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Abstract 

Biological invasion is an important phenomenon in ecology. Mathematical studies 

of biological invasion involve reaction-diffusion equations which consider continuous 

reproduction and random movements of species, and integra-differential/difference 

equations which describe population dispersal via various types of dispersal kernels. 

The purpose of this thesis is to investigate the spatial dynamics of some reaction­

diffusion and integra-differential/difference population models with spatial and tem­

poral heterogeneities. 

Introduction and overview of mathematical investigation of biological invasions 

are presented in Chapter 1. 

In Chapter 2, we present some terminologies and theorems which are based on 

the theories of global attractors, uniform persistence, monotone dynamical systems, 

asymptotic speeds of spread and traveling waves. 

Chapter 3 is devoted to the study of spatial dynamics of a class of periodic integra­

differential equations which describe the population dispersal process via a dispersal 

kernel. By appealing to the theory of asymptotic speeds of spread and traveling 

waves for monotone periodic semifiows, we establish the existence of the spreading 

speed c• and the nonexistence of time-periodic traveling wave solutions with the wave 

speed c < c*. In the autonomous case, we further use the method of upper and lower 

solutions to prove the existence of monotone traveling waves with the wave speed 

c 2:: c*, which implies that the spreading speed coincides with the minimal wave 

speed for monotone traveling waves. 

In Chapter 4, we investigate a non-local periodic reaction-diffusion population 
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model with stage-structure. In the case of unbounded spatial domain, we establish 

the existence of the asymptotic speed of spread and show that it coincides with 

the minimal wave speed for monotone time-periodic traveling waves. In the case of 

bounded spatial domain, we obtain a threshold result on the global attractivity of 

either zero or a positive periodic solution. 

In Chapter 5, we consider a class of discrete-time population models in a pe­

riodic lattice habitat. When the recruitment function is monotone, we show that 

the spreading speeds coincide with the minimal wave speeds for spatially periodic 

traveling waves in the positive and negative directions, by appealing to the theory 

of spreading speeds and spatially periodic traveling waves for monotone systems in 

periodic environments. When the recruitment function is not monotone, we also ob­

tain the existence and formula of the spreading speeds via the comparison method. 

Moreover, we prove the existence of spatially periodic traveling waves by using the 

Schauder fixed point theorem. 

In Chapter 6, we consider a class of cooperative reaction-diffusion systems, in 

which one population (or subpopulation) diffuses while the other is sedentary. We 

use the shooting method to prove the existence of the bistable traveling wave, and 

then obtain its global attractivity with phase shift and uniqueness (up to translation) 

via the dynamical system approach. The results are applied to some specific examples 

of reaction-diffusion population models. 

A brief summary of this thesis and some future work are presented in Chapter 7. 
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Chapter 1 

Introduction 

Biological invasion happens when an organism or any sort of organism arrives some­

where beyond its previous range [89]. As organisms migrate or disperse by walking, 

flying, swimming, or being transported by wind or flowing water, biological invasions 

occur almost everywhere on the surface of the earth that we live on, and are now 

recognized as one of the most important components of global environment change 

(e.g., [2, 21, 64, 65, 70, 89]) . Although natural invasions occur from minor changes in 

a small range to major migration across continents, most invasions are due to human 

induced changes to ecosystems, such as climate change, land-use change, overfishing, 

chemical pollution, physical destruction of the environment (agriculture, forestry, in­

dustrial development and human settlement), fires, the rise in C02, the expansion 

of human populations, and so on [64]. While human activities are causing more and 

more invasions, invasions have also been greatly influencing the global environment. 

They help to establish many aggressive species across the globe, but at the mean 

time, threaten or cause extinction of native species in some environments, and also 

increase the spread of infectious diseases (of humans, animals and plants) across the 

globe. To some extent, biological invasions alter population and community structure 

of native ecosystems, and their functioning and long-run economic potential as well. 

The consequences of biological invasions can be clearly seen in New Zealand (e.g., 

[2, 21, 64]). With no native mammals except bats and seals, New Zealand has been 
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dramatically altered by the colonization. Lots of native species are extinct and more 

than hundreds of native species are threatened, while human beings, many animals 

(e.g., rats, pigs, mice, red deer, and so on) and plants have been introduced and 

naturalized (e.g., over 25,000 alien plant species being imported during the past 200 

years and at least 2,000 of them having been naturalized). 

Biological invasions have been attracting increasing attention of biologists, ecolo­

gists, mathematicians, and so on. Many mathematical models have been established 

for the invasion process. The mathematical analysis of these models help determine 

the level and rate of alien invasions and understand the factors that control invasions 

and the consequences of invasions for ecosystems. Reaction-diffusion models are t he 

first mathematical models that describe invasions of species. Let u(t, x) be the den­

sity of a population at location X E 0 at time t, where 0 is the habitat . In 1937, 

Fisher [23] first proposed a one-dimensional equation for population genetics: 

Ut=Uxx+u(l-u), xElR., t~O, (1.1) 

where u(l - u) is the recruitment function and diffusion is only considered along 

x-axis. This model describes the process of spatial spread when mutant individuals 

with higher adaptability appear in a population. Meanwhile, Kolmogorov, Petrovsky 

and Picoounov [42] considered a similar equation with u(l-u) replaced by a function 

f(u) having two zeros (e.g., f(O) = 0, f(l) = 0), that is, 

Ut = Uxx + f(u) , X E JR., t ~ 0. (1.2) 

This model has been extended to many higher dimensional models to describe the 

diffusion for many species and more factors (death of populations, age-structure of a 

population, competition or cooperation between species, etc) have been considered in 

the models [4, 5, 6, 12, 13, 14, 19, 20, 22, 23, 31, 32, 35, 39, 51, 42, 57, 65, 67, 70, 71, 

72, 75, 78, 82, 90, 91, 92, 94, 97, 98]. By reaction-diffusion equations, the reproduction 

and diffusion are assumed to occur continuously and the diffusion is subject to random 

dispersal [40]. Recently, many new models in different mathematical frameworks have 

been developed to describe more complex features in real-ecosystems, [7, 8, 10, 15, 
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24, 30, 38, 40, 41, 44, 49, 54, 55, 59, 60, 67, 68, 69, 70, 81, 84, 85, 86, 87, 88, 98] 0 

Among these models, integra-differential/difference equations have been fascinating 

and using a dispersal kernel to describe the spatial movement of a population is more 

realistic in cases of long distance dispersal. The simple cases of these models are 

8u(t, x) r 
ot = F(u(t, x)) + Jn k(x, y)u(t, y)dy, 

and 

Un+l(x) = 1 k(x,y)F(un(Y))dy, n ~ 1, 

where F( u) is the recruitment function, k(x, y) is the dispersal kernel that prescribes 

the proportion of the population leaving from location y to location x, and un(x) 

is the density of the population of the n-th generation. These models and their 

improvements have been extensively used to model the disease spreading process and 

the dispersal process in ecosystems such as streams [24, 38, 40, 41, 44, 49, 55, 59, 60, 

67, 68, 81, 87, 88]. 

A traveling wave is a special solution of the form u(t, x) = U(x-ct), where cis the 

wave speed. The profile U ( ·) travels in the speed c and it is invariant with respect to 

translation in space (see Figure 1.1). Fisher [23] showed that for (1.1), the traveling 

wave solution u(t, x) = U(x- ct) exists if and only if lei ~ Cmin = 2. Kolmogorov 

et al. [42] established similar results for (1.2). After their pioneering work, traveling 

waves have been attracting increasing attention. Extensive investigations of traveling 

waves for a variety of evolution systems can be found in [5, 6, 19, 38, 47, 52, 53, 59, 

69, 78, 88, 90, 94]. 

A time-periodic traveling wave is a solution of the form u(t, x) = U(t, x- ct) with 

U(t,~) = U(t + T,~) for some T > 0 and for all t ~ 0, ~ E R It has been studied 

for many systems in which some terms are periodic with respect to the time t [52]. 

In this thesis, to simplify the notation without any confusion, we call a time-periodic 

traveling wave "a periodic traveling wave". A spatially periodic traveling wave is a 

solution of the form u(t, x) = W(x, x-ct) with W(x, s) = W(x+L, s) for some L > 0 

and for all x E IR, s E R This type of special solution always occurs from systems in 
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Figure 1.1: '!raveling waves for (1.1) (lei > 2) . 

periodic environments. Weinberger [86] investigated the existence and minimal wave 

speed of spatially periodic traveling waves for monotone maps in periodic habitats. 

·Berestycki, Hamel and Roques [8] investigated the existence of pulsating traveling 

waves, which actually correspond to spatially periodic traveling waves, for a type 

of reaction-diffusion equations in a periodically fragmented environment. Guo and 

Hamel [30] then studied pulsating traveling waves for discrete periodic monostable 

equations. 

The invasion speed is a fundamental characteristic of biological invasions, since it 

describes the speed at which the geographic range of the population expands, and in 

particular, it can help estimate the rapidity of disease spread ( [34, 43, 45]) (see Figure 

1.2). In mathematical models, we describe the invasion speed by the asymptotic speed 

of spread (in short, the spreading speed). 

The concept of the spreading speed was first introduced by Aronson and Wein­

berger [5] for reaction-diffusion equations. Aronson and Weinberger [5, 6] studied a 

class of reaction-diffusion equations and proved the following result. 

Theorem 1.0.1 Let u(t, x) be a nonzero solution of {1.2) with u(O, x) having compact 

support. Then the following two statements are valid: 

{i) lim u(t, x) = 0, Vc > 2; 
t-+oo,lxl~ct 
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1.2 

u(t,x) 

10 

Figure 1.2: Evolution of a solution to (1.1) with initial data having compact support. 

(ii} lim v.(t, x) = 1, Vc E (0, 2) . 
t-+oo,lxl~ct 

They call c• = 2 the asymptotic speed of spread for (1.2). Actually, by Theorem 

1.0.1, we can easily have two observations, which can help understand the meaning of 

the spreading speed. The first observation states that if u(t, x) satisfis the properties 

(i) and (ii) above, it then follows that for any x0 E IR, we have 

(a) lim u(t, x0 ± ct) = 0, Vc > 2; 
t-+oo 

(b) lim u(t, x0 ± ct) = 1, Vc E (0, 2) . 
t-+oo 

We can easily see from this observation that if one leaves x0 at a speed exceeding 

c•, one will outrun the population, whereas if moving at a speed less than c•, the 

population will overtake the observer [76]. The second observation is that if u(t, x) 

satisfies properties (i) and (ii), then for any given p E (0, 1), it follows that 

lim x~(t) = ±2, 
t-+oo t 

uniformly for pin any compact interval contained in (0, 1), where x~(t) and x~(t) are 
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1.2 

u(t,x} 

0.8 

o.e 

o.• 

0.2 

~~o~~~L-~~~-2--~0~~2--~~~e--~e~~,o 

x~(18) x~(10) x~(5) ~(O)x x~(O) ~(5) x~(10) x~(18) 

Figure 1.3: Evolution of a solution to (1.1). 

the most right and left points with u(t, x~(t)) = p, respectively (see Figure 1.3). Thus, 

if we consider that x~(t) as the distances that the population moves (to the right and 

left) during the time interval [0, t], it is natural to call c* = 2 as the asymptotic speed 

of spread. In fact, Aronson and Weinberger [5, 6] also confirmed Fisher's conjecture 

in [23], which stated that Cmin = 2 is the asymptotic speed of propagation of the 

advantageous gene. 

After their early works, the spreading speed has been investigated extensively. 

Weinberger [85, 86] and Lui [54] studied the spreading speeds of monotone maps in 

homogeneous and periodic habitats. Li, Weinberger and Lewis [50] studied the spread­

ing speed for reaction-difusion systems with positive diffusion coefficients. Liang and 

Zhao [53] developed the theory of the spreading speed for discrete and continuous 

monotone semifl.ows. Liang, Yi and Zhao [52] further generalized this theory to 

monotone periodic semifl.ows. Spreading speeds for non-monotone systems have also 

been studied in [38, 76, 78]. Many other works about the spreading speeds can also 

be found in [5, 6, 20, 38, 47, 49, 50, 52, 53, 54, 76, 77, 78, 85, 86, 98]. 

In this thesis, we study evolutionary dynamics of some reaction-diffusion and 
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integra-differential/ difference models. We mainly study the spreading speeds and the 

existence and nonexistence of (periodic) traveling waves for four models. In chapter 3, 

we study spatial dynamics of a class of periodic integra-different ial equations, which 

describe the population dispersal process via a dispersal kernel. We establish the 

existence of the spreading speed c• and the nonexistence of periodic traveling wave 

solutions with the wave speed c < c•. In the autonomous case, we further prove the 

existence of monotone traveling waves with the wave speed c ~ c• , which implies that 

the spreading speed coincides with the minimal wave speed for monotone traveling 

waves. In Chapter 4, we investigate a non-local periodic reaction-diffusion population 

model with stage-structure. We establish the existence of the asymptotic speed of 

spread and show that it coincides with the minimal wave speed for monotone periodic 

traveling waves in the case of unbounded spatial domain, and obtain a threshold result 

on the global attractivity of either zero or a positive periodic solution in the case of 

bounded spatial domain. In Chapter 5, we consider a class of discrete-time population 

models in a periodic lattice habitat and show that the spreading speeds coincide 

with the minimal wave speeds for spatially periodic traveling waves in the positive 

and negative directions in both cases of monotone and non-monotone recruitment 

functions. In Chapter 6, we consider a class of cooperative reaction-diffusion systems, 

in which one population (or subpopulation) diffuses while the other is sedentary, 

establish the existence of the bistable traveling wave, and then obtain its global 

attractivity with phase shift and uniqueness (up to translation) via the dynamical 

system approach. These results are applied to some specific examples of reaction­

diffusion population models. 



Chapter 2 

Preliminaries 

In this chapter, we present some terminologies and known results which will be used 

in this thesis. They are involved in global attractors, uniform persistence, monotone 

dynamical systems, theories of spreading speeds and traveling waves for monotone 

periodic semifiows and for discrete-time systems in a periodic habitat, and theories 

of existence of solutions and stability of positive periodic solutions for functional 

differential equations. 

2.1 Global attractors and uniform persistence 

Let X be a metric space with metric d and f : X --t X be a continuous map. Let 

Xo C X be an open set; define 8Xo := X\ Xo and Ma .- {x E 8Xo : r(x) E 

8X0 , n ~ 0} , which may be empty. 

D efinition 2.1.1 A bounded set A is said to attract a bounded set B in X if 

lim sup{d(r(x), A)}= o. 
n -+oo xEB 

A subset A ~ X is said to be an attractor for f if A is nonempty, compact and 

invariant (J(A) = A), and A attracts some open neighborhood U of itself A global 

attractor for f : X --t X is an attractor that attracts every point in X . 
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Recall that the Kuratowski measure of noncompactness, a, is defined by 

a( B) = inf{r: B has a finite cover of diameter < r }, 

for any bounded set B of X. It is not hard to see that B is precompact if and only 

if a(B) = 0. 

Definition 2.1.2 A continuous mapping f : X ~ X is said to be point dissipative 

if there is a bounded set B0 in X such that B0 attracts each point in X; compact if 

f maps any bounded set to a precompact set in X; a-condensing {a-contraction of 

order k, 0 :::; k < 1) iff takes bounded sets to bounded sets and a(J(B)) < a(B) 

(a(J(B)) :::; ka(B)) for any nonempty closed bounded set B c X with a(B) > 0; 

asymptotically smooth if for any nonempty closed bounded set B C X for which 

f(B) C B, there is a compact set J C B such that J attracts B . 

Theorem 2.1.1 ([9, Theorem 3.2]) Iff : X -+ X is compact and point dissipative, 

then there is a connected global attract or A that attracts each bounded set in X. 

Definition 2.1.3 A function f : X -+ X is said to be uniformly persistent with 

respect to (X0 , 8X0 ) if there exists fJ > 0 such that liminf d(r(x), 8X0 ) ~ fJ for all 
n -+oo 

x E X 0 • If "inf" in this inequality is replaced with "sup", then f is said to be weakly 

uniformly persistent with respect to (X0 , 8X0). 

Theorem 2.1.2 ([97, Theorem 1.3.3]) Let f : X -+ X be a continuous map . with 

f(X0 ) c X 0 . Assume that f has a global attractor A. Then weak uniform persistence 

implies uniform persistence. 

Let {Sn}~=l be the discrete semidynamical system defined by a continuous map 

S : X -+ X with S(X0 ) c X 0 • A point x0 E X is called a coexistence state of 

{Sn}~=l if x0 is a fixed point of Sin X 0 , i.e., xo E X 0 and S(xo) = xo. We have the 

following result on the existence of coexistence states. 
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Theorem 2.1.3 ([95, Theorem 2.3]) Let X be a closed subset of a Banach space E, 

X 0 be a convex and relatively open subset in X, and S : X ___. X be a continuous 

map with S(X~) C X 0 . Assume that S : X ___. X is point dissipative, compact, and 

uniformly persistent with respect to (X0 , 8X0 ). Then there exists a global attractor A 

for S in X 0 and S has a coexistence state x0 E A. 

2.2 Monotone dynamics 

Let E be an ordered Banach space with positive cone P such that int(P) f: 0. For 

X, y E E we write X ~ y if X - y E P, X > y if X - y E P \ { 0}, and X » y if 

x- y E int(P). If a< b, we define [a,b] := {x E E: a::; x::; b}. 

D efinition 2 .2.1 Let U be a subset of E and f: U ___. U be a continuous map. The 

map f is said to be monotone if x ~ y implies that f(x) ~ f(y); strictly monotone if 

x > y implies that f ( x) > f (y); strongly monotone if x > y implies that f ( x) » f (y). 

T heorem 2.2.1 ([18, Proposition 1]) Let u1 < u 2 be fixed points of the strictly mono­

tone continuous mapping f : U ___. U, let I := [u1 , u2] c U, and assume that f(I) is 

precompact and that f has no fixed point distinct from u 1 and u2 in I . Then either 

(a) there exists an entire orbit {xn}~=-oo off in I such that Xn+l > Xn, Vn E N, 

and lim Xn = u1 and lim Xn = u2, or 
n-+-oo n~oo 

{b) there exists an entire orbit {Yn}~=-oo off in I such that Yn+l < Yn, Vn E N, 

and lim Yn = u2 and lim Yn = u1. 
n~-oo n~oo 

Recall that a linear operator Lon E is said to be positive if L (P) C P, strongly 

positive if L(P \ {0}) c int(P). The cone P is said to be normal if there exists a 

constant M such that 0 :S x :S y implies that JJxJJ :S MJ JyJJ. Denote the Fn§chet 

derivative off at u =a by Df(a) if it exists, and let r(Df(a)) be the spectral radius 

of the linear operator D f (a) : E ___. E. 

T heorem 2.2.2 ([99, Theorem 2.1]) Let the positive cone P be normal. Assume that 



11 

( 1) S : V = a + P -t V is asymptotically smooth and monotone; 

{2} S(a) =a, DS(a) is compact and strongly positive, and r(DS(a)) > 1. 

Then either 

{a) for any u >a, lim IISn(u)ll = +oo, or 
n->oo 

{b) there exists u• = S(u*) » a such that for any a < u ~ u• , lim sn(u) = u•, 
n-+oo 

and there exists a monotone entire orbit connecting a and u•. 

Recall that a subset K of E is said to be order convex if [u, v]E C K whenever 

u, v E E satisfy u < v . A family of mappings { <I>th~o is said to be a semiflow on a 

metric space ( M, d) provided that <I>0 = I, <l>t1 <l>t2 = <l>t1 +t2 , and <I>t ( v) is continuous 

in (t, v) E IR+ x M . A pointe EM is called an equilibrium of {<I>t}t~o if <I>t(e) = e, 

'it~ 0. 

T heorem 2.2.3 ([97, Theorem 2.2.4]) Let U be a closed and order convex subset of an 

ordered Banach space E, and <I>(t) : U -t U be a monotone semifiow. Assume that 

there exists a monotone homeomorphism h from [0, 1] onto a subset of U such that 

{1} For each s E [0, 1], h(s) is a stable fixed point for <I>(t) : U -t U; 

{2} Each orbit of <I>(t) in [h(O), h(1)]E is precompact; 

{3} One of the following two properties holds: 

{3a) Ifw(¢) > h(so) for some so E [0, 1) and¢ E [h(O), h(1)]E, then there exists 

s1 E (so, 1) such that w(¢) ~ h(s1); 

{3b} Ifw(¢) < h(r1) for some r1 E (0, 1] and¢ E [h(O), h(1)]E, then there exists 

roE (0, r1) such that w(¢) ~ h(ro). 

Then for any precompact orbit f'+(¢o) of <I>(t) in U with w(¢o) n [h(O), h(1)]E =/= 0, 

there exists s• E [0, 1] such that w(¢0 ) = h(s*). 
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Definition 2.2.2 Let U C P be a nonempty closed and order convex set. A contin­

uous map f: U-+ U is said to be subhomogeneous if f(>.x) ~ >.f(x) for any x E U 

and).. E [0, 1]; strictly subhomogeneous if f(>.x) > >.f(x) for any x E U with x » 0 

and).. E (0, 1); strongly subhomogeneous if f(>.x) » >.f(x) for any x E U with x » 0 

and).. E (0, 1). 

Theorem 2.2.4 ([96, Lemma 1]) Let either V = [0, b]E with b » 0 or V = P. A.ssume 

that f : V -+ V is continuous, strongly monotone and strictly subhomogeneous on V . 

Then f admits at most one positive fixed point in V. 

Theorem 2.2.5 ([36, Theorem 5.5] and [97, Theorem 2.3.2]) Let f : U -+ U. Assume 

that f is monotone and strongly subhomogeneous or that f is strongly monotone and 

strictly subhomogeneous. Iff admits a nonempty compact invariant set K C int(P), 

then f has a fixed point e » 0 such that every nonempty compact invariant set off 

in int(P) consists of e. 

Theorem 2.2.6 ( [96, Lemma 1] and [97, Lemma 2.3.2]) Let either V = [0, b] with b » 0 

or V = P. Assume that S: V-+ V is continuous, S(O) = 0, and DS(O) exists. If S 

is subhomogeneous, then S(u) ::; DS(O)u, Vu E V; If S is strictly subhomogeneous, 

then S(u) < DS(O)u, VuE V n int(P). 

2.3 Periodic monostable evolution systems 

We equip ~k with the norm l(ul, u2, · · · , uk)l =max{ lui I : 1 ::; i::; k} and the positive 

cone ~t of JRk, such that ~k is an ordered Banach space. 

Let T be a nonnegative real number and C be the set of all bounded and continuous 

functions from [-T, 0] x lHI into ~k, where lHI = ~ or Z. Clearly, any vector in ~k 

and any element in the spaceY:= C([-T, 0], ~k) can be regarded as a function in C. 

For u = (u1>u2, ... ,uk),v = (v1>v2, ... ,vk) E C, we write u ~ v(u » v) provided 

that ui(B,x) ~ vi(B,x)(ui(B,x) > vi(B,x)), Vi= 1,2, ... ,k, BE [-T,O], x E lHI, and 

u > v provided u ~ v but u :f. v. For any two vectors a, b in ~k or two functions a, b 
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in Y, we can define a ~ b(>, » )b similarly. For any r E Y with r » 0, we define 

Y r = { cp E Y : 0 ~ cp ~ r} and Cr = { cp E C : 0 ~ cp ~ r}. We equip Y with the 

usual supreme norm II · llv and C with the compact open topology, that is, um --+ u in 

C means that the sequence of um(B, x) converges to u(B, x) as m--+ oo uniformly for 

(B, x) in any compact set on [-T, OJ x IHI. Moreover, we can define the metric function 

d(·, ·) inC with respect to this topology by 

oo max lu(B, x)- v(B, x)l 
d( ) = "'\"' _lx_l~_k_,9_E[_-_r,O_J_-:------

u, v L.J 2k ' 
k=l 

Vu ,v E C, 

where I · I denotes the usual norm in JRk, such that ( C, d) is a metric space. 

Let X be the space of all bounded and continuous functions from lHI into JRk 

equipped with the compact open topology. 

Let u E C. Define the reflection operator R by 

R(u)(B, x) := u(B, -x), VB E [-T, 0], x E R 

Given y E IR, define the translation operator Ty by 

Ty(u)(B, x) := u(B, x- y), VB E [-T, OJ, x E JR. 

Let Q : Cb. --+ Cb· be a map, where b* E Y with b* » 0. Assume that 

(Al) Q(R(u)) = R(Q(u)), Ty(Q(u)) = Q(Ty(u)), Vy E R 

(A2) Q : Cb· --+ Cb. is continuous with respect to the compact open topology. 

(A3) One of the following two properties holds: 

(a) {Q(u)(·, x) : u E Cb·, x E IH!} is a precompact subset of Y. 

(b) The set Q(Cb· )(0, ·) is precompact in X, and there is a positive number 

<; ~ T such that Q(u)(B, x) = u(B+<;, x) for-T~()~ -<;,and the operator 

( )( ) { 
u(O,x), -T ~ 0 < -<;, 

SuB,x:= 
Q(u)(B, x), -<; ~ () ~ 0, 

has the property that S(D)(·, 0) is precompact in Y for any T -invariant 

set D ~ Cb· with D(O, ·) is precompact in X. 
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(A4) Q : Cb· --+ Cb· is monotone in the sense that Q(u) ~ Q(v) whenever u ~ v in 

Cb·· 

(A5) Q : Yb· --+ Yb• admits exactly two fixed points 0 and b* and for any positive 

number c, there is an a E Yb· with II a llv< c such that Q(a) »a. 

(A6) One of the following two conditions holds: 

(a) Q(Cb·) is precompact in Cb·· 

(b) The set Q(Cb. )(0, ·) is precompact in X, and there is a positive number 

c; ~ T such that Q(u)(B, x) = u(B + .;-, x) for-T~ fJ ~ -c;, the operator 

S[u](B, x) := { u(O, x), -T ~ (J < -c;, 

Q[u](B, x), -c; ~ fJ ~ 0, 

is continuous on Cb·, and S[D](·, 0) is precompact in Y for any T-invariant 

set D ~ Cb· with D(O, ·) being precompact in X. A set W ~ Cb· is said 

to beT-invariant if Ty W = W for ally E JR. 

Theorem 2.3.1 ([53, Theorem 2.11, Theorem 2.15, Corollary 2.16] or [52, Theorem A]) 

Suppose that Q satisfies ( Al}-( AS}. Let Uo E cb. and Un = Q( Un-d for n ~ 1. Then 

there is a real number c* such that the following statements are valid: 

{ 1} For any c > c•, if 0 ~ u0 « b* and u0 ( ·, x) = 0 for x outside a bounded interval, 

then lim un(B, x) = 0 uniformly for fJ E [-T, 0]. 
n-+oo,lxl?:cn 

{2} For any c < c* and any a E Yb· with a » 0, there exists r17 > 0 such that if 

uo(·, x) 2: a(·) for x on an interval of length 2r17 , then lim un(B, x) = b*(B) 
· n-+oo,lxl~cn 

uniformly for fJ E [ -T, 0]. If, in addition, Q is subhomogeneous on Cb·, then r 17 

can be chosen to be independent of a» 0. 

By Theorem 2.3.1, it follows that Q admits an asymptotic speed of spread c• 

provided that (A1)-(A5) are valid. To estimate c*, a linear operator approach was 

developed in [53]. Let M : C --+ C be a linear operator with the following properties: 
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(Bl) M is continuous with respect to the compact open topology. 

(B2) M is a positive operator, that is , M(u) ~ 0 whenever u > 0. 

(B3) For any uniformly bounded subset A of C, the set {M(u)(B,x) : u E A,B E 

[-T, 0], x E !HI} is bounded in JRk. 

(B4) M('R(u)) = R(M(u)), Ty(M(u)) = M(Ty(u)), VuE C, y E !HI. 

(B5) For some b. E (0, oo], M can be extended to a linear operator on the linear 

space 
6 := {u = u1(B,x)eJ.i 1x +u2 (B,x)eJ.i2x: 

U1, U2 E C, /-ll. /-l2 E (-b., b.), 8 E [-T, 0], X E !HI}, 

such that if un, u E 6 and un(B, x) ---+ u(B, x) uniformly on any bounded set of 

[-T, OJ x !HI, then M(un)(B, x) ---+ M(u)(B, x) uniformly on any bounded set of 

[-T, OJ X JHI. 

By property (B4), M is also a linear operator on ir". Define the linear map BJ.I : 

y --t y by 

BJ.i(a)(B) = M(ae-J.1x)(B , 0), Va E Y, 1-t E (-b., b.), 8 E [-T, OJ . 

In particular, B0 = M on Y. If an, a E Y and O'n---+ a as n---+ oo, then an(B)e-J.IX---+ 

a( B)e-J.1x uniformly on any bounded subset of [ -T, OJ x !HI. Thus, 

and hence, BJJ. is continuous. Moreover, BJ.I is a positive operator on Y. Assume that 

(B6) For any 1-l E [0, ~), BJ.I is a positive operator, and there is n0 such that s;o = 

BJ.IBJ.I · · · BJ.I is a compact and strongly positive linear operator on Y. 
~ 

no 

(B7) The principle eigenvalue >.(0) of B0 is larger than 1. 
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Let 4>(J.£) = ln >.. (J.£)/ J.£, J.£ E (0, 6.), where >..(J.£) is the principle eigenvalue of Bw 

The following result is useful for the estimate of the spreading speed. 

Theorem 2.3.2 ([53, Theorem 3.10]) Let Q be an operator on Cb· satisfying {A1}­

{A5} and c* be the asymptotic speed of spread of Q. Assume that the linear operator 

M satisfies (B1}-{B7), and that either M has compact support or the infimum of4>(J.£) 

is attained at some finite value J.£* and 4>(6.) > 4>(J.£*). Then the following statements 

are valid: 

{i} If Q(u) ~ M(u) for all u E Cb·, then c* ~ infllE(O,A) 4>(J.£). 

(ii} If there is some rJ E Y with rJ » 0 such that Q( u) ~ M ( u) for any u E CTJ , then 

c* ~ infllE(O,A) 4>(J.£) . 

Definition 2 .3.1 Let w > 0. A family of operators {4>t}t~0 is an w-periodic semi­

flow on a metric space (E,p) with the metric p, provided that {4>t} satisfies 

{i} 4>0 (v) = v, Vv E E; 

{ii} 4>t(4>w(v)) = 4>t+w(v), Vt ~ 0, vEE; 

(iii} 4>(t, v) = 4>t(v) is continuous in (t, v) on [0, +oo) x E. 

Theorem 2.3.3 ([52, Theorem 2.1)) Let {Qt}t<:!O be an w-periodic semifiow on Cb· 

with two x-independent w-periodic orbits 0 « u*(t). Suppose that the Poincare map 

Q = Qw satisfies all hypotheses (A1}-(A5} with b* = u*(O), and Qt satisfies (Al} 

for any t > 0. Let c* be the asymptotic speed of spread of Qw. Then the following 

statements are valid: 

{1} For any c > c*/w, if v E Cb· with 0 ~ v « b*, and v(·, x) = 0 for x outside a 

bounded interval, then lim Q t ( v) ( (), x) = 0 uniformly for () E [ -T, 0 ]. 
t-+oo, JxJ~ct 

(2} For any c < c*/w and a E Yb· with a » 0, there is a positive number ru 

such that if v E Cb. and v(·, x) »a(·) for x on an interval of length 2ru, then 

lim (Qt(v)(B, x)- u*(t)(B)) = 0 uniformly for() E [-r, 0]. If, in addition, 
t-+oo,JxJ_:5ct 
Qw is subhomogeneous, then ru can be chosen to be independent of a» 0. 
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We say that W(O, t, x- ct) is a periodic traveling wave of thew-periodic semi.flow 

{Qth~o if the vector-valued function W(O, t, s) is w-periodic in t and 

Qt(W(·, 0, ·))(0, x) = W(O, t, x- ct), 

and that W(O, t, x-ct) connects u•(t) to 0 if W(-, t, -oo) = u•(t) and W(·, t, +oo) = 0. 

Theorem 2.3.4 ([52, Theorems 2.2 and 2.3]) Let { Qth~o be an w-periodic semifiow 

on Cb· with two x-independent w-periodic orbits 0 « u•(t). Suppose that Q = Qw 

satisfies hypotheses (A1}-(A5) with b* = u*(O) and let c• be the asymptotic speed of 

spread of Qw . Then the following statements a1·e valid. 

(1) For any 0 < c < c• jw, { Qth~o has now-periodic traveling wave W(O, t, x- ct) 

connecting u•(t) to 0. 

(2) Suppose that !HI= JR, that Qw further satisfies (A6) with b* = u*(O), and that 

Qt satisfies (Al) and (A4) for each t > 0. Then for any c ~ c•jw, {Qt}t~o 

has an w-p·eriodic traveling wave W(O, t, x- ct) connecting u*(t) to 0 such that 

W(O, t, s) is continuous and nonincreasing ins E R 

2.4 Discrete-time systems in a periodic habitat 

Let 7-l be an unbounded closed d-dimensional subset of JR.d with d ~ 1. The recursion 

has two nonnegative fixed points 0 and 1r1(x). Define 

M := {u : u is continuous on 7-l, 0 ~ u(x) ~ 1r1 (x), Vx E 7-l}. 

The following assumptions come from [86, Hypotheses 2.1]. 

(Cl) The habitat 7-l is a closed subset of JR.d, which is not contained in any lower­

dimensional linear subspace of JRd. 
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(C2} Q is order preserving in the sense that if u(x) ~ v(x) on 7t, then Q(u)(x) ~ 

Q(v)(x). That is, an increase throughout 7t in the population Un at time n 

increases the population Un+l = Q( un) throughout 7t at the next time step. 

(C3} There is a closed d-dimensionallattice £ such that 7t is invariant under trans­

lation by any element of£, and Q is periodic with respect to £ in the sense that 

Q(Ta(u)) = Ta(Q(u)) holds for all u EM and a E £, where Tis the translation 

operator defined as Ta ( u) ( x) := u( x -a). Moreover, there is a bounded subset P 

of 7t such that every x E 7t has a unique representation of the form x = z + p 

with z in £ and p in P. 

(C4) Q(O) = 0, and there are£-periodic equilibria1r0 (x) and1r1 (x) such thatO ~ 7ro < 

1r1, Q(7ro) = 7ro and Q(1r1) = 1r1. Moreover, if7ro ~ uo ~ 1r1, uo is periodic with 

respect to£, and u0 ¢ 1r0, then the solution Un of the recursion Un+l = Q(un) , 

which is again periodic with resect to £, converges to 1r1 as n -+ oo uniformly 

on 7t. (That is, 1r0 is unstable and 1r1 is stable.) In addition, any £-periodic 

equilibrium 1r other than 1r1 which satisfies the inequalities 0 ~ 1r ~ 1r1 also 

satisfies 1r ~ 7ro. 

(C5) Q is continuous in the sense that if the sequence Urn E M converges to u E 

M, uniformly on every bounded subset of 7t, then Q(urn) converges to Q(u), 

uniformly on every bounded subset of 7t. That is, a change in u far from the 

point x has very little effect on the value of Q( u) at x. 

(C6) Every sequence {urn} of functions in M contains a subsequence {urn.} such that 

{Q(urni)} converges to some function, uniformly on every bounded set. 

Theorem 2.4.1 ([86, Theorem 2.1]) Let (C1)-(C6} hold. For each unit vector (there 

exists a spreading speed c*(~ E ( -oo, +oo] such that solutions of the recursion Un+l = 

Q(un) have the following spreading properties: 

(1} If uo(x) ~ 0, inf[1r1(x)- uo(x)] > 0, and uo(x) = 0 in a half-space of the form 
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{ x ~ L and if c*(O < oo, then for every c > c*(O, 

lim sup [_sup [un(x)- 7ro(x)]l :s; 0; 
n-+oo { ·x~cn 

and 

{2) IfO :s; uo :s; 1r1 and there is a constant K such that inf(x:s;-K[u0 (x) -1r0(x)] > 0, 

then for every c < c* ( 0, 

J~~ [_sup [1r1(x)- un(x)]l = 0. 
{ ·x$cn 

Let L be a linear operator on nonnegative functions which are continuous on 1t. 

Suppose that L is strongly order preserving in the sense that if u ~ 0 and u ¢. 0, 

then L(u) > 0. Also suppose that Lis periodic with respect to [,if TaL= LTa for 

all a E £, where Ta is the translation operator. For each p,, we say that L[e~-' lxl] exists 

if the nondecreasing sequence L[min{n, e~-'lxl }](y) converges to a function, which we 

call L[e~-'lxl](y). If L[e~-'lxl] exists, we define 

for all nonnegative periodic (with respect to£) functions '1/J : 1t -t IRt. 

Theorem 2.4.2 ([86, Theorem 2.4, Theorem 2.5, Corollary 2.1]) Suppose that the lin­

earization M of Q at u = 0 satisfies 

(1) Q(u) :s; M(u) for all u with 0 :s; u :s; 1r1; 

(2) M is £ -periodic and strongly order-preserving , and M[e~-'lxl ] is defined for all 

p,. 

(3) There is a positive £-periodic function r such that M(r) > r, and the truncated 

operator Q[M,rl(u) := min{M(u), r} satisfies (C1)-(C6). 
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Moreover, assume that for each small positive o, there is a positive number TJ such 

that Q(u) 2: (1- o)M(u) for every u with 0:::; u:::; TJ, and that above assumptions (2) 

and (3} also hold if M is replaced with (1- o)M. Then 

c*(~ = inf [ln >-.(p,~l , 
J.£>0 J.L 

where >-.(p,~ is the principal eigenvalue of Mp,(. Thus, the spreading speed is linearly 

determinate in all directions under these conditions. 

Definition 2.4.1 ([86, Definition 2.1]) A solution Un of the recursion Un+l = Q(un) is 

called a spatially periodic traveling wave of speed c in the direction of the unit vector 

(if it has the form un(x) = W({ x- cn,x), where the function W(s,x) has the 

properties: 

(a) For each s the function W({ x + s, x) is continuous in x E 'H. 

(b) For each s, W(s, x) is £ -periodic in x; 

(c) For each x E 'H, W(s, x) is nonincreasing ins; 

(d) W( -oo, x) = 1r1(x); 

(e) W(oo, x) = 0. 

Theorem 2.4.3 ([86, Theorem 2.6]) Suppose that 7ro = 0. Then there is a spatially 

periodic traveling wave of speed c in the direction (if and only if c 2: c*(~. 

2.5 Functional differential equations 

Let 7 be a positive number, Y = C([-7,0],JR) andY+= C([-7,0J,JR+) · 

Theorem 2.5.1 ([93, Proposition 2.1]) Assume that a(t) and b(t) are T-periodic and 

continuous on [0, oo) and b(t) > 0, \:It 2: 0. Let P: Y+ --t Y+ be the Poincare map of 

u = a(t)u(t) + b(t)u(t- 7). 
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Then the spectral radius of P, r(P), is positive and is an eigenvalue of P with a 

positive eigenfunction <p*. Moreover, if T = kT for some integer k ~ 0, then r(P)- 1 

has the same sign as J0T(a(t) + b(t))dt. 

Consider a nonlinear T-periodic equation 

{ 
u = f(t, u(t), u(t- r)), 

u(s) = t.p(s), -T:::; s:::; 0, 

where <p E Y+ is an initial function. 

(2.1) 

Assume that the continuous function f(t, v1, v2) is T-periodic in t and Lipschitzian 

in (v1,v2) in any bounded subset of IR~. Moreover, f(t,O,O) = 0, f(t,O,v2) ~ 0, 

(8j8v2)f(t, v1, v2) > 0, Vv1, v2 ~ 0; f is strictly subhomogenous in the sense that 

for any a E (0, 1), f(t, av1, av2) > af(t, V1, v2), Vv1, v2 ~ 0; there exists a positive 

number L > 0 such that f(t, L, L) :::; 0. 

Let Pu be the Poincare map of the linearized equation associated with (2.1) at 

u = 0, and r = r(Pu) be the spectral radius of Pu. Then we have the following results. 

Theorem 2.5.2 ([93, Theorem 2.1]) Suppose that (2.1) satisfies above assumptions. 

Then the following statements are valid. 

(1) If r :::; 1, then zero solution is globally asymptotically stable for (2.1) with respect 

toY+· 

(2) Ifr > 1, then (2.1) has a unique positive T-periodic solution u(t,<p0 ), which is 

globally asymptotically stable with respect to Y+ \ { 0}. 

Let X be a real or complex Banach space with norm denoted by I · I and T be a 

positive number. Denote by Y := C([-r, OJ, X) the space of all continuous functions 

<p: [-r, OJ--+ X with II1.PII = max{l<p(B)I : -T:::; B :S 0}. For any continuous function 

w(·) : [-r, b) --+ X, b > 0, we define Wt E Y by Wt(s) = w(t + s), Vt E [0, b), 

s E [-r, 0]. It is then easy to see that t--+ Wt is a continuous function from [0, b) to 

Y. Let a be a real number and D be a closed subset of [a - T, oo) x X, and assume 
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D(t) := {x EX: (t,x) ED} is nonempty for each t ~a- r. Let 1J is the closed 

subset of [a, oo) x Y defined by 1J := {(t, cp): cp(O) E D(t+O), 'V- r ~ (} ~ 0}. Define 

1J(t) := {cp E Y: (t,cp) E 1J}, 'Vt ~a, and assume that 1J(t) is nonempty for each set 

t ~a. Let E be a subset of [a- r, oo) x X such that E(t) := {x EX: (t, x) E E} is 

nonempty for all t . 

Let B be a continuous operator from [a, oo) x Y into X satisfying that for each 

R > 0, there are an LR > 0 and a continuous VR: [0, oo) --+ [0, oo) such that vR(O) = 0 

and 

IB(t, cp)- B(s, 7/J)I ~ vR(It- sl) + LRIIcp - 7/JII 

for all (t, cp), (s, 7/J) E [a, oo) x Y with llcpll, 117/JII ~Rand a~ s, t ~a+ R. 

LetS= {S(t, s) : t ~ s ~a} be a family of bounded linear operators from X into 

X. Assume that S(t, t)x = x and S(t, s)S(s, r)x = S(t, r)x for all t ~ s ~ r ~ a, 

that for each x EX, the map (t, s) --+ S(t, s)x is continuous fort~ s ~a, and that 

there are numbers M ~ 1 and w E lR such that 

IIS(t, s)ll := sup{IS(t, s)xl : lxl ~ 1} ~ M ew(t-s), 'Vt ~ s ~ a. 

Suppose that v- and v+ are continuous functions from [a- r, b) into X such that 

v-(t) ~ v+(t) fort E [a- r, b), and that [v-(t), v+(t)] C E(t) for all a-T ~ t ~ b. 

Assume that for each a < c < b, there exists a continuous and increasing function 

De : [0, c - a] --t [0, oo) with iic(O) = 0 such that 

Moreover, assume that 

l
t+h 

v-(t +h) ~ S(t + h, t)v-(t) + t S(t + h, r)B(r, v;)dr 

and 
. t+h 

v+(t +h) ~ S(t + h, t)v+(t) + 1 S(t + h, r)B(r, vndr 

for a ~ t ~ t + h < b. 
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Theorem 2.5.3 ([58, Corollary 5]) Suppose that B is quasi-monotone on Y in the 

sense that 

lim d('I/J(O)- ¢(0) + h[B(t, '1/J)- B(t, ¢)],X+)= 0, 
h-->O+ 

(2.2) 

for all¢, '1/J E Y with ¢(s):::; '1/J(s), Vs E [-T, OJ. Then for each x E Y with v;;:::; x:::; 
v;i, the equation 

l 
u(t) = S(t, a)x(O) + 1t S(t, r)B(r, ur)dr, 

u(a +B) = x(B) for - T :::; e :::; 0, 

X E 'D(a) 

a:::; t < b, 

has a (unique) solution u(·, x) on [a, b) where a < b = b(x). Furthermore, if v;; :::; 

X :S '1/J :::; v;i, then 

v-(t) :::; u(t, x) :::; u(t, '1/J) :::; v+(t), Vt E [a, b), 

where b = min{b(x), b('l/J)}. 



Chapter 3 

A Periodic Population Model with 

Dispersal 

3.1 Introduction 

Population dispersal is a very common phenomenon which exists almost everywhere at 

any time. Due to the variations of the environmental and social conditions in different 

places, populations have to move for food, propagation, work (especially for humans), 

etc. As a result of dispersal, evolution dynamics, including the spatial distribution of 

a population and the spatial spread of a disease, may be greatly influenced. A typical 

example is the spread of diseases such as influenza, measles, malaria, and SARS. 

Thus, spatial dispersal is an important topic in population dynamics. To take into 

account the large-scale effects of a dispersal process on evolution dynamics, ordinary 

differential equations or difference equations are usually used, see, e.g., [10, 15, 84]. 

These models, however, represent the habitat by discrete patches and are appropriate 

only when we consider population jumps among some discrete patches. A traditional 

way to describe the evolution of population dispersal in continuous spaces is to use 

reaction-diffusion models, e.g., [5, 65, 94]. However, reaction-diffusion models may 

underestimate speeds of invasion [16, 43]. Further, there are more general dispersal 

processes than diffusion and advection as well as long-range effects. 

24 
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Recently, integro-differential models have been presented to study biological inva­

sions and disease spread. Such a model, to some extent, describes population dispersal 

better than ordinary differential/ difference equations or reaction-diffusion equations. 

This is because it takes into account the long-distance dispersal and describes the 

dispersion via a dispersal kernel, which specifies the probability that an individual 

moves from one location to another in a certain time interval as a function, see, e.g., 

[24, 41, 44, 55, 59, 60, 67, 88]. In particular, Medlock and Kot [59] investigated the 

effects of population dispersal using the DI epidemic model 

ai r 
8t = (3I(N- I)- DI + D Jn k(x, y)I(t, y)dy, (3.1) 

where N is the density of the total population, I(t,x) is the density of infective 

individuals of the population at the point X E f2 at t 2: 0, (3 2: 0 is the transmission 

rate, D ;::: 0 is the rate at which infective individuals move from one location to 

another, k(x, y) is the dispersal kernel (i.e., the density function that prescribes the 

proportion of infectives leaving y to x). Lutscher, Pachepsky and Lewis [55] presented 

and analyzed a stream population model 

ou(t, x) r 
ot = j(u(t, x))- J.LU(t, x) + J.L ln k(x, y)u(t, y)dy, (3.2) 

where u(t, x) is the density of a stream population at the point x En at t;::: 0, f(u) 

describes the population dynamics such as birth and death, J.L ;::: 0 is the jumping 

rate, and k(x, y) is the dispersal kernel. Similar models were also studied by Fedotov 

[24] and Mendez et al.[60]. Medlock and Kot [59] derived the minimal wave speed 

by the "linear conjecture" approach [63] and gave some approximation of the shape 

of traveling waves. Lutscher, Pachepsky and Lewis [55] also used the same method 

as in [59] to obtain the minimal wave speed for (3.2), and showed that under certain 

technical conditions on the asymmetric kernel k(x, y), this minimal wave speed is the 

spreading speed in a weak sense. Actually, in their works, c± are called the spreading 

speeds in the positive and negative directions, if 

{ 
u, 

lim u(t, x + ct) = 
t--+oo 0, 

c• < c < c• - +• 
c < c~ or c > c~, 
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for any x En, where u > 0 is a positive equilibrium of (3.2), see also (3.13) in [55]. 

Note that (3.1) and (3.2) are special cases of the following general integra-differential 

equation 
8u(t,x) r 

8t = F(u(t, x)) +a}~ k(x, y)u(t, y)dy, 

where u(t, x) is the spatial density of a population at the point x E lR at timet 2: 0, 

F(u(t,x)) is the reaction function which governs the population dynamics, a 2: 0 is 

the rate at which an individual leaves its current location, k(x, y) is the dispersal 

kernel. 

For simplicity, we assume that the dispersal kernel k(x, y) depends on the distance 

between x and y, that is, we write k(x, y) = k(x- y). Then we obtain the following 

system: 
8u(t, x) r 

Bt = F(u(t, x)) +a JJR k(x - y)u(t, y)dy, (3.3) 

Define a probability measure J.J.(B) on IR+ x lR by 

J.J.(B) = Ia XB(O, y)k(y)dy, 

where B is a Borel set in IR+ x lR and XB is the characteristic function of B . It follows 

that 

J.i.*U(t,x) := r u(t-s,x-y)J.J.(ds,dy)= r u(t,x-y)k(y)dy, 
l sER+,yElR JJR 

and (3.3) can be written as 

8u(t, x) 
Bt = f(u, J1 * g(u)), (3.4) 

where f(u, v) = F(u) + av, g(u) = u. Schumacher [68] established the spreading 

speed and the existence and nonexistence of traveling wave solutions for (3.4) under 

appropriate conditions on f and g. We should point out that the spreading speed in 

[68] was also defined in a weak sense (see, e.g., (3.13) in [55]). 

It is observed that time-varying environments (e.g., due to seasonal variation) 

affect population dynamics very much. This suggests that nonautonomous systems 
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be more realistic for some populations. Therefore, in this chapter we consider the 

following periodic evolution equation 

au(t, x) r 
at = F(t, u(t, x)) + a(t) }R k(x - y)u(t, y)dy, (3.5) 

where u(t, x) is the spatial density of a population at the position x E lR at time 

t ~ 0, F(t, u(t, x)) is the reaction function which governs the population dynamics 

such as birth and death, and other removal terms such as emigration of individuals 

at the position x E lR at time t ~ 0, a(t) ~ 0 is the rate at which an individual 

leaves its current location at timet~ 0, k(x, y) is the dispersal kernel that describes 

the probability that an individual moves from position y to position x. Moreover, 

two continuous functions F and a are w-periodic in t for some w > 0, and a(t) ¢ 0. 

For simplicity, we neglect the birth and death of the population during the dispersal 

process and assume that k(x, y) depends only on the distance between x and y, and 

then write it as k( x - y) (usually such a k is said to be "isotropic"). 

We adopt the definition of spreading speeds in a strong sense (see Theorem 3.3.1) 

and study the spreading speed and periodic traveling waves for (3.5). It seems to 

be difficult to apply the approach in [68] to the periodic equation (3.5). However, it 

is natural to use the theory in [85] for monotone discrete-time systems to study the 

spreading speed for the time period map associated with (3.5). In order to carry over 

the results to (3.5), we appeal to the theory recently developed in [52] for monotone 

periodic semifl.ows. More precisely, we use this theory to establish the existence of 

the asymptotic speed of spread c• and its explicit formula, and the nonexistence of 

periodic traveling waves with the wave speed c < c•. However, we cannot apply 

this theory to prove the existence of monotone periodic traveling waves with the 

wave speed c ~ c• . This is because the solution maps associated with (3.5) lack 

the compactness with respect to the compact open topology (see [50, 53]). In the 

autonomous case of (3.5), we are able to prove the existence of monotone traveling 

waves via the method of upper and lower solutions and the limiting argument. 

This chapter is organized as follows. In section 3.2, we prove the well-posedness 

and the comparison principle for (3.5). In section 3.3, we establish the existence of 
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the spreading speed c* for solutions of (3.5) with initial data having compact supports 

by using the general results in section 2.3 (see also [53, 52]). In section 3.4, we show 

the nonexistence of periodic traveling waves of (3.5) with the wave speed c E (0, c*) 

by Theorem 2.3.4, and the existence of monotone traveling waves with the wave speed 

c ~ c* in the autonomous case. A short discussion section completes the chapter. 

3.2 The ·well-posedness and the comparison prin­

ciple 

In this section, we establish the existence, uniqueness and forward invariance of so­

lutions and the comparison principle for system (3.5). Assume that 

(Hl) F(t, u) = ug(t, u) with g E C(JR!, IR) and gu(t, u) < 0, V(t, u) E JR!, J
0
w(g(t, 0)+ 

a(t))dt > 0, and there exist u > 0 and L > 0 such that g(t, u)+a(t) :S 0, Vt ~ 0, 

and IF(t, u1)- F(t, u2)l :S Llu1- u2l, Vt ~ 0, u1, u2 E W := [0, u]. 

(H2) k(y) ~ 0, k( -y) = k(y), 1 k(y)dy = 1, and the integral 1 k(y)eo:Ydy converges 

for all o: E [0, ~), where ~ > 0 is the abscissa of convergence and it may be 

infinity. 

For convenience, we set 

m1 = max a(t). 
tE[O,wj 

Consider the spatially homogeneous system associated with (3.5) 

du(t) dt = F(t, u(t)) + a(t)u(t). (3.6) 

By [97, Theorem 3.1.2], it then follows that (3.6) has a positive w-periodic solution 

u*(t), which is globally asymptotically stable in [0, u] \ {0}. 

The subsequent result is on the global existence, uniqueness and forward invariance 

of solutions of (3.5). 
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Theorem 3.2.1 For any u0 E C(JR, W), (3.5} has a unique solution u(t, ·; u0 ) satis­

fying u(O, ·; u0 ) = u0 and u(·; u0 ) E C(JR+ x JR, W). 

Proof Define an operator Q[u] on C(JR+ x JR, W) by 

Q[u](t, x) = au(t, x) + F(t, u(t, x)) + a(t) 1 k(x- y)u(t, y)dy, a> 0. 

By (Hl), for any u11 u2 E [0, u], u1 ~ u2 , we have 

Then if a > L, au+ F(t, u) is strictly increasing in u on [0, u] and hence, Q is 

a nondecreasing map from C(JR+ x JR, W) to C(JR+ x JR, JR+) with respect to the 

pointwise ordering. Clearly, (3.5) can be written as 

8u(t, x) 
ot = -au(t, x) + Q[u](t, x), a> L. (3.7) 

Given the initial condition u(O, ·) = u0 E C(JR, W), (3.7) is equivalent to the integral 

equation 

u(t, x) = e-a:tu0 (x) + 1t e-a:(t-s)Q[u](s, x)ds. 

DefineS := { u E C(JR+ x JR, W) : u(O, ·) = u0 } and an operator G : S --t C(JR+ x JR, JR) 

by 

G[u](t, x) = e-a:tu0 (x) + 1t e-a:(t-s)Q[u](s, x)ds, V(t, x) E JR+ x R 

Then 

0 ~ G[u](t, x) ~ e-a:tu + Q[u]1t e-a:(t-s>ds ~ e-a:tu + u(l- e-a:t) = u. 

Thus, we have G(S) ~ S. 

For any u, v E S, define 

d>.(u,v) := sup iu(t,x)- v(t,x)ie->.t, 
xEIR,tEIR+ 
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where .A > 0 is a constant. Then S is a complete metric space with metric d>.. For 

any u, u E S, we have 

IG[u](t, x)- G[ii.](t, x)le->.t 

~ ~~· c•C<-•1 ( Q[u](s, x) - Q[il]( s, x ))dslc" 

~ 1 e-(a+>.)(t-s)d>.(U, u)(a + L + a(s) 1 k(x- y)dy)ds 

< a + L + m1 d ( _) 
a+ .A >. u,u. 

This implies that 

d>.(G[u],G[u]) ~ a+a~~m1 d>.(u,u). 
Choose .A > 0 large enough such that a+;:>.m1 < 1. Then G is a contracting mapping 

on (S,d>.). By the contracting mapping theorem, G has a unique fixed point inS, 

which is a solution of (3.5) with u(O, ·) = u0 . • 

In order to establish the comparison principle for upper and lower solutions of 

(3.5), we first introduce the following concepts. 

Definition 3.2.1 A function u E C(JR+ x JR, W) is called an upper solution of (3.5) 

if ':;: exists and 

ou(t, x) r 
ot ;:::: F(t, u(t, x)) + a(t) Ja k(x- y)u(t, y)dy. 

A function :g E C(JR+ x JR, W) is called a lower solution of (3.5) if 8!!:1~,x) exists and 

ou(t, x) r 
-

8
t ~ F(t,:g(t, x)) + a(t) la k(x- y):g(t, y)dy. 

Theorem 3.2.2 Let u(t, x) and :g(t, x) be upper and lower solutions of (3.5), respec­

tively. If u(O, ·) 2: :g(O, ·), then u(t, ·) ;:::: :g(t, ·)for all t;:::: 0. 

Proof Define v(t, x) = u(t, x) - :g(t, x), \i(t, x) E JR+ x JR, and w(t) = inf v(t, x), 
xER 

\it;:::: 0. Obviously, w(t) is continuous in t and w(O) ;:::: 0. Now we show that w(t) ;:::: 0, 
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Vt ~ 0. Assume, for the sake of contradiction, that this is not true. Then for 8 > 0, 

there is t0 > 0 such that w(t0) < 0 and 

w(t0)e-oto = min w(t)e-ot < w(r)e_6.,., Vr E [0, t0 ). 
tE(O,to] 

(3.8) 

It follows that there exists a sequence of points { xk}k::1 such that v(t0 , xk) < 0, Vk ~ 1 

and lim v(t0 , xk) = w(t0 ). Let { tk}k::1 ~ [0, t0] be a sequence such that 
k-+oo . 

v(tk, Xk)e-otk = min v(t, xk)e-ot . 
tE(O,to] 

For any c E (0, t 0), let me= min w(t)e-ot. By (3.8), we have 
tE(O,to-e] 

lim v(to, xk)e-oto = w(t0 )e-oto < me. 
k-+oo 

Thus, there exists an integer Ke such that for all k ~ Ke, 

v(t x )e-oto < m < w(t)e-ot < v(t x )e-ot o, k E:- - ' k ' VtE [O, t0 -c]. 

By (3.9), we obtain 

v(tk, xk)e-otk = min v(t, xk)e-ot ~ v(t0 , xk)e-oto, 
tE(O,to] 

and hence, tk E [to- c, t0], Vk ~ Ke. It then follows that, lim tk = t0 . Since 
k-+oo 

v(t x )e-oto > v(t x )e-otk > w(t )e-otk > w(t )e-oto o, k - k, k - k - 0 ' 

we have 

v(to, xk)e-o(to-tk) ~ v(tk, xk) ~ w(t0 )e-o(to-tk) . 

Letting k ~ oo, we obtain lim v(tk, xk) = w(t0 ) . Then (3.9) implies that, 
k-+oo 

0 a( v(t, xk)e-6t) I _ -otk ( av(tk, xk) 8 ( )) 
~ 8t t=ti: - e at - V tk , Xk , 

and hence, av(~tk) ~ 8v(tk, xk)· Since v(tk, xk) < 0, we have 

av(tk, xk) 
at 

au(tk, Xk) ay,_(tk, Xk) 

(3.9) 

- at at 

= F(tk, u(tk> xk))- F(tk, y,_(tk, xk)) + a(tk) l k(xk- y)(u(tk> y)dy- y,_(tk, y))dy 

~ Lv(tk , xk) + a(tk) l k(xk- y)v(tk, y)dy. 
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Then 
. 8v(tk, Xk) { 

0 ::; at - Lv(tk, Xk)- a(tk) JJR k(xk- y)v(tk , y)dy 

::; (8- L)v(tk, xk)- a(tk) 1 k(xk- y)v(tk , y)dy 

::; (8- L)v(tk, xk)- a(tk)w(tk) 

::; (8- L)v(tk,xk)- m1w(tk)· 

Letting k ---+ oo, we have 0 ::; (8- L- m 1)w(t0 ). For 8 > L + mt, this implies that 

w(t0 ) 2: 0, a contradiction. Therefore, for any t 2: 0, we have w(t) 2: 0. Thus, 

v(t, x) 2: 0, and hence, u(t, ·) 2: :Y!(t, ·), Vt 2: 0. • 

3.3 The asymptotic speed of spread 

In this section, we use the theory developed in [85, 53, 52] to prove the existence of 

the asymptotic speed of spread and obtain its explicit formula. 

Let C be the set of all bounded and continuous functions from lR to lR and Cr = 

{u E C : 0::; u(x) ::; r, Vx E JR}, for any r > 0. Throughout this section, we equip 

C with the compact open topology, that is, vn --+ v inC means that the sequence of 

functions vn(x) converges to v(x) uniformly for x in every compact subset of JR. We 

define the metric function d on C by 

oo max ju(x)- v(x)i 
"" lxl9 d(u,v) := ~ 

2
k , 

k=l 

Vu,v E C. 

Thus, ( C, d) is a metric space and its induced topology is the same as the compact 

open topology. · 

Define a family of operators Qt on C(JR, W) by 

Qt(cp)(x) := u(t, x; cp), Vx E JR, t 2: 0, 

where u(t, ·; cp) is the solution of (3.5) satisfying u(O, ·; cp) = cp. 

Lemma 3.3.1 {Qt}t~o is a monotone periodic semifiow on C(JR, W). 
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Proof We prove that Qt is a periodic semiflow on C(IR, W). Qt satisfies Definition 

2.3.1 (i) obviously. It follows from the existence and uniqueness of solutions to (3.5) 

that Qt satisfies Definition 2.3.1 (ii). It remains to prove that Qt satisfies Definition 

2.3.1 (iii). 

Given <p E C(IR, W). By the form of (3.5), it is easy to see that 8u(~x;<p) is bounded 

for all (t, x) E IR~ x lR and hence, there exists L = L(c.p) > 0 such that I &u(~;;<p) I:S L. 

This implies that 

Thus, Qt(c.p) = u(t, ·; c.p) is continuous in t E IR+ with respect to the compact open 

topology. 

Claim. For any c > 0 and t0 > 0, there exist o = o(c, t0 ) > 0 and M = M(c, t0 ) > 

0 such that if <p1, <p2 E C(IR, W) with I c.p1(x)- <p2(x) I< 0, Vx E [z- M, z + M] for 

some z E IR, then I u(t, z; c.p1)- u(t, z; <p2) I< c, Vt E [0, to]. 

By the spatial translation invariance of (3.5), it suffices to prove the claim for 

z = 0. Let w(t, x) = u(t, x; c.p1)- u(t, x; c.p2). Then w(t, x) satisfies 

aw(t,x) r 
at = F(t, u 1 (t, x)) - F(t, u2(t, x)) + a(t) la k(x- y)w(t, y)dy. 

Case 1. c.p1 2: <p2 • By Theorem 3.2.2, u(·; c.p1) 2: u(·; <p2) . Then w(t, x) 2: 0 and 

aw(t, x) r 
8t :S Lw(t, x) + a(t) fa k(x- y)w(t, y)dy. 

We write the linear integra-differential system 

av(t, x) r 
8t = Lv(t, x) + a(t) JR k(x- y)v(t, y)dy (3.10) 

as a system of integral equations 

v(t, x) = eLtc.p(x) + 1 t eL(t-s)a(s) { k(x - y)v(s, y)dyds, (3.11) 
0 · jR 

where c.p(x) = v(O, x) E C(IR, W). 
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Define Vo(t, x) = eLtcp(x) and 

Vm(t, x) = eLtcp(x) + 1t eL(t-s)a(s) 1 k(x- y)Vm-1(s, y)dyds, Vt ~ 0, x E lR, m ~ 1. 

(3.12) 

By induction, we have 
m 

Vm(t, x) = L ak(cp)(t, x), 
k=O 

where 

a0 (cp)(t,x) = eLtcp(x), 

ak(cp)(t, x) = J; eL(t-sla(s) JR k(x- y)ak_1(cp)(s, y)dyds, Vk ~ 1. 

We define a map P : Cv. --t C by 

P(cp)(x) = 1 k(x- y)cp(y)dy, Vcp E Cv., x E JR. 

Then P(O) = 0. For any c > 0 and K > 0, since JR k(y)dy = 1, there is an M0 > 0 

such that ~YI~Mo k(y )dy < 2~. For x E [-K, K], we have 

P(cp)(x) = 1 k(y)cp(x- y)dy, 
RM 

= r 0 

k(y)cp(x-y)dy+ r k(y)cp(x-y)dy 
1-Mo 1YI~Mo 

~ 1. max cp(x- y) + - . 
yE[-Mo,Mo] 2 

Let 8 = ~- If y;(x) < 8 on x E [-K- M0 , K + M0], then 

c c 
P(cp)(x) < 2 + 2 = c, Vx E [-K, K]. 

Thus, P( cp) is continuous at cp = 0 with respect to the compact open topology. 

By induction and the assumption JR k(x- y)dy = 1, Vx E JR, we see that 

mktk ueLtmktk 
ak(cp)(t, x) ~ eLt-!J-Pk(cp)(x) ~ k! 1 

, 

for (t, x) E JR+ x JR, Vcp E Cv.. Thus, we have 
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Hence, for any t0 > 0, the sequence of functions Vm(t, x) converges to a function 
00 

V(t,x) = 2: ak(cp)(t,x) uniformly for (t,x) E [0, t 0] x JR. Letting m ---too in (3.12), 
k=O 

we see that V(t, x) satisfies (3.11) and V(O, x) = cp(x), and hence V(t, x) is a solution 

of (3.10) with V(O, ·) = cp. 

Suppose that V(t,x) is another solution of (3.10) with V(O,x) = cp(x). It follows 

that 

jV(t, x)- V(t, x)l ~ I{ eLit-•la(s) f. k(x- y)(V(s, y) - V(s, y))dydsl 

~ lo eL(t-s)a(s) 1 k(x- y)IV(s, y)- V(s , y)idyds. 

Let G(t) = sup IV(s, x)- V(s, x)l. Then 
xEIR,sE(O,t] 

G(t) ~lot eL(t-s)a(s) 1 k(x- y)G(s)dyds =lot eL(t-s)a(s)G(s)ds, Vt ~ 0, 

which implies that 

G(t)e-Lt ~ m 1 lot e-LsG(s)ds ~ c + m1 1t e-LsG(s)ds, Vc > 0. 

By the Gronwall inequality, this implies that G(t)e-Lt ~ cem1 t, Vc > 0, and hence 

G(t) = 0. This proves the uniqueness of the solution of (3.10) with V(O, ·) = cp. 

Given t0 > 0, since Vm(t, x) ---t V(t, x) as m ---too, uniformly for (t, x) E [0, t0] x IR, 

it follows that for any c > 0, there is an integer N = N(t0 , c) > 0 such that V(t, x) <: 

VN(t, x) + c, '1:/x E IR, t E [0, t 0]. 

By the continuity of P(cp) at cp = 0, we see that for any k ~ 0, pk(cp) : Cu. ---t C 

is continuous at cp = 0 with respect to the compact open topology. Then there is 

a sufficiently large M > 0 and a small number o > 0, such that Pk(cp)(O) < c, 

VO ~ k ~ N, provided that cp E C(IR, W) with cp(x) < o, Vx E [-M, M]. Thus, 

N N ~k 
VN(t,O) .= Lak(cp)(t,O) ~ :L::>Ltm~! pk(cp)(O) < ce(m1+L)to , Vt E [O,t0] . 

k=O k=O 

It follows that 

V(t,O) <c+ce(m1 +L)to, VtE [O,to] 
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provided that cp E C(JR, W) with cp(x) < 8, Vx E [-M, M]. 

Let cp(x) = 'P1(x)- 'P2(x). Then cp E C(JR, W). By the comparison principle, we 

have w(t, x) ~ V(t, x), Vt 2: 0, x E JR, where V(O, x) = cp(x). Thus, 

u(t, 0; cpl)- u(t, 0; 'P2) = w(t, 0) ~ V(t, 0) < (1 + e<m1+L)to)c:, Vt E [0, t0], 

provided that 0 ~ cp1(x)- cp2(x) < 8, Vx E [-M, M]. 

Case 2. cp1 i 'P2· In this case, we define 

Then cf'l(x)- cp2(x) = I'P1(x)- 'P2(x)l and 

u(t,x;cp2(x)) ~ u(t,x;cp1), u(t,x;cp2) ~ u(t,x;cp1(x)), V(t ,x) E JR+ x JR. 

Thus, 

By case 1, we see that the claim also holds for cp1 and cp2 with cp1 i cp2. 

By the claim above, Qt('P) = u(t, ·; cp) is continuous in cp with respect to the 

compact open topology, uniformly for t in any bounded interval. Thus, Qt('P) is 

continuous in (t, cp) E JR+ x C(JR, W), i.e., Qt satisfies Definition 2.3.1 (iii). Therefore, 

Qt is a continuous w-periodic semiflow on C(JR, W). By Theorem 3.2.2, the map Qt 

is monotone on C(JR, W) for each t > 0. • 

Lemma 3.3 .2 Assume that {Hl} holds. Then for each t > 0, the solution map Qt 

of {3.5) satisfies {A1}-(A4) with b* = u and Qw satisfies {A5) with b* = u*(O). 

Proof By Lemma 3.3.1, it is easy to see that Qt satisfies (A1)-(A4) with b* = u. 
Let Qt = Qtl[o,uJ· Then Qt : [0, u] ---+ [0, u] is thew-periodic semiflow generated by 

(3.6). Since (3.6) is a scalar equation, the uniqueness of solutions implies that Qt is 

strongly monotone on [0, u]. Note that (3.6) has a positive w-periodic solution u*(t) 

which is globally asymptotically stable in [0, u] \ {0}. We see that Qw is strongly 

monotone on [0, u], and has only two fixed points 0 and u*(O) in [0, u]. Thus, by the 
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Dancer-Hess connecting orbit lemma (see, e.g., Theorem 2.2.1), the map Qw admits a 

strongly monotone full orbit connecting 0 to u*(O). Therefore, Qw satisfies (A5) with 

b* = u*(O). • 

By Lemma 3.3.2 and Theorem 2.3.1, it follows that Qw has an asymptotic speed 

of spread c: > 0. 

Consider the linearized system of (3.5) at the zero solution 

ou(t, x) r 
ot = g(t, O)u(t, x) + a(t) J.IR k(x- y)u(t, y)dy 

=g(t,O)u(t,x)+a(t) 7. k(y)u(t,x-y)dy. 
(3.13) 

For any a E (0, t:.), let u(t, x) = e-crxv(t). Substituting u(t, x) into (3.13) yields 

e-crxv'(t) = g(t, O)e-crxv(t) + a(t) 1 k(y)e-cr(x-y)v(t)dy. 

Then 

v'(t) =A( a, t)v(t), (3.14) 

where 

A( a, t) = g(t, 0) + a(t) 1 k(y)e0 Ydy. (3.15) 

Thus, if v(t) is a solution of (3.14), then u(t, x) = e-crxv(t) is a solution of (3.13). 

Note that the sol~tion of (3.14) can be expressed as v(t, v0 ) = v0ef~ A(cr,s)ds, Vv0 E 

R Define 

B~(vo) := Mt( Voe-crx)(O) = v(t, v0 ) = v0ef~ A(cr,s)ds, 

where Mt is the linear solution map defined by (3.13) and v(t, vo) is the solution of 

(3.14) with v(O, v0 ) = v0 . Therefore, B~ is the solution map associated with (3.14) 

on~ and B~ is strongly positive for each t > 0. Then B:':(vo) = v0ef;' A(cr,s)ds. Let 

1(a) := efo"' A(cr,s)ds, and define a function 

1 1 r"' };w A( a, s)ds 
<I>(a) := -ln I( a) = -ln eJo A(cr,s)ds = 0 . (3.16) 

a a a 

By [53, Theorem 3.8], we have the following result . 
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Lemma 3.3.3 The following statements are valid 

(1} ci>(a) ---too as a---t 0. 

(2} ci>(a) is decreasing near 0. 

( 3) ci>' (a) changes its sign at most once on ( 0, ~) . 

(4) lim ci>(a) exists, where the limit may be infinite. 
0!-+LI.-

Proposition 3.3.1 Assume that (Hl} and (H2} hold. Let c: be the asymptotic speed 

of spread of Qw. Then 

Jcw A( a, s )ds 
c* = inf ci>(a) = inf 0 

. 
w O<a<LI. O<o<LI. a 

Proof By the definitions of A( a, t) and r(a) and (H1), we see that 

r(O) = ef;' A(O,s)ds = ef;'(g(s,O)+a(s) JR k(y)dy)ds = ef0"'(g(s,O)+a(s))ds > 1, 

and hence, the condition (B7) is satisfied. 

Now we prove that ci>(~) = oo. First we consider the case ~ = oo. Since 

JJR k(y)dy = 1, i.e., 2 Jt k(y)dy = 1, there is a sufficiently small y0 > 0 such that 

roo k(y)dy > 0. Then Jyo 

and hence, 

Jcw a(t) ,h k(y)e0 Ydydt 100 1w e0
Yo 

lim ci>(a) = lim 0 JR 2:: k(y)dy · a(t)dt · lim - = oo, 
a-+oo a-+oo a Yo 0 a-+oo a 

i.e., ci>(oo) = oo. In the case where ~ < oo, we have lim JJR k(y)e0 Ydy = oo and 
0!-+LI.-

hence, lim ci>(a) = oo. Therefore, the infimum of ci>(a) is attained at some value 
0!-+LI.-

a E (0, ~). 

Note that Mw and B~ satisfy (B1)-(B7) and that (H1) implies F(t, u) ~ g(t, O)u, 

Vu 2:: 0. By the comparison theorem, we have Qw(cp) ~ Mw(cp) for cp E Cu•(O)· Thus, 

Theorem 2.3.2 implies that c: ~ inf ci>(a). 
O<o<LI. 
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By (H1), lim F{~u) = g(t,O) uniformly fort E [O,w]. It follows that for any 
u-+O+ 

c E (0, 1), there exists 8 > 0 such that 

F(t, u) > (g(t, 0) - c)u, \iO < u < 8, t E [0, w]. 

Moreover, there is 'r/ = 'T/(8) > 0 such that for any cp E C17 , we have 

0 ~ u(t,x;cp) ~ u(t,'f/) < 8, \ix E JR, t E [O,w]. 

Thus, for any cp E C11 , u(t, x) := u(t, x; cp) satisfies 

ou(t,x) f 
ot ~ (g(t, 0) - c)u + a(t) la k(x- y)u(t, y)dy, \ix E lR, t E [O,w]. 

Let M[, t ~ 0, be the solution maps associated with the linear system 

ou(t,x) f 
ot = (g(t, 0)- c)u + a(t) la k(x- y)u(t, y)dy. 

The comparison principle implies that M[(cp) ~ Qt(cp) , \icp E C17 , t E [O,w]. In 

particular, M~(cp) ~ Qw(cp), \icp E C11 • A similar analysis can be made forM[ as for 

Mt . It follows from Theorem 2.3.2 that inf <I>e(a) ~ c:. Thus, 
. O<o<~ 

inf <I>e(a) ~ c: ~ inf <I>(a), \icE (0, 1). 
O<o<~ O<o<~ 

Letting c--+ 0, we have c: = inf <I>(a). • 
O<o<~ 

The following result shows that c• := S: = l inf JQ' A(a,s}ds is the spreading 
w w O<o<~ a 

speed of solutions of (3.5) with initial functions having compact supports. 

Theorem 3.3.1 Assume that {Hi) and {H2} hold and let c• = c:/w. Then the 

following statements are valid: 

{1) For any c > c*, if cp E Cu·(o) with cp(x) = 0 for x outside a bounded interval, 

then lim u(t, x; cp) = 0. 
t-+oo,lxl2ct 

{2} For any 0 < c < c*, there is a positive number r such that if cp E Cu•(o) with 

cp(x) > 0 for x on an interval of length 2r, then lim ( u(t, x; cp)- u*(t)) = 0. 
. t-+oo,lx l::::;ct 
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{3} In the case where a(t) > 0, Vt E JR, for any c E (0, c*), if rp E Cu•(o) with rp =/= 0, 

then lim (u(t, x; rp)- u*(t)) = 0. 
t-+oo,[x[$ct 

Proof The conclusion (1) follows from Theorem 2.3.3. 

By (H1), we have F(t, u) ::; g(t, O)u for all u E [0, u*(O)]. Then the proof of 

Proposition 3.3.1 implies that there is a sequence of linear operators {Mn}!~ with 

en = ~' Vn E N, such that each Mn[rp] :S Qw[rp], Vrp E Gun' for some an > 0, n E N. 

Moreover, each Mn satisfies (B1)-(B7) and the spreading speed c~ of Mn converges to 

c: as n ---+ oo. Let c < c• be given. It then follows from [53, Theorem 3.5] that r u can 

be chosen to be independent of a > 0. Thus, Theorem 2.3.3 implies the conclusion 

(2). 

In the case where a(t) > 0, Vt E JR, we have m2 := min a(t) > 0. To prove the 
tE[O,wJ 

conclusion (3), we need the following claim on the strong positivity of solutions. 

Claim. For any rp E Cu. with rp ¢ 0, the solution of (3.5) through rp satisfies 

u(t, x; rp) > 0 for all (t, x) E (0, +oo) x R 

Indeed, for a. given rp E Cu. with rp ¢ 0, we assume, without loss of generality, that 

rp(x) > 0, Vx E [-r, r] for some r > 0. Let u(t, x) = u(t, x; rp). It follows from the 

continuity of u(t, x), there is an c > 0 such that u(t, x) > 0, V(t, x) E [0, c] x ( -r, r). 

Let a be sufficiently large such that au+ F(t, u) is increasing in u E [0, u]. Then 

au+ F(t, u) ~ 0, VuE [0, u] and t ~ 0. By the proof of Theorem 3.2.1, we have 

u(t, x) = rp(x)e-at 

+ f,t e-a(t-s)[au(s, x) + F(s, u(s, x)) + a(s) 1 k(x- y)u(s, y)dy]ds 

> 1 e-a(t-s)[au(s, x) + F(s, u(s, x)) + a(s) 1 k(x- y)u(s, y)dy]ds 
0 t R 

> m21 e-a(t-s) 1 k(x- y)u(s, y)dyds. 

Set [a0 , b0] = [-r, r]. Since JR. k(y)dy = 1, there exist p and r0 with ro > 0, such 

that k(y) > 0 for almost every y E (p,p + r0). Then we have J~ JR e-<>(t-s)k(x­

y)u(s, y)dyds > 0 for any t E (0, c] and x E (ao + p, bo + p + ro), which implies 

that u(t, x) > 0, Vt E (0, cJ, x E (a0 + p, b0 + p + r0 ). By induction, u(t, x ) > 0 for 
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all (t,x) E (O,c] x (ao + mp,bo + mp + mro), Vm ~ 1, mE Z. Let am= a0 + mp, 

bm = bo+mp+mro. Thus, bm-am-+ oo as m-+ oo and there exists an integer m• > 0 

such that am+l - bm < 0, Vm ~ m•. Let a• = am•. It follows that u(t, x) > 0 for all 

x E Um;::m•(am,bm) = (a*,+oo) and t E (O,c]. Since k(-y) = k(y), we have k(y) > 0 

for almost every y E ( -p- r0 , -p). Then (x- ( -p), x- ( -p- r 0)) n (a•, +oo) -=/= 0 

for every x E (a*- p- r 0 ,+oo). It follows that u(t,x) > 0 fort E (O,c] and 

x E (a* -p-r0 , +oo). By induction, u(t, x) > 0, V(t, x) E (0, c] x (a* -mp-mr0 , +oo) 

for all m ~ 0, which implies that u(t, x) > 0, V(t, x) E (0, c] x Ill. 

By (3.5), we have 

8u(t, x) 
at ~ F(t, u(t, x)), Vt ~ 0, x E R 

Given x E R Let w(t), t ~ c, be the unique solution of the ordinary differential 

system~~= F(t,w) satisfying w(c) = u(c,x) > 0. Then the standard comparison 

principle implies that u(t, x) ~ w(t) > 0, Vt ~ c. Thus, u(t, x) > 0, V(t, x) E 

[c,+oo) x Ill. Consequently, u(t,x) > 0 for all (t,x) E (O,+oo) x Ill. This completes 

the proof of the claim. 

For any cp E.Cu•(o) with cp "¢ 0,. we fix to > 0 and take u(to, ·; cp) as a new initial 

value for u(t, ·; cp). By the claim above, we have u(t0 , x; cp) > 0, Vx E Ill, and hence, 

the conclusion (3) follows from the conclusion (2). • 

3.4 Traveling waves 

Definition 3.4.1 u(t, x) = U(t, x + ct) is an w-periodic traveling wave of (3.5} 

connecting 0 to u*(t) if it is a solution of (1.5}, U(t, ~) is w-periodic in t , and 

U(t, -oo) = 0 and U(t, oo) = u*(t) uniformly fortE [0, w]. 

As a straightforward consequence of Theorem 2.3.4, we have the following result 

on the nonexistence of monotone periodic traveling waves of (3.5). 
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Theorem 3.4.1 Assume that (H1) and (H2) hold. Let c: be the asymptotic speed 

of spread of Q~ and c• = c:fw. Then for any c E (0, c•), system (3.5) admits no 

w-periodic traveling wave solution ¢(t, x + ct) connecting 0 and u*(t). 

As mentioned in the introduction, the theory in [53, 52] cannot be applied to estab­

lish the existence of monotone w-periodic traveling waves for periodic equation (3.5). 

However, we are able to prove the existence of traveling waves for the autonomous 

equation (3.3) under the following assumption: 

(Hl)' F(O) = 0, F"(O) exists, F'(O) +a > 0 and there is u• > 0 such that u• is the 

unique positive zero of the function F(u)+au in [0, u•], F is Lipschitz continuous 

on W := [0, u•] with the Lipschitz constant L > 0, and that F(u) ~ F'(O)u for 

all u E [0, u*]. 

Throughout this section, we assume that (H1)' and (H2) hold. Let c• be the 

spreading speed of (3.3), which is defined as in Theorem 3.3.1. Then 

c• = inf <J?{a), 
O<o<LI. ' 

(3.17) 

where <J?(a) := A(a)/a and A( a) := F'(O) +a fiR k(y)eO<Ydy. 

A traveling wave solution of (3.3) is a solution with the form 

u(t, x) = ¢(x + ct) = ¢(s), s = x +ct. (3.18) 

Thus, the wave profile ¢ satisfies 

c d~~s) = F(¢(s)) +a 1 k(y)¢(s- y)dy. (3.19) 

Definition 3.4.2 A function p E C(IR., W) is called an upper solution of (3.19} if it 

is differentiable almost everywhere and satisfies the inequality 

c d~~s) ~ F(p(s)) +a 1 k(y)p(s- y)dy; 

a lower solution [!_ E C(IR., W) of (3.19) can be defined by reversing the inequality. 
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We consider the function <I>( a) = A~o) = F'(O)+af~k(y)e"'lldy , 0 < a < 6.. As 

discussed in section 3.3, there is a E (0, 6.) such that c* = <I>( a) = inf <I>( a). Let 
O<o<D. 

c = <I>(a). Given c > c*, there exists at least one a E (0, 6.) such that <I>(a) =c. If 

there are more than one values of a such that ¢(a) = c, we choose the smallest one, 

say, at, such that ¢(a1) =c. 

Note that for any a E (0, 6.), if v(t, v0 ) is a solution of 

v'(t) = A(a)v(t), (3.20) 

then u(t, x) = e-oxv(t, v0 ) and u(t, -x) = e0xv(t, v0 ) are solutions of 

au(t, x) r at = F'(O)u(t,x) +a Jill k(x- y)u(t,y)dy 

= F'(O)u(t, x) +a 7. k(y)u(t, x- y)dy. 
(3.21) 

Let a= a 1 , v(O) = v0 > 0, s = x + A~1lt. Then 

A( ) ( +A(a!)t) u(t, -x) = eo1xv(t, vo) = eo1x. e o1 tvo = eo.1 x "'1 vo = eo1svo = '!j; (s). 

Note that u(t, -x) satisfies the equation 

au(t, x) r 
at = F'(O)u(t, x) +a Ja k(x- y)u(t, y)dy, 

and that '!j;(s) is the solution of the linearized equations of (3.19) at zero solution 

c d~~s) = F'(O)'lj;(s) +a 1 k(s- y)'lj;(y)dy. (3.22) 

Substituting '!j;( s) = e018Vo into (3.22) yields 

ca1e018Vo = F'(O)e018Vo +a 1 k(s- y)e01Yvody = F'(O)e018Vo +a 1 k(y)e01 (s- y)vody, 

which implies that 

cal - F'(O)- a r k(y)e-01Ydy = 0. JR . 
Letting c > 0 be sufficiently small, we can obtain ae = a 1 + c E (0, 6.) and 

c* < Ce < c, where Ce = <I>(ae) = A:·l. Since 
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is also a solution of (3.21) with v0 > 0, it follows that Ce and ae satisfy 

Ceae- F'(O) -a 1 k(y)e-a•Ydy = 0. 

Let Oe = c- Ce > 0. We then have 

Cae- F'(O)- a 1 k(y)e-a•Ydy = Oeae > 0. 
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By (H1)', we can choose k > 0 and 80 E (0, u*) such that F(u) ~ F'(O)u- ku2 , 'r/u E 

[0, Oo]. 

Motivated by [19] and [78], we define two functions 

where M satisfies Oear:M- ko0 ~ 0 and M > 1. Clearly, e.(s) ~ p(s). Set 

1 
f(s) = Ooea1s- OoM ea•s = Ooea13(1- M er:s), T = --ln M < 0. 

c 

Then f(r) = 0, f(s) > 0, Ys < r, and f(s) < 0, Ys > T. Let 0 < € < a 1 . Then we 

have f!_2(s) ~ o5e(a1 +r:)s = o5ea•s, 'r/s E R 

Lemma 3.4.1 For any c > c*, the above defined p( s) and [!_( s) are upper and lower 

solutions of (3.19 }, respectively. 

Proof If s ~ 0, p(s) = u* and 

-c d~~) + F(p(s)) +a 1 k(y)p(s- y)dy ~ F(u*) +a 1 k(y)u*dy = 0. 

If s < 0, p(s) = u•ea1s and 

-c d~~s) +F(p(s))+a 1 k(y)p(s-y)dy ~ ( -ca1 +F'(O)+a 1 k(y)e-a1ydy)ea13u* = 0. 

Thus, p( s) is an upper solution of (3.19) . 

Now we consider e.(s). If s > r, then f(s) < 0, e.(s) = 0 and 

dp(s) r . r 
-c ds + F(e.(s)) +a JIR k(y)f!_(s- y)dy =a JIR k(y)f!_(s- y)dy ~ 0. 



If s < r, then f(s) > 0, e_(s) = Ooe018
- OoMe0

•
8 and 

dp(s) 1 
-c ds + F(e_(s)) +a k(y)e_(s- y)dy 

R T 

= -ca1o0e018 + co0 Ma!:ea•s + F(e_(s)) +a [oo k(s- y)e_(y)dy 

> -ca1o0e018 + co0 Ma!:ea•s + F(e_(s)) +a 1 k(s- y)f(y)dy 

= -ca1o0e018 + co0 Ma!:e0
•

8 + F(e_(s)) +a 7. k(y)f(s- y)dy 

> Ooe018
( -ca1 +a 1 k(y)e-01Ydy + F'(O)) 

+o0 Me0
•

8 (caE- a l k(y)e-a•Ydy- F'(O))- ke_2 (s) 

> Ooe0
•

8 (0e:ae:M- kOo) 

> 0. 

Thus, e_( s) is a lower solution of (3.19). • 

Note that the wave profile equation (3.19) is equivalent to 

d¢>(s) 1 a 1 -d- + o¢>(s) = o¢>(s) + -F(¢>(s)) +- k(y)¢>(s- y)dy, o E R. 
S C C R 
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(3.23) 

Since we are interested in traveling wave solutions connecting 0 to u•, we always 

suppose ¢( -oo) = 0. Then (3.23) is reduced to 

¢>(s) = e- os [~ e6tG[¢>](t)dt, 

where G[¢](s) = · o¢>(s) + ~F(¢>(s)) + ~ fR k(y)¢>(s- y)dy. 

Suppose that ¢, 'ljJ E C(IR, W) with ¢(t) 2: 'lj;(t), \It E JR. Then 

G[¢](t)- G['I/J](t) 

= o(¢>- 1/J)(t) + ~(F(¢>(t))- F('lj;(t))) + ~ 1 k(y)(¢>(t- y)- 'lj;(t- y))dy 

> (o- !:.)(¢- 1/J~(t) + ~ r k(y)(¢>(t- y)c- ~(t- y))dy. 
C C J.R 

Thus, for sufficiently large o such that o- ~ 2: 0, we have G[¢](t) 2: G['I/J](t), Vt E IR, 

provided that ¢(t) 2: 'lj;(t), \It E JR. Moreover, G(O) = 0 and G(u•) = ou•. 
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Define an operator Ton C(IR, W) by 

T(¢)(s) := e-os 1~ e5tG[¢](t)dt, Vs E R 

It is easy to obtain the following results. 

Lemma 3.4.2 The operator T has the following properties: 

(1} If <P E C(IR, W) is nondecreasing, then so is T¢; 

(2} If¢;::: 'lj;, then T¢;::: T'lj;; 

(3} If <P is an upper (lower) solution of {3.19}, then ¢(s) > (T¢)(s) {¢(s) < 

(T¢)(s)), Vs E IR; 

{4) If <P is an upper {lower) solution of {3.19}, then T¢ is also an upper (lower) 

solution of {3.19}. 

Now we are in the position to prove the existence of monotone traveling waves. 

Theorem 3.4.2 Assume that {H1}' and {H2} hold. Let c* be defined in {3.17}. Then 

for any c ;::: c*, system {3. 3) has a traveling wave ¢( x + ct) connecting 0 to u* such 

that ¢( s) is continuous and nondecreasing in s E R 

Proof Case 1. c > c* . By Lemma 3.4.1, there exist an upper solution p(s) and a 

lower solution e_(s) for (3.19). Let ¢0 = p, ¢m = Tif>m-1 , Vm ;::: 1. By Lemma 3.4.2, 

we then have 

0::; e_(s)::; ... ::; <Pm(s)::; if>m-l(s)::; ... ::; p(s)::; u*, Vs E R 

By the monotone convergence theorem, there is a continuous function ¢( s) such that 

¢(s) = lim ¢m(s). By the construction of ¢m, we see that¢ is a fixed point ofT, ¢ 
m--+oo 

is nondecreasing and e_( s) ::; ¢( s) ::; p( s), V s E JR. 
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Since p(-oo) = 0, we have ¢ (-oo) = 0. Moreover, since e,(s) ~ ¢(s) ~ ¢(+oo) ~ 

u* and p ;j:. 0, we have ¢( +oo) > 0. Since lim tl:!P.d = 0, it is easy to see that ¢ ( + oo) 
- s-++oo 8 

is an equilibrium of 
du(t) dt = F(u(t)) + au(t). (3.24) 

Thus, ¢(+oo) = u*, and hence, ¢(x + ct) is a monotone traveling wave solution of 

(3.3) connecting 0 and u*. 

Case2. c=c*. Let{em}~(c*,c*+1)with lim em=c*. Sinceem> c*,byCase 
m-+oo 

1, (3.19) admits a nondecreasing solution ¢(m)(s) for each Cm, such that ¢(m)( -oo) = 0 

and ¢(m) ( +oo) = u*. Without loss of generality, we may assume that ¢ (m) (0) = ~u· , 

Vm;:::: 1. Note that ¢(m)(s) satisfies 

em d¢(m}(s) = F(¢(m)(s)) + a { k(y)¢(m)(s- y)dy 
ds JR 

and 

¢(m)(s) = e-os ls e8t[o¢(m)(t) + ]__F(¢(m)(t)) + ~ { k(y)¢(m)(t- y)dy]dt, (3.25) 
-oo Cm Cm JR 

where o- f. ;:::: 0. Since {¢(m)(s)} and { d¢<;:(s)} are uniformly bounded on IR, 

{ ¢(m) ( s)} is equi-continuous on R Using the Ascoli theorem and the standard diag­

onal method, we can obtain a subsequence of functions {¢mk}, which converges to 

¢*(s) ask-too, uniformly for sin any bounded subset of R 

Note that ¢ .. (s) is nondecreasing and ¢*(0) = ~u*. Letting m -too in (3.25) and 

using the Lebesgue dominated convergence theorem, we obtain 

¢*(s) = e-os e5t[o¢*(t) + -F(¢*(t)) +- k(y)¢*(t- y)dy]dt, 'is E IR, l s 1 a 1 
-oo c* c* IR 

which implies that ¢* is also a solution of (3.19) . By the L'Hospital rule and 

¢*( -oo) < ¢*( +oo), we have ¢*( -oo) = 0 and ¢*( +oo) = u*. Thus, ¢*(x + c*t) 

is a monotone traveling wave of (3.3) connecting 0 to u•. • 

By Theorems 3.4.1 and Theorem 3.4.2, it follows that the asymptotic speed of 

spread for the autonomous equation (3.3) coincides with the minimal wave speed for 

monotone traveling waves. 
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3.5 Numerical simulations 

In this section, we provide numerical simulations for the DI model presented in [59] 

au r 
at = {3u(N- u)- Du + D Ja k(x- y)u(t, y)dy, (3.26) 

which is a special case of (3.3). We choose {3 = 1, N = 2, D = 1 and the Gaus­

sian kernel k(y) = o7,re-~ with B = ~/'f. Then F(u) = u(1 - u), the inte-

gration 1 k(y)e01Ydy converges for all a E (0, +oo), and (3.26) satisfies (H1)' and 

(H2) with u* = 2. Moreover, F(u) ::; F'(O)u, Vu E [0, u*]. By (3.15), A( a) = 

1 + ef2
2
•. It follows from Theorem 3.3.1 that the asymptotic speed c* = inf A(o) ::::::: 

o>O 01 

8.016706232, and that for any continuous initial function cp with compact support, 

we have lim u(t, x; cp) = 0, Vc > c*, and lim u(t, x; cp) = 2, Vc E (0, c*). 
t--+oo,Jxl<':tc t--+oo,Jxl$tc 

..... ·· 

10 

-10 0 

Figure 3.1: The solution of (3.26) with the initial function cp1(x) . 

We discretize (3.26) by the finite difference method coupled with the composite 

trapezoidal rule for integration on a finite spatial interval, which is sufficiently large 

in comparison with the domain in which the solutions rapidly change shapes. We 
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Figure 3.2: The solution of (3.26) with the initial function tp1(x) for some t's. 

choose the initial function as 

<Pl(x) = { 

0, if x:::; - rr/ 2, 

cos(x)/2, ifx E (-rr/2,rr/ 2) , 

0, if x ~ rr/2, 

and show the corresponding solution of (3.26) in Figures 3.1 and 3.2. 

Furthermore, choosing function 

{ 

0, if X:::; - 2, 

<p2(x) = (2 + x)/2, if x E ( - 2, 2), 

0, if X~ 2, 
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we show that the shape of the solution of (3.26) with initial funct ion <p2(x) converges 

to a traveling wave very quickly. The wave moves in the negative x-direction as time 

t increases (see Figures 3.3 and 3.4). 
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10 

Figure 3.3: The solution of (3.26) with the initial function cp2(x). 

3.6 Discussions 

Population dispersal is an important strategy in ecology since it may influence, for 

example, the distribution of a population or the spread of an disease. In this chapter, 

we have investigated the spatial dynamics of a class of periodic integra-differential 

equations which describe population dispersal in a periodic environment. The au­

tonomous version of this model is essentially the same as those in [55, 59]. It is very 

interesting that the autonomous equation (3.3) can be written as a special case of the 

general model studied in [68] via a specific probability measure. However, our analy­

sis for periodic equation (3.5) improves and complements the earlier results for (3.3). 

More precisely, we proved the well-posedness and the comparison principle for the 

periodic model (3.5), and then established the existence of the spreading speed, its 

computation formula, the nonexistence of periodic traveling waves, and the existence 

of traveling waves in the autonomous case. Our work has two advantages over the 

earlier ones. First, we used the concept of "spreading speeds" in a strong sense for the 

periodic equation (3.5) (see Theorem 3.3.1) and showed that, in the autonomous case, 

the asymptotic speed of spread coincides with the minimal wave speed for monotone 
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Figure 3.4: The solution of (3.26) with the initial function <p2(x) for some t's. 

traveling waves. Secondly, we allowed the convergence abscissa b. of 1 k(y)e0 Ydy to 

be either finite or infinite. 

Since the theory of spreading speeds and traveling waves were developed in [53, 52] 

for monotone semiflows under a general setting, its application to a specific evolution 

system with spatial structure is nontrivial technically. For example, we need to prove 

that the periodic equation (3.5) admits the comparison principle (see Theorem 3.2.2) 

and generates a periodic semiflow which is continuous with respect to the compact 

open topology (see Lemma 3.3.1). Further, one should choose appropriate linear 

equations to obtain an explicit formula for the spreading speed (see Proposition 3.3.1). 

In the autonomous case, although the method of upper and lower solutions have been 

applied to prove the existence of monostable traveling waves by numerous researchers 

(see, e.g., [19, 78, 88, 90] and the references therein), the key point is to construct 

and verify an ordered pair of upper and lower solutions for the wave profile equation 

associated with a specific evolution system (see, e.g., Lemma 3.4.1) . 

With the theory developed in [53, 52], we only obtained the nonexistence of pe­

riodic traveling waves with the wave speed c < c* for the periodic system (3.5). 
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Regarding the existence of periodic traveling waves with the wave speed c ~ c*, we 

can not appeal to the same theory since the compactness assumption does not hold 

for (3.5). As illustrated in [69], we can employ the "vanishing viscosity" approach to 

obtain monotone periodic traveling wave solutions with c ~ c* in the sense of distri­

bution. However, we are not able to prove that this traveling wave is a classic solution 

of (3.5). Thus, the existence of periodic traveling waves of the periodic equation (3.5) 

remains open. We leave this problem for future investigation. 



Chapter 4 

A Non-Local Periodic 

Reaction-Diffusion Model with 

Stage-Structure 

4.1 Introduct ion 

Age structure has been an interesting topic in population dynamics (see, e.g., [1, 3, 

4, 27, 28, 29, 51, 61, 75, 78, 91]), since we can investigate the separate quantities 

of immature and mature populations in an age-structured population model. To 

derive a model for a single species of population with age-structure and diffusion, we 

usually assume that individuals move around not only after matured, but also while 

immature. For a standard argument, [61] gives 

au au a2u 
at + aa = D(a) ax2 - J.L(a)u, 

where u(t, a, x) is the density of the population of the species at timet 2: 0, age a 2: 0 

and location x in a spatial domain 0; D(a) 2: 0 and J.L(a) 2: 0 are the diffusion rate 

and the death rate of the population at age a, respectively. 

To study the behaviors of immature individuals and mature individuals, we can 

also divide the population of a species into two groups: immature population and 

53 
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mature population. For simplicity, we assume that the maturation time (or the 

length of the juvenile period) is the same for all juvenile individuals, denoted by 

T 2:: 0. For distributed maturation delay, see [3, 4] . Assume that the diffusion rate 

and death rate are age-dependent for immature individuals, but age-independent for 

mature individuals. As a result, we have the following system for a single species of 

population with age-structure and diffusion (see also [27, 75, 78, 91]): 

( 

Btu(t, a, x) + Bau(t, a, x): dj(a)fl.u - 1-"J(a)u(t, a, x), t > 0, 0 <a< T, X En, 

u(t, 0, x)- j(um(t, x)), t 2:: -T, X En, (4.1) 

Btum(t, x) = dmf1Um- g(um(t, x)) + u(t, T, x), t > 0, X En, 

where u(t, a, x) is the density of the population at timet 2:: -T, age a 2:: 0 and location 

X E n, Um(t, x) is the density of the mature population, j(um) and g(um) are the 

birth rate and the mortality rate of mature individuals, respectively, d1(a) 2:: 0 is the 

diffusion rate of the immature individuals at age a E (0, T), dm 2:: 0 is the diffusion 

rate of the mature individuals, J.LJ(a) > 0 denotes the per capita mortality rate of 

juveniles at age a, u(t, T, x) is the adults recruitment term, being those of maturation 

age T, fl. is the Laplacian operator on JR. 

In fact, the dynamics of many populations are influenced greatly by time varying 

environments (e.g., due to seasonal variation). For example, in a year period, the 

birth rate may be high in spring and summer and low in winter, while in winter more 

individuals might be at the risk of death because of low temperature, lack of food 

or some other reasons. Moreover, populations usually like to move in good weather 

during the spring and summer time. Therefore, it is more realistic to consider a 

nonautonomous version of ( 4.1) for population dynamics. In particular, a periodic 

model, in which the birth rate, mortality rates and diffusion rates are assumed to be 

periodic in time, is probably the simplest but an interesting and realistic case. In this 
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chapter, we consider the following model: 

{ 

Otu(t, a, x) + Oau(t, a, x) : d1(t, a)~u- J.L1(t, a)u(t, a, x), t > 0, a E (0, T), x En, 

u(t, 0, x) - j(t, Um(t, x)), t :2: -T, X E f2, 

OtUm(t, x) = dm(t)~um- g(t, Um(t, x)) + u(t, T, x), t > 0, X En, 

(4.2) 

where n ~ ~, d1(t, a) :2: 0 and J.L1(t, a) :2: 0 denote the diffusion rate and the per 

capita mortality rate of juveniles at age a at timet, respectively; dm(t) ~ 0 denotes 

the diffusion rate of mature individuals at timet; f(t, um) and g(t, um) are the birth 

and mortality rates of mature individuals at time t, respectively. 

Similarly as in [78] (see also [73]), we integrate along characteristics to reduce the 

system ( 4.2) to one equation with nonlocal term. Let v( r, a, x) = u( a+ r, a, x) , where 

r is regarded as a parameter. It follows that 

! 
Oav(r,a,x) = [otu(t,a,x) + Oau(t,a,x)L=r+a 

= d1 (a+r,a)~v(r,a,x)- J.Lj(a+r,a)v(r,a,x), 

v(r, 0, x) = f(r , um(r, x)). 

Integrating the last equation, we obtain 

v(r, a, x) = 1 f(((r, a), x- y)F(r, a)f(r, um(r, y))dy, 

where r is the fundamental solution associated with the partial differential operator 

Ot- ~and 

F(r, a) = exp (-loa J.L1(s + r, s)ds) . (4.3) 

Since u(t, a, x) = v(t- a, a, x), it follows that 

u(t,a,x) = 1 f(((t-a,a),x - y)F(t-a,a)j(t-a,um(t - a,y))dy. (4.4) 

Set 

a(t) := ((t- T, T), b(t) := F(t- T, T), j_.,.(t, u) := j(t- T, u) . 
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Substituting ( 4.4) into the equation forUm in ( 4.2), we finally reduce the age-structured 

population model ( 4.2) to the following time-delayed reaction-diffusion equation for 

mature individuals: 

{ 

OtUm(t,x) = dm(t)Llum- g(t,um(t,x)), 

+b(t) In r(a(t), X- y)f-r(t, Um(t- T, y))dy, t > 0, X En, 

Um(s, x) = <P(s, x), s E [-T, OJ, X En, 

(4.5) 

where <P(t, x) is an initial function to be specified later. For simplicity, dropping all 

m's and writing um(t,x) as u(t,x), we investigate the following system 

{ 

Otu(t,x) = d(t)Llu-g(t,u(t,x)) 

+b(t) J0 f(a(t),x- y)f-r(t,u(t- T,y))dy, 

u(s, x) = <P(s, x), s E [-T, OJ, X En. 

t > 0, X E 0, (4.6) 

Basically we assume that dj(t, a) and J.l-j(t, a) are periodic in t 2: 0 with the period 

w > 0 for a E (0, T), and that d(t), g(t, u) and f(t, u) are periodic in t with the period 

w > 0 for u E IR+· This implies that a(t) = a(t + w), d(t) = d(t + w), b(t) = b(t + w), 

g(t, u) = g(t + w, u) and f(t, u) = f(t + w, u) for all t 2: 0, u E JR+. Moreover, we 

assume d(t) 2: d > 0, Vt 2: 0, and 

(H3) f E C1([-T, +oo) x lR+, lR+), g E C1 (1R~, IR+), f(t, 0) = 0 fort 2: -T, fu(t, u) > 
0 for all t 2: -T and u 2: 0; g(t, 0) = 0 for t 2: 0, and there exists h > 0 such 

that lg(t,u)- g(t,v)i:::; l1iu- vi, for all t 2:0 and u,v E JR+. 

(H4) G(t, u, v) := -g(t, u) + b(t)f-r(t, v) is strictly subhomogeneous in (u , v) in the 

sense that for any a E (0, 1), G(t,au,av) > aG(t,u,v), Vu,v 2:0. 

(H5) There exists a positive number L > 0 such that G(t, L, L) :::; 0, Vt 2: 0, L 2: L. 

The purpose of this chapter is to study the asymptotic speed of spread and periodic 

traveling waves of ( 4.6) in the infinite spatial domain, and the global attractivity of 

zero or a positive periodic solution of ( 4.6) in a bounded spatial domain. For the 

autonomous case of (4.6), the dynamics, including the spreading speed and traveling 
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waves, have been studied extensively. So, Wu and Zou [75] investigated traveling wave 

fronts in the case where n = R, g(u) = f3u . Gourley and Kuang [27] established the 

linear stabilities of two spatially homogeneous equilibrium solutions, studied traveling 

wave fronts in the case where n = R, f(u) = au and g(u) = {3u2 , and obtained a 

global convergence theorem in the case of bounded intervals. Thieme and Zhao [78] 

studied the traveling wave solutions, minimal wave speed and asymptotic speed of 

spread in the case of n = Rn. Xu and Zhao [91] established a threshold dynamics 

and global attractivity of the positive steady state when n is a bounded domain in 

JRn. 

This chapter is organized as follows. In section 4.2, we first establish the well­

posedness and the comparison principle for ( 4.6) with n = JR, then prove the existence 

of the spreading speed c* for solutions of ( 4.6) with initial data having compact sup­

ports and show that it coincides with the minimal wave speed for monotone periodic 

traveling waves, by appealing to the theory of the spreading speed and traveling waves 

for monotone periodic semiflows in section 2.3 (see also [52, 53]). In section 4.3, we 

use the theory of monotone and subhomogeneous dynamical systems to investigate 

the global dynamics of ( 4.6) in a bounded domain n ~ JR, and obtain a threshold 

result for global attractivity of zero and a positive periodic solution. 

4.2 Spreading speed and traveling waves 

In this section, we consider that the population diffuses in an unbounded spatial 

domain and study ( 4.6) with n = JR: 

{ 

8tu(t,x) = d(t),6.u-g(t,u(t,x)) 

+b(t) fa f(a(t), X- y)j_.,.(t, u(t- T, y))dy, 

u(t, x) = ¢(t, x), t E [-r, 0], x E R 

t > 0, X E JR, (4.7) 

In the following, we first apply the threshold dynamics in a scalar periodic and time­

delayed equation, Theorems 2.5.1 and 2.5.2, to the spatially homogeneous system 

associated with ( 4. 7) , to find a periodic solution of ( 4. 7) . Then we use the theory of 
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abstract functional differential equations and reaction-diffusion systems to establish 

the existence of solutions to ( 4. 7) and comparison principle. Finally, we prove that the 

solution periodic semiflow of ( 4. 7) satisfies all the assumptions on monotone periodic 

semiflows in section 2.3, and hence, we obtain the existence of the spreading speed 

and periodic traveling wave solutions for ( 4. 7). 

Let Y be the space of all continuous functions from [-T, OJ to lR with the usual 

supreme norm II · IIY (i.e., Y = C([-T,O],JR)), andY+ = C([-T,O],IR+)· Then 

(Y, Y +) is an ordered Banach space. For <p, '1jJ E Y, we write c.p :::; '1jJ if '1jJ- c.p E Y +• 

<p < '1jJ if '1jJ- <p E Y+ \ {0}, <p « '1jJ if '1jJ- <p E int(Y+)· Moreover, we define 

Y r = { <p E Y : 0 :::; <p :::; r} for any r E Y with r » 0. 

Let X be the set of all bounded and continuous functions from lR into lR and 

X+= {c.p E X;c.p(x) ~ 0,\fx E IR}. For c.p,'I/J EX, we write <p:::; 'lj;(c.p « 'lj;) if 

c.p(x) :::; 'lj;(x) (c.p(x) < 'lj;(x)), \fx E IR, c.p < '1jJ if c.p :::; '1jJ but c.p =I= 'lj;. It is easy to see 

that X+ is a positive cone of X. Define Xr = { <p E X : 0 :::; <p :::; r} for any r E X with 

r » 0. We equip X with the compact open topology, i.e., urn ---+ u in X means that 

the sequence of um(x) converges to u(x) as m---+ oo uniformly for x in any compact 

set on JR. Define 
oo max lu(x)l 

II u llx= L lxl92k ' 
k=l 

\fu EX, 

where I · I denotes the usual norm in JR. Then (X, II · llx) is a normed space. Let 

dx(-, ·) be the distance induced by the norm II · llx· It follows that the topology in 

the metric space (X, dx) is the same as the compact open topology in X. Moreover, 

(Xr, dx) is a complete metric space. 

Let C be the set of continuous functions from [ -T, 0] into X, C+ = { <p E C, c.p( s) E 

X+,s E [-T,O]} and Cr = {c.p E C: 0:::; <p:::; r} for any r E Y with r » 0. Then 

C+ is a positive cone of C. For convenience, we also identify an element <p E C as a 

function from [-T,O] x lR into lR defined by c.p(s,x) = c.p(s)(x), for any s E [-T, O] and 

x E JR. For <p, '1jJ E C, we write <p:::; 'lj;(c.p « 'lj;) if c.p(s, x) :::; 'lj;(s, x) (c.p(s, x) < 'lj;(s, x)), 

\is E [-T, 0], x E IR, <p < '1jJ if <p :::; '1jJ but <p =I= 'lj;. For any continuous function 

w(-) : [-T, b) -+ X, b > 0, we define Wt E C by Wt(s) = w(t + s), \it E [0, b), 
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s E [- r, 0]. It is then easy to see that t -t Wt is a continuous function from [0, b) to 

C. Moreover , we also equip C with the compact open topology and define the norm 

on C: 
oo max Ju(s, x)J 

II u lie= L lxl~k,sE[-;~1 , 

k=l 

VuE C, 

where I · I denotes the usual norm in R 

For any constant N > 0, N denotes the constant function with value N in Y, X 

or C. 

Now we consider the spatially homogeneous system associated with (4.7). Letting 

u(t, x) = w(t), we have 

{ 
d~;t) = -g(t, w(t)) + b(t)f-r(t, w(t- r)), 

w(t) = cp(t), t E [-r,O], cp E Y+. 

The linearized equation associated with ( 4.8) at w = 0 is 

t > 0, 

----;It= -gu(t, O)w(t) + b(t)ouf-r(t, O)w(t- r), t > 0, 
{ 

dw(t) 

w(t) = cp(t), t E [-r, 0], cp E Y +· 

(4.8) 

(4.9) 

Since g, b and f -r are periodic functions in t ~ 0, we can easily see that for any cp E 

Y+, (4.9) admits a unique solution w(t, cp) existing for all t ~ -T with w(s, cp) = cp(s) 

for s E [-r,O], and Wt(cp) E Y+, Vt ~ 0, where {wth;:=::o is the solution semifiow for 

(4.9) defined by Wt(cp)(s) = w(t + s, cp), Vs E [-r, OJ, t > 0. 

Define the Poincare map of (4.9) P : Y+ -t Y+ by P(cp) = ww(cp), Vcp E Y+, 

and let r = r(P) be the spectral radius of P. The following two results follow from 

Theorems 2.5.1 and 2.5.2. 

Propos ition 4.2.1 r = r(P) is positive and is an eigenvalue of P with a positive 

eigenfunction cp*. Moreover, if T = kw for some integer k ~ 0, then r - 1 has the 

same sign as f0w[-gu(t, 0) + b(t)ouf-r(t, O)]dt. 

Theore m 4.2.1 Let {H3)-{H5) hold. The following statements are valid. 



60 

{i} lfr:::; 1, then zero solution is globally asymptotically stable for (4.8} with respect 

toY+· 

{ii} lfr > 1, then (4.8} has a unique positive w-periodic solution {J*(t), and {J*(t) is 

globally asymptotically stable with respect to Y + \ {0}. 

In the remainder of this section, we further assume that 

(H6) r = r(P) > 1. 

By (H5) and the proof of Theorem 2.5.2 in [93], it is easy to see that {J*(t) E [0, £] 

for all t;::::: -T and [6, L] is positively invariant for (4.7). Define {30 E Y£ as 

Consider 

fJ;(s) = {J*(s), Vs E [- T, OJ. 

{ 

8tu(t,x) = d(t)b.u, t > 0, 

u(O, x) = ¢(x), x E lR, ¢EX. 

The solution of (4.10) can be expressed as 

u(t, x, ¢) = 1 f(17(t), x- y)¢(y)dy, t ;::::: 0, 

(4.10) 

(4.11) 

where 17(t) = J; d(s)ds. According to [35, Chapter II], (4.10) admits an evolution 

operator U(t, s) : X ~ X, 0 ~ s ~ t, which satisfies U(t, t) = I, U(t, s)U(s, p) = 

U(t, p), VO ~ p ~ s ~ t, and U(t, O)(¢)(x) = u(t, x, ¢), fort 2: 0, x E lR and¢ E X, 

where u(t, x, ¢) is the solution of (4.10). Moreover, for any 0 ~ s < t, U(t, s) is a 

compact and positive operator on X; and U(t, s)(¢)(x) > 0 for all 0 ~ s < t, x E lR 

and ¢EX provided that ¢(x) 2: 0 and ¢ ~ 0. 

Define B : [0, oo) x C ~ X by 

B(t, ¢) := -g(t, ¢(0, ·)) + b(t) 1 r(a(t), .- y)f-r(t, ¢( -T, y))dy, 
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for any t E [0, oo), ¢ E C. Then (4.7) becomes 

{ 

8tu(t, x) = d(t)D.u + B(t, Ut), t > 0, 

. u(t, x) = ¢(t, x), t E [-r, OJ, x E lR, 
(4.12) 

which can be written as an integral equation 

u(t, ·, ¢) = U(t, 0)¢(0, ·) + 1t U(t, s)B(s, u8 )ds, t ~ 0, ¢ E C, (4.13) 

whose solutions are called mild solutions to (4.12). 

Theorem 4.2.2 Let {H3)-{H6} hold. For any ¢ E Cz, system (4. 7} has a unique 

mild solution u(t, x, ¢) with u0 (·, ·, ¢) = ¢ and Ut(·, ·, ¢) E Cz, Vt ~ 0, and u(t, x, ¢) 

is a classic solution when t > T. Moreover, ifu(t,x) and u(t,x) are a pair of lower 

and upper solutions of (4. 7}, respectively, with uo(·, ·) ~ iio(·, ·), then Ut(·, ·) ~ iit(-, ·), 

Vt ~ 0. 

Proof We first show that B is quasi-monotone on [0, oo) x Cz in the sense that 

lim d(?jJ(O, ·)- ¢(0, ·) + h[B(t, 7/J)- B(t, ¢)],X+)= 0, (4.14) 
h-+O+ 

for all¢, 7/J E Cz with ¢(s, x) ~ 7/J(s, x), Vs E [-r, OJ, x E JR. In fact, for any¢, 7/J E Cz 

with ¢(s, x) ~ 7/J(s, x), V(s, x) E [-r, OJ x JR, we have 

7/J(O, ·)- ¢(0, ·) + h[B(t, 7/J)- B(t, ¢)] 

= 7/J(O, ·)- ¢(0, ·) + h[-(g(t, 7/J(O, ·))- g(t, ¢(0, ·)))] 

+h[1 r(a(t), ·- y)b(t)(/-r(t, 7/J( -T, y))- f - r(t, ¢( -T, y)))dy 

> 7/J(O, ·)- ¢(0, ·)- h(g(t, 7/J(O, ·))- g(t, ¢(0, ·))) 

> (1- hl1)(7/J(O, ·)- ¢(0, ·)). 

Thus, for 1- hh > 0, 7/J(O, ·) - ¢(0, ·) + h[B(t, '1/J)- B(t, ¢)] EX+, and hence, (4.14) 

holds. Then by Theorem 2.5.3 (for v- = 6, v+ = L, S = U), (4.7) admits a unique 

mild solution u(t, ·, ¢) on [- r, oo) for any ¢ E Cz and Ut(·, ·, ¢) E Cz, Vt ~ 0. 

Moreover, the comparison principle holds for lower and upper solutions. • 
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In the following, we study the spreading speed and periodic traveling waves for 

(4.7). 

Define a family of operators { Qth~o on Cz by 

Qt(¢)(s, x) = u(t + s, x, ¢), Vt 2: 0, s E [-r, 0], x E JR, ¢ E Cz, 

where u(t, x, ¢) is the mild solution of (4.7) with u(s, x) = ¢(s, x) for s E [-r, 0], 

x E JR. Note that for any (t0 , ¢0) E JR+ x Cz, we have 

and that U(t,O)<p is continuous in (t,<p) E [O,oo) x X with respect to the compact 

open topology. By a similar argument as in [57, Theorem 8.5.2], it follows that Qt(¢) 

is continuous at (t0 , ¢0) with respect to the compact open topology. Thus, {Qth>o is 

an w-periodic semifl.ow on Cz. 

Lemma 4.2.1 For each t > 0, Qt is strictly subhomogeneous. 

Proof For any ¢ E Cz with ¢ ¢. 0, let u(t, x, ¢) be the solution of (4.7) with 

u(s, x) = ¢(s, x) for s E [-r, 0], x E JR. Fix k E (0, 1). Since G(t, u, v) is strictly 

subhomogeneous in ( u, v), we have 

Ot(ku( t, x)) 

d(t)f:l(ku)- kg(t, u(t, x)) + kb(t) 1 r(a(t), x- y)f-r(t, u(t- T, y))dy 

< d(t)f:l(ku)- g(t, ku(t, x)) + b(t) 1 f(a(t), X- y)f-r(t, ku(t- T, y))dy. 

Thus, ku(t, x, ¢) is a lower solution of (4.7) with ku(s, x, ¢) = k¢(s , x ) for s E 

[-r,O],x E JR. Then, ku(t,x,¢) ~ u(t,x,k¢) fort 2: 0, where u(t,x,k¢) is the 

solution of (4.7) with u(s, x, k¢) = k¢(s, x) for (s, x) E [-r, 0] x R 

Let w(t, x) = u(t, x, k¢)- ku(t, x, ¢). Then w(s, x) = 0 for (s, x) E [-r, 0] x JR 

and w(s, x) 2: 0, for (s, x) E [-r, oo) x JR. We further show that w(t, x) > 0 for all 

t > 0, x E JR. For simplicity, we write 

F(t, u(t, x), v(t, x)) = -g(t, u(t, x)) + b(t) 1 r(a(t), x- y)f- r(t, v(t, y))dy. 
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It follows that 

ow(t, x) 

= ouft:x,k¢>) -kou(t,x,¢>) 
at at 

= d(t)tlu(t, x, k¢>) + F(t, u(t, x, k¢>) , u(t- T, x, k¢>) ) 

-k[d(t)tlu(t, x, ¢>) + F(t, u(t, x, ¢>), u(t- T, x, ¢>))] 

= d(t)tlw(t, x) + [F(t, u(t, x, k¢>), u(t- T , x, k¢>))- F(t, ku(t, x, ¢>), ku(t- T, x, ¢>))] 

+[F(t, ku(t, x, ¢>), ku(t- T, x, ¢>))- kF(t, u(t, x, ¢>), u(t- T , x, ¢>))] 

= d(t)tlw(t, x)- g(t, u(t, x, k¢>)) + g(t, ku(t, x, ¢>)) 

+b(t) 1 f(a(t), X- y)[f-T(t, u(t- T, y, k¢>))- f-T(t , ku(t- T, y, ¢>))]dy + h(t, X) 

> d(t)tlw(t, x)- g(t, u(t, x, k¢>)) + g(t, ku(t, x, ¢>)) + h(t, x) 

> d(t)tlw(t, x)- hw(t, x) + h(t, x), 

where 

h(t, x) = F(t, ku(t, x, ¢>), ku(t- T, x, ¢>))- kF(t, u(t, x, ¢>), u(t- T , x, ¢>)). 

Let U(t, s) :X --t X, 0 :S s :S t, be the evolution operator of 

Then 

{ 

Otu(t, x) = d(t)tlu- hu(t, x), t > 0, 

u(O, x) = '1/J(x), x E IR, '1/J EX. 

U(t, s)('l/J)(x) = e-11(t-s)U(t, s)('l/J)(x), Vt 2: s 2: 0, x En, '1/J E C, 

where U(t, s) is the evolution operator of (4.10). Thus, the equation 

can be written as 

{ 
Otu(t, x) = d(t)tlu- hu(t, x) + h(t, x) 

u(O,x) = '1/J(x), x E IR,'l/J EX 

(4.15) 

(4.16) 

u(t,x,'l/J) = U(t,O)('!fJ)(x) + 1t U(t,s)h(s ,x)ds, t 2:0, x E IR, '1/J E C. (4.17) 
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By (H4), we have h(t,x) > 0 for all t > O,x E R It then follows from (4.17) and 

the property of U(t, s) that for any '1/J 2: 0 with '1/J ¢ 0, the solution of (4.16) satisfies 

u(t,x,'I/J) > 0, Vt > O,x E JR. Then by (4.15) and the comparison principle, we have 

w(t,x) > 0, \ft > O,x E R Therefore, u(t,x,k¢) > ku(t,x,¢) , \ft > O,x E JR, and 

hence, Qt(k¢) > kQt(<P) for all t > 0, which indicates that for each t > 0, Qt is 

strictly subhomogeneous. • 

Lemma 4.2.2 For any cp E CL with cp ¢ 0, u(t, x, cp) > 0, for all t 2: T, x E R 

Proof Let cp E CL with cp "¥= 0. By Theorem 4.2.2, u(t, x, cp) 2: 0 for all t 2: 0 and 

x E R It follows from (H3) that for any t > 0, u(t, x, cp) satisfies 

8tu(t, x) = d(t)~u- g(t, u(t, x, cp)) + b(t) 1 r(a(t), x- y)f-T(t, u(t- T, y, cp))dy 

> d(t)~u- g(t, u(t, x, cp)) 

> d(t)~u- l1u(t, x, cp). 

By [82, Theorem 5.5.4], u(t, x, cp) > 0, Vt > 0, x E JR, provided that cp(O, ·) > 0. 

Now we show that for any cp E CL with cp ¢ 0 and cp(O, ·) = 0, there exists 

t0 = t0 (cp) E [0, T] such that u(t0 , ·, cp) > 0. Assume, by contradiction, that for some 

cp E CL with cp ¢ 0 and cp(O, ·) = 0, we have u(t, ·, cp) = 0 for all t E [0, T]. It follows 

from (4.13) that 

0 = 1t U(t, s)b(s) 1 r(a(s), X- y)f-T(s, Us( -T, y))dyds, t E [0, T], 

which implies that fiR r(a(s), x-y)f-T(s, Us( -T, y))dy=O for any s E [0, T], and hence, 

f-T(s, Us( -T, y))=O for any s E [0, Tj, y E R Then by (H3), Us ( -T, y) = 0 for any 

s E [0, T], y E JR. That is, cp = 0. A contradiction. Thus, we have u(t0 , ·, cp) > 0 for 

some t0 = t0 (cp) E [0, T]. Then for any t > t0 , 

U(t, t0 )[u(t0 , ·, cp)](x) = e-h(t-tolu(t, t0 )[u(t0 , ·, cp)](x) > 0, 

and hence, by the comparison principle, we have u(t, x, cp) > 0 for all t > t0 , x E R 

Therefore, for any cp E CL with cp ¢ 0, u(t, x, cp) > 0 for all t > T, x E R • 
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Lemma 4 .2.3 For any t > 0, Qt satisfies (Al), (A2), (A4) and (A6) with b* = L, 
and Qw satisfies (AS) with b* = {30, where {30 E Yz with {30(s) = {J*(s), Vs E [-T,Oj. 

Proof It is easy to see that Qt satisfies (A1), (A2) and (A4) with b* = L for any 

t > 0. 

Let Qt = Qtlv1,. Then Qt : Yz -t Yz is thew-periodic semiflow generated by 

( 4.8). Moreover, it is not difficult to see that Qt is strictly monotone for any t ~ T 

and strongly monotone for any t ~ 2T on Y z. Note that ( 4.8) has a positive w-periodic 

solution {J*(t) which is globally asymptotically stable in Yz \ {0}. We see that Qw has 

only two fixed points 0 and {30 in Yz, where {30(s) = {J*(s), Vs E [-T, 0]. Thus, by 

the Dancer-Hess connecting orbit lemma (see Theorem 2.2.1), the map Qw admits a 

strictly monotone full orbit { cpn}~00 ~ Y f3o connecting 0 to {30 and cpn < cpn+l for any 

n = 0, ±1, ±2, .... For any n EN such that iiw ~ 2T, since Qnw is strongly monotone, 

we have Qnw(cpn) = Q~(cpn) « Q~(cpn+l) = Qnw(cpn+l), for any n = 0, ±1, ±2, .... 

That is, cpn+nw « cpn+l+nw> for any n = 0, ±1, ±2, .... Therefore, cpn « cpn+l for any 

n = 0, ±1, ±2, ... , and hence, Qw satisfies (A5) with b* = {30. 
Now we show that Qt satisfies (A6)(a) with b* = L fort > T. Fix t0 > T and set 

a= t 0 - T, b = t0 . Let u(t, cp) be the solution of (4.7) with u0 (cp) = cp E Cz and define 

the Kuratowski measure of noncompactness of a subset A of X as 

a( A) = inf { r > 0 : A has a finite cover of diameter ~ r}. 

First we prove that {u(t,cp): a~ t ~ b,cp E Cz} is compact in X. By (4.13), for any 

E E (0, a), t E [a, b] and cp E Cz, we have 

u(t, cp) 

= U(t, O)cp(O, ·) + t -e U(t, s)B(s, u8 )ds +it U(t, s)B(s, u8 )ds 
Jo t-e 

= U(t, t- ~:)[U(t- E, O)cp(O, ·) + t-e U(t- E, s)B(s, U 8 )ds] +it U(t, s)B(s, u8 )ds 
Jo t- e 

= U(t, t- ~:)u(t- E, cp) + i~e U(t, s)B(s, u8 )ds. 
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Since {u(t- E,<p),t E [a,b],<p E CrJ is bounded in X+ and U(t,t- E) is compact, we 

have 

a( {U(t, t- E)u(t- €, <p), t E [a, b], <p E Cz}) = 0. 

It is easy to see {U(t, s)B(s, us) : t E [a, b], s E [0, t], <p E Cz} is bounded in X+. Let 

N > 0 such that II U(t, s)B(s, U8 ) llx~ N for all t E [a, b], s E [0, t], <p E CL. By the 

fact of a(A) ~ 8(A), where 8(A) is the diameter of A~ X, we have 

Thus, 

a ( {1~. U(t, s)B(s, ua)ds : t E [a, b], s E [t- E, t], <p E CL}) ~ 2EN. 

a({u(t,<p): t E [a,bj,<p E Cz}) 

< a( {U(t, t- E)u(t- €, <p), t E [a, b], <p E Cz}) 

+a ( {1~. U(t, s)B(s, us)ds: t E [a, b], s E [t- €, t], <p E Cf,}) 
< 2EN. 

Letting f--+ 0, we have a({u(t,<p): t E [a,b],<p E Cz}) = 0, and hence, {u(t,<p): t E 

[a, bj, <p E Cz} is precompact in X. 

Given a compact interval I ~JR. Let K = min{K1 > 0 : I~ [-Kb K1]}. Since 

{u(t,<p): t E [a,b],<p E Cz} is precompact in X, {u(t,<p)lr: t E [a,b], <p E Cz} is 

equicontinuous in X, that is, for any f. > 0, there exists 8 > 0, such that 

(4.18) 

for all t E [a, bj and <p E Cz, provided that X1, x2 E I and lx1 - x2l < 8. 

Let [ab b1] be any bounded interval on lR with a1 > 0 and U0 (t) be the semigroup 

generated by Ut = 6-u. Then 

j
+oo 

Uo(t)<p(x) = - co f(t, x- y)<p(y)dy, Vt > 0, x E lR, <p EX. 

By the properties of r, we can find an N0 > 0 such that ~Yl~No r(b1,y)dy ~f.. 

Since ar~~·Y) > 0 for all t > 0 and y2 > 2t, we have ~yJ~N, f(t, y)dy ~ f., for all 
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t E [all b1], where N1 =max{ No, A}. Moreover, since J!:'f,
1 
f(t, y)dy is continuous 

in t E [a1, bl], there is a 61 > 0, such that I J!:'f,
1 
(f(t1, y)-f(t2, y))dyl < € provided that 

t1, t2 E [a1, bl] and lt1- t2l < 81. Therefore, for any t1, t2 E [all b1] and lt1 - t2 l < 81, 

1/J E Xz, x E I, we have 

I(Uo(tl)'!j;)(x)- (Uo(t2)1/J)(x)l 

= 1 r(t1,x- y)'l/J(y)dy -1 r(t2,x- y)'l/J(y)dyJ 

= 1 (f(t1, y)- r(t2, y))'l/J(x- y)dyJ 

< r (r(t1, y) _ f(t2, y))'!j;(x _ y)dyl + 1 r (f(t1, y)- r(t2, y))'!j;(x- y)dyl 
}IYI'5:Nl }IYI?.N1 

< 2t:L. 

It follows from the continuity of Tl(t) in t E IR+ and definitions of U0 (t) and U(t, s) 

that there exists 82 > 0, such that 

I(U(t1, O)cp(O, · ))(x)- (U(t2, O)cp(O, ·))(x)l < 2t:L, 

for all x E I, <p E Cz, provided that t1, t2 E [a, b] and lt1 - t2l < 82. Let 8 E 

(0, min{ t:, 82} ). Then for x E I, <p E Cz, tll t2 E [a, b] and lt1- t2l < 8, we have 

lu(t1,x,cp) -u(t2,x,cp)l 

< I(U(tl, O)cp(O, ·))(x)- (U(t2, O)cp(O, ·))(x)l 

+ Jfot
1 

(U(t1, s)B(s, u8 ))(x)ds -1t2 

(U(t2, s)B(s, U 8 ))(x)dsl (4.19) 

< 2Lt: + 2N · 2K 8 
< 2(£ + 2K N)t:, 

where N was defined in the former paragraph of this proof. This implies that u(t, x, <p) 

is equicontinuous in t E [a, b] for x E I and <p E Cz. 

Consequently, by (4.18) and (4.19), for any <p E Cz, ()1,(J2 E [-T, 0], x1, x2 E I 



!Ut0 (c,o)(Bl, x1)- Ut0 (c,o)(B2, x2)! 

lu(to + 81, x1, c,o)- u(to + 82 , x2, c,o)l 

< Ju(to + 81, x1, c,o)- u(to + 81. x2, c,o)l + Ju(to + 81, x2, c,o)- u(to + 82, x2, c,o) l 

< (2L + 2K+l N + l)E, 
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which indicates that {ut0 (cp) : cp E Cz} is equicontinuous for (B,x) E [-r,OJ xI. 

Therefore, {ut0 (cp): cp E Cz} is precompact in Cz and (A6)(a) follows from Qt0 (Cz) = 

{ut0 (cp): cp E Cz} for to> r. 

Finally, we show that Qt satisfies (A6)(b) with b* = L for 0 < t :Sr. Fix t1 E (0, r] 

and define 

S[c,o](B, x) := { c,o(O, x), -r :S B < -t1, 

QtJc,o)(B, x), -t1 :S B :S 0, 

for any cp E Cz. By the above analysis, we know that {u(t,cp): a :S t :S b,cp E Cz} is 

precompact in X, for any 0 < a :S b. In particular, fixing a = b = t1, we can easily 

see that {Ut1 (cp)(O,·) ,c,o E Cz} = {u(ti,·,c,o) ,c,o E Cz} is precompact in X, that is, · 

Qt1 [Cz](O, ·) is precompact in X. 

Since Qt is ah w- periodic semifiow, it is easy to see that S [c,o] is continuous on 

Cz. Let D beaT-invariant subset of Cz (i.e., TyD = D, Vy E IR) with D(O, ·) being 

precompact in X. Now we show that for any given compact interval I ~ IR, S[D] 

is equicontinuous on [-r, OJ x I, that is, for any E > 0, there exist <h, 82 > 0, such 

that JS[c,o](Bl, xi)- S[c,o](B2, x2)! < E for any cp E D, if 81,82 E [-r, OJ, x1, x2 E I and 

!B1- B2! < 81, !x1- x2l < 82. 

Since S[c,o](B, x) = c,o(O, x), Vc,o ED, BE [-r, -t1], x E I, and D(O, ·)is precompact 

in X, it is obvious that S[D] is equicontinuous on [-r, -t1] x I. 

Note that there exists N > 0, such that II U(t, s)B(s, u8 ) llx:S N for all t E 

[0, t1], s E [0, t], cp E Cz. Let 80 =min{ E/(2K N), ti}. Then for any t < 80 , x E I and 

cp ED, we have 

/1t U(t, s)B(s, u8 )(x)ds/ < 2K No0 =E. ( 4.20) 
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Let F(t, '1/J) := U(t, 0)'1/J, for (t, '1/J) E [0, <50] x D(O,-). Then F is continuous on [0, <50] x 

D(O, ·) and F([O, <>o] x D(O, ·)) is precompact in X. Thus, for above I, there exists 

82 > 0, such that for x1,x2 E I and !x1- x2! < 82, we have 

IU(t, O)'ljJ(x1)- U(t, O)'ljJ(x2)! < E, Vt E [0, 80], '1/J E D(O, ·). (4.21) 

Moreover, since F is uniformly continuous on [0, <50] x D(O, ·), there exists <51 > 0, 

83 > 0, such that II F(f1 ,'1/JI) -F(f2,'1/J2) llx< E/2K, ift1,f2 E [O, <>oJ, 'f/J1,'1/J2 E D (O,·) 

and !f1 -f2! < 81, II 'I/J1 -'I/J21ix < 83. In particular, we have II U(t1 , 0)'1/J- U(f2, 0) '1/J ll x< 
Ej2K, if f1 ,f2 E [0, Oo], '1/J E D(O, ·) and !f1 - f2! < 81 . Then 

(4.22) 

for any '1/J E D(O, ·), x E I , and f1, f2 E [0, <>o] with !f1- f2! < 81. By (4.20)-(4.22), we 

can easily obtain that if ()1 , ()2 E [-t1 , <>o-tl], x1, x2 E I and j{}l-{}21 < 81, !x1-x2! < 82, 

then for any cp E D, 

IS[cp](el, x1)- S[cp](e2, x2)! 

= !Qtt[cp](el, xl)- Qtt[cp](e2, x2)1 

= ju(t1 +()bxl,cp) -u(t1 +()2,x2,cp)j 

< j(U(t1 + e1, O)cp(O, ·))(xl)- (U(t1 + e2, O)cp(O, ·))(x2) 1 

+ 11t1

+fh U(t1 + ()1, s)B(s, Us)(xl)ds -1t1

+6
2 

U(t1 + ()2, s)B(s, us)(x2)dsl 

< I(U(tl + e1, O)cp(O, ·))(xl)- (U(t1 + ()1, O)cp(O, ·))(x2) 1+ 

I(U(tl + e1 , O)cp(O, ·))(x2)- (U(t1 + ()2, O)cp(O, ·))(x2)1 + 2E 

< 4E, 

which implies that S[D] is equicontinuous on [-t1, <50 - t1] xI. 

By a similar argument as for (A6)(a), it is easy to see that S[D] is equicontinuous 

on[oo-tl , O]xi. 

Therefore, S [D] is equicontinuous on [-r, OJ x I , and hence, S[D] is precompact 

in 0£. Thus, (A6)(b) is valid for Qt , t E (0, r]. • 

It then follows from Lemma 4.2.3 and Theorems 2.3.1 that Qw has an asymptotic 

speed of spread c: > 0. 



Consider the linearized system of ( 4. 7) at the zero solution: 

{ 

8tu(t, x) = d(t)~u- g,.(t, O)u(t, x) 

+b(t )8,.j_.,.(t, 0) fiR f(a(t), X- y)u(t- T, y)dy, 

u(t, x) = ¢(t, x), t E [-T, 0], x E R 
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t > 0, X E JR, 

(4.23) 

For a > 0, let u(t, x) = e-axv(t). Substituting u(t, x) into ( 4.23) yields 

e-axv'(t) = d(t)a2e-axv(t)- g,.(t, O)v(t)e-ax 

+b(t)8,.j_.,.(t, O)v(t- T) fiR r(a(t), y)e-o(x-y)dy. 

Since r(t, x) is even in x and by [78, Proposition 4.2], we obtain 

v'(t) = d(t)a2v(t)- g,.(t, O)v(t) + b(t)8,J_.,.(t, O)v(t- T) 1 r(a(t), y)e0 Ydy, 

= d(t)a2v(t)- g,.(t, O)v(t) + b(t)8,.J_.,.(t, O)v(t- T) 7. r(a(t), y)e-OYdy, 

= d(t)a2v(t)- g,.(t, O)v(t) + b(t)8,.j_.,.(t, O)v(t- T)e02
a{t). 

(4.24) 

Then u(t, x) = e-axv(t) satisfies (4.23) with ¢(s, x) = e-axv(s) for s E [-T, OJ and 

x E JR, if v(t) satisfies (4.24) fort~ 0. 

Let Mt be the linear solution map defined by (4.23) and v(t, v0 ) be the solution 

of (4.24) with v(s, v0 ) = v0(s) for s E [-T, OJ, v0 E Y. Define 

It is not difficult to see B~(v0) = v(t, v0 ), and hence, B~ is the solution map associated 

with (4.24) on Y. 

Let r(a) be the spectral radius of the Poincare map associated with (4.24). Then 

Theorem 2.5.1 implies that r(a) > 0. Moreover, it follows from the proof of Theorem 

2.5.1 in [93J that there exists a positive w-periodic function w(t) such that v(t) = 

e>.(a)tw(t) is a solution of (4.24), where >.(a) = lnjo) . Define 'lj; E Y by 'lj;(B) = 

e>.(a)Bw(B), VB E'[-T, OJ. Clearly, v(t, 'lj;) = e>.(a)tw(t) , Vt ~ 0. Then we have 

B~('l/J)(B) = v(t + B, 'l/J) = e>.(a)te>.(a)ow(t +B), VB E [-T, OJ, t ~ 0. 
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By thew-periodicity of w(t), it follows that 

that is, B~('I/J) = e>.(a)w'lj; . This implies that e>-(a)w is the principle eigenvalue of B~ 

with positive eigenfunction 1/J. 

Let 

<I>(a) := ~ lne>.(a)w = A(a)w = ln'Y(a). 
a a a 

Then we have the following result. 

Proposition 4 .2.2 Assume that (H3}-(H6} hold. Let c: be the asymptotic speed of 

spread of Qw. Then c: = inf <I>( a) = inf ln-y(a). 
a>O a>O 0 

P roof When a= 0, (4.24) becomes (4.9). It follows from (H6) that 'Y(O) > 1, and 

hence (B7) in section 2.3 is satisfied. Now we prove that <I>(oo) = oo. By (4.24), we 

have 

v'(t) ~ [a2d(t)- 9u(t, O)]v(t), Vt ~ 0, 

and hence, 
w'(t) 2 · 
w(t) ~a d(t)- 9u(t, 0)- A( a). 

Then 

1
w w'(t) 1w 

. ·0 = 
0 

w(t) dt ~ 
0 

(a2d(t)- 9u(t, O))dt- A(a)w, 

which implies that 

Therefore, 

<I>( a)= A(a)w ~a 1w d(t)dt- fow 9u(t, O)dt. 
a 0 a 

Letting a~ oo, we can easily obtain <I>(oo) = oo. 

Since G(t, ·, ·) is subhomogeneous in (u, v), it follows from Theorem 2.2.6 that 

G(t,u,v)::; Gu(t,O,O)u+Gv(t,O,O)v, that is, 

-g(t, u) + b(t)f_.,.(t, v) ::; -gu(t, O)u + b(t)8uf-..-(t, O)v, 
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and hence, we have 

-g(t, u(t, x)) + b(t) 1 r(a(t), x- y)f-r(t, u(t- r, y))dy 

< -gu(t, O)u(t, x) + b(t)8uf-r(t, 0) 1 r(a(t), X- y)u(t- r, y)dy. 

By the comparison principle, we have Qw(<p) ::::; Mw(<p) for any <p E CfJo· Thus, 

Theorem 2.3.2 implies that c:::::; inf <I>(a). 
o>O 

Let K > 0 such that K -gu(t,O) > 0, Vt E [O,w]. Set G(t,u, v) = Ku+G(t,u,v). 

Then Gu(t, 0, 0) > 0, Gv(t, 0, 0) > 0, Vt E [0, w]. It is easy to see that for any 

E E (0, 1), there exists 6 = 6(€) E (0, L), s.t., 

G(t,u,v) ~ (1- E)Gu(t,O,O)u + (1- E)Gv(t,O,O)v, V(u,v) E [0,6]2
, 

and hence, for any (u, v) E [0, 6] 2 , 

G(t, u, v) = -Ku + G(t, u, v) ~ [(1- E)Gu(t, 0, 0)- EK]u + (1- E)Gv(t, 0, O)v. 

Moreover, there exists~= ~(6) > 0 such that for any <p E Cf., we have 

0::::; u(t,x,<p)::::; u(t,x,t) < 6, Vx E IR, t E [O,w]. 

Thus, for any <p E Cf., u(t,x,<p) satisfies 

Otu(t, x) ~ d(t)D.u(t, x) + [(1- E)9u(t, 0) - EK]u(t, x) 

+(1- E)b(t)ouf-r(t, 0) 1 f(a(t), X- y)u(t- r, y)dy, Vt E [0, wj. 

Let Mte, t ~ 0, be the solution maps associated with the linear system 

Otu(t, x) = d(t)D.u(t, x) + [(1- E)gu(t, 0)- EK]u(t, x) 

+(1- E)b(t)8uf-r(t, 0) 1 r(a(t), X- y)u(t- r, y)dy, Vt E [0, w]. 

The comparison principle implies that Mte(<p) ::::; Qt(<p), V<p E Cf., t E [O,w]. In 

particular, M~(<p) ::::; Qw(<p), V<p E C1,- By a similar analysis for Mte as for Mt, it 

follows from Theorem 2.3.2 that inf <I>e(a) ::::; c:. 
o>O 

Therefore, inf <I>e(a) ::::; c: ::::; inf <I>(a), VE E (0, 1). Letting E ---+ 0, we have 
o>O o>O 

c: = inf <I>( a). • 
o>O 
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Let 

c* = c: = ~ inf ~(a) = ~ inf lwy(a). 
W W a>O W a>O a 

(4.25) 

The following result shows that c* is the spreading speed of solutions of ( 4. 7) with 

initial functions having compact support. 

Theorem 4.2.3 Assume that {H3}-{H6} hold. Then the following statements are 

valid. 

{1} For any c > c*, if cp E Gp0 with 0:::; cp « /30 and cp(·,x) = 0 for x outside a 

bounded interval, then 

lim u(t, x, cp) = 0. 
t-+oo,lxl~ct 

{2} For any c < c*, if cp E Gp0 with cp "¢ 0, then 

lim (u(t,x,cp)- jJ*(t)) = 0. 
t-+oo,lxl:5ct 

Proof Conclusion (1) follows from Theorem 2.3.3. By Lemma 4.2.1 and Theorem 

2.3.3, for any c < c*, there is a positive number a s. t., if cp E Gp0 with cp( ·, x) > 0 for 

x on an interval of length 2a, then lim (u(t,x,cp)- f3*(t)) = 0. It follows from 
t-+oo,lxl:5ct 

Lemma 4.2.2 that for any cp E Gp0 with cp "¢ 0, Qt('P) » 0 for all t > 2T. We can fix 

t0 > 2T and take Qt0 (cp) as a new initial value for u(t, x, cp) . Then by above analysis, 

conclusion (2) is valid. • 

We say u(t,x) = U(t,x- ct) is an w-periodic traveling wave of (4.7) connecting 

f3*(t) to 0 if it is a solution of (4.7), U(t, ~) is w-periodic in t, and U(t, -oo) = f3*(t) 

and U(t,oo) = 0 uniformly fortE [O,w]. By Theorem 2.3.4, we have the following 

result about traveling waves of (4.7). 

Theorem 4.2.4 Assume that {H3}-{H6) hold. Let c* be defined in (4.25}. Then for 

any c ~ c*, (4. 1} has an w- periodic traveling wave solution U(t, x - ct) connecting 

f3*(t) to 0 such that U(t, s) is continuous and nonincreasing ins. Moreover, for any 

c < c*, ( 4. 1} has no w -periodic traveling wave U ( t, x - ct) connecting /3* ( t) to 0. 



4.3 Dynamics in a bounded domain 

In this section, we consider ( 4.6) in a bounded spatial domain 

atu(t, X) = d(t)~u- g(t, u) + b(t) 1 f(a(t), X- y)f-r(t, u(t- T, y))dy, 

(t, x) E (0, oo) X n, 
Bu(t,x) 0 on (O,oo) X an, 

u(t, x) ifJ(t, x), t E [-T, OJ, x En, 
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(4.26) 

where n ~ ]Rn is a bounded domain with boundary an of class C1+8 (0 < () ~ 1), 

the boundary condition is either Bu = u (Dirichlet boundary condition) or Bu = 

(aujav) + a(x)u (Robin type boundary condition) for some nonnegative function 

a E C1 +B (an, ]Rn), au I av denotes the differentiation in the direction of outward 

normalv to an. 

Let p E ( 1, oo) be fixed. For each (J E ( ~ + 2~, 1), let Xp be the fractional power 

space of V(n) with respect to -~ and the boundary condition Bu = 0 (see, e.g., 

[35]). Then Xp is an ordered Banach space with the positive cone Xt consisting of 

all nonnegative functions in Xp, and xt has non-empty interior int(Xt). Moreover, 

Xp ~ Cl+"(O) with continuous inclusion for v E [0, 2(3- 1- ~). Denote the norm on 

Xp by II · liP· Then there exists a constant kp > 0 such that II ¢ lloo:= max 1</J(x)l ~ 
xe!l 

kp II ¢ lip, V¢ E Xp. 

Let C = C([-r, OJ, Xp) and{:+= C([-r, OJ, Xt). For convenience, we identify an 

element ¢ E c as a function from [ - T, OJ X n to ]Rn defined by ¢( s, X) = ¢( s) (X). For 

any N 2:: L, let C,v = {¢ E c: 0 ~ ¢(s, x) ~ N, (s, x) E [-T, OJ xn} . For any function 

y(·) : [-r, b) -----+ Xp, where b > 0, define Yt E C, by Yt(s) = y(t + s),Vs E [-r, OJ, 

t E [O,b). 

Note that the differential operator ~ generates an analytic semigroup U0 (t) on 

IJ>(n) and that the standard parabolic maximum principle (see, e.g., [72, Corollary 

7.2.3]) implies that the semigroup U0 (t) : Xp -----+ Xp is strongly positive in the sense 

that Uo(t)(Xt \ {0}) ~ int(Xt), Vt > 0. By the similar analysis as in section 2, we 
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can write equation (4.26) as an integral equation (4.13) with Uo = r/J E (J+. It then 

follows from Theorem 2.5.3 that, for any¢ E Cf., (4.26) has a unique mild solution 

u(t,x,¢) with u0(·,·,¢) =¢and u~(-,·,¢) E Cf., Vt 2:0. Moreover, u(t,x,¢) is a 

classic solution when t > T and the comparison theorem holds for ( 4.26). 

Define a family of operators { Qth>o on (j+ by 

Qt(rP)(s, x) = u(t + s, x, ¢), - + -V¢ E C ,xED, t 2: 0, s E [-T,Oj. 

Similarly as in section 2, we can show that { Qth2::o is a monotone w-periodic semifiow 

on (J+; u(t, X,¢) > 0 for t > T, X E 0, r/J E (j+ with r/J =j:. 0, and hence, Qt is 

strongly positive for t > 2T; moreover, Qt is compact on c+ for all t > T. Let 

n 1 = min { n E N, nw > 2T} . Then Qn1w is compact and strongly positive on (j+. We 

can further show that the periodic semifiow {Qth2::o is point dissipative on c+. 

Theorem 4 .3.1 Let (H3}-(H5} hold. Then QTI1W admits a global attractor on c+. 

P roof We show that Qt is point dissipative for any t 2: 0. In the case where (H6) 

holds, Theorem 4.2.1 implies that for any ¢ E Y + with ¢ ¢. 0, the unique solution 

w(t, ¢)of (4.8) with w(s, ¢) = ¢(s), Vs E [-T, OJ, satisfies lim II w(t, ¢) -{J*(t) lloo= 0. 
t-+oo 

Let {J• = max {J*(t). It follows that limsupw(t, ¢) < 2{3•, V¢ E Y+· In the case where 
tE[O,w] t-+oo 

(H6) doesn't hold, also by Theorem 4.2.1, this limit inequality is valid for any {3• > 0. 

For any given¢ E c+, let ¢(s) = max{¢(0, x) :BE [- T, 0], X E 0}, Vs E [- T, OJ. 
Then limsupw(t,¢) ~ 2{3•. Note that for any given t 2:0 and~ E c+ with ~(s , ·) ~ 

t-+oo 
w(t + s, ¢), Vs E [-T, OJ, we have 

w(t, ¢)- ~(0 , x) + h( -g(t, w(t, ¢)) + b(t)J_.,.(t, w(t- T, ¢))) 

-h( -g(t, ~(0, x)) + b(t)J_.,.(t, ~( -T, x))) 

> w(t, ¢)- ~(0, x)- hg(t, w(t, ¢)) + hg(t, ~(0, x)) 

> 0, 

for 0 < h « 1, X E n. By [58, Proposition 3], u(t, x, ¢) ~ w(t , ¢), Vx E n, t 2: - T . 

Then limsupu(t,x,¢) ~ 2{J•,Vx En, and hence, limsup II u(t,· ,¢) lloo~ 2{3•. Thus, 
t-+oo t-+oo 
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there exists to > 0 such that II u(t, ·, ¢) lloo~ 2t•, Vt ~ to. By the definition of II · llo 
on :%:0 = X, we have 

II u(t, ·, ¢) llo~ ko II u(t, ·, ¢) lloo~ 2kot• 

for some positive number k0 , Vt ~ t0 • For any t ~ t0 + 2w, let fi = [tJ - 1. Then 

iiw >to and (fi + l)w ~ t ~ (fi + 2)w. Moreover, similarly as (4.13), (4.26) can be 

written as 

u(t, ·, ¢) = U(t, iiw)u(iiw, ·, ¢) + ~~ U(t, s)B(s, U8 )ds, t ~ iiw, 

where U(t, s) is the evolution operator of 

{ 

OtU(t, x) = d(t).6.u, t > 0, X En, 

u(O, x) = <p(x), x E 0 , <p E Xp. 
(4.27) 

Since (4.27) is an w-periodic system, we have U(t + w, s + w)<p = U(t, s)<p for all 

0 ~ s ~ t and ¢ E Xp. By (11.9) in [35], there exists c1 = c1 (0, ,8, rd > 0 such that 

II U(t, s) llo,p~ c1(t- s)-1'1 for 0 ~ s ~ t ~ 2w, ,8 < 11 < 1. Moreover, there exists 

c3 > 0 such that II <p llo~ C3 II <p liP for all <p E Xp since Xp <-+ Xo is a continuous 

injection. Then for any t ~ t 0 + 2w, 

II u(t, ·,¢) liP 
< II U(t, iiw)u(iiw, ·, ¢) liP+ 111t U(t, s)B(s , Us)ds liP 

nw t 

II U(t- iiw, O)u(iiw, ·, ¢) liP+ II Jfu.J U(t- iiw, s- iiw)B(s, Us)ds liP 

< II U(t- iiw, o) llo,p · II u(iiw, ·, ¢) llo 
+ 1t II U(t- iiw, s- iiw) llo,p · II B(s, Us) llo ds 

nw t 

< c1(t- iiw) -1'1 II u(iiw, ·, ¢) llo + 1 c1(t- s)-"Y1 c2 II u(s , ·, ¢) llo ds 
':t' 

< c1(t-iiw)-"Y1 II u(iiw,· ,¢) llo + jfu.J c1(t-s)-"Y1 c2c311 u(s,·,¢) liP ds , 



77 

where c2 > 0 depends on 2k0/3• by (H3). A general Gronwall inequality implies that 

II u(t, ·, ¢) ll.a < c1(t- iiw)-1'1 11 u(iiw, ., ¢) llo · ef~wc1c2cs(t-s)-·nds 
(2w)1-·n 

< cl(t- iiw)-1'1 II u(iiw, ·, ¢) llo ·ec1c2ca· 1-·n 

_ (2w)1 -·n 
< c1 · w-~'1 · 2kof3• · eqc2ca· 1- ·n , Vt ;::: t0 + 2w, 

where we have applied the inequality J~(t- s)-~'1 ds :S (2~~
1

~..,.1 , for iiw :S s < t :S 
(ii + 2)w. Therefore, 

_ (2w) 1-1'1 

lim sup II u(t, ·, ¢) ll.a:S c1 · w-~'1 · 2k0 f3•. eqc2ca · 1- ..,.1 . 
t--+oo 

It follows that Qt : (}+ ---+ (}+ is point dissipative. In particular, Qn,w is point 

dissipative. 

Note that QnjW is compact on c+. By Theorem 2.1.1, QnjW admits a global 

at tractor on (}+ , which attracts any bounded set in (;+. • 

Consider the linearized system of ( 4.26) at the zero solution 

Btu(t, x) = d(t)6.u- 9u(t, O)u(t, x) 

Bu(t,x) 

u(s, x) 

+b(t)8uf-r(t, 0) In r(a(t), X- y)u(t- T , y)dy , t > 0, X En, 

o, t > o, x E an, 
¢(s,x), s E [-T, O], X En,¢ E C. 

(4.28) 

Similarly as in Theorem 4.2.2, we can show that the comparison principle holds for 

(4.28) , and hence, the solution map Ut of (4.28) is monotone increasing for all t;::: 0. 

Now we consider (4.26) and (4.28) as n1w-periodic systems. Define the Poincare 

map of ( 4.28) P1 : C ---+ C by 

where Un1w(¢)(s,x) = u(n1w + s,x,¢), V(s,x) E [-T,O] x 0, and u(t,x,¢) is the 

solution of (4.28) with u(s, x) = ¢(s, x), V(s, x} E [-T, 0] X n. Similarly as in section 

2, we can obtain that P1 is also compact and strongly positive. Let r1 = r(P1) be the 

spectral radius of P1 . By the Krein-Rutman Theorem (see, e.g., [35, Theorem 7.2]), 

r1 > 0 and P1 has a positive eigenfunction (fiE int(C+) corresponding to r1. 
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Lemma 4.3.1 Let J.L = --1 In r 1 . Then there exists a positive n1w-periodic function n1w 

v(t,x) such that e-tJotv(t,x) is a solution of {4.28). 

Proof By the definitions of r 1 and ¢, we have P1¢ = r 1¢. Let u(t, x, ¢) be the 

solution of (4~28) with u(s, x) = {fi(s, x), 'Vs E [-r, OJ, X E n. Since ¢ » 0, it is 

not difficult to see that u(·,·,¢) » 0. Let J.L = -n~w1nr1 and v(t,x) = etJotu(t,x,¢), 

'Vt :2: -r,x E 0. Then r 1 = e-n1wJ.t. and v(t,x) > 0, 'Vt E [-r,oo),x E 0. Moreover, 

Vt(t, x) eJ.t.tfLt(t, x, ¢) + J.LeJ.t.tu(t, x, ¢) 

= etJot[d(t)~u- 9u(t, O)u(t, x, ¢)J+ 
ef.lotb(t)8uf-r(t, 0) In r(a(t), X- y)u(t- T, y, {fi)dy + J.LV (4.29) 

d(t)~v- 9u(t,O)v(t,x) 

+ef.loTb(t)8uf-r(t, 0) In r(a(t) , X- y)v(t- T, y)dy + J.LV, 

for all (t, x) E (0, oo) x n. Thus, v(t, x) is a solution of n1w-periodic equation ( 4.29) 

with Bv = 0 on (0, oo) X an and v(s, x) = e!J.S{fi(s, x), 'Vs E [-r, OJ, X En. 

For any() E [-r, OJ, x E 0 , we have 

Therefore, v0 (B, ·) = Vn1w(B, ·), 'VB E [-r, OJ, and hence, the existence and uniqueness 

of solutions of ( 4.29) implies that 

v(t, x) = v(t + n1w, x), 'Vt :2: -T, X E 0, 

that is, v(t,x) is an n 1w-periodic solution of (4.29). Clearly, e-J.t.tv(t,x) is a solution 

of (4.28). • 

Define P0 : C -......+ C by 

Po(¢)= iiw(¢), V¢ E C, 

where u(t, x, ¢) is the solution of (4.28) with u(s, x) = ¢(s, x), 'Vs E [-r, OJ, X E n. 
Let r0 = r(P0 ) be the spectral radius of Po. 
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Theorem 4.3.2 Let (H3)-(H5) hold. For any¢; E c+, denote by u(t, x, ¢;) the solu­

tion of (4.26) with u(s, x) = <f;(s, x) for all (t, x) E [-T, OJ X n. Then the following 

two statements are valid. 

(i} If ro < 1, lim II u(t, ·, ¢;) 1113= 0 for every¢; E c+ 0 

t-+oo 

(ii} !fro> 1, then (4.26} admits a unique positive w-periodic solution u•(t,x) and 

lim II u(t, ·, ¢;)- u*(t, ·) 1113= 0 for all¢; E c+ \ {0}. 
t-+oo 

Proof Since g = UnlWl Po = Uw and UnlW = U~1 ' where Ut is the solution map of 

(4.28), by the properties of spectral radius of linear operators, we know that r(g) = 

(r(P0 ))n1
, i.e., r 1 = (r0)n1

• Note that the qualitatives of solutions of (4.26) and (4.28) 

do not change whether we consider them as n 1w -periodic systems or w-periodic 

systems. The conditions in Theorem 4.3.2 can be replaced by r 1 < 1 and r 1 > 1, 

respectively. In the following, we will consider ( 4.26) and ( 4.28) as n 1w-periodic 

systems and prove the theorem under the conditions of r1 < 1 and r1 > 1. 

In the case where r 1 < 1, we have J.L = --1-ln r 1 > 0. By Lemma 4.3.1, (4.28) n1w 

has a solution u(t, x) := u(t, x, {fi) = e-~-'tv(t, x) with u(s, x) = {fi(s, x), \i(s, x) E 

[-T, OJ x n, where¢ E int(C+) is the positive eigenfunction of P1 corresponding to r 1 

and v(t, x) is nlw-periodic in t ~ -T. Then vis bounded on [-T, oo) X n, and hence, 

there exists p > 0 such that II v(t, ·) lloo~ p, \it~ -r-. Thus, lim II u(t, ·) lloo= 0. By 
t-+oo 

a similar argument as in Theorem 4.3.1, it follows that lim II u(t, ·) 1113= 0. 
t-+oo 

Given ¢; E c+. Since lim(¢- 6¢;) = ¢ E int(C+), for any c > 0, there exists 
0-+0+ 

6<1> > 0, such that, (/J- 6¢; E Be(¢) ~ c+, for 0 < 6 ~ 6<1>, where Be(¢) is an open 

ball in c+ centered at ¢ with radius c. Therefore, ¢ ~ 6<1>¢ in c+. It then follows 

from the comparison principle that u(t,x) ~ 6</>u(t,x,¢;), \it ~ -T,X E n, where 

u(t, ·, ¢;) is the solution of (4.28) with u(s, x) = <f;(s, x), \i(s, x) E [-T, OJ X n. Thus, 

lim II u(t, ·, ¢) iloo= 0, and hence, lim II u(t, ·, ¢) 1113= 0 for any¢; E c+. 
t-+oo t-+oo 

Note that every solution of ( 4.26) satisfies · 

Otu(t, x) ~ d(t)~u- 9u(t, O)u(t, x) + b(t)auf-r(t, 0) 1 r(a(t), x- y)u(t- T, y)dy, 
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for t > 0, x E n. Similarly as in the proof of Theorem 4.2.2, we can show that the 

comparison theorem for abstract functional differential equations [58, Proposition 3J 

can be applied to (4.26) and (4.28). Therefore, for any</> E c+, u(t, ·, </>) ~ u(t, ·, </>), 

Vt ~ -T, where u(t, ·,</>)and u(t, ·,</>)are solutions of (4.26) and (4.28), respectively. 

It then follows that solutions of (4.26) satisfy lim II u(t, ·,</>) ll.a= 0, V¢ E c+. 
t--+oo 

In the case where rl > 1, we have J.l- < 0. Let Co = {<I> E c+ : </> =I= 0}, 

8Co = c+ \ C0 = {0}. Similarly as in the proof of Lemma 4.2.2, we can show that 

for any</> E C0 , the solution u(t, x, </>) of (4.26) satisfies u(t, x, </>) > 0, for all t > r, 

X E n. It follows that Qt(Co) ~ int(C+), \ft > 2T. Clearly, Qt(O) = 0, Vt ~ 0. We 

future claim that 

Claim Zero is a uniform weak repeller for C0 in the sense that there exists 80 > 0 

such that lim sup II Qt(<l>) II.B~ Oo, V¢ E Co. 
t-+oo 

Indeed, we consider the following system 

d(t)6.u"- (gu(t, 0) + c)u"(t, x) 

+b(t)(8,J_.,.(t, 0)- c) In f(a(t), X- y)u"(t- T , y)dy, t > 0, X En, 

Bu"(t,x) = 0, t > O,x E an, 
u"(s, x) <f>(s, x), s E [-r, 0], xED, </> E C. 

( 4.30) 

Define the Poincare map of ( 4.30) Pe : C -t C by 

where 

u~lw(<l>)(s, x) = u"(nlw + s, x, </>), V(s, x) E [-T, OJ X n 

and u"(t, x, </>) isthe solution of (4.30) with u"(s, x) = <f>(s, x), \fs E [-r, OJ, x En. Let 

re = r(Pe) be the spectral radius of Pe. Since r 1 = r(PI) > 1, there exists a sufficiently 

small positive number c1 such that re > 1 for all c E [0, c1). We fix an c E (0, c1) . 

Since lim g(~u) = 9u(t, 0) and lim f-T~t,u) = 8uf-r(t, 0) uniformly fort E [0, n1w], 
u--+O+ u--+O+ 

there exists Oe > 0, such that g(t, u) < (gu(t, O)+c)u and f_.,.(t, u) > (8uf_.,.(t, 0) - E:)u 

for u E (0, Oe), t E [0, n 1wJ. Let Oo = 8efk.B. Suppose, by contradiction, that there 
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exists 4>o E Co such that lim sup II Qt( 4>) ll.e< 80 . Then there exists t0 > T such that t-+oo 
II u(t, ·, 4>o) lloo~ k,e II u(t, ·, 4>o) ll.e< Oe for all t 2: to. Therefore, u(t, x, ¢0) satisfies 

8tu(t, x) > d(t)~u- (gu(t, 0) + c)u(t, x) 

+b(t)(8uf-r(t, 0)- c) fn r(a(t), x- y)u(t- T, y)dy, 
(4.31) 

for t 2: to, X E n. Let Cfie be the positive eigenfunction of Pe associated with Te 

and J.Le = -n~wlnre. Then by Lemma 4.3.1, the solution ue(t,x,Cfie) of (4.30) with 

ue(s, x) = 4>e(s, x), \Is E [-T, OJ, X E n, satisfies ue(t, x, Cfie) = e-~-'·tve(t, x), where 

ve(t, x) is a positive n1w-periodic function in t 2: -T. Since u(t, x, ¢0 ) > 0, Vt 2: T, 

X E 0, there exists ( > 0 such that 

u(to + s, x, 4>o) 2: (ue(s, x, Cfie) = (Cfie(s, x), \Is E [-T, OJ, X En. 

By (4.31) and the comparison theorem, we have 

Since J.Le < 0, it follows that u(t, x, ¢0) is unbounded, a contradiction. Thus, the claim 

is true. 

By the claim above, Qn1w is weakly uniformly persistent with respect to ( C0 , 8C0 ). 

Since Qn!W admits a global attractor on c+, it follows from Theorem 2.1.2 that Qn!W 

is uniformly persistent with respect to (C0 , 8C0 ) in the sense that there exists 81 > 0 

such that lim inf II Q~ w(4>) ll.e2: 81, V¢ E Co. 
n-too 1 

Note that Qn1w is compact, point dissipative and uniformly persistent. It follows 

from Theorem 2.1.3 that Qn1w : Co ---+ Co admits a global attractor A0 and has a 

fixed point J; in Ao. Similarly as in the proof of Lemma 4.2.1, we can show that Qn
1
w 

is strictly subhomogeneous. Then Theorem 2.2.4 implies that Qn
1
w has at most one 

fixed point. Thus, Qn1w has a unique equilibrium J; in C0 • Clearly, by the strong 

monotonicity of Qn1w, we have J; E int(C+). Moreover, it follows from Theorem 2.2.5 

that Ao = { (/;} since Qn1w is strongly monotone and strictly subhomogeneous. Thus, 

J; is globally attractive in C0 for Qn1w· 
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Let u(t,x, ¢)be the solution of (4.26) with u(s,x) = if;(s,x), 'v'(s,x) E [-r,O] X n. 
Since J; is a fixed point of Qn1w and is globally attractive in C0 , u(t, x, if;) is an n1w­

periodic solution of (4.26) which attracts all solutions of (4.26) in c+ \ {0}. That 

is, 

lim II u(t, ·, ¢) - u(t, ·,if;) lip= 0 for all ¢ E Co. 
t-+oo 

Now we show that u(t, x, ¢;) is also w-periodic. Since Qn
1
w(¢) =¢,we have 

which implies that Qw(¢) is also a fixed point of Qn1w. By the facts that J; » 0 and 

Qw is monotone, it follows that Qw(¢) » 0. Note that Qn1w has a unique fixed point 

in int(C+). Then Qw(¢) =¢,that is, J; is a fixed point of Qw, and hence, u(t, x, if;) is 

an w-periodic solution of (4.26). Thus, u*(t, x) := u(t, x, ¢), 'v'(t, x) E [-T, oo) X n, is 

the desired w-periodic solution. • 



Chapter 5 

A Discrete-Time Population Model 

in A Periodic Lattice Habitat 

5.1 Introduction 

Integrodifference models have been attracting more and more attention since they 

consider the importance of nonoverlapping generations and various types of dispersal 

kernels, see [38, 40, 49, 81, 87]. A simple case among them is the following discrete­

time model in a homogeneous habitat: 

Un+t(x) = 1 k(x,y)f(un(Y))dy, x E lR, n EN, (5.1) 

where un(x) is the density of the n-th generation of the population at location x E JR, 

k(x, y) is the dispersal kernel, f is the recruitment function of the population. 

Although most of earlier studies assumed that the environment is spatially homo­

geneous, the real environment is generally heterogeneous, due to natural phenomena 

or exposure to artificial disturbances. The investigation of aliens in Chile ([64]) states 

that roads and city streets constitute less competitive habitats than do agricultural 

fields, allowing apparently for colonization by a greater diversity of alien species, and 

hence, roads, city streets and vacant lots constitute more stable habitats than agricul­

tural fields. More examples can be found in [7, 8, 11, 25, 26, 30, 40, 70, 71, 81, 86, 87] . 
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This indicates that in the study of biological invasion it is important to understand 

how spatial heterogeneities influence the characteristics of front propagation such as 

front speeds, front profiles and front location. As a generalization of (5.1), one may 

consider the following discrete-time model in a heterogeneous habitat: 

. Un+l(x) = 1 k(x, y)f(y, Un(Y))dy, X E IR, n EN, (5.2) 

where k(x, y) is still the dispersal kernel, which may not be symmetric, f(x, u) is the 

recruitment function of the population with density u at location x E JR. 

The simplest ease of the spatial heterogeneity is a periodic habitat, by which we 

mean that the recruitment function (or the growth function) and dispersal proper­

ties vary periodically in the habitat. Freidin and Gartner [25, 26] used probabilistic 

methods to study the spreading speed for an equation of Fisher's type in which the 

mobility and the growth function vary periodically in space. In the ecological context, 

Shigesada et al [71] first introduced a reaction-diffusion model for the spread of a sin­

gle species in a patchy environment with periodic variations in diffusivity and growth 

rate. Weinberger [86] presented a general model in periodically varying environments 

and investigated the spreading speed and spatially periodic traveling waves in the case 

where the recursion operator is monotone. Guo and Hamel [30] studied the front prop­

agation of a monotone lattice model in a periodic habitat. More recently, Kawasaki 

and Shigesada [40] considered propagating waves in a periodic environment in the 

framework of integrodifference equations (an example of (5.2)), by the linearization 

method and numerical simulations. Weinberger et al. [87] established the spreading 

speed for (5.2) in a periodic habitat in the case where the recruitment function is 

not necessarily monotone in the density of the species. However, the proof of the 

existence of periodic traveling waves for (5.2) in this case is still an open problem. 

It is impractical to measure the population densities at all points at all times and 

computations for continuous models are often obtained as the approximation of the 

related discrete models ([11, 85, 98]). It is then reasonable to consider the following 

lattice version of (5.2) in a periodic habitat in the case where the recruitment function 
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is not necessarily monotone: 

+oo 

u~+l = L ~i!J(u~), i E Z, n EN, (5.3) 
j=-oo 

where u~ is the density of the n-th generation of the population at the i-th location, 

Pij is the dispersal kernel, which is the fraction of those individuals who successfully 

migrate from the j-th location to the i-th location, IJ(u) := f(j, u) is the recruitment 

function of the population with density u at location j E Z. The purpose of the 

current chapter is to study the spreading speeds and spatially periodic traveling waves 

for (5.3) in both monotone and non-monotone cases of IJ(u). 

Throughout this chapter, we always assume that (5.3) satisfies the following con­

ditions: 

+oo 
(H7) Pii is nonnegative; Pij = ~+L,j+L, Vi,j E Z, for some L > 0; I: Pii = 1, 

j = - oo 
+oo 

Vi E Z; and I: Pije-~(i-j) is uniformly bounded for f..L E ( -Ll + , Ll- ), i E Z , 
j=-oo 

where Ll + and Ll- are positive and can be infinity. 

(H8) For any i E Z, fi E C 1(1R+, IR); fi(O) = 0, ff(O) > 1; /i([O, b]) ~ [0, b] for some 

b > 0; fi(u) = fHL(u), VuE [0, b]; /;~u) is strictly decreasing in u E [0, b]. There 

exists L > 0 such that 1/i(ui)- !i(u2)l ~ Llu1- u2l, Vu1, u2 E [0, b], ViE Z. 

We also use the following notations: 

X= { {cpi}iez: cpi E IR+, ViE Z}, 

XL= {{cpi}iez EX: cpi = cpi+L, ViE Z}, 

Xf = { { cpi}iez E XL : cpi E [0, b], Vi E Z}. 

For u E X, v E X, u ~ v means ui ~ vi, Vi E Z; u < v means ui ~ vi, Vi E Z but 

u ¢. v; and u « v means ui <vi, ViE Z. 

The rest of this chapter is organized as follows. In section 5.2, we consider the case 

where the recruitment function fi(u) is monotone in u for all i E Z and establish the 

existence and computation formula of spreading speeds and their coincidence with the 
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minimal wave speeds for spatially periodic traveling waves in both positive and neg­

ative directions. In section 5.3, we extend these results to the case of non-monotone 

recruitment functions by using the comparison method (for spreading speeds) and the 

Schauder fixed point theorem (for spatially periodic traveling waves). An example is 

also given in section 5.4 to illustrate the obtained analytic results. 

5. 2 Monotone case 

In this section, we consider model (5.3) with a monotone recruitment function. In 

addition to (H7) and (H8), we further assume that 

(H9) fi(u) is nondecreasing in u E [0, b] for any i E Z. 

Define an operator Q on X by 

+oo 

(Q('P))i = L pij/j(cp'), i E Z, 'P EX. 
j=-oo 

Then for Un = { u~hEz E X, (5.3) can be written as 

To find a fixed point of Q in XL, we restrict Q on XL as Q: 

+oo 

(Q('P))i = 2: Pij/i(r), i E z, 'P E xL. 
j=-00 

By using the periodicity properties off and 'P, we can write Q as 

+oo 
(Q('P))i I: Pij/i(~) 

j=-oo 
+oo L 

= L L Pi,kL+mfkL+m('PkL+m) 
k=- oom=l 

+oo L 
= L L P;,kL+mfm('Pm) 

k=-oom=l 

fl Cf'oo P;,kL+m) J m ( 'Pm)' 

(5.4) 
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for any i E Z, cp E XL. Since Pii = Pi+L,i+L for any i E Z, j E Z, we have 

(Q(cp))i = (Q(cp))i+L, Vi E Z, and hence, Q : XL -t XL. By the periodicity of 

elements in XL, it is easy to see that XL is actually equivalent to lRt. Thus, Q can 

be considered as an operator from lRt to lRt: 

L 

(Q(cp))i = L aimfm(cpm), ViE {1, 2, 0 0 0 'L}, cp E IR~, 
m=l 

+co 
where aim = L Pi,kL+m, fori, mE {1, 2, 0 0 0 'L }. 

k=-oo 

Let L0 = DQ(O) be the derivative of Q at 0. It then follows that 

+co 
(Lo(cp))i = L ~if}(O)cpi, ViE Z, cp E XL. 

j=-oo 

Similarly as we do for Q, we can also show that L0 : XL -t XL and then consider L0 

as a linear operator from JRL to JRL. Moreover, 

Lo(cp) = Acp, Vcp E IRL, (5.5) 

+co 
where A= (aim)LxL, aim= L Pi,kL+mf:n(o), fori, mE {1, 2, · · · , L }. 

k=-oo 
We further assume that 

(H10) A is irreducible, and for any uo E lRt, there exists k = k(u0 ) E N, such that 

Qk(uo) » 0. 

Let 

r(L0 ) = max{J>.J, >.is an eigenvalue of A}. 

Then by [74, Theorem A.4], it follows that r(L0 ) is a positive eigenvalue of A and 

that there is a strongly positive eigenvector of A associated with r(L0 ). 

Lemma 5.2.1 Let {H7)-{H10} hold. If r(L0 ) > 1, then there exists a unique fixed 

point /3* » 0 in ·xf such that every forward orbit of Q in Xf \ {0} converges to /3* . 
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P roof Let b := (b, b, · · · , b) E JRL and IRf := { cp E JRL : 0 ::::; cp ::::; b}. Consider Q and 

L0 as operators on IR~ and JRL, respectively. Obviously, Q(O) = 0. For any cp E IRf, 
it follows from J;([O, b]) ~ [0, b] that 0 ::::; ( Q( cp) )i ::::; b, Vi E Z. This implies that 

Q- . TrJ>f- --+ TrJ>f-
• Jl'!o.b Jl'!o.b. 

For cp, 1/; E IRf with cp < 1/;, i.e., 0 ::::; cpi ::::; 1/;i ::::; b, V1 ::::; i ::::; L, and cp -=/= '1/;, we have 

L L 

(Q(cp))i = L a;mfm(cpm) ::::; L a;mfm('I/Jm) = (Q('!f;))i, V1::::; i::::; L. 
m=l m=l 

Thus, Q(cp) ::::; Q('I/J) and Q is monotone on IRf. 
Let a E (0, 1) and cp E IRf with cp » 0. Since /i~u) is strictly decreasing in 

u E [0, b], it follows that for any i E Z, J; is strictly subhomogeneous on [0, b] in the 

sense that 

J;(au) > af;(u), VuE [0, b], a E (0, 1) , 

and hence, 

L L L 

(Q(acp))i = I: a;m!m(acpm) > I: aim ·a· tm(cpm) = a I: a;m!m(cpm) = a(Q(cp))i, 
m=l m=l m=l 

for all 1 ::::; i ::::; L. Then Q(acp) » aQ(cp) in JRL, which indicates that Q is strongly 

subhomogeneous on IRt. 
Note that r(L0 ) is a positive eigenvalue of L0 with a strongly positive eigenvector 

e E IRf. Since r(L0 ) > 1, as argued in the proof of Theorem 2.2.2 in [99] , we see that 

there exists co > 0 such that Q(ce) » ce, Vc E (O,c0]. For any given u E lRt with 

u » 0, there exists sufficiently small c > 0 such that u ~ ce. Then we have 

Q(u) ~ Q(ce) » ce, 

and hence, 

Therefore, thew-limit set of u, w(u), is a nonempty compact invariant set in Int(JR~). 

By Theorem 2.2.5, Q : IRf --+ IRt has a fixed point {3* E Int(JR~) such that every 
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nonempty compact invariant set of Q in Int(JRt) consists of /3*. Thus, for any u E 

I nt(JRt) n JRt, /3* attracts the forward orbit of u. Moreover, (HlO) implies that /3* is 

globally attractive in JRt \ {0}. • 

To study the dynamics of invasion for (5.3), in the rest of this section we always 

assume that 

(H11) r(Lo) > 1. 

Thus, Q admits a globally attractive fixed point (3* » 0 in Xf \ {0}. 

In the following we study the spreading speeds and spatially periodic traveling 

waves by the theories in section 2.4. 

Lemma 5.2.2 The operator Q in (5.4) satisfies (C1)-(C6) with 1{ = Z, £ = {nL : 

n E Z}, P = {1,2, · · · ,L}, 7ro = 0, 1!'1 = /3*, and M := {cp EX: 0:::; cpi ~ (3•i,Vi E 

Z}. 

Proof (Cl) and (C2) are obvious. It remains to verify (C3)-(C6). We define the 

translation operator 

(Ta(u))i = ui-a, ViE Z, a E H, u EX. 

Clearly, 1{ is invariant under translation by any element of £ and every x E 1{ has a 

unique representation of the form x = z + p with z E £and pEP. For any a E £, 

u EM, we have 

+oo 

(Ta(Q(u)))i = (Q(u))i-a = L ~-a,jfi(ui) , 
j=-oo 

+oo +oo +oo 

(Q(Ta(u)))i = L Pijfj(ui-a)z = j- a L Pi,z+afz+a(uz) = L ~-a,zfz (uz). 
j=-oo z=-oo z=-oo 

Therefore, 

(Ta(Q(u)))i = (Q(Ta(u)))i, Va E £, u EM, i E Z, 

which indicates that Q is periodic with respect to £. This verifies (C3). 
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By Lemma 5.2.1, it follows that if 0 ::; u0 ::; {3*, u0 is periodic with respect to £ 

and uo ¥; 0, then the solution Un of Un+l = Q(un) through u0 , which is again periodic 

with respect to £, converges to {3* as n --+ oo uniformly on 1-l. Then (C4) is valid. 

To verify (C5), let {um}meN ~ M with Um = {u!n}ieZ EX be a sequence such 

that Um --+ u E M uniformly on every bounded subset of'}-{, as m --+ oo. Given a 

bounded subset B of'}-{, for any c: > 0, i E B, we have 

+oo 

+oo +oo 
I(Q(um))i - (Q(u)) il = I L ?;ifi(ut,.)- L Pii/i(ui) l 

j=-oo j=-oo 
+ oo 

=I L Pii(fi(u!n)- fi(ui ))l 
j =-oo 

• +oo 
::; L 2: P.i lu!n- ui l. 

j=- oo 

Since 2: P;i = 1 for any i E Z, there exists M > 0, such that 2: Pti < c: fori E B. 
j=-oo li i<::M 

Thus, there exists N 1 E Z, N1 > 0, such that I(Q(um))i - (Q(u)) il::; L(c: · 2{30 +c:) for 

any i E B, where {30 = max lf3*i I and N1 satisfies that for m 2: N1 , lu!n - ui I < c, 
iE{l,2, ... ,L} 

for all j E { -M, · · · , M}. This implies that Q(um) converges to Q(u) uniformly on 

every bounded subset of 1-l. 

Any sequence { um}meN in M is uniformly bounded. Moreover, since '}-{ is count­

able, it is easy to see that { Q( um)}meN is equicontinuous on '}-{ . Therefore, there 

exists a subsequence {umkhEN of {um}meN such that {Q(umk)heN converges to some 

function uniformly on every bounded subset of'}-{. Thus, (C6) is valid. • 

Let £ 0 = DQ(O) be the derivative of Q at 0. Consider the negative direction 

( = -1. Following section 2.4 (see also [86, Section 2])-, we define L_"' : XL --+ XL by 

(5.6) 



Moreover, 

+co 
e-IJ·i. I: Piifj(O)e!Jiui 

J=-co 
+co 
2:: ~if}(O)e-!J(i-i)ui 

j=-co 
+co L 
2:: 2:: ~,kL+mfkL+m(O)e-!J(i-kL-m)ukL+m 

k=-com=l 

= fl Cf'co (~,kL+meJ.!.kL). eJ.I.m J:n(o)e-Jl.i) um, 
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for any i E Z, u E XL. Thus, L_Jl. can be considered as a linear operator from JRL to 

JRL: 

where A_Jl. = (a~)LxL with 

+co 

a~= L (Pi,kL+meJ.I.kL)eJ.I.m J:,.(O)e-Jl.i, 
k=-co 

for all i,m E {1,2, ... ,L}. 

For the positive direction ( = 1, we can define LJ.I.: XL~ XL by 

(5.7) 

for J-L E (0, ~+), u E XL, where v = {e-Jl.iuihez· Furthermore, LJ.I. can also be 

considered as a linear operator from JRL to JRL: 

+co 

arm= L (~,kL+me-Jl.kL)e-!JmJ:,.(o)e!Ji, 
k=-co 

for all i,m E {1,2, · · · ,L}. 

Let 

(5.8) 



and 

c*(-1)= inf ~InA_~'' 
0<t£<tl.- J.L 

where A~' and A_~' are the principle eigenvalues of A~' and A_~'' respectively. 
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(5.9) 

Lem ma 5.2.3 Let {H7), {HB) and (HJO) hold. If~+=~- and P;j = Pji, Vi,j E Z, 

then c*(1) = c*( -1). 

Proof Let C = diag(J{(O) · · · fHO)) and B = (Bim)LxL with 

+oo 

B _ "' ( n e~'kL)e~'me-~'i im - ~ .ri,kL+m , Vi,m E {1,2,·· · ,L}. 
k=-oo 

It is easy to see that A_~' = BC. Moreover, we have 

+oo 
a~i = 2:: (Pm,kL+ie-l•kL)e-~'iff(O)e~'m 

k=-oo 
+oo 
2:: (Pm,-kL+ie~'kL)e-~'i ff (O)e~'m 

k=-oo 
+oo 
2:: (Pm+kL,ie~'kL)e-~'iff(O)e~'m 

k=-oo 
+co 

= 2:: (P;,m+kLe~'kL)e-~'iff(O)e~'m, 
k=-oo 

for all i, m E {1, 2, .. · , L }. Then A~' = BT C, where BT is the transpose of B, 

and hence, A; = CB. Since Cis invertible, we obtain C · BC · c-1 = CB, which 

indicates that BC and CB are similar, and hence, a(A_~') = a(A; ) = a(A~'), where 

a(M) denotes the set of all eigenvalues of matrix M . By the definition of c*((l, it 

then follows that c* ( 1) = c* ( -1) provided that ~ + = ~-. • 

The following result shows that c* ( (l is the spreading speed in the directions 

[ = ±1. 

Theorem 5.2.1 Let {H7)-{H11} hold. Then the following statements are valid: 

{i) For any u0 E M := { cp E X : 0 ~ cpi ~ {3*i, Vi E Z} with ub = 0 for i E Z and 

i 2: K for some K E Z, the solution of {5.3} satisfies 

lim u~ = 0, Vc > c*(1). 
n__.oo,i~cn 
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For any u0 EM\ {0}, the solution of (5.3} satisfies 

li!l_l (u~- {3*i) = 0, Vc < c*(1). 
n-+oo,,~cn 

(ii) For any uo E M with ut = 0 fori E Z and i ~ K for some K E Z, the solution 

of (5.3) satisfies 

lim u~ = 0, Vc > c*(-1). 
n-+oo,t$-cn 

For any u0 EM\ {0}, the solution of (5.3) satisfies 

lil_ll (u~- {3*i) = 0, Vc < c*( -1). 
n-+oo,,~-cn 

(iii) For any uo E M with ut = 0 for i outside a bounded subset of Z, the solution 

of (5.3) satisfies 

(iv) For any u0 EM\ {0}, the solution of (5.3) satisfies 

lim . (u~- /3*i) = 0, Vc1 < c*(-1), Vc2 < c*(1). 
n-+oo,-cl n~•~c2n 

Proof In view of Lemma 5.2.2, it suffices to verify conditions in Theorem 2.4.2. 

Since fi(u)/u is strictly decreasing for i E Z, u E [0, b], we see that fi is strictly 

subhomogeneous in u E [0, b] for any i E Z. This implies that 

fi(u) ~ fi(O)u, Vi E Z, u E [0, b], 

and hence, for any u E M, 

+oo +oo 

(Q(u))i = L P;ifi(ui) ~ L Piif;(o)ui = (Lo(u))i, ViE Z. 
j=-oo j=-oo 

Thus, Q(u) ~ L0 (u) for all 0 ~ u ~ /3*. 

Clearly £ 0 is £-periodic and strongly order-preserving. For any n E Z, let 'Pn = 

{cp~hez EX with cp~ = min{n,e~'lil}, ViE Z. Then 

+oo 

(Lo('Pn))i = L Piif;(o)vJn = L Piif;(o)n+ L P;if;(o)e~'lil, ViE Z, n EN. 
j=-oo 
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+oo 
Given a bounded subset B of Z. Since E Piie~i is uniformly bounded for J.L E 

j=-oo 

[o, ~-), i E Z, and 

"" ~f(O)e~lil ~ max {f'(O)} "" Pi·e~lil ~ J J jE{1,2,. .. ,L} · J ~ J 1 

IJI$l 1';.nJ IJI$l1';.nJ 

we can obtain that E PiJfj(O)e~lil is uniformly bounded for all i E Band n > 0. 
IJI$l 1';.nJ 

+oo 
Fix a E (0, ~-) such that 0 < J.L < a < ~-. Since E Pijeo:i < oo, we have 

j=-oo 

~ieai --t 0 as j --t oo uniformly for i E B. Then there exists M > 0 such that 

~ieo:i < 1 fori E B, j > M, and hence, ~i < e-o:J fori E B, j > M. Therefore, 

when L1:n J > M, for any i E B, we have 

< . max {fj(O)} E Piin 
JE{1,2,. .. ,L} i>llnn J 

11. 

< . max {fj(O)} E e-ajn 
JE{1,2,. .. ,£} j>l Inn J 

11. 
o:{l-ln n} 

< jE{~~,L} {fj(O)} n:o:-; ' 

which indicates that E PiJfj(O)n tends to 0 as n --t oo uniformly for i E B. 
j > l l';.n J 

Similarly, we can prove that I:: PiJfj(O)n tends to 0 as n --t oo uniformly for 
j<-ll';.nJ 

i E B. Thus, E PiJfj(O)n is uniformly bounded for all i E B and n > 0, and 
Iii> L 1';. n J 

hence, (Lo(<r?n))i is uniformly bounded for all i E B and n > 0. The equicontinuity 

of {Lo(<r?n)}nEN in i E B is obvious since B ~ Z. Then by the Arzela-Ascoli theorem, 

{Lo(<r?n)}nEN has a subsequence {Lo(<r?nk)}kEN, which converges to some function 1 
on every bounded set of Z. By the definitions of L0 and <pn, it is easy to see that 

{ Lo( <r?n)}nEN is increasing in n. Thus, { Lo( <r?n)}nEN itself converges to 1 on every 

bounded set of Z. By the theory developed in [86], we can define L0(e~l- l ) = f. 
Since fi(u) < ff(O)u, Vi E Z, u E [0, b], we have 

+oo +oo 
(Lo(fJ*))i = L Piifj(O)(J*i > L ~ifJ((J*i) = (Q((J*))i = (J*i, Vi E Z, 

j = -oo j =-oo 
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that is, L0 ((J*) > (J*. Define a translated operator Q[Lo,.a·J by 

Q[Lo . .B•J(u) = min{L0 (u),(J*}, VuE X with 0 ~ u• ~ (J*•, ViE Z. 

Then we have the following observation. 

Claim. Q[Lo,.a•J(u) satisfies (Cl)-(C6) with 'H = Z, P = {1, 2, · · · , L}, [, = {nL: n E 

Z}, and M = { {cpi }iez EX: 0 ~ cpi ~ (J•i, ViE Z}. 

Indeed, (Cl) is obvious. By the monotonicity of £ 0 , for u EM, v EM, we have 

Thus, Q[Lo,.a·J is monotone. L0 is periodic with respect to £, so is Q[Lo,.B·I(u) . 

Q[Lo . .a·J(O) = 0, Q[Lo,.B•J((J*) = min{L0 ((J*), (J*} = (J*. By the properties of £ 0 , if 

0 ~ u0 ~ (J* with u0 periodic with respect to [, and u0 ¢: 0, then the the solution 

Un of Un+l = Q[Lo,.a•J(un) is again periodic with respect to£. Since Q(u0 ) ~ L0(u0) 

and Q( uo) ~ Q((J*) = (J*, we have Q( u0 ) ~ Q[Lo,.B•J ( u0 ) ~ Q[Lo,.a•J ((J*) = (J*. Then it 

follows from Q(un) -+ (J* as n -+ oo that Un+l = Q[Lo ,.B•J(un) -+ (J* as n -+ oo. Let 

{ um}meN ~ M be a sequence such that Um -+ u E M as m -+ oo uniformly on every 

bounded subset of Z. Given a bounded subset B of Z. For any c > 0 and i E B, by 

the continuity of £ 0 and uniform convergence of Um on B, we can obtain 

= I min{(Lo(um))i,(J•i} - min{(Lo(u))i,(J•i}J 

= 

J(Lo(um))i- (Lo(u))iJ, if (J•i ~ max{(Lo(um))i, (Lo(u))i} 

J(J•i- (J*iJ, if (J•i ~ min{(Lo(um))i, (Lo(u))i} 

J(Lo(um))'- fJ*iJ. if (Lo(um))i::; (J*i::; (Lo(u))i 

lfl*i- (Lo(u))iJ, if (Lo(u))i ~ (J*' ~ (Lo(um))i 

< J(Lo(um))i- (Lo(u))iJ 

< c, 

for m > Ni for s9me Ni > 0. Note that B is a finite subset of Z. We can further find 

anN> 0, such that 



96 

For any sequence { um}mEN in M, { Q[Lo,/3•] ( Um)}mEN is clearly uniformly bounded by 

(3*. For any bounded subset B of Z, the equicontinuity of { Q[Lo,/3•] ( um)}mEN on B 

follows from the fact that N contains only countable elements. Therefore, { um}mEN 

contains a subsequence { UmkhEN such that { Q(umk)}kEN converges to some function 

on every bounded subset of Z. Therefore, Q[Lo,/3•] satisfies (C1)-(C6). This proves 

our claim above.' 

Since r(L0 ) > 1, there exists 80 > 0 such that r((1- 8)L0 ) > 1, V8 E [0, 80 ). Since 

fi is increasing in u E [0, b] and fi = fi+L, i E Z, we can find a1 , a2 > 0 such that 

0 < a1 ~ J;(o) ~ a2, for all i E {1, 2, · · · , L }. For any 8 in (0, 80 ) , there exists ( > 0 

such that 

fi(u) > U:(o)- a18)u, for all 0 ~ u ~ (, i E {1, 2, · · · , L}, 

and hence, 

! i(u) > U:(o)- a18)u ~ J:(o) · u- 8J;(o). u = (1- 8)f[(o). u, 

for 0 ~ u ~ (, i E {1, 2, · · ·, L}. Thus, for any u E [0,(], 

+oo +oo 

(Q(u))i = L Piifi(ui) ~ L Pii(1- 8)Jj(O)ui = (1- 8)(L0(u))i, ViE Z, 
j=-oo j=-oo 

i.e., Q(u) ~ (1- 8)L0 (u), VO ~ u ~ ( . 

Clearly, (1 - 8)L0 is £ -periodic and strongly order preserving. Similarly as we 

did for L0 , we can define (1- 8)L0(eJJI ·I) for all~-t E (0, ,6.-). 

For simplicity, we let M := (1- 8)L0 . Then r((1- 8)L0 ) > 1 and there exists r.p E 

Xf such that r.p is an eigenvector of (1- 8)L0 , (:orresponding to r((1- 8)L0 ) . Noting 

that (1- 8)L0 is the restriction of M on Xf, we have M(r.p) = r((1- 8)L0 )r.p > r.p. 

Moreover, we can choose r.p ~ ( (i.e., r.pi ~ ( i , Vi E Z) . Define 

Then Q[M,~PI(O) = 0 and Q[M,~PI(r.p) = r.p. By similar arguments as in [53, Lemma 3.3], 

we can prove that Q[M,~P] admits exactly two fixed points 0 and r.p in [0, r.p] ~ Xf . 
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Note that Q[M,<p) is strongly positive and monotone increasing in u E [0, <;-]. Similarly 

as we did for Q[Lo,.B·J, we can verify that Q[M,<p) satisfies (C1)-(C6). 

By Theorem 2.4.2, it then follows that the statements (i) and (ii) are valid. State­

ments (iii) and (iv) are straightforward consequences of (i) and (ii) (see also [87, 

Remarks 2]). • 

Motivated by Definition 2.4.1, below we introduce the concept of spatially periodic 

traveling waves for system (5.3). 

Definition 5 .2 .1 A solution { u~hez of the recursion (5.3) is called a spatially peri­

odic traveling wave with speed c in the direction of the unit vector ( = -1 if it has 

the form u~ = W(i, i +en), for some function W: Z x {i +en: i E Z, n EN}-+ IR+, 

with W(i,s) being £-periodic in i for each s; Such a wave is said to be nondecreasing 

if W ( i, s) is non decreasing in s, and to connect 0 to {,B*i} iEZ if lim W ( i, s) = 0 
s~-oo 

and lim W(i, s) = ,B*i uniformly for i E Z. Similarly, a solution { u~hez of the 
s-++oo 

recursion (5.3) is called a spatially periodic traveling wave with speed c in the direc-

tion of the unit vector ( = 1 if it has the form u~ = W ( i, i - en) , for some function 

W : Z x { i - en : i E Z, n E N} -+ IR+, with W (i, s) being £-periodic in i for each 

s; Such a wave is said to be nonincreasing if W(i, s) is nonincreasing in s, and to 

connect {,B*ihez to 0 if lim W(i, s) = ,B*i and lim W(i, s) = 0 uniformly fori E Z. 
s-+-oo s-++oo 

The subsequent result is a consequence of Lemma 5.2.2, Theorem 5.2.1 and The­

orem 2.4.3, which shows that c*((l is the minimal wave speed for spatially periodic 

traveling waves in the direction (. 

Theorem 5.2.2 Let (H1)-(H11) hold. Then the following statements are valid. 

(i) For any c ~ c*(l), (5.3) admits a nonincreasing spatially periodic traveling 

wave W(i, i- en) connecting {,B*ihez to 0; and for any c < c*(l), (5.3) has no 

spatially periodic traveling wave W(i, i- en) connecting {,B*ihez to 0. 

(ii) For any c ~ c*( - 1), (5.3) admits a nondecreasing spatially periodic traveling 

wave W(i, i +en) connecting 0 to {,B*ihez; and for any c < c*(-1), (5.3) has 

no spatially periodic traveling wave W(i, i +en) connecting 0 to {,B*i h ez · 
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5.3 Non-monotone case 

In this section, we study spatial dynamics of system (5.3) with a non-monotone 

recruitment function. Motivated by the recent works in [38, 87], we employ the 

comparison method and Schauder fixed point theorem to establish spreading speeds 

and spatially periodic traveling waves for (5.3). 

Firstly, we define a nondecreasing function 

It follows that that ji+ is Lipschitz continuous in u with the same Lipschitz constant 

L as fi has, that is, 

Then for the monotone system 

i E Z, nEN, (5.10) 
j=-oo 

by Lemma 5.2.1, there exists u+• = {u~·hEz E Xf with u~. = uiJ.L, ViE Z, such 

that u+• is a fixed point of (5.10). 

We define another function 

fi-(u) = min {fi(v)}, VuE [0, u~.], i E Z. 
vE[u,u+.J 

It then follows that fi- is nondecreasing in u E [0, u~.] for all i E Z, and that fi- is 

Lipschitz continuous in u E [0, u~.] with the Lipschitz constant L, that is, 

Similarly, by Lemma 5.2.1, the monotone system 

+oo 

u~+l = L ~Jfj-(u~), i E Z, n EN (5.11) 
j=-oo 
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admits a fixed point u_. = { u~. }iEZ E xt+. with u~. = u~+,.L' Vi E z. 
By the definitions off±, it is easy to see that the recruitment function f is bounded 

above and below by f±, that is, 

and 0 < u~. :::; u~. :::; b. Moreover, it follows from Theorem 5.2.1, (5.10) and (5.11) 

admit spreading speeds c:t(±1) and c:_(±1) (in the directions of ( = ±1), respectively. 

By ff(O) > 1, Vi E Z and the periodicity of fi , there exists 60 E (0, min u~.], 
jE{1,2,.·· ,L} 

such that fi±(u) = fi(u), Vi E Z, u E [0, <5o], and hence, f/'(0) = f i-'(0) = ff(O ). 

Since c:t(±1) and c:_(±1) are determined by the linearization systems of (5.10) and 

(5.11) at u = 0, respectively, we then obtain c+ (1) = c:_ (1) and c+ ( -1) = c:_ ( -1). 

Let c*(1) := c:t(1) = c:_(1) and c*(-1) := c:t(-1) = c:_ (- 1). By Theorem 5.2.1, c*(1) 

and c* ( -1) are actually defined in (5.8) and (5.9), respectively. 

We restrict Q on XL as Q as we did in section 2 and consider that Q is an operator 

from R~ to IR~. It then follows that 

and hence, Q: [u_., u+.] ---+ [u_. , u+•l· By the Brower fixed point theorem, Q admits 

a fixed point /3* in [u_., u+•l ~ JRL, and hence, Q admits a fixed point {3* in Xf with 

u~. :::; f3*i :::; u~. , Vi E Z. 

Instead of hypothesis (H9), we assume that 

(H9)' There exists a > 1, 6* > 0, a > 0 such that f i(u) ~ ff (O)u- auu, Vi E Z,. 

u E [0, 6*] ~ [0, min u~.]. 
jE{1,2,. .. ,L} 

We then have the following result on spreading speeds for (5.3). 

Theorem 5.3.1 Let (H7}, (HB}, (H9}', (H10} and (H11} hold. Then the following 

statements are valid: 

(i) For any uo = { u~hEz E [0, u+.] with ub = 0 for i E Z and i ~ K for some 

K E Z, the solution of (5.3} satisfies 

lim u~ = 0, Vc > c*(1), 
n-+ooti~cn 
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and for any uo = {ut}iEZ E [0, u+•l \ {0}, the solution of (5.3) satisfies 

lim sup (u~- u~ .. ) ~ 0 ~ liminf (u~- u~.), Vc < c*(1). 
n-..oo,i~cn n---too,t~cn 

(ii) For any uo = { ubhEz E [0, u+.] with ub = 0 fori E Z and i ~ K for some 

K E Z, the solution of (5.3) satisfies 

lim u~ = 0, Vc > c*( -1), 
n--+oo,i~-cn 

and for any uo = { ub}iEz E [0, u+•l \ {0}, the solution of (5.3) satisfies 

lim sup (u~- u~.) ~ 0 ~ lim.inf (u~- u~.), Vc < c*( -1). 
n-~ooo,i~-cn n--+00,1.~-cn 

Proof For convenience, we define 

+oo +oo 

(Q+(cp))i = 2::: pij ff(crJ), (Q-(cp))i = L pij fj-( cr}), i E z, 
j=-oo j=-oo 

for any cp E X with cpi E [0, u~.], Vi E Z. Then Q+ and Q- are monotone on X and 

Q-(cp) ~ Q(cp) ~ Q+(cp), for any cp E X with cpi E [0, u~.]. Moreover, c'"(±1) are 

spreading speeds for Un+l = Q+(un) and Un+l = Q-(un) (i.e., (5.10) and (5.11)), in 

the directions of { = 1 and { = -1, respectively. 

We only show that statement (i) is valid since the proof of statement (ii) is similar. 

For any uo = { ub}iEZ E [0, u+.] with ub = 0 for i E Z and i 2 K for some K E Z, let 

By the comparison principle, we have 

For any c > c*(1), Theorem 5.2.1 implies that lim u+i = 0 and hence lim ui = 
n-+oo,t~cn n ' ' n-+oo,t~cn n 

0. 

For any uo = {ubhEz E [O,u+.] \ {0}, define vo = {v~hEz with v~ = min{ub,u~.}, 

ViE Z . Then v0 E [0, u_.J \ {0}. Let 

u~ = (Q-t(vo), Un = Qn(uo), u~ = (Q+t(uo), Vn 2 0. 
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Since v0 ~ u0, it follows from the comparison principle that 

For any e < e*(1), Theorem 5.2.1 implies that 

Thus, for any e < e•(1), we have 

limi.nf (u~- u~.) ~ limi.nf (u~i- u~.) = 0, 
n-+oo,~~cn n--+oo,l$:cn 

lim sup (u~- u~.) ~ lim sup (u~i- u~.) = 0. 
n-+oo,i~cn n--+oo,i$cn 

This completes the proof of statement (i). • 

Now we consider spatially periodic traveling waves in the direction ( = -1. Let 

e E JR. and a> 0 be given, and define 

Xc = { i + en : i E Z, n E N} 

and Fc,a as the set of all functions from Z x Xc to [0, a]. Let U E Fc,b· By Definition 

5.2.1, we say that U(i, i +en) is a spatially periodic traveling wave solution of (5.3) 

with wave speed e if {u~}ieZ = {U(i,i+en)}iez, Vn EN, satisfies (5.3) and U(i, s) = 
U(i + L,s), ViE Z,s E Xc. 

Note that one should take Xc = { i- en : i E Z, n E N} and replace U(i, i +en) 

with U(i, i- en) in order to obtain spatially periodic traveling waves in the direction 

( = 1. 

Theorem 5.3.2 Let (H1}, (HB}, (H9}', (H10} and (H11} hold. Then the following 

statements are valid: 

(i} For any e < e•( -1), (5.3} has no spatially periodic traveling wave U(i, i +en) 

with U E Fe,'-'+• \ {0}, U(i, -oo) = 0, Vi E Z, and U(i, i +en) ¢= 0 for (i, n) E 

ZxN. 



102 

{ii} For any c > c*( -1), {5.3} has a spatially periodic traveling wave U(i, i +en) 

such that U E Fc,u+• \ {0}, U(i, -oo) = 0, and for any i E Z, 

min {u::_.} ~ liminfU(i,i+cn) ~ limsupU(i,i+en) ~ max{u{.}. 
l~J~L n->oo n->oo l~J~L 

{iii} For ( = 1, similar results hold for spatially periodic traveling waves U(i, i- en) 

with U(i, oo) = 0. 

Proof For any c E IR, let u~ = U(i, i +en), ViE Z, n EN. Then (5.3) becomes 

+oo 

U(i, i + c +en)= L ~ifi(U(j,j +en)). 
j=-oo 

Let s = i + c +en. This equation is written as 

U(i, s) = 

k = i- j 

+oo 
E Piifi(U(j,j +s-i-c)) 

j =-oo 
-oo 
E ~.i-k!i-k(U(i- k, s- k - c)) 

k=oo 
00 

E Pi,i-i fi -i(U(i- j, s- j- c)). 
j=-oo 

Thus, we only need to consider the following wave profile equation 
\ 

00 

U(i, s) = L Pi,i-ifi-i(U(i- j, s- j- c)) . 
j=-oo 

For any U E C(Z X Xc, [0, b]), define 

00 

(5.12) 

T(U)(i, s) = L Pi,i-jfi-j(U(i- j, s- j- c)), ViE Z, s E Xc. (5.13) 
j=-oo 

Similarly, we definer+ and r- as in (5.13) with f replaced by f+ and f-, respectively. 

It then follows that r± are nondecreasing and that 

r-(U)(i, s) ~ T(U)(i, s) ~ r+(U)(i, s), VUE C(Z x Xc, [0, b]), i E Z, s E Xc. 

In the following, we only prove (i) and (ii) (i.e., in the case where ( = -1). The 

proof for ( = 1 is similar. 
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Assume, by contradiction, that for some Co < c* ( -1), (5.3) has a spatially periodic 

traveling wave U(i,i+eon) with U E C(ZxXco, [O,u+.])\{0}, U(i, -oo) = 0, ViE Z, 

and U(i, i +eon)¢ 0 for (i, n) E Z x N. Let u~ = U(i, i +eon). Fix two real numbers 

c1 and c2 such that Co< c1 < c2 < c*(-1). Since U(i,i + c0n) ¢ 0, there exist n0 

and io, such that U(io, io + cono) f; 0, i.e., u~0 f; 0. Regarding Uno as a new initial 

value, we then see from Theorem 5.3.1 (ii) that lim_inf (u~- u~.) 2: 0, and hence, 
n~oo,t.~-c2n 

lim inf u~ > 0. By letting i = l-c1 n J, it follows that 
n-+oo,t.~-c2n 

lim inf u~-qnJ =lim inf U( l-c1nJ, eon+ l-ctnJ) > 0. 
n-+oo n-+oo 

Since lim U(i , s) = 0 uniformly fori E Z, we have 
S--+-00 

liminfU(l-ctnJ,con+ l-clnj) = 0. 
n-+oo 

A contradiction. 

Let c > c* ( -1) be given. It follows that there exists J..Lt E (0, t.-) such that 

~ = c. Without loss of generality, suppose that /-Ll is the smallest J-L such that 
1.1.1 

In >.-~-' 1 = c. Thus, .L,1 = ecJJ1 • Let { 7/J~ hez be the nonnegative eigenvector of L-~.~.1 i-'1 ,.. 

corresponding to >._~.~. 1 with 7/J! = '1/J!+L, Vi E Z. Then 

00 

(L-~.~.1 ('1/J.))i = L PiJfj(0)1j}.e-JJt(i-J) = eci-'17/J!, ViE Z. 
j=-oo 

Define ¢+ on Z x Xc as 

Then for any i E Z, s E Xc, 

00 

_T+(¢+)(i, s) L ~.i-if/-i(¢+(i- j, s- j- c)) 
j=- oo 

00 .. 

< L Pi,i-Jf/-i(u~;) 
j=-oo 

00 . 

L ~Jff(u~.) 
j=- oo 

= i u+•· 
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Since J;(u) ~ fl(O)u, VuE [0, b], i E Z, we have 

J;+(u) = max j;(v) ~ max J;(o)v = J;(o)u, VuE [0, b], i E Z, 
vE[O,u] vE[O,u] 

and hence, 

00 

r+(¢+)(i, s) 2: P;.,i-jf/-j(<t>+(i- j, s- j- c)) 
j=-oo 

00 

for any i E Z, s E Xc. Thus, 

< 2: P;.,i-jfl-j(O)(¢+(i- j, s- j- c)) 
j=-oo 

00 

< " P: ._ ·f' ·(O)·'·i-jeJl.l(s-j-c) L., t,t J 1-J 'I'* 
j=-oo 

= e!Jl (s-c) eCJ1.17f;! 

= .t,ieP.ls 
'-~'• , 
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Let c > 0 be sufficiently small such that 0 < c ~ p,1(a -1), /-L£: := p,1 +c E (0, b.- ), 

and c€ := In~~"' E (c*( -1), c). Then ).._Jl.• = ec•Jl.• is the principle eigenvalue of L_Jl.• 

with a nonnegative eigenvector {7f;!€hEz with 7f;!€ = 7f;!tL, ViE Z, that is, 

00 

(L-p.,(7f;.€)); = L P;jfj(O) · 7f;1€ · e-p.,(i-j) = ec•J1.•(7f;!€), Vi E Z. 
j=- oo 

Define </>- on Z X Xc as 

We choose suitable { 7f;! }iEZ and { 7f;!€ h Ez such that 

and 

7f;!€ · JI(O) + a(7f;!)'" ~ e(c-c, )Jl.•7f;!€ · JI(O), ViE Z. 

Then </>-(i, s) E [0, o*] and </>-(i, s) ~ ¢+(i, s), ViE Z, s E Xc. We claim that 

(</>-(i,s))u ~ [7f;!teP.•s, ViE Z, s E Xc· 
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If ¢-(i, s) = 0, it is obvious. If ¢- (i, s) > 0, then s < 0. Since 0 < c ~ J.L1(a- 1), we 

have cs + J.L1S 2: J.LWS. Thus, 

and hence, (¢-(i,s))u ~ (1/l!)ue~'•8 , ViE Z, s E Xc· 

Clearly, r -(¢-)(i, s) 2: 0, ViE Z, s E Xc. Moreover, 

> 

> 

00 

2:: Pi,i-ifi-:)¢>-(i- j, s- j- c)) 
i=-oo 

00 

2:: P;,i-i (Jf_i(O)¢>-(i- j, s - j - c)- a(¢>-(i- j, s- c - j)Y) 
i=-oo 

00 00 

"" F. . ·f! . (0) (·'·i-j el't(s-j-c) _ .J,i-j e~'•(s-j-c)) _ "" F. . ·a(·'·i-j)u e~'•(s-j-c) w t,t-1 t-1 '~'• '~'•e w •,•-1 '~'• 
j =-oo i=-oo 

00 

= el'l(s- c) "" F.._ ·f! .(O)·'·i-ie-l'li w '·' 1 •-1 '~'• 
j=-oo 

00 

-e~'•(s-c) 2:: Pi,i-j (ff_j (0)1/J!;i e-l'<i +a( '1/J!-i)u e-l'<i) 
j =-oo 
00 00 

> e~'l(s-c) "" . F. · J'(O)·'.i e-~'t(i-i) - e~'•<s-c) "" F. ._ ·f! · (O)·'·i-ie-~'<i . e<c-c.ll'• w t,1 1 '~'* w '·' 1 t-1 '~'•e 
j=-oo j=-oo 

00 

= el't(s-c) . ecJ1t ·1/J! - e~'•(s-c) . e<c-c.)l'• 2:: pij fj(O)'I/J!.e . e-l'.(i-j) 
j=-oo 

for any i E Z, s E Xc. Thus, r-(¢-)(i, s) 2: ¢-(i, s), ViE Z, s E X c. 

Fix some J.L E (0, J.L1) and define 

and 

XI':= {¢1¢: Z x Xc-+ IR, sup maxl:$i:$L 1¢(i, s)le-~'8 < oo, 
sEXc 

¢(i, s) = ¢(i + L, s), V(i, s) E Z x Xc} 

It follows that (X~', 11·11~') is a Banach space. Then¢+,¢- E Xw Let 

Y :={¢EX~': ¢-(i, s) ~ ¢(i, s) ~ ¢+(i, s), ViE Z, s E Xc}· 



It is easy to see that Y is nonempty, closed, convex in Xw For any¢ E Y, 

Moreover, we have 

00 

T(¢)(i + L, s) = 2::: Pi+L,i+L-i f i+L-i(¢(i + L- j, s- j - c)) 
j =-oo 

00 

L: Pi,i-i/i-i(¢(i- j, s- j- c)) 
j=-oo 

T(¢)(i, s) 

for any i E Z and s E X c, and 

0 < sup max IT(¢)(i, s)le-~'8 
sEXc l~•~L 

00 

sup m~ L: ~.i-ifi-i(¢(i- j, s- j- c))e-~'8 
sEXc l~•~L j=-oo 

00 
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< sup m~ L: ~.i-ifi:._i (¢+(i- j, s- j- c))e-~'8 
sEXcl~•~Lj=-oo (5.14) 
SUp m~ r+(¢+)(i, S)e-!JS 
sEXc l~•~L 

< sup max ¢+(i s)e-~'8 
sEXc l~i~L ' 

Therefore, for any¢ E Y, T(¢) E Y, and hence, T(Y) ~ Y . 

For any r.p, '1/J E Y, we have 

IIT(r.p)- T('I/J)IIIJ 

= sup max IT(r.p)(i, s)- T('I/J)(i, s)ie-~'8 
sEXc l~•~L 

00 

= sup m~ L: Pi,i-i[fi-i (r.p(i - j, s- j- c))- f i-i('l/J(i- j, s- j- c))] e-~'s 
sEXc l~•~L j=-oo 

A 00 

:::; L sup 1~i8fr,. L: Pi,i-ii'P(i- j, s- j- c))- '1/J(i - j, s- j- c))le-~'8 
sEXc - - J =-oo 

A 00 

:::; L L: Pi,i-j sup max lr.p(i - j , s - j - c))~ '1/J(i- j , s- j - c))le- !J(s-j-c)e-I'U+c) 
j=-oo sEXc l~•~L 

A 00 

= L L: ~.i-iii'P- '1/JIII'e- !J(j+c) 
j=- oo 
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00 

for some L > 0 since I: ~.i-ie-P.i < oo. Thus, T : Y -t Y is continuous. 
i=-oo 

By (5.14), it follows that {T(¢>) : ¢> E Y} is uniformly bounded by 0 and ll¢+11w 

Since both Z and X c consist of countable elements, it is obvious that {T(¢) : ¢> E Y} 

is equicontinuous on any bounded subset of Z x Xc. It follows from the Arzela-Ascoli 

theorem that for any given sequence { 1/Jn}n~l in T(Y), there exist nk -t oo and 

1/; : Z x Xc -t IR such that 

uniformly for (i, s) in any bounded subset of Z x X c. Since 

we have 

Moreover, by the periodicity of 1/Jnk with respect to L, we also have 1/;(i, s) = 1/;(i+L, s ), 

'Vi E Z, s E Xc. The boundedness of sup max 11/J(i, s)le- p.s is obvious. Therefore, 
sEXc l~i~L 

1/; E Y. Note that 
lim (¢+(i, s)- ¢>-(i, s))e-p.s = 0, 

s-++oo 

lim (¢+(i, s)- ¢>-(i, s))e-p.s = 0, 
8--+-c:x:> 

uniformly for i E {1, 2, .. · , L }. Therefore, for any c > 0, there exists M > 0 such 

that 

and hence, 

Since lim 11/Jnk(i, s) - 1/;(i, s)le-p.s = 0 uniformly for 1 ~ i ~ L and s E Xc with 
k-+oo 

Is I ~ M, there exists an integer N > 0 such that 
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It then follows that 

and hence, lim J/Jnk = 'lj; in Xw Thus, T(Y) is precompact in Xw 
k-+oo 

Thus, by the Schauder fixed point theorem, there exists U E Y such that U = 

T(U), and hence, U(i, s) is a traveling wave of (5.3). Since 

¢-(i, s) ~ U(i, s) ~ ¢+(i, s), ViE Z , s E Xc, 

we have U(i, -oo) = 0 and U E C(Z x Xc, [0, u+,.]) \ {0}. 

Let u~ = U(i, i +en), ViE Z, n EN. Fix c < c*( -1) . By Theorem 5.3.1, we have 

lim.inf_ (u~- u~,.);::: 0 and lim sup (u~- u~ .. ) ~ 0. 
n--+OO,l~-cn n-+oo,i~-Cn 

Then for sufficiently small c > 0, we have 

liminf u~;::: min{u~ .. }-c->0 and limsup u~ ~ m!lJC{u~,.}+ c , 
n-+oo,i~-en l~j~L n-+oo,i~-en l~J~L 

that is, 

lim inf U(i, i +en) ~ min { u~.}- c and lim sup U(i , i +en) ~ max { u~. } +c. 
n-+oo,i~-en l~j~L n--+oo,i~-en l~J~L 

Note that for any given i E Z, when n is sufficiently large, i ;::: -en. Thus, 

liminfU(i,i+en)~ min{u~.}-c and limsupU(i,i+en)~ max{u~.}+ c . 
n--+oo l~J~L n--+oo l~J~L 

Letting c -t 0, we obtain 

m.in {u~.} ~ liminfU(i,i+en) ~ limsupU(i,i+en) ~ max{u~ .. }. 
l~J~L n-+oo n--+oo l~J~L 

This completes the proof. • 

As a remark of this section, we point out that the domains for all spatially periodic 

traveling wave profiles with speed c > c*(~) are not the same, and hence, it is not easy 

to use these wave profiles to approximate the possible spatially periodic traveling wave 

profile with c = c*(~. Thus, we are not able to prove the existence of the spatially 

periodic traveling wave with speed c = c*(~ at this moment. 



109 

5.4 An example 

In this section, we present an example of (5.3) with a specific recruitment function 

and dispersal kernel to illustrate our main analytic results. 

Consider the Ricker type recruitment function 

fi(u) = auer(i)-qu, ViE Z, u E R, 

where q > 0, r is an £-periodic function defined on Z for some L E N, and aer(i) > 1, 

Vi E Z. Inspired by the exponentially damping kernel function for a continuous 

habitat (see [40]), we choose ~j = ~e-9 with d > 0, for any i,j E Z. Then 
e<l+l 

(5.3) becomes 
+oo 1 . L e d - 1 li::il . ( .) i u' = --e- d au3 er J -qun 

n+l 1 + 1 n ' . ed 
J=-oo 

i E Z, n E Z. (5.15) 

Clearly, for any i E Z, f i E C1 (R, R), f i(O) = 0, J;(o) = aer(i) > 1, 

fi(u) = auer(i)-qu = auer(i+L)- qu = f i+L(u), VuE R, 

and f i(u)ju = aer(i)-qu is strictly decreasing in u E R Moreover, for any i E Z, 

max fi(u) = fi(l) = !!er(i)-l . Let 
uE[O,+ oo) . q q 

A 1 
b = {bhez EX with b = maxfi(-) , 

iEZ q 

and 

L = max lf'(u)i = max aer(i)-qul1- qu j. 
l~i~L,uE(O,b] ' l~i~L,uE [O,b] 

Then bE XL, f~ ([O , b]) ~ [0, b], Vi E Z and 

lfi(ui)- fi(u2)1 :::; i!u1- u2 !, ViE Z, u1 , u2 E [0, b]. 
00 

It is easy to see that Pij = Pi+L,J+L, Vi,j E Z and I: Pij = 1. Moreover, for 
j=- oo 

j=-oo 
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00 

Thus, L ~ie-~J.(i-i) is uniformly bounded for J1- E [0, ~), i E Z. 
j=-oo 

For a = 2 and a satisfies 0 < ae:<iJ :::; *, Vi E Z, we have 

fi(u) ~ J:(o)u- auu, ViE Z, u E [0, b]. 

Define L0 : JRL ---+ JRL as 

+oo 

where A= (aim)LxL with aim = L ~.kL+mf:n(o), fori, mE {1, 2, · · · , L }, and 
k=-oo 

r(Lo) = max{J.AJ, .A is an eigenvalue of A}. 

In this case, we have 
1 00 

( ) ea - 1 ~ -fi-(kL+m)! 
aim = aer m -1-- ~ e d 

ea + 1 k=-oo 

( 

( ) e~ - 1 ( .::.i.±!!! i-m-L) aer m e d + e d 

= (e~ + 1)(1- e-~) ' 
( ) ea - 1 ( -i±m-L ~) aer m e d + e d 

(e~ + 1)(1- e-~) ' 

if i ~ m, 

if i < m, 

fori,mE {1,2, ... ,L}. 

As long as r(L0 ) > 1, the assumptions (H7), (H8), (H9)', (H10) and (Hll) hold, 

and hence, Theorems 5.3.1 and 5.3.2 hold for system (5.15). The spreading speed in 

the direction of ( = -1 is 
*( ) . f ln ..\_JJ. c -1 = m --1 , 

JJ.E(O,(i) J.L 

where ..\_JJ. is the principle eigenvalue of L_JJ. : JRL ---+ JRL: 

L_JJ.(u) = A_JJ.u, VuE IRL, 

where A_JJ. = (a-:;::)LxL with 

~ ea -1 fi-(kL+mlf r(m) -JJ.(i-(kL+m)) 
LJ a-r--e d e e 

k=-oo e<l+l 
1 

a ea - 1 er(m)-JJ.(i-m) 
e~ + 1 

1 

a ea - 1 er(m)-JJ.(i-m) 
e~ + 1 

if i ~ m, 

if i < m, 



for i,m E {1,2,··· ,L}. 

The spreading speed in the direction of [ = 1 can be similarly defined as 

*(1)- . f ln..\~-' c - m --, 
J.<E{O,~) J.L 

where ..\~-' is the principle eigenvalue of L~-< : JRL ---+ JRL: 

where Al-i = (afm)LxL with 

al!' = t m 

I 

a e<I - 1 er(m)+J.<{i-m) 
1 

e<I + 1 
1 

a e<I - 1 er{m)+J.<{i-m) 
I 

ea + 1 

fori,mE{1,2,··· ,L}. 

e¥ e~-J.LL 

1- e(~-<L-~) + 1 - e(-~-<L-~) 
em~-L+J.<L eidm 

------.,L:-+ L 
1- e(~-<L-<i) 1- e(-~-<L-<i) 

if i ~ m, 

if i < m, 
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Since Pii = Pji, Vi,j E Z, it follows from Lemma 5.2.3 that the spreading speeds 

in the directions of [ = 1 and ( = -1 are the same, i.e., c*(1) = c*(-1) . Indeed, it is 

easy to see that A_~-' = BC and A~-' = BT C, where 

I 

ea - 1 -~J(i-m) a-1--e 
e<I + 1 

1 

ea - 1 -J.<{i-m) a-1--e 
ea + 1 

m-i e-d-

fori mE {1 2 · · · L} and C = diag{er(l) er(2) · ·. er(L)} , , ' , , ' , , . 
In particular, we choose 

nL - L 1 ~ i < nL, 

nL ~ i < nL + L2, 

if i ~ m, 

if i < m, 

for any i E Z, where n E N, L1, L2 E Nand L1 + L2 = L . This indicates that each 

period part of the whole periodic habitat is composed of a favorable habitat ( corre­

sponding to max{ r 1 , r 2}) and an unfavorable habitat (corresponding to min { r1. r 2}). 
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Figure 5.1: A solution {u~}iEz of (5.15) when n = 1, 5, 10, 20. 

Let a = 1.2, q = 1, d = 1, L = 2, L1 = L2 = 1, r 1 = 0, r2 = 1. The:r:t we have 

A= [ 1.979266244 0.4718686397] 

1.282671949 0.7281313600 

and r(L0 ) = 2.351990990 > 1. Moreover, 

112 

1.2e!!(e-1)((~~~~;2 + 1 _;~;+2~<) l 
1.2(e- 1)(1 e \~< 2 + 1.::2~~" ) 

(e + 1) 

and 

c*(1) = c*( -1) ~ 2.069595656. 

Choosing the initial function u1 as 

i- { 1, u1-
0, 

i = 0, 

Vi =I 01 

we can draw the graph for the solution {u~}iEZ of (5.15) when n = 1, 5, 10, 20, which 

is shown in Figure 5.1. 



Chapter 6 

Bistable Waves for A Class of 

Reaction-Diffusion Systems 

6.1 Introduction 

Classic reaction-diffusion models usually take the form 

{ 

~~ = D1 ~
2

~ + F(u, v), 
ov afv 
8t = D 2 ox2 + G(u, v), 

(6.1) 

where u and v are densities of two populations (or subpopulations of a population, 

or two particles) at location x and timet, D 1 and D2 are positive diffusion constants, 

F(u, v) and G(u, v) are reaction functions. This model has been generally applied 

to describe the dispersal dynamics of populations, disease transmission dynamics, 

chemical reactions, and so on ([12, 46, 62, 66]), and it seems to work well in most 

cases. 

However, it has been recently noticed that in some situations during the dispersal 

process, one of the reacting populations diffuses so slowly in the habitat, compared 

with the other, that its diffusion can be almost neglected. This phenomenon is very 

interesting in the study of population dispersal and it naturally suggests that only 

one of the diffusion constants be positive while the other be zero, when we describe 

113 
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the dispersal dynamics in reaction-diffusion models. To model fecally-orally trans~ 

mitted diseases such as cholera, typhoid fever, infections hepatitis, polyometitis etc, 

Capasso and Maddalena [12] assumed that the bacteria diffuse randomly in the habi­

tat, while the diffusion of the human population can be neglected with respect to that 

of bacteria. As a result, they studied the following model 

{ 

8u1(x, t) 82u1(x, t) 
at = d 8x2 - auul(x, t) + a12u2(x, t), 

8u2(x, t) 
ot = -a22u2(x, t) + g(u1(x, t)), 

(6.2) 

where u1 and u2 denote the spatial densities of the infectious agent and infective 

human population, respectively; d > 0 is the diffusion constant of bacteria; 1/a11 is 

the mean lifetime of the agent in the environment; 1/ a22 is the mean infectious period 

of the human infectives; a12 is the multiplicative factor of the infectious agent due 

to the human population; g( u1) is the infection rate of the human population under 

the assumption that the total susceptible human population is constant during the 

evolution of the epidemic. 

Other examples come from reaction-diffusion models for single species. Recently, 

some authors assumed that only part of the population is migrating and the other part 

is sedentary. Cook [65] studied a Verhulst type population model with a sedentary 

and a migrating subpopulation, assuming that there is a joint carrying capacity for 

both subpopulations and that the offspring of both groups forms one pool which is 

then distributed: to both subpopulations at constant proportions: 

{ 

Vt = rv(u + v)(1 - (u + v)j K) + Dvxx• 

Wt = rw(u + v)(1- (u + v)j K). 
(6.3) 

Lewis and Schmitz [48] studied another Verhulst type model in which it was assumed 

that individuals switch between mobile and stationary states during their lifetime 

and that the migrants have a positive mortality while the sedentary subpopulation 

reproduces and is subject to a finite carrying capacity: 

{ 

Vt = Db.v- J.LV- 12v + 11w, 

Wt = f(w)- /1W + /2V, 

(6.4) 
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where f(w) = rw(1- wj K). Hadeler and Lewis [32] proposed a Fisher type equation 

with a quiescent state: 

{ 

Vt = D~v + f(v)- 12v + !IW, 

Wt = /2V- /IW, 
(6.5) 

where individuals in state v move and interact as in the standard Fisher's equation 

while those in state w are quiescent. Such behavior is typical for invertebrates living 

in small ponds in arid climates which dry up and reappear subject to rainfall [32]. 

Motivated by (6.2)-(6.5) and other recent works (see, e.g., [14, 31, 79, 92, 94]), we 

consider the following general reaction-diffusion system 

{ 

au a2u gt : D ax2 + F(u, v), 

at - G(u, v), 
(6.6) 

where u( t, x) and v( t, x) are densities of the migrating population and sedentary 

population at the location x and time t, respectively; D > 0 is the diffusion constant 

of the migrating population, F(u, v) and G(u, v) are reaction functions. 

Systems (6.2)-(6.5) have been investigated extensively and many results have been 

established in the monostable case, where the corresponding reaction system admits 

zero equilibrium and a stable nontrivial equilibrium. The stability of the trivial and 

nontrivial equilibria for (6.2) was studied in [12]; the existence of monotone traveling 

waves and the minimal wave speed for (6.2) were established in [100], and it was 

shown in [78] that this minimal wave speed is also the spreading speed for solutions 

with initial functions having compact supports. The minimal speed for monotone 

traveling waves for (6.4) was determined in [48] from the linearization at the zero 

equilibrium, under the assumption that the emigration rate is less than the intrinsic 

growth rate for the sedentary class; the authors of [32] studied the spreading speed, 

minimal wave speed, and the persistence of the population in different domains for 

(6.4); the spreading speed and traveling waves of (6.4) were also established in [83] . 

System (6.5) was briefly discussed in [32] and it was shown in [94] that the spreading 

speed coincides with the minimal wave speed for monotone traveling waves. 
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In epidemiology, large outbreaks usually tend to a nontrivial endemic state, while 

small outbreaks tend to extinction. This may explain why, even though we are ex­

posed to many infections, only some diseases have evolved into an endemic state [14]. 

Mathematically, this leads to the study of epidemic models with bistable nonlieari­

ties. There are some results for (6.2) in the bistable case: a saddle point structure 

was obtained under Neumann boundary conditions in [13] and under Dirchlet bound­

ary conditions in [39]; a complete analysis of the steady states was obtained under 

Dirichlet boundary conditions in [14]; the existence, uniqueness and global exponen­

tial stability with phase shift of bistable traveling waves were established in [92]. 

In this chapter, we are interested in the existence, uniqueness and global attrac­

tivity of traveling waves of the general system (6.6) with bistable nonlinearity. The 

organization of this chapter is as follows. In section 6.2, we establish the existence of 

bistable traveling waves for (6.6) by the shooting method (see, e.g., [79]). In section 

6.3, we obtain the global attractivity with phase shift and uniqueness (up to transla­

tion) of traveling waves via the dynamical system approach (see [92, 97]) . In section 

6.4, we present some specific examples of (6.6) to illustrate applicability of our main 

results. 

6.2 Existence of bistable waves 

Throughout this chapter, we make the following assumptions to obtain the coopera­

tive and bistable nonlinearity for system (6.6). 

(H12) There exist three points E_ = (0, 0), E0 = ( a1 , bi) and E+ 

0 < a1 < a2 and 0 < b1 < b2 such that 

(i) F, G E C1 (JR~, IR), Fv(u, v) ~ 0, G,.(u, v) ~ 0 and Gv(u, v) < 0 on JR~ , and 

G,.(O, 0) > 0. 

(ii) E_, E0 and E+ are only zeros of f(u, v) := (F(u, v) , G(u, v)) in the order 

interval [E_, E+l· 
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(iii) All eigenvalues of the Jacobian matrices D f(E_) and D f(E+) have nega­

tive real parts; and D f(E0 ) has an eigenvalue with positive real part and 

another with negative real part. 

(iv) Fv(u, v) > 0 for (u, v) E [0, a2] x [0, b2]. 

Consider the spatially homogeneous system associated with (6.6) 

{ 
u'(t) = F(u, v), 

v'(t) = G(u, v). 
(6.7) 

By the assumption (H12), (6.7) has only three equilibria E_, E0 and E+ in [E_, E+], 

E_ and E+ are stable, E0 is a saddle. In this paper, we will study the existence of 

bistable waves of (6.6), i.e., traveling wave solutions connecting E_ and E+. 

LetT = x + ct and (u(t, x), v(t, x)) = (U(x + ct), V(x + ct)) be a traveling wave 

solution of (6.6) . Then the wave front profile (U(T), V(T)) satisfies 

{ 
cU: : DU" + F(U, V), 
cV - G(U, V), 

(6.8) 

where 1 denotes fr. Since we are interested in traveling waves connecting E_ and E+, 

we impose the following asymptotic boundary conditions on (6.8) 

{ 
U(-oo) = 0, V(-oo) = 0, U'(-oo) = 0, 

U(+oo) = a2 , V(+oo) = b2 , U'(+oo) = 0. 

In the case where c = 0, (6.8) becomes 

which is equivalent to 

{ 
DU" + F(U, V) = 0, 

G(U, V) = 0, 

{ 

U' = W, 
W' = _ F(U, V*(U)) 

D ' 

(6.9) 

(6.10) 

(6.11) 

where V*(U) satisfies G(U, V*(U)) = 0. By (H12) and the implicit function theorem, 

it is not difficult to see that V* (U) is continuously differentiable on [0, oo). Since 
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E_ and E+ are stable for (6.7), we can easily see that (0, 0) and (a2 , 0) are saddles 

of (6.11). Then a traveling wave of (6.6) connecting E_ and E+ with wave speed 

c = 0 corresponds to a heteroclinic orbit of (6.11) connecting (0, 0) and (a2 , 0). The 

solutions of (6.11) through (0, 0) can be expressed as 

W2 11u T =-D 
0 

F(t, V*(t))dt. 

Thus, (6.11) admits a heteroclinic orbit connecting (0, 0) and (a2 , 0) if and only if 

f0a
2 F(U, V*(U))dU = 0. 

In what follows, we mainly consider the case where c > 0. It is easy to see that 

(6.8)-(6.9) is equivalent to 

U'=W, 

V'= G(U,V) 

W' = cvtf- ;(U, V) 
D , 

(6.12) 

with boundary conditions 

U( -oo) = 0, V( -oo) = 0, W( -oo) = 0, (6.13) 

U(+oo) = a2, V(+oo) = b2 , W(+oo) = 0. (6.14) 

Clearly, (6.12) has three equilibria (E_, 0), (Eo, 0) and (E+, 0). Thus, a traveling 

wave solution of (6.6) connecting E_ and E+ with positive wave speed corresponds 

to a solution of (6.12) connecting (E_, 0) and (E+, 0), i.e., a solution of (6.12)-(6.14). 

Lemma 6.2.1 For any c > 0, the Jacobian matrix of (6.12} at (E_, 0) has one 

positive eigenvalue >.(c) and two eigenvalues with negative real parts. 

P roof The Jacobian matrix of (6.12) at (E_, 0) is 

Jo = [ Gu~,O) 
_ Fu(O,O) 

D 

0 
Gv(O,O) 

c 
_Fv(O,O) 

D 
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The characteristic equation of J0 is 

(A_ Gv(O, 0)) (A2 _ cA Fu(O, 0) ) Gu(O, O)Fv(O, 0) = O 
c D + D + De . 

Consider j(A, m). = (A- Gv~o,o)) (A2 - ~ + F,.~,o)) + m. Then we have 

Since D f ( E_) is stable, it follows that 

Fu(O, 0) + Gv(O, 0) < 0 and Fu(O, O)Gv(O, 0) - Fv(O, O)Gu(O, 0) > 0. 

Then it is easy to see that j(A, F,.(o,ob~v(o,o)) has three solutions 0 , A1 and A2 with 

A1 < 0 < A2 , and hence, j(A, G,.(o,~~v(O,o) ) has one positive solution and two solutions 

with negative real parts. Thus, J0 has one positive eigenvalue A( c) and two eigenvalues 

with negative real parts. • 

By Lemma 6. 2.1, ( 6.12) has a one-dimensional unstable manifold corresponding 

to A( c) at (E_, 0). Let X = (X1 , X2 , X3 ) be an eigenvector of J0 corresponding to 

A( c). Then there is a nonconstant solution of (6.12)-(6.13), which tends to (E_, 0) 

as T ~ -oo and whose tangent vector at T = -oo is the eigenvector X or -X. It 

follows from the equation J0 X = A(c)X that 

Without loss of generality, we can assume that X = (1, c.x(3:5~~lo.o).' A(c)). Since 

Gu(O, 0) > 0, Gv(O, 0) < 0, A( c) > 0, c > 0, we have X i> 0, i = 1, 2, 3. 

In the rest of this section, we assume that (U, V, W) is a solution of (6.12)-(6.13) 

with the tangen.t vector X at T = -oo. By the above analysis, we can easily obtain 

the following result. 
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Lemma 6.2.2 Let (U, V, W) be a solution of (6.12)-(6.13). Then near T = -oo, 

(U, V, W) satisfies U > 0, V > 0, W = U' > 0, and V' > 0. 

Definition 6 .2 .1 Let (U, V, W) be a solution of (6.12)-(6.13). Let To= To(c) be the 

first zero of U' if it exists and u = U(To) (u may be +oo). 

Since U > 0 a.nd U' > 0 on ( -oo, r0 ), we can express V and Was functions of U 

for U E (0, u). Let V(U) = V(T(U)) and W(U) = W(T(U)) for U E (0, u) . Then V 

and W satisfy the following equations 

V' = dV = G(U, V) 
dU cW ' 

W' = dW = cW- F(U, V) 
dU DW ' 

for U E (0, u) with the initial conditions 

V(O) = 0, W(O) = 0. 

(6.15) 

(6.16) 

(6.17) 

Lemma 6.2.3 Let (U, V, W) be a solution of (6.12)-(6.13). Then V'(T) > 0 for all 

T E ( -oo, To). . 

Proof Since V'(T) > 0 near T = -oo and U'(T) > 0 for T E ( -oo, To) , we have 

V'(U) > 0, and hence, G(U, V(U)) > 0 for all U E (0, u0) for some u0 E (0, u]. If 

uo < u and G(uo, V(uo)) = 0, then V'(uo) = 0. However, ~~ lu=uo < 0, that is, 

[~~ + ~~ · g&Ju=.uo < 0, which implies that V'(u0 ) > 0, a contradiction. Therefore, 

V'(U) > 0 for all U E (0, u), and hence, V'(T) > 0 for all T E ( -oo, T0). • 

Lemma 6 .2.4 Let (U, V, W) be a solution of {6.12)-(6.13). If U(T) E (O,a2) for 

some T E ( -oo, To), then V(T) E (0, b2). 

Proof Clearly, we have U(T) E (0, a2) and V(T) E (0, b2 ) when T is near -oo. 

Suppose that there exists 7' E ( -oo, To) such that U(i') E (0, a2), V(i') = b2 • Then 

G(U(i'), V(i')) = G(U(i'), b2) ~ G(a2 , b2 ) = 0 since Gu 2 0. Thus, we have V'(i') ~ 0, 

a contradiction to V'(T) > 0 on ( -oo, To). • 
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Lemma 6.2.5 There exists no nontrivial solution (U, V, W) of (6.12)-(6.13} satisfy­

ing U(To) = a2, U'(To) = 0 and U"(To) $ 0 for some finite To. 

Proof Suppose that there is such a solution. Then either U"(To) < 0 or U"(To) = 0. 

If U"(To) = 0, then by (6.8) we have F(U(T0 ), V(To)) = 0. Since U(To) = a2 , we 

have V(To) = b2 , which contradicts the uniqueness of solutions. If U"(To) < 0, then 

F(U(To), V(To))) > 0, i.e., F(a2 , V(To))) > 0 = F(a2 , b2 ). Since Fv ~ 0, we have 

V(To) > b2. By Gv < 0, we have G(U(To), V(To)) = G(a2, V(To)) < G(a2, b2) = 0. 

Thus, we have V'(To) < 0, which contradicts V'(To) ~ 0. • 

Theorem 6.2.1 System (6.6) has a monotone increasing traveling wave solution 

(U(x + ct), V(x + ct)) connecting E_ to E+ for some real number c such that the 

wave speed c has the same sign as the integral Jt F(U, V*(U))dU, where V*(U) sat­

isfies G(U, V*(U)) = 0. 

Proof Since V*(U) is continuously differentiable on [0, a2], J
0
a2 F(U, V*(U))dU is well 

defined. 

In the case where J0a
2 F(U, V*(U))dU = 0, we have shown that (6.11) has a hete­

roclinic orbit connecting (0, 0) and (a2 , 0), and hence (6.6) has a monotone traveling 

wave solution with c = 0. 

Next we consider the case where J0a
2 F(U, V*(U))dU > 0. We proceed with the 

following four steps. 

Step 1. We claim that u > a 1. Indeed, it follows from Lemma 6.2.3 that V'(U) > 

0, that is, G(U, V(U)) > 0 for all U E (0, u). Since Gv < 0 and G(U, V*(U)) = 0, we 

have V(U) < V*(U) for all U E (0, u). By (H12) and the implicit function theorem, 

we can also find a continuously differentiable function v;(U) on [0, a2] such that 

F(U, v;(U)) = 0 for all U E [0, a2]. Again by (H12) and the qualitative analysis of 

(6.7), it is not difficult to obtain V*(U) < V;(U) for all U E (0, a1). Assume, by 

contradiction, that u $ a1 . Then F(U, V(U)) < F(U, V*(U)) < F(U, v;(U)) = 0 on 

(0, u), and hence by (6.16), W'(U) > -fj > 0 on (0, u), which implies that W(u) > 0. 

This contradicts W(u) = 0. 
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Step 2. We claim that if c is sufficiently large, then there exists a finite f such 

that U'(T) > 0 on (-oo,f] and U(f) = a2 . 

Choose Co >- j 21m1 1D , where m 1 = max F(u, v). We claim that u > a2 
a1 (u,v)E(O,a2]x(O,~] 

for c > Co· Suppose that this is not true. Then there is some c > c0 such that 

u ~ a2 and W(u) = 0, where (V, W) is the solution of (6.15)-(6.16) corresponding 

to c. By analysis in step 1, W' ~ 1J for U E (O,al] . Then W(a1) ~ 1Ja1. Since 

W(u) = 0 and u ~ a2, we have W(U) ~ 2~a1 for all U E [a1, u] for some u E (a1, a2) 

and W(u) = 2~a1 < W(a1). On the other hand, for all U E [a1,u), W'(U) = 

.£. _ F(UJi) > .£. _ ~ > .£. _ ~ = .£. _ ~ = iP-2m 1_D/a1 > 0. Thus W increases 
D DW - D DW - D D 2~a1 D ca1 De ' 

in U E [a1, u), and hence W(u) > W(a1), a contradiction. Thus, if c > eo, we have 

u > a2 , which indicates that there exists some finite f such that U'(T) > 0 on ( -oo, f] 

and U(f) = a2. 

Let (U(T), V(T), W(T)) be a solution of (6.12)-(6.13). Set 

P1 = {c > 0: U'(T) > 0 on (-oo,f] and U(f) = a2 for some finite f}. 

Then P1 is not empty and P1 is open by continuous dependence on c. Moreover, 

P1 2 (co, +oo). 

Step 3. We claim that for sufficiently small<;> 0, there is a finite f with U'(T) = 0 

and U(f) E (a1 , a2). 

Suppose that this is not true. Then there exists a sequence { c.;}iEN ~ JR+ with 

. lim c.;= 0 such that the corresponding soluti.ons (Ui, Vi, Wi) of (6.12)-(6.13) satisfy 
•-++oo 
(Ui)' > 0 on ( -oo, fi) and Ui(fi) = a2 for some fi(fi may be infinity). By (6.16), we 

have 
Wf(U) = 1u [ c.; W·( ) _ F(s, Vi(s))] d 

2 D '
8 

D 
8

' . 0 
(6.18) 

Let 

Ai = sup Wi(U) and m2 = min F(u, v). 
UE(O,a2] (u,v)E(O,a2]x(O,~] 

Then A · > 0 m < 0 and~<~- m 2a 2 Thus .& + m 2a 2 < r . ~ Since!!!.+ m 2a 2 
' , 2 ' 2 - D D · ' 2 DA; - "" D ' 2 Dx 

increases in x E (0, +oo) and c.; -+ 0 as i -+ +oo, we obtain that for large i, Ai is 
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uniformly bounded. This implies that Wi(U) is uniformly bounded on [0, a2] for large 

i EN. 

Let Mi(U) = G(U, Vi(U)), for U E [0, a2]. Then 

M;(U) = Gu + Gv · v:(u) = Gu + Gv · M,W·(U) 
c i 

and 

rU Gv(•,Vt (•)) d {U fU Gv(t,V~(t)) dt 
Mi(U) = Mi(O)eJO c;Wp) s + lo Gu(s, Vi(s))e. c;W; t) ds 

{U fU Gv(t,V ·(t)) dt 
= lo Gu(s, Vi(s))e. c;W;lt) ds. (6.19) 

Since Wi(U) is uniformly bounded on [0, a2] for large i EN, ~Wi(U) ---+ 0 as i---+ oo 

uniformly for U E [O,a2]. Gu(U, Vi(U)) is bounded for U E [O,a2] since G(u,v) E 

C1(1Rx!R). Moreover, there exists o > 0 such that Gv $ -o for (U, V) E [0, a2] x [0, b2]. 

Then we finally obtain Mi(U) ---+ 0 as i---+ oo uniformly for U E [0, a2]. This, by the 

definitions of Mi(U) and V*(U), implies that G(U, Vi(U)) ---+ G(U, V*(U)) as i---+ oo, 

uniformly for U E [0, a2], that is, 

lim IG(U, Vi(U))- G(U, V*(U))i = 0, uniformly for U E [0, a2 ]. (6.20) 
1--+00 

For any U E [0, a2] and i E N, we have 

o1 ·IVi(U)- V*(U)I $ 111 

Gv(U, Vi(U) + s(V*(U)- Vi(U)) )ds(V*(U)- Vi (U)))I 

= IG(U, Vi(U))- G(U, V*(U))i, 

where 01 > 0 is such that Gv $ -01 on [0, a2 ] x [0, b2] . Then by (6.20), we have 

Vi(U) ---+ V*(U) as i ---+ oo uniformly for U E [0, a2], and hence, F(U, Vi(U) ) ---+ 

F(U, V*(U)) as i ---+ oo, uniformly for U E [0, a2]. Then, letting U = a2 and i---+ oo 

in (6.18), we obtain 

lim 1 2 = lim F(s, Vi (s))ds = F(s, V*(s))ds. 
DW2(a ) 1a2 . 1a2 

t-+oo 2 1--+oo 0 0 
(6.21) 

Thus, J0a
2 

F(s, V*(s))ds $ 0, which contradicts our assumption that J;2 F(s, V*(s))ds > 
0. 
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Let (U(T), V(T), W(T)) be a solution of (6.12)-(6.13). Set 

P 2 = {c > 0: U'(f) = 0 for some finite f E lR and U(f) E (O,a2]}. 

Then P 2 is nonempty and contains (0, c) for some finite c E JR. 

Moreover, for each c E P2 , since To= To(c) is the first zero of U', we have U"(To) :::; 

0. Then by Lemma 6.2.5, U(To) E (a1 , a2). Suppose that U"(To) = 0. By (6.12), we 

have F(U(To), V(To)) = 0 and G(U(To), V(To)) ~ 0. However, by (H12)(ii), we have 

G(U(To), V(To)) > 0, that is, V'(To) > 0. It then follows that 

U
111

(To) = W"(To) = ~ W'(To)- ~Fu · U'(To)- ~Fv · V'(To) 

- ~Fv(U(To), V(To))V'(To) 

< 0. 

This contradicts the definition of T0 • Thus, we have U"(To) < 0, and hence, P2 is 

open. 

Step 4. Let c• =sup P2 . By above two steps, c• exists and c• E JR+\ (P1 UP2). Let 

(U•(T), V*(T), W*(T)) be a sol~tion of (6.12)-(6.13) corresponding to c•. Then u•' > 0 

and v•' > 0 on R Moreover, U*(T) E (0, a2 ) and V*(T) E (0, b2) for all T E R Then 

as T tends to +oo, U*(T) and V*(T) have limits. Since u > a1 , we have lim U*(T) = 
r-++oo 

a2 and lim v•(T) = b2 . Thus, (U•(T), v•(T) is the bistable traveling waves of (6.6) 
r-++oo 

connecting E_ toE+ with positive speeds c• when J;2 F(U, v•(U))dU > 0. 

Finally, we consider the case where J
0
a

2 F(U, v•(U))dU < 0. By a change of 

variables u = a2 - u, iJ = b2 - v, (6.6) reduces to 

g~: ~ ~x~ + F(u, v), 
{ 

au a2u -

at - G(u, v), 
(6.22) 

where F(u, v) = -F(a2 -u, b2 -v), G(u, v) = -G(a2 -u, b2- v). Letting G(u, v) = 0, 

we have iJ = v*(u) := b2- v•(a2-u). Then /(u, v) := (F(u, v), G(u, v)) has only three 

zeros E_ = (0, 0), E+ = (a2, b2) and E0 = (a2- a1 , b2- bi) on [E_, E+l· Moreover, it 
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is easy to see that (6.22) satisfies (H12) and 

t 2 t2 lo F(u, v*(u))du =- lo F(U, V*(U))dU > o. 

It follows from what we have proved that (6.22) has a monotone increasing traveling 

wave solution (U(x + ct), V(x + ct)) connecting E_ and E+ for some c > 0. Define 

U(~) = a2- 0( -~), V(~) = b2- V( -~), V~ E JR. Clearly, (U( -oo), V( -oo)) = (0, 0) 

and (U(oo), V(oo)) = (a2 , b2). It then follows that (U(x-ct), V(x-ct)) is a monotone 

increasing traveling wave solution of (6.6) connecting E_ and E+· • 

6.3 Attractivity and uniqueness of bistable waves 

In this section, we discuss the global attractivity with phase shift and uniqueness (up 

to translation) of the bistable traveling wave of (6.6). In addition to (H12), we further 

impose the following conditions on F and G. 

(H13) F and G can be extended to the domain ( -l, oo )2 for some l > 0 such that 

(i) F,G E C2 ((-l,oo)2 ,1R), Fu(u,v) < 0, Fv(u,v) > 0, Gu(u,v) ;::=: 0 and 

Gv(u, v) < 0 for (u, v) E ( -l, oo)2
• 

(ii) There exists L > 0 such that for any l2 > L, there exists l1 > 0 such that 

. F(l1, l2) < 0. 

Let X= BUC(IR, IR2
) be the Banach space of all bounded and uniformly continu­

ous functions from lR to IR2 with the usual supreme norm. Let X+ = { ( '1/Jt, 'lh) E X : 

'1/Ji(x) ;:::: 0, Vx E IR, i = 1, 2}. Then X+ is a closed cone of X and its induced partial 

ordering makes X into a Banach lattice. For any 'lj;1 = ( '1/JL 'lj;~), 'lj;2 = ( 'lj;~, 'lj;n E X, 

we write 'lj;1 ::;x 'lj;2 if 'lj;2 
- 'lj;1 E X+, 'lj;1 <x 'lj;2 if 'lj;2 

- 'lj;1 E X+ \ {0}, 'lj;1 «x 'lj;2 if 

'lj;2 - 'lj;1 E Int(X+)· 

By the arguments similar to those in [92, Lemma 3.1], we can prove the following 

result for (6.6). 

- -- --------------------------------
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Lemma 6.3.1 For any 1/; EX+, {6.6) has a unique bounded and nonnegative solution 

(w(t)'!f;)(x) := (u(t, x, 1/;), v(t, x, 1/;)) with w(O)'!f; = 1/;, and the solution semifiow w(t) 

of (6.6) is monotone on X+. Moreover, (w(t)1/;1)(x) « (w(t)1j;2)(x) for all t > 0 and 

x E lR whenever 1/;1 , 1/;2 E X+ with 1/;1 <x 1/;2 . 

In view of section 2, we assume that ¢(x- ct) = ( ¢1 (x- ct), ¢2(x- ct)) is a strictly 

increasing traveling wave solution of (6.6) connecting E_ and E+· Letting z = x- ct, 

we transform (6.6) into the following system: 

{ 
Ut(t, z) = CUz(t, z) + Duzz(t, z) + F(u(t, z), v(t, z)), 

(6.23) 
Vt(t, z) = cvz(t, z) + G(u(t, z), v(t, z)). 

It is easy to see that ¢(z) is an equilibrium of system (6.23). Denote (<I>(t)'!f;) (z) := 

(u(t, z, 1/;), v(t, z, 1/;)) as the solution of (6.23) with <I>(O) 'Ij; = 1/; E X+. Then the 

solution (w(t)'!f;)(x) of (6.6) with initial value 1/; is given by (w(t)'!f;)(x) = (<I>(t) '!f;)(x­

ct). Moreover, the comparison principle holds for (6.6) and hence for (6.23). By 

constructing upper and lower solutions for (6.23) in the same way as in [92], we can 

obtain the following result. 

Lemma 6.3.2 The wave profile ¢(z) is a Liapunov stable equilibrium of {6.23). 

Since <I>(t) : X+ ---t X+ is the solution semifiow of (6.23), it follows that <I>(t) : 

[E_, E+] ---t [E_, E+] is monotone and for any .s E JR, ¢(· + s) is a stable equilibrium 

of <I>(t). Consequently, by using the convergence theorem Theorem 2.2.3 and the 

similar arguments as in the proof of [92, Theorem 3.1], we can establish the following 

result on the global attractivity with phase shift and uniqueness (up to translation) 

of the bistable wave of (6.6). 

Theorem 6.3.1 Let ¢(x - .ct) be a monotone traveling wave solution of system {6.6) 

and w(t,x ,'!f;) := (u(t,x,'!j;),v(t,x,'!f;)) be the solution of {6.6) with w(O, ·,1/;) = 1/J E 

X+ . Then for any 1/; E X+ with 

lim sup 1/;( .;) « Eo « lim inf 1/;( .;) , 
{-+-oo {-+oo 

(6.24) 
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there exists s..p E lR such that lim li'll(t, x, '1/J) - ¢(x - ct + s..p) II = 0 uniformly for 
t-<+oo 

x E R Moreover, any traveling wave solution of system (6.6} connection E_ and E+ 

is a translate of¢. 

Remark 6.3.1 By the spectrum analysis of the linearization operator of (6.23} at the 

equilibrium solution ¢(z), as in {92, Section 4], we can obtain the local exponential 

stability with phase shift of the bistable wave ¢(x- ct) with c =f. 0. This, together with 

Theorem 6.3.1, implies the global exponential stability with phase shift of the bistable 

wave ¢(x- ct) with c =f. 0 of (6.6}. 

Remark 6.3.2 Recently, Tsai {80] studied the global exponential stability of traveling 

waves in monotone bistable systems: 

{ 

au a2u 
at = D ax2 + F(u), (t, x) E (0, oo) x IR, u(t, x) E JRn, 

u (O, x) = uo(x) , x E IR, 

where D is a diagonal matrix of order n with elements of the vector (D1, · · · , Dn) 

on the diagonal, with Di > 0 fori = 1, · · · , n 1, and Di = 0 fori = n1 + 1, · · · , n. 

In this work, he used some basic tools of comparison principle, super-sub solutions 

construction, and squeezing methods, instead of spectrum analysis. However, it was 

required that aF1 I aui > 0 and aFJ I aul > 0, for all i, j E {2, . .. 'n}' on the interval 

between two positive equilibria, which is stronger than our conditions in (H12} and 

(H13} . 

6.4 Examples 

In this section, we apply the results in sections 2 and 3 to some reaction-diffusion 

population models and show the existence and global exponential stability of bistable 

waves. 

Example 1. Consider a reaction-diffusion epidemic model (see, e.g., [12] and [92]) 

·. { aU1(x,t) _ da
2
U1(x,t) U ( ) [) ( ) 

8t - ax2 - 1 X' t + Q 2 X' t ' ( 6. 25) 
aU2(x, t) at = -(JU2(x, t) + g(U1(x, t)), 
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where d, a and f3 are positive constants, ul and u2 denote the spatial densities 

of infectious agent and the infective human population, F(U1 , U2 ) = -U1 (x, t) + 
aU2(x, t), G(U1, U2) = -/3U2(x, t) + g(U1(x, t)). The existence, uniqueness (up to 

translation) and global exponential stability with phase shift of the bistable traveling 

wave with nonzero wave speed were established for (6.25) in [92]. However, it seems 

that the claim in step 2 of the proof of Theorem 2.1 (for the existence) in [92] needs 

to be readdressed since the inequality 

·, C TJ - QU2 C b - TJ 1 1 
Yc(TJ) = d- md(TJ- b) ~ d + md(ry- b) = d(c- m) 

cannot be obtained as the authors stated there. By Theorem 6.2.1, we can establish 

the existence of the bistable wave under the assumptions (A1), (A2) and (A3) in [92]. 

Example 2. Consider a reaction-diffusion model with quiescent phases (see, e.g., 

[31, 48, 83]) 

{ 

Vt = Dt::.v -11-v- 12v + 11w, 

Wt = g(w)- /1W + /2V, 
(6.26) 

where v and w are densities of two particles, g is smooth, D, IJ., 11,12 > 0. For 

system (6.26), F(v, w) = -11-v- 12v + 11w, G(v, w) = g(w) - 11w + 12v. Then 

Fv = - 11- - /2 < 0, Fw = /1 > 0, Gv = /2 > 0. Assume that g E C2( -l, oo) for 

some l > 0 such that g(O) = 0, g'(w) > 0, Vw > 0, and g'(w) < 11 on ( -l, +oo), 

that g(w) = Jl+/J:w has only three zeros 0, b1 , b2 on [0, b2], and that g"(w) > 0 for 
J1. 'Y2 

w E (0, b1), g"(w) < 0 for w > b1 . It is easy to check that system (6.26) satisfies 

(H12)-(H13). By Theorems 6.2.1 and 6.3.1, it then follows that system (6.26) admits a 

bistable traveling wave, which is globally attractive with phase shift (or even globally 

exponentially stable with phase shift when the wave speed c =I 0) and unique (up to 

translation). 

Example 3 . Consider a reaction-diffusion model with a quiescent stage (see, e.g., 
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where u1, u2 are densities of the dispersal and nondispersal subpopulations, D > 0, 

f(u) is a nonlinear continuous function, 11 and 12 are the emigrat ion and immigration 

rates, respectively. For system (6.27), F(u1, u2) = f(u1)- 12u1 + 11u2, G(u1, u2) = 
/2U1- /1U2. Then Fu2 = /1 > 0, Gu1 = 12 > 0, Gu2 = -11 < 0. If we further assume 

that f E C 2
( -l, oo) for some l > 0 such that f'(u1)- 12 < 0 for u 1 E ( -l, oo), that 

j(u1) has only three zeros 0, a1, a2 on [0, a2], and that J'(O) < 0, f'(al) > 0 and 

j'(a2) < 0, then (6.27) satisfies (H12) and (H13). Thus, Theorems 6.2.1 and 6.3.1 

imply that system (6.27) admits a bistable traveling wave, which is globally attractive 

with phase shift (or even globally exponentially stable with phase shift when the wave 

speed c i= 0) and unique (up to translation). As a particular example, f can be chosen 

as f(ui) = u1(u1 - a)(1- u1) for some 0 <a< 1. 



Chapter 7 

Summary and Future Work 

In this chapter, we briefly summarize the results in this thesis and present some 

possible problems as future work. 

In this thesis, we studied the evolution dynamics of four population models with 

spatial and temporal heterogeneities. The main topics of all these projects are about 

traveling waves and spreading speeds, which are very important characteristics in 

biological invasions. 

In Chapter 3, motivated by the autonomous integra-differential models in [55, 59, 

68], we considered that population dynamics depends on the time-varying environ­

ment and proposed a periodic model (3.5). vVe generalized the results about the 

spreading speed and traveling waves for the autonomous models in [55, 59, 68] to our 

periodic model and obtained the existence and formula of the spreading speed c•, the 

nonexistence of periodic traveling waves connecting 0 and a positive periodic solution 

when c < c•, and the existence of traveling waves when c 2: c• for the associated 

autonomous system. Note that in the above three mentioned references, the spread­

ing speed was studied in a week sense (see Chapter 3) and mainly by the "linear 

conjecture", while we studied the spreading speed in a strong sense (see Chapter 3) 

with rigorous mathematical analysis. One thing that has to be pointed out is that, 

the existence of -periodic traveling waves when c 2: c• remains an open problem. 

130 
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In Chapter 4, motivated by the study of some reaction-diffusion models with stage­

structure in [27, 75, 78, 91]), we investigate a non-local periodic reaction-diffusion 

population model with stage-structure ( 4. 2). We successfully generalized the results 

of the spreading speed and traveling waves in unbounded domains and the thresh­

old result in a _bounded domain for the autonomous models in [27, 75, 78, 91]) to 

the general periodic system (4.2). More precisely, in the case of unbounded spatial 

domain, we established the existence of the asymptotic speed of spread and showed 

that it coincides with the minimal wave speed for monotone periodic traveling waves 

connecting 0 and a positive periodic solution; in the case of bounded spatial domain, 

we obtained a threshold result on the global attractivity of either zero or a positive 

periodic solution. 

In Chapter 5, we considered a class of discrete-time population models (5.3) , which 

was proposed in [85], in a periodic lattice habitat. The spreading speeds and travel­

ing waves for the continuous version of this model in homogeneous habitats when the 

recruitment function is not necessarily monotone have been studied in [38, 49]. The 

continuous version in periodic habitats when the recruitment function is not necessar­

ily monotone has also been studied numerically in [40] and the spreading speeds have 

been obtained in [87]. There is no result about the existence of the spatially periodic 

traveling waves in this case. We studied the lattice model (5.3) in two cases. When 

the recruitment function is monotone in the population density, we obtained the for­

mula of the spreading speeds and showed that the spreading speeds coincide with the 

minimal wave speeds for spatially periodic traveling waves in the positive and neg­

ative directions. When the recruitment function is not monotone in the population 

density, we constructed two monotone systems to control the nonmonotone system 

and used the spreading speeds for the monotone systems to estimate the spreading 

speeds for the nonmonotone system. In this case, we also showed that for any wave 

speed greater than the spreading speed, there exists a spatially periodic traveling 

wave, while for any wave speed less than the spreading speed, there is no spatially 

periodic traveling wave. However, we did not obtain any result about the existence 

- -----------------------------------
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of a spatially periodic traveling wave with wave speed equal to the spreading speed. 

In Chapter 6, motivated by some specific population models in [12, 32, 48, 65, 92], 

we proposed a general model of a class of cooperative reaction-diffusion systems (6.6), 

in which one population (or subpopulation) diffuses while the other is sedentary. The 

monostable case has been well studied for specific examples of (6.6) in [12, 32, 48, 65], 

while it seems that the bistable case has only been studied in [92] for a specific 

example. The existence, uniqueness and global stability of the bistable traveling 

waves have been obtained there. In our work, for the most general model (6.6), 

we established the existence of the bistable traveling wave by the shooting method, 

and then obtained its global attractivity with phase shift and uniqueness (up to 

translation) via the dynamical system approach. The results can be well applied to 

the examples in [12, 32, 48, 65, 92] and all other examples which satisfy the basic 

assumptions for (6.6). 

Besides the unsolved problems arising from the finished projects in this thesis, 

which are mentioned above, there are quite a few related problems which may be my 

future work. In the first two projects, I considered the time periodic systems which 

are obvious more realistic than autonomous systems for many species. However, the 

time periodic systems are still simple cases of most general situations. As future work, 

I would like to study the almost periodic case of the models or simply assume that 

the parameters generally depend on the time t. Moreover, in Chapter 4, I assumed 

that the maturation time for all individuals are the same, which implies that the 

maturation recruitment at any time t simply depends on the population at time 

t - T. However, in real situations, for some populations, the maturation time is not 

always the same for all individuals. This results in the possibility of distributed delay 

or time delay depending on time t. Therefore, I would also like to study the model 

( 4.2) in the almost periodic case or under the assumption ofT = T(t). In the first three 

projects, I only considered the monostable case, another interesting problem would 

be to investigate these models in the bistable case. To include the water flow in 

the stream population models, we may add an advection term in a reaction-diffusion 
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model and then study the spreading speeds and (periodic) traveling waves. Noting 

that the dispersal of immature population and mature population may not be the 

same, we can also incorporate age-structure into a model with long-term dispersal, 

for instance, (3.5) . Finally, it is very important to consider the long time dispersal in 

a stochastic model. This may also be a part of my future work. 
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