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2.1 The spacetime manifold M and its
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NOTATION AND CONVENTIONS

In this thesis, the geometrical setting a D-dimensional Lorentzian spacetime manifold M
bounded by two spacelike partial Cauchy surfaces, A/~ and A/t w h are asymptotically
related by a time translation and extend from the internal boundary A (with ANAf = SP~2
for some compact (D — 2)-dimensional space SP~2) to the boundary at infinity 2. Below

is a table of symbols that are used in this thesis.

Symbol Description

54 Timelike confc  al boundary of asymptotically anti-de Sitter
spacetimes

M2Mus Conformal completion of asymptotically anti-de Sitter spacetimes

cPh-2 Compact (D — 2)-dimensional cross section of f such that & N
M= CP-2

a,b,...e {0....,D -1} Spacetime indices on M

IJ,...e{0,...,D—-1} Internal Lorentz  dices in the tangent space of M

i.j,-..€{2,....,D -1} Spatial indices on SP-2

ce {1,...,(D-1)/2]) Rotation index; corresponds to | (D —1)/2] independent rotation

parameters in D dimensions (with |-] denoting “integer value

of™)

ix
















Symbol

Description

¢ 9,3

Vigno1 = T2 /T(N/2+1)

dQ?k)N—l

k

T+
An-y =272 JT(N/2)

L, T

Conserved charges of a stationary black hole (measured at infin-
ity): energy, electric charge and angular momenta

Volunie of an ( — 1)-dimensional space SV~1 = S(’Z)"l of con-
stant curvature

Metric on SV-!

curvature index of S¥~1: k = 1 corresponds to positive constant
curvature, k = —1 corresponds to negative constant curvature,
and £ =0 corr  >nds to zero curvature

radius of event  rizon

Su  eareaof a unit (N — 1)-sphere; I'(N/2) gamma function

The odynamic parameters: entropy and temperature







Chapter

Introduction

“What is mind? No matter. What is matter? Never mind.” ~ H J Simpson

1.1 Statement of the problem

It has been appreciated for some time that black hole behaves as a thermal object and
has a macroscopic entropy .y, the Bekenstein-Hawking entropy, that is proportional to
the surface area & of the event hori 1 (Bekenstein 1973; Bekenstein )74; Hawking 1975).
This fact is a very beautiful example of the profound relationship between the classical and
quantum aspects of the gravitational field, and is one of the main reasons why the study
of black holes continues to be one of the mo interesting areas of research in gravitational
theory. It is also the main reason to belii  that the gravitational field should have a
quantum description. One of the go.  of all e different approaches to quantum gravity is
to identify the microscopic degrees of freedom that account for the entropy, and to obtain the
area-entropy relation from first pri es1 g statistical mechanics. If it 1rned out that

gravity cannot be quantized, then this fact uld provide a very striking counterexample



























Chapter 1. Introduction 10

with A = 0, the simplest solution is 1e five-dimensional Reissner-Nordstrém (RN) space-
time (Tangherlini 1963; Myers and Perry 1986). The equations admit two asymptotically
flat solutions that describe supe  mmetric black holes. These are the Breckenridge-Myers-
Peet-Vafa (BMPV) black hole (Breckenridge et al 1997), and the Elvang-Emparan-Mateos-
Reall (EEMR) black ring (Elvang et al 2004). The Gutowski-Reall (GR) black hole is a
generalization to ADS spacetime of the BMPV black hole (Gutowski and Reall 2004). The
main purpose of the work in (Booth and Liko 2008; Liko and Booth 2008) was to develop
a quasilocal framework for these black holes.

First, we examine the boundary conditions and their consequences. To this end, we
consider the action (1.5) in the first-order connection formulation of gencral relativity, after
which we specify the boundary conditions that are imposed onto the inner boundary of
M. These boundary conditions capture the notion of a weakly isolated horizon (WIH) that
physically corresponds to an isolated black hole in a surrounding spacetime with (possibly
dynamical) ficlds and leads to the zeroth law of black-hole mechanics.

Next we investigate the mechanics of the WIHs. We show that the action principle
with boundaries is well defined by explicitly showing that the first variation of the surface
term vanishes on the horizon. 1 - find  expression for the symplectic structure by
integrating over a spacelike (D  1)-surface the antisymmetrized second variation of the
surface term and adding to this the pullback of the resulting two-form to the WIH. This
allows us to find an expression for  :local version of the {equilibrium) first law of black-hole
mechanics in dimensions D > 5.

Summarizing thus far, we have the following:

Result 1. A charged and rotating WIH A C M on the phase space of solutions of EM-CS
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Cho and Neupane 2002) and Noether charge (Clunan et al 2004) methods.

Summarizing thus far, we have the following:

Result 4. A non-rotating WIH A C M on the phase space of solutions of EGB theory in
D dimensions satisfies the zeroth and first laws of black-hole mechanics.

We conclude our investigation of IHs in EGB theory by looking at physical consequences
of the correction term in the entropy can h : on the area-increase law. In order to make
the analysis concrete, the calculation is done for black holes in four dimensions, specifically
for the merging of two Schwarzschild black oles in flat spacetime. It turns out that for
this very special case the second law of black-hole mechanics will be violated if « is greater
than the product of the masses of the black »>les before merging minus a small correction
due to radiation that may be lost by gravitational waves during the merging process.

Summarizing now, we have the following:

Result 5. There is a lower bound on « for which the area-increase law will be violated
when two black holes merge.

The calculation of the bound on « is done in four dimensions. However, a similar bound
may presumably be derived for specific solutions in higher dimensions as well [although in
this case the topologies are not as severely  tricted as they are in four dimensions, even
for Einstein gravity with A = 0 (Helfgott et al 2006; Galloway 2006; Galloway and Schoen
2006)]. Result 2 also corrects a long-held m onception about the GB term, namely that
its presence in four dimensions does not lead to any physical effects because the term is a
topological invariant and does n ow up in the ¢ _ 1itions of motion.

In Chapter 5 we conclude the t is wi  a brief summary of the work that has been

done here, and discuss some classical applica ns of IHs in EM-CS theory and EGB theory.
























Chapter 2. Isolated Horiz L . ueory 23

together with the conditions

This basis represents a higher-dimensional a1 ogue of the Newman-Penrose (NP) formalism
(Pravda et al 2004). The coframe e,’ can be decomposed in terms of the vectors in the

basis (2.22) such that

el = —tn, —en! + 19(5195;7 ; (2.24)

a

summation is understood over repeated spacelike indices (i, j,k etc). The pullback of the

coframe to A is therefore

el ~—tn, + 19(1.1)19‘(11') 7 (2.25)
whence the {D — 2)-form
~ 1 A A Ap_2 (1) (ip-3)
EIJ ~ _MGIJ‘AI---ADVQK 119(1.1)2 "'ﬂ(io_s) (n A A oA gliD-3 )
e ap B 9 A (1901)/\...,\19(1‘04)) _
(D -2)! 1 AD—-27 (i) (ip-2)
(2.26)

To find the pull-back of A we first note that
Voli  Va (eb ,e,,)
~ (Ve De+eValy
~ eblwa&,

~ waly, (2.27)

where we used V,e? ; = 0 in going from the cond to the third line (a consequence of the

metric compatibility of the connection). Then, taking the covariant derivative of ¢ acting
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on internal indices gives
Val1 = 8al1 + Aars?”’ (2.28)

with O representing a flat derivative operati that is compatible wi  the internal coframe

on A. Thus 0,£; = 0 and

Valr~Ag it . (2.29)
Putting this together with (2.27) we have t.

Ag 1t = waly, (2.30)

and this implies that the pull-back of A to  : horizon is of the form

i1 J]

®Y6) (2.31)

A~ 20, + a@8 S+ (D9
where the a((f) and b,(fj ) are one-forms in the cotangent space T*(A). It follows that the

variation of (2.31) is

(2.32)

SA T~ —2lindlse. + sa@elly I 4 gplia)y )]
a o' £ V() T 00 (

ORI
Finally, by direct calculation, it can be shown that the gravitational part Jgray of the surface

term (2.20) reduc  to

Jora| 00 EASw. (2.33)

Here,
¢ WA AP (2.34)

is the area element of the cross sections S~ of the horizon.
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of the horizon: higher genus hor » nece rily have larger areas. Similar bounds have
previously been discovered for stationary ADS black holes (Gibbons 1999; Woolgar 1999;

Cai and Galloway 2001).











































































Chapter 4. Isolated Horizons in EGB Theory 62

Finally, using this result and (2.. it is straightforward to see that
Raped95y 90 = da' Regoa?fyydf;) - (4.13)
From here one can use the fact that
dedyd® = §,%4,%3,7 V4 (qegq,hvgﬂg)) , (4.14)
and the identity for the Riemann tensor R4 associated with gg
Rabea? = (da — dpda) 9%, (4.15)
along with (2.52) to show the Gauss relation

0%, 090" Regon = Ravea + (KOK + KRS — DR + kD) - (416)

C

Here kl(li) = qacqbdvczd and kl(;;) qacqbdvcnd are the extrinsic curvatures associated with
{, and n,. However, kl(li) = (1/2  4)Gab + 0, and on a non-expanding horizon both the

expansion and shear vanish. Thus for the ¢. 5 in which we are interested

f

Ga°G,” 3,734 Regoh = Rabed - (4.17)

Then upon expanding the frame indices of © .7/ in terms of the ¢/, n/ and 19(!), and

applying (4.12) and (4.17), it fol that on any non-rotating WIH the pull-back of the

associated curvature is

h
Q" = 99 IR, T Lo 5 + 2609

prated

(519@“19“}{@, (4.18)

where R “ is the Riemann tensor associated with the (D —2) metric §up = ggb +artp + 104

That is, given a foliation of =~ = o Hacelike (D — 2)-surfaces, the spacelike 19[(11‘) give an
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After the black holes merge, the total entropy of the resulting black hole is

S’ A +2aX(S)] . (4.34)

N 4G p
The expressions (4.33) and (4.34) imply that S’ > S if and only if

—(.Al + Ag — .A/)
* < X (S1) + X(S2) = X(©)] | (4.35)

Without knowing the specific details of the black holes in question, nothing further can
be said about S and &', or about the upper bound (4.35). Let us therefore consider for
concreteness the simplest case — the merging of two Schwarzschild black holes in four-
dimensional flat spacetime. This a particularly special case as the topologies are much
more restricted than could be hoped for. First, the GB theorem [see e.g. (Hatfield 1992)]

relates the correction term to the Euler cha teristic x(S) via
X(S) = ]( ER = drx(S) - (4.36)
§2

Then the Hawking topology tl 1 (Hawking 1972) restricts the horizon cross sections to
be two-spheres for which x(S) = 2. For a Schwarzschild black hole the correction term is
therefore X (S) = 8. Furthermore, the surface area of a Schwarzschild black hole is related

to its mass via
A=1 2, (4.37)
whence the surface areas of the init  and final black-hole states are
A, =16mm?, A, 16mm}, ¢ | A’ =167(m; +my—7)?. (4.38)

Here, a small mass parameter v > 0 for the surface area of the fii  black-hole state has

been included. This parameter corresponds to any mass that may be carried away by
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to include rotation by relaxing the cor tion w = 0.

e Torsion. The formalism presented here can be further extended by including torsion.
Recall that in §5.2 we assumed 7/ = 0 rectly, which became crucial when we derived
the pull-back to A of the connection. However, as the equation of motion (4.2) for
A indicates, the torsion-free condition is not imposed in D > 5 dimensions. If the
torsion is non-zero then the pull-back to A of A will not be given by (2.31). In order
to derive the modified pull-back of A in the presence of torsion we would need to find
V‘gebl explicitly. In addition, the Raychaudhuri equation wor . be different as well,
and so the boundary conditions would :quire a more careful analysis. The effects of
torsion on IHs should therefore lead to some interesting consequences. This would be a
particularly interesting project to work out in five dimensions, for which a solution has
recently been found that d ribes a s 2rsymmetric black hole (Canfora et al 2008).
More interestingly, there is a  a sc of the equations with non-zero torsion
that describes a constant-curvature bk hole with entropy that is proportional to
the surface area of the inner horizon  her than the event horizon (Bafiados 1998).
This curious interchange of thermodynamic parameters, namely the outer and inner
horizons, may be a consequence of t  torsion that is present in the equations of

motion. The IH framework cou. be e )loyed in order to test this hypothesis.

There are many more avenues to explor ~ We hope that others will consider some of

them.
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the generalized second law of thermodynamics:

6yUniverse + 6<5pBH >0. (A8)

Using a semiclassical approach, Hawking (© '5) then fixed the free parameter to 1/4 and
the temperature to T = x/2m. Thus a black hole is not eternal, but rather has a thermody-
namical temperature and radiates. (It should be noted that the final state of this process is
unknown, because the temperature goes to infinity as the surface area decreases. One of the
many goals of all theories of quantum gravity is to give a detailed first-principles description
of the evapouration process and to determine what the final state of a black hole should
be.) Therefore, the laws of black-hole mech  cs are the laws of thermodynamics, applied

to an object of special character.
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Note that this tensor is zero if p+ ¢ > m. Thus the wedge product of two one-forms on
R™22 is wA = —p Aw. Now define the  tor space of all differential forms at z to be

the direct sum of the A% such that

The map A : Al x AL — A2*9 gives A, t  structure of a Grassmann algebra over the
vector space of one-forms.

Definition B.III: The exterior di 4ve on an m-dimensional manifold M is a map from

the space of p-forms to the space of +1)- rms:
d: AP — APT
together with the following proper s:
1. d(w + p) = dw + du;
2. d(cw) = cdw;

8 dwAAN)=dwAX+ (1) AdX;

Yw,ue AP(M), A e AU (M), and c € R.

The last property can be easily shown as follows. Consider the p-form w such that

1
W= —Way..qpdT™ Ao Adz®.
pl

The exterior derivative acting on  is given by

1
dw = o hay apdt® Adz™ A - A dz®,
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Definition B.V: The Lie derivative of a p-form w with respect to a vector field X is given

by
Lxw = Xdw + d(X w) .

Definition B.VI: The Hodge star operator on an m-dimensional manifold M is a linear

map * : AP(M) — A™~P(M) given by

1
_ Ap+1Qm
*(eal /\~-./\eap) = Tﬁa]_“al) eapbl /'\.../\e”'m‘

(e — D
where {€q}-, is a positively-oriented set of one-forms on some chart of M.
As a simple example, consider a two-form on R®. Choosing a basis {e; Aez,e; Aes, ex A
e3}, the definition gives x(e; A e;) = eijkek, or *(e; Aey) = es, x(e; Aez) = —ey and

*(62 /\63) = €.
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