -
c2, Ecological risk - Calculated in Chapter 4 

Cn Energy consumption - Assigned in Table 6.4 

c3 Costs - -

c3, Capital (new) million € 84.0 OSPAR, 2002 

C32 Operation cost million € /yr 27.69 OSPAR, 2002 

C33 Benzene removal cost [€/kg] 226 OSPAR, 2002 

c 34 
Dispersed oil removal cost 191 OSPAR, 2002 
[€/kg] 

Technology : produced water reinjection (A3) 

c, Technical Feasibility 

c,2 Size m3 72 OSPAR, 2002 

cl3 Weight (tons) 15-25 OSPAR, 2002 

c,4 Design capacity m3/hr 6 OSPAR, 2002 

Pollutants removal efficiency %-

c,6 BTEX removal efficiency 100 OSPAR, 2002 

cl7 P AHs removal efficiency 100 OSPAR, 2002 

C,s NPD removal efficiency 100 OSPAR, 2002 

c,9 
Dispersed Oil removal 100 OSPAR, 2002 
efficiency 

C11o 
Dissolved Oil removal 100 OSPAR, 2002 
efficiency 

c"' Metals removal efficiency 100 OSPAR, 2002 

Cz Environment -
c2, Ecological risk - Calculated in Chapter 4 

Cn Energy consumption - Assigned in Table 6.4 

c3 Costs -
c3, Capital (new) million € 610 OSPAR, 2002 

c32 Operation cost million € /yr 147.8 OSPAR, 2002 

C33 Benzene removal cost [€/kg] 1578 OSPAR, 2002 

C34 
Dispersed oil removal cost 

5784 
OSPAR, 2002 

[€/kg l 

II 



Continue appendix-A: 

Criteria Data References 

Technology : compact flotation two stages unit (A..) 

Ct Technical Feasibility 

Ctz Size m3 30.63 OSPAR 2006 

Cn Weight (tons) 16.0 http://www.epconoffshore.com/ 

Ct4 Design capacity m3/hr 540 http://www.epconoffshore.com/ 

Pollutants removal efficiency %-

Ct6 BTEX removal efficiency 40-80 OSPAR2006 

cl7 P AHs removal efficiency 32-47 Kundsen et a!. 2004 

Cts NPD removal efficiency 17 Kundsen et al. 2004 

c,9 
Dispersed Oil removal 

50-75 
Kundsen et a!. 2004 

efficiency 

Ct tO 
Dissolved Oil removal 

0 
OSPAR 2006 

efficiency 

Cttt Metals removal efficiency 0 OSPAR2006 

Cz Environment 

C21 Ecological risk - Calculated in Chapter 4 

c 22 Energy consumption - Assigned in Table 6.4 

c 3 Costs 

CJI Capital (new) million € 218.7 Used mean values 

C32 
Operation co t million € /yr 61.335 Used mean values 

C33 
686.25 Used mean values 

Benzene removal cost [€/kg] 

c 34 
Dispersed oil removal cost 1804 Used mean values 
[€/kg] 

Technology : C- tour process (As) 

Ct Technical Feasibility 

C tz Size m3 (3.7*1.6*2 m) 11.84 OSPAR, 2006 

Cn Weight (tons) 4 OSPAR, 2006 

c,4 Design capacity m3/hr 175 OSPAR, 2006 

Pollutants removal efficiency %-

Ct6 BTEX removal efficiency 0 Kundsen et a!. 2004 

c,7 P AHs removal efficiency 32-47 Kundsen et a!. 2004 

C,s NPD removal efficiency 70 Kundsen et a!. 2004 

Ct9 
Dispersed Oil removal 

50-70 
Kundsen et a!. 2004 

efficiency 

c1 1o 
Dissolved Oil removal 

0 
Kundsen et a!. 2004 

efficiency 

c111 Metals removal efficiency 0 Kundsen et a!. 2004 

Cz Environment 

III 



Continue appendix-A: 

Criteria Data References 

c21 Ecological risk - Calculated in Chapter 4 

c 22 Energy consumption - Assigned in Table 6.4 

CJ Costs 

C31 Capital (new) million € 218.7 Used mean values 

C32 
Operation cost mmion € /yr 61.335 Used mean values 

C33 
686.25 Used mean values 

Benzene removal cost r€/kgl 

C34 
Disper ed oil removal cost 1804 Used mean values 
rEikgJ 

Technology :Down hole oil-water separation (oil) (A6) 

CJ Technical Feasibility 

c12 Size m3 0 OSP AR, 2002, neglected 

cl3 0 
OSP AR, 2002, not occupy in 

Weight (tons) platform 

C14 Design capacity m3/hr 175 OSPAR, 2002 

Pollutants removal efficiency %-

C16 BTEX removal efficiency 50 OSPAR, 2002 

c11 P AHs removal efficiency 50 OSPAR, 2002 

C1s NPD removal efficiency 50 OSPAR, 2002 

C19 
Dispersed Oil removal 

50 
OSPAR, 2002 

efficiency 

c11o 
Dissolved Oil removal 

50 
OSPAR, 2002 

efficiency 

clll Metals removal efficiency 50 OSPAR, 2002 

c2 Environment 

c 21 Ecological risk - Calculated in Chapter 4 

c22 Energy consumption - Assigned in Table 6.4 

c3 Costs 

C31 Capital (new) million € 129.00 OSPAR, 2002 

C32 Operation cost million € /yr 52.30 OSPAR, 2002 

C33 Benzene removal cost r€/kgl 796.0 OSPAR, 2002 

C34 
Dispersed oil removal cost 

48.0 
OSPAR, 2002 

f€/kg] 

IV 



Appendix- B 

Lethal Toxicity (LC50/ EC50) data for Marine species/ groups 

Continue Appendix - B 

Species Toxicant LC5o/EC5o Time Reference 
mg/L 

Crangonyx pseudo gracilis Cadmium 1.7 96 hr Martin, and Holdich 
(Cd) 1986 

Palaemon elegans 1.46 96 hr S. Lorenzon, 2000 

Callianassa australiensis (Dana) 6.33 96 hr K.W. Lee, 2007 
shrimp 
Paratya tasmaniensis 0.06 96 hr Thorp and Lake 1974 

Crangon semtemspinosa 0.32 96 hr Eisler, 197 1 

Palaemoneter vulgaris 0.42 96 hr Eisler, 1971 

Pagurus longicarpus 0.32 96 hr Eisler, 1971 

Carcinus maenas 4.1 96 hr Eisler, 1971 

Tigriopus japonicus 25.2 96 hr Levent et a!. 1999 

Crangonyx pseudogracilis 34.6 48 hr Martin, and Holdich 
1986 

Allorchestes compressa 0.2-4 120 hr Ahsanullah, 1976 

Austrochiltonia subtenuis 0.04 96 hr Thorp and Lake 1974 

Corophium insidiosum 0.68 96 hr Reish 1993 

Elasmopus bampo 0.57-0.9 96 hr Reish 1993 , Hong and 
Reish 1987 

Rhepoxynius abronius 0.24 96 b.r Hong and Reish 1987 

Sterechinus neumayeri 0.69 6-8d King and Riddle , 200 I 

Sterechinus neumayeri 0.2 20-23d King and Riddle , 200 I 

Strongylocentrotus purpura/us 0.5 2-3d Dinnel, 1990 

Strongylocentrotus 1.8 2-3d Dinnel, 1990 
droebachiensis 
Strongylocentrotus intermedius 0.5-2.5 96hr Gnezdilova eta!., 1985 

Arbacia punctulata j 13.9 2-4d Bay eta!. , 1993 

Paracentrotus lividus 1.1 2d Pagano eta!. , 1986 

Diadema setosum 0.2-0.5 2d Kobayashi , 1994 

Palaemon elegans Copper 3.27 96 hr S. Lorenzon, 2000 

Callianassa australiensis (Dana) (Cu) 1.03 96 hr K. W. Lee, 2007 
shrimp 
Asellus aquaticus 9.2 96 hr Martin and Holdich 

1986 
Crangonyx pseudograci/is 2.4 48 hr Martin and Holdich 

1986 
Corophium insidiosum 0.6 96 hr Reish 1993 
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Elasmopus bampo 0.25 96 hr Reish 1993 

Sterechinus neumayeri 0.0 11 4 6-8d King and Riddle , 200 1 

Sterechinus neumayeri 0.00 14 20-23d King and Riddle , 200 1 

Centrostephanus rodgersii 0.0118 3d King ,1999 

Heliocidaris tuberculata 0.0094 3d King ,1999 

Heliocidaris erythrogramma 0.0264 7d King ,1999 

Strongylocentrotuspurpuratus 0.0063 2-3d Dinnel, 1990 

Strongylocentrotus 0.02 1 2-3d Dinnel, 1990 
droebachiensis 
Arbacia punctulata 0.0 14 2-4d Bay et al. , 1993 

Paracentrotus lividus 0.032 2d Pagano et al., 1986 

Anthocidaris crassispina 0.05-0. 10 1d Kobayashi , 1985 

Hemicentrotus pulcherrimus 0.00 1- 2d Kobayashi , 1990 
0.002 

Echinometra mathaei 0.002- 2d Heslinga ,1976 
0.005 

Diadema setosum 0.069 5hr Ramachandran et al., 
1997 

Diadema setosum 0.043 2d Ramachandran et al., 
1997 

Echinogammarus olivii 0.25 96 hr Levent et al.,1999 

Sphaeroma serratum 1.98 96 hr Levent et al. , 1999 

Palaemon elegans 2.52 96 hr Levent et al., 1999 

Palaemon elegans Zinc (Zn) 26.3 96 hr S. Lorenzen, 2000 

Callianassa australiensis (Dana) 10.2 96 hr K.W. Lee, 2007 
shrimp 
Polychaete (W 1) 3.5-10.7 96 hr US EPA, 1976 

Ase/lus aquaticus 18.2 96 hr Martin and Holdich 
1986 

Crangonyx pseudogracilis 19.8 96 hr Martin and Holdich 
1986 

Allorchestes compressa 0.58 96 hr Ahsanullah , 1976 

Corophium insidiosum 1.9 96 hr Reish,1993 

Elasmopus bampo 12.5 96 hr Reish, 1993 

Echinogammarus olivii 1.3 96 hr Levent et al., 1999 

Sphaeroma serratum 6.12 96 hr Levent et al., I 999 

Palaemon elegans 12.3 96 hr Levent et al., 1999 

Sterechinus neumayeri 2.23 6-8 d King and Riddle , 2001 

Sterechinus neumayeri 0.3267 20-23 d King and Riddle , 200 I 

Centrostephanus rodgersii 0.2894 3d King , 1999 

Heliocidaris tuberculata 0.280 3d King ,1999 

Heliocidaris erythrogrammam 0.0268 7d King ,1999 

Strongylocentrotus purpuratus 0.023 2-3d Dinnel, 1990 
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Strongylocentrotus 0.027- 2-3d Dinnel, 1990 
droebachiensis 0.051 
Arbacia punctulataj 0.205 2-4d Bay eta!., 1993 

Arbacia lixula 0.01-0. 10 3d Castagna eta!., 198 1 

Paracentrotus lividusj 0.033 2d Bay eta!., 1993 

Anthocidaris crassispina 0.05-0.10 ld Kobayashi ,1985 

Hemicentrotus pulcherrimus 0.01-0.02 2d Kobayashi , 1990 

Diadema setosum 0.0 1-0.02 2d Kobayashi , 1994 

PAHs 

Copepod (E. affinis) NA 3 800 24 hr Ott eta!., 1978: 

Amphipod (Parhyale) NA >5 000 24 hr Lee & Nichol, 1978a 

Amphipod (E. pectenicrus) NA 2 680 96 hr Lee & Nichol, 1978b 

Polychaete NA 3 800 96 hr Rossi and Neff, 1978 
(N. arenaceodentata) 
Pacific Oyster (C. gigas) NA 199 000 96 hr LeGore, 1974 

Brown Shrimp (P. aztecus) NA 2 500 24 hr Anderson eta!., 1974 

Brown Shrimp (P. aztecus) NA 2 500 96 hr Tatem et a!. , 1978 

Grass Shrimp (P. pugio) NA 2 350 96 hr Tatem, 1976; Tatem et 
a!., 1978 

Dungeness Crab NA >2 000 96 hr Caldwell eta!. , 1977 
(C. magister) 
Crab (S. serrata) NA 17 000 96 hr Kulkarni and 

Masurekar, 1984 
Sheepshead Minnow NA 2 400 24 hr Anderson eta!., 1974 
(C. variegatus) 
Pink Salmon NA 920 24 hr Thomas and Rice, 1978 
(0. gorbuscha) 
0. gorbuscha NA I 200 96 hr Moles and Rice, 1983 

0. gorbuscha NA 1 200 96 hr Moles and Rice, 1983 

Dungeness Crab (C. magister) 1-MNA 8 200 48 hr Caldwell eta!. , 1977 

Dungeness Crab (C. magister) 1-MNA I 900 96 hr Caldwell et a!. , 1977 

Sheepshead minnow 1-MNA 3 400 24 hr Anderson eta!., 1974 
(C. variegatus) 
Copepod (E. affinis) 2-MNA 1 300- 24 hr Lee & Nichol, 1978a, b ; 

I 500 Ott eta!., 1978 
Grass Shrimp (P. pugio) 2-MNA 1 100 96 hr Neff eta!., 1976a; 

Tatem et a!. , 1978 
Brown Shrimp (P. aztecus) 2-MNA 700 24 hr Anderson eta!. , 1974 

Brown Shrimp (P. aztecus) 2-MNA 600 96 hr Tatem eta!. , 1978 

Dungeness Crab (C. magister) 2-MNA 5 000 48 hr Caldwell eta!. , 1977 

Dungeness Crab (C. magister) 2-MNA 1 300 96 hr Caldwell eta!. , 1977 

Sheepshead minnow 2-MNA 2 000 24 hr Anderson eta!. , 1974 
(C. variegatus) 
Copepod (E. affinis) d-MNA 850 24 hr Ott et a!., 1978 
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Polychaete (N. arenaceodentata) d-MNA 2 600 96 hr Neff et al. , 1976a; 
Rossi and Neff, 1978 

Grass Shrimp (P. pugio) d-MNA 700 96 hr Neff et al., 1976a; 
Tatem et al. , 1978 

Brown Shrimp (P. aztecus) d-MNA 80 24 hr Anderson et al., 1974 

Brown Shrimp (P. aztecus) d-MNA 80 96 hr Tatem et al. , 1978 

Dungeness Crab d-MNA 3 100 48 hr Caldwell et al. , 1977 
(C. magister) 
C. magister d-MNA 600 96 hr Caldwell et al. , 1977 

Sheepshead Minnow d-MNA 5 100 24 h.r Anderson et al. , 1974 
(C. va.riegatus) 
Polychaete (N. a.renaceodentata) t-MNA 2 000 96 hr Rossi and Neff, 1978 

Copepod (E. affinis) t-MNA 320 24 hr Ott et al. , 1978 

Alga (S. costatum) ANA 500 96 hr USEPA, 1978 

Mysid shrimp (M. bahia) ANA 970 96hr USEPA, 1978 

Sheep head minnow ANA 2 230 96 hr USEPA, 1978 
(C. variegatus) 
C. variegatus ANA 3 700 24 hr Heitmuller et al., 1981 

C. variegatus ANA 2 300 48 hr Heitmuller et al. , 1981 

C. variegatus ANA 2 200 96 hr Heitmuller et al., 1981 

Amphipod (G. pseudoliminaeus) FL 600 96 hr Finger et al. , 1985 

Polychaete FL I 000 96 hr Rossi and Neff, 1978 
(N. arenaceodentata) 
Grass Shrimp (P. pugio) FL 320 96 hr Wofford and Neff, 1978 

Sheepshead minnow FL I 680 96 h.r Wofford and Neff, 1978 
(C. va.riegatus) 
Polychaete PH 600 96 hr Rossi and Neff, 1978 
(N. arenaceodentata) 
Grass Shrimp (P. pugio) PH 370 24 hr Young, 1977 

Polychaete (N. arenaceodentata) 1-MPH 300 96 hr Rossi and Neff, 1978 

Alga (S. costatum) FLAN 45 000 96 h.r USEPA, 1978 

Polychaete (N. arenaceodentata) FLAN 500 96 hr Neff et al. , 1976a; 
Rossi and Neff, 1978 

Mysid shrimp (M. bahia) FLAN 40 96 hr USEPA, 1978 

Sheepshead minnow (C. FLAN >560 000 96 hr USEPA, 1978 
varieg_atus) 
C. variegatus FLAN >560 000 96 hr Heitmuller et al., 1981 

Notes: NA = naphthalene; 1-MNA = 1-methy1naphthalene; d-MNA = dtmethylnaphtbalenes; t­
MNA = trimethylnaphthalenes; ANA = acenaphthene; FL = fluorine ; FLAN = fluoranthene; PH = 
phenanthrene; I-MPH = 1-methylphenanthrene; P AHs = Polycyclic Aromatic Hydrocarbons. 
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MINITAB macro for RE from PNEC values 
GMACRO 
abdullah.mac 
Note macro for RE from PNEC values 
do k1 = 1:1000 
sample 5 c 1 c2; 
replace. 
let c3 = log( c2) 
let c4(k 1 )=mean( c3) 
let c5(kl)=stdev(c3) 
let c6(k1 )=exp( c4(k1 )-1.2815*c5(k1 )) 
end do 
let c7=mean( c6) 
let k2=c7 
name k2 'Lowest 10 percentile of PNCE=' 
print k2 
endmacro 
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Typical composition of produced water from oil filed 

( I) (2) 
Materials Range Median Unit Range Unit 
Dispersed oil 15-60 44 mg/1 
BTEX 1-67 6 mg/1 
NPD 0.06-2.3 1.2 mg/1 
PARs 130-575 468 Jlg/1 
Organic Acids (<C6) 55-76 1 368 mg/1 
Phenols (CO-C4) 0. 1-43 8 mg/1 
Arsenic (As) - - - <0.11-320 ~Jg/1 

Barium (Ba) 0 .2-228 87 mg/1 1.0-650000 l!g/1 
Cadrnium(Cd) 0.5-5 2 ~Jg/1 

Chromium (Cr) - - Jlg/1 <0.0 1-390 ~ig/1 

Copper (Cu) 22-82 10 ~Jg/1 - -
Lead (Pb) 0 .4-8.3 1.9 Jlgfl - -
Mercury (Hg) <0.1-26 0.7 ~Jg/1 - -
Nickel (Ni) 0.02-0.3 0. 14 mg/1 - -

Zinc (Zn) 0.5- 13 7 mg/1 - -

Radium (226RA) 1.66 1.66 Bq/1 - -

Radium (228RA) 3.9 3.9 Bq/1 - -
Manganese (Mn) 0 .1-0.5 0.45 mg/1 - -
Berllium (Be) 0.02 0.02 mg/1 - -
Cobalt (Co) 0.3-1 0.35 mg/1 - -
Vanadium(V) 0.02-0.5 0.24 mg/1 - -
( I) Compiled from Frost 1998, section 1.2 and E& P 1994, P.4 
(2) Neff, J.M. (1997). 

PARs Unit Ekofisk Ekofisk Statfjord Gullfaks 
2/4B-K 2/4K 

NA mg/1 0.1 57 0.038 0.261 0.398 
1-MNA mg/1 0.062 0.0 12 0.35 0 .629 
2-MNA mg/1 0.0 18 0.002 0.199 0 .584 
d-MNA mg/1 0.01 0.0005 0. 132 0 .55 
ANA Jlg/1 0.89 0.02 - -
FL Jlg/1 - 0.33 12 11.3 
PH ~Jg/1 2.09 0.08 - -
FLAN ).lg/1 - - 0.0854 0. 195 
Notes: NA = naphthalene; 1-MNA = 1-methylnaphthalene; d-MNA = dimethylnaphthalenes; t-
MNA = trimethylnaphthalenes; ANA = acenaphthene; FL = fluorine; FLAN = fluoranthene; PH = 
phenanthrene; I -MPH = 1-methylphenanthrene; PARs = Polycyclic Aromatic Hydrocarbons. 

"'*Collected from Roe and Johnsen. 1996 
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Appendix- E 

Questionnaire for data collection 

E.l. Questionnaire for company person: 

1. Have your company currently used a decision support system for produced water 
management? 

Please mark 

If yes, what is the name and type of your technology? 

2. Which of the following criteria does your company take into account while making 
decision evaluating technologies of produced water management for offshore platform? 

Criteria description Yes No 

Technical feasibility 

Technical convenience 

Foot print 

Weight 

Capacity 

Chemical usage 

BTEX removal efficiency % 

P AHs removal efficiency % 

NPD removal efficiency % 

Dispersed Oil removal efficiency % 

Dissolved Oil removal efficiency% 

Metals removal efficiency % 

Pre- or post-treatment 

Environment 

Ecological risk 

Energy consumption 

Solid wastes 

Liquid wastes 

Green house gases emissions 

Non green house gases emissions 
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Costs 

Capital costs 

Operational costs 

Per kilogram (kg) disper ed oil removal costs 

Per kilogram (kg) dis olved oil removal costs 

Health and Safety 

Human exposure 

Risks of accident 

Please add criteria that you think are missing in reflecting your decision making. 

E.2. Questionnaire for expert I planners: 

By this questionnaire my intention is to develop a methodology for the management of 
produced water implementing multicriteria decision making (MCDM) approach. With 
this questionnaire I intent to get to know about your preferences and judgments 
considering the decision problem for the produced water management for offshore 
platform. For this purpose I selected the alternatives as below: 

a) Macro porous polymer extraction (A 1) 

b) Steam stripping (A2) 

c) Produced water reinjection (A 3) 

d) Compact flotation unit (A 4) 

e) C- tour process (A5) and 
f) Downhole oil water separation (A 6) 

Following section I will ask few questions it will take 15-20 minutes please choose the 
best answer or answers as possible. 

1. Please mark what would be the favourable alternative for your? 

If others, what is the name and type of your technology? 
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2. The criteria matrix Table E-1 has been developed for evaluating produced water 
management alternatives for offshore platform, which of the following criteria do you 
think are the lease and most important factor? Please rank the parameter from the least 
(1) to the most important (1 0). 

Table E-1: criteria matrix 
Criteria description 1 2 3 4 5 6 7 8 9 10 

Technical feasibility 

Teclmical convenience 

Foot print 

Weight 

Capacity 

Chemical usage 

BTEX removal efficiency % 

P AHs removal efficiency % 

NPD removal efficiency % 

Dispersed Oil removal efficiency% 

Dissolved Oil removal efficiency% 

Metals removal efficiency % 

Pre- or post-treatment 

Environment 

Ecological risk 

Energy consumption 

Solid wastes 

Liquid wa te 

Green house gases emissions 

Non green hou e gases emi sions 

Costs 

Capital costs 

Operational costs 

Per kilogram (kg) dispersed oil removal 
costs 
Per kilogram (kg) dissolved oil removal 
costs 
Health and Safety 

Human exposure 

Risks of accident 

Please add criteria that you think are missing in reflecting the decision making. 
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3. A criteria matrix shown in table E-2 has been developed to collect the infonnation for 
the alternative. Please mark the appropriate box with the help of conversion scale shown 
in figure E-1 

Scores 
1.0 

------------------------------------------J 
0.9 

0.7 

0.5 

0.3 

0 

E H M 

Figure E-1: conversion scale 

Table E-2: Criteria matrix for the questionnaire 

Criteria description E H 

Energy consumption 

Solid wastes 

Liquid wastes 

Green hou e gases emissions 

Non green house gases emissions 

Human exposure 

Risks of accident 

L 

L = Low 
M = Moderate 
H = High 
E = Extremely high 

M L 

4. What is your opinion about technical convenience criteria? Please mark the appropriate 
box below. 

Extremely Highly convenience Moderately Low convenience 
convenience (HC = 0.7) convenience (LC = 0.3) 
(EC = 0.9) (MC = 0.5) 

5. Specify the type of pre/ post treatment required for the alternatives. Please mark the 
appropriate box below with the help of table E-3? 
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T bl E 3 t t tm t t t a e - : pre- or pos - rea en reqmremen en ena 
Pre/Post treatment requirement Symbol Scores 
Basic: cooling, heating, settling, impoundment, etc. A 0.9 
Primary: pH adjustment, softening, few chemical addition, B 0.7 
de-oiling, suspended solid removal, sand filtration, etc. + 
technologies 
Primary: pH adjustment, softening, chemical treatment, de- c 0.5 
oiling, suspended solid removal, high filtration, etc. + 
technologies 
Moderate: regeneration, fouling prevention, trickling filter, D 0.3 
constructed wetland, ionization and removal, UF or NF, low 
pressure RO, etc. + technologies 
Significant: high pressure filtration, high pressure RO, E 0.1 
NORM treatment, etc. + technologies 

If others, please specify? 

The questionnaire is finished . Thank you very much for your collaboration. The 
infonnation you have provided is very important for the success of the study. 
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