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Abstract 

This thesis develops a hybrid decentralized formation control framework to coordi­

nate multiple mobile robots with nonholonomic constraints. The proposed approach 

deploys a control theoretic bottom-up approach where, some low level behavior based 

controllers are coordinated by a discrete event system with supervisory control. The 

robots are required to navigate in an unstructured environment with a predetermined 

geometric formation while being adaptable to avoiding obstacles and following walls 

on the way. The complexity of the environment is handled by a discrete event sys­

tem with supervisory control. For proper navigation, the multi robot systems are 

transformed in to flexible leader-follower coordinate structures, where we derive the 

aforementioned low level behavior based controllers. These controllers being nonlinear 

due to the nonholonomic nature of the robots involved, are subjected to linearization 

through nonlinear control techniques of static and dynamic feedback linearization. 

'Trajectory tracking type formation controllers for nonholonomic mobil robots are 

also developed and compared against static and dynamic feedback linearized coun­

terparts for performance. The behavior based controllers, collectively known as for­

mation controllers, require the designated leader/leaders robot's state and velocity 

profiles be known to all of its followers. Hence instead of explicit communication, we 

use recursive Baysian estimation techniques to estimate the leader robot's state and 

velocity profiles through the observations taken from sensors local to the robot. We 

implement and simulate different recursive Baysian estimation techniques to estimat 

leader robot 's state and compare their respective estimation accuracy. The whole con­

ceptual system is implemented through simulation and the results are shown to verify 

its operation. 
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Chapter 1 

Introduction 

About this chapter: This chapter gives a concise account of the research problem 

addressed in the thesis. It describes the problem statement, motivation, specific 

research objectives and the contributions of this thesis in the area of decent ralized 

formation control of mult iple nonholonomic mobile robots. Finally the organization 

of the thesis is outlined. 

1.1 Introduction 

M ulti robot systems are one of the key emerging research areas due to its high 

potential in many vibrant practical applications. The collective nature of performing 

a task/ tasks makes it more robust than its single robot systems (SRS) counterpart. 

Some of the advantages of multi robot systems (MRS) over the use of (SRS) are as 

follows, 

• Total system cost may be reduced in many domains by utilizing multiple simple 

and cheap robots as opposed to a single complex and expensive robot. 

• The parallelism and the redundancy of multiple robots increase system effi­

ciency, robustness, and flexibility 
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• The inherent complexity of some task environments may require the use of 

multiple robots as the capabilit ies required are not sufficient to be met by a 

single robot. 

• Ability of networking, fault tolerance and sharing of resources. 

MRS has been used in exploration, surveillance, cooperative transportation of large 

objects [1], [2], cooperative attack and rendezvous and formation control [3], [4], [5] to 

name a few. In majority of these applications, formation control serves as an essential 

element in the context of coordination. It plays the role both as a multi robot coordi­

nator and as a multi robot controller for those applications. Being a coordinator and 

a controller both allows the benefits of resource sharing, parallelism, reliability, fault­

tolerance, reconfiguration ability and structural flexibility to be harnessed in to other 

types of MRS applications. Formation control on multiple robots is inspired partly by 

the necessity of the nature of the tasks and partly by the formation behavior of schools 

of fishes or flocks of birds [3] , where multiple agents combine their senses for efficient 

food finding or combining their thrust in the liquid or air to move forward as one pack. 

Formation control usage has been explored for search and rescue missions [6], [7], 

reconnaissance and patrols [8], satellite control, automated highways [9]. It has been 

observed in [9] that , the flow of traffic can easily be managed; if vehicles in an au­

tomated highway systems (AHS) can move as a pack by keeping a desired velocity 

and specified distances between them. Satellite control and clustering uses forma­

tion control to reduce fuel consumption for propulsion and also to increase sensing 

capabilities. The basic formation control problem consists of the following objectives, 

• Multiple robots should maintain a desired geometric formation of varied shapes 

and sizes. e.g.: triangular, line or column. 

• The robot formations should be flexible enough to accommodate the geometric 
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constraints imposed by the environment such as obstacles, walls and corridors 

with inter-robot collisions avoidance. 

Other challenging issues in formation control, which revolves around the major issues 

cited above are robot initialization [10], path planning and robot reconfiguration [11]. 

Many control techniques have been proposed to address the central issues in formation 

control. These techniques can be categorized as either centralized or decentralized. 

Centralized strategies consist of one or more designated leader-robots, which control 

the whole formation. They issue control commands for the other slave-type robots to 

follow. In decentralized strategies, the control is performed collectively by every robot 

or by a majority of robots. Boiling down the hierarchy of formation control, there 

are different types of formation control methodologies that are belonging to either 

centralized or decentralized strategies. Each method has merits and demerits on them. 

Some techniques involve leader-follower strategy [12], virtual structure approach [13], 

behavior-based formation control [3] and consensus based formation control [5]. In th 

leader follower method there is one or more dedicated leader robots and a set of other 

robots known as followers. Only the leader/leaders motion must be specified while the 

followers are required to maintain an inter-robot formation shape in navigation with 

their leader. The leader-follower classification can build a hierarchy of formations such 

that the first layer of followers will act as leaders for the second layer of followers and so 

on [4]. In the virtual structure approach, the whole formation is considered as one rigid 

body whose virtual center of rotation is taken as the de-facto center of the formation. 

The fact that the points on a rigid body remains relatively the same (relative to th 

rigid body under any six degrees of motion), helps to create control algorithms for 

each agent in a formation by just considering the motion of the rigid body itself [13]. 

There is no designated leader in this approach, but essentially the rigid body motion 

must be interpreted by a central entity to each agent in the formation. Behavior 

based formation control [3] uses motor schemas to define valued vectors to represent 
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different behaviors including formation maintenance, obstacle avoidance etc. These 

vectors are combined with desired modulating weights in order to generate motion 

commands for the robots considered. There had also been instances where the use 

of subsumption architecture [14] is explored for formation control of multiple robots. 

Consensus based control [15] uses the consensus algorithm to arrive at a consensus 

for a desired task. Therefore the formation control problem is also addressed in 

the sense of arriving at a consensus for a desired formation shape, scale, motion 

in [16], [17], [15] by multiple robots. The consensus based formation control can be 

achieved by incorporating formation constraints in the basic consensus algorithm. 

1.2 Problem statement 

There have been a variety of formation control algorithms developed, both centralized 

and decentralized over the years. Common centralized formation control strategies 

include virtual structure based [13], behavior based [3] and leader-follower based [4] 

strategies. Virtual structure based formation controls [13] , require that the virtual 

structure position be sent out to all the robots in the formation by a central entity and 

also the nature of the environment must be known a priori to calculate the motion 

of the rigid structure. Moreover, navigation in an obstacle populated environment 

adamantly require some kind of deformation of this virtual structure, which has not 

been addressed properly in [13]. The behavior based approaches [3] suffer from finding 

the correct modulating weights to combine different motor schemas in order to yield 

the optimum motion commands to the robot. Also, these methods, lack in defining 

analytically sound vectors for formation maintenance unlike obstacle avoidance and 

wall following vectors (there is not a single vector but a set of rules which violates the 

analytical properties of schema vectors) . Leader-follower based formation controls 

( [18], [4], [19]), are more flexible than other types of centralized strategies, simple in 
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operation, scalable and computationally inexpensive too. Drawbacks are that , they 

are highly centralized such that the position and the velocity profiles of the leader­

robots must be communicated at every sampling interval to the respective followers 

in the formation. 

Decentralized formation control strategies mostly comprise of consensus based forma­

tion control strategies ( [16], [17], [15]). Although fully distributed, these consensus 

based controls use heavy bandwidth in communication in order to arrive at a con­

sensus for formation control. Communication delays and certain topological graph 

constraints (e.g: The robot communication topology graph should at least have one 

directed spanning tree [20]) make t he consensus algorithms more complex and lead 

to failure as the number of robots increase. Also the effect of noise for these given 

consensus based formation controllers has not been properly addressed. 

In comparison of the centralized and decentralized formation control strategies, it can 

be concluded that most cent ralized strategies [4], [13] , [3] are flexible and simple to im­

plement. However t he fact that these strategies are highly centralized, fails to exploit 

the inherent parallelism, fault tolerance an redundancies of MRS for the formation 

control problem. On the other hand decentralized strategies [16], [17], although fully 

distributed, use heavy bandwidths in communication to arrive at a consensus among 

all or a majority of the robots in the formation. The research problem addressed 

in t his thesis revolves around the leader-follower formation control paradigm. It is 

an effort both to exploit the flexibility of t he leader-follower structure for formation 

control of nonholonomic mobile robots and also to make the leader follower control 

more decentralized. The major challenges in designing a decentralized leader-follower 

based formation control involves addressing the following key issues. 
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1.2.1 Problem 1: Nonlinear control laws for formation control 

of nonholonomic mobile robots 

It is a known fact that, control laws involving posture stabilization and trajectory 

tracking of nonholonomic mobile robots have certain restrictions. Posture stabiliza­

tion of nonholonomic mobile robots via smooth time invariant control laws is impos­

sible (Brockett's theorem [21]). Trajectory tracking involving nonholonomic mobile 

robots is only possible with smooth time invariant control laws, when there is a guar­

antee that the trajectory does not come to a standstill [21]. These implications are a 

direct result of the true-nonlinearity of the nonholonomic mobile robots. The leader­

follower based control theoretic formation control approaches involving nonholonomic 

mobile robots also exhibit similar control constraints as seen for posture stabilization 

and trajectory tracking problems. In fact the formation control can be thought of as 

a combination of trajectory tracking and posture stabilization t chniques. 

There are a number of nonlinear time invariant, time varying or discontinuous [22], 

[21], [23] control techniques proposed and implemented for postur stabilization and 

trajectory tracking of nonholonomic mobile robots. The fact that these numerous 

nonlinear control techniques have not been exploited for formation control of non­

holonomic mobile robots is a problem in itself. Because different controllers derived 

via different nonlinear techniques can exhibit different rates of convergence, variant 

stability, in short variant performance which can probably build an effective set of 

newer controllers to address the formation control problem of nonholonomic mobile 

robots. 
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1.2.2 Problem II: Comparat ive study of Leader-follower based 

control theoretic approaches 

Numerous leader-follower based control theoretic formation control approaches have 

been proposed and implemented, but there is a lack of a comparative study of these 

different approaches in terms of their flexibility, performance and extendability. Nei­

ther is there any extensive experimental validation of the proposed methods for noise 

tolerance in motion and in observations. 

Some research shows the use of Lyapunov theory to establish the stabilizability of 

the proposed formation controllers [4]. But the real world implementation problems 

related to platform dynamics, wheel slippage, noises in observation etc. have not been 

sufficiently evaluated for the proposed controllers through real world experiments. 

1.2.3 Problem III: Leader-follower based modularized con­

trollers for formation control 

Leader follower based formation control of nonholonomic mobile robots has been 

addressed in terms of control theoretic approaches [4], [24], [19], b havior based ap­

proaches [3] and fuzzy approaches [25]. The control theoretic approaches are the most 

widely us d approaches due to its analytical ability of proof of control laws for both 

formation maintenance and formation stability. The extensive literature review sug­

gests that, out of all the existing leader-follower based control theoretic approaches, 

the l - '1/J and l - l controllers (see Fig.l.l) proposed by Desai et al. [4] have mor 

flexibility and scalability for formation control applications. It has be n shown in (4] 

that, the basic single-leader , single-follower formation can be effectively scaled to a 

hierarchy of multiple-leaders and multiple-followers by using the l - '1/J and l - l con­

trollers of [4]. It has also been shown in [4] that, multi robot formation naviga tion in 
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y % Leader 1 

Leader 

Figure 1.1: l - '1/J and 1-1 controllers 

an obstacle populated environment is possible with the use of such controllers. 

In all of these suggested controllers (l - '1/J and l - l controllers) the follower robots 

stabilize not their origins*, but an offset from their origins* of the robot platforms to 

desired geometric poses. Thus these controllers lead to the following problems. 

• not fulfilling the real objectives of formation control, which is to stabilize the 

origins of the robot platform to desired formation locations. 

• if the offset from the origin of the platform is not coincident with another wheel 

of the robot (third castor wheel of a differential drive robot) the formation 

controllers become unstable. 

It is found that, the problem mentioned above is a direct impact of static feedback 

linearization of the nonholonomic mobile robot systems. 

*origin refers to the center of the axel connecting the two differentially driven wheels 

of a robot. 
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1.2.4 Problem IV: D ecentralized state estimation 

The leader-follower controller being a centralized controller deprives the abilities of 

formation maintenance, formation reconfiguration, dynamic role assignment [11], un­

less there is a topological communication network coordination with other robots of 

the system. Communication is prone to noise, delay and interference and specially in 

a multi robot platform the robots have limited communication abilit ies too. Hence 

the transmission of a global state of the system is subjected to many difficulties [26]. 

On the other hand obtaining local information is cheaper and faster with the use of 

exteroceptive sensors that are local to a robot , provided the robots are within the 

sensing range 

The leader-follower formation control technique is highly centralized due to infor­

mation dissemination only from the leader-robots of the system. If the leader robot's 

sta tes (pose in Euclidean SE(2) coordinate system and linear and angular velocities) 

can be measured or estimated remotely using exterocept ive sensors of the robot, the 

leader-follower strategy can be made more decentralized. Measuring the linear and 

angular velocities and leader robot orientation under noisier sensor observations is re­

ally challenging if not impossible. Hence decentralized state estimation is essential in 

estimating unknown states from the observations acquired from exteroceptive sensors 

local to the robots. 

There have been the use of Extended Kalman Filter (EKF ) [4] and Dual Unscented 

Kalman Filter (DUKF) [18] for decentralized leader robot state estimation in forma­

tion control. The experimental results recorded in both [4] and [18] are more or less 

for constant velocity profiles of the leader robot ( [4] - linear and angular velocity 

are kept constant, [18] - resul ts show the angular velocity of the leader robot is kept 

at zero while changing the linear velocity) . Hence it is found that there is neither 
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any experimental validation of state estimation for different velocity profiles of the 

leader robot ( keeping linear velocity constant while changing angular velocity, vice 

versa, changing both velocities etc.) nor any experimental evaluation of the perfor­

mance of the formation controllers used, under these decentralized state estimation 

techniques. Also there seems to be no benchmarking on the estimation accuracy of 

different recursive Baysian filters, which can be used for decentralized leader robot 

state estimation. 

1.2.5 Problem V: Modularized formation control framework 

Path planning, formation initialization [10], formation-maintenance, formation recon­

figuration, dynamic role assignment [11] , obstacle avoidance and inter robot collisions 

avoidance are some of the essential behaviors of a formation control problem. In order 

to yield an effective formation control solution, these behaviors must be coordinated 

in optimum ways under nondeterministic environments. Although the problem of 

behavior coordination under nondeterministic environments had been addressed for 

single robots [27], [28], the multi-robot behavior coordination under nondeterministic 

environment still remains an open research area. The traditional control theory fails 

in the face of dynamic changes due to its fixed single mode of operation. Thus it 

highlights the need of a higher-level coordination protocol to handle the switching of 

the single modes of control theoretic operations [29]. 

Hence the problem is found to be the lack of a modularized formation control frame­

work that will enable new behaviors be added without a significant alteration of the 

framework and is also scalable and robust in operation. 
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1.3 Research object ives 

The research focus of this thesis is to address the issues related to problems I-V in sec­

tion 1.2 above. The current research develops a novel leader-follower based decentral­

ized formation control framework to coordinate multiple nonholonomic mobile robots. 

The proposed strategy is based on the use of static and dynamic feedback lineariza­

tion to build low-level behavior based formation controllers which are coordinated by 

a supervisory controlled discrete event system [30], [28], [31] . The decentralized leader 

robot state estimation accuracy of different recursive Baysian estimation strategies is 

also experimentally evaluated. The feasibility of the use of existing nonlinear control 

techniques to develop a new set of formation controllers is also investigated. 

1.3.1 Objectives 

In order to achieve the proposed research goals, the following objectives arc ident ified. 

• Objective I: Development of a novel decentralized lead r-follower based for­

mation control framework to coordinate multiple nonholonomic mobile robots 

that will address the issues related to problems IV and V in section 1.2 above. 

Supervisory control of discrete event systems is exploited for the coordination 

control problem of the framework while decentralized state observation is em­

ployed to estimate leader robot's state variables. 

• Objective II: Use of dynamic feedback linearization to develop formation con­

trollers to address the issue related to problem III in section 1.2 above. 

• Objective III: A comparative study to benchmark different leader-follower 

based formation controllers in terms of performance, noise tolerance that will 

address the issues related to problem II in section 1.2 above. 

• Objective IV: A comparative study to benchmark different decentralized state 
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estimation techniques for estimation accuracy which will address the issues re­

lated to problem IV in section 1.2. 

• Objective V : Development of robust formation controllers for nonholonomic 

mobile robots through different nonlinear control techniques that addresses the 

issues related to problem I in section 1.2. 

1.4 Contributions of the thesis 

The resulting contributions of this thesis are highlighted as follows: 

1. Contributions from Objective I and II: 

(a) Development of a novel hybrid formation control framework for multiple 

nonholonomic mobile robots to navigate in an unstructured environment. 

• Dynamic feedback linearized formation controllers for I. ) single robot 

navigation II.) leader-follower based formation control of multiple mo­

bile robots in unstructured environments. These include controllers 

for elementary behaviors, (e.g: obstacle avoidance) and controllers for 

combined-behaviors, (e.g: Wall following with goal navigation). Some 

elementary behaviors for e.g: formation control, can be combined 

with wall following or obstacle avoidance by relaxing some formation­

constraints 

• Similar static feedback linearized formation controllers to overcome the 

structural singularity of its dynamic feedback linearized counterparts 

(when the robot linear velocity is dropping to zero). 

• Use of supervisory control of discrete event systems to model the co­

ordination of different behaviors of formation control. 

2. Contributions from Objective III and V: 
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(a) Development and simulation of trajectory tracking type leader-follower 

formation keeping controllers for nonholonomic mobile robots, and their 

comparison with dynamic and static feedback linearized counterparts. 

3. Contributions from Objective IV: 

(a) Development and simulation of decentralized leader robot state estima­

tion through different recursive baysian filters and particle filters and their 

comparison against state estimation accuracy. 

1. 5 Thesis organization 

Chapter 2 Provides the fundamental concepts necessary for the research performed 

in this thesis. This chapter reviews some nonlinear control techniques and outlines 

the merits and demerits of the existing formation control techniques and derives the 

case for the research of this thesis. 

Chapter 3 Develops the leader-follower dynamic feedback linearized controller and 

trajectory tracking based formation controllers for nonholonomic mobile robots and 

compares their performance against one another and also with the static feedback 

linearized formation controller of [4]. 

Chapter 4 Development and simulation of the decentralized Leader robot state 

estimation t echniques through different flavors of recursive baysian estimation filters 

including the particle filter and the comparison of their state estimation accuracy. 

Chapter 5 Development and simulation of a hybrid formation controller framework 

for multiple robot navigation in an unstructured environment. Formation controllers 

are developed for obstacle avoidance and wall following for both single leader robots 
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and multiple follower robots. It also develops a sample discrete event system which 

can be used to coordinate different behaviors of formation control effectively. 

Chapter 6 provides concluding remarks, discussion and presents some future work. 

14 



Chapter 2 

Literature Review 

About this chapter: This chapter will first review the nonholonomic unicycle drive 

robot and it's controllability to stabilize itself to a given pose and about a feasible tra­

jectory. Next some fundamentals and concepts of nonlinear feedback linearization will 

be presented. Following will be a review of the existing formation control strategies 

for the nonholonomic mobile robots. Existing behavior coordination techniques for 

the formation control problem will be described later. Finally some existing works on 

decentralized robot state estimation methodologies to estimate the pose and velocity 

of a designated robot from another robot will be explained. 

2.1 Nonholonomic Mobile Robots: Fundamentals 

Legged and wheeled robots are the most common types of mobile robots. But the 

wheeled mobile robots are the most commonly used ones attributing to their simpler, 

cheaper and faster characteristics [14] . There are four different basic wheel types 

that can be fixed in multiple to a body that makes the structure of a mobile robot. 

standard wheel, castor wheel, Swedish wheel, spherical wheel are the types of wheels 

which can be fixed to the body of the robot. Differential drive robot (Unicycle robot) 

normally has two standard wheels fixed with a castor wheel (P3DX robot). Th 
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wheels are assumed to have, 

• Single point of contact 

• No sliding or skidding 

• Plane of wheel vertical to ground 

These robots have two constraints to motion, namely the rolling and the sliding 

constraint. Rolling constraint is the component of motion in the wh el direction 

which is equivalent to the roll speed and since no skidding is assumed the component 

of motion orthogonal to the wheel direction is taken as zero [14]. The sliding constraint 

to the motion in differentially driven robots makes the degree of mobility [14] two while 

the degree of steerability [14] (number of independent steerable wheels that yields a 

valid ICR) is zero. It also makes the differentially driven robots nonholonomic drive 

robots (Sliding constraint is a nonholonomic constraint). Using the rolling constraint 

and the sliding constraint of a differentially driven two standard wheel mobile robot, 

we can derive the dynamic equation for the ith robot as, 

0 

(2.1) 

0 1 

Where (xi, Yi) is the robot pose in Cartesian coordinate system while Bi is the robot 

orientation. vi and Wi are the linear and rotational velocities respectively. 

Controllability of the Unicycle robot at a point 

Equation 2.1 is driftless (no motion takes place under zero inputs) and the number of 

commanded inputs (Vi, wi) is lesser than the number of states (xi, Yi, Bi) of th system. 

Hence the linearized system of Eq.(2.1) does not satisfy the controllability rank con­

dition [21] for control systems. As a result the above system becomes uncontrollable. 
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Linearized system of Eq.(2.1) at an arbitrary pose of qe = [xe, Ye, Be] (system being 

driftless makes any arbitrary qe an equilibrium point of the system under zero inputs) 

results in, 

COS Be 0 

(:) qe = sin Be 0 (2.2) 

0 1 

Where v and w are the linear and angular velocities of the robot. The controllability 

matrix of Eq.(2.2) has rank two and is lesser than the number of generalized coordi­

nates (3). Hence the system is not controllable. But the Lie algebra rank condition 

(accessibility rank condit ion) of [32], [33] is fulfilled by the unicycle system ofEq.(2.1) . 

Hence the given system is controllable in some sense. Accessibility rank condition for 

Eq.(2.1) is shown below. 

System Eq.(2.1) can be written as: 

where 91 = [cos Bi sin Bi o]T and 92 = [0 0 1]T. Then 

rank[91 92 [91 , 92] [91, [91, 92]] [92 , [91, 92]] .. . ] 

cos Bi 0 sin Bi 

Number of states 

Rank sin Bi 0 - cos Bi 3 

0 1 0 

where [91, 92] = ~ 91 - ~ 92 is the Lie bracket of 91 and 92 . 

Stabilizability of the Unicycle robot at a point 

(2.3) 

According to the Brockett's theorem [34], a necessary condition for the smooth sta-
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bilizability of a driftless regular system is that the number of inputs be equal to 

the number of states of the system. Since this is violated with the unicycle type 

robot, a smooth time invariant control law fails to stabilize the robot asymptoti­

cally to a point [34]. Hence time variant or discontinuous control laws are need d 

to asymptotically stabilize the unicycle type robot to a given point. Time variant or 

discontinuous control laws employed to stabilize unicycle robots to a given point are 

shown in [35], [21]. It has also been established in [21] that the controllability of the 

unicycle robots about feasible trajectories (trajectories satisfying nonholonomic mo­

tion constraints) are possible with time variant or discontinuous control laws. The use 

of static and dynamic feedback linearization [32] for point stabilization and trajectory 

tracking of unicycle robots has been presented in [21]. 

2.1.1 Nonlinear Feedback Linearization 

Nonlinear feedback linearization is used to linearize the nonlinear systems using feed­

back. A differential geometrical approach [32] used to feedback linearize a given single 

input single output (SISO) system is presented here. A general (SISO) nonlinear sys­

tem is given by the following. 

x f(x) + g(x)u 

y h(x) 

Here x is state vector, y is system output and ·u is one dimensional input vector. It 

can possibly be linearized by the combination of a change of coordinates and a state 

feedback [32], [36] . 

N onlinear feedback linearization procedure according to [32] 

1. Differentiate y until input u appears. 
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2. The following results will yield, 

y h(x) = L~h 

y L}h + L9 (h)'u = L}h with L9 h = 0 

y = L}h + L9 (L}h)u = L}h with L9 (L}h) = 0 

= 

The relative degr e of the nonlinear system is the number of times the output y 

has to be differentiated before the control u appears. Hence the relative degree for 

the above 8180 system is r . 

If yr is defined as yr = Ujh + L9 (L'/ 1 h)u = a(x) + {3(x)u = v 

where a(x) = L!h, {3(x) = L9 (U/ 1h) with {3(x) =/= 0 and v is called the synthetic 

input. A linear controller can be designed for the above system with v = a(x)+f3(x)u 

[32], 
1 

u = {3(x) [-a(x) + v] 

Any linear method can be used to design v as given below. 

r - 1 

v = - L c~c L, (h) = - coy- c1iJ - c2jj .. 
lc= O 

(2.4) 

(2.5) 

If t he relative degree is equal to the number of states of the system, then the system 

is turned into Brunowsky [32] form, which is linear and controllable. If the relative 

degree is less than the number of states of the system then ther is internal dynamics 

present [32]. The internal dynamics is the part of the system dynamic which is un-
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observable. Sometimes they make the system unstable. Thus the internal dynamics 

are analyzed in the sense of zero dynamics to make things simpler [32]. The multiple 

input multiple output(MIMO) nonlinear system formulation is an extension from the 

SISO geometric feedback linearization formulation. 

Multiple input multiple output (MIMO) feedback linearization 

Considering a system where the number of inputs is equal to the number of outputs: 

(The following is obtained from [32]) 

m 

.-z: f( x) + 2: 9i(.7:)ui 
i = l 

m 

y [h1 h2 .. hmf with y:k = L'/(hk) + 2: L9;(L'/ - 1(hk))ui 
i=l 

Here x- state vector, ui - ith one dimensional input vector (there are m one dimen­

sional input vectors) , y- m x 1 dimensional output state vector and Yk = kth output 

channel. Also L'/(hk) = BL'j;:
1

hk x f(x) and L9;(U/ - 1(hk)) = aL[;:
1

hk x 9i(x) with 

L~(hk) = Yk = hk, where rk is the relative degree of each output channel k for some 

L9i (L'/ - 1(hk)) =/= 0. 

If there is a m x m matrix J ( x) such that, 

J(x) = (2.6) 
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The J(x) in Eq.(2.6) is called the decoupling matrix. If J(x) is assumed to be non-

singular and if we define, 

~ 
dt•! 

and l (x) = 

Both yr and l(x) are m x 1 vectors. Hence we get, 

yr = l(x) + J(x)u = v (2.7) 

v is a m x 1 vector and can be designed using linear techniques as in the SISO case 

above. Th n the control becomes [32]. 

Below we show how the static and dynamic nonlinear feedback linearization can be 

used to feedback linearize the unicycle system of Eq.(2.1) and drive the robot to a 

desired (xd, yd) Cartesian pose. Static and dynamic feedback linearization will be 

used to derive controllers necessary for formation control in the coming chapters. 

This serves as an explanation of the methods used. 

Static feedback linearization for point stabilization of unicycle robots 

The static f edback linearization for generalized SISO and MIMO systems has been 

explained in [21]. For Eq.(2.1): the Jacobian Matrix (Eq.(2.6)) derived through 

MIMO feedback linearization is singular. Hence it can be made non-singular through 

changing the output state (measurem nts) (xi, Yi) to an offset from the current output 
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(X',_I) (X',/) 

ii 

Figure 2.1 : Point (xd, yd) stabilization of nonholonomic mobile robots via (i.) static 
feedback linearization (ii. ) dynamic feedback linearization 

state (current output state is the the origin of the robot) . It results in, 

(2.8) 

Ox and oy are offsets from the origin of the robot-coordinate system in X R and Yn 

directions respectively. And (xi , Yi, Bi) are the current output state coordinates in the 

global-coordinate system while (xi, yf ) are the newest output state (measurement) 

coordinates in the global-coordinate system (see Fig.2.1 (i.) ). Differentiation of the 

newer output state coordinates with respect to time, results in a nonsingular dynamic 

system which is readily controllable. 

· n cos gi -Ox sin Bi - Oy cos Bi 

(:) 
xi 

iJi sin Bi Ox cos Bi - Oy sin Bi 

ei 0 1 

(2.9) 

Using the method ofMIMO nonlinear feedback linearization above applied to Eq.(2.9), 

a controllable system can be derived, which stabilizes the unicycle robot to a given 
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(xd, yd) Cartesian pose. It should be noted that this particular controller does not 

stabilize the origin of the robot to a desired pose. Instead it stabilizes the defin d 

ofl'set from the origin to the desired pose. 

Dynamic feedback linearization for point stabilization of unicycle robots 

T he dynamic feedback linearization for generalized SISO and MIMO systems has 

been explained in [21]. Since the decoupling matrix J(x) of Eq.(2.6) is singular for 

a unicycle type robot, dynamic extension or dynamic feedback linearization can be 

used to linearize the unicycle system.(see F ig.2.1 (ii.)) 

(2.10) 

where x 3 = vi and ai is the linear acceleration of the system, (xi, Yi, Bi) is the pose in 

Euclidean S E(2) coordinate system and (vi, wi) are the linear and angular velocities 

respectively. Taking z = [z1 z2]T = [xi Yi] as the output of the system, and through 

differentiation of Eq.(2.10) we g t, 

(2.11) 

The new Jacobian matrix is nonsingular as long as the axle is moving. Thus the sys-

tern has a singularity at Vi = 0. Again using the method of MIMO nonlinear feedback 

linearization, we can derive a controllable system which stabilizes the unicycle robot 

to a given (xd , yd) pose, but this time with a singularity at vi = 0. 
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2.2 Formation Control Methods 

The basic objective of a formation control problem is to keep a predetermined geo­

metric formation as much as possible while being adaptable to the changes of the 

environment. Either a detection of an obstacle or a wall needs a swift reaction from 

the robots involved in the formation such that the obstacles must be avoided or the 

walls must be followed. In doing so, the hard constraints of formation keeping should 

be relaxed and once the obstacles are avoided the robots can re-enter in to the forma­

tion. Centralized and decentralized strategies have been proposed and implemented 

to addr ss the formation control problem. In centralized methods there is a des­

ignated leader/leaders robot which essentially communicates its position, speed and 

other information to a set of other robots called followers and the followers move in to 

desired patterns with formation maintenance techniques. Some of the common cen­

tralized formation maintenance techniques are leader-follower [4], behavior-based [3] 

and virtual-structure [13]. 

Decentralized methods are thought of as implementing a formation pattern through 

a collective approach, where all robot poses and speeds are considered in building 

the formation. Consensus based formation control strategies [16], [17], [15] are ex­

amples to decentralized formation control. If decentralized state estimation is used 

in estimating the leader/leaders position and speed (in the leader-follower centralized 

formation control strategy) from the exteroceptive sensors of the robot without ex­

plicit communication, then that formation strategy becomes decentralized too. Robot 

initialization- geometric position assignment to robots which are initially in arbitrary 

locations [10], obstacle avoidance, inter robot collision avoidance and dynamic rol 

assignment [11] are some of the challenging issues in formation control. For this the­

sis, the problems of obstacle avoidance and wall following issues are considered with 

formation control. The existing formation control strategies with their merits and 
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demerits are explained below in a nutshell. 

2.2.1 Consensus based formation control 

Consensus algorithm has been used in many contexts, where there is a need for group 

consensus or agreeing to do or allow some form of a task. The rendezvous problem [37] 

is the easiest form of consensus for multi vehicle cooperative control. It is given by, 

n 

Xi= - 2::.: aij(Xi- Xj) (2. 12) 
k=l 

Single integrator dynamics for the agent i is considered. :r;k is the position of the 

agent k and there are n agents in the domain. aij is a weight representing the reli­

ability of information obtained through communication between the robots i and j. 

When Eq.(2.12) is executed for n number of point masses under no disturbance, the 

point masses will all arrive at the initial center of the configuration simultaneously 

(e.g: If three robots were placed initially at arbitrary positions, they will arrive at 

the center of it's initial triangle simultaneously). Formation stabilization, formation 

maneuvering through consensus algorithms are achieved by including formation con-

straints to Eq.(2.12). Most formation stabilization techniques assume that the robot 

positions and the shape of the formation to be maintained are pre-known. Hence each 

robot initializes its information state by proposing a formation center and a consen-

sus algorithm is used to agree on a common formation center by all or a majority of 

robots [16], [20]. Decentralized formation maneuvers are also modelled through con­

sensus based control strategies [38] , where an event such as a detection of an obstacle 

will make the group of robots maneuver away from the obstacle either by shrinking or 

expanding the formation. Decentralized formation maneuvers can also be executed 

via the consensus algorithms (by incorporating the formation maneuvering needs in 

the basic consensus equations). The basic consensus equation is in the continuous 
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mode of operation but apparently it has been extended to discrete time operation 

too. Consensus based control strategies are robust since there are no designated lead­

ers. Every robot has to contribute towards generating a solution. It increases fault 

tolerance but suffers from heavy bandwidth usage since every robot or a certain sec­

tion of robots must communicate with each other for the consensus control strategy 

to converge. Communication delays and certain topological graph constraints (e.g. : 

The robot communication topology graph should at least have one directed spanning 

tree [20]) makes it more vulnerable as the number of robots increase. Also the ef­

fect of noises to these given algorithms of formation control has not been properly 

addressed. 

2.2.2 B ehavior based formation control 

Different behaviors are fused together including the formation maintenance behav­

iors to enable a robotic team to reach navigational goals, avoid obstacles and also to 

maintain a desired formation shape [3], [39]. The behaviors are represented as motor 

schemas, which generate desired force vectors for each stimulus from the environ­

ment. The resulting control action is a weighted vector from those different schema 

vectors. [3] proposes such a behavior based approach by combining obstacle avoid­

ance, inter vehicle collision avoidance, goal seeking and formation keeping behaviors 

through their schema generated vectors. What's new in this approach, is the definition 

of a formation maintenance behavior through a new schema-vector. [3] accomplish the 

formation maintenance in two steps; 1.) detect-formation position 2.) maintain for­

mation. In order to detect formation position, [3] use a unit center referenced or a 

leader-referenced or a neighbor-referenced strategy, each of which needs the location 

of the other robots in the formation. Hence [3] uses inter-robot communication for 

this matter. Ones the formation position is known, the maintain-formation behavior 

generates motor commands to drive the robot to the desired formation position. 
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The maintain-formation motor schema is established through the concatenation of 

maintain-formation-speed and maintain-formation-steer motor schemas. These low 

level schemas are implemented through a set of rules which has numerous parameters. 

Hence this definition of a motor schema exhibits problems of correct value selection 

for these parameters in the set of rules. Also, such a motor schema definition will 

always drive the robot to an approximate pose instead of the real desired geometric 

pose. It can always be seen that, in order to keep a good formation one needs not only 

the feed forward command but also some feedback action too. A common difficulty 

for behavior based approaches of finding the correct modulating weights for different 

behaviors applies to this given solut ion in [3] as well. 

Social potential fields [40] have also been used in developing behavior based for­

mation control techniques. Social potential fields [40] are simple artificial force laws 

between pairs of robots or robot groups. They incorporate both attraction and re­

pulsion forces. A single robot's motion is controlled by the resultant artificial force 

of attraction and repulsion imposed by other robots of the system. Here also rep­

resenting a formation behavior is not mathematically sound, it will possibly give an 

approximate solution to formation maintenance but has some advantag s of large 

scale robot group deployment. [41] describes the use of artificial potential trenches to 

represent the desired geometric formation in navigation. Each robot is made to follow 

along the deepest regions of the potential field and are themselves distributed accord­

ingly to mimic the formation shape. This method also suffers from similar drawbacks 

seen above including use of extensive communication among all the robots. 
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2.2.3 Virtual structure based formation control 

A virtual structure based formation control method is presented in [13]. It is ob­

served that the relative positions of points in a rigid body remain fixed under any 6 

degrees of motion in the space. [13] uses this idea to develop a virtual structure based 

formation control method. In [13] , a virtual rigid structure is translated and rotated 

to mimic the required movement of the formation and control laws are derived to 

send the real robots to their fixed positions in the virtual structure. Disadvantages 

of this method are that the virtual structure position must be sent to all the ro­

bots by a central entity and the nature of the environment must be known a. priori 

in order to calculate the motion of the rigid structure. Obstacle avoidance probably 

needs some deformation of the virtual structure, which has not been addressed in [13]. 

Formation control through generalized coordinates has been proposed in [42]. Here, 

the formation is characterized by some generalized coordinates which include the ro­

bots position, its orientation and its shape with respect to a formation reference point. 

Control laws are developed for asymptotic tracking of trajectories resulting from the 

motion of these generalized coordinates. Although this method resembles a flexible 

virtual structure, all robots need their desired position information from a central 

entity. In Chapter 3, the development of a combined leader-follower virtual structure 

based formation control approach for nonholonomic mobile robots is presented. It 

is based on the trajectory tracking techniques for nonholonomic mobile robots. The 

feed-forward command for a virtual structure on the trajectory is derived from the 

current state and velocity profiles of a designated leader robot. The feedback action 

on the error of desired pose to the current is committed by some xisting trajectory 

tracking controllers [22], [23] for nonholonomic mobile robots. 
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2.2.4 Leader-follower based formation control 

A vision based formation control framework which builds the basis for this research is 

identified in [4]. It develops low level controllers based on static feedback linearization 

for formation control of nonholonomic mobile robots. Instead of communication [4] 

uses decentralized state estimation of the designated leader through an Extended 

Kalman Filter (EKF) for driving the followers in to formation . [4] uses two types 

I - If/ controller I -l controller 

Figure 2.2: l - 'l/J and 1-l controllers 

of feedback controllers for maintaining formations of multiple robots. Fig.2.2 shows 

these two controllers. The first controller in Fig.2.2: (l - 'l/.J) is used to maintain a 

desired length zd and a desired relative angle 'l/Jd between the leader and the follower 

as shown for differential drive mobile robots. The l - l controller in Fig.2.2 is a three 

robot formation controller where one robot (leader 2) follows another robot (leader 

1) using the l- 'l/J controller while another third robot (follower) is controlled to fol­

low the two leaders with zt3 and l~3 distances. Both of these controllers use static 

input/output feedback linearization to yield linear controllable ystems to drive the 

robots to desired values. Hence as explained in Chapter 1, these controllers does not 

stabilize the origin of the followers to desired values, but some offsets from the origin. 

In Chapter 3, the undesirable effects of stabilizing offsets from the origin of differential 
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drive robots to desired values instead of the real origin (if the offset is not coincident 

on the third castor wheel of the robot) are shown. Instead of stabilizing offsets from 

the origin to desired values [43] develops a similar l- 'lj; type basic formation controller 

through dynamic feedback linearization to stabilize the origin to desired values. (This 

controller was initially developed in this research and found later that it has already 

been formulated in [43]). 

The l -'lj; dynamic feedback linearized based basic formation controller of [43] processes 

a structural singularity. Hence both static [4] and dynamic [43] feedback linearized 

formation controllers are combined in this research, in order to overcome the struc­

tural singularity and to achieve an effective formation control solution. It is also 

shown in this research, that this particular l - 'lj; controller can be used with some 

modifications for single robot navigation too whereas [4] and [43] uses it only for 

formation maintenance. We also find that the effect of noise for these controllers 

given in [4], [43] has not been properly investigated, nor is there is any comparison 

of these controllers in terms of performance, noise tolerance etc. Inspired from the 

l - l controller in [4], this research also develops extended formation controllers both 

through static and dynamic feedback linearization means, to occupy wall following 

and obstacle avoidance capabilities in formation control. 

Another leader follower based formation control of a team of nonholonomic mobile 

robots using omnidirectional vision is described in [19]. By specifying the desired mo­

tion of the followers in the image plane, [19] translates the control problem to a visual 

servoing task. In order to estimate the state and velocity profile of the leader , [19] uses 

the rank constraint on the omnidirectional optical flows across multiple frames in the 

image plane of each follower. One problem of this approach is that the leader state 

estimation through omnidirectional optical flow is prone to error when establishing 
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the leader's linear and rotational velocities and it is more computationally involving 

too. 

2.2.5 Fuzzy based formation control 

The use of fuzzy logic for formation control is shown in [25]. Fuzzy rules are written 

specifically to maintain a column formation and are generalized to other formation 

types using virtual leaders so as having many column formations (with virtual leaders) 

inside any type of formation. There are linguistic "If and Then" sets of rules which 

control the robot rotation and linear velocity upon receiving laser measurements 

to maintain formation and to avoid obstacles. A higher level fuzzy coordination 

layer coordinates these formation maintenance and obstacle avoidance behaviors. The 

general problems encountered by the use of fuzzy systems such as difficulty of tuning 

the membership functions, modeling complexity increase due to any increase in the 

rule base, lack of a mathematical explanation of controllability, observability and 

approximate solutions when there is the possibility for near accurate solutions make 

the fuzzy based formation solution an unfavorable choice. 

2.2.6 Model Predictive Control based formation control 

A model predictive control (MPC) algorithm (called first state contractive-MPC) is 

propo ed in [24] to address issues of trajectory tracking, point stabilization and for­

mation control of nonholonomic mobile robots. This work claims to have obtain d 

locally optimized controls at every sampling interval for formation navigation which 

demands less control energy than other control techniques. [44] uses model predictive 

control as a local controller to increase the overall formation performance under nois­

ier inter-robot communication. Here the correlation of the quality of information to 

the formation performance is investigated. 
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All MPC schemes consist of a state prediction horizon and an optimum local control 

uk calculation at time k (this calculation depends on the state predictions and is o b­

tained through a performance index which consists of penalties and rewards). Hence 

the MPC algorithms have to calculate these predictions and solve for the optimum 

control values online. Such a computation is computationally expensive. Also mod­

cling a performance index under different disturbances from the environment with 

rewards and penalties is cumbersome. 

2.3 Behavior coordination in formation control 

The core behaviors of the formation control consists of formation keeping, obstacle 

avoidance and wall following. There can also be supportive behaviors of robot ini­

tialization, formation switching and dynamic role assignment. Those behaviors have 

to be well coordinated in order to yield an optimized formation control algorithm. [4] 

provides a gross controller switching strategy for nonholonomic robots in formation 

navigation. The l- '!/; and l-l controllers of [4] in Fig.2.2 are used for obstacle avoid­

ance and formation keeping purposes and are coordinated by a coordination rule set. 

It 's a hard coded rule set of "If and Then's" which lacks scalability as the number of 

robots increases. Adding new behaviors through new controller will also be difficult 

without major modifications of the rule set. 

A higher-level coordination layer to coordinate formation control behaviors based 

on a fuzzy logic control is proposed in [25] . The fuzzy formation maintenance and 

fuzzy obstacle avoidance controllers proposed in [25] are again coordinated by an­

other higher-level fuzzy layer. The general problems of fuzzy based control apply to 

the given solution as well. Tuning the membership functions, modeling complexity 

increase due to any increase in the rule base, lack of a mathematical explanation of 
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controllability, observability and then to the stability of the system are the problems 

of the usage of a fuzzy coordination layer in [25]. Behavior based formation control [3] 

proposes the combination of different behavior schemas for mobile robot formation 

control such that the end action is a result of action coordination. Different schemas 

for obstacle avoidance, wall following and formation maintenance are to be combin d 

together using modulating weights. Finding these correct modulating weights is a 

prime problem of any behavior based approach [45]. There are implementations in 

the written literature through the use of fuzzy context dependant blending or fuzzy 

discrete event systems to finding these weights [46] . But the use of fuzzy systems 

sufl'ers from the same problems outlined above for fuzzy coordination layer in fuzzy 

based formation control above. 

This research proposes the use of discrete event systems with supervisory control 

as a building tool for the coordination protocol of the multi robot formation control 

problem. Supervisory controlled discrete event systems have been used to build a co­

ordination platform for single robot navigation in [28], but they are not being much 

exploited for coordination problems in the multi robot domain. The use of supervisory 

control of discrete event systems provides the modelling ease, scalability, reusability 

for most applications which are based on event-triggered behavior transitions. 

2.4 Decentralized st ate estimation in formation con­

trol 

There are few research articles which deal with leader-follower based decentralized 

formation control by estimating the leader robot's state and velocity by the use of 

Kalman type filters. [4] uses an extended Kalman filter based strategy for leader robot 

state estimation. The results of estimation in [4] are for constant velocity profiles of 
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the leader and there are no any experiments of estimation for possibly changing veloc­

ity profiles of the leader. [18] deals with an implementation of visual tracking of mobile 

robots in formation. An image segmentation technique is used in [18] to segment pos­

sible leader robots from the images captured and uses decentralized state estimation 

to estimate segmented leader 's state and velocity profiles. For estimation [18] uses 

a Dual Unscented Kalman Filter (DUKF) . Again there is no experiment on state 

estimation for different velocity profiles of the leader (results show the angular veloc­

ity of the leader robot is kept at zero while changing the linear velocity). Moreover 

the effect of these noisy measurement on the formation controller used has not been 

experimentally evaluated. Also there seems to be no benchmarking on the estimation 

accuracy of different recursive Baysian filters, which can be used for leader robot state 

estimation. 

2.5 Summary 

• It is evident from the literature review that the leader follower concept is the 

basis for most of the existing formation control strategies due to its simplicity, 

scalability via hierarchy of leaders and followers , controllability, stabilizabili ty 

and flexibility etc. 

• It is also found that there is no substantial qualitative analysis on the different 

leader-follower based formation controllers in the written literature especially 

for nonholonomic mobile robots. 

• Although [4] provides interesting results of two local controllers for formation 

control, they all stabilize not the origin of the nonholonomic robot, but an offset 

of the origin to desired values. In Chapter 3, it is shown that stabilizing an offset 

from the origin (if the offset does not happen to be coinciding with the third 

castor wheel of the differential drive robot) has some undesirable effects on the 
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stability of the controller. 

• Also there is no benchmarking of possible recursive Baysian type filters for 

decentralized state estimation of the state and velocity profile of the leader­

robot. 

• Finally, the multiple behavior coordination problem has not been properly ad­

dressed in the domain of formation control, where formation maintenance, ob­

stacle avoidance, wall following has to be effectively coordinated for navigation. 
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Chapter 3 

Leader Follower Based Formation 

Controllers 

About this chapter: This chapter explains the development, simulation and com­

parison of different leader-follower based formation maintenance strategies for multi­

ple nonholonomic mobile robots. The key contributions of this chapter are, 

• Development and simulation of trajectory tracking type formation maintenance 

controllers. 

• Development and simulation of dynamic feedback linearized formation mainte­

nance controllers. 

• Comparison of trajectory tracking, static feedback linearized and dynamic feed­

back linearized formation maintenance controllers in terms of formation accu­

racy, noise tolerance and smoothness of control inputs using P3AT mobile ro­

bots. 

• Highlighting the undesirable effects of stabilizing offsets from the origin of the 

robot frame to desired formation values instead of stabilizing the origin itself to 

the desired formation values. 
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3.1 Background 

Leader based formation control requires that the followers keep predetermined geo­

metric formation with respect to t he leader robot. If the pose of the leader robot is 

known a priori, the desired position of the followers in the Euclidean SE(2) coordinate 

system can simply be described geometrically. These desired poses of followers be­

come fixed poses in the leader-robot coordinate system. Hence the entire motion for 

followers can be modelled solely through leader robot dynamics. The nonholonomic 

motion results in a path , which can be approximated through an accumulation of 

straight and circular path segments [47] . The motion of any point fixed in an offset 

to the origin of the leader robot coordinate system results in a similar path to that 

of when the point is the origin itself. Hence the path resulting from this fixed point 

is feasible for another nonholonomic mobile robot to track. This research proposes 

three types of formation controllers for the nonholonomic unicycle robots. Two of 

such controllers are developed through virtual robot path tracking techniques and 

another through dynamic feedback linearization. The first controller is based on the 

approximate linearization of t he unicycle dynamics described in [21] . The second 

controller is based on a Lyaponov-based nonlinear time varying design [22]. Third 

controller is developed through dynamic feedback linearization. It is also shown here, 

that the static feedback linearized formation controller described in [4] has flaws in 

terms of stability. Real time formation control simulation results through P3AT mo­

bile robots in MobileSim/PlayerStage are presented for comparison purposes of the 

developed controllers in terms of formation accuracy, noise tolerance and smoothness 

of control inputs. 
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3.1.1 Target robot: P3AT 

The experimental validation of the proposed and existing control schemas are carried 

out in P3AT mobile robots both in simulation and in the real physical world. P3AT 

description follows: 

Physical Description 

P3AT is a four wheel differential drive mobile robot with 50cm x 49cm x 26cm alu­

minum body with 21.5cm diameter drive wheels. Its four motors use 38.3:1 gear 

ratios and contain 100-tick encoders. On flat floors this robot can move at transla­

tional speeds of 0.6 ms- 1 and rotate at a maximum angular velocity of ±43°s-1
. On 

flat terrains, it can carry a payload up to 30 kg at slower speeds and these payloads 

must be balanced appropriately for effective operation of the robot. The three fully 

charged batteries allow the robot to run for 3-6 hours. P3AT includes a Renesas 

SH7144 based microcontroller and it has multiple I/ 0 varieties and these user I/0 

are integrated into the packet structure, accessible through ARIA software. It has 8 

forward and 8 rear sonars which can sense obstacles from 15 em to 7 m. P3AT can 

be optionally loaded with global position systems (GPS), differential GPS (DGPS), 

bumpers, gripper, vision, stereo range finders, laser range finders and compass etc. 

P3AT controlling Architecture 

ARCOS (Advanced Robot Controller Operating System) which runs on the robot 

embedded computer transfers sonar readings, motor encoder information and other 

I/0 via packets to t he PC clients and returns control commands from the clients. The 

communication to a PC client can be est ablished through (a.) wireless radio modem, 

(b.) robot-to-laptop connector, (c.) robot-to-desktop tether, (d.) connection to an 

embedded computer. Using ARIA Robotics API, users can write C/C++ or Java 

programs to control the robot. The API provides a richer control interface to control 
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the robot to do mapping, navigation, vision, cooperation and manipulation etc. Also 

this interface provides the user with lower level control ability of th robot: The linear 

v and the angular w speeds can be set to drive the robot or the speeds of left W£ and 

right wn wheels can be independently set to drive it. 

Control constraints 

The P3AT robot has saturation levels of the linear and angular velocities and linear 

and angular accelerations. 

IV I::; Vmax = 0.6ms- 1
, I WI::; Wmax = 0.75rads - 1 

I a I::::; amax = 0.3ms- 2
, I a I :S CXmax = 0.8rads- 2 

With these given constraints the controllers need a velocity scaling so as to preserve 

the path curvature radius originated from the given v and w. (since the linear and 

angular velocities are upper bounded, a velocity scaling is used to give the same ratio 

of v : w, such that the robot moves in the same path, but now with different linear and 

angular velocities). Hence the actual commands for the robot are computed through 

a procedure given below: 

A= max{l VI /Vmax, I WI /wmax, 1} 

If the scaled down linear and angular velocities are v8 and w8 respectively, we have: 

If (A ==I V I /Vmax) then V8 = sign(v)vmax, Ws = wj A 

Else If (A ==I w I /wmax) then V8 = vj A, W8 = sign(w)wmax 

Else V8 = v, W 8 = w 

With this choice, the shape of movement for a particular task will be preserved but 

tracking targets of inaccessible velocities and distances will be infeasible, which is 
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rightly justified owing to the mechanical constraints of the system. The MobileSIM 

simulator also captures the uncertainty of the wheel encoder measurements, com-

munication delays and uncertainty of other measurements etc. Hence a real world 

simulation can be worked out with the simulator. 

3.2 Virtual robot tracking based formation con-

trollers 

'fracking a virtual robot path and its desired velocities requires a combination of a 

nominal feed forward command with a feedback action on the error [48]. In formation 

control the pose of the virtual robot and its velocities to which the actual designated 

follower must reach to, is gained through the geometrical relationship of the virtual 

robot to the actual leader. 

3.2.1 Feedforward Command Generation 

Assuming that the leader robot 's pose at time t is [xt Yt Bt]T and the velocities 

being [vt wt]r , we can describe the desired position of the follower as an offset of Ox 

units and oy units from the origin to X and Y directions respectively in the leader 

robot coordinate system. (x{, y{ , B{) is the desired pose for a follower robot in the 

Euclidean S£(2) coordinate system. E.q.3.1 is taken from Fig. 3.1. 

·f cos Bt -Ox sin Bt - Oy cos Bt 

( :: ) 
Xt 

·f sin Bt Ox cos Bt - Oy sin Bt Yt 
e·I 0 1 t 

(3.1) 

The feed-forward command gen ration of unicycle robots involves generating desired 

poses (x{,y{,B{) and desired velocities (v{,w{) at a given timet. The desired poses 
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Virtual robot f f 
xr ·Yt [x{ j' = (c~s e -sin e)(o·J .... (x,) 

y{ Sill e cose . o., Y, 

e Ox and OY are the desired offsets 
from the origin of the robot 

coordinates in the directions 
of robot X and robot Y 

Xr,Yr [:;j =[::T~~::E~~~:Jiy(~) 
X iJ/ 0 1 · ' 

Figure 3.1: Virtual robot representation for tracking based formation control 

can be easily taken as shown in Fig. 3.1. The desired linear and angular velocities 

are taken as in [48], given by Eq.(3.2) ; 

and 
Y··f :i/ - i/y· f wf _ t t t t 

t - (.7:{ )2 + (y{)2 
(3.2) v{ = ±) x{ +iJ{ 

Here the w{ is derived through defining B{ as; 

e{ = atan2(y{' x{) + b r k = 0, 1 (3 .3) 

k = 0 for forward motion and k = 1 for backward motion respectively. 

It is found that the angular velocity of the leader Wt is same as the desired angu­

lar velocity of any virtual follower. In order to directly use the angular velocity of 

the leader robot W t as the desired velocity of the virtual follower , we prove below that 

the definition of 0{ in Eq. (3.3) is equal to the orientation of the leader robot Ot . 

Theorem: Given an initial posture [x0 y0JT and a desired trajectory [x{ y{JY 

at time t, there is a unique associated state t rajectory q{ = [x{ y{ O{jT which can 
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be computed algebraically as, 

Bt = e{ = atan2(y{, .7:{) + br k = 0, 1 (3.4) 

k = 0 for forward motion and k = 1 for backward motion respectively. 

proof: Through differentiation of e{ = atan2(y{, x{) + br of Eq.(3.4), we get, 

I :y{ x{- x{ iJ{ 
w - --'-.,.--'----'-.,...;-

t (:i:{)2 + (y{)2 
(3.5) 

Assuming Ox and Oy are constants with Vt and Wt both being zero, substitution of the 

values of Eq.(3.1) and its differentiated values of x{, y{ , x{ andy{ in Eq.(3.5) results 

1n, 

Where Vt and Wt are the linear and angular velocities of the leader robot respectively. 

Hence J w{ dt = J Wtdt = e{ = Bt . Note that w{ is not defined for when Vt = 0. The 

only time the follower experiences Vt = 0 is when the leader robot is at rest. In order 

to overcome this discontinuity at Vt = 0, we propose that the follower may switch to 

a similar posture stabilization control routine at Vt = 0, to move to the desired pose 

with respect to the leader 0. 

Hence the feed forward commands developed are, 

and 
.. , . f .. J ·f 

f Yt .'l:t - Xt Yt w - w - -;;----;;--
t - t - (x{)2 + (y{)2 (3.7) v{ = ±}.7:{ + y{ 

Trajectory tracking needs to combine the feed forward commands generated in this 

section with an action on the feedback error. Below, we describe two such existing 
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controllers which achieve this objective using the feed forward commands generated 

here. Th resulting action from these controllers will be formation maintenance for 

nonholonomic mobile robots. 

3.2.2 Approximate linearization based formation controller 

If the state tracking error is defined as in [23], 

el coset sin et 0 xf- xs t t 

e2 - sin et coset 0 y{ - Yt (3. ) 

e3 0 0 1 (Jf - (}8 
t t 

Where [x{, y{, e{] is the desired pose and [xf, yt, efj is the actual follower pose at time 

t. Through a nonlinear transformation of the velocity inputs of the follower , the new 

velocity commands [vr wrl have the following relationship. ( vt) wn is the linear and 

angular velocity of the follower robot respectively. 

(3.9) 

Then the error dynamics become, 

0 w{ 0 0 1 0 

e= -w{ 0 0 e + sin e3 v{ + 0 0 (3.10) 

0 0 0 0 0 1 

Through linearizing Eq. (3.10) around the reference trajectory on obtains a linear 

time varying system. If a linear fcedba k law is defined as in [23]: 

(3.11) 
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Where the choice of gains is (see [23]), 

k1 = k3 = 2c1 J(v{)2 + (w{) 2 , k2 = c2 I v{ I where c1 E (0, 1) and c2 > 0, one 

can substitute the controls of Eq.(3.11) to the linearized system around the desired 

trajectory of Eq.(3 .10) to obtain, 

vf = v{ cos(e{- en + kl((x{- xf) coset+ (y{- yt) sin en 

wt = w{ + k2sign(v{)((y{- yt) coset- (x{- xf) sinef) + k3(e{- en 
(3.12) 

( x{, y{, e{) is the desired pose and ( xf, yf, et) is the current follower pos in Euclid­

ean SE(2) coordinate system at time t. (v{, w{) is the desired velocity at time t 

and (vf, wt) is the follower robot velocity input at timet. With these control signals 

and the feed-forward desired velocities and desired pose generated in section "Feed­

Forward Command Generation" we simulate and run 5 P3AT type robots with a 

designated leader to desired formations. Afterwards these controls will be imple­

mented in 2 physical P3AT mobile robots, one being the leader and the other, the 

follower. 

Simulation Results 

The simulation uses 5, P3AT type mobil robots as followers with one designated 

P3AT lead r robot. The gains for followers are taken as c1 = 0.9 and c2 = 15. The 

simulation spans 4 different courses for the leader robot. 

• leader moves with constant (vf,wf). 

• changing angular velocities of the leader ( v[, wf) while keeping the linear velocity 

a constant. 

• constant angular velocity with a changing linear velocity (vf, wl). 

• both lin ar and angular velocities are changing (vf wf) .. 
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The norm of the formation errors and the quality of the driving inputs are considered 

for comparison criteria for the formation controllers developed in this section. The 

formation geometry described above, in terms of offsets of Ox and oy in the respective 

X and Y leader robot coordinate system from its origin is converted to a new polar 

geometric system(Fig. 3.2) for comparison ease with the remaining controllers. Thus 

the formation geometry can be described by, 

• Distance from the leader to the follower: dts 

• Orientation of the follower's location in the leader robot coordinate system: f3ts 

• Relative orientation difference of the leader and follower: Bts 

The formation geometry from the above variables can be calculated as, 

dts = J(x t - Xs )2 + (Yt - Ys)2 

f3ts = - Bt + 1r + atan2(Yt - Ys, Xt - Xs) 

subscript l stands for the leader and s stands for the follower. (xt, Yt , Bt) is the pose of 

the leader while (x8 , y8 , Bs) is the pose of the follower in the Euclidean SE(2) coordi­

nate system. Hence the formation errors can be described as ed = dd - d18, ep = {3d-f3ts 

and e0 = ed - Bts· (dd, {3d, ed ) are the desir d formation values in the new polar co-

ordinate system. An example velocity course with a constant linear velocity and a 

changing angular velocity of the leader is shown in Fig. 3.3, while the resulting forma­

t ion errors by the application of approximate linearization based formation control 

are depicted in Fig. 3.4. For clarity of images, we only depict the formation er­

rors of two followers out of 5 followers in the simulation. The follower-1 's desired 

formation geometry is (ddesired = lm {]desired = 2!: rads e = Orads) and the other de-ts ' ls 2 ' ls 

Picted follower-4's desired formation variables values are (ddesired = 10m {]desired = ls yo ' ls 

-irr rads, Bts = Or ads). It is observed that the distance-dts and the bearing-f3ts errors 

converge almost to zero, while the relative orientation difference-B1s error stays small 
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Figure 3.2: Formation geometry in the new coordinates system 
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Figure 3.3: Example velocity course for the leader robot (vf, wf) 

bounded around zero. When the desired bearing is ±~, the relative orientation error 

()18 goes almost around zero while for other desired bearing values, the Bts error stays 

bounded around zero. It can be attributed to the fact that the generated trajec-

tory is very consistent with the leaders path and its velocities for a follower robot 

whose bearing is±~ , while for other bearing values the generated trajectory from the 

above feed-forward command generation is roughly consistent. The velocity profiles 

for these two followers are depicted in Fig. 3.5. 
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Figure 3.4: Formation errors for two follower robots:Blue color represents follower 
robot-1 's and the red color represents follower robot-2's formation errors 
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Figure 3.5: Linear and angular velocities for the two follower robots:Blue color rep­
resents follower robot-1 and the red color represents follower robot-2 

3.2.3 Lyapunov function based nonlinear formation controller: 

For the same error dynamics given in Eq.(3.10), If the linear and angular velocity 

controls are defined as in [22], 

( :~ ) ( (3.13) 

( vt, wf) are the linear and angular velocities of the follower robot. ( v{, w{) are the 

desired linear and angular velocities. k2 > 0. k1 ( v{, w{) and k3 ( v{, w{) are posit ive 

continuous gain functions. (e1 , e2 , e3 ) are as in Eq.(3.10). Equation 3.13 becomes a 

controller based on a Lyapunov function of, 

When v{, w{ and its derivatives are bounded and if v{ -A 0 and w{ -A 0 as t ~ oo, 
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the above control in Eq.(3.13) globally asymptotically stabilizes the origin e _ 0 [22]. 

Using similar choices of the gains as in the approximate linearized formation con­

troller, If we choose, k1 = k3 = 2c1 .J(v{)2 + (w{) 2 where c1 E (0, 1) and k2 = b > 0, 

the application of the controls of Eq.(3.13) to the error dynamics of Eq.(3.10) results 

1n, 

v~ = v{ cos( B{ - BD + k1 ( ( x{ - x:) cos()~ + (y{ - yt) sin Bt) 

ws - wf + k vf sin (0{ - Ot) ((yf - y8) cos ()8 - (xf - x8) sin ()8) + k (Of - ()8) t - t 2 t 01 _ 0• t t t t t t 3 t t 
t t 

(3.14) 

( x{, y{, B{) is the desired pose and ( xf, y~ , Of) is the current follower pose in Euclidean 

SE(2) coordinate system at time t. ( v{ , w{) is the desired velocity at time t and 

( vf , wt) is the follower robot velocity input at time t. 

Simulation Results 

The simulation is again carried out with five P3AT type mobile robots for the same 

path courses of the leader as above in ,, Approximate linearization based formation 

control" with the same starting positions for the followers and the leader and with 

gains of: c1 = 0.9 and c2 = 15. Again for clarity of images, we only depict 

the formation errors of two followers out of five followers in the simulation in Fig. 

3.6. The follower-1 's desired formation geometry again is (dt;sired = 1m, j3fsesired = 

~rads, ()18 = Orads) and the other depicted follower-4's desired formation variables 

values are ( df:sired = v'Sm, j3fsesired = -;71' rads, Bts = Or ads). It is again observed that 

·v ~ ., 
! ·• 

'" ·• ·• ., 

Distance Error 

time · • 

Beartng Error 

""v 

lime · • 

Rei1Uve Ortentatlon OIHa,..nce 

1-tol-tl 
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Figure 3.6: Formation errors for two follower robots with nonlinear control:Blue color 
represents follower robot-1's and the red color represents follower robot-2's formation 
errors 
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the distance-d15 and the bearing-,615 errors converge almost to zero, while the relative 

orientation difference-015 error stays small bounded around z ro. It is seen that when 

the desired bearing is±~, the relative orientation error 015 again goes almost around 

zero while for other desired bearing values, the 015 error stays bounded around zero. 

The scenario is similar to the case with "Approximate lin arization based formation 

control" above. Since the same feed forward command generation generates the de-

sired trajectory and the desired velocity profiles, the logic of consistent trajectori s 

for bearings of ±~ and rough consistent trajectories for all other bearing values will 

govern the behavior of relative orientation difference error over time. The velocity 

profiles for these two followers with nonlinear control are depicted in Fig. 3. 7. 
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Figure 3.7: Velocity profiles of the two follower robots with nonlinear control::Blue 
color represents follower robot-1 and the red color represents follower robot-2 

In the trajectory tracking type formation controllers the feed-forward command gen­

eration happens to be the same while the feed back action on the rror is implemented 

through the approximate linearization of unicycle dynamics and again with a Lya­

punov based nonlinear design. The relative orientation rror stays bounded for all 

the bearing values except for ±~ where the error goes to zero. That is attribut d 

to the fact of consistent and roughly consistent trajectories generated through feed-

forward command generation. Another significant conclusion is that as the desired 

distance of the follower gets farther and farther away from the leader robot, any small 

sudden rotational displacement of the leader requires a much larger displacement of 
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the followers ' positions where the demanded linear and angular velocities for such 

manoeuvres fall outside the velocity limits of a real robot. 

3.3 Static and Dynamic feedback linearized forma­

tion controllers 

This section presents two other formation controllers whose error coordinates are 

transformed to a new coordinate system as shown in Fig. 3.8. The static feedback 

linearized formation controller is based on [4] and the dynamic feedback linearized 

controller is developed in this research initially (later it is found that the controller 

has already been formulated in [43]). The formation can be described by, 

y 

X 

Figure 3.8: Formation Controller in new coordinate system 

dts V(Xt- Xs)2 + (Yt- Ys)2 

f3ts -Ot + 7r + atan2(Yt - Ys, Xt - Xs) 
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Differentiation of these formation variables results in, 

0 -1 

- COS fJls 0 

0 1 
( :: ) (3.15) 

COS lls 0 

sin .Bt. - l 
---ci;;-

where 015 = (}1 - 05 is the relative orientation between the leader and follower. / ls = 

els + f3ls, while 'U,j = [vl wt] is the exogenous input by the leader robot to the system. 

u5 = [v5 w5 ] is the follower's driving inputs. The decoupling matrix ( decouples 

control variables from state variables) in this context is singular. 

3.3.1 Static feedback linearized formation controller 

By performing a change on the current output state vector of the follower (changes 

the current output state by an offset valued vector to refer to another location on th 

robot except the origin) [32], [36], [34], we get, 

(3.16) 

Ox and oy are offsets from the origin of the follower robot-coordinate system in Xs and 

Ys directions respectively. And (x8 , Ys) are the current output state vector coordinates 

in the global-coordinate system while ( :r;~ , y~) are the newest output state vector 

coordinates in the global-coordinate system. The resulting new formation variables 

are given below. 

f3ls - {}l + 1r + alan2(yl - y~ , xl - x~) 
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For simplicity we make the offset oy = 0 in Eq.(3.16). Hence the new measured 

outputs x and y happen to lie on the X axis of the follower robot coordinate system 

with an offset of Ox units from it 's origin. Differentiation of the newer output coordi-

nates with respect to t ime results in a nonsingular dynamic system which is readily 

controllable [4]. 

dts COS 'Yls Ox sin "fls 

( :: ) 
- cosf3ts 0 

( :. ) /Jts ~ Ox COS 111 + sin !31• - 1 (3 .17) 
d1 s d1s d1 s 

els 0 -1 0 1 

By applying nonlinear static feedback linearization, the inputs of the follower robot 

are given by, 

Where Zts = [dts f3tsV is the system output, k = [k1 ~]T > 0 are the controller 

gains, while zt = [d1s fJtJT are the desired relative distance and bearing of the 

follower robot from the leader robot. u1 = [v1 wt] is the exogenous input by the 

leader robot to the system while Us = [v8 w8 ] is the follower's driving inputs. F1 and 

G1 are given by, 

G 1 = ( ::~,~:: 
dt s 

Ox Sin "fls ) 
O:r. COS)'j 1 

dts 

It has been proved in [4] that by applying the above follower controls, the system 

outputs [dts f3ts ] exponentially converge to the desired values of [d1s fJtJT. And by 

using theory of perturbed systems [32], [36] it has also been proved that II fit s II ~ o 
for small c5 2: 0 as t ~ oo. Another significant fact is that when [dts f3ts] converge 

to t he desired values, it means that the new output state vector calculated with an 

offset of Ox units from the origin converges to the desired location, but not the origin 

of the robot coordinate system. 
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Simulation Results 

The simulation, equivalent to the ones already performed for the previous controllers 

in this chapter is yet again performed for this controller with gains of: k1 = 0.9 and 

k2 = 0.9. The formation errors for two followers out of five followers in the simulation 

is shown in Fig. 3.9. The follower-1's desired formation geometry again is (d1:sired = 

1m, fJtesired = ~rads, ()15 = Orads) and the other depicted follower-4's desired formation 

variables values are (#;sired = v'sm, fJtesired = -;rr rads, 015 = Or ads). The velocity 

Ollt•nc• Error 

tlme · l r b:J 
: .. : 
! ... 
E ... 
~ ... r ... ... .,. 

BMfingError 

Figure 3.9: Formation errors for two follower robots with static feedback linearized 
control:Blue color represents follower robot-1's and the red color repr sents follower 
robot-2's format ion errors 

profiles for these two followers with nonlinear static feedback linearization are depicted 

in Fig. 3.10. As can be seen from Fig. 3.9, relative orientation error tays bounded as 
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time · • 

Figure 3.10: Velocity profiles for the two followers with static feedback linearized 
control:Blue color represents follower robot-1 and the r d color represents follower 
robot-2 

proved in [4]. The shown course of the leader is obtained through changing angular 

velocity while keeping the linear velocity at a constant. Angular velocity of the 

follower-4 seems quite noisy when compared to the angular velocities generated from 

previous controllers for the same follower. 
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3.3.2 Dynamic feedback linearized formation controller 

The singularity of the decoupling matrix of 3.15 can be removed through the dynamic 

extension [32], [36], [34] such that Vs of the follower robot is taken as a dynamic state 

of the system. The first integrator of Vs is taken as a control variable for the follower 

along side Ws · 

(3.19) 

as is the linear acceleration of the follower and ~s is the dynamic extension to v 5 • 

Substituting the new variables to 3.15 results in, 

0 - 1 

- COS f3ts 0 

0 1 
(:) (3.20) 

COSits 0 

sin f3ts - 1 ---;r;;-f3ts 

Differentiating 3.20 with respect to time results in, 

(3.21) 

Again o;s = Wt-Ws and Zts = [dts f3ts]T is the system output and Ut = [at wt] are the 

exogenous input by the leader robot to the system where at is the linear accelerat ion 

of the leader and Wt is the angular velocity of the leader. u"s = [as ws] is the follower's 

driving inputs and as is its linear acceleration while w5 is the angular velocity. And 

G2 , F2 and L are given as, 

COS Its ~s sin Its ) ' 

{ s COSJts 
dt s 

_ ( - COS f3ts -~s sin Its ) 
F2-

sin f3ts - { s cos ]ls 

dts dt s 
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Hence the singularity is overcome with the dynamic extension. Yet there exists a 

potential singularity, when f.s = V8 = 0. That is when the axel of the mobile robot is 

not moving. This is perhaps a structural singularity to nonholonomic unicycle typ 

mobile robots [48]. In order to overcome this singularity, we use only a naive approach 

that resets the state of f.s once the velocity of the axel falls below a lower threshold. 

This can be established through imposing a constraint for the followers as : the linear 

velocity of the follower V8 > ll v~owerll where v~ower is the lower threshold, a smaller 

positive value. If v 8 falls in between -v~ower and +v~ower from any fe dback controls, 

then we reset it to -v~ower or +v~ower depending on which side (negative or positive) 

the follower velocity decreased from. Thus it results in a bounded velocity input 

with isolated discontinuities with respect to time. By applying nonlinear dynamic 

feedback linearization to a closed loop system of Eq.(3.21), the control variables of 

the followers can be given by, 

Here Cis the auxiliary control input given by C = [c1 c2]T, 

(3.23) 

And zt = [ d1s ,BtJT are the desired relative distance and bearing of the follower robot 

from the leader robot . (k1 , k2 , k3 , k4 ) are controller gains. It is seen that by applying 

the inputs 3.22 to the closed loop system resulting from 3.23, the outputs [dls ,Bls] 

exponentially converge to the desired values [dt ,BtJ. Hence in order to prove the 

given system is stable, it is sufficient show that the orientation error Bls remains 
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bounded as t----+ oo. Here we assume that, leader robots Vt > 0 and II Wt 11::; Wmax · 

For the follower Vmax 2:: V8 > V~ower , II a 8 11::; amax and II W8 11 ::; Wmax · Hence by using 

the stability th ory of perturbed systems [36] , it can be shown that, 

II Bts II::; o for small o 2:: 0 as t ----+ oo. 

Thus the formation controller in (3.21 ,3.22) is stable. 

Simulation Results 

The same simulation performed for the controllers above is perform d for this con-

troller with gains of: ki = 0.9 for i = (1 .. , 4) . The formation errors over time 

for selected two followers out of five followers in the simulation is shown in Fig. 

3.11. The follower-1's desired formation geometry again is (df:sired = 1m, fltesired = 

~rads, 018 = Orads) and the other depict d follower-4's desired formation variables 

values are ( df:sired = JBm, fltesired = -i1r rads, 018 = Or ads). The initial starting velo -

ities of both follower robots are 0.01m/s. The velocity profile for these selected two 
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Figure 3.11: Formation errors for two follower robots with dynamic feedback lin­
earized control:Blue color represents follow r robot-1 's and the r d color represents 
follower robot-2 's formation errors 

followers with nonlinear dynamic f edback linearization are depicted in Fig. 3.12. 

Again it is se n that the relative orientation error stays bounded as proved in [4] . 

The shown v locity course of the leader is obtained through changing angular veloc­

ity while keeping the linear velocity at a constant. It is also obs rv d that the linear 

and angular v locities are much smoother than the velocities obtained by the previou 

illustrated controllers. 
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Figure 3.12: Velocity profiles for the two followers with dynamic feedback linearized 
control:Blue color represents follower robot-1 and the red color represents follower 
robot-2 

3.3.3 Formation Controller Comparison 

For different courses of velocity profiles of the leader robot, five P3AT type follower 

robots are driven to desired formations using the different formation controllers ex-

plained earli r in this chapter. The starting 2-D SE(2) poses and starting velocities 

of the follower robots are kept the same t hrough out all simulations involving the 

different controllers and different courses of velocity profiles yielded by the leader 

robot. In all of these simulations, for the first tp = 400 time units, the leader robot is 

driven with constant linear v1 and a constant angular w1 velocity. The time above is 

more than enough to bring all the followers in to desired formations. Once tp time is 

passed the RMS error of formation variables ( di;ror, f3!;ror) and ( Bi;ror) are recorded 

for each robot in the formation. For ach different velocity profiles of the lead r 

robot, we calculated the RMS error of each formation variable per one follower for 

comparison purposes. Thus giving a holistic error indicator metric for the whole for­

mation. The courses of velocity profiles of the leader in which the followers were run 

in to different geometric formations are given in Fig. 3.13. And the follower robots 

desired formation variables are given in Table 3.1 The different formation controllers 

implemented and simulated in this chapter are listed as controller 1 to 4. They are 

given as, 

• controller 1 - Approximate linearized trajectory tracking type formation con-
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II II follower-1 II follower-2 II follower-3 II follower-4 II follower-5 II 

U~ll i II i· II i II f II ~ II 
Table 3.1: Desired formation variable values for the 5 P3AT follower robots 

llldlt RoboC IIMII Velocity leedfi Robot Angu .. r Veklclty .. 
I :1 1 "' 1\ I . ·~ 

! ·: H SOl .. ~v 1201 1501 1801 . 
~· ~· ~· oMo .... 

·~· tim•·• 
tlmt-1 

3.13.1: velocity profile 1 

l.ader Robot Unellr Vt+ocity 

i :1 ... 
! ~t:====-----------

ltm•·• lime · • 

3.13.2: velocity profile 2 

Laad11 Robot L..lr'Mtar Velocity leacler Robot Atlg\Qr Vllloc:lty 

l :1 ~ l :1 ~ I 

i ~ '" ... ~· ~ f : 
> • 

~· '" ~· ·~ '"' '"' . 
llnw·• W- · t 

3.13.3: velocity profile 3 

Figure 3.13: Leader robot Velocity Profiles 

troller 

• controller 2 - Lyapunov based trajectory tracking type formation controller 

• controller 3 - Static feedback linearized l - /3 type formation controller 

• controller 4 - Dynamic feedback linearized l - /3 type formation controller 

Fig. 3.14 shows that six, Pioneer-3-AT type mobile robots are run to formations with a 

designated leader in the middle, by the different formation controllers 1-4, developed. 

The given example figure of Fig. 3.14 is for a type-1 velocity profile of the leader. The 
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c 

Figure 3.14: 5- P3AT follower robot formation drive with a P3AT leader robot using 
(a. )controller-1 (b. )controller-2 (c. )controller-3 ( d.)controller-4 

resulting formation RMS errors per follower robot per unit time are given in Table 
d er ror + {3error + 8 er1"o1· 

3 2 Individual d error {Jerror e error as well as holistic '• '• '• errors are given 
· · l s ' l s ' l s 3 

for each velocity profile of the leader. And lastly the average individual and holistic 

RMS error component are given for each controller. From these results it 's sufficient 

RMS errors d error 
l s 

{Jerror 
ls 

e error 
ls formation error 

Leader velocity profile 1 
controller 1 0.0533 2.5741 18.3964 7.0080 
controller 2 0.0718 3.2726 18.2408 7.1951 
controller 3 0.0128 0 .8470 19.0622 6.6407 
controller 4 0.0166 1.0526 18.6247 6.5646 

Leader velocity profile 2 
controller 1 0.0423 2.0728 5.3498 2.4883 
controller 2 0.5493 3.8823 8.1171 4.1829 
controller 3 0 .0284 1.4150 5.5565 2.3333 
controller 4 0.0361 1.8062 5.3780 2.4068 

Leader velocity profile 3 
controller 1 0.3345 10.3393 24.1732 11.6157 
controller 2 0 .3100 12.0413 22.1300 11.4938 
controller 3 0.6143 8 .9711 24.9390 11.5081 
controller 4 0.8511 10.3688 24.7626 11.9942 

I Average Error value for all the above velocity profiles I 
controller 1 0.1434 4.9954 15.9731 7.0373 
controller 2 0.3104 6.3987 16.1626 7.6240 
controller 3 0.2185 3.7444 16.5192 6 .8274 
controller 4 0.3013 4.4092 16.2551 6.9885 

Table 3.2: RMS formation error values for the different formation controllers devel­
oped above 

to conclude that the static feedback linearized controller outperforms it 's count r-
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parts with a narrow margin. It minimizes f3i;ror to a much lesser value than anyone 

else but suffers from a high er;ror value more than the rendered respective value from 

other controllers. Another flaw of this controller is that the given formation control 

law does not stabilize the origin of the robot, instead an offset point from the origin. 

Thus the comparison of these values may be somewhat controversial. On the oth r 

hand, both approximate linearized and Lyapunov based nonlinear trajectory tracking 

type controllers keep the B!;ror at a possible minimum. The approximate linearized 

formation controller also tries to keeps df;ror at much more lower values throughout 

the simulation than the others. The Lyapunov based nonlinear formation controller 

has shown better performance with varying v1 and w1• The dynamic feedback lin­

earized controller is next better to the static feedback linearized controller. It keeps 

pretty decent error ratings for each formation variable and for the average errors. If 

it had not been for the discontinuity at Vs = 0 the error ratings of this controller 

would have been more improved. These results are taken by setting the gains of the 

controllers to arbitrary values belonging to the regions of convergence in the selected 

controllers and through many trials with real world noises and communication delays 

(leader information is communicat d to followers at each ~t time unit) . Hence the 

comparison is not 100% accurate, but rather expressive, informative and somewhat 

reliable. From the velocity profiles of followers 1 - 5 in figures 3.15 to 3.17, it can be 

concluded that both 1.) approximate feedback linearized, and 2. )nonlinear Lyapunov 

based controllers exert much oscillation in their respective linear velocities but quite 

stable in rendering the angular velocities. Static and dynamic fe dback linearized 

controllers on the other hand renders a much smoother linear velocity profile for all 

the followers. But the static feedback linearized controller has more noisy angular 

velocity profile(highly oscillating) , whereas the dynamic feedback linearized controller 

has a very smooth angular velocity profile across all followers, more smoother than its 

counterparts. (Note: follower 2 in controller- 4 of figure 3.16 angular velocity shoots 
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Figure 3.15: Linear and Angular velocity profiles for Follower 1 and 2 
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Figure 3.16: Linear and Angular velocity profiles for Follower 3 and 4 
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at around t = 1600. This happens when its linear velocity reaches zero- the singular­

ity point and its linear velocity is reset through a naive approach as mentioned above 

under the dynamic feedback linearized controllers. Hence as a result of this discon­

tinuity, the overshoot happens.) . All in all considering all the given controllers, the 

dynamic feedback linearized controller outperforms all of its counterparts but suffers 

from the singularity when its linear velocity Vs = 0. 

3.4 Summary 

Leader follower based formation maintenance controllers were developed and com­

pared with each other for formation error and input smoothness. Formation errors of 

these controllers for arbitrary velocity profiles of the leader robots were recorded with 

P3AT type robots. Results suggest that all of the controllers perform well, to keep 

the formation errors of nonholonomic robots as small as possible. The smoothness of 

the control variables (vs, ws) for the follower robots, from these different controllers 

suggest that dynamic feedback linearized inserts much smoother controls than others, 

but suffers from a structural singularity when Vs = 0. The static feedback linearized 

formation controller has highly oscillating angular velocity, partly attributed to the 

inflexibility of the mechanical system to stabilize not the origin, but an offset point 

from the origin to desired values and partly due to the magnification of noises. The 

odometry an gyro readings calculate the state (xi, Yi , Bi) of the robot to the origin or 

to a fixed location in the robot frame. Any translation from these values to the new 

offset from the origin (static feedback linearization needs the output state vector to 

be at an offset from the origin) adds more noise to the new output state. For example 

assuming that only the measured (}i is corrupted by noise, the translation of 3.24 with 

(xi, Yi, Bi) results in both (xi, Yi) corrupted with noise too. 
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Chapter 4 

Leader Robot State Estimation by 

the Followers 

About this chapter: This chapter explains possible leader-robot state (robot pose 

(x, y , B) and linear and angular velocities) estimation techniques by the followers of 

the system without explicit communication. It is an effort to experimentally vali­

date state estimation accuracies of different recursive Baysian estimation techniques 

for a variety of movements of the leader robot. The effect of different filter estima­

tions towards the formation control of multiple nonholonomic mobile robots is also 

studied. The recursive Baysian state estimation filters are implemented through the 

REBEL Matlab interface [49] with real world noises in sensor observations and mo­

t ion dynamics. They are tested against a hybrid formation controller developed by 

combining static and dynamic feedback linearized formation controllers of chapter 3 

above. These cont rollers are combined in order to, 

• A void the potential singularity of the dynamic feed back linearized formation 

controller when the follower robot's linear velocity is zero: V 5 = 0 

• To harness the bet ter accuracy of dynamic feedback lineariz d formation con­

troller (see results in chapter 3) 

66 



The hybrid formation controller is implemented in such a way that , 

• When the follower velocity V 8 < ll vthreshotd ll for a small 'Vthreshold, static feedback 

linearized formation controller is invoked for controlling the formation. 

• When Vs 2: llvthreshotdll dynamic feedback linearized formation controller is in­

voked to control the formation. 

The Vthreshold is set to an arbitrary small value in the experiments run for this thesis. 

In fact Vthreshold must have been set by considering the dynamic properties such as 

accelerations, decelerations of the robot. The simula ted results of st ate estimations by 

different recursive Baysian filters and formation maintenance accuracies through the 

application of these different st ate estimations are tabulated for comparison purposes. 

The key contributions of this chapter are, 

• Experimental validation of st ate estimation accuracies of different recursive 

Baysian estimation techniques for a variety of movements of the leader robot . 

(Different filters include: extended Kalman filter- (EKF), unscented Kalman 

filtcr-(UKF) , central difference Kalman fi lter- (CDKF), square root unscented 

Kalman filter- (SRUKF) , square root central difference Kalman filter- (SRCDKF), 

sigma point particle filter-(SPPF)) . 

• Experimental validation of t he effect of different state est imations towards for­

mation maintenance problem. 

4.1 Background 

In order to reach desired formations, the followers need consistent data about th ir 

leader-robot 's pose and velocit ies over the respective sampling time periods. It is 

noted in Chapter 1 that the use of communication to obtain such information is 
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subjected to noise, delay, interference and resource constraints and that such a com­

munication makes the formation control solution a highly centralized one too. On 

the other hand obtaining local information through exteroceptive sensors of a robot 

is cheaper and faster than using communication [26]. Hence, If the leader robot's 

states can be measured or estimated remotely using these exteroceptive sensors of 

the robot, the leader-follower strategy can be made more decentralized. The sta te 

of the leader robot includes linear and angular velocities and Euclidean (S£2) pose: 

(x, y , B). Measuring the linear and angular velocities and leader robot orientation 

under noisier sensor observations is challenging and perhaps impossible. Therefore 

decentralized state estimation is essential in estimating unknown states from the ob­

servations acquired from exteroceptive sensors local to the robots. 

The usc of EKF [4] and dual unscented Kalman fi lter (DUKF) [18] have been report d 

for decentralized leader robot state estimation in formation control. The experim n­

tal results recorded in [4] are for constant velocity profiles of the leader robot (e.g: 

leader robot's linear and angular velocity are kept constant in estimation). Similar 

experimental results of leader robot state estimation are shown in [18] where the an­

gular velocity of the leader robot is kept a t zero while changing the linear velocity. 

In reality linear and angular velocities of robots are both changing over time. Hence 

it is found that there is a lack of experimental validation of sta te estimation for pos­

sibly changing velocity profiles (linear and angular) of the leader robot. The effect of 

such estimations towards the formation control solut ions provided have also not been 

experimentally evaluated. The extensive literature also reveals that there seems to 

be no benchmarking on the estimR.tion R.ccumcy of different rccur ·ivc BaysiR.n fil ters, 

which can be used for decentralized leader robot st ate estimation. 

Although EKF based state estimation is the default solution for most state estimation 

68 



problems, it's solutions suffer from; 

• Disregard of probabilistic spread of the system states and noises during initial­

ization of system equations (linearization expands the distribution around only 

a single point) 

• Taylor series expansion holds only for first order accuracy of mean and covari­

ance of the distribution. 

In order to overcome these shortcomings the idea is to use deterministic sampling ap­

proaches that circumvent the calculation of analytical derivatives. Filters which uses 

a deterministic sampling strategy are collectively known as Sigma-Point Kalman fil­

ters. Some examples include UKF, CDKF, SRUKF and SRCDKF. This chapter tries 

to experimentally validate the state est imation accuracies of the above filters espe­

cially for the formation control problem. The effect of different estimations (incurr d 

through different estimation filters) towards the formation stability of the hybrid 

formation controller explained in 'About this chapter" section is also investigated. 

Matlab REBEL fi lter interface is used to implement the different types of fil ters with 

the appropriate dynamic and observational models while a custom catered Matlab 

multi-robot simulation platform is built for multi robot simulation. For all of the 

simulations, noises are introduced to both observations and motion dynamics of the 

robots so as to reflect a real world scenario. The follower-robots are assumed to b 

localized to some degree of accuracy while the sampling time for the robots is taken 

as 0.5 seconds . 

4.2 Estimation through Kalman type filters 

Assuming that the leader robot's state evolves as a gaussian distribution, the use of 

EKF and its varieties, to estimate hidden states from the known observations are 
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exploited. The discrete dynamics of the leader robot evolve as, 

'ui+1 vi+ p~ x dl 

wi+l wi + p~ X dt 

i;~+l X~ + vi X cos Bi X dt + HP~ X cos Bi - vi X wi X sin ei) X dt2 

ili+l Yi +vi X sin Bi X dt + HP~ X sin Bi +vi X wi X cos ei) X dt2 

A l 1 
gk+ l 0~ + wi X dt + 2' X p~ X dt2 

(4.1) 

Superscript l stands for the leader robot. Subscript k stands for the current time 

step whil k + 1 stands for the immediate next time step: k + 1 = k + dt where 

dt is the sampling time period. v & w are the linear and angular velocities of the 

robot while x, y & e is the pose of the robot in the Euclidean-S£2 coordinate system. 

[p~ p~JT is the process noise with a covariance [0'~ 0; 0 0'~]. The observation model 

includes a range and a bearing measurement to the leader taken from the follower 

and a measurement of the relative orientation difference between the leader and the 

follower. The measurement model including the relative orientation measurement is 

(4.2) 

Superscript f stands for the follower and [o~ a; o~JT is the observation noise with 

acovarianceof[O'~ 0 0;0 0'~ 0;0 0 0'~]. 

4.3 Extended Kalman filter based state estimation 

Using the robot dynamics of 4.1 applied to the EKF algorithm given in Appendix A 

(the variables of EKF algorithm are calculated as), 
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G k+l = 

1 0 0 0 0 

0 1 0 0 0 

COS Bkdt - ~Wk Sin Bkdt2 -~Vk Sin Bkdt2 1 0 -Vk Sin Bkdt - ~VkWk COS Bkdt2 

Sin Bkdt + ~Wk COS Bkdt2 ~vk cos ekdt2 0 1 Vk COS Bkdt - ~VkWk sin Bkdt2 

0 dt 0 0 1 
T 

dt 0 dt 0 

0 dt ( :~ ;. ) 
0 dt 

R k+l = ~cos ekdL2 0 ~cos ekdL2 0 

~sin ekdt2 0 ~sin ekdt2 0 

0 ldt2 
2 0 ldt2 

2 

· l · ! • l · ! 

0 0 xk+1-xk+ 1 yk+l-yk+l 0 01 0 0 
d d n 

· l · ! · l · ! 
H k+ l = 0 0 Yk+ l - yk+ l xk+l-xk+ l 0 and Q k+l = 0 02 0 d2 (i2 n 

0 0 0 0 1 0 0 03 
n 

h d /( • l · ! )2 ( •l · ! )2 l '1 . l d f d f w ere = y xk+l - xk+I + Yk+l- Yk+ I w11 e superscnpt an stan s or 

the leader and follower respectively. Here G k+l is the Jacobian of robot dynamics 

with respect to the robot pose. H k+l is the Jacobian of robot-observations with re-

spect to the robot pose. R k+l and Q k+l are the process and observation covariances. 

For more information about the extended Kalman filter see Appendix A (Extended 

Kalman filter) . 

Fig. 4.1 shows the EKF leader state estimation and its resulting formation error 

when applied to the hybrid formation controller (the hybrid formation controller 

is explained in the "about" section of this chapter). Fig. 4.1 shows that the lin-

ear velocity estimation is better than angular velocity estimation. Angular veloc-

ity estimation has a t ime lag as well as more distortions. The estimated values 
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for range and bearing measurements are well smoothed while the estimated rela-

tive orientation has some distortions. The results in Fig. 4.1 are taken with a 

process noise covariance of [(0.003)2 0; 0 (O.br/180)2
] for linear and angular ve-

locities respectively along the matrix diagonal and for an observation covariance of: 

[(0.1) 2 0 0;0 (57r/180)2 0; 0 0 (57r/180)2
]. Along the diagonal of this matrix 

being the variances of range, bearing and relative orientation measurements. The 

leader's state is estimated for a number of trials of different paths incurred through 

different velocity profiles. The average root mean square (RMS) errors of estimation 

are tabulated in Table 4.1 for comparison purposes. The different velocity profiles 

Vrms 
l 9.1e-3 0.0136 0.0333 0.0604 0.0399 0.0313 

wrms 
l 5.136e-4 2.0036e-4 4e-3 6.2e-3 4.6e-3 3.1e-3 

drms 
l 0.0330 0.0355 0.1098 0.1789 0.1246 0.0964 

/3[ms 0.0170 0.0177 0.1899 0.3069 0.2161 0.15 
grms 

l 6.3e-3 4.7e-3 0.1466 0.2170 0.1586 0.107 

Table 4.1: RMS error of estimated and true state values of the lead robot 

shown in Table. 4.1 are given below; 

• vcwc - constant linear and angular leader robot velocities 

• vdwc - constant angular but changing linear velocity of the leader robot 

• vcwd - constant linear but changing angular velocity of the leader robot 

• vdwd - linear and angular velocities of the leader robot are changing over time. 

• Mi.'"E - All velocity profiles of the leader above are combined together 

The average RMS estimation error is taken over averaging individual errors for dif-

ferent velocity profiles of the leader robot. The formation error propagation under 

EKF estimated leader robot state variables is also shown in Fig. 4.1. 
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4.1.2: True and estimated errors of the state and the formation error of the leader robot 

Figure 4.1: EKF -State estimation with orientation measurement 
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4.4 Sigma Point Kalman filter based state estima-

tion 

4.4.1 Unscented Kalman filter(UKF) based state estimation 

The UKF is a sigma type Kalman Filter (See Appendix A - UKF for more details) , 

which uses a deterministic sampling strategy where it carefully chooses only a sample 

points in the gaussian prior distribution that captures the true mean and the covari­

ance of the entire distribution. When propagated through any nonlinear function 

the posterior distribution holds for third order accuracy in a Taylor series expansion 

whereas EKF only holds for the first order accuracy of mean and covariance of the 

same distribution. Hence UKF estimation is supposed to be more accurate than the 

EKF and have the same computational complexity too [50]. Fig. 4.2 shows the re-

sults in somewhat similar sense to the EKF results. But the accuracy is improved 

as reflected by the results of Table 4.2. The formation error propagation under UKF 

estimated leader robot state variables is also shown in Fig. 4.2. The results are taken 

II 
vrms 

l 8.9e-3 0.014 0.0336 0.0603 3.92e-2 0.0312 
wrms 

l 2.0474e-4 3.6084e-4 3.9e-3 6.1e-3 4.41e-3 2.995e-3 
drms 

l 0.0344 0.031 0.105 0.1629 1.235e-1 0.09136 
{3[ms 0.0171 0.0173 0.179 0.3086 0.2142 0.14724 
erms 

l 5.7e-3 4.5e-3 0.144 0.2160 0.1581 0.10566 

Table 4.2: RMS error of estimated and true state values of the lead robot 

for the same velocity profiles of the leader robot as in EKF based state estimation 

above. It is seen that, even with a few number of sample runs the UKF estimation is 

better than EKF based estimation. 
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4.2.2: True and estimated error of the state and the formation error of t he leader robot 

Figure 4.2: UKF-State estimation with orientation measurement 
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4.4.2 Central difference Kalman filter (CDKF)-based st ate 

estimation 

Central difference Kalman filter is another Sigma point Kalman filter which uses the 

Sterling's interpolation formula to replace the first and second order derivatives of the 

Taylor series with numerically evaluated central differences. (See Appendix A-CDKF 

for more details). Its performance is superior to EKF and marginally better than the 

UKF [50]. 

vrms 
l 8.6e-3 0.014 0.0337 0.0604 3.99e-2 0.03132 

Wrms 
l 2.1714e-4 3.9e-4 3.9e-3 6.1e-3 4.6e-3 3.041e-3 

drms 
l 0.0317 0.0339 0.1115 0.1729 1.247e-1 0.09494 

{J[ms 0.0148 0.0163 0.186 0.3088 0.2185 0.14888 
erms 

l 6.1e-3 3.9e-3 0.1475 0.2179 0.1586 0.1068 

Table 4.3: RMS error of estimated and true state values of the lead robot 

From Table 4.3, it is evident that CDKF results are better than EKF, but clos r 

to the results of UKF. These results are just from five test runs and many test runs 

will prove the marginal superiority of the CDKF over UKF. The noise covariance 

matrices wer chosen same as those values used for the extended kalman filter. The 

t ime update happens every 0.5 seconds and is more than enough for th whole filter 

to estimate the posterior. The time taken for the update is quite higher than the 

EKF due to the calculation of square root of the weighted covariance matrix [50]. 

76 



Tranaational velocity profile ol the leader robot(true and estimated) 

600 800 1000 1200 1<00 1600 

Angular velocity profile of the leader robot(true and estimated) 
0.015,------.------,------,-------,,-------.-------.------.-------, 

~ -ll.005 

-0.01 

--True Angular velocity 
Estimated Angular velocity 

-0·015
0
'------,200.....,_ ______ •oo'------,600.....,_ _____ 800~-----,1ooo:':-:------1-='200:-::-----.,-1."oo:-----1-='600 

4.3.1 : true and estimated velocity profiles 

Relative orientation d1rterences 
~.----------------------, 

E 6 

~55 
" 5 

2000 

The error of desired range and the true range 
0.5,---------------, 

..0.5 
l --d12Eno, j 

e - 1 

i - 1.5 

- 2 

- 2.5 

-3o~---,~~--,1~000:-::---1-,~~-~2000' 
1 

~ -ll.1 

-0. 15 

-ll.2 

-0.25 

The enor ol desired beta true beta 

40 

30 

2000 

- 0.6 

- 0.8 

4.3.2: True and estimated error of the state and the formation error of the leader robot 

Figure 4.3: CDKF-State estimation with orientation measurement 
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4.4.3 Formation control through Square-Root Sigma-Filter 

based state estimation 

SRUKF and SRCDKF are square root Sigma point Kalman filters. One of the com­

putational bottlenecks for the UKF and the CDKF is the calculation of the square 

root of the weighted covariance matrices at each time step to form the sigma point 

sets [50]. The square root Kalman type filters derive the square root form of the 

weighted covariance matrices efficiently using QR decomposition, Cholesky factor 

updating and efficient pivot based least squares [51]. They carry numerical stability 

and also lesser computational complexity and have the same or marginal accuracy 

with UKF and CDKF type filters. 

Leader robot state estimation via SRUKF and SRCDKF were also experimentally 

evaluated. Although the estimation results of these two methods are not shown in 

this thesis, they both resulted in results similar to those of CDKF and UKF. But the 

computational cost experienced was lesser. 

4. 5 Particle filter-based state estimation 

Particle filter being a sequential Monte Carlo method represents the complete dis­

tribution of the state using sequential importance sampling and re-sampling. The 

advantage of the Particle filter over the many Kalman type filters is that it does not 

assume the state distribution to be Gaussian or linear (See Appendix A - Particle 

filter). Hence for many real world applications Particle filters can be used for esti­

mation of hidden states of the systems. Particle filtering has two major stages: the 

sampling step and the resampling step. The sampling step chooses some particles 

which captures the true mean and the covariance of the prior distribution. Once 

the particles are sent through the dynamic system, their respective varianc s gets 

78 



increased and then the new measurements are used to refresh the posterior distrib­

ution to approximate it to the true distribution. Then a resampling strategy makes 

the highly likelihood particles to the true state of the system evolve to the next step 

of the filter. This is established through removing the lower likelihood particles and 

making multiple copies of the highly likelihood particles such that the number of 

particles in the distribution remain the same. 

4.5.1 Formation control through Sigma-Point particle filter 

(SPPF) based state estimation 

Particle depletion is a major problem in t he part icle filter [51]. Particle depletion of 

the Parti le filter makes the filter diverge. Hence moving all the particles to the highly 

likely region from the current observations will improve the robustn ss of the particle 

filter in the resampling step. Using an EKF generated Gaussian approximation to the 

optimal proposal, one is able to move these particles to the high likelihood areas. This 

can be accomplished by using a separate EKF to generate and propagate a Gaussian 

distribution for each particle proposal distribution. The idea is to use the EKF 

equations at time step k to generate the mean and the covariance of the importance 

distribution for each particle from time step k - 1. Then the ith particle from this 

distribution is redrawn. This way the chosen particles happen to fall in the highly 

likelihood regions of the distribution. Using the sigma point filters over the EKF, 

an effective proposal distribution can be taken for each particle. These are known as 

SPPF (sigma point particle filters) . There is a significant computational burden from 

this approach where a separate Sigma point Kalman filter is to be maintained and 

also the increment of the number of the particles will require an extra computational 

demand. Leader state estimation using SPPF (CDKF based Particl filter) for the 

formation control is given in Fig. 4.4. The formation errors for a number of sample 

runs are shown in Table 4.4. The errors in Table 4.4 show that, SPPF type estimation 
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II M ix I A verageerror I 
v[ms 0.0106 0.0148 0.05 0.0673 0.0662 0.04178 
Wrms 

l 4.0076e-4 8.4007e-4 4.2e-3 6.4e-3 5.2e-3 3.4081e-3 
drms 

l 0.0336 0.0394 0.1709 0.167 0.1853 0.11924 
{J[ms 0.0175 0.0185 0.3092 0.31 0.3217 0.19538 
erms 

l 6.7e-3 7.8e-3 0.1985 0.22 0.2434 0.13528 

Table 4.4: RMS error of estimated and true state values of the lead robot 

is less accurate, when compared with Kalman-filter type estimation . 

4.6 Summary 

Different Kalman type filters and Part icle fil ters were developed and simulated to 

estimate the the pose and the velocity profile of leader robots in formation control. It 

is evident from the experimental results above, that out of all the recursive Baysian 

filters tested, the Sigma Point Kalman filters have the better accuracy and the perfor­

mance over the EKF and SPPF type estimations. Hence this thesis recommends the 

use of Sigma point Kalman fil ters (Especially the square root Sigma Point Kalman 

filters e.g: SRUKF, SRCDKF, which reduces the computational complexity of UKF 

and CDKF respectively) for the estimation of the leader robot's state variables which 

can then b used for formation control of multiple nonholonomic mobile robots. 
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Chapter 5 

Hybrid Formation Control 

Framework for Multiple 

Nonholonomic Mobile Robots 

About this chapter: This chapter develops a novel leader-follower based for­

mation control framework to coordinate multiple nonholonomic mobile robots. The 

framework focuses on multi robot navigation in an unstructured environment. Des­

ignated leader robots are made to navigate to particular goal points of interest with 

obstacle avoidance and wall following capabilities. A set of follower-robots keeps pre­

determined geometric formation shapes with these designated leader-robots while also 

being adaptable to the constraints imposed by obstacles in the environment. In order 

to achieve proper navigation, a set of behavior based low-level continuous controllers 

are developed while a higher-level discrete event system [30], [28], [31] manages the 

dynamic interaction with the external environment. The basic formation controllers 

developed through static and dynamic feedback linearization in chapter-3 will be used 

along with newer extended versions of formation controllers to handle different forma­

tion behaviors needed. These extended formation controllers will again be developed 
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using, 

1. dynamic feedback linearization [32], [36], [48] 

2. static feedback linearization combined with some modification of the state mea-

surement coordinates [32], [36], [34] 

Both types of controllers are necessary because 1.) to avoid the structural singularity 

of the dynamic feedback linearized controllers when linear velocity is zero 2.) to 

exploit the better performance of the dynamic feedback linearized controllers. Hence 

two families of controllers are developed to tackle different elementary, (e.g. :obstacle 

avoidance) as well as secondary, (e.g.: formation control with obstacle avoidance) 

behaviors required. In both types of controllers the coordination of the required 

behaviors are handled by a discrete event system with supervisory control. T he key 

contributions of this chapter are, 

1. Development of a novel hybrid formation control framework for multiple non­

holonomic mobile robots to navigate in an unstructured environment. 

• Dynamic feedback linearized formation controllers for I.) single robot nav­

igation II. ) leader-follower based formation control of multiple mobile ro­

bots in unstructured environments. These include controllers for elemen­

tary behaviors, (e.g.: obstacle avoidance) and controllers for combined­

behaviors, (e.g.: Wall following with goal navigation). Some elementary 

behaviors for e.g.: formation control, can be combined with wall following 

or obstacle avoidance by relaxing some formation constraints 

• Similar static feedback linearized formation controllers to overcome the 

single singularity (robot linear velocity dropping to zero) of its dynamic 

feedback linearized counterparts. 

• Use of supervisory control of discrete event systems to model the coordi­

nation of different behaviors of formation control. 
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5.1 Background 

Earlier approaches to leader-follower formation control with navigation had been ad­

dressed in [12], [4]. Static feedback linearization based l - 'lj; and l - l controllers 

are developed in [4] in order to maintain the formation and to build hierarchy of 

leader followers respectively. But as shown in Chapter 3 above, the static feedback 

linearized l - 'lj; and l - l controllers do not stabilize the follower robot's origin to 

desired formation locations. Hence these control laws are neither robust nor do they 

achieve the real objective of formation control, which is to stabilize the robot origins 

to desired formation locations. This research overcomes such shortcomings via the use 

of dynamic feedback linearization to build formation controllers that are effective in 

performance. The research also uses static feedback linearized formation controllers 

with their dynamic counterparts in order to avoid the singularity of the dynamic feed­

back linearized controllers. The basic l - 'lj; formation controller is used in [4] only to 

maintain the formation whereas this thesis shows the use of that controller for single 

robot navigation in unstructured environments. In addition we develop a new set of 

static as well as dynamic feedback linearized extended formation controllers for th 

follower robot formation navigation in unstructured environments. 

Formation behaviors include formation maintenance, obstacle avoidance, wall follow­

ing etc. Coordinating these different behaviors of formation control is itself challeng­

ing owing to the uncertainty of real environments. Such behavior coordination for the 

formation control problem had been addressed in [4] with a gross controller switch­

ing strategy. It lacks modelling ease, reusability and scalability. This thesis exploits 

the use of supervisory control of discrete event systems [30], [28] to coordinate such 

formation behaviors. Supervisory control of discrete event systems is an alternative 

design paradigm especially catered to model the dynamic and synchronous changes 

of a system. The dynamic interactions are modelled as events, which are controllable 
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and uncontrollable in nature, for e.g: in robot navigation, detecting an obstacle is 

an uncontrollable event whereas avoiding the obstacle is a controllable event. The 

supervisory control in the discrete event system exploits this controllability feature 

of events, to enable or disable them in such a way that the system robustly interacts 

with the dynamic environment. 

5.2 Leader Robot Navigation 

It is shown in this section that the basic static feedback lineariz d Eq. (3.18) and 

dynamic feedback linearized Eq.(3.22) formation controllers shown in Chapter 3 can 

be utilized for the navigation of a single mobile robot. They can be used for obstacle 

avoidance as well as for wall following such that the chattering effects get minimized. 

The leader robot in the formation is supposed to navigate from a given location to a 

goal location along some sub goals on its way. It can be accomplished by performing 

a Voronoi decomposition on a given map and using A* algorithm [52] to find the sub 

goals which incur a minimum cost path from a starting point to a goal location. The 

leader robot is navigated to the end goal via these sub goals. Every time the leader 

robot approaches a sub goal the robot is turned to the next sub goal at a distance 

d from the sub goal which is equivalent to the maximum turning radius of the robot 

(for the P3AT robot the value is 500 mm). When navigating along these consecutive 

sub goals, the leader robot is expected to avoid static obstacles and follow the walls 

in t he given environment. The static obstacle avoidance procedure using the basic 

formation controllers is explained below. 

5.2.1 Single obstacle avoidance 

For single robot obstacle avoidance, an obstacle is considered as a virtual lead-robot 

(see Fig.5.1), whose heading is in the direction of the next sub goal. The heading is 
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Way Point 

Single Obstacle Avoidance 

Figure 5.1: Single robot obstacle avoidance with goal navigation 

given as, 

ahead = atan2(Ywp - Yobs, Xwp - Xobs) (5.1) 

Also the obstacle has been extended to a circle of radius dmax· The basic formation 

controllers shown in section 3.3 of Chapter 3 can be applied to avoid obstacles by 

taking the follower(shown in Fig.5.1) as the actual leader-robot and the leader(shown 

in Fig.5.1) as the obstacle for this context. Once a real lead-robot approaches the 

obstacle boundary of dmax (maximum turning radius of the robot), the static or 

dynamic formation controllers (shown in section 3.3 of Chapter 3 by Eq.(3.18) and 

Eq.(3.22) respectively)can be used to drive it with a desired zfs = [dmax ,6fs]T where, 

ad - 1 dmax 
fJls =COS 

J((Ywp - Yobs) 2 + (Xwp- Xobs) 2
) 

(5.2) 

The control law makes the robot to keep a constant dmax distance from the obstacle 

and once the robot arrives at ,6fs, it can safely return to goal navigation. For static 

obstacle avoidance, the virtual leader's exogenous inputs to the sy tern are made zero. 

If the obstacle has a motion, the exogenous inputs can be estimated by decentraliz d 
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state estimation (explained in Chapter 4). Otherwise the exogenous inputs are taken 

as zero. When the initial relative bearing (the bearing which can be seen by the 

virtual robot of the location of the actual leader robot) of the single robot on the 

surface of the obstacle is ±1r, the two types of controllers can make the robot travel 

to either direction of the obstacle. Hence, when the robot arr-ives (as in path 3 of Fig. 

5.1, the most feasible direction is chos n by considering, the current pose of the robot 

and if the robot heading is coincidental with the virtual (obstacle) heading then a 

hysteresis is added to move the robot in either of the directions momentarily followed 

by the inputs from the basic formation controllers. 

5.2.2 Clustered obstacle avoidance and wall following for leader 

robot 

Clustered obstacle avoidance 

Clustered obstacles can be identified as a set of overlapped obstacles as in Fig. 5.2 

(a). While obstacle-1 in Fig.5.2 (a) is being avoided by the above single obstacle 

avoidance strategy, the robot comes to P 1 and identifies a second obstacle. To avoid 

obstacle-2, the robot keeps dmax (maximum turning radius of the robot) distanc 

from the obstacle and tries to go in the shortest path to the way point with the above 

strategy. The problem arises, when the shortest path around the obstacle overlaps 

with the the previous avoided obstacles. This problem can be overcome by changing 

the heading of the virtual leader robot of obstacle-2 to as heading along the straight 

line connecting the two obstacles from obstacle-1 to 2, which is, 

(5.3) 

Then drive the real-robot along the longest path of obstacle avoidance to just above 

P 2 , which is P 3 . Once P 2 is passed, the system switches to the earlier obstacle 
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avoidance strategy. The f31s for point P 2 can be calculated as, 

P3 

' ' ' ' ' ' " I 
I 
I 
I 
I 

WayPoint-1 

b.) 

(5.4) 

Figure 5.2: (a) clustered obstacle avoidance (b) wall following by the leader robot 

Wall following 

Once a wall is detected, if a virtual leader is made to slide along the wall with a fixed 

velocity, the real robot can be made to follow it with a constant relative distance of 

d:~lf and an angle of {318 as in Fig. 5.2 (b). Assuming the distance sensors are fixed 

on the front of the robot, if a wall is detected on the left distance sensors, the heading 

of the virtual leader robot is taken as pointing towards the right-most scans of the 

wall from the left-most. When an obstacle is detected on the right distance sensors, 

vice versa. Moreover for a left most scan f31s = - ~ while for right most scans f3fs = ~ . 

The location on the wall where the shortest scan-distance is recorded initially, is 

taken as the virtual robot's position (xwall, Ywau). When a wall is detected straight on 

the front of the real robot, the previously defined obstacle avoidance strategy (section 

5.2.1 and 5.2.2) is activated. Sample path navigation for a nonholonomic mobile robot 

is shown in Fig.5.3. The static and dynamic feedback linearized formation controllers 
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are combined to harness the potential of the dynamic feedback linearized controller 

and to avoid its singularity when the linear velocity of the axel is zero. The results 

show that the chattering effect of obstacle avoidance and wall following is lesser than 

when it's done in a naive approach. 

:m 

150 

100 

60 

100 150 200 :m 

Figure 5.3: Leader robot simulation in an office layout with walls and obstacles: Blu 
path is the actual robot path, green squares are way points, black squares marked 
with boundaries of black circles are obstacles while black lines are walls 

5.3 Multiple Robot Navigation with Formation Con-

trol 

Motivated from the work shown in [4], two mult i robot formation controllers based 

on a three robot structure for avoiding obstacles and following walls are presented in 

this section. The resulting dynamic equations for these configurations will carry a 

similar singularity seen in the basic leader follower formation controll r (see Chapter 

3 section 3.3 Eq.(3.15)). Hence both dynamic and static feedback linearization will 
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be used to linearize these robot configurations and build two families of controllers. 

These two families of controllers will be used in conjunction in order to avoid the 

structural singularity seen for the dynamic feedback linearized formation controllers 

and to achieve a better performance (the basic dynamic feedback linearized controller 

was better in performance). 

5.3.1 Static feedback linearized extended formation controllers 

Obstacle 

a.)Formation Control with 
Obstacles Avoidance 

Follower 

~iOI.-l.:-~~0 
(x,, y; .B,) 

b.) Formation Control with 
Wall Following 

Figure 5.4: (a) obstacle avoidance with formation control (b) wall following with 
formation control 

The followers of the system keep a tight formation with the leader by generating 

motion commands through the basic static feedback linearized formation controller 

[4]. However once obstacles or walls are encountered all of the formation constraints 

can no longer be met at the same time. Hence keeping a desired relative bearing is 

relaxed while still keeping a desired distance from the leader. (See Appendix B. static 

feedback linearized controller derivation for more information) 
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Obstacle avoidance with formation control 

Obstacle avoidance and wall following are achieved through a three-robot formation 

structure. One is the real leader , another the follower and the other is t he obstacle 

or the wall. The kinematics for obstacle avoidance while keeping a desired distance 

(Fig.5.4 (a)) with the leader is given as, 

(5.5) 

where zdu = [d13 d23JT is the system output. u1 = [v1 w1] is one exogenous input 

by the real-leader robot to the system and if the obstacle's motion parameters can 

be estimated u2 = [v2 w2] can be used as another exogenous input to the system 

while u3 = [v3 w3] is the real follower's driving inputs. d13 and d23 are the relative 

distances from the real-leader and the obstacle to the follower respectively. 

G1 = ( COS/13 OxS~n /13 ) , 

cos /23 Ox sm /23 

- ( - cos /313 0 ) F1 - , 
0 0 

where 
/ 13 = /313 + ()13 

/ 23 = !323 + ()23 

Also ()13 = ()1 - ()3, ()23 = ()2 - ()3· /313 = -{}1 + 1r + atan2(y1 - y3, x1 - x3) and 

/323 = - fJ2 + 1r + at.an 2(y2 - y3, x2 - :r;3) are calculated as in the basic formation 

controller above. Through nonlinear feedback linearizarion, motion commands for 

the follower are, 

(5.6) 

c = [ c1 c2]T > 0 are controller gains, while z~u = [d13 dg3]T are the desired relative 

distances from the leader and the obstacle. It is seen that the closed loop system is 

st able and converges to z~u arbit rarily fast. This controller is similar to the leader 

obstacle control controller in [4] except for the extension of dynamic or inter-robot 
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collision avoidance capability through the substitution of colliding robot's motion 

parameters through u 2 . 

Wall following with formation control 

Wall following with formation (Fig.5.4 (b)) is done in the same way as in the pre-

vious case of obstacle avoidance with the addition of keeping {323 at a desired value. 

Depending on the heading of the wall it can be ±~ . Also we make w2 of the virtual 

leader zero, such that it can only slide along the heading of the wall with a v2 only. 

Dynamics of the system are, 

(5.7) 

COS/13 Ox sin / 13 0 -cos {313 0 

G2 = COS/23 Ox sin /23 - cos{J23 ,F3 = 0 0 

- s in 123 Ox COS)13 sin .823 0 0 
d 23 d23 ---r£;3 

Also Zwll = [d13 d23 fJ23JT is the system output. u = [v1 w1] is the only exogenous 

input by the real leader. And u = [v3 w3 v2]T are follower 's inputs followed by the 

virtual leader's linear velocity. Through feedback linearization, 

(5.8) 

c = [ c1 c2]T > 0 being controller gains, while z~u = [df3 d~3 {Jg3 jT are the desired 

settings of the system. The location on the wall where the initial wall detection 

scans got the shortest distance, is taken as the virtual robot 's starting pose. And by 

subsequent usage of Eq.(5.8), we d riv motion commands for the virtual leader on 

the wall (v2) and the follower [v3 w3JT to follow the wall. Al o the virtual leader is 

stopped where the wall ends, to switch to some other navigation task. It is seen that 

the closed loop system Eq.(5.8) is stable and converges to z~u arbitrarily fast. The 
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given static feedback linearized controller is an extended derivation from the three 

robot shape control configuration in [4]. Here we use our own formulated controller for 

following the walls while in [4] a similar controller is used as a hierarchical formation 

building block (shape control) where robot-2 keeps formation with robot-1 while 

robot-3 tries to keep the formation using robot-1 and robot-2. 

5.3.2 Dynamic feedback linearized extended formation con-

trollers 

Dynamic feedback linearization is used to derive controllers for the same configura-

tions for which we derived static feedback linearized controllers in the earlier sub-

section. We saw in the earlier chapters the performance of the dynamic feedback 

linearized controller is better than its static counterpart , and that it can be used to 

stabilize the origin of the robot to a desired formation pose as opposed to stabilizing 

an offset from the origin to a desired pose (as done in the static feedback linearized 

controller). Hence static feedback linearized controller is used only as a tool to over­

come the singularity posed by the dynamic extension when the axel's linear velocity 

falls to zero. (See Appendix B. Dynamic Feedback Linearized Controller derivation 

for more information) 

a.) b.) 

(x3,y3,B3) 

(v3'w3 ) 

Figure 5.5: (a) obstacle avoidance with formation control (b) wall following with 
formation control 

93 



Obstacle avoidance with formation control 

As in the static feedback linearized case earlier, obstacle avoidance and wall following 

is achieved through a three-robot formation structure. Again one robot is the real 

leader, another the follower and the other is the obstacle or the wall. The dynamic 

feedback linearized controller for obstacle avoidance while keeping a desired distance 

(Fig.5.5 (a)) with the leader is given as, 

(5.9) 

where Zdll = [d13 d23]T is the system output. u1 = [a1 w1] is one exogenous input 

by the real leader robot to the system and a1 is its linear acceleration. And if the 

obstacle's motion parameters can be estimated u2 = [a2 w2] can be u ed as another 

exogenous input to the system while u3 = [a3 w3] is the real-follower 's driving inputs. 

a2 , a3 are the linear accelerations of the virtual robot and the actual follower. d13 and 

d23 are the relative distances from the real leader and the obstacle to the follower 

respectively. 

G
3 

= ( cos 1 13 v3 s~n 113 ) ' F
4 

= _ ( cos /313 v 3 sin 1 13 ) 

cos 1 23 v3 sm 123 0 0 

( 

0 0 ) Fs = -
cos /323 v3 sin 123 

1 13 = /313 + e13 

123 = f323 + f)23 

p = ( v1 f3~3 sin /313 - v3f3~3 sin 1 13 ) f)13 = fh - e3 

V2fJ23 Sin /323 - V3/323 sin 123 0 23 = 0 2 - 03 

/313 = - e1 +1r + atan2(y1- y3 , x 1 - x3) and /323 = - 0 2 + 1r + atan2(y2 - y3 , x2- x3) are 

calculated as in the static feedback linearized extended formation controller above. 

Through nonlinear feedback linearizarion, motion commands for the follower are, 

(5.10) 
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k = [k1 lv.lf > 0 and c = [ c1 c2f > 0 being cont roller gains, while z~u = [dt3 d~3]T 

are the desired rela tive distances from the leader and the obstacle to the follower. It 

is seen that the closed loop system is stable and converges to z~u arbitrarily fast. 

Wall following with formation control 

Wall following wit h formation (Fig.5 .5 (b)) is done in the same way as in t he pre-

vious case of obst acle avoidance wit h the addit ion of keeping (323 at a desired value. 

Depending on the heading of the wall it can be±~ . Also we make w2 of the virtual 

leader zero, such that it can only slide along the heading of the wall with an a2 and 

v2 only. Kinematics of the system are, 

G4 = 

L = 

cos / 13 

cos /23 

-sin ]23 

d23 

v3 sin 113 0 -cos /313 

v3 sin 123 - cosf323 ,F6 = 

V3 COS ]23 s in 1323 
d23 d23 

v1 (3~3 sin (313 - v3 sin /13 (!3~3 + w1) 

v2(3~3 sin (323 - 'U3 sin /23 (!3~3 + w2) 

0 

0 

d:i3(v3 s in'Y25-v2 s in /323) + v2/323 cos.023-v3 COS'Y23(.02J+W2) _ W
2 d23 d23 

(5.11) 

0 

0 

0 

Where zwu = [d13 d23 (323]T is the system out put. u1 = [a1 w1] is the only exoge­

nous input by t he real leader , and 'u = [a3 w3 a2JT are follower 's inputs followed 

by t he virtual leader 's linear acceleration . Through feedback linearization, 

(5.12) 

k = [k1 lv.l]T > 0 and c = [ c1 c2JT > 0 are controller gains, while z~u = [df3 d~3 {3g3]T 

are the desired set tings of t he system. The location on the wall where the initial wall 
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detection scans recorded the shortest distance is taken as the virtual robot's starting 

pose. And by subsequent usage of Eq.(5.12) we derive motion commands for the 

virtual leader on the wall (a2) and the follower [a3 w3]T to follow the wall. Also the 

virtual leader is stopped where the wall ends, to switch to some other navigation task. 

It is seen that the closed loop system Eq.(5.ll),Eq.(5.12) is stable and converges to 

z~u arbitrarily fast . 

5. 4 Discrete Event Systems Modelling 

The behavior coordinations of the robots are formulated by discrete event systems 

(DES) with supervisory control. Here we develop separate discrete event systems for 

both the lead-robot and its followers. Continuous dynamics models developed for 

different behaviors in the thesis are tak n as controllable action events of the DES 

models. Any other constraints specified will be handled by modelled supervisors. The 

primitive DES systems for a leader robot and for follower robots can be described 

by (Fig.5.6). We also assume that the robot obstacle avoidance and wall following 

Figure 5.6: DES models for primitive behaviors. (A) obstacle avoidance and wall 
following, (B) goal navigation behavior, (C) formation control behavior 

can not be active at the same time. T h refore the precedence is given to obstacl 

avoidance when there is both wall following and obstacle avoidance to tackle. For 

this context, the contact point of walls are considered as obstacles. 
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DES model for obstacle avoidance and wall following 

Set of states Q : {Explore - 0 1 , Wall .fallowing - 02, Obstacle avoidance - 03} 

Set of events 'E : {detect obstacle - {31, detect wall - fJ2, detect f r eespace - {33, 

move(wallFollow)- {34, move(obstacleAvoidance) - {35 } 

supervisory controllable events 'Ec = {{34 , {35 } 

DES model for goal navigation behavior 

Set of states Q: {Stationary- 0 1 , Goal navigation- G2 } 

Set of events I:: {goal reached- a 1, goal comp'11,led- a 2, move(l,o goal) - a 3} 

supervisory controllable events 'Ec = {a2, a3 } 

DES model for formation control behavior 

Set of states Q : {Stationary- F1, Formation control- F2} 

Set of events I: : {l eader lost - 'Yl , leader detected - 1'2, keep formation - 1'3} 

supervisory controllable events 'Ec = { 1'3} 

5.4.1 Leader-Robot Behavior Coordination 

Once the intermediate sub goal locations are found by applying A* algorithm to the 

given Voronoi decomposed map, the leader robot is to be navigated to the end goal 

via the sub goals while avoiding obstacles and following walls on the way. As ex­

plained above, every time the leader robot approaches a sub goal the robot is turned 

to the next sub goal at a distance d from the current sub goal which is equivalent 

to the maximum turning radius of the robot. In order to develop the holistic leader­

robot navigation system, the primitive obstacle avoidance and goal navigation DES 

models above are combined together using parallel composition. For the DES model 

in (Fig.5.7) , the controllable events are {a 2 , a 3 ,{34 ,{35 } and the supervisor developed 
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Figure 5.7: Leader robot DES model 

to enable or disable these controllable events is given below. '1' stands for enabling, 

'0' stands for disabling and 'x' stands for not caring the given cont rollable event. In 

states 0 2G1 and 0 3 G1 , the event goal computed-a 2 is disabled since the goal compu­

tation happens when there is no obstacles or walls near the robot. Wall avoidance-,84 

is enabled in both 0 2G 1 and 0 2G2 and the continuous dynamics of wall following pro­

cedures described in the leader robot navigation Section (5.2 .2) is applied to follow 

the walls. Since (34 is enabled in 0 2G2 , event move to goal-a 3 is disabled to make sure 

that no two controllable events exist in one state. For this system we have not defi ned 

a combined control methodology for wall following and goal navigation at the same 

time. Hence 0 2G2 degenerates to a control of wall following only. In state 0 3G 1 , 

the event of pure obstacle avoidance-(35 is handled by a reactive obstacle avoidance 

procedure as in [27]. But in 0 3G2 both events a 3 , ,85 are enabled and a new event is 

introduced to combine both goal navigation with obstacle avoidance described in the 

leader robot navigation section (5.2). 
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5.4.2 Multiple Follower-Robots Coordination 

Through the parallel composition of the elementary discrete event systems of obstacle 

avoidance and formation control, a new complex DES model is built as shown in Fig. 

5.8. The followers of the lead robot follow their leader while avoiding obstacles and 

following walls. The supervisor to control the follower DES model is given below, 

Figure 5.8: Follower robots DES model 

In state 0 1 F2 , the event formation control-13 is enabled since it 's a state of pure 

formation control and the leader based basic formation dynamics controllers are used 

to follow the leader in a given geometric formation. The event wall follow-,6'4 is enabled 

in 0 2F1 to follow t he walls when the robot is near a wall and the communication 

to t he leader robot is lost. Since the communication with the leader is lost, the 

individual wall following procedure of Section 5.2.2 is applied to follow the walls. 

But in 0 2F2 , the state where both the wall following and formation control becomes 

active events 13 and ,6'4 are enabled to introduce a new event which incorporates both 

wall following and formation keeping actions and the dynamics of section 5.3 (5.3.1 
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and 5.3.2 wall following with formation control) are used to handle that event. In 

state 0 3 F1 event obstacle avoidance-,85 is triggered and the reactive obstacle avoidance 

procedure explained in [27] is again applied to avoid only the obstacles. The formation 

control does not become active in this state. In 0 3 F2 , both obstacle avoidance and 

formation control actions become active and the supervisor enables both 'formation 

keep' and 'obstacle avoidance' events and introduce a new event, which combines both 

the actions in to one continuous dynamics model given again in section 5.3 (5.3.1 and 

5.3 .2 Obstacle avoidance with formation control) above. 

5. 5 Simulations 

The simulations were carried out in Matlab environment (Fig.5.9) and also using play­

erstagejmobilesim (Fig.5.12). Voronoi decomposition is used to find feasible path 

segments in a test bed of an office layout map with walls and obstacles. And A* 

algorithm was run to get shortest paths from different starting poses to different 

destinations and the intermediate way points are recorded. Then the leader-robot 

is driven along the way point-based path segments as shown in (Fig.5.9). The red 

robot is the leader while green squares are the way points. The connecting straight 

line segments of these way points sometimes overlap with existing walls and obsta­

cles. Hence the different behaviors of wall following and obstacle avoidance strategies 

explained above were used along with the dedicated lead-robot DES model for suc­

cessful leader robot navigation. As explained above the static and dynamic f edback 

linearized extended formation controllers were used to drive the robots in the simu­

lation. Through the many experiments run, it is observed that the chattering effect 

caused by the leader-robot behavior transition is minimized due to the introduction 

of combined behavior controllers e.g.: goal navigation with obstacle avoidance. In the 

simulations, we only focussed on static obstacle avoidance, and these obstacles are 
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Figure 5.9: Multi Robot Simulation-!: keeping a line formation: Red robot is the 
leader, blue and green robots are its followers (done in Matlab environment) 

avoided in the shortest path possible, to the next way point. Cluttered obstacles were 

also successfully evaded without any significant chattering effect. The wall following 

procedure leads more or less a straight path following the wall, again minimizing the 

chattering effects. The supervisory controlled discrete event system does the t ransi-

tioning well enough to cater to the dynamic changes of the environment. 

We also simulated mult iple follower robots with their respective leader robot. They 

were run in predetermined geometric format ions while also coordinating other be-

haviors through the respective DES model with the assistance of the designated low 

level controllers. The system was tested with different geometric shap s of wedge, 

diamond, horizontal lines and triangular shapes with arbitrary starting points for the 

followers. Obstacle avoidance and wall following while keeping a desired distance to 

the leader was also tested for different shapes cited above. We observ d that as long 

as the leader robot does not make sudden rotations, the system manages to avoid 

the walls or obstacles and navigate effectively. The upper bound Wmax for rotational 

velocities of the leader robots make sure the sudden manoeuvres does not occur. Also 
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Figure 5.10: Multi Robot Simulation-2: keeping a line formation: Red robot is the 
leader, blue and green robots are its followers (mobilesim/playerstage simulation) 

we have made the followers in such a way that once a sudden manoeuvre of the leader 

is detected, the followers depend on their own controls without any exogenous in-

put from the leader until the leader stabilizes. Fig.5.11 shows how the errors of the 

formation, namely relative distance, bearing and orientation errors propagate over 

time when navigating in an obstacle populated environment. We see that the error 

of relative distance approaches zero and stays there over time throughout the whole 

simulation. It is because in avoiding obstacles and following walls, we made the con-

troller so as to only keep a desired relative distance while other constraints were put 

in place when there was no obstacle or wall. Fig. 5.12 shows the DES transitioning 

sequence for th same simulation. In to the latter part of this transitioning diagram 

all the followers stay in pure formation keeping the state at 01F2, and is reflected by 

the fact that in Fig.5.11 all of the relative errors of the followers are z ro or near zero 

to the end. Again the important observation is that the chattering effect is minimized 

in the whole system, due to the introduction of combined behaviors of for ex: wall 
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Figure 5.11: Relative distance, bearing and orientation error projection for the follow­
ers with respect to the leader robot over time: Robots are driving in a line formation 
avoiding obstacles and following walls in a sample simulation: (a) ed = dfs - dls (b) 
ef3 = fJt - f3ls (c) eo = 0 - flts 

following with format ion control etc. Fig.5 .12 shows this minimization of chattering 

scenario where for both t he leader and for the set of followers, the transition between 

the states of their respect ive DES models are infrequent . 

5.6 Summary 

In this chapter, extended formation cont rollers, based on both static and dynamic 

feedback linearization were developed to handle formation navigation in an unstruc­

tured environment. It is shown that the basic formation controllers can be utiliz d for 

single robot navigation too while more complex controllers are developed to handle 
I 

multi robot navigation. Static and dynamic feedback linearized controllers are com-

bined in an effort to again harness the potent ial of t he dynamic feedback linearized 

controller and also to avoid it 's singularity when the axel is not moving. Discrete 

event systems with supervisory control were developed t o handle the dynamic inter-
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Figure 5.12: State transition diagrams of the DES models for a subset of states: 
Robots are driving in a line formation avoiding obstacles and following walls in a 
sample simulation: (a) Leader robot (b) follower-1 (c) follower-2 (d) follower-3 (e) 
follower-4 

action with the environment for both the leader and follower robots in the formation. 

DES provides a platform to model the dynamic interaction with the environment 

in a structured way that is both reusable and scalable. The system is simulated 

in Mobilesim and Matlab environments and the results suggest that the proposed 

algorithms are effective in formation navigation of a set of multiple mobile robots. 
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Chapter 6 

Conclusion 

6.1 Overview 

This research develops a decentralized hybrid-framework for formation control of mul­

tiple nonholonomic mobile robots. The framework is based on a leader-follower based 

control theoretic bottom-up approach. The bottom layer of this framework consists 

of low-level controllers which are derived by nonlinear control methods to handle el­

ementary (obstacle avoidance) and combined (formation control with wall following) 

robot behaviors for nonholonomic mobile robots in navigation. The upper layer works 

as a coordinator to model the dynamic interaction with the external environment and 

is developed through supervisory control of discrete event systems. The curr nt im­

plementation of the framework supports single robot navigation including obstacle 

avoidance and wall following, multi-robot formation maintenance, multi-robot obsta­

cle avoidance or wall following with formation maintenance. These different behav­

iors for nonholonomic mobile robots are implemented through low-level controllers. 

Due to the nonlinear nature of these controllers static and/or dynamic feedback lin­

earization are used to linearize them and make them controllable. There is also 

a comparison of different types of leader-follower based formation maintenance con-
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trollers for nonholonomic mobile robots in the research. These formation maintenance 

controllers are derived in the research through the application of different nonlinear 

control techniques. it 's found that the dynamic feedback linearized formation main­

tenance controller is more effective than the other controllers, but suffers from a 

structural singularity when the robot's linear velocity is zero. Hence it's proposed 

that the dynamic feedback linearized formation maintenance controller be combined 

with its static counterpart to avoid the singularity and to achieve effective formation 

maintenance. The state and the velocity information of leader robots are necessary 

for the low-level controllers of the followers to work. It's found that communicating 

this information is not always possible due to resource constraints or limited com­

munication abilities etc. Hence this research also exploits the use of decentralized 

state estimation techniques to estimate the leader robot 's state and velocity profiles 

without explicit communication. Different recursive Baysian and particle filter type 

estimators are implemented and compared for estimation accuracy. The proposed 

holistic systems are implemented through simulations using Mobilesim/ Playerstage 

and Matlab environments to validate their usability. 

6. 2 Contributions to research 

The resulting contributions of this thesis are given below: 

6.2.1 Development of a novel hybrid formation control frame­

work for multiple nonholonomic mobile robots 

Behavior based low-level controllers for formation control of multiple non­

holonomic mobile robots 

Multi robot navigation with formation maintenance in an unstructured environment 

can be thought of as a collection of behaviors. These behaviors can be competitive 
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or cooperative in nature. Cooperative behaviors can be simultaneously executed to­

gether while competitive behaviors must be executed one at a time, according to 

some priority scheduling. Multi robot navigation with formation maintenance known 

as formation control also has competitive and cooperative behaviors. This research 

exploits the idea of a formation control framework which breaks down the forma­

tion control problem in to a set of competitive and cooperative behaviors and uses 

a control theoretic bottom-up approach to design low-level controllers for each such 

behavior which are together managed by a higher-level coordinating mechanism. 

The research uses a leader-follower formation concept for its simplicity, flexibility and 

scalability over some other formation control strategies. There, we find two types 

of robots which are designated as leaders and its followers and the thesis addresses 

the problem of leader robot navigation and multi robot formation control for non­

holonomic mobile robots in the formation control framework. Earlier approaches to 

leader-follower based formation control have been addressed in [4]. They propose two 

types of feedback controllers for maintaining formations of multiple nonholonomic 

robots. The first one is the l - 'ljJ controller which maintains a desired length ld and a 

desired relative angle 'ljJd between the leader and the follower. The second controller 

is the l - l controller which has a three robot structure where , one robot follows its 

leader with a l - 'ljJ controller while a third robot follows the latter two robot's with 

the l - l controller with desired lf3 and l~3 distances. These two types of controllers 

are developed using static feedback linearization, which results in stabilizing not the 

origin of the respective nonholonomic robot, but an offset from the origin to desired 

formation values. As shown in the thesis, stabilizing an offset from the origin, to 

desired formation values has an undesirable effect on the controls (the inputs to the 

robot become more oscillating) of the robot and is also not the real objective of for­

mation maintenance (The real objective is to stabilize the origin of the robot frame 
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to the desired formation values rather than stabilizing an offset from the origin to 

desired values) . 

The static feedback linearization-based l - 'l/; controller in [4] and the dynamic feed­

back linearized l - 'l/J controller of [43] are combined together in this research to 1.) 

overcome the structural singularity of the dynamic feedback linearized controller 2. ) 

to achieve a stable formation maintenance. In addition to maintaining the formation 

with the l - 'l/J controller, this thesis also illustrate the use of it for single robot navi­

gation too, whereas [4] and [43] use it only for formation maintenance. Single robot 

obstacle avoidance and wall following procedures with the l - 'l/; controller are devel­

oped in this research. A set of extended formation controllers is also developed in 

this thesis, for obstacle avoidance and wall following by follower robots in formation 

navigation. Both dynamic and static feedback linearized controllers are developed for 

these controllers and are used in conjunction in order to avoid a structural singularity 

of the dynamic feedback linearized controllers when the robot velocity is zero. 

Use of supervisory control of discrete event systems to model dynamic 

interaction with the environment 

The low-level behavior-based formation controllers for both the leader and the fol­

lowers have to be coordinated in order to interact with the dynamic environment 

properly. This research models and develops a discrete event system managed by 

supervisory control for such dynamic interaction with the external environment for 

the formation control problem . Discrete event systems provide a modular framework 

to coordinate the actions of the robots required in a dynamic environment. They 

also provide ease of modelling, scalability and reusability. Thus new behaviors can 

be occupied in the system without much of a hassle. 
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6.2.2 Development of trajectory tracking type leader-follower 

based formation keeping controllers 

The research also exploits the use of trajectory-tracking controllers of nonholonomic 

unicycle type robots to design and develop formation keeping controllers. Trajectory 

tracking combines a feed-forward command for a desired pose and a velocity along 

a trajectory with a feedback action on the error. In the formation maintenance 

problem, the desired trajectories of followers can be derived through leader state and 

velocity information at a given time. It can thus be used as a mode of feed-forward 

command generation. This research uses two existing trajectory tracking controllers 

for unicycle robots, in order to design controllers for formation maintenance. One 

is derived through approximate linearization of the unicycle dynamics and [23] and 

the other through a nonlinear design based on a particular Lyapunov function [22]. 

A comparison of these two formation keeping controllers with the earlier developed 

dynamic l - 'lj; formation keeping controller [43] and the static feedback linearized 

l - 'lj; controller of [4] is also carried out in this thesis. Here it is found that the the 

trajectory tracking type formation keeping controllers including the dynamic feedback 

linearized controller performs better than the static feedback linearized controller. 

Hence it can be concluded that the dynamic feedback linearized controller has the 

best performance out of all except for its structural singularity (when linear velocity 

is zero). 

6.2.3 Decentralized leader robot state estimation 

The followers depend on accurate measurements of its leaders pose and velocity to 

activate feedback controls to maintain the formation. Use of communication has 

problems of constrained coverage, resource shortage etc. Hence instead of using com­

munication to send leader's information, [4] and [18] use recursive Baysian filters to 
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estimate leader's pose and velocity using local sensors. [4] uses an EKF approach 

while [18] uses a dual unscented Kalman filter type estimation. This research tries to 

address two problems of the possible usage of estimation methodologies to estimate 

leader robot's pose and the velocity. One is the effect of noise margins of the esti­

mated leader robot 's pose and velocities, on the formation controllers used. The other 

is a benchmarking of different recursive Baysian type filters for leader robot state es­

timation to decide which recursive Baysian filter has the best estimation accuracy. 

Estimation accuracies are compared for different recursive Baysian type filters (EKF, 

UKF, CDKF, SRUKF, SRCDKF) and also for a particle filter (SPPF). The square 

root sigma-type Kalman filters are found to have the best performance in terms of 

performance and accuracy. The effect of noise margins of these estimations on the 

dynamic feedback linearized controller (combined with its static counterpart to avoid 

the singularity) is also tested , and it is found that, this controller is robust even with 

a substantially higher noise margin. 

6.3 Further recommendations 

The research only addresses the implementation of a few sets of basic behaviors in the 

formation control framework. It will indeed be necessary to include more functionality 

into the framework in order to design a holistic formation control system. Some 

behaviors of interest will surely be robot initialization, dynamic role assignment (e.g: 

rotation of leadership to the most suitable robot in the MRS), shape deformations to 

effectively avoid obstacles, object manipulation abilit ies etc. This research combine 

the static and dynamic feedback linearized formation maintenance controllers to avoid 

the structural singularity of the latter and it is found that this approach has some 

drawbacks. The drawbacks are: 

• Static and the dynamic feedback linearized controllers are combined as; 
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- For all V 8 < lvthreshotdl, the static feedback linearization based controllers 

are used. For other values of vs dynamic feedback linearization based 

controllers are used ( V 8 is the linear velocity of the robot and ±vthreshold 

are the boundary values used for switching between the dynamic and static 

feedback linearized controllers. 

Finding the optimum 'llthreshold is a problem. 'Us = 0 can occur when 'Us is 

increasing from a negative value to a positive value or vice versa and the ac­

celeration and/or deceleration of the robot at any given time is not the same. 

Hence there can be no constant value for Vthreshold· (For ex: for a Vs increasing 

from a negative value to a positive value, if the acceleration is high, a smaller 

-Vthreshold will result in reaching Vs = 0 before any switching can happen). 

Also in a real world scenario the accelerations/ decelerations are changing over 

time. Predicting them is impossible. The least possible in determining a good 

Vthreshold involves only in assessing the accelerations/ decelerations and any other 

mechanical constraints at a given time. 

• Combining these two controllers breaks the smoothness of operation. One con­

troller tries to stabilize the origin of the robot frame to desired formation values 

and the other is trying to stabilize an offset from the origin to desired formation 

values. This discontinuity of operation can cause problems when manoeuvring 

an object or a wall. There is the possibility that this discontinuity can overshoot 

an obstacle or a wall. Hence it 's recommended that when avoiding an obstacle 

or a wall, only the use of static feedback linearized controller is preferred. 

Given these drawbacks, it will be necessary that the structural singularity in the dy­

namic feedback linearized controller be tackled properly in future research. Also the 

formation scalability problem is not properly addressed in the thesis and any future 

research should substantially investigate it. 
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Sensor observations and control actions are subjected to natural noise in a real en­

vironrnent. DES is not the ideal solution to tackle the problem of dynamic inter­

action und r noisier observations. Thus this research propo e the investigation of 

the po sible usage of probabilistic discrete event systems with supervi ory control 

(PDES) [53], [54] instead of DES in our framework. We al o find that the dec n­

tralized state estimation is more challenging than that of communication. Hence w 

also r comm nd the investigation of easi r and more accurate alternative methods 

of estimation or communication including custom catered communication networks 

such as AD-HOC networks or sensor networks [55]. 

6.4 Contributed papers 

6.4.1 conference papers 

1. Gayan W. Gamage, George K.I . Mann, Raymond G. Gosine, 2010, Leader fol­

lower based formation control strategies for nonholonomic mobile robots: De­

sign, Implementation and Experimental Validation", Submitted to 2010 Ameri­

can Contml Confer·ence {ACC2010}, to be held in July 2010, Baltimore, Mary­

land, USA. 

2. Gayan W . Gamage, George K.I. Mann, Raymond G. Gosine, 2009 "Discrete 

Event Systems based Formation Control Framework to Coordinate Multiple 

onholonomic Mobile Robots", IEEE/ RSJ International Conference on Intel­

ligent Robots and Systems {IROS), October 2009, St. Louis, Missouri, USA. 

3. Gayan W. Gamage, George K.I. Mann, Raymond G. Gosin , 2009, "Formation 

Control of Multiple onholonomic Mobile Robots Via Dynamic Feedback Lin­

earization", 14th International Conference on Advanced Robotics {!CAR), June 

112 



2009, Munich, Germany. 

4. Gayan W. Gamage, George K.I. Mann, Raymond G. Gosine, 2009, "A Hybrid 

Control Strategy for Multiple Mobile Robots with Nonholonomic Constraints", 

22nd Canadian Conference on Electrical and Computer Engineering (CCECE), 

May 2009, St. John's, NL, Canada. 

113 



Appendix A 

Kalman Filters and Particle Filter 

Extended Kalman Filter 

EKF(X k, :Ek, U k+l, Zk+I) 

X k+l = g(U k+l , X k) 
A T 
:Ek+l = G k+l 'EkG k+1 + R k+l 

A T A T - ! 
M k+l = :Ek+IH k+l(H k+I:Ek+IH k+l + Q k+l) 

X k+l = X k+l + M k+l (Zk+l - h(X k+1)) 

:Ek+ l = (I - M k+l H k+l) :Ek+l 

return x k+l ' :Ek+l 

Sigma Point Filters 

Major shortcomings of EKF based estimation are 1.) Disregard of probabilistic spr ad 

of t he system states and noises during ini tialization of system equations (lineariza­

tion expands the distribut ion around only a single point) 2.) Taylors ries expansion 

holds only for first order accuracy of mean and covariance of the distribution. In 

order to overcome these shortcomings the idea is to use d terministic sampling ap-

proaches that circumvent the calculation of analytical derivatives. Filters which u 

a deterministic sampling st rategy are collectively known as Sigma-Point Kalman fil-
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ters. These together use weighted statistical linear regression in order to calculate 

the terms needed for the Kalman update rule. WSLR is a method in which the non-

linear function of a random variable is linearized using a linear regression between r 

points drawn from the prior distribution of the RV and the true nonlinear functional 

evaluations of these points. This tends to be more accurate than linearizing through 

a truncated Taylor series expansion around a single point since the method outlined 

takes into account the statistical properties of the prior distribution. For a nonlinear 

function of the form y = g(x) evaluated at r points of (x1, y1) where y1 = g(x1) , 

X = 2:.':;=1 WjXj 

P:x = 2:.':;=1 Wj(Xj- x)(xj- xf 

Y = 2:.':;=1 WjYj 

Pyy = 2:.':;=1 Wj(Yj - y)(yj - yf 

Pxy = 2:.':;=1 Wj(Xj- x)(yj - yf 

w1 are r linear regression weights such that 2:.':;=1 w1 = 1. The idea is to find a 

linear regression of the form y = Ax + b such that it minimizes a cost function 

J = E(¢(e1)). Point wise linearization errors are e1 = y1 - J\ x1 - b with covariances 

Pee = Fyy - AFxxAT and the error function is the vector dot product. Hence the cost 

function reduces to the sum of squared error. {A , b} = argmin 2:.':;=1 ( w1e1eJ) and 

the following solution holds, J\ = pT p-1 b = y-- J\ x. xy XX 

Unscented Kalman Filter 

Unscented Kalman fil ter is a SPKF type filter which chooses the sigma points (points 

in the distribution which are supposed to capture the true mean and the covari­

ance) using the rationale "Sigma points" must be chosen so that they capture the 

most important statistical properties of the prior random variable X" [50]. That 

can be achieved by choosing the points according to a constraint equation m( < 
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X ,w >, r ,p(x)) = 0 where< X ,w >are the sigma points Xi and weights Wi for 

i = 1, .. , r . It is also possible to satisfy this constraint while having some degree 

of freedom for the choice of points through minimizing another cost function of the 

form c( < X , w >, r , p(x) ). This cost function serves the purpose of incorporating 

sta tistical features of x which are desirable but should not necessarily be met. The 

st atistical information captured by UKF are the first and second order moments of 

p(x). Number of points used in EKF is r = 2L + 1 where L is the dimension of the 

state x. T he sigma points and the weight used for the EKF are given as, 

Xo =x 

Xi= x + ( j(L + A)Px)i 'i = 1, ... , L w0 = L~-' + (1 - a 2 + {3 ) 

Xi= x- ( j(L + A)Px)i i = L + 1, .. . , 2L wf = wf = 2(£~-'l, i = 1, .. . , 2L 

A is a scaling parameter given by A = a 2 (L + k ) - L. a is a small posit ive value 

usually set to (1e - 2 ~ a ~ 1). It describes the spread of the sigma points around 

the prior mean .7: . k again is a secondary scaling parameter usually set to 0 or 

3 - L. /3 is used to incorporate any extra knowledge about the prior dist ribution 

and ( j (L + A)Px) is the i th row or column of the weighted matrix square root of the 

covariance of Px [50] [56] . 

Central Difference Kalman Filter 

Based on the Sterlings interpolation formula where the Taylor series 1st and 2nd or-

der derivat ives are replaced by the numerically evaluated central divided differences. 

Taylor series is , 

1st and 2nd order terms can be replaced as 
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" ~ g(x+Mx)-g(x - Mx) >72 ~ g(x+Mx)+g(x-Mx)-2g(x) 
v g ~ 2h , v g ~ h2 

Even though the above method does not explicitly use WSLR, it is shown in [57] 

t hat the result ing Kalman filter implicitly uses the WSLR. The number of sigma 

points needed for the CDKF is again 2L + 1 where L is the dimension of state x. The 

points are chosen as, 

Xo = x 

x i= x + (~)i i = 1, ... , L 

h2 -L 
Wo=~r 

Wi = 2~2,i = 1, ... ,2£ 

Xi= x- ( J Jh2 Px)i i = L + 1, ... , 2L 

It is shown in [58] that CDKF has marginal accuracy over UKF in replacing the 

higher order terms in the Taylor series expansion. But all of the SPKF family filters 

have better performance over the EKF, but marginally different accuracy among dif-

ferent SPKF type fil ters [58]. Having one scaling parameter h in CDKF as opposed 

to 3 parameters in UKF makes the CDKF filter easier to u ethan the UKF. 

Particle Filter Algorithm 

T he general particle filter algorithm is given below [50], 

1. Initialization: k = 0 

• Fori= 1, .... , N draw (sample) particle xg) from the prior p(x0 ) . 

2. For k = 1, 2, .... 

a Importance sampling step 

F . 1 N I (i) ( I (i) v ) • or 2 = , .... , samp e xk ......., 1r xk xk_1 , r k . 

• Fori = 1, .... , N evaluate the importance weights up to a normalizing 

constant: 

, (i) _ (i) P(YkiXki))p(xki)) 
wk - wk- 1 (;) · 

tr(xk lxk - l, Yk) 
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( ') ( i) 
• For ·i = 1, .... , N normalizing the importance weights: wkt = '£Nwk w (i) 

j =l k 

b Selection step(resampling) 

• Multiply jsupress samples xii) with high/ low importance weights wii) 

respectively. to obtain N random samples approximately distributed 

according to p(xkiYk)· 

F . 1 N t (i) -(i) N - 1 • or~= , .... , se wk = wk = . 

• (optional) Do a single MCMC move step and add further 'variety' to 

the particle set without changing their distribution. 

c Output: The output of the algorithm is a set of samples that can be used to ap­

proximate the posterior distribution as follows: p(xkiYk) = -fv I:{:1 o(xk­

xii)). From these samples, any estimate of the system state can be calcu­

lated, such as the MMSE estimate, 

A E[ I'/ l 1 "'\'N (i) Xk = Xk I k rv N L..,i=l xk 

Particle depletion of the partirle filter makes the filter diverg . Hence moving 

all the particles to the highly likelihood region from the current observations will 

improve the robustness of the particle filter in the resampling step. Using a EKF 

generated Gaussian approximation to the optimal proposal, one is able to move these 

particles to the high likelihood areas. This can be accomplished by using a separate 

EKF to generate and propagate a Gaussian distribution for each particle proposal 

distribution. The idea is to use the EKF equations at time step k to generate the 

mean and the covariance of the importance distribution for ach particle from time 

step k - 1. Then we redraw the ith particle from this distribution. This way the 

chosen particles happen to fall in the highly likelihood regions of the distribution. 

Using the sigma point filters over the EKF, we can get a good proposal distribution 

for each particle. These are known as SPPF (sigma point particle filters) . There is 

a significant computational burden from this approach where a separate sigma point 
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Kalman filter is to be maintained and also the increment of the number of the particles 

will require an extra computational demand. 
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Appendix B 

Extended Formation Controller 

Derivation 

Static feedback linearized controllers 

Three robot extended formation controller derived via static feedback linearization 

is explained below. Imposing some constraints on the parameters of this three robot 

dynamic system will let the wall following and obstacle avoidance with formation 

control feasible. The new coordinates of the follower robot at an offset of Ox and Oy 

from its origin, in X and Y robot coordinate directions respectively can be calculated 

as, 

( 
x3 ) = ( c~s 03 - sin 03 ) ( ox ) + ( x3 ) 

Y3 sm e3 cos e3 Oy Y3 
(B.l) 

(x3 , y3 , 03 ) is the current output state vector in the global-coordinate system of the 

follower while (x3 , y3, 03 ) is the newest output state vector. For simplicity, we assume 

that oy = 0. Hence the new offset lies on the X axis at Ox units from the origin of 

the follower robot coordinate system. Writ ing the dynamic equations for the system 
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Two leader-follower formation 

Figure B.1: Three robot formation controller 

of Fig.B.1 with the new X and Y value of the follower robot (3rd robot) we get, 

dl3 J(:r;l - :r:3)2 + (:1)1- y~)2 

d23 J(x2- x3)2 + (Y2- y~)2 

fJ13 - el + 1r + atan2(y1 - y~ , x1 - x~) 

fJ23 -{}2 + 1r + atan2(y2- y~, X2- x~) 

()13 ()] - ()3 

()23 ()2 - ()3 

Differentiating these with respect to time and simplifying results in, 
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d13 COS/13 Ox sin /13 -cos /313 0 

d23 COS/23 Ox sin /23 0 0 

/3~3 - s in "Yl3 Ox COS "YI3 ( :: ) s in ,613 -1 ( :: ) ~ dl3 + ~ + 
/3~3 -sin "Y23 Ox COS]23 0 0 ~ d23 

e13 0 - 1 0 1 

e23 0 - 1 0 0 

0 0 

- cos/323 0 

0 0 ( ::) s in .623 -1 
~ 

0 0 

0 1 

For obstacle avoidance, if the leader robot 1 is considered as the actual leader and 

leader robot 2 as the obstacle, we can let the follower drive with a desired d12 and d23 

with respect to robot 1 and 2. Then the obstacle can be avoided (keeping d23) while 

keeping a desired distance to the actual leader: d13 . For wall following procedure 

depending on the direction of the wall to follow, we make /323 = ±~ in addition to 

keeping the distances to two leaders at some desired values. 

122 



Dynamic feedback linearized controllers 

Two Leader-Follower Formation 

Figure B.2: Three robot formation controller 

d13 j(x1 - x3)2 + (Yl - y3)2 

d23 J (x2 - x3)2 + (Y2 - Y3)2 

By differentiating t he above, we end up with, 
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-------~~--------------------------------

d13 cos 'Y13 0 -cos (313 0 

d 23 cos 'Y23 0 0 0 

(3~3 - s in ] 13 0 

( :: ) + 

s in .ih3 - 1 ( :: ) dt3 ~ + 
(3~3 - sin -y23 0 0 0 ~ 

(}13 0 -1 0 1 

(}23 0 - 1 0 0 

0 0 

-cos (323 0 

0 0 ( ::) sin /123 - 1 d23 

0 0 

0 1 

(Note: This system in Fig. 13.2 is different from the earlier dynamic system (sta­

tic feedback linearized) of Fig. B.1, where the output state vector in Fig. B.2 is the 

origin itself of the follower as opposed to an offset of Ox from the origin in Fig. B.1). 

Through applying dynamic extension of ~ = v3 and int roducing the time derivative 

of v3 , which is v3 = ~ = a3 to the equation above and then differentiating, 

(B. 2) 

cos 'Y13 ~ sin 'Y13 -cos !313 -~sin 'YJ3 

cos 'Y23 ~ sin 'Y23 0 0 
G = F1 = , F2 = 

- s in ] I3 /; COS '"'fJ3 s in f3 J3 -~ COS ] l3 
dl3 ~ ~ dt3 

- s in 123 s cos '"Y23 0 0 
d23 d23 
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------- --------------- - ------------------------,------

L = 

0 0 

- cos (323 -~sin 1'23 

0 0 

-{cos 1'23 
d23 

vlf3~3 sin (313 - ~(3~3 sin 1'13 

v2f3~3 sin (323 - ~(3~3 sin 1'23 

{d~3sin -y13 + v1 t3~3cosi31 3 _ v1d~3si n /3 J3 _ Si3~ 3cos-y13 _ W J 
d?3 d13 d13 d13 

{ d;3 sin 1'23 + v2!3;3 cos lh3 v2d;3 s in ,623 {/3;3 cos ] 23 W 
d~3 d23 - d~3 - d23 - 2 

f = [d13 d23 (313 f323JT is the system output. u1 = [a1 w1] and u2 = [a2 w2] are 

the exogenous input by the leader robot 1 and 2 respectively. And u3 = [a3 w3]T 

are follower's inputs. a1, a2 and a3 are the linear accelerations of robot 1,2 and 3 

respectively. The distances d and {3's can be set in such a way that the obstacles are 

avoided and the walls are followed as in the case of static feedback linearization. 
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