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all (t,z) € (0,e] x (ap + mp,bo + mp + mry), Ym > 1, m € Z. Let a,, = ap + mp,
bm = bp+mp+mry. Thus, b,,—a,, — 00 as m — oo and there exists an integer m* > 0
such that amy1 — by, < 0, Ym > m*. Let a* = a,,.. It follows tt  u(¢,z) > 0 for all
Z € Um>m+(@m, bm) = (a*,+00) and t € (0,¢]. Since k(—y) = k(y), we have k(y) > 0
for almost every y € (—p — r9, —p). Then (z — (=p),z - (=p —10)) N (a*, +00) # 0
for every £ € (a* — p — ro,+00). It follows that u(t,z) > 0 for t € (0,¢] and
z € (a* —p—7o, +00). By induction, u(t,z) > 0,V(t,z) € (0,¢] x (a* — mp—mry, +00)
for all m > 0, which implies at u(t,z) > 0, V(¢,z) € (0,¢] x R.

By (3.5), we have

% > F(t,u(t,x)), vt >0, z € R.

Given z € R. Let w(t), t > ¢, be the unique solution of the ordinary differential
system (fi—l: = F(t,w) satisfying w(e) = u(e,z) > 0. Then the standard comparison
principle implies that u(t,z) > w(t) > 0, Vt > €. Thus, u(t,z) > 0, V(t,z) €
[e, +00) x R. Consequently, u(t,z) > 0 for all (¢,z) € (0, +oo) x R. This completes
the proof of the claim.

For any ¢ € Cy-() with ¢ # 0, we to > 0 and take u(to, ;) as a new initial
value for u(t, ;). By the claim above, we have u(ty, z;¢) > 0, Vo € R, and hence,

the conclusion (3) follows from the cor on (2). W

3.4 Traveling w res

Definition 3.4.1 u(t,z) = U =z + is an w-periodic traveling wave of (3.5)
connecting 0 to u*(t) if it  a solution of (1.5), U(t,§) is w-pertodic in t, and
U(t,—o0) =0 and U(t,00) u*(t) uniformly fort € [0,w].

As a straightforward co.  uence of Theorem 2.3.4, we have the following result

on the nonexistence of monotone periodic traveling waves of (3.5).
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Figure 3.2: The solution of (3.26) with tke initial function ¢;(z) for some t’s.

choose the initial function as
0, ifz < —7/2,
1(z) cos(z)/2, ifx € (—7/2,m/2),
0, ifz >m/2,

and show the corresponding lution of (3.26) in Figures 3.1 ar 3.2

Furthermore, choosing function
0, ifxr < -2,
po(z) = ¢ (2+1)/2, ifz € (—2,2),
0, ifz > 2,

we show that the shape of the  ition of (3.26) with initial fun on ¢2(z) converges

to a traveling wave very quickly. The wave moves in the negative z-direction as time

t increases (see Figures 3.3 13.4).









52

Regarding the existence of - odic traveling waves with the w e speed ¢ > c¢*, we
can not appeal to the same theory sir  the compactness assu tion does not hold

3

for (3.5). As illustrated in [69], we can employ the “vanishing viscosity” approach to
obtain monotone periodic t eling wave solutions with ¢ > ¢* in the sense of distri-
bution. However, we are not able to prove that this traveling v is a classic solution
of (3.5). Thus, the existence of periodic traveling waves of the p  odic equation (3.5)

remains open. We leave this problem | future investigation.



Chapter 4

A Non-Local Pe. iodic
Reaction-viffusion Model * 'ith

Stage-Structure

4.1 Introduction

Age structure has been an interesting topic in population dynamics (sce, e.g., [1, 3,
4, 27, 28, 29, 51, 61, 75, 78, 91]), since we can investigate the separate quantities
of immature and mature populations in an age-structured population model. To
derive a model for a single speci  of population with age-structure and diffusion, we
usually assume that individuals ove around not only after matured, but also while
immature. For a standard a ment, |l ves
2
%—1; + % = D(a)gl—g — p(a)u,
where u(t, a, z) is the density of population of the species at timet > 0, agea > 0
and location z in a spatial d¢ 1 §; D(a) > 0 and p(a) > 0 are the diffusion rate
and the death rate of the popul on at age a, respectively.
To study the behaviors of immature individuals and mature individuals, we can

also divide the population of a species into two groups: imma re population and

53






















































71

By the w-periodicity of w(t), it follows that
By (4)(8) = e Du(g) = eXy(8), V€ [-7,0],

that is, B(¢)) = e, This implies that e} is the principle eigenvalue of BY
with positive eigenfunction .
Let

Ma)w _ Iny(a) .

O(a) = 1 In M@ =
a a a

Then we have the following r 1lt.

Proposition 4.2.2 Assume that (H3)-(H6) hold. Let c., be the asymptotic speed of
spread of Q.. Then c}, = igg@(a) — ir;f, ln-;gazl

Proof When a = 0, (4.24) becomes (4.9). It follows from (H6) that ¥(0) > 1, and
hence (B7) in section 2.3 is satisfied. Now we prove that ®(co) = co. By (4.24), we

have
v'(t) > [@2d(t) — gu(t, 0)]u(t),Vt > 0,
and hence, o
PAEL L OBFACORPYC
Then Y "
0= / Z’T(f))dtz / (a2d(t) — gu(t, 0))dt — Ala)w,

which implies that 3
Maw > o / d(t)dt — / ou(t, 0)dt.
0 0

Therefore,
Moo rv ¥ a.(t.0\dt
b(a) = >a  d(t)dt .
& 84

v ou

Letting o — oo, we can easily obtain ®(c0) = oo.
Since G(t,-,-) is subhomogeneous i (u,v), it follows from Theorem 2.2.6 that

G(t,u,v) < Gyu(t,0,0)u+ G,(t,0,0)v, that is,
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Let u(t,z, §) be the solution of (4.26) with u(s,z) = ¢(s,z), s,z) € [~7,0] x Q.
Since ¢ is a fixed point of ww and is  obally attractive in Cy, u(t, z, qAS) is an njw-
periodic solution of (4.26) which attra . all solutions of (4.26) in C* \ {0}. That
is,

Jim || u(t, -, ¢) - u(t,, ) l5=0 for all ¢ € Cp.

Now we show that u(t,z, ¢) is also w-periodic. Since an(d;) = ¢, we have

Qw(q;) u(Qn ’Qg)) = Qmw(Qw(Qg))a

which implies that Qw(gg) is 30 a fixed point of @,,,. By the ! :sthat ¢ > 0 and
Q. is monotone, it follows that ,(¢) 0. Note that Q.0 has a unique fixed point
in int(C*). Then Qw(qg) = ¢, 1atis, ¢ is a fixed point of Qu, ar  hence, u(t, r, QS) is
an w-periodic solution of (4.26). Thus, u*(t,z) := u(t,z, @), V(t,z) € [—7,00) x Q, is

the desired w—periodic solution. B
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If = (3,s) =0, it is obvious. If ¢~(z,s) > 0, then s < 0. Since 0 < & < (o — 1), we
have €s + p1s > py0s. Thus,

(67(3,5))7 < e77())7 < T (L) = et (yl)7,

and hence, (¢7(7,5))? < (¥i)°e**, Vi€ Z, s € X,.
Clearly, T~ (¢7)(¢,s) > 0, Vi € Z, s € X.. Moreover,

T=(¢7)(z5)
SR O ERERE)
> 8 P L0 —sis—j =) =alp~(i—js—c= ))
> i Prioifi_;(0) (pi-iemls=i=0 — yizieme(s=i=0)) _ i Pii_jo(ipi—d)o euels=i0)

Jj=-—00 j=—o00
= 6#1(3~0) i Pi,i-jf{_j(o)lpi_je_“lj

Jj=-—00
_eHe(s—c) § Pii-; (fi’—j(o) i—demHed 4 a(z/;i‘j)”e‘“=j)
Jj=-—00

> etls—0) i Pi,jf;(O)wfe‘“‘(i“j) —  (s=9) i Pi.i-jf{_j(o)lﬁizje““‘j . gle—ce)ue

Jj=—o0 Jj=—00

= emi(s—c) . can Sl — ete(8—c) | plc—celne f Pijf;’(O) 1‘6 . e~ be(i=j)
Jj=-00

— emswi _ e#l(s-cc)eccﬂzwie
= eyl —ehery,
foranyi € Z,s € X.. Thus, T~ ~)(i, >¢(i,s),Vi€eZ,s€ ..
Fix some p € (0,41) and « ine

X,:= {d|¢:Zx X, — R, supmax <<y |0z, s)le™ < oo,
seXc
#(i,s) =¢(i+ L,s), V(i,s) € Zx X.}

and
i1l x| sl VoE X,

It follows that (X, || -||,) is a Banach ¢ ce. Then ¢*,¢~ € X,,. Let

Y ={peX,: ¢~ s) <o) <¢7(5,8), Vi€Z, se X}
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Lemma 6.3.1 Foranyy € X4, (6.6) has a unique bounded and nonnegative solution
(Y (t)¥)(x) := (u(t,z,9),v(t, z,v)) with ¥(0)y = ¥, and the solution semiflow ¥(t)
of (6.6) is monotone on Xy. Moreover, (¥(t)y!)(z) < (¥(t)?)(x) for allt > 0 and
z € R whenever ¥, ¢? € X, with ¢! <x ¢2.

In view of section 2, we assume that ¢(z —ct) = (é1(z —ct), d2(z — ct)) is a strictly
increasing traveling wave solution of (6.6) connecting E_ and F,. Letting z = z — ct,

we transform (6.6) into the following system:

{ w(t, z) = cuy(t, 2) + Dus(t, 2) + F(u(t, 2), v(t, 2)), (6.23)

vw(t, 2) = cv,(t, 2) + G(u(t, 2),v(t, 2)).

It is easy to see that ¢(z) is an equilibrium of system (6.23). Denote (®(t)y)(z) :=
(u(t,z,¢),v(t, z.9)) as the solution of (6.23) with ®(0)y = v € X,. Then the
solution (¥(t)y)(z) of (6.6) with initial value ¥ is given by (¥ (¢t )(z) (P(t)¥)(z -
ct). Moreover, the compar n principle holds for (6.6) and hence for (6.23). By
constructing upper and lower solutions for (6.23) in the same w - as in [92], we can

obtain the following result.
Lemma 6.3.2 The wave profile $(z) is a Liapunov stable equilibrium of (6.23).

Since ¢(t) : X; — X,  the solution semiflow of (6.23), it follows that ®(t) :
(E_, Ey] — [E_, F4] is monotone and for any s € R, ¢(- + s) is a stable equilibrium
of ®(t). Consequently, by usii the convergence theorem Theorem 2.2.3 and the
similar arguments as in the proof of [92, Theorem 3.1], we can  ablish the following
result on the global attractivity with phase shift and uniqueness (up to translation)

of the bistable wave of (6.6).

Theorem 6.3.1 Let ¢(z —ct) be a monotone traveling wave soli  on of system (6.6)
and V(t,z,¥) = (u(t,z,¥),v(t,z,¢)) be the solution of (6.6) with ¥(0,-,¢) = ¢ €
X,. Then for any i € .~ with

limsup ¢ (§) € Ey & liEm inf ¥(&), (6.24)

g——o00
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where u;, u; are densities of the dispersal and nondispersal subpopulations, D > 0,
f(u) is a nonlinear continuous function, v; and 72 are the emigr. on and immigration
rates, respectively. For system (6.27), F(uj,us) = f(u1) — yau; + mus, Gluy,ug) =
Yer —Ntz. Then Fyy =4 >0, Gy, =712 >0, Gy, = —1 < 0. If we further assume
that f € C?(~l, 00) for some [ > 0 such that f'(u;) — 12 < 01 u, € (=, 00), that
f(ur) has only three zeros 0, a;, ap [0,a5], and that f'(0) < 0, f'{ay) > 0 and
f'(a2) < 0, then (6.27) satisfies (H12) and (H13). Thus, Theorems 6.2.1 and 6.3.1
imply that system (6.27) admits a bistable traveling wave, which is globally attractive
with phase shift (or even globally exp.  1itially stable with phas  shift when the wave
speed ¢ # 0) and unique (up to translation). As a particular example, f can be chosen

as f(u1) = u(uy — a)(1 — uy) for some 0 < a < 1.
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model and then study the spreading speeds and (periodic) traveling waves. Noting
that the disperéa,l of immature population and mature population may not be the
same, we can also incorporate age-structure into a model with long-term dispersal,
for instance, (3.5). Finally, it is very importa,nf to consider the ng time dispersal in

a stochastic model. This may also be part of my future work.







































