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ABSTRACT 

An isolated horizon (IH) is a null hypersurface at which the geometry is held fixed. This 

generalizes the notion of an event horizon so that the black hole is an object that is in local 

equilibrium with its (possibly) dynamic environment. The first law of IH mechanics that 

arises from the framework relates quantities that are all defined at the horizon. 

IHs have been extensively studied in Einstein gravity with various matter couplings and 

rotation, and in asymptotically flat and asymptotically anti-de Sitter (ADS) spacetimes in 

all dimensions D 2:: 3. Motivated by the nonuniqueness of black holes in higher dimensions 

and by the black-hole/string correspondence principle, we devote this thesis to the extension 

of the framework to include IHs in string-inspired gravity models, specifically to Einstein­

Maxwell-Chern-Simons (EM-CS) theory and to Einstein-Gauss-Bonnet (EGB) theory in 

higher dimensions. The focus is on determining the generic features of black holes that are 

solutions to the field equations of the theories under consideration. To this end, we construct 

a covariant phase space for both theories; this allows us to prove that the corresponding 

weakly IHs (WIHs) satisfy the zeroth and first laws of black-hole mechanics. 

For EM-CS theory, we find that in the limit when the surface gravity of the horizon goes 

to zero there is a topological constraint. Specifically, the integral of the scalar curvature 

of the cross sections of the horizon has to be positive when the dominant energy condition 
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is satisfied and the cosmological constant A is zero or positive. There is no constraint 

on the topology of the horizon cross sections when A < 0. These results on topology of 

IRs are independent of the material content of the stress-energy tensor, and therefore the 

conclusions for EM-CS theory carry over to theories with arbitrary matter fields (minimally) 

coupled to Einstein gravity. 

In addition, we consider rotating IRs in asymptotically ADS and flat spacetimes, and 

find the restrictions that are imposed on them if one assumes they are supersymmetric. For 

the existence of a null Killing spinor in four-dimensional N = 2 gauged supergravity we show 

that ADS supersymmetric isolated horizons (SIRs) are necessarily extremal, that rotating 

SIRs must have non-trivial electromagnetic fields, and that non-rotating SIRs necessarily 

have constant curvature horizon cross sections and a magnetic (though not electric) charge. 

When the cosmological constant is zero then the gravitational angular momentum vanishes 

identically and the corresponding SIRs are strictly non-rotating. Likewise for the existence 

of a null Killing spinor in five-dimensional N = 1 supergravity, we show that SIRs (in 

asymptotically flat spacetimes) are strictly non-rotating and extremal. 

For EGB theory we restrict our study to non-rotating WIRs and show explicitly that the 

expression for the entropy appearing in the first law is in agreement with those predicted 

by the Euclidean and Noether charge methods. By carefully examining a concrete example 

of two Schwarzschild black holes in a flat four-dimensional spacetime that are merging, we 

find that the area-increase law can be violated for certain values of the GB parameter. This 

provides a constraint on the free parameter. 
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NOTATION AND CONVENTIONS 

In this thesis, the geometrical setting is a D-dimensional Lorentzian spacetime manifold M 

bounded by two spacelike partial Cauchy surfaces, M- and M+, which are asymptotically 

related by a time translation and extend from the internal boundary 6. (with 6. nM ~ §D- 2 

for some compact (D- 2)-dimensional space sD-2) to the boundary at infinity ~. Below 

is a table of symbols that are used in this thesis. 

Symbol 

a, b, . .. E {0, ... , D - 1} 

I, J, . .. E {0, . . . , D - 1} 

i,j, ... E {2, ... ,D- 1} 

L E {1 , ... , l(D- l)/2J} 

Description 

Timelike conformal boundary of asymptotically anti-de Sitter 

spacetimes 

Conformal completion of asymptotically anti-de Sitter spacetimes 

Compact (D - 2)-dimensional cross section of .Jf such that .Jf n 

M ~ cv-2 

Spacetime indices on M 

Internal Lorentz indices in the tangent space of M 

Spatial indices on sD- 2 

Rotation index; corresponds to l ( D - 1) / 2 J independent rotation 

parameters in D dimensions (with l·J denoting "integer value 

of") 
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A,B, ... E{1,2} 

A',B', . .. E {1,2} 

a,{J, ... E {1, 2} 

9ab 

Rabcd 

Rab = Rc acb> R = gab Rab 

Gab = Rab - (R/2)9ab: Tab 

Aa, Fab = 8aAb - 8bAa 

9ab 

Cabcd 

Eab 

n 

A,L 

c, li, kB , Go 

A 

T/IJ = diag(-1, 1, .. . , 1) 

Description 

Spinor indices labelling components of two component spinors in 

four dimensions 

Dual spinor indices labelling components of two component 

spinors in four dimensions 

Spinor indices labelling ~ymplectic spinors in configuration space 

of spinors in five dimensions 

D-dimensional metric tensor on M ; sig. (- + · · · +) 

Riemann curvature tensor determined by 9abi employing the con­

vention of Wald (1984) 

Ricci tensor and Ricci scalar 

Einstein tensor and stress-energy tensor 

Electromagnetic vector potential and Faraday field tensor 

D-dimensional metric tensor on M 

Weyl tensor of 9ab 

Electric part of Cabcd 

Conformal factor relating 9ab and 9ab 

Cosmological constant and anti-de Sitter radius 

Physical constants: speed of light, Planck constant, Boltzmann 

constant, gravitational constant 

Coupling constants: ko = 81rG o , Gauss-Bonnet 

Chern-Simons parameter; 1 if D is odd and 0 if D is even 

Internal Minkowski metric in the tangent space of M 

Coframe; a set of D orthogonal vectors defined by the condition 

9ab = TJI Je/ ® eb J 
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Symbol 

19 (i) 

Qab = 9ab + fanb 

Qab = 9ab + fanb + ebna 

Wa, A, K.(t) = eawa. 'l>(t) 

eaAa 

f.J, ... Io 

f = 19(1) (\ ... /\ 19( D - 2) 

K,K' 

Description 

Null normal to ~; f' "' e if f ' = zf, z constant 

Auxiliary null normal to ~ normalized such that naea = -1 

(D - 2) spacelike vectors satisfying e · 19(i) = n · 19(i) = 0 and 

normalized such that 19(i) ·19(j) = Oij 

(D- I )-dimensional degenerate metric on ~; sig. (0 + ... +) 

Induced metric on §D-2 

Induced normal connection, area, surface gravity and electromag­

netic scalar potential on ~ 

Denotes pullback to ~ 

Denotes equality restricted to ~ 

Gravitational SO(D - 1, 1) connection 

Gravitational curvature two-form defined by A 1 
J 

(D - m)-form determined by the coframe 

Spacetime volume element 

Totally antisymmetric Levi-Civita tensor 

Area element of §D- 2 

Timelike Killing fields in globally stationary asymptotically anti­

de Sitter spacetimes 

Killing vector field that generates a symmetry (i .e. time transla­

tion etc) in asymptotically anti-de Sitter spacetime 

Unit timelike normal to cD- 2 

Area form on cD-2 

Gradient of n on J 
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f,g, V" , W", wab 

:F, vr, iplJ 

Ej_, Bj_ 

X" E T*(§v) 

Description 

Electromagnetic (U(1)) connection one-form and associated cur­

vature two-form 

Electric and magnetic charges 

Anticommuting Dirac spinor in four dimensions 

Commuting symplectic Majorana spinors in five dimensions 

Spinor structure associated withE"'; norm. € 12 = €
12 = 1 

Gamma matrices in four dimensions 

Gamma matrices in five dimensions 

Totally antisymmetric product of D gamma matrices 

Hermitian conjugate t and transpose T of the matrix M 

Charge congujation matrix 

Bilinear covariants defined by products of € and 1" 

Bilinear covariants defined by products of € 0 and f 1 

Electric and Magnetic fluxes through b. 
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Killing vector which is null on b. 

Complex-valued function defined by j3A = JCG.A 
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Equations of motion 

Surface terms 

Symplectic structure 

L(D - l)/2J angular velocities of 6. 
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Symbol Description 
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c:::-1 
Introduction 

"What is mind? No matter. What is matter? Never mind. " ,...., H J Simpson 

1.1 Statement of the problem 

It has been appreciated for some time that a black hole behaves as a thermal object and 

has a macroscopic entropy YsH, the Bekenstein-Hawking entropy, that is proportional to 

the surface area .sd of the event horizon (Bekenstein 1973; Bekenstein 1974; Hawking 1975). 

This fact is a very beautiful example of the profound relationship between the classical and 

quantum aspects of the gravitational field , and is one of the main reasons why the study 

of black holes continues to be one of the most interesting areas of research in gravitational 

theory. It is also the main reason to believe that the gravitational field should have a 

quantum description. One of the goals of all the different approaches to quantum gravity is 

to identify the microscopic degrees of freedom that account for the entropy, and to obtain the 

area-entropy relation from first principles using statistical mechanics. If it turned out that 

gravity cannot be quantized, then this fact would provide a very striking counterexample 

1 



Chapter 1. Introduction 2 

to our belief that thermal properties of any object are described quantum mechanically in 

terms of the microstates of the corresponding system. 

To get a general feeling for the problem, it is worth looking at the entropy with a 

concrete example. First, let us write down the expression with all physical constants. For 

a black hole in Einstein gravity this is 

(1.1) 

with kB the Boltzmann constant and l~ the Planck "area" defined by the speed of light c, 

D-dimensional gravitational constant G D and Planck constant li. Let us further consider a 

Schwarzschild black hole of one solar mass M0 = 1.989 x 1030 kg in four dimensions. The 

spacetime for this solution in spherical coordinates is the line element 

The event horizon has radius r = 2G4M 0 jc? and the surface area is then .fll = 321l'G~M~/c4 . 

This gives a numerical value of 

(1.3) 

for the entropy of the black hole. The number of quantum states N that this entropy 

corresponds to is therefore 

N = exp (~) = exp(2.098 x 1077
), (1.4) 

which is a huge number by any standards. For comparison, we note that the number .Y / ks 

is on the same order of magnitude as the estimated total number of nucleons in the universe! 

The problem is to answer the following question : What are the microscopic degrees of 

freedom that account for the entropy of the black hole'? The Schwarzschild solution is static, 



Chapter 1. Introduction 3 

which implies that the degrees of freedom cannot be gravitons. They must be described by 

nonperturbative configurations of the gravitational field . 

The leading approaches to quantum gravity that have been most successfully applied 

to the problem of black-hole microstates are loop quantum gravity (LQG) (Ashtekar and 

Lewandowski 2004) and superstring theory (ST) (Aharoney et al 2000). 

• Loop quantum gravity. Here one counts the states arising from punctures where spin 

networks traversally intersect a surface that is specified in the quantized phase space 

with a set of boundary conditions (Ashtekar et al 1998; Ashtekar et al 2000a). This 

surface represents the black hole horizon and is intrinsically flat. Curvature is indue d 

at the punctures where the spin networks intersect the surface and give it "quanta of 

area". The LQG framework has been successful in describing the statistical mechanics 

of all black holes (with simple topologies) in four dimensions, but up to a single free 

parameter that enters into the classical phase space as an ambiguity in the choice of 

real self-dual connection (Barbero 1996; Immirzi 1997; Rovelli and Thiemann 1997). 

In order for the framework to produce the correct coefficient that matches the one for 

.Yin (1.1) , this parameter must be fixed to a specific value which depends on how the 

state-counting is done. See e.g. (Tamaki and Nomura 2005) . It was recently pointed 

out, however, that if the ewton constant as well as the surface area of the black hole 

are renormalized then the entropy may be the same for all values of the parameter 

(Jacobson 2007) . Also, certain special properties of four-dimensional spacetimes have 

to be exploited within the framework, which are crucial for the calculations to work 

at all. This makes it difficult to extend the framework to higher dimensions. 
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• Superstring theory. There are two (independent) approaches to the problem here. 

The first is the D-brane picture (Maldacena 1996; and references therein), whereby 

one counts the states of a particular quantum field theory on a configuration of D­

branes which forms a black hole in the limit when the string coupling is increased. 

The second is the anti-de Sitter/conformal field theory (ADS/CFT) picture (Witten 

1998a; 1998b), whereby a black hole in a five-dimensional ADS spacetime is described 

by a conformally invariant SU(N) super Yang-Mills theory; here the states accounting 

for the entropy are the quantum states of the CFT. Both of these approaches have 

been successful in describing the statistical mechanics, with the exact coefficient for 

the area-entropy relation, but for a very limited class of black holes: extremal and 

near-extremal in the D-brane picture while very small black holes (corresponding to 

high temperature limit) in the ADS/CFT picture. In particular, astrophysical black 

holes such as those described by the solution (1.2) are not among the class of black 

holes that are described in the ST approaches. 

The LQG and ST approaches are very different, both philosophically and in the methods 

that are used for quantization. LQG on the one hand is a background independent canon­

ically quantized theory of pure gravity in four dimensions, while ST on the other hand is 

a quantum field theory over a fixed nondynamical background in higher dimensions that is 

supposed to describe all interactions as well as gravity. It is unclear, and surprising, that 

such different approaches all lead to the same answer. This is an instance of the "problem 

of universality" which has been advocated for some t ime now by Carlip (2007). Essentially, 

the entropy of a black hole may be fixed universally by the diffeomorphism invariance of 
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general relativity. 

1.2 Motivation for thesis research 

The fact that the ST approaches give the exact coefficient for the entropy of a black hole is 

truly remarkable, despite that they do so for such a limited clas of solutions. Nevertheless, 

the ST approaches are the most favored because they explain the entropy dynamically, 

and also from an aesthetically pleasing point of view that ST is a unified theory of all 

interactions. Despite all successes though, a number of problems remain. Among the more 

serious ones are black hole nonuniqueness in higher dimensions and an inconsistency that 

has been overlooked in the black-hole/string correspondence principle. 

• Black-hole nonuniqueness. In a four-dimensional asymptotically flat spacetime, a 

charged and rotating black hole is uniquely described by its conserved charges; the 

only unique solution is the Kerr-Newman metric (Robinson 1973). This is a statement 

of the black-hole uniqueness theorem, and is a striking property of the simplicity of 

black holes in nature. The advent of ST revolutionized our view of the universe, 

for example with the requirement of extra spatial dimensions. For a long time it was 

generally assumed that the properties of four-dimensional black holes, particularly the 

uniqueness theorem, simply carry over to higher dimensions as well. The black ring 

solution (Emparan and Reali 2002) that describes a rotating black hole with horizon 

topology 8 1 X S2 in five dimensions, was the first counter-example to the uniqueness of 

black holes in asymptotically flat spacetimes. Specifically, the uniqueness theorem fails 

(in five dimensions) because the conserved charges of the ring can coincide with the 
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conserved charges of a rotating black hole with horizon topology S3 (Myers and Perry 

1986). The natural question that should be investigated is therefore the following: 

What properties of black holes in four dimensions carry over to higher-dimensional 

spacetimes? More specifically, we should ask the following question: What are the 

generic features of black holes in higher-dimensional spacetimes in general and within 

the ST framework in particular? An ideal method of investigating such questions is 

to employ a covariant phase space of all solutions to the equations of motion for a 

given action principle. 

• Black-hole/string correspondence principle. The methods that are employed in ST 

lead to a first law of black-hole mechanics that relates quantities at the event horizon 

and quantities ·defined at infinity. This "hybrid" relation appears to be unphysical in 

ST from the point of view of the black-hole/string correspondence principle (Susskind 

1993) , which states that there is a smooth transition from a black hole to a string 

in the limit when the string coupling is decreased. For this correspondence principle 

to work, the entropies of the black hole and string are required to be equal for a 

particular value of the string coupling constant because the entropy of the black hole 

is proportional to the mass squared and the entropy of the string is proportional to 

the mass (Horowitz and Polchinski 1997). However, while the mass of the black hole 

is measured at infinity, the mass of the string is determined by the string coupling and 

tension which are intrinsic quantities of the string state in the sense that no reference 

needs to be made to infinity at all. Therefore the conserved charges of the black hole 

state should not be defined at infinity. 
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The moral to be extracted from the above considerations is that a framework for black 

holes in ST should be employed that is both quasilocal and general enough to allow for a 

large class of solutions to be investigated. Remarkably, such a framework doe exist! This 

is the isolated horizon (IH) framework (Ashtekar and Krishnan 2004). The classical theory 

of IHs was motivated by earlier considerations by Hayward (1994), but the framework 

is considerably different as covariant phase space methods (Witten 1986; Crnkovic 1987; 

Crnkovic and Witten 1987; Crnkovic 1988; Lee and Waltl 1990; Ashtekar et al 1991; Wald 

and Zoupas 2000) are employed in th former case. All the quantities that appear in the 

first law of IH mechanics are defined intrinsically at the horizon. The concept of such a 

surface generalizes the notion of a Killing horizon in stationary spacetim to much more 

general and therefore physical spacetimes that may include exterual radiation fields that 

are dynamical. Examples of such system in general relativity are given by the so-called 

Robinson-Trautman spacetimes (A htekar et al 1999; Lewandowski 2000). 

The IH framework may fit naturally into ST and the black-hole/string correspondence 

principle. The work presented here is a first step towards extending the IH phase space 

beyond Einstein gravity so that a quasilocal description of black holes may be realized 

within the context of ST. In this thesis the framework is extended first to Einstein-Maxwell-

Chern-Simons (EM-CS) theory (Booth and Liko 2008; Liko and Booth 2008) and then to 

Einstein-Gauss-Bonnet (EGB) theory (Liko and Booth 2007; Liko 200 ) in higher dimen­

sions. There are of course many more theories of gravity in higher dimensions. Some of 

the modern approaches in five dimensions incorporating a large extra dimension include 

braneworld cosmology (Brax and van de Bruck 2003; Maartens 2004) and induced-matter 

theory (Overduin and Wesson 1997; Liko et al 2004). 
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The motivation for extending the IH framework specifically to the two theories presented 

in this thesis came from their relevance within the context of ST. EM-CS theory is imp or-

tant in ST because, in five dimensions, the corresponding action with negative cosmological 

constant is the bosonic action of N = 1 gauged supergravity (Cremmer 1980); black holes in 

particular are described by solutions to the bosonic equations of motion with all fermionic 

fields and their variations vanishing in the vacuum (Gibbons et al 1994; Gauntlett et al 

1999; Gutowski and Reali 2004). In addition, the action in four dimensions reduces to the 

Einstein-Maxwell (EM) action, which is the bosonic action of N = 2 gauged supergravity 

(Gibbons et al 1994). EGB theory is important in ST because the corresponding action 

contains the only possible combination of curvature-squared interactions for which the lin-

earized equations of motion do not contain any ghosts (Zwiebach 1985; Zumino 1986; Myers 

1987). This is particularly important in ST because of the no-ghost theorem (Polchinski 

1998), which states that the BRST inner product is positive. 

1. 3 Overview and main results 

In Chapter 2 we consider the phase space of solutions to the equations of motion for the 

EM-CS action 

(1.5) 

Here, R is the scalar curvature, g is the determinant of the spacetime metric tensor 9ab 

(a, b, ... E {0, .. . , D - 1} ), Aa is the vector potential and Fab = 8aAb - 8bAa (with F 2 = 

Fabpab) is the field strength. The constants appearing in the action are the gravitational 
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coupling constant "'D = 81rG D and the cosmological constant A. The cosmological constant 

is given by 

£ 
A = 

2
£2 (D - 1)(D - 2), (1.6) 

where£ E { - 1, 1} and Lis the (anti-)de Sitter radius. Also, we set c = li = 1 from here on 

unless otherwise stated. The last term is a Chern-Simons (CS) term for the electromagnetic 

field; here A = 0 if D is even and A = 1 if D is odd. The field equations that are derived 

from the action (1.5) when the metric is varied are the Einstein equations 

Gab = 2Tab - A gab (1.7) 

with the Einstein tensor Gab and stress-energy tensor Tab given by 

(1.8) 

The field equations that are derived from the action (1.10) when the vector potential is 

varied are the Maxwell-Chern-Simons equations 

\1 pab = 4(D + 1)A iCJ ···CD- ! F ... F 
a 3J3A CJC2 CD - 2CD - 1 • 

(1.9) 

There are several solutions to these equations that describe black holes. In four dimensions 

with A = 0 the equations are solved by a family of topological Kerr- ewman-ADS (K -

ADS) spacetimes (Kostelecky and Perry 1996; Caldarelli and Klemm 1999). The solutions 

that are supersymmetric describe: (a) rotating and extremal black holes with horizon cross 

sections of spherical, cylindrical or toroidal topologies and having non-trivial electromag-

netic fields; and (b) non-rotating and extremal black holes with constant curvature horizon 

cross sections of genus g > 1 and with magnetic (but not electric) charge. In five dimensions, 
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with A = 0, the simplest solution is the five-dimensional Reissner-Nordstri:im (RN) space­

time (Tangherlini 1963; Myers and Perry 19 6). The equations admit two asymptotically 

flat solutions that describe supersymmetric black holes. These are the Br ckenridge-Myer -

Peet-Vafa (BMPV) black hole (Breckenridge et al 1997), and the Elvang-Emparan-Mateos­

Reall (EEMR) black ring (Elvang et al 2004). The Gutowski-Reali (GR) black hole is a 

generalization to ADS spacetime of the BMPV black hole (Gutowski and Reali 2004). The 

main purpose of the work in (Booth and Liko 2008; Liko and Booth 2008) was to develop 

a quasilocal framework for these black holes. 

First, we examine the boundary conditions and their con equences. To this end, we 

consider the action (1.5) in the first-order connection formulation of general relativity, after 

which we specify the boundary conditions that are imposed onto the inner boundary of 

M . These boundary conditions capture the notion of a weakly isolat d horizon (WIH) that 

physically corre ponds to an isolated black hole in a surrounding spacetime with (possibly 

dynamical) fields and leads to the zeroth law of black-hole mechanics. 

Next we investigate the mechanics of the WIHs. We show that the action principle 

with boundaries is well defined by explicitly showing that the first variation of the surface 

term vanishes on the horizon. We then find an expression for the symplectic structure by 

integrating over a spacelike (D - I)-surface the antisymmetrized second variation of the 

surface term and adding to this the pullback of the resulting two-form to the WIH. This 

allows us to find an expression for the local version of the (equilibrium) first law of black-hole 

mechanics in dimensions D ~ 5. 

Summarizing thus far, we have the following: 

R esult 1. A charged and rotating WIH 6. C M on the phase space of solutions of EM-CS 
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theory in D dimensions satisfies the zeroth and first laws of black-hole mechanics. 

After proving that the first law holds, we restrict our study to the stronger notion of 

(fully) IHs. These are WIHs for which the extrinsic as well as intrinsic geometries are 

invariant under time translations . . For these horizons, the sign of the surface gravity "-(t) 

is well defined. The requirement that "-(t) 2: 0 therefore allows us to define a parameter 

that provides a constraint on the topology of the IHs. We find that the integral of the 

scalar curvature of the cross sections of the IH (in a spacetime with nonnegative cosmo­

logical constant) have to be strictly positive if the dominant energy condition is satified. 

Furthermore, this integral will be zero if the horizon is extremal and non-rotating, and the 

stress-energy tensor Tab is of the form such that Tab!!anb = 0 for any two null vectors !! and 

n with normalization !!ana = - 1 at the horizon. For negative cosmological constant there 

is no restriction on the scalar curvature of the cross sections of the IH. 

Summarizing now, we have the following: 

Result 2. The IH cross sections in a higher-dimensional spacetime with nonnegative cos­

mological constant are of positive Yamabe type; if A < 0 then there is no restriction on the 

sign of the scalar curvature. 

This result is in agreement with recent work on the topological constraints of higher­

dimensional black holes in globally stationary spacetimes (Helfgott et al 2006; Galloway 

2006; Galloway and Schoen 2006). We note that the physical content of the stress-energy 

tensor at this point is completely arbitrary. Therefore Result 2 implies that the topology 

considerations are valid for any matter (nonminimally) coupled to Einstein gravity. In the 

case of electromagnetic fields with or without the CS term, the scalar Tab!!anb is the square 

of the electric flux crossing the horizon. 
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In Chapter 3 we examine the restrictions that are imposed on IHs if one assumes that 

they are supersymmetric. To do this we specialize to IHs in four dimensions with negative 

cosmological constant and in five dimensions with vanishing cosmological constant. The 

former theory is the bosonic part of four-dimensional N = 2 gauged supergravity, and the 

latter theory is the bosonic part of five-dimensional N = 1 supergravity. We show that 

the existence of a Killing spinor in four dimensions requires that the induced (normal) 

connection w on the horizon has to be non-zero unless the electric charge (but not magnetic 

charge) vanishes, and that the surface gravity"' has to be zero. The former condition means 

that the gravitational component of the horizon angular momentum is non-zero provided 

that w is not a closed one-form. The latter condition means that the IH is extremal. 

Likewise, we show that the existence of a Killing spinor in five dimensions requires that w 

vanishes and this immediately also gives "'= 0. 

Summarizing now, we have the following: 

Result 3. A SIH of four-dimensional N = 2 gauged supergmvity is extremal, and is 

either: (a) rotating with non-trivial electromagnetic field; or {b) non-rotating with constant 

curvature horizon cross sections and magnetic (but not electric) charge. A SIH of four­

dimensional N = 2 supergmvity and of five-dimensional N = 1 supergmvity with zero 

cosmological constant is non-rotating and extremal. 

The topological KN-ADS family of solutions (Caldarelli and Klemm 1999) describe rotat­

ing and extremal supersymmetric black holes in four-dimensional ADS spacetime. Among 

the special cases is a solution describing a non-rotating and extremal black hole with con­

stant curvature horizon cross sections and magnetk charge. The BMPV solution describes 

an extremal black hole with nonvanishing angular momentum and non-rotating Killing 
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horizon; this black hole solution is an example of a distorted IH with arbitrary rotations 

in the bulk fields (Ashtekar et al 2004). When the angular momentum vanishes this solu-

tion reduces to the extremal RN solution in isotropic coordinates. The conclusions drawn 

from our Result 2 together with Result 3 are that the only possible horizon topologies for 

SIRs are 82 in four dimensions (when A = 0) or 83 and 8 1 x 8 2 in five dimensions. Both 

these topologies have been realized and the corresponding solutions, for example the BMPV 

black hole (Breckenridge et al 1997) and the EEMR black ring (Elvang et al 2004), are well 

known. The torus topology is a special case that can occur only if the stress-energy tensor 

is of the form such that Tab.eanb = 0 for any two null vectors .e and n with normalization 

fana = - 1. A solution describing such a black hole has yet to be discovered. 

In Chapter 4 we consider the phase space of solutions to the equations of motion for the 

EGB action 

(1.10) 

In addition to the quantities that also appear in the EM-CS action (1.5), the action (1.10) 

also contains explicit dependence on the Riemann tensor Rabcd and Ricci tensor Rab = R c acb· 

The constant a is the GB parameter. The field equations that are derived from the action 

(1.10) when the metric is varied are the EGB equations 

Go> ~ - Ago> + a{ ~ ( R2
- 4RaJR'' + R,.,JR"''!) 9o> 

2RRo> + 4R~R,' + 4Jl.MR"' - 2R.,R,""'} . (1.11) 

When a = 0 these equations reduce to the vacuum Einstein equations. There are several 

solutions to these equations that describe black holes. The simplest were found indepen-

dently by Boulware and Deser (1985) and by Wheeler (1986a; 1986b), and describe a static 
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spherically symmetric black hole. The causal structure and thermodynamics of this solution 

were later studied by Myers and Simon (1988). The solution was subsequently extended to 

ADS spacetime by Cai (2002) and by Cho and Neupane (2002). The purpose of the work 

in (Liko and Booth 2007; Liko 2008) was to develop a quasilocal framework for these black 

holes. 

Just as for IHs in EM-CS theory, we begin by examining the boundary conditions and 

their consequences. It turns out that for the zeroth law to be satisfied, the boundary 

conditions need to be slightly modified. Specifically, an analogue of the dominant energy 

condition has to be imposed onto the Ricci tensor instead of the matter stress-energy tensor. 

The zeroth law then follows naturally from the modified boundary conditions. 

Next we investigate the mechanics of the WIHs. In particular, we show that the ac­

tion principle for WIHs in EGB theory is well defined by explicitly showing that the first 

variation of the surface term vanishes on the horizon. This turns out to be quite compli­

cated due to the presence of the GB term. Nevertheless, we verify the differentiability of 

the action for EGB theory by brute force at the expense of restricting the phase space to 

non-rotating WIHs. We then find an expression for the symplectic structure by integrating 

over a spacelike ( D - 1 )-surface the antisymmetrized second variation of the surface term 

and adding to this the pullback of the resulting two-form to the WIH. This allows us to 

find an expression for the local version of the (equilibrium) first law of black-hole mechan­

ics in dimensions D ~ 5, with an entropy expression that contains a correction term that 

is proportional to the surface integral of the scalar curvature of the cross sections of the 

horizon. We demom;trate the validity of our expression for the quasilocal entropy of WIHs 

by directly comparing it to those expressions that are obtained by the Euclidean (Cai 2002; 
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Cho and Neupane 2002) and Noether charge (Clunan et al 2004) methods. 

Summarizing thus far, we have the following: 

Result 4. A non-rotating WIH .6. C M on the phase space of solutions of EGB theory in 

D dimensions satisfies the zeroth and first laws of black-hole mechanics. 

We conclude our investigation of IHs in EGB theory by looking at physical consequences 

of the correction term in the entropy can have on the area-increase law. In order to make 

the analysis concrete, the calculation is done for black holes in four dimensions, specifically 

for the merging of two Schwarzschild black holes in fiat spacetime. It turns out that for 

this very special case the second law of black-hole mechanics will be violated if a is greater 

than the product of the masses of the black holes before merging minus a small correction 

due to radiation that may be lost by gravitational waves during the merging process. 

Summarizing now, we have the following: 

Result 5. There is a lower bound on a for which the area-increase law will be violated 

when two black holes merge. 

The calculation of the bound on a is done in four dimensions. However, a similar bound 

may presumably be derived for specific solutions in higher dimensions as well [although in 

this case the topologies are not as severely restricted as they are in four dimensions, even 

for Einstein gravity with A= 0 (Helfgott et al 2006; Galloway 2006; Galloway and Schoen 

2006)]. Result 2 also corrects a long-held misconception about the GB term, namely that 

its presence in four dimensions does not lead to any physical effects because the term is a 

topological invariant and does not show up in the equations of motion. 

In Chapter 5 we conclude the thesis with a brief summary of the work that has been 

done here, and discuss some classical applications of IHs in EM-CS theory and EGB theory. 



Isolated Horizons 1n EM -CS Theory 

"The beginner . . . should not be discoumged if . . . he finds that he does not have the prereq-

uisite for reading the prerequisites. " '"" P Halmos 

2.1 First-order action for EM-CS theory 

For application to IHs, we work with the "connection-dynamics" formulation of general 

relativity. For details we refer the reader to the review (Ashtekar and Lewandowski 2004) 

and references therein. In this formulation, the configuration space consists of the triple 

(ei, AI J> A) ; the coframe ei = e/ dxa (I , J, . .. E {0, .. . , D - 1}) determines the spacetime 

metric 

(2.1) 

the gravitational (SO(D - 1, 1)) connection AI J = A/ Jdxa determines the curvature two-

form 

(2.2) 

16 
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and the electromagnetic (U(1)) connection A determines the curvature 

F = dA . (2.3) 

In this thesis, spacetime indices a, b, . .. are raised and lowered using the metric 9ab, while 

internal Lorentz indices I , J, ... are raised and lowered using the Minkowski metric TJIJ = 

diag( -1, 1, ... , 1). The curvature n defines the Riemann tensor R1 J K L [with the convention 

of Wald (1984)] via 

(2.4) 

The Ricci tensor is then R1 J = R~ K J , and the Ricci scalar is R = ry1 
J R1 J. The gauge 

covariant derivative ~ acts on generic fields WI J such that 

(2.5) 

The coframe defines the (D - m)-form 

1 
E I - € [ I I I e1

m+l 1\ .. . 1\ e10 
[! ··· m - ( D - m)! I ··· m m + l ·· · D , 

(2.6) 

where the totally antisymmetric Levi-Civita tensor €[1 ... ! 0 is related to the spacetime volume 

element by 

€ _ € e h . . . e I o 
aJ ... ao - l J ... Io a 1 ao · (2.7) 

In this configuration space, the action (1.5) for EM-CS theory on the manifold (M, 9ab) 

(assumed for the moment to have no boundaries) is given by 

S =- Eu 1\ n - 2A€ - - F 1\ *F - - A 1\ F - . 1 1 I J 1 2.A (D 1)/2 

21'i.D M 4 3\1'3 
(2.8) 

Here € = e0 1\ . . . 1\ eD - 1 is the spacetime volume element and "*" denotes the Hodge dual . 
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The equations of motion are given by 68 = 0, where 6 is the first variation; i.e. the 

stationary points of the action. For this configuration space the equations of motion are 

derived from independently varying the action with respect to the fields (e, A, A). To get 

the equation of motion for the coframe we note the identity 

(2.9) 

This leads to 

(2.10) 

where ~ denotes the electromagnetic stress-energy (D - 1)-form. T he equation of motion 

for the connection A is 

(2.11) 

this equation says that the torsion T 1 Pe1 is zero. The equation of motion for the 

connection A is 

(2.12) 

The second term in this equation is the contribution due to the CS term in the action. In 

even dimensions the equation reduces to the standard Maxwell equation d * F = 0. The 

equations (2.10) and (2.11) are equivalent to the field equations (1.7) and (1.9) in the metric 

formulation, with the components of ~ identified with the electromagnetic stress-energy 

tensor. 
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§ 

M 

Figure 2.1: The spacetime manifold M and its boundaries. The region of t he D-dimensional space­

time M being considered has an internal boundary 6. representing the event horizon, and is bounded 

by two (D- I)-dimensional spacelike hypersurfaces M± which extend from the inner boundary 6. 

to the boundary at infinity 88. M is a partial Cauchy surface that intersects 6. in a compact 

(D - 2)-space §. 

2.2 Boundary conditions 

Let us from here on consider the manifold (M , 9ab) to contain boundaries; the conditions 

that we will impose on the inner boundary will capture the notion of an isolated black hole 

that is in local equilibrium with its (possibly) dynamic surroundings. We follow the general 

recipe that was developed in (Ashtekar et al 2000c). 

First we give some general comments about the structure of the manifold. Specifically, 

M is a D-dimensional Lorentzian manifold with topology R x M, contains a (D - I)­

dimensional null surface 6. as inner boundary (representing the horizon), and is bounded 

by (D-1)-dimensional spacelike manifolds M± that extend from 6. to infinity. The topology 

of 6. is R x §D- 2, with §D- 2 a compact (D - 2)-space. M is a partial Cauchy surface such 

that §D- 2 ~ 6. n M. See Figure 1. 

The outer boundary !!A is some arbitrary (D- 1)-dimensional surface. With the exception 
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of §2.6, we consider the purely quasilocal case in this chapter and neglect any subleties that 

are associated with the outer boundary. Including this contribution in the phase space 

amounts to imposing fall-off conditions on the fields for fixed A [e.g. asymptotically flat 

(Ashtekar et al 2000c) or asymptotically ADS (Ashtekar et al 2007)] as they approach ~. 

In §2.6 we briefly discuss rotation in asymptotically ADS spacetimes. 

b. is a WIH, which is defined in the following way: 

Definition I. A WIH b. is a null surface and has a degenemte metric Qab with signature 

0 + ... + (with D- 2 non-degenemte spatial directions) along with an equivalence class of 

null normals [£] (defined by £ "' £' <=> £' = z£ for some constant z ) such that the following 

conditions hold: (a) the expansion B(t.) of fa vanishes on b.; (b) the field equations hold on 

b.; {c) the stress-energy tensor is such that the vector - Tabeb is a future-directed and causal 

vector; (d) £ewa = 0 and £ed = 0 for all£ E [£] (see below). 

The first three conditions determine the intrinsic geometry of b.. Since £ is normal to 

b. the associated null congruence is necessarily twist-free and geodesic. By condition (a) 

that congruence is non-expanding. Then the Raychaudhuri equation implies that Tabea fb = 

- O'abO'ab, with O'ab the shear tensor, and applying the energy condition (c) we find that 

O'ab = 0. Thus, together these conditions tell us that the intrinsic geometry of b. is "time-

independent" in the sense that all of its (two-dimensional) cross sections have identical 

intrinsic geometries. 

Next, the vanishing of the expansion, twist and shear imply that (Ashtekar et al 2000c) 

(2.13) 

with "~" denoting equality restricted to b. and the underarrow indicating pull-back to 
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b.. Thus the one-form w is the natural connection (in the normal bundle) induced on the 

horizon. These conditions also imply that (Ashtekar et al 2000c) 

{_JF = 0 . (2.14) 

With the field equations (2.12) and the Bianchi identity dF = 0, it then follows that 

(2.15) 

This implies that the electric charge is independent of the choice of cross sections §D- 2 

( Ashtekar et al 2000b). Similarly (in four dimensions) the magnetic charge is also a constant. 

From (2.13) we find that 

(2.16) 

and define the surface gravity K.(i) = f_jw as the inaffi.nity of this geodesic congruence. Note 

that it is certainly dependent on specific element of [f] as under the transformation f -+ zf: 

(2.17) 

In addition to the surface gravity, we also define the electromagnetic scalar potential <I>(e) = 

-f_JA for each f E [f] and this has a similar dependence. 

Now, it turns out that if the first three conditions hold, then one can always find an 

equivalence class [f] such that (d) also holds. Hence this last condition does not further 

restrict the geometries under discussion, but only the scalings of the null normal. However, 

making such a choice ensures that (Ashtekar et al 2000c): 

(2.18) 
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These conditions follow from the Cartan identity, (2.14) and the property that dJ.v is pro-

portional to € [defined below in (2.34)] (Ashtekar et al 2000c). This establishes the zeroth 

law of WIH mechanics: the surface gravity and scalar potential are constant on 6.. 

2.3 Variation of the boundary term 

Let us now look at the variation of the action (1.10). Denoting the triple (e, A, A) collec-

tively as a generic field variable 1}! , the first variation gives 

8S = -
2

1 1 E[w]81l! - -
1
- { J[w, 81l!] . 

K.D M 2K.D laM 

Here E[w] = 0 symbolically denotes the equations of motion and 

J [w, aw] = '£1 J A 8A11 
- ~A 8A 

is the surface term with (D - 2)-form 

~ = *F _ 4(D + 1)A A 1\ F(D-3)/ 2 . 

3v'3 

(2.19) 

(2.20) 

(2.21) 

If the integral of J on the boundary 8M vanishes then the action principle is said to be 

differentiable. We must show that this is the case. Because the fields are held fixed at 

M± and at ~, J vanishes there. Therefore it suffices to show that J vanishes at the inner 

boundary 6.. To show that this is true we need to find an expression for J in terms of 

'£, A and A pulled back to 6.. As for the gravitational variables, this is accomplished by 

fixing an internal basis consisting of the (null) pair (.e, n) and D - 2 spacelike vectors '!9(i) 

(i E {2, ... ,D - 1}) such that 

(2.22) 
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together with the conditions 

f·n=-1, f·f=n·n=f·"l9(i)=n·"l9(i)=O, "19 (·) ·"19 ( ·) = 8· · ' J lJ . (2.23) 

This basis represents a higher-dimensional analogue of the Newman-Penrose (NP) formalism 

(Pravda et al 2004) . The coframe e/ can be decomposed in terms of the vectors in the 

basis (2.22) such that 

(2.24) 

summation is understood over repeated spacelike indices (i,j , k etc). The pullback of the 

coframe to 6. is therefore 

e I ~ - l n + "19 I "19(i) 
f!:_ ~ a (•) a ' (2.25) 

whence the (D - 2)-form 

" 1 nA1.a A2 .o Ao-2 ( 1\ .o(i!) 1\ 1\ .o(io-3)) 
t=-IJ ::::;:: - (D- 3)! fiJAJ ... Ao- 2{. v (i!) ... -v (io- 3) n -v . . . -v 

+ 1 .o A1 .o Ao- 2 (.o(iJ) 1\ 1\ .o(io- 2)) (D- 2)!fiJAJ ... Ao-2"V(i!) . .. -v(io-2) "V • • • ·v . 

(2.26) 

To find the pull-back of A we first note that 

\7 a £1 ::::;:: V !!:- ( eb If.b) 
+--

::::;:: (V a eb I )f.b + i 1 V a f b 
+-- +--

::::;:: eb Iwafb 

(2.27) 

where we used "Vaeb 1 = 0 in going from the second to the third line (a consequence of the 

metric compatibility of the connection). Then, taking the covariant derivative of e acting 
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on internal indices gives 

(2.28) 

with 8 representing a flat derivative operator that is compatible with the internal coframe 

on 6.. Thus Oaf! ~ 0 and 

(2.29) 

Putting this together with (2.27) we have that 

(2.30) 

and this implies that the pull-back of A to the horizon is of the form 

A IJ ~ -2o[InJlw + a(i) o[Lo J] + b(ij ).o [I.o J] 
/!:... ~ {. a a {. "U (i) a ·v(i) "U(j ) ' (2.31) 

where the a~i) and b~ij) are one-forms in the cotangent space T*(t:l ). It follows that the 

variation of (2.31) is 

(2.32) 

Finally, by direct calculation, it can be shown that the gravitational part Jcrav of the surface 

term (2.20) reduces to 

Jcrav[W, bw] ~ € 1\ bw. (2.33) 

Here, 

f = iJ(l) 1\ . .. 1\ i)(D-2) (2.34) 

is the area element of the cross sections §D- 2 of the horizon. 
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Now we make use of the fact that, because I! is normal to the surface, its variation will 

also be normal to the surface. That is, 81! ex: I! for some I! fixed in [I!]. This together with 

£ew = 0 then implies that £eow = 0. However, w is held fixed on M± which means that 

ow = 0 on the initial and final cross-sections of~ (i.e. on M- n ~ and on M+ n ~), and 

because ow is Lie dragged on ~ it follows that Jcrav ~ 0. The same argument also holds 

for the electromagnetic part JEM of the surface term (2.20). In particular, because the 

electromagnetic field is in a gauge adapted to the horizon, £ee_ = 0, and with 01! ex: I! we 

also have that £eoA = 0. This is sufficient to show that JEM ~ 0 as well. Therefore the 
f-

surface term JlaM = 0 for the Einstein-Maxwell theory with electromagnetic CS term, and 

we conclude that the equations of motion E[w] = 0 follow from the action principle oS = 0. 

2.4 Covariant phase space 

The derivation of the first law involves two steps. First we need to find the symplectic struc-

ture on the covariant phase space r consisting of solutions (e, A, A ) to the field equations 

(2.10), (2.11) and (2.12) on M. Once we have a suitable (closed and conserved) symplectic 

two-form, we then need to specify an evolution vector field ~a. In this section we derive the 

symplectic two-form. In the next section we will specify the evolution vector field which 

will also serve to introduce an appropriate notion of horizon angular momentum. 

The antisymmetrized second variation of the surface term gives the symplectic current, 

and integrating over a spacelike hypersurface M gives the symplectic structure n = 0 ( o1, o2) 

(with the choice of M being arbitrary). Following (Ashtekar et al 2000c), we find that the 
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second variation of the surface term (2.20) gives 

(2.35) 

Whence integrating over M defines the bulk symplectic structure 

(2.36) 

We also need to find the pull-back of J to ~ and add the integral of this term to nB so 

that the resulting symplectic structure on r is conserved. If we define potentials '1/J and x 

for the surface gravity "'(£) and electric potential ~(l) such that 

(2.37) 

then the pullback to ~ of the symplectic structure will be a total derivative; using the 

Stokes theorem this term becomes an integral over the cross sections §D- 2 of~. Hence the 

full symplectic structure is given by 

-
1
- f [<hEu 1\ 02A1

J - 02Eu 1\ 01A1J - 01 <P 1\ 02A + 02<P 1\ 01A] 
21'\,D j M 

+~ J [61€ 1\ 62'1/J - 62€ 1\ 61 '1/J + 01 <P 1\ 02X - 02 <P 1\ 01XJ . 
"'D fsv -2 

2.5 Angular momentum and the first law 

(2.38) 

In D dimensions, there are l (D - 1)/2J rotation parameters given by the Casimir invari-

ants of the rotation group SO(D - 1). Here, "l·J" denotes the "integer value of". For a 
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multidimensional WIH rotating with angular velocities nL (~ = 1, ... , l(D - 1)/2J), a suit-

able evolution vector field on the covariant phase space is given by (Ashtekar et al 2001; 

Ashtekar et al 2007) 

L(D-1)/2J 

~a = zea + L Dd)~ . (2.39) 
L=l 

Here, ¢~ are spacelike rotational vector fields that satisfy 

(2.40) 

The vector field ~ is similar to the linear combination ( = t + L:L DLmL (with t a timelike 

Killing vector and mL spacelike Killing vectors) for the KN solution. By contrast, we note 

that~ is spacelike in general and becomes null when all angular momenta are zero, while ( 

is null in general and becomes timelike when all angular momenta are zero. 

Moving on, the first law now follows directly from evaluating the symplectic structure 

at (8, 8d (Ashtekar et al 2007). This gives two surface terms: one at infinity (which is 

identified with the ADM energy), and one at the horizon. We find that the surface term at 

the horizon is given by 

(2.41) 

where we used K:(ze) = £ze'I/J = d..Jw and <l>(ze) = £zeX = zt'..JA. These potentials are 

constant for any given horizon, but in general vary across the phase space from one point 

to another. This implies that (2.41) is not in general a total variation. However, if K:(ze) , 

<I> (ze) and nL can be expressed as functions of the surface area A , charge Q and angular 
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momenta .J, defined by 

s 

Q 

and satisfy the integrability conditions 

an a"' 
aA' aQ 

acp an 
aA' aQ 

then there exists a function£ such that (Ashtekar et al 2001; Ashtekar et al 2007) 

In this case (2.41) becomes 

28 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

which is the first law (for a quasi-static process). Therefore WIHs in D-dimensional EM-

CS theory satisfy the first law (and the zeroth law) of black-hole mechanics. This is in 

agreement with (Gauntlett et al 1999), but with a very important difference. Here, all the 

quantities appearing in the first law are defined at the horizon; no reference was made to 

the boundary at infinity. 

Remarks. Several remarks are in order here. 

1. The expression (2.44) implies that the horizon angular momentum contains contribu-

tions from both gravitational and electromagnetic fields, here referred to as :TGrav and 

:TEM. This is in contrast to the standard angular momentum expressions at infinity, 
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such as the Komar expression. One can show (Ashtekar et al 2001; Ashtekar et al 

2007) that JGrav is equivalent to the (quasilocal) Komar integral 

JK = --- *d¢ 1 i 
81rGD so- 2 ' 

(2.48) 

and this matches the expression for Killing horizons at infinity. 

2. It would appear that if JGrav = 0 then there is still a non-zero contribution to (2.44) 

from JEM · However, it can be shown (Ashtekar et al 2001) that if¢ is the restriction 

to 1::1 of a global rotational Killing field r.p contained in M, then JEM is actually the 

angular momentum of the electromagnetic radiation in the bulk. What happens is 

that the bulk integral f M Tabr.padsb can be written as the sum of a surface term at 1::1 

and a surface term at@. Therefore we say that a non-rotating WIH is one for which 

JGrav = 0. 

3. The charges at@ are the charges of the spacetime and are independent of the charges 

at /::1. 

2.6 Rotation In ADS spacetime 

Currently there is a lot of interest in the ADS/CFT correspondence (Maldacena 1998; 

Witten 1998a; Witten 1998b; Aharony et al 2000). A significant amount of effort on the 

gravity side has been focused on finding charged and rotating black hole solutions in five-

dimensional ADS spacetime, both non-extremal in general (Hawking et al 1999; Chamblin 

et al 1999; Hawking and Realll999; Klemm and Sabra 2001 ; Cvetic et al 2004; Chong et al 

2005) and supersymmetric in particular (Gutowski et al 2004; Kunduri et al 2006; Kunduri 

et al 2007a; Kunduri and Lucietti 2007). 
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For these black holes, however, there is an ambiguity in how the conserved charges are 

defined. This was first pointed out by Caldarelli et al (2000). The ambiguity arises because 

for rotating black holes in ADS spacetime there are two distinct natural choices for the 

timelike Killing field. To see this, let's compare the KN solution (with A = 0) and the KN­

ADS solution. The KN solution contains the vector K = 8/8t with which one can define 

the charges. When A < 0, however, there is another timelike Killing vector in addition to 

K that appears and is given by K' = 8/0t + (a/L2 )8/8¢. For the KN-ADS solution, K 

remains timelike everywhere outside the event horizon which implies that if K is chosen 

as the generator of time translations then there is no ergoregion present. By contrast, K' 

becomes spacelike near the event horizon which implies that if K' is chosen as the generator 

of time translations then there is an ergoregion in the neighbourhood of the event horizon. 

Physically, this means that defining the conserved charges with respect to K corresponds to 

a frame at infinity that is co-rotating, whereas defining the conserved charges with respect 

to K' corresponds to a frame at infinity that is non-rotating. 

The original motivation for defining the conserved charges with respect to K was that 

the corresponding boundary CFT conserved charges satisfy the first law of thermodynamics 

(Hawking et al 1999); but this comes at the cost that the bulk conserved charges do not 

(Caldarelli et al 2000; Gibbons et al 2005). This claim has by now been corrected. As was 

shown in (Gibbons et al 2006) , one can always pass from the bulk conserved charges to the 

boundary conserved charges in such a way that both sets separately satisfy the first law. 

The key to this resolution is that the conserved charges of a rotating black hole in ADS 

spacetime have to be measured with respect to the timelike vector which corresponds to a 

frame that is non-rotating at infinity. 
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From the above considerations, it is clear that rotation in ADS spacetime should be 

independent of the coordinates that are used. This is especially crucial when considering 

supersymmetric black holes in ADS spacetime (the extremal limit of a non-rotating ADS 

black hole results in a naked singularity). In this section we will briefly discuss how the IH 

framework provides a resolution to the above pathology. 

To begin, we define an asymptotically ADS spacetime. Following (Ashtekar and Das 

2000; Ashtekar et al 2007), we have the following: 

Definition II. A spacetime (M, gab) is said to be asymptotically ADS if there exists a 

spacetime (M, 9ab) with outer boundary f such that M- f is diffeomorphic toM and the 

following conditions hold: (a) there exists a function n on M for which 9ab = 0 2gab on M; 

{b) n vanishes on f but the gradient '\1 an is nowhere vanishing on f; (c) the stress-energy 

tensor Tab on M is such that n - (D- 2)Tab has a smooth limit to f; and {d) the Weyl tensor 

Cabcd of 9ab is such that n-(D- 4 )Cabcd is smooth on M and vanishes on f. 

These are the standard boundary conditions which have been tailored to ensure that a 

spacetime will be asymptotically ADS. Their meaning is discussed in detail in (Ashtekar 

and Das 2000). 

In the presence of a negative cosmological constant and with no matter fields, the 

covariant phase space of WIHs is modified to include a set of conserved charges at f 

(Ashtekar et al 2007). These are the Ashtekar-Magnon-Das (AMD) charges (Ashtekar and 

Magnon 1984; Ashtekar and Das 2000) 

f"il(J) L i E- ka-b-.;z = -- ab"UE: 
~ 81rGD cD- 2 ' 

(2.49) 

with ka a Killing vector field that generates a symmetry (i.e. time translation etc), u.a the 



-------------------------------------

Chapter 2. Isolated Horizons in EM-CS Theory 32 

unit timelike normal to c0 - 2 , e the area form on c0 - 2 and Eab the leading-order electric 

part of the Weyl tensor. Explicitly we have that 

E- 1 n3-DC- -c-d 
ab = D _ 3 ~' abcdn n , (2.50) 

where iia = '\lan. As was shown in Appendix B of (Hollands et al 2005) , inclusion of 

antisymmetric tensor fields in the action does not contribute anything to the charges at .Y 

because the fields fall off too quickly. Therefore the charges at infinity for EM-CS theory 

are precisely the AMD charges (2.49). 

Gibbons et al (2005) showed that the asymptotic time translation Killing field for an 

exact solution has to be chosen in such a way that the frame at infinity is non-rotating. If 

this is done then the AMD charge evaluated for the solution will result in an expression 

for mass that satisfies the first law. Moreover, Gibbons et al (2006) showed that using this 

definition for the asymptotic time translation has to be used for a consistent transition to 

the conserved charges of the boundary CFT. 

Let us summarize. The IH framework provides a coherent physical picture whereby 

two sets of conserved charges arise in ADS spacetime: the charges measured at infinity 

and the local charges measured at the horizon. The local conserved charges at the horizon 

then satisfy the first law. When evaluated on exact solutions to the field equations, the 

charges at infinity correspond to asymptotic symmetries that are measured with respect to 

a non-rotating frame at infinity. 

The description of ADS black holes presented here is somewhat different from the de-

scription of black holes in globally stationary spacetimes where an ambiguity appears that 

manifests itself as a choice of whether the conserved charges are measured with respect to 
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a frame at infinity that is rotating or non-rotating. This ambiguity does not appear in the 

IH framework essentially because the conserved charges of the black hole are measured at 

the horizon, and the corresponding first law is intrinsic to the horizon with no mixture of 

quantities there and at infinity! 

2. 7 A topological constraint from extremality 

One of the properties of an extremal black hole is that its surface gravity is zero. Another 

property is that its horizons are degenerate: the inner and outer horizons coincide. As a 

result, an extremal black hole is one for which there are no trapped surfaces "just inside" 

the horizon. This property was recently used (Booth and Fairhurst 2008) to define an 

extremality condition for quasilocal horizons. We note here the evolution equation for the 

expansion of the null normal na (Booth and Fairhurst 2008): 

(2.51) 

Here, R is the scalar curvature of § 0 - 2, da is the covariant derivative operator that is 

compatible with the metric 

(2.52) 

(2.53) 

is the projection of w onto §D-2 . w is referred to as the rotation one-form. 

Our desire is to apply the expression (2.51) to black holes, and in order to do this we need 

to impose some restrictions on the WIHs. In order to proceed we now restrict our attention 



Chapter 2. Isolated Horizons in EM-CS Theory 34 

to fully isolated horizons (IHs). These are WIHs for which there is a scaling of the null 

normals for which the commutator [.Ce, V] = 0, where'D is the intrinsic covariant derivative 

on the horizon. This means that not only is condition (d) of Definition I satisfied, but also 

it implies that [.Ce, 'D]na = 0 (Ashtekar et al 2002). In contrast to the condition (d) for 

WIHs, then, this stronger condition cannot always be met and geometrically such horizons 

not only have time-invariant intrinsic geometry, they also have time-invariant extrinsic 

geometry. That said it is clear that this condition similarly fixes .e only up to a constant 

scaling. As such it does not uniquely determine the value of the surface gravity "'(e) but does 

fix its sign. In particular this allows us to invariantly say whether or not "'(e) vanishes. This 

then gives rise to an invariant characterization of extremality that is intrinsic to the horizon: 

a horizon is sub-extremal if "' > 0 (B(n) < 0) and extremal (with degenerate horizons) if 

K. = 0. Further, .CeB(n) = 0 and combining this with the fact that the inward expansion B(n) 

should always be less than zero, an integration of (2.51) gives 

(2.54) 

(Here we used - Agab.eanb = A and the fact that §50_ 2 €dawa = 0.) This inequality provides 

an alternative characterization of extremal IHs: if TJ < 0 ("' > 0 and B(n) < 0) then b. 

is nonextremal, and if TJ = 0 (K = 0) then b. is extremal. However, this inequality also 

provides a topological constraint on the cross sections of b.. To see this, rewrite (2.54) so 

that 

(2.55) 

Now, observe that the dominant energy condition requires that Tab fanb ~ 0. In addition, 

llwll 2 is manifestly non-negative. The inequality (2.55) therefore restricts the topology of 
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the cross sections of the horizon. The condition (2.55) is the same as the one that was found 

in four dimensions for marginally trapped surfaces (Hayward 1994) , nonexpanding horizons 

(Pawlowski et al 2004) and dynamical horizons (Ashtekar and Krishnan 2003; Booth and 

Fairhurst 2007). 

For nonextremal horizons, T/ < 0, and the constraint (2.55) splits into two possibilities, 

depending on the nature of the cosmological constant: 

• A ~ 0. The ·integral of the scalar curvature is strictly positive. In four dimensions 

the GB theorem says that fs2 f.R = 81r(1 - g), with g the genus of the surface § 2
. In 

this case Tf < 0 implies that g = 0 and hence the only possibility is that the cross 

sections are two-spheres S2 . In five dimensions T/ < 0 implies that the cross sections 

are of positive Yamabe type; this implies that topologically § 3 can only be a finite 

connected sum of the three-sphere S 3 or of the ring S 1 X S 2 (Schoen and Yau 1979; 

Galloway and Schoen 2006; Galloway 2006) . Both these topologies have been realized 

and the corresponding solutions, for example the Myers-Perry black hole (Myers and 

Perry 1986) and the Emparan-Reall black ring (Emparan and Reall 2002), are well 

known. 

• A < 0. The integral of the scalar curvature can have either sign, or even vanish, and 

the inequality will always be satisfied. The only restriction is that 

(2.56) 

There is no constraint on the topology of §D- 2 except that the space has to be 

compact. Owing to this special property, many such black holes have been found with 

0 

exotic topologies in D ~ 3 dimensions. See e.g. (Baiiados et al 1993; Aminneborg 
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0 

et al 1996; Vanzo 1997; Aminneborg et al 1998; Baiiados 1998; Baiiados et al 1998; 

Klemm et al 1998). 

For extremal horizons, 7J = 0, and the constraint (2.55) becomes an equality. In this case 

the same restrictions apply to fsD-2 f.R as for nonextremal horizons. However, there is also 

a special case that occurs: 

j f.R = O hD-2 (2.57) 

for an extremal and non-rotating (w = w = 0) horizon when the scalar Tab.eanb vanishes on 

the horizon. This case corresponds to the torus topology yD- 2. 

Remark. Although the expression (2.56) does not constrain the topology of ADS black 

holes explicitly, there is an interesting area-topology relation that comes out. The cos-

mological term can be integrated out, and upon rearranging to isolate the surface area 

(2.58) 

In four dimensions, the GB theorem then implies that 

(2.59) 

This implies that the maximum allowed angular momentum is bound by the genus and 

area of the horizon; .see (Booth and Fairhurst 2008; Hennig et al 2008) for discussions of 

the corresponding result for asymptotically flat spacetimes and appendix B of (Booth and 

Fairhurst 2008) for a particular discussion of Kerr-ADS. 

Alternatively, reversing the inequality, one can view it as bounding the allowed area 

of isolated horizons from below by the scale of the cosmological curvature and the genus 
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of the horizon: higher genus horizons necessarily have larger areas. Similar bounds have 

previously been discovered for stationary ADS black holes (Gibbons 1999; Woolgar 1999; 

Cai and Galloway 2001). 



Supersymmetric isolated horizons 

"String theorists listening to talks on loop quantum gravity are often puzzled by the lack of 

interest in supersymmetry and higher dimensions, which string theory has shown seem to 

be required to satisfy certain criteria for a good theory." rv L Smolin 

3.1 Black holes and Killing spinors 

Until now we have discussed the mechanics of WIHs in arbitrary dimensions. We now 

specialize to supersymmetric horizons and in particular we focus on the bosonic sector of 

four-dimensional N = 2 gauged supergravity and the bosonic sector of five-dimensional 

N = 1 supergravity. In both cases, black holes are solutions to the bosonic equations 

of motion and so the fermion fields vanish. By definition, supersymmetric solutions are 

invariant under the full supersymmetry transformations that are generated by spinor fields. 

This means that for black hole s<;>lutions, these transformations should leave the fermion 

fields unchanged (and vanishing) . Therefore any such black hole solutions must admit a 

Killing spinor field. 

38 
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For full stationary black hole solutions such as those discussed in (Caldarelli and Klemm 

1999; Gauntlett et al 1999; Gutowski and Reali 2003), the Killing spinor gives rise to 

a (timelike) time-translation Killing vector field in the region outside of the black hole 

horizon. However, in the quasilocal spirit of the isolated horizon programme we will only 

assume the existence of a Killing spinor on the horizon itself. In this case the spinor will 

generate a null geodesic vector field that has vanishing twist, shear, and expansion and this 

is an allowed .e on the WIH. 

As we did in §2.7, we will consider fully IHs, which allows for a clear difference between 

nonextremal and extremal IHs. Finally we define a supersymmetric isolated horizon (SIH) 

as an IH on which the null vector generated by the Killing spinor coincides (up to a free 

constant) with the preferred null vector field arising from the IH structure. As we shall 

now see these are necessarily extremal as well as having restricted geometry, rotation, and 

matter fields. 

3.2 Killing spinors in four dimensions 

We will first consider the four-dimensional action. With D = 4 and A = -3/ L2 the action 

(2.8) is the bosonic action of N = 2 gauged supergravity. The (extremal) KN-ADS black 

hole, which is a solution to the N = 2 supergravity with the fermion fields set to zero. As 

was shown in (Kostelecky and Perry 1996), the condition for a supersymmetric KN-ADS 

black hole in four dimensions to have positive energy is that 

(3.1) 
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which is the extremality condition for the KN-ADS black hole relating the mass 9J1, total 

charge .Q = Jq~ + q~ (with Qe and Qm the electric and magnetic charges) and angular 

momentum J = a9J1 at infinity. This is also the saturated Bogomol'ny-Prasad-Sommerfeld 

(BPS) inequality. When A= 0 the equality (3.1) reduces to (Gibbons and Hull1982) 

(3.2) 

which is the extremality condition for the KN black hole. 

For four-dimensional N = 2 gauged supergravity, we shall employ the conventions of 

(Caldarelli and Klemm 2003). The corresponding (bosonic) action is 

S = -- Eu td1 + -t::- -F 1\*F. 1 1 IJ 6 1 
167rG4 M £ 2 4 

(3.3) 

The necessary and sufficient condition for supersymmetry with vanishing fermion fields is 

that there exists a Killing spinor f.a such that 

[ 
i D be 1 ] Va + 4rbc'Y 'Ya + £'Ya f. = 0 . (3.4) 

Here, 'Ya are a set of gamma matrices that satisfy the anticommutation rule 

(3.5) 

and the antisymmetry product 

'Yabcd = f.abcd · (3.6) 

'Ya1 ... ao denotes the antisymmetrized product of D gamma matrices. The spinor f. satisfies 

the reality condition 

(3.7) 
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overbar denotes complex conjugation and t denotes Hermitian conjugation. 

From f one can construct five bosonic bilinears /, g, va, wa and wab = wlab[ where 

These are inter-related by several algebraic relations (from the Fierz identities) and differ-

ential equations (from the Killing equation (3.4)) (Caldarelli and Klemm 2003). For our 

purposes the significant ones are: 

VaVa - WaWa = - (!2 + l), (3.9) 

vawa = 0 , (3.10) 

gWa = wabvb, (3.11) 

f'l!ab vewd + 1 w ed -Eabcd 29fabed , (3.12) 

"ilaf FabVb, (3.13) 

'\7 a9 
1 1 b ed 

-LWa- 2EabedV F (3.14) 

"ilaVb 
1 J g ped 
LWab- Fab + 2,fabcd , (3.15) 

'\7 aWb 9 F e wde + 1 p edwef d - £9ab - (a fb)ede 49abfedeJ an (3.16) 

'\7 eWab ~9e[a Yb] + 2F[adfb]dee w e+ Fe dfdabe w e+ 9e[aEbJdef Wd p ef . (3.17) 

These are general relations for the existence of a Killing spinor in spacetime. Although the 

Killing spinor may exist in a neighbourhood of the horizon, we only require that it exist 

on the horizon itself. Henceforth we specialize by setting f = g = 0 and at the same time 

require that the relations hold on 6. Thus, the differential equations (3.13)-(3.17) are only 

required to hold when the derivatives are pulled-back onto the horizon. 

With f = g = 0, equation (3.9) implies that va and wa are both null. On an SIH 
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we identify .ea = va and so condition (2.13) together with the differential constraint (3.15) 

implies that 

(3.18) 

and using the skew-symmetry of Wab we can write 

(3.19) 

Then by equation (3.11) 

.e_jw = 0 {::} "-(£) = 0. (3.20) 

Thus, an SIR is necessarily extremal. 

For ease of presentation we now assume that the SIR is foliated into spacelike two-

surfaces §v. One can always construct such a foliation (and its labelling) so that the 

associated null normal n = dv satisfies .e_jn = - 1 (Ashtekar et al 2002). Then the two-

metric on the §v is given by (2.52) and area form on the §v can be written as 

- oa b 
f.cd = -{; n f.abcd . (3.21) 

Now we note that with"-(£) = 0 it follows from (2.53) that Wa = Wa and hence Wa E T*(§v ) · 

Finally, with respect to this foliation, the usual restriction (2.14) and (redundantly) equation 

(3.13) implies that the electromagnetic field takes the form 

(3.22) 

on .6.. Here, E1_ and B1_ are the electric and magnetic fluxes through the surface and 

j(a E T(§v) describes flows of electromagnetic radiation along (but not through) the horizon. 
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With these preliminaries in hand we can consider the properties of SIHs in asymptotically 

ADS spacetimes. First, relations (3.10) and (3.12) tell us that 

(3.23) 

for some function (3 (the factor of L has been included for later convenience). Then the pull­

back of (3.14) trivially vanishes without giving us any new information but (3.16) provides 

a differential equation for (3 on each §v 

(3.24) 

where da is the intrinsic covariant derivative on §v, along with its time-invariance: £1.(3 = 0. 

Next applying the various properties of extremal IHs, one can show that the pull-back 

of (3.17) is 

\1 ::_ Wab = 2£ (;2 - fJB1.) Qc[at'b] + 2Lf3EJ.Ec[at'b], 

and combining this with (3.19) we find that 

dawb + wawb = ( ; 2 - fJB1.) Qab + fJE1.f.ab . 

(3.25) 

(3.26) 

Now as was seen in (2 .44), the gravitational angular momentum associated with a rota­

tional Killing field ¢a is 

(3.27) 

and so a necessary condition for non-zero angular momentum is a non-vanishing rotation 

one-form Wa. That said, this is not quite sufficient as it is possible for a non-vanishing </J.JW 

to integrate to zero. For example, consider the case where §v has topology S2 and ¢a is a 
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Killing field (and so divergence-free). Then for some function ( we can write ¢a = Eabdb( 

and 

(3.28) 

Thus, for all closed rotational one-forms (dW = 0) the associated gravitational angular 

momentum will vanish. As such, it is standard in the isolated horizon literature [see e.g. 

( Ashtekar et al 2001)] to take dW -=f. 0 as the defining characteristic of a rotating isolated 

horizon. In our case 

(3.29) 

and so an SIH is rotating if and only if (JE1_ -=f. 0. Thus, a rotating horizon must have a 

non-trivial electromagnetic field . This is in agreement with known exact solutions: rotating 

supersymmetric Kerr-Newmann-AdS black holes as well as those with cylindrical or higher 

genus horizons all have non-trivial EM fields (Caldarelli and Klemm 1999). 

3.3 Killing spinors in five dimensions 

We will now consider the five-dimensional action. With D = 5 and A = 0 the action 

(2.8) is the bosonic sector of N = 1 gauged supergravity. As in the four-dimensional EM 

theory, solutions to the bosonic equations of motion require the existence of a Killing spinor 

to ensure that supersymmetry is preserved. For black holes, the positive energy theorem 

together with this requirement imply that the mass and charge at infinity are constrained 

such that (Gibbons el al 1994) 

(3.30) 
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As can be verified, the equality (3.30) is satisfied by the (5D) extremal RN black hole (Myers 

and Perry 1986) , the BMPV black hole (Breckenridge et al1997) and the EEMR black ring 

(Elvang et al 2004) . 

The strategy for finding supersymmetric solutions to the bosonic equations of motion 

based on Killing spinors is essentially the same in five dimensions as it is in four dimensions. 

However, a problem arises specifically in five dimensions - spinors satisfying certain reality 

conditions cannot be consistently defined unless they come in pairs and are equipped with a 

symplectic structure. For details we refer the interested reader to the excellent Les Houches 

lectures by van Nieuwenhuizen (1984) . 

For five-dimensional N = 1 supergravity, we shall employ the conventions of (Gauntlett 

et al 2003) . The corresponding (bosonic) action is 

1 1 JJ 1 2 S =--c- Eui\D. --F I\*F - MAI\FI\F . 
1671' s M 4 3v3 

(3.31) 

The necessary and sufficient condition for supersymmetry with vanishing fermion fields is 

that there exists a Killing spin or ta (a, f3, . .. E { 1, 2}) such that 

(3.32) 

Here, r 1 are a set of gamma matrices that satisfy the anticommutation rule 

(3.33) 

and the antisymmetry product 

riJKLM = €JJKLM · (3.34) 

r[j ... Iv denotes the antisymmetrized product of D gamma matrices. The spinors ta satisfy 
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the reality condition 

(3.35) 

the second equality is the symplectic Majorana condition, where T denotes matrix transpose 

and C the charge conjugation operator satisfying 

(3.36) 

Spinor indices are raised and lowered u ing the symplectic structure f.Q[J which is defined 

such that f.I2 = f.
12 = + 1. 

Using f.Q we can construct bosonic bilinears F , VI and ifJCif3 = if! (Ci{J) such that 

(3.37) 

As in §3.2, these bilinears are inter-related by algebraic relations and differential equations. 

For our present purposes we only need the following (Gauntlett et al 2003): 

(3.3 ) 

2 1 KL M 
r;;FIJF + r;;f.IJKLMF V . 

v3 2v3 
(3.39) 

For IHs F = 0 and vi is null. Then, using (2.13) together with (3.39) , and again making 

the identification va = ea, we find that an IH of five-dimensional N = 1 supergravity 

equipped with a null normal f will be supersymmetric if 

"" n 1 I J pKL nM 
Va{.b~ r;;eaeb f.IJKLM {. · .._ 2v3 .._ 

(3.40) 

It follows that the RHS in (3.40) vanishes because of the IH condition (2.14) on F and the 

pullback expression (2.25) for e, and therefore that w = 0. 
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3.4 Interpretation 

In this chapter we examined the restrictions that are imposed on IHs when they are assumed 

to be supersymmetric. The necessary and sufficient condition for supersymmetry in four­

dimensional ADS spacetime is that there exists a Killing spinor E that satisfies the conditions 

(3.4) . For four-dimensional SIHs in asymptotically ADS spacetimes we found that the 

surface gravity vanishes identically from the algebraic conditions that are implied by the 

Killing spinor equation. This means that the SIHs are necessarily extremal. A further 

constraint that we found for these SIHs is that the corresponding connection one-form is 

generically non-zero and is not closed. Then it follows from (3.29) that these SIHs are 

rotating for non-trivial electromagnetic fields . As we will see below, such a SIH can be non­

rotating if the horizon cross sections are constant curvature surfaces and there is magnetic 

(but not electric) charge. 

The necessary and sufficient condition for supersymmetry in five dimensions is that there 

exists a Killing spinor Ea that satisfies (3.32). For five-dimensional SIHs in asymptotically 

flat spacetimes we found that w vanishes identically. This implies that the corresponding 

SIHs are non-rotating. The condition also implies that "' is zero. The corresponding SIHs 

are therefore non-rotating and extremal. 

These properties impose additional constraints on the topology of the corresponding 

IHs. For SIHs in ADS spacetime there is still no constraint on the possible topologies. The 

topologies become severely restricted, however, when A = 0. For SIHs in asymptotically 

flat spacetimes the connection w vanishes both in four dimensions (see the appendix) and 
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in five dimensions. In this case the topology constraint (2.55) gives 

(3.41) 

In four dimensions we find that there are two possibilities for the topology of a SIH: 

In five dimensions we find that there are three possibilities: 

Exact solutions to the field equations for the cases where § 2 ~ S2 , § 3 ~ S3 and § 3 ~ S1 x S2 

are known. The torus topologies, which are classically allowed topologies, have not been 

found as of yet. 

As is the case for spacetimes with no cosmological constant, SIRs in ADS spacetime 

have vanishing surface gravity and so are always extremal. However , in contrast to the 

asymptotically fiat case, ADS SIRs in four dimensions can be either rotating or non-rotating 

with strong constraints linking the rotation to the electromagnetic and Killing spinor fields. 

To give a taste of their application, let us apply these constraints to the case when w = 0. 

Then, the Maxwell equations along with the extremal IR conditions tell us that E1_ and 

B1_ are both constant in time (.£eE1_ = .£eB1_ = 0) . In addition, the Maxwell equations 

(3.42) 

0 (3.43) 
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can be projected to §v, respectively, such that 

- b-cdn F. - b cMI.n F. - b cMI.n D 
qa q v c db- qa n c v c db+ qa n c v drbc 0 (3.44) 

(3.45) 

Adding these two equations together, and using the decomposition (3.22) for Fab along with 

the assumption w = 0 then gives 

- b codn F. - b-cdn F. 2- b codn D d B - bd E 0 qa n <. v b cd + qa q v c db+ qa n <- v drbc = a .L + Ea b .L = · (3.46) 

Hence E.L and B .L are also constant on each §v . Next the supersymmetry constraint (3.26) 

says that 

1 
f3B.L = £2 and f3E.L = 0 . (3.47) 

Thus, E .L = 0 while B.L # 0 - that is, these SIRs necessarily have magnetic, but not electric, 

charges. Further, applying the extremality condition (2.55): 

1-n d -a - -a T. oa b 3 2 ''- = aW + WaW + ab<- n - £ 2 

B1_ -~ v· 

(3.48) 

(3.49) 

[This equation has been solved by Kunduri and Lucietti (2008) for vacuum gravity in the 

context of near-horizon geometries.] It is clear that the two-dimensional Ricci curvature R 

of the §v is constant in this case - unfortunately the sign of that curvature does not seem 

to be determined by the equations. Consulting a listing of exact supersymmetric black hole 

solutions (Caldarelli and Klemm 1999) we see that such solutions are known: specifically 

there is a supersymmetric asymptotically ADS black hole in four dimensions which can be 

non-rotating if the horizon cross sections have genus g > 1. As prescribed by our formalism, 

these solutions have magnetic but not electric charge. 
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The quasilocal picture that we have presented is in excellent agreement with the re­

sults that are known for stationary spacetimes (Gibbons et al 1994; Gauntlett et al 1999; 

Gutowski and Reali 2004). In that context a supersymmetric black hole in a spacetime 

with A= 0 (in four and in five dimensions) contains an extremal and non-rotating horizon. 

Extremality is a consequence of the BPS bounds being saturated, which implies that there 

exists a Killing spinor. Non-rotation is then a consequence of the fact that a vector cannot 

be constructed in the neighbourhood of a supersymmetric Killing horizon that is spacelike, 

as can be seen from the algebraic conditions (3.9) and (3.38). Therefore the spacetime of 

such a black hole cannot contain an ergoregion, which means that the horizon must be 

non-rotating. On the other hand, a supersymmetric black hole with A < 0 contains a rotat­

ing and extremal horizon (with non-trivial electromagnetic field). The rotation is required, 

otherwise the extremal limit would result in a naked singularity. 

In this chapter we focused on null Killing spinors that are defined at the horizon itself. 

However, the results obtained here for black holes will not be affected if we assume that 

the spinors are defined globally. We note that there are many other solutions with such 

spinors that are defined for the entire spacetime, which do not describe black holes. These 

include pp-waves (plane-fronted gravitational waves with parallel rays) - spacetimes with 

vanishing expansion , shear and twist, and are a subset of a wider class of solutions that 

share this property, known as Kundt spacetimes. For details, see e.g. (Stephani et al 2003). 

If a spinor is defined globally then 1!., which is hypersurface orthogonal everywhere, is also 

defined globally. Therefore such spacetimes can actually be foliated by SIRs (Pawlowski et 

al 2004). 
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3.5 Relation to asymptotically flat solutions 

In five dimensions, there are two supersymmetric solutions with the property that the bulk 

electromagnetic field contains angular momentum while the horizon is non-rotating. These 

are the BMPV black hole (Breckenridge et al 1997) and the EEMR black ring (Elvang et 

al 2004). 

The BMPV black hole was first discovered in (Breckenridge et al 1997) as a solution to 

the equations that result from the truncation of D = 6 supergravity. Later it was shown 

that this spacetime is a solution to the D = 5 EM-CS theory (Gauntlett et al 1999) . As 

was shown in (Reali 2003), the BMPV black hole is the unique asymptotically flat extremal 

solution to EM-CS theory with horizon topology S3 . The line element of this spacetime 

can be written in the following form: 

(3.50) 

with 

~ ( dB2 + dq} + d'lj;2 + 2 cos Bd¢d'lj;) (3.51) 

d'lj; + cos Bd¢ ; (3.52) 

the angular coordinates have the ranges 

0 ~ () < 7r ' 0 ~ ¢ < 27r ' 0 ~ 'lj; < 47r . (3.53) 

The (U(l)) vector potential that solves the EM-CS equations of motion with the metric 

(3.50) is 

A v'3 [(1 + £..) - l (dt + JO"J) - dt] . 
2 r 2 2r2 

(3.54) 
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The parameters J.L and j are related to the total mass 9J1, charge .0 and angular momentum 

J at infinity via 

9J1 = 37rJ.L 
4G5 ' 

.0 = V37rJ.L 
2G5 ' 

Here, the mass is related to the total charge via 

9J1 = V3.0 2 , 

J =- 1rj . 
2G5 

(3.55) 

(3.56) 

which implies that the BPS bound is saturated. This is a typical characteristic of super-

symmetric solitons in D = 5 supergravity (Gibbons et al 1994). 

The BMPV black hole has one independent rotation parameter. With Jcrav = 0 this 

corresponds to a SIH with one angular momentum given by 

(3.57) 

The spacetime of the BMPV black hole is described by a non-rotating spherical horizon with 

angular momentum stored in the electromagnetic fields. In addition, the distribution of 

angular momentum of the spacetime is such that there is a non-zero fraction on the horizon 

as well as a negative fraction behind the horizon (Gauntlett et al 1999). The net result is 

that the horizon geometry is that of a squashed three-sphere. Within our framework, these 

interesting physical properties correspond to IHs with arbitrary distortions and rotations 

in their neighbourhoods. Such IHs have been studied using multipole moments (Ashtekar 

et al 2004). When the angular momentum of the BMPV black hole is zero the solution 

reduces to the extremal RN solution in isotropic coordinates. 

The generalization of the BMPV black hole to the case where the solution has two 

independent angular momentum parameters is the EEMR black ring (Elvang et al 2004). 
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The solution describes an extremal black hole with horizon topology S1 x S2 . The solution 

was discovered by Elvang et al (2004); the properties and stringy origin were studied in 

detail in (Elvang et al 2005). The line element of this spacetime can be written in the 

following form: 

(3.58) 

with 

dS2 
4 = R2 [~ + __!}j£_ + (y2- 1)d1/J2 + (1- x2)d¢}] 

(x- y)2 1 - x2 y2 - 1 
(3.59) 

f -1 
Q 2 2 

1 + ----=-!L(x - y) - _q_(x2 - y2) 
2R2 4R2 

(3.60) 

wt/J = - 8~2 (1- x2)[3Q- q2 (3 + x + y)] (3.61) 

wq, = 32q(1+y)+8~2(1 - y2)[3Q - q2(3+x+y)]; (3.62) 

the spatial coordinates have the ranges 

- 1 ~ X ~ 1 , - 00 < y ~ - 1 , 0 ~ 1/J < 27T, 0 ~ </> < 27T . (3.63) 

The parameters q and Q are positive constants that are proportional to the magnetic dipole 

moment and total charge, and R > 0 is the radius of a circle that is parametrized by 1/J at 

y = -oo. Also note that the set of coordinates (x, </>) parametrize a two-sphere. Therefore 

the horizon is "blown up" to a ring (topologically S 1 x S2) in the 5D geometry. The (U(1)) 

vector potential that solves the EM-CS equations of motion with the metric (3.58) is 

V3 [ q ] A = T J(dt + wt/J d'I/J + wq,d</>) - 2[(1 + x)d</> + (1 + y)d'I/J] . (3.64) 

The parameters q and Q are related to the total mass 9J1 and total charge .Q at infinity via 

.Q = V37TQ 
2G5 ' 

(3.65) 
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and to the angular momenta J t/1 and J<P at infinity via 

?Tq 2 J<P = -(3Q-q) 0 

8G5 

54 

(3.66) 

Note that !))1 = ( .../3/2)D. as for the BMPV black hole. Also note that when R = 0 the 

angular momenta J t/1 and J<P are equal. This would suggest that the BMPV black hole 

with equal angular momenta is essentially the EEMR black ring in the limit when R = 0. 

However, in this limit there is then an apparent singularity in the four-metric and also in 

the connection one-form. 

The EEMR black ring has two independent rotation parameters. This corresponds to a 

SIH with two angular momenta given by 

(3.67) 

In addition, a black ring can also have dipole charges which are naturally defined on the 

horizon (Astefanesei and Radu 2006; Copsey and Horowitz 2006; Emparan and Reali 2006). 

For an IH with ring topology a definition for the dipole charge P can be realized by inte-

grating the electromagnetic field strength plus the CS contribution over S2
: 

(3.68) 

Charges of this type appear in the first law for a black ring (Astefanesei and Radu 2006; 

Copsey and Horowitz 2006). However, this is not the case with the first law (2.47) that we 

derived. This is probably due to the fact that the dipole charges P are associated with the 

presence of magnetic charge, which we have not incorporated into our current phase space. 
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Appendix: an alternate formalism in four dimensions 

In four dimensions, there is an alternative formalism that can be used to derive the su­

persymmetry conditions for IHs as was originally done for fiat spacetime (Liko and Booth 

2008). This is a NP-type spinor formalism , in which the necessary and sufficient condi­

tion for supersymmetry with vanishing fermion fields is that there exists a Killing spinor 

1/JAA' = (aA,J3A') (A,B, ... E {1 , 2} and A' ,B', .. . E {1,2}) such that (Tod 1983; Tod 1995) 

\1 AA'aB + V'i¢ABJ3A' 

\1 AA'J3B'- .,fiJ>A'B'aA 

0 

0. 

(3.69) 

(3.70) 

Here, ¢AB is the Maxwell spinor and ¢>A'B' is its complex conjugate. These are related to 

the field strength via 

(3.71) 

the spinor symplectic structure is defined such that t 12 = -t21 = 1. Using the spinors a 

and ,6 we can define the following set of null vectors: 

(3.72) 

It can be shown that the vector 

(3.73) 

is a Killing vector; the norm of this vector is given by 

IIKII = 2VV, (3.74) 

where we defined the scalar V = aA~A. It follows that KAA' can be eith r timelike (referred 

to as nondegenerate) when V "I 0 or null (referred to as degenerate) when V = 0. 
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For IHs, the case of interest is the one for which the Killing spinor is null. This is a 

particularly special case because V = aA!JA = 0 implies that 

(3.75) 

for some function K. Putting this into the conditions (3.69) and (3.70) allows one to find 

an expression for the covariant derivative in terms of the spinors (Tod 1983; Tod 1995): 

(3.76) 

Here, ¢ is a function defined by </JAB = ¢aAaa. Let us use this form of the covariant 

derivative to find the covariant derivative of the null normal f of an IH. We find that 

(3.77) 

This immediately implies that 

(3. 78) 

and with (2.13) it follows that w = 0. 



Isolat d Horizons 1n EGB Theory 

"Higher-derivative theories are frequently avoided because of undesirable properties, yet they 

occur naturally as corrections to general relativity and cosmic strings. " "' J Z Simon 

4.1 First-order action for EG B theory 

As in Chapter 2, we work in the first-order connection-dynamics formulation. Here, the 

configuration space consists of the pair ( e1 , A 1 J ) (with electromagnetic fields zero) . In this 

configuration space, the action (1.10) for EGB theory on the manifold (M, gab) (assumed 

for the moment to have no boundaries) is given by 

s = -
1
- r EIJ 1\ niJ - 2At:. + aEuKL 1\ niJ 1\ nKL . 

2K.D }M 

The equation of motion for the connection is 

( 4.1) 

(4.2) 

This equation says that, in general, there exists a non-vanishing torsion T 1 = 9e1
. To see 

what constraints are imposed on T , we can use the Bianchi identity 9 0/J = 0 together 
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with the identity 

(4.3) 

Substituting these into equation (2.11) gives 

(4.4) 

In analogy with Einstein gravity, we assume directly that the torsion in ( 4.4) vanishes. 

(The torsion in Einstein gravity is zero, but this is not an assumption. The condition 

follows directly from the equation of motion for the connection.) To get the equation of 

motion for the co-frame we note that the variation of E is given by 

(4.5) 

This leads to 

(4.6) 

The equations ( 4.2) and ( 4.6) for the connection and co-frame are equivalent to the field 

equations (1.11) in the metric formulation. 

4. 2 Modified boundary conditions and the zeroth law 

Let us now turn to the case for which the manifold (M, 9ab) has boundaries; the region 

of spacetime that we consider for EGB theory is essentially the same as that which we 

considered in Chapter 2 for EM-CS theory. Namely, (M, 9ab) is aD-dimensional Lorentzian 

manifold with topology R x M, contains a (D - I)-dimensional null surface 6. as inner 

boundary (repre enting the horizon) , and is bounded by (D - 1)-dimen ional manifolds M± 
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that extend from~ to infinity. As in Chapter 3, we consider the purely quasilocal case and 

neglect any subleties that are associated with the outer boundary. 

Let us now state the modification that is required for EGB theory. First, we note that 

for IHs in general relativity the dominant energy condition can be imposed interchangably 

onto the Ricci tensor or the stress-energy tensor. This is because the Einstein field equations 

Gab = 2Tab imply that RabVavb = 2Tabvavb for any null vector va. For IHs in EGB theory 

this is no longer true because Gab =f. K.DTab· [This is also the reason why the topology 

constraint (4.4) is not applicable to IHs in EGB theory.] It turns out that condition (c) 

of Definition I for IHs in EGB theory has to be imposed onto the Ricci tensor in order for 

the shear tensor to vanish when the Raychaudhuri equation is employed. Thus we have the 

following modified definition for a WIH in EGB theory: 

Definition III. A WIH ~ in EGB theory is a null surface and has a degenerate metric 

Qab with signature 0 + ... + (with D - 2 nondegenerate spatial directions} along with an 

equivalence class of null normals [£] (defined by £ ,....., £' {=} £' = z£ for some constant z) such 

that the following conditions hold: (a) the expansion B(t) of la vanishes on~; (b) the field 

equations hold on~; (c) the Ricci tensor is such that the vector - R alb is a future-directed 

and causal vector; (d) £ewa = 0 and £ed = 0 for all£ E [£] . 

The condition (c) on the Ricci tensor is the only modification that needs to be made 

for WIHs in EGB theory. In particular the zeroth law now follows just as it does for IHs 

in EM-CS theory. Remarkably, the zeroth law is essentially independent of the functional 

content of the action, and follows from the boundary conditions alone. This is the same 

conclusion that was obtained for globally stationary spacetimes (Wald 1993; Iyer and Wald 

1994; Jacobson et al 1994) . 
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4.3 Variation of the boundary term 

We have seen that the definition for a nonexpanding horizon needs to be modified for EGB 

gravity by imposing the analogue of the dominant energy condition directly on the Ricci 

tensor. In the action principle, the main modification to the formalism is the appearance of 

an additional surface term. Let us therefore reconsider the action ( 4.1) but for a region of 

the manifold M that is bounded by null surface b. and spacelike surfaces M± which extend 

to the (arbitrary) boundary~. 

Denoting the pair ( e, A) collectively as a generic field variable W, the first variation gives 

oS = -
1- { E[w]ow + (-

2
1
)
0 

{ J [w,ow]. 
2/'i,D }M /'i,D laM 

(4.7) 

Here E[w] = 0 symbolically denotes the equations of motion and 

- IJ J[w, ow] = Eu A oA (4.8) 

is the surface term, with (D - 2)-form 

- KL Eu = Eu + 2et.EIJKL 1\ 0 . (4.9) 

If the integral of J on the boundary 8M vanishes t hen the action principle is said to be 

differentiable. We must show that this is the case. Because the fields are held fixed at M± 

and at ~, J vanishes there. So we only need to show that J vanishes at the inner boundary 

b. . To show that this is true we need to find an expression for J in terms of A and IS 

pulled back to b.. As for EM-CS theory we do this by fixing an internal basis consisting 

of the (null) pair (£, n) and D - 2 spacelike vectors "!?(i) given by (2.22) together with the 

conditions (2.23). 
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The pull-back of A is the same as for EM-CS theory, and is given by (2.31). For EGB 

theory we also need the pull-back of the curvature n to~ ' which can be obtained either by 

direct calculation from (2.31) or by construction from the definition of the Riemann tensor. 

We will take the secpnd approach here. We will use the definition (2.52) of the metric on 

§D-2 and the definition (2.53) of the connection projected onto §D-2. 

In thinking about these quantities it is useful to keep in mind the case where ~ is 

foliated into spacelike (D - 2)-surfaces §v which are labelled by a parameter v and n is 

chosen to be -dv. Then ga evolves the foliation surfaces while ga and na together span 

the normal bundle T j_ (§v) on which Wa is the connection. Furthermore, the '!9(i) span the 

tangent bundle T(§v) and Qab is the metric tensor for the §v· Then, it is clear that ~ is 

non-rotating when w = 0 provided that the rotational vector field ¢ is tangential to ~. 

We now turn to the Riemann tensor with the first two indices pulled back to ~. By 

definition, 

(4.10) 

and with the horizon identity \1 a R_b = waf.b along with the decomposition (2.53) , a few lines 
+-

of algebra gives 

(4.11) 

where da is the covariant derivative that is compatible with the metric Qab· For a weakly 

isolated horizon the zeroth law ensures that daK-(e) = 0 and if the horizon is non-rotating 

then w = 0 also, whence 

(4.12) 
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Finally, using this result and (2.52) it is straightforward to see that 

R .oc .od - e- JR .oc .od 
~cd·u (i) .u (j) = qa qb efcdV(i)v(j) · (4.13) 

From here one can use the fact that 

d d .o(i) -d-e- fn ( - g- hn .o(i)) 
a bVc = qa qb qc Vd qe qf vg·uh ' (4.14) 

and the identity for the Riemann tensor Rabcd associated with ilab 

(4.15) 

along with (2.52) to show the Gauss relation 

(4.16) 

l!a and na. However, k~~ = (1/2)-a(e)ilab + aab, and on a non-expanding horizon both the 

expansion and shear vanish. Thus for the cases in which we are interested 

(4.17) 

Then upon expanding the frame indices of fl~IJ in terms of the 1!1 , n 1 and -a(h' and 

applying (4.12) and (4.17), it follows that on any non-rotating WIH the pull-back of the 

associated curvature is 

(4.18) 

where Rkl ij is the Riemann tensor associated with the (D- 2) metric ilab = 9ab+ l!anb+ nal!b· 

That is, given a foliation of b. into spacelike (D - 2)-surfaces, the spacelike -a(i) give an 
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orthonormal basis on those surfaces and nkl ij is the corresponding curvature tensor; for a 

non-expanding horizon, these quantities are independent of both the slice of the foliation 

and the particular foliation itself. 

To find the pull-back to b. off:, we use the decomposition (2.25), whence the (D- 2)-

form given by (2.26) and in D ~ 5 dimensions, the (D- 4)-form 

~ ~ 1 fA1.a A2 .a Ao- 4 [ 1\ .a (i1) 1\ 1\ .a(io- s)] 
~IJKL - (D _ 5)!EJJKLA1 ... A 0 _4 v(i l) ... v(io- s) n ·u · · · v 

+ 1 .a A1 .a Ao- 4 [.a(il) 1\ 1\ .a(io- 4)] (D _ 4)!EJJKLA1 ... A 0 _ 4v(i !) oo. ·u(io - 4) v oo • u . 

In four dimensions EIJKL = EJJKL· 
f--

(4.19) 

These expressions are somewhat formidable but on combining them to find f:IJ 1\ 6A1
J 

there is significant simplification. The key is to note that each term includes a total con-

traction of EIJ ... I 0 . This contraction must include one copy of each of f 1
, n1

, and the 73 (h 

-else that term will be zero. Similarly the resulting (D - 1) form must be proportional to 

n 1\ 7J(2) 1\ .. . 1\ 7J(D- l). Then ( 4.8) becomes 

J[•T• .~: .T• ] - .~: 2a [ fl J .a K .a L.a A1 .a Ao- 4] 
'.l!,u'.l! ~€1\uW + (D - 4)! fiJI<LA 1 .. . A 0 _4 n ·u(k)v(l)v(i l) 00 'v i0 _4 

xnmnkl7J(i l) 1\ 0 0 0 1\ 7J(io - 4) 1\ 7J(m)7J(n) 1\ 6w 0 

(4.20) 

The first and second terms respectively come from the E I J and E I J K L parts of f: 1 J , € is 
f-- f-- f--

the area element defined by (2.34), and we keep in mind that the horizon is non-rotating 

so that Wa = - l'i.(e)na. The second term therefore also simplifies. Given that there are only 

(D - 4) elements in the spacelike basis it is reasonably easy to see that this term sums over 
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cases where ( m, n) and ( i, j) are the same set of indices. That is (up to a numerical factor) 

the second term amounts to contracting m with i and n with j so that the full surface term 

reduces to 

J[w , ow] ~ €(1 + 2aR) "ow . (4.21) 

It follows that J ~ 0 because ow = 0 on the initial and final cross sections of .6. (i.e. on 

M- n .6. and on M+ n .6.), and because ow is Lie dragged on .6.. Therefore the surface term 

J laM = 0 for EGB gravity, and we conclude that the equations of motion E[w] = 0 follow 

from the action principle oS = 0. 

4.4 Covariant phase space and the first law 

In order to derive the first law we need to find the symplectic structure on the covariant 

phase spacer consisting of solutions (e, A) to the EGB field equations on M. We find that 

the second variation of the EGB surface term ( 4.8) gives 

(4.22) 

integrating over M defines the bulk symplectic structure 

(4.23) 

We also need to find the pull-back of J to .6. and add the integral of this term to OB to 

determine the full symplectic structure. From (4.21) we have 

(4.24) 
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which is a total derivative. Now, with the definition (2.37) for '1/J , the surface symplectic 

structure Os is a total derivative, and hence upon using the Stokes theorem, becomes an 

integral over § 0 - 2. The full symplectic structure for EGB gravity is therefore 

= -
1
- { [8d5u 1\ 82AJJ - 82f-JJ 1\ 81AJJ] 

2K.o JM 
+-1 J [81 [€(1 + 2aR)]/\ 82'1/J - 82 [€(1 + 2aR)]/\ 81 '1/J] , 

K.D Jso-2 

where we have absorbed the overall (irrelevant) factor of ( - 1)0 . 

(4.25) 

We can now proceed to derive the first law. As before, this follows upon evaluating the 

symplectic structure at (8, 8d, giving a surface term at infinity (which is identified with 

the ADM energy) and a surface term at the horizon. We find that the surface term at the 

horizon is given by 

S1 b(8, 8t) = "'(zl) 8 J €(1 + 2aR). 
K.D Jso-2 ( 4.26) 

where we used "'(zl) = £ ze'I/J = zt.Jw . Finally, assuming that this is a total variation, i.e. 

that there exists a function £ such that Ole.( 8, 8~) = 8£, we find that 

8£ = "'(ze) 8 J €(1 + 2aR) . 
"'D Jso-2 

(4.27) 

This is the first law for a WIH in EGB theory. Comparing this to the standard first law 

identifies the entropy as 

S = G
1 J €(1 + 2aR) . 

4 D Jso-2 (4.2 ) 

Therefore WIHs in D-dimensional EGB theory satisfy the first law (and the zeroth law) of 

black-hole mechanics. 
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4.5 Comparison with Euclidean and Noether charge methods 

The quasilocal expression for the entropy is in exact agreement with the Noether charge 

expression that was derived by Clunan et al (2004). As in that approach, no assumptions 

about the cross sections §D- 2 of the horizon need to be made. An important difference, 

however, is that we did not assume the existence of a globally-defined Killing vector. Instead 

we had to specify the existence of a time translation vector field which mimics the properties 

of a Killing vector but is not defined for the entire spacetime. 

In order to compare the entropy to the Euclidean method, we need to reference a black 

hole solution. The EGB equations admit the following class of (static) black hole solutions 

(Cai 2002; Cho and Neupane 2002): 

h(r) 

( ) 
2 dr2 2 2 

- h r dt + h(r) + r dn(k)D- 2 

k 

r
2 

( ~---8-a_A ______ B_K,_D_a_M __ __ 

+ ----=- 1 - 1 - + ---=-----
2a (D - l)(D - 2) (D - 2)'t(k)D- 2rD- l 

(4.29) 

Here, 't(k)N- 1 = 1T'NI2 ;r(N/2 + 1) is the volume of an (N - I)-dimensional space sN- l = 

3~)1 of constant curvature with metric dnzk)N- li k is the curvature index with k = 1 

corresponding to positive constant curvature, k = - 1 corresponding to negative constant 

curvature, and k = 0 corresponding to zero curvature. M is the mass of the black hole, and 

a is related to the G B parameter via 

a= (D - 3)(D - 4)a. (4.30) 

The singular surfaces with radii r* are given by the roots to the equation h(r = r*) = 0. 

We denote the event horizon by r +. The location of this surface depends on the sign of the 
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cosmological constant: if A ~ 0 then the largest root r + is the event horizon, and if A > 0 

then the largest root is the cosmological horizon and therefore the second largest root is the 

event horizon. 

The thermodynamics of the black hole is determined in the usual way using path integral 

methods (Hawking 1979) . In particular, the average energy (<e) and entropy :7 are given 

by 

8 
(<e) = -

813 
(In Z) and :7 = /3(<e) + In Z, (4.31) 

where In Z is the (zero-loop) partition function and /3 is the inverse temperature. The 

partition function is determined via In Z = - l[g] by evaluating the Euclidean action l [g] 

(in the stationary phase approximation where g are solutions to the equations of motion 

8 J 1 = 0), and the inverse temperature is determined by requiring that the Euclidean 

manifold does not contain any conical singularities at r + where the manifold closes up. For 

the black hole solution ( 4.29) one finds that (Cai 2002; Cho and Neupane 2002) 

(<e) = M and :7 = sdD-2r~-
2 

[ 1 + (D - 2) 2ak] . 
4GD D - 4 r~ 

(4.32) 

Here, sdN-l = 27rN/ 2 /f(N/2) is the surface area of a unit (N- 1)-sphere. This shows that 

the entropy acquires a correction due to the presence of the GB term. For the solution 

(4.29), the Ricci scalar is n = (D - 2)(D - 3)k/r~, and (4.28) reduces to (4.32). Our 

entropy expression is therefore in agreement with the Euclidean expression as well. In our 

derivation, however, the entropy ( 4.28) automatically satisfies the first law ( 4.27). 

An interesting consequence of the GB term is that it is possible for black holes to have 

negative entropies when 2o:R < 1. This was first discovered by Cvetic et al (2002) and later 

confirmed by Clunan et al (2004). For non-rotating horizons, the first law ( 4.27) implies 
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that the energy is also negative; this is not surprising, as negative-energy solutions are 

possible when A < 0 (Horowitz and Myers 1999). We will now proceed to show that the 

presence of the GB term also has consequences for the area-increase law during the merging 

of two black holes. 

4.6 Decrease of black-hole entropy In EGB theory 

For any EGB black hole in D dimensions, the Ricci scalar R integrates to a constant over 

§D- 2 . It is not too surprising then, that the area always increases in any physical process 

involving just one black hole with an entropy of the form (4.28) (Jacobson et al 1995). 

However, this will not be the case for a system with dynamical topologies such as black-

hole mergers (Witt 2007) . This is a form of topology change, which for a space with a 

degenerate metric is unavoidable even in classical general relativity (Horowitz 1991). This 

fact is relevant to the current problem because the entropy expression ( 4.28) holds for 

Killing horizons and WIHs, both of which are null surfaces on which the induced metrics 

are degenerate. 

As an example, let us consider the merging of two black holes - one with mass m1 

and entropy 5I = [AI+ 2aX(§I)]/4GD, the other with mass m2 and entropy 52 = [A2 + 

2aX(§2)]/4GD. Here, we have defined the surface area A = fso -2 € and the correction 

term X(§) = fso -2 €R. Before the black holes merge, the total entropy is 

5 5I +52 

1 
- G [AI + A2 + 2a(X(§I) + X(§2))]. 
4 D 

(4.33) 
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After the black holes merge, the total entropy of the resulting black hole is 

S' = -
1
-[A' + 2aX(§')J. 

4GD 

The expressions ( 4.33) and ( 4.34) imply that S' > S if and only if 
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(4.34) 

(4.35) 

Without knowing the specific details of the black holes in question, nothing further can 

be said about S and S', or about the upper bound (4.35). Let us therefore consider for 

concreteness the simplest case - the merging of two Schwarzschild black holes in four-

dimensional flat spacetime. This is a particularly special case as the topologies are much 

more restricted than could be hoped for. First, the GB theorem [see e.g. (Hatfield 1992)] 

relates the correction term to the Euler characteristic x(§) via 

X(§)= j €R = 47rx(§) . !s2 (4.36) 

Then the Hawking topology theorem (Hawking 1972) restricts the horizon cross sections to 

be two-spheres for which x(§) = 2. For a Schwarzschild black hole the correction term is 

therefore X(§) = 81r. Furthermore, the surface area of a Schwarzschild black hole is related 

to its mass via 

(4.37) 

whence the surface areas of the initial and final black-hole states are 

(4.38) 

Here, a small mass parameter "' 2: 0 for the surface area of the final black-hole state has 

been included. This parameter corresponds to any mass that may be carried away by 
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gravitational radiation during merging. With these expressions for the areas, the bound 

(4.35) in terms of the masses becomes 

(4.39) 

Therefore the second law will be violated if a is greater than twice the product of the masses 

of the black holes before merging minus a correction due to gravitational radiation. 

To summarize, the validity of the second law of black-hole mechanics was examined for 

a physical process in which the topology is not constant. As was shown, the correction term 

appearing in the entropy ( 4.32) can lead to a violation of the second law for certain values 

of the GB parameter during the merging of two black holes. The calculation was done 

for two Schwarzschild black holes in four-dimensional flat spacetime. However, a similar 

bound to ( 4.39) may presumably be derived for specific solutions in higher dimensions as 

well [although in this case the topologies are not as severely restricted as they are in four 

dimensions, even for Einstein gravity with A = 0 (Helfgott et al 2006; Galloway 2006; 

Galloway and Schoen 2006)]. Incidently, the result obtained here shows that the presence 

of the GB term in the action for gravity can have nontrivial physical effects even in four 

dimensions, when the term is a topological invariant of the manifold. This is in sharp 

contrast to the commonly held belief within the literature that the term is only significant 

in spacetimes with dimension D 2': 5. 



Prospects 

"Try to see through fainted views. As reality disappears in a haze. A journey between eternal 

walls. The senses unfold before my eyes." ,....., T G Fischer 

5 .1 Summary 

In this thesis we presented two extensions of the IH framework, first to EM-CS theory 

and then to EGB theory in D dimensions. In particular, we derived the local version of 

the zeroth and first laws of black-hole mechanics for general WIHs on the phase space of 

the corresponding theories. In addition, for EM-CS theory in five dimensions and for EM 

theory in four dimensions we derived the conditions that are required by supersymmetry. 

We then turned to EGB theory, for which we showed that the quasilocal entropy is in 

exact agreement with the expressions that are obtained by the Euclidean and Noether 

charge methods. Finally, we showed that the GB term can have physical consequences in 

four dimensions even though it is a topological invariant and does not contribute to the 

equations of motion. 
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As was stated in §1.2, our intention was to employ the IH framework with suitable 

extensions to higher dimensions in order to determine the generic properties of black holes 

in string-inspired gravity models. A summary of the main five results are given in §1.3. 

5.2 Classical applications to EM-CS and EGB theories 

There are a number of classical applications of IRs to EM-CS and EGB black holes that 

can be explored. Here we briefly discuss four problems that are worth investigating. 

Let us first consider applications to EM-CS theory, and in particular to the corresponding 

supersymmetric black holes. 

• BPS bounds. The general method for deriving the BPS bound for stationary space­

times is to construct an expression for the energy of the spacetime using spinor iden­

tities and the Einstein field equations. This method was pioneered by Witten (1981) 

and Nester (1981) to prove the positive energy theorem. The method was applied 

in four dimensions (Gibbons and Hull 1982) and in five dimensions (Gibbons et al 

1994) to calculate the BPS bounds for the corresponding spacetimes. How can one 

derive these bounds for IRs? The bounds are saturated when the spinors are super­

covariantly constant, which is associated with extremality. This suggests that the 

extremality condition (2.54) can be used for IRs. This is straight-forward to do for 

undistorted horizons. Let us consider the four-dimensional EM theory for illustration. 

Here the contraction Tabf.anb is the square of the electric flux Ej_ crossing the surface 

(Ashtekar et al 2000c). For any IH this quantity is constant over S2 and can therefore 

be moved outside the integral. The result can be used to relate the charge Q on the 
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horizon to its surface area A via Q = EJ.A/(47r). For the RN solution one finds that 

ry = Q2 
/ R2 - 1 ~ 0 with R = J A/(47r) the areal radius (Booth and Fairhurst 2007b). 

When the surface gravity vanishes ry = 0 and Q = R = M with M the mass. This is 

the condition for supersymmetry in four dimensions. The situation is not as obvious 

for distorted horizons in five dimensions. This is because the contraction Tab.eanb, 

which for EM-CS theory is again the square of the electric flux, may not be constant 

over the horizon cross sections in general. However, for the BMPV black hole in par­

ticular we know that the cross sections are S 3 which have constant curvature, and 

therefore El is constant on b. . From here, a charge-areal radius relation follows along 

the same lines as the derivation that was outlined above for the RN black hole in four 

dimensions. 

• Supersymmetry and horizon geometries. It was shown (Lewandowski and Pawlowski 

2003) that the IH constraints for extremal IHs of four-dimensional EM theory are 

satisfied iff the intrinsic geometry of the horizon coincides with that of the extremal 

Kerr-Newman (KN) solution. An extension of that analysis to IHs of five-dimensional 

EM-CS theory would be of interest, particularly because it would provide a method for 

deriving the geometries of the corresponding extremal IHs. This would complement a 

recently developed method (Astefanesei and Yavartanoo 2007; Kunduri et al 2007b; 

Kunduri and Lucietti 2007) for deriving the near-horizon geometries of extremal black 

holes. While speculating on the local uniqueness theorems in five dimensions we need 

to keep in mind that black holes in five dimensions are much less constrained than in 

four dimensions, mainly because in five dimension there are two possible topologies 
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(S3 and S1 x S2), and also because there are two independent rotation parameters. As 

a consequence of this richer structure, it is possible that two distinct black holes in five 

dimensions can have the same asymptotic charges (Emparan and Reali 2002). This 

is a striking example of black-hole nonuniqueness in higher dimensions. Nevertheless, 

uniqueness has been established for supersymmetric black holes in five dimensions 

(Reali 2003). Therefore it is expected that the five-dimensional analogues of the local 

uniqueness theorem of (Lewandowski and Pawlowski 2003) do exist , but for SIRs. We 

also note that, while supersymmetry constrains the geometry (i.e. connection one­

form), the dominant energy condition and the Einstein field equations are still required 

to constrain the topology. Therefore we expect that there should be a unique horizon 

geometry for a given topology. For example, if the topology of a SIH is S 1 x S2 , then 

the geometry should coincide uniquely with the induced metric and vector potential 

of the EEMR black ring solution. We also expect that, if the topology is S3 , then 

the geometry should coincide uniquely with that of the BMPV black hole in geneml, 

and the extremal RN black hole as a limiting case when the angular momentum of 

the Maxwell fields vanishes. It would be of considerable interest to try solving the 

IH constraints for a SIH when Tabfanb = 0 (at the horizon); the resulting geometry 

would provide the first explicit solution of a supersymmetric black hole with toroidal 

topology. 

Now let us consider applications to EGB theory. 

• Rotation. One of the main assumptions that we made in our calculations was that 

the horizons are non-rotating. It would be interesting to extend the IH phase space 
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to include rotation by relaxing the condition w = 0. 

• Torsion. The formalism presented here can be further extended by including torsion. 

Recall that in §5.2 we assumed T 1 = 0 directly, which became crucial when we derived 

the pull-back to !::!. of the connection. However, as the equation of motion (4.2) for 

A indicates, the torsion-free condition is not imposed in D 2: 5 dimensions. If the 

torsion is non-zero then the pull-back to !::!. of A will not be given by (2.31). In order 

to derive the modified pull-back of A in the presence of torsion we would need to find 

\1 a eb 1 explicitly. In addition, the Raychaudhuri equation would be different as well, 
+-

and so the boundary conditions would require a more careful analysis. The effects of 

torsion on IHs should therefore lead to some interesting consequences. This would be a 

particularly interesting project to work out in five dimensions, for which a solution has 

recently been found that describes a supersymmetric black hole (Canfora et al 2008) . 

More interestingly, there is also a solution of the equations with non-zero torsion 

that describes a constant-curvature black hole with entropy that is proportional to 

the surface area of the inner horizon rather than the event horizon (Baiiados 1998). 

This curious interchange of thermodynamic parameters, namely the outer and inner 

horizons, may be a consequence of the torsion that is present in the equations of 

motion. The IH framework could be employed in order to test this hypothesis. 

There are many more avenues to explore. We hope that others will consider some of 

them. 



Black Hole Mechanics: An Overview 

A.l Thermodynamics 

The study of macroscopic properties of materials without knowing their internal structure is 

the science of thermodynamics. This is the branch of science concerned with the dynamics 

of materials where thermal effects are important. Because no reference is made to the 

internal structure, the formalism involved is very general and therefore very powerful. Let us 

quickly review the four laws of thermodynamics (Reif 1965; Poisson 2000) ; this will make the 

connection between the laws of black-hole mechanics and the four laws of thermodynamics 

apparent. 

Let us now state the four laws of thermodynamics and discuss some of their physical 

consequences. 

• Zeroth law. If two systems are each in thermal equilibrium with a third system, then 

they are in thermal equilibrium with each other. This implies that the temperature 

remains constant throughout the systems that are in thermal equilibrium with each 
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other. 

• First law. The internal energy%' of a system that interacts with its surroundings will 

undergo a change given by 

dOll = dl2 - d1f/' (A.l) 

where dl2 is the amount of heat absorbed by the system and d1f/ is the amount of 

work done by the system during its change of macrostate. This is really just the 

statement of conservation of energy. It implies that a gain of heat to a system can do 

physical work on its surroundings. 

• Second law. Heat flows spontaneously from higher temperatures to lower tempera­

tures. This means that: (i) the spontaneous tendancy of a system to go toward ther­

mal equilibrium cannot be reversed without changing some organized energy (work) 

into some disorganized energy (heat); (ii) it is not possible to convert heat from a hot 

reservoir into work in a cyclic process without transferring some heat to a colder reser-

voir; (iii) the change in entropy dY = d.fl2 /T (with T the temperature) of a system 

and its surroundings is positive and approaches zero for any process that approaches 

reversibility. 

• Third law. The difference in entropy o.Y between states connected by a reversible 

process goes to zero as the temperature T goes to absolute zero. Unlike the other 

laws which are based on classical considerations, the third law is a consequence of 

quantum mechanics. The third law implies that a system at absolute zero will drop 

to its lowest quantum state and thus become completely ordered. 
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The first law expresses the change in internal energy of a system in terms of inexact 

differentials. This means that, unlike the difference d.f2 - d1f/, seperately d.f2 and d1f/ 

depend on the path that is taken from the initial state to final state. The first law can be 

expressed in terms of exact differentials though. First, we note that in a quasi-static process 

where the volume of a fluid changes but the pressure remains approximately unchanged, 

the physical work done by the system is given by d1f/ = Pd"f/. Then, modulo the second 

law we can write the first law in the more familiar form: 

dOll = Td.Y - Pd1' . (A.2) 

This is the form of the first law that appears in most references on gravitational physics 

that discuss the laws of black-hole mechanics. 

A.2 Black-hole mechanics: global equilibrium 

Now we will review the corresponding laws of black hole mechanics. A beautiful introduction 

is given in the book by Poisson (2004). The laws of black-hole mechanics were first formu­

lated for globally stationary spacetimes in four-dimensional Einstein gravity (Bardeen et al 

1973), and later extended using covariant phase space methods to D-dimensional spacetimes 

in arbitrary diffeomorphism-invariant theories (Wald 1993; Iyer and Wald 1994; Jacobson 

et al 1994). This seminal work has revealed, among other properties of black holes, that 

the area-entropy relation will only be modified in cases when gravity is supplemented with 

nonminimally coupled matter or higher-curvature interactions. This is a consequence of 

the fact that such terms modify the gravitational surface term in the symplectic structure. 

Such terms naturally arise in the effective actions of superstrings and supergravity. For now 
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we will restrict our review to D-dimensional black holes of EM theory. 

Let us first state some facts about Killing horizons. We shall consider the black hole 

region 

(A.3) 

of a spacetime manifold M; i.e. a region of spacetime that excludes all events that belong 

to the causal past of future null infinity. The event horizon is the boundary 8B of the region 

B of spacetime. If the black hole is stationary, then the event horizon coincides with the 

Killing horizon - a hypersurface at which the vector 

L(D-1)/ 2J 

'a = ta + I: n~m~ (A.4) 

is null. Here, ta is a timelike Killing vector, m~ are l ( D - 1) /2 J rotational spacelike Killing 

vectors and the coefficients n~ are the angular velocities of the black hole. The vector (a 

is tangent to the null generators of the Killing horizon and therefore satisfies the geodesic 

equation 

(A.5) 

This defines the surface gravity "' of the black hole. Equivalent definitions are given by 

2 ; ( ; ;b) d 2 _ 1, ;a;b 
"'"a= - .,b., ;a an /'i, - - 2'>a;b'> 0 (A.6) 

For the Schwarzschild solution (1.2) it can be verified by direct computation that "' 

1/(4M0 ). 

We now state the four laws of black-hole mechanics: 

• Zeroth law. The surface gravity "' is constant over the entire event horizon. 
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• First law. For a stationary black hole with energy <!:, surface area .91, electric charge 

.Q and angular momenta J~, the change in mass during a quasi-static process is given 

by 

L(D-1)/ 2J 

8<!: = _!:_8.Jd + ~8.o + 2::: n~8J~ , 
"'D ~=1 

(A.7) 

where~= -Aa(alr=r+ is the electric potential at the horizon (r = r +) and Aa is the 

vector potential. 

• Second law. The surface area .Jd can never decrease in a physical process if the stress-

energy tensor Tab satisfies the dominant energy condition Tab(a(b 2: 0. 

• Third law. The surface gravity cannot be reduced to zero by any physical process in 

a finite period of time. 

The laws of black-hole mechanics are very similar to the laws of thermodynamics. If 

one makes the identification %' = <!:, then the first law of thermodynamics (A.2) and the 

first law of black-hole mechanics (A.7) require that Y ex .9/kB/l~ (with physical constants 

restored for the moment) and "' ex T. However, the latter does not seem to make sense 

from a classical point of view, because a black hole presumably has zero temperature which 

would imply that the entropy is infinite. Is the similarity just a mathematical coincidence, 

or is nature telling us something deep about the interplay between gravitational phenomena 

and quantum mechanics? Indeed, the identification Y ex .sdkB/l~ requires the presence of 

c and li in order for the entropy to be dimensionless. It was Bekenstein (Bekenstein 1973; 

Bekenstein 1974) who first recognized the physical significance of this similarity. Bekenstein 

also recognized that the irreversable process of dropping matter into a black hole leads to 
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the genemlized second law of thermodynamics: 

8.9'universe + 8.9'BH 2: 0 · (A.8) 

Using a semiclassical approach, Hawking (1975) then fixed the free parameter to 1/4 and 

the temperature toT = r;,j27r. Thus a black hole is not eternal, but rather has a thermody­

namical temperature and radiates. (It should be noted that the final state of this process is 

unknown, because the temperature goes to infinity as the surface area decreases. One of the 

many goals of all theories of quantum gravity is to give a detailed first-principles description 

of the evapouration process and to determine what the final state of a black hole should 

be.) Therefore, the laws of black-hole mechanics are the laws of thermodynamics, applied 

to an object of special character. 



Differential forms 

B.l Definitions 

Definition B.I: A differential p-form is a totally antisymmentric tensor of type (0, p), i.e. 

Denote the vector space of p-forms at a point x by A~ and the collection of p-form fields 

by AP. Taking the outer product of a p-form w a1 ···ap and a q-form Jl-b1 ···bq, results in a 

tensor of type (0, p + q) , which will not be a (p + q)-form since this tensor is not generally 

antisymmetric. 

D efinition B.II: The wedge product on an m-dimensional manifold M is a map 1\ 

A~ x A~ -t A~+q such that the tensor product 

is totally antisymmetric. 
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Note that this tensor is zero if p + q > m. Thus the wedge product of two one-forms on 

JRm2:2 is w 1\ J.£ = - J,£ 1\ w. Now define the vector space of all differential forms at x to be 

the direct sum of the A~ such that 

The map 1\ : A~ x A~ ---+ A~+q gives Ax the structure of a Grassmann algebra over the 

vector space of one-forms. 

Definition B.III: The exterior derivative on an m-dimensional manifold M is a map from 

the space of p-forms to the space of (p +I)-forms: 

together with the following properties: 

1. d(w + J.£) = dw + dJ,£ ; 

2. d(cw) = cdw ; 

3. d(w 1\ ..\) = dw 1\ ,\ + ( -l)Pw 1\ d..\; 

4· d(dw) = 0; 

Y w , J.£ E AP(M) , ,\ E Aq(M) , and c E JR. 

The last property can be easily shown as follows. Consider the p-form w such that 

The exterior derivative acting on w is given by 
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and the second exterior derivative is 

Since the functions Wa1 ... ap are by definition smooth, the partial derivatives acting on them 

commute and the operator 81-Lav is symmetric. The two-form dxi-L 1\ dxv, however, is an-

tisymmetric. Thus we have ddw = 0. This important property is often written simply 

In general, if a E AP+1(M) and {3 E AP(M) then: a is called an exact form iff da = 0; 

a is called a closed form iff a = d{3. By the last property d2 = 0 of the exterior derivative, 

a closed form is automatically an exact form as well. However, the converse is not true, and 

the study of this is called DeRham cohomology. 

Definition B.IV: The interior product of a p-form w with vector field X on an m-

dimensional manifold M is a map ix : AP(M) ~ AP-l (M) such that 

together with the "anti-derivation" property with respect to the wedge product 

ix(w 1\ TJ ) = (ixw) 1\ TJ + ( -l)Pw 1\ (ix TJ ) 

where w E AP(M) and TJ E Aq(M). If w E A0 (M) then ixw = 0. 

The interior product is also called the contraction, and is also denoted X ..JW. As an 

example, consider w E A2 (M) and Z = X 0 (8jax0
) + Y 0 (8jay0

) a vector field on M. The 

interior product of w and Z is given by 
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Definition B.V: The Lie derivative of a p-form w with respect to a vector field X is given 

by 

£xw = X _;dw + d(X _;w ). 

Definition B.VI: The Hodge star operator on an m-dimensional manifold M is a linear 

map* : AP(M) ---+ Am- P(M) given by 

where { ea}~=l is a positively-oriented set of one-forms on some chart of M. 

As a simple example, consider a two-form on IR3. Choosing a basis { e1 1\ e2 , e11\ e3 , e2/\ 
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