











Construction of Leaves and Fvreecee when k = 3 4

Paoe 1

Construction of Leaves and Excesses when £=3,4

©Chao Zhong

A thesis submitted to the
School of Graduate Studies
in partial fi lment of the
requirements for the degree of
Master of Science

Department of Mathematics and Statistics
Memorial University of Newfoundland

November 2007 Submitted

St. John’s Newfoundland

Supervisor Dr N Shalaby

Canada

©Chao Zhong




Construction of [.eaves and Fyrecees when k=3 4 Page 9

Abstract

A packing design, or a PD(v, k, \) is a family of k-subsets (called blocks),
of a v-set S, such that every 2-subset (called a pair), of § is contained in at
most A blocks. The packing number P(v, k,A) is the number of blocks in a
PD(v, k, A).

The edges in the mult aph AK, not contained in the packing form the
leave of the PD(v, k, A), denoted by leave(v, k, A). Generally we consider max-
imum packings (packings with maximum number of blocks) unless stated oth-
erwise.

A covering design, or a CD(v, k, A) is a family of k-subsets (called blocks),
of a v-set §, such that every 2-subset (called a pair), of S is contained in at
least A blocks. The covering number C(v,k,A) is the number of blocks in a
CD(v, k, A).

The extrone edges added to the multigraph AK, in the covering forin the
ezcess of the CD(v, k, A), denoted by excess(v, k, A). Generally we consider
minimum coverings (coverings with minimum number of blocks) unless stated
otherwise.

In this thesis we give the direct constructions of the leaves and excesscs
for £ = 3,4. Somec of them are from existing papers, somc are the author’s
original work. This is the first time to put all the lea  and excesses for & 4
and all As together (with only few possible exceptions).
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1 Introduction

In the thesis, Chapter I is an introduction to the basic concepts and known results.

Chapter II gives a complete and detailed description on the properties and con-
structions of leaves and excesses when k = 3. The table of leaves and excesses when
k = 3 were put together by Shalaby.

Chapter III gives a near complete and detailed description on the propertics and
constructions of leaves and excesses when & = 4. This is the first time all the lcaves
and excesses when k = 4 has been put together (There are few unsolved cases).

Chapter IV is a brief discussion on nuclear designs. A theorem on nuclear designs
when & = 4 is given in this chapter.

Chapter V is a conclusion of what we achieved in this thesis and what is still
open for future research.

The Appendix contains the tables of the known spectrum of leaves and excesses
when k& = 3,4, and the special cases where the general constructions does not work.

1.1 Basic Concepts

In 1782, Euler posed the first | oblem in combinatorial design theory, the 36
officers problem”. Euler’s problem was to arrange the 36 officers in a 6x6 array so
that each row and each column contained a officer of six legions and a officer of six
ranks [5].

Euler conjectured that there is no such n x n arrangement for n = 6 and for
all n 2 (mod 4). This began the research of mutually orthogonal Latin squares
(MOLS or POLS).

In 1900, Tarry showed by exhaustive method that th @ are no two orthogonal
Latin squares of order 6, hence proved Euler’s conjecture for n = 6. In the 1990s,
Stinson reproved this in a different way. Euler’s conjecture on n = 2 (mod 4), n > 6
was finally proved to be wrong in 1960, by Bose, Shrikhandi and Parker [25]; they
proved that there are pairs of orthogonal Latin square of order 10 and all n = 2 (1nod
4), n > 10.

In 1835, Plucker [54] inastudy of * :b  ccurves, observed that given v elements,
a family of subsets of size three in which every pair of elements occurs in exactly one
of the subsets, will contain fv(v — 1) such subsets.

Supervisor Dr N Shalaby ©Chao Zhong
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It is natural to ask what designs we could obtain if the necessary condition for
BIBDs does not apply. We now define packing and covering designs.

Definition 2. A packing design, or a PD(v, k, A) is a family of k-subsets (called
blocks), of a v-set S, such that e y 2-subset (called a pair), of S is contained in at
most A blocks. The packing number P(v, k, A) is the number of blocks in a PD(v, k, ).

The edges in the multigraph AK, not contained in the packing form the leave of
the PD(v, k, A), denoted by leave(v, k, A). Generally we consider maximum packings
(packings with maximum number of blocks) unless stated otherwise.

EXAMPLE 2. A PD(6,3,1), the blocks are {1,5,6}, {2,4,6}, {1,3,4}, {2,3,5}, and
the leave is {1,2}, {3,6}, {4,5} (see Figure 2).

| 2
1o . . 2
6° *s 6° 4 3 ... 6
3 1 2 ¢ ¢
i é 4 4. o 5
3 45 3

Figure 2: A PD(6,3,1) and its Leave

Definition 3. A covering design, or a CD(v, k, \) is a family of k-subsets (called
blocks), of a v-set S, such that every 2-subset (called a pair), of S is contained
in at least A blocks. The covering number C(v, k, A) is the number of blocks in a
C™ vk, A).

The extrone edges added to the mult aph MK, in the covering form the ercess of
the CD(v, k, A), denoted by excess(v, k, A). Generally we consider niinimurmn coveri
(coverings with minimum number of blocks) unless stated otherwise.

EXAMPLE 3. A CD(6,3,1), the blo s are {1,2,4}, 23,5}, {344 {562},
{1,3,6}, {1,4,5}, and the excess is {1,4}, {2,5}, {3,6} ' rigure 3).

Schonheim (58] [59] gave the following upper bound and lower bound for the
number of blocks and edges in optimal packing and covering designs. These bounds
are called the Schonheim bounds.

Theorem 3. An upper bound of number of blocks in a PD(v, k, A) is U (v, k, A) =
[v/k[AMv = 1)/ (k - 1)]].

Supervisor Dr N Shalaby ©Chao Zhong
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Figure 4: A PBD(6,{3,2},1)

two kinds of subsets of a v-set S: (i) disjoint subsets with sizes in M (called groups),
whose union is S; and (ii) k-subsets (called blocks), such that

(i) each group and each block have at most one common element;

(i1) each pair {z,y} in S where r and y belong to different groups, is contained
in exactly A blocks.

Note When A = 1, we often describe a GDD by its type, i.e. a k-GDD of type
t11ty? ...t if there are u; groups of size t; for i = 1,2,...,1 and the blocks are of size
k. If t1,tq, ..., t; ave the sizes of all groups (counting multi] city), we can also denote
the GDD by type [t1,ts, ..., &

EXAMPLE 5. A GDD(6,2,3,1), the groups are {1,2}, {3,6}, {4,5}, and blocks
are {1,5,6}, {2,4,6}, {1,3,5}, *~ 3,4}. It’s a 3-GDD of type 2° or type [2,2,2] (see
Figure 5).

1 ]2 ! 2
l eAso 4

6|< 7N T3 1 2

S .M'}__“ 3A‘54Z\'3

Figure 5: A GDD(6,2,3,1) or a 3-GDD of type | or type [2,2,

Su; v r Dr N Shalaby hao Zhong
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(1) A BIBD(wv, 3, A) exists if and only if A(v — 1)
(mod 6).

i.e. a BIBD(v, 3, A) exists for the following cases
A=0(mod5) v=0,1,23,4,5 (mod 6))
A=1(mod 6) v=1,3 (mod 6)
A=2(mod6) v=0,1,3,4 (mod 6)

A=3 (mod 6) v=1,3,5(mod 6)
A=4 (mod 6) v=0,1,3,4 (mod 6)
A=5(mod 6) v 1,3 (mod 6)

Page 15

0 (mod 2) and Av(v —1) =0

(2) A BIBD(v,4, A) exists if and only if A(v — 1) =0 (inod 3) and Av(v—-1) =0

(mod 12).
i.e. a BIBD(v,4, \) exists for the following cases

A=0(mod 6) v=0,1,2,3,4,5,6,7,8,9,10,11 (mod 12)

A=1(mod 6) v 1,4 (mod 12)

A =2 (mod6) v=1,4,7,10 (mod 12)
A=3 (mod 6) v=0,1,4,5,8,9 (mod 12)
A=4 (mod 6) v=14,7,10 (mod 12)

A =5 (mod 6) v=14(mod 12)

1.3 Known Results for PDs and CDs

Fort and Hedlund [35] first studied the covering numbers; and Hanani [40] first

studied packing numbers.

Let C(v,3,)) be the number of blocks in a CD(v,3,A) and &(v,3,)) be the
Schonheim lower bound; let P(v,3, A) be the number of blocks in a PD(v, 3, A) and
W(v,3,A) be the Schonheim upper bound. We have the following r ilts.

Haggard [37], Hanani [40], Stanton and Rogers [62]:

&(v,3,A\)+1, v A 2 (mod 6);
) ®(,3,A)+1, v=5A=2 (mod 6);
Clv,3,A) = O(v,3,A)+1, v A=5 (mod 6);
O(v,3, M), otherwise.

Note The cases of A = 1 were by Fort and Hedlund {35].

Hanani [10], Stanton, R¢ s, C °

Supervisor Dr N Shalaby
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and Chen [73] gave a solution to P(v,6,5). That is the only solved case for now.

1.4 Known Results for Leaves and Excesses when k = 3,4

After we found the packings and coverings, we would like to study the leaves and
excesses. Some leaves and excesses are already known.

Kirkman [43] solved the leave(v, 3,1)s when constructing the packings. Schon-
heim [59] [60], Spencer [61] solved the same cases independently. Engel [34] and
Stanton and Rogers [62] solved all leave(v, 3, M)s.

Fort and Hedlund [35] solved the excess(v, 3, 1)s. Haggard [41], and Engel [34]
solved all excess(v, 3, A)s.

Mendelsohin, Shalaby and Shen [52] gave some necessary and sufficient condi-
tions for a multigraph to be a leave or an excess (not necessarily maximum leave or
minimum excess), they also gave a complete table for all leaves and excesses when
k=3

Stinson [65] [66] gave the leave(v, 1, 1)s, and excess(v, 4, 1)s.

Some leaves and excesses of higher As can be found or deduced from papers dealing
with packing and covering designs, like in the papers of Assaf [6] [7], Billington,
Stanton and Stinson (23], Brouwer [27], Stanton and Rogers [62].

The the author is filling up the gaps d maki a spectrum of the leaves and
excesses when k = 3,4. We will at least one construction for each v and A, th

few exceptions.

Mendelsohn, Shalaby and Shen [52] introduced the concept of nuclear design
which connects leaves and excesses. If we can find the intersection of a PD(v, k, A)
and a C™ (v, k,A), tI  we can easily construct and inc . the tab of _ wckings and
coverings with the help of sm tional des 1s.

Supervisor Dr N Shalaby ©Chao Zhong
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2 Leaves and Excesses when k = 3.

2.1 Necessary Conditions

Necessary conditions for a multigraph G to be a leave(v, k, A) were given by
Mendelsohn, Shalaby and Shen [52]. Let |E| be the number of edges in G,

(1) Av(v-1)/2 — |E| =0 (mod k(k —1)/2);

(2) for all z € G, deg(zx)= A(v — 1) (mod k - 1);

(3) for all z € G, deg(z)< A(v —1).

The followings are the nect ry conditions in the same artcle for a multigraph
G to be an excess(v, k, A). Let |E| be the number of edges in G,

(1) Av(v—1)/2+ |E| = 0 (mod k(k — 1)/2);

(2) for all z € G, deg(z)= A(v — 1) (mod k — 1);

(3) for all z € G, deg(z)> AMv —1).

It was proved in the same paper that all leaves and excesses for k£ = 3 are
admissible, i.e. the necessary conditions are also sufficient.

2.2 Suflicient Conditions

One way to approach the question “sufficient conditions for a multigraph G to
be a leave(v, k, \) or excess(v, k, \)” > construct the Il spectrum of all possible
lecaves and excesses. The goal of this sistogi asmany as possible constructions
of leaves and excesses. Some of the constructions are from existing papers, some are
original work by the author.

Let C(v,3,)) be the number of blocks in a CD(v,3.A) and ®(v,3,)) be the
Schonheim lower bound. Let P(v,3, A) be the number of | cks in a PD(v, 3, A) and
U (v,3,A) be the Schonheim upper bound. Recall the following results.

Haggard [37], Hanani {40}, S° ‘on 1 R« [62]:
®(v,3,\)+1, v=A=2(mod 6);
®(v,3,\)+1, v 5 A=2 (mod 6);

O(v,3,A)+1, v=A 5 (mod 6);
d(v, 3, A), otherwise.

C(v,3,A) =

Note The cases of A = 1 were proved by Fort and Hedlund [35].
Hanani [40], Stanton, Rogers, Quinn and Cowan [63]:

Supervisor Dr N Shalaby ©Chao Zho
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A \
z\

\.,

Figure 7: Permutation (1734) on the leave(6,3,1).

Figure 8: From leave(6,3,1) to excess(6,3,1).

Supervisor Dr N Shalaby ©Chao Zhong
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Leave. By the same arithmetic as in Case 1, the leave(6i + 2,3,1) has 3¢ + 1
edges. Every vertex has degree 1 in the leave. So the leave is a 1-factor.

A construction by Stanton and Rogers [62]. Delete a vertex 1 and all its edges
from a BIBD(6i + 3,3, 1). The blocks not containing 1 form a PD(6i+ 2, 3, 1); those
containing 1 form a 1-factor, the lee  6i + 2,3, 1) (see Figure 9).

VAR

F ire 9: The leave(8,3,1).

Excess. By the same arithn ic as in Case 1, the excess(6i + 2,3,1) has 3: + 2
edges. Every vertex has an odd d ee in the excess. So there is a vertex of degree
3, and 6i + 1 vertices of degree 1. So the excess is a 3-star and a 1-factor.

A construction by Stanton and Ro; s [62]. Add a vertex 0 and blocks {0, 27, 2j +
1}, 7 = 1,2,..,3i, and {0,1,2} to a BIBD(6: + 1,3,1). The Schon] m bound
6% +4i + 1 is met and the repeated edges {1,2}{0,2}{2,3} (the 3-star), {2j,2j + 1},
Jj =2,...,3i (the 1-factor) form the excess(6i + 2,3,1) (see Figure 10).

2.34 Case 4: v=06i+3
There is a BIBD(6: + 3, 3,1).

Lemma 4. Wilson [69]: There exists a PBD(v,{3,5*},1) for allv 5 (mod 6),
where 5* means there is only one block of size 5.

Supervisor Dr N Shalaby ©Chao Zhong
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Figure 10: The excess(8,3,1).

2.3.5 Case 5: v==6i+4
The leave is a 3-star and a 1-factor (3'1%*%); also is the excess (3'1%+9).

Leave. By the same arithmetic, the leave(6: + 4,3, 1) has 3i + 3 edges. Every
vertex has an odd degree in the So there is a vertex of degree 3, and 6 + 3
vertices of degrec 1. So the leave is a 3-star and a 1-factor.

A coustruction by Stinson [66]. Suppose the block of size 5 in a PBD(67 +
5,{3,5%},1) is {1,2,3,4,5}. Delete the vertex 1 and all all its edges. Blocks containing
1 will be reduced to a 1-factor.

Remove block {2,3,4} from {1,2,3,4,5}, we obtain a 3-star {2,5}{3,5}{4,5}. The
leave is the 3-star and the 1-factor (see Figure 11).

Excess. By the same arithmetic, the exc  (6i 1,3,1) has 37 + 3 edges. Every
vertex has odd degree in the excess. So there is a vertex of degree 3, and 6: + 3
vertices of degree 1. So the excess is a 3-star and a 1-factor.

A construction by Stanton and Rogers [62]. Add vertex 0 and the blocks {0,1,2},
{0,25,25 + 1}, 5 = 1,2,...,3i + 1, to a BIBD(6i + 3,3,1). The Schonheim bound
61% + 81 + 3 is met, and the repeated edges {1,2}{0,2}{2,3} (the 3-star), {2j,2j + 1},
j=2,..3 +1 (the 1-factor) form the excess(6:i + 4, 3,1) (see Figure 12).

Supervisor Dr N Shalaby ©Chao Zhong
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7 . 10
6l ..o ln

Figure 11: From PBD(11,{3,5*},1) to PD(10,3,1).

Figure 12: From BIBD(9,3,1) to CD(10,3,1).
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2.3.6 Case 6: v=06i+5
The leave is a 4-cycle "~ °); the ex« ; is a double edge (2?).

Leave. By the same arithmetic, the leave(6: + 5,3,1) has at lcast one edge.
Every vertex has an even degree in the leave. Clearly one edge is not enough. So
the leave has at least four edges. There is no double edge since A = 1, so the leave
is a 4-cycle.

A construction by Stinson [66]. Suppose the block of size 5 in a PBD(6: +
5{3,5*},1) is {1,2,3,4,5}, it can be decomposed into blocks {1,2,3}, {1,4,5} and a
4-cycle [2,4,3,5]. The leave(6: + 5,3,1) is the 4-cycle (see Figure 13).

Figure 13: From Kj to two blocks and a 4-cycle.

Excess. By the same arithmetic, the excess(6¢ + 5,3, 1) has at least two edges.
Every vertex in the excess has an even d -ee, so the excess is a double edge.

A construction by Shalaby and Zho Suppose the leave(6i + 5,3, 1 is the 4-
cycle [2,3,4,5]. Add edges {2,4}, {2,4} to it, we obtain blocks {2,3,4}, {2,4,5}, and
the excess(6i + 5,3, 1) is the double edge {2,4}{2,4} (see Figure 14).

2.4 The cases of A\ =2
24.1 Case7: v==6;:
There is a BIBD(6i,3, 2).

Supervisor Dr N Shalaby ©Chao Zhong
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Figure 15: From leave(8, 3, 1)s to leave(8, 3, 2).

The rest of the two 1-factors yield new blocks as in Case 1 Excess.
The excess(6¢ + 2,3, 2) is the 4-cycle.

o2

Figure 16: From exce 8,3, 1)s to excess(8, 3,2), case (1).

(2) Assume that the two 3-stars are {1,2}{1,3}{1,4} and {1,4}{2,4}{3,4}, and
that the two excesses have edges {5,6}, {7,8}, {5.6}, {7,8}.

Similar to (1), those yield blocks {1,2,4}, {1,3,4} and two double edges {5,6}{5,6},
{7,8}{7,8}.

The rest of the two 1-factors yield new blocks as in Case 1 Excess.

The excess(6: + 2, 3, 2) is the double edges.

(3) Assume that one of the CD(6:+ 2, 3,1) has block {2,5,7}, and that the two 3-
stars are {1,3}{1,4}{1,5} and {1,2}{1,3}{1,4}, and that the two excesses have edges

3}, {6,7}, {56}, {7.8}.
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Those yield blocks {1,2,5}, {2,7,8}, {5,6,7} and two double edges {1,3}{1,3},
{1,4}{1,4} (the "00") (see Figure 17).

The rest of the two 1-factors yield new blocks as in Case 1 Excess.

The excess(6i + 2,3,2) is the "o00”.

Figure 17: From excess(8, 3, 1)s to excess(8, 3, 2), case (3).

Note A simpler way to construct the excess (1) and (3) by Shalaby and Zhong
as follows.

We know that the leave(6i + 2,3,2) is double ¢ say Ly = {1,2}{1,2}.

(1) Add the 4-cycle [1,3,2,4] to L;, we obtain blocks {1,2,3}, {1,2,4}. So the
excess(6t + 2, 3,2) is the 4-cycle.

(3) Add edges {1,3}, {1,3}, {2,3}, {2,3} to L,, we obtain blocks {1,2,3} (twice).
So the excess(67 + 2,3,2) is {1,3}{1,3}, {2,3}{2,3}.

Note When A ~ 8, the excess(6¢+2, 3, 8) can be a quadruple edge. A construction
by Shalaby and Zhong. We know that the excess(6i + 2,3,4) is a double edge (see
~ 1 21). Combine two such ¢ , ' can have a quadruple edge.

2.44 Case 10: v 6:+3

There is a BIBD(6: + 3, 3,2).

2.45 Case 11: v=06i+4
Tl e is a BIBD(6: + 4,3, 2).

©Chao Zhong
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2.4.6 Case 12: v=6i+5

The leave is a double edge (22); the excess is (1) a 4-cycle (2*), (2) two
independent double edges (2%), or (3) two adjacent double edges (an ”o0o”)
(2*4").

Leave. By the same arithmetic, the leave(6i + 5,3,! has at least two edges.
Every vertex has an even degree in the leave. So the leave is a double edge.

A construction by Shalaby and Zhong. We know that the leave(6i + 5,3,1) is a
4-cycle (see Case 6). Let L, = [1,2,3,4], L, = [1,2,4,3] be wo such leaves.

Combine L, and Lj, we obtain blocks {1,2,3}, {1,2,4}, and the leave(6: + 5, 3, 2)
is {3,4}{3,4} (see Figure 18).

Figure 18: From leave(11,3,1)s to leave(11, 3, 2).

Excess. By the same arithmetic, the excess(6i + 5, 3,2) has at least one edge.
Every vertex has an even degree in the excess. So the leave has at least four edges.
It can be (1) a 4-cycle, (2) two independent double ec s, (3) two adjacent double
edges or (4) a quadruple edge. Since ) 2, (4) is illegal here.

A construction by Shalaby and Zhor ~ We know that the leave(6¢-+5, 3, 2) (shown
above) or the excess(6i + 5,3, 1) is a double edge (sce Ca  6).

To construct (1), let the leave(6 + 5,3,2) be {1,2}{1,2}, add a 4-cycle [1,4,2,3]
to it, we obtain new blocks as in Case 6 Excess. So the excess(6i + 5,3, 2) is the
4-cycle.

To construct (2) or (3), combine two excess(6:-+5,3, 1)s, nonadjacent or adjacent,
respectively.

Note When A > 8, theexc (6 ,3,8)canbe juadruple edge. A construction
by Shalaby and Zhong. We know that the  ess(6i + 5,3,4) is a double edge (see
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2 .9
5. ‘.":‘. 6
1 L
7 8
4 3

Figure 19: From excess(8, 3, 1) and excess(8, 3, 2) to excess(8, 3, 3), case (1).

(2) Let E5 = {1,5}{1,5}{1,6}{1,6} (an "o0”).

Combine E, and Fj3, we obtain block {1,5,6}, and the excess(6i + 2,3,3) is
{1,2}{1,3}{1,4}{1,5}{1,6} (the 5-s ), {25+ 1,2j + 2}, j = 3,...,,3i (the 1-factor)
(see Figure 20).

Figure 20: From excess(8,3, 1) and excess(8, 3, 2) to excess(8, 3, 3), case (2).

(3) Let £y {5,7}{5,7}{5,8}{5,8} (an "o00").

Combine E; and E,, we obtain blo  {5,7,8}, and the excess(6i + 2,3,3) is
{1,2}{1,3}{1,4}, {5,6}{5,7}{5,8} (two 3-stars), {27 + 1,25 + 2}, 7 = 4,...,3i (the
1-factor) (see Figure 21).

(4) Let Es = {2,3}{2,3}{1,4}{1,4} (two double edges).

Combine E; and Es, we obtain blo {1,2,3}, and e excess(6i + 2,3,3) is
{1,4}{1,4}{1,1} (the triple edge), {2,3}, {27 + 1,25 + 2}, j = 2, ..., 3i (the 1-factor)
(see Figure 22).
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Figure 21: From excess(8,3,1) 1d excess(8, 3,2) to excess(8, 3, 3), case (3).

Figure 22: From excess(8,3,1) 1d excess(8,3,2) to excess(8, 3, 3), case (4).
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(5) Let Fg = {2,3}{2,3}{6,7}{6,7} (two double edges).

Combine F; and Fg, * obtain block {1,2,3}, and the excess(6: + 2,3,3) is
{5,6}{6,7}{6,7}{7,8} (the ”-0-"), {1,4}, {2,3}, {25 + 1,25 + 2}, j = 4,...,3i (the
1-factor) (see Figure 23).

Figure 23: From excess(8,3,1) and excess(8, 3,2) to excess(8, 3, 3), case (5).

Leave. By the same arithmetic, the leave(6: + 2,3,3) has 3i + 3 edges. Every
vertex has an odd degree in the leave. So there are two vertices of degree 3 or a
vertex of degree 5, and the others of degree 1. There are 5 possibilities as well.

A construction by Shalaby  ~ 7" 3. We know that the excess(6i+2, 3, 3) can be
two 3-stars and a 1-factor (she . Let By = {1,2}{1,3}{1,4}, {5,6}{5,7}{5,8}
(the two 3-stars), {6 — 3,65 — 2}, {65 — 1,65}, {6j + 1,65 + 2}, j = 2,...,7 (the
1-factor).

Add the 1-factor {65 — 2,65 — 1}, {65,65 + 1}, {6 + 2,65 — 3}, j = 2,...,i to
E\, we obtain blocks as in Case 1 Excess. So we have found the 1-factor of the
leave(6i + 2,3, 3).

For the rest part of the leave(6: + = 3,3):

(1) Add edges {1,5}{1,3}{1,6}{3,2}{3,4} (an "H"), {7,8} to the two 3-stars of
E), we obtain blocks {1,2,3}, {1,3,4}, {1,5,6}, {5,7,8}, and case (1) is realized (see
Figure 24).

(2) Add edges {3,2}{3,1}{3,4}{3,5}{3,6} (a 5-star), {7,8} to the two 3-stars of
E), we obtain blocks {1,2,3}, {1,3,4}, {3,5,6}, {5,7,8}, and case (2) is realized (see
Figure 25).

(3) Add e s - {4,2}{4,3}, {8,6}{8,7}{8,5} (two 3-stars) to the two 3-stars
of Fy, we obtain bl {1,2,3}, {1,2,4}, {5,6,8}, {5,7,8}, and case (3) is realized (see
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Figure 24: From excess(8, 3, 3) to leave(8, 3,3), case (1).

Figure 25: From excess(8, 3, 3) to leave(8, 3, 3), case (2).
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Figure 26).

Figure 26: From excess(8, 3, 3) to leave(8, 3, 3), case (3).

To construct case (4) or (5), we know that the leave(6i+ 2,3, 1) is a 1-factor (see
Case 3), and that the leave(6i + 2,3,2) is a double edge (see Case 9). Let L, =
{2/ - 1,25}, 5=1,..,3i+ 1.

Let Ly = {1,2}{1,2}, combine L, and L, case (4) is realized.

Let L, = {2,3}{2,3}, combine L, and L,, case (5) is realized.

2.5.4 Case 16: v =61+ 3
There is a BIBD(6: + 3,3, 3).

2.5.0 Case 17: v=6i+4
The leave and the exce i: :the. ne as when A =1 (Case 5).

A construction by Stanton and Rogers [62]. Since there is a BIBD(6i + 4, 3, 2),
the leave(67 + 4, 3, 3) and the excess(6i+ 4, 3, 3) are the same as the leave(6i+4,3,1)
and excess(6: + 4, 3, 1), respectively.

2.56 Case 18: v=6i+5
There is a BIBD(6: + 5,3, 3).
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2.6 The cases of A =4
2.6.1 Case 19: v==06:
There is a BIBD(6i, 3,4).

2.6.2 Case 20: v==6i+1
There is a BIBD(6: + 1, 3,4).

2.6.3 Case2l: v=6i+2

The leave is (1) a 4-cycle (2%), (2) a quadruple edge (4?), (3) two in-
dependent double edges (2¢), or (4) two adjacent >uble eC s (an ”cc0”)
(224'); the excess is a double ec : (22).

Leave. By the same arithinetic, the leave(6i + 2, 3, 4) has at least one edge. But
every vertex has an even degree in the leave. So the leave has at least four edges.
There are 4 possibilities as Hove.

A construction by Shalaby and Zhong. (1) We know that a leave(6: + 2, 3,3) can
be a ”-0-” and a 1-factor (see C : 15); and that a leave(6i + 2,3,1) is a 1-factor
(see Case 3).

Combine two such leaves. And let the ”-0-” be {1,2}{2,3}{2,3}{3,4}, and assume
we have {5,6}, {7,8}, {5,7}, {6,8} in the two leaves.

Those form blocks {1,2,3}, {2,3,4} and a 4-cycle [5,6,8,7] (see Figure 27).

The rest of the two 1-factors form new blocks as in Case 1 7 ¢« . Case (1) is
realized.
5 6
1.
7 8

Figure 27: From leave(8, 3,1) and leave(8, 3,3) to leave(8, 3,4), case (1).
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To construct case (2), (3) or (4), we know that the leave(6i + 2,3,2) is a double
edge (see Case 9). Combine two double edges, case (2), (3) or (4) is realized.

Excess. By the same arithmetic, the excess(6i + 2, 3,4) has at least two edges.
Every vertex has an even degree in the : i, so the excess is a double edge.

A construction by Shalaby and ~"iong. We know that the leave(6i + 2, 3,4) can
be a 4-cycle (shown above), we can use the same construction as in Case Excess.

2.6.4 Case 22: v =61+ 3
There is a BIBD(6: + 3, 3,4).

2.6.5 Case 23: v=6i+4
There is a BIBD(6i + 4, 3,4).

2.6.6 Case 24 v=61+5

The leave is (1) a 4-cycle (2!), (2) a quadruple edge (4?), (3) two in-
dependent double edges (24), or (4) two adjacent double edges (an ”00”)
(224'); the excess is a double lIge (2?).

Leave. By the same arithmetic, the leave(6i + 5, 3, 4) has at least one edge. But
every vertex has an even degree in the leave. So the leave has at least 4 edges. There
are 4 possibilities as above.

(1) A construction by Stanton and Rogers [62]. Since there is a BIBD(6:+5, 3, 3),
the leave(6i + 5,3,4) can be the same as the leave(6i + 5, 3, 1), a 4-cycle (see Case
6).

To construct case (2), (3) or (4), we know that the leave(6i + 5, 2,2) is a double
edge (sce Case 12). Combine two double edges, case (2), (3) or (4) is realized.

Excess. By the same arithmetic, the excess(6i + 5, 3, 4) has 2 edges. Every vertex
has an even degree in the excess, so the excess is a double edge.

A construction by Stanton and Rogers [62]. Since there is a BIBD(67 + 5, 3, 3),
the leave(6i + 5,3,4) can be the same as the leave(6i + 5,3, 1), a double edge (see
wuse 6).
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Figure 28: From leave(8, 3, 2) and leave(8, 3, 3) to leave(8, 3, 5).

The rest of the excess(6i + 2, 3, 3) remain in the excess(6i + 2,3, 5).

2

Figure 29: From excess(8, 3, 1) and excess(8, 3,4) > excess(8,3,5).

2.7 Case 28: v 6i+3
There is a BT D(6  3,3,5).

2.7.5 Case 29: v==6i+4
The leave and the excess are the same as when A =1 (Case 5).

A construction by Stanton and Rogers [62]. Since there is a BIBD(6: + 4, 3,4),
the leave(6i+ 4, 3,5) and the excess(6i+4, 3,5) are the same as the leave(6i+4, 3, 1)
and excess(6: +4,3,1),  pectively.
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276 Case30: v 6145

The leave and the exc a the same as when A = 2 (Case 12), except
that the excess can be a quadruple Ige (4?).

A construction by Stanton and Rogers [62]. Since there is a BIBD(6: + 5, 3, 3),
the leave(6i + 5, 3, 5) or the excess(6i + 5,3,5) is the same as the leave(6: + 5,3, 2)
or the excess(6i + 5, 3, 2), respectively.

Note that excess(6i + 5,3,5) can be a quadruple edge, since A = 5 > 4. Our
construction is to combine the excess(6i + 5, 3,1) and the excess(6i + 5,3, 4), which
are double edges (see Case 6 and Case 24).
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The Schonheim bound is satisfied and the triangles are the leave(124,4,1) (see
Figure 30).

Figure 30: Leave(12,4,1) case (1).

(2) 3¢ squares. A construction by Shalaby and Zhong.

We know that the excess(12i,4,1) is a 1-factor (shown below). Let E = {4, —
3,45 1}, {45 —2,45},5 1,..,3i.

Add the squares [4j 3,45 2,45 — 1,4j] to E, we obtain blocks {4j — 3,4j —
2,45 — 1,45}, 5 = L, ..., 3i.

So the leave(12i,4,1) is these sc  es (see Figure 31).

(3) When A > 7, we can have a more general constructionby Shalaby and Zhong.
Since there is a BIBD(121, 4, 3), the leave(12¢, 4, 7) can be the same as the leave(12z, 4, 4),
a (disjoint) union of even cycles (see Case 37).

Excess. By the same ari * 1ctic, the excess(12i,4,1) has 6i edges. Similar to
the leave, every vertex in the excess = degree 1 (mod 3), so the excess is a 1-factor.
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of degree 5 and other vertices with degree 2 (5%2'%) or (2) a graph with a
vertex of degree 8 and others of degree 2 (8!2!%+1),

Leave. By the same arithmetic, the leave(12i + 2,4,1) has 6: + 1 edges. Every
vertex has degree 1 (mod 3) in the leave. So the leave is a 1-factor.

A construction by Kreher and Stinson [44]. Lemma 6 gives a 4-GDD of type 2¢/2.
The blocks form the packing; the -oups of size 2 form the leave, a 1-factor.

Excess. By the same arithmetic, the excess(12:+2, 4, 1) has 12:+5 edges. Every
vertex has a degree 2 (mod 3) in the excess. There are 2 solutions as above.

(1) 4i — 1 triangles and a "Crown”. A construction by Stinson [65]. Take a
BIBD(12i + 1,4,1), add a new point 0 and new blocks {0 2,3}, {0,1,2,4}, {0,375 —
1,35,3j + 1}, j =2, .., 4i.

The excess is these repeated edges, the 47 — 1 triangles and a graph {1,2}{1,2}
{0,1}{0,2}{3,1}{3,2}{4,1} {4,2} (the ”Crown”) (see Figure 33).

Lo
6

Figure 33: Ex  3(14,4,1) case (1).
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(2) 3i — 1 squares and a Kg \ K4. A construction by Shalaby and Zhong. We
know that the leave(12¢ + 2,4, 1) is a 1-factor (shown above). Let L = {2j — 1, 2/},
j=1,..,6i+ 1.

Add the edges {1,3}{1,4}{2,3}{2,1}{3,4}{3,5}{3,6}{4,5}{4,6} (it’s in fact a A\
K,) to the edges {1,2}, {3,4}, {5,6}, we obtain blocks {1,2,3,4}, {3,4,5,6}.

Add the squares [4j — 1,45 + 1,47,4j + 2] to the rest of the 1-factor, we obtain
new blocks as in Case 1 Leave (2)..

So the excess(12i + 2,4, 1) is the squares and the Ky \ K, (sce Figure 34).

8 14
Figure 34: Excess(14,4,1) case (2)

Lemma 7. Kreher and Stinson [44): There exists a 4-GDD of type 6(“"19/615,
for all v = 3 (mod 6), v > 15.

3.34 Case d: v=12i+3

The leave is a 2-factor (2'#*?); the excess is a 1-factor and a 4-star
(41112i+2).

Leave. By the same arithmetic, the leave(12: + 3,4, 1) has 12i + 3 edges. Every
vertex has degree 2 (mod 3) in the leave. So the leave is a 2-factor.

(1) 4i + 1 triangles. A construction by Brouwer [27]. Delete a vertex 12i+ 4 from
a BIBD(12i + 4,4, 1). The blocks containing 127 + 4 reduce to 4i + 1 triangles, and
form the leave(12i + 3,4, 1) (see Figure 35).

(2) 3isqua and a _r Ac ction by Shalaby and o1 We  ow
that the excess(12: + 3,4,1) is a 1-factor and a 4-star (shown below). Let £ =
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Figure 35: Leave(15,4,1) case (1).
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2 7
0 Q
8 o o 10 12 4 o 14
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o o 1° °9 15° ° 13
4 6

Figure 37 An Excess(15,4,1)

3.3.6 Case 6: v=12i+5

The leave is a 1-factor and a 4-star (4!1!'%+%); the excess is (1) a graph
with two vertices of degree 5 and others of degree 2 (522!%*3), or (2) a
graph with a vertex of degree 8 and others of degree 2 (8!2!%+4),

Leave. By the same arithmetic, the leave(12i + 5, 4,1) has 6i + 4 edges. Every
vertex has degree 1 (mod 3) in the leave. So there is a vertex of degree 4 and others
of degree 1, and the leave is a 1-factor and an 4-star.

A construction by Brouwer [27]. Lemma 8 gives a 4-GDD of type 255!, «<cept
for v = 17. Suppose {1,2,3,4,5} is the unique group of size 5.

Take the blocks of the GDD, take the block {1,2,3,4} from the K5 and the K3\ K
gives the 4-star; the groups of size 2 form e 1-factor (see igure 38).

Excess. By the same arithmetic, the excess(12i + 5,4, 1) has has 12i + 8 edges.
Every vertex has degree 2 (inod 3) in the excess. There are two solutions as above.

(1) 4i triangles and a " Crown”. A const1  tion by Stinson [65]. Take a BIBD(12i+
4,4,1), add a new point 0 and new blo 3 {0,1,2,3}, {0,1,2,4}, {0,357 — 1,35,34 + 1},
=2, i 1.

The excess is the triangles and a graph {1,2}{1,2} {1,3} {2,3}{0,1}{0,2}{4,1}{4,2}
(the ”Crown”) (see Figure 39).

(2) 3i — 1 squares and a tria. e and a K \ A4. A construction by Shalaby and
Zhong. We know that the leave(12i+5,4, 1) is a 1-factor and a 4-star (shown above).
Let L = {45 — 3,45 — 2}, {45 — 1,45}, j  1,..,3i (the 1-factor), {12i + 2,12 +
TH120 4+ 2,120 + 3}{12: + 2, """+ 4}{12i + 2,12 + 5} (the 4-star).
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Conetruction of Leave: T s when k = 3,4

Leave. By the same arithmetic, the leave’ = +6,4,1) has 12 + 9 edgr  Every
vertex has degree 2 (mod 3) in tl re. There are solutions as above.

(1) 4i triangles and a Kg \ K. A construction by Brouwer [27]. Lemma 9 gives
a PBD(12:¢ + 7,{4,7*},1), except for v = 19. Suppose {1,2,3,4,5,6,7} is the unique
block of size 7.

Delete vertex 7, the blocks containing 7 become triangles; remove blo  {1,2,3,4}
from {1,2,3,4,5,6}, we obtain a Ky \ Kj.

So the leave(12i + 6,4, 1) is the 4/ triangles and the K¢ \ Ky (see Figure 41).

Note that this figure is for illustration only, since there is no PBD(19,{4,77},1).

8 10 18 17

Figure 41: Leave(18,4,1) case (1).

(2) 3¢ squares and a K \ K4. A construction by Sha »y and Zhong. We know
that the exc (127 + 6,4,1) is a 1-factor (shown below). We can use the same
construction as in Case 3 Excess (2).

©Chao Zhong
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Excess. By the samec arithmetic, the excess(12: + 7, 1) has at least 3 edges.
Every vertex has degree 0 (mod 3) in the excess. The excess is a triple edge.

A construction by Stinson [65]. Ler 1a 10 gives a PBD(12: + 7, {4,22*},1),
except for v = 7,19. Take the blocks of size 4 and replace the block of size 22 with
a CD(22,4,1) (the excess(22,4,1) is a triple edge, ven by Mills [46]).

3.3.9 Case 9: v=12i+8
The leave is a 1-factor (1!%+8); the excess is a 2-factor (2!%+8),

Leave. By the same arithmetic, the leave(12: + 8,4, 1) has 6i + 4 edges. Every
vertex has degree 1 (mod 3) in the leave. So the leave is a 1-factor.

A construction by Kreher and Stinson [44]. Lemma 6 gives a 4-GDD of type 2%/2,
except for v = 8. The blocks form the packing; the groups of size 2 form the leave,
a 1-factor.

Excess. By the same arithmetic, the excess(12i+8, 4, 1) has 12i+ 8 edges. Every
vertex has degree 2 (mod 3). The excess is a 2-factor.

(1) 31 + 2 squares. A construction by 1alaby and Zhong. We know that the
leave(12: + 8,4,1) is a 1-factor. We can use the same construction as in =~ @1
Leave 2.

So the excess(12: + 8,4, 1) is the squares.

(2) When X\ > 7, we can have a more g ‘:ral construction.

A construction by Shalaby and Zhong. Since there is a BIBD(12i + 8,4, 3), the
excess(12:+8,4,7) can be the same  the ‘ess(12:+8,4,4), a union of even cycles
(see Case 45).

3.3.10 Case 10: v=12{ +9

The leave is (1) a graph with two vertices of degree 5 and others of
degree 2 (5%2!%*7), or (2) a graph with a vertex of degree 8 and others of
degree 2 (8'2!%*%); the excess is a 1-factor and a 4-star (4'1'%+8),

” save. By the same arithmetic, the leave(12: ), 4, 1) has 12¢ + 12 edges. Every
vertex has degree 2 (mod 3) in the leave. There are 2 solutions as above.
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A construction by Shalaby and Zhong, 3i + 2 squares and a triangle. We know
that the leave(12¢ + 11,4,1) is a 1-factor and a 4-star (shown above). We can use
the same construction as in Case 4 Leave 2.

3.4 The casesof A 2

3.4.1 Case 13: v=12i
The leave is a 1-factor (1'%); the ex( s is a 2-factor (2'%).

Leave. The leave(12:,4,2) 1 5 6i edges. Every ver : has degree 1 (mod 3) in
it. So the leave is a 1-factor.

A construction by Shalaby and Zhong. We know that the leave(12i,4,1) can
be a union of squires (see Case 1). Let L, = [{j — 3,45 — 2,45 — 1,4y], let L, =
[4j — 3,45 —2,45,45 = 1], j = 1,..., 3i.

Add them up, we obtain new blocks {4j — 3,45 — 2,45 — 1,45}, j=1,...,3i and
the leave(12i,4, 2) is the 1-factor {1,2}, {3,4}, ..., {12¢ — 1, 12¢} (see Figure 43).

12 . Il

F 43: A leave(12,4,2).

Excess. The excess(12i,4,2) has 12i edges. Every vertex has degree 2 (1mod 3)
in it. So the excess is a 2-factor.

Union of even cycles. A construction by Shalaby and Zhong. We know that the
excess(12¢,4,1) is a 1-factor (see Case 1). Add two such 1-factors up, we obtain a
(disjoint) union of even cycles (see F 44).

Note that any union of even cycles is admissible, Figure 44 is just one possibility.
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1 2
o o 7 8
—— 11 12
6o’ e 3 s )
5 4 9 10

Figure 44: An excess(12,4,2).

3.4.2 Case 14: v 12i+1
There is a BIBD(12: + 1,4, 2).

3.4.3 Case 15: v =121+ 2

The leave is a 2-factor (2!%*2); the excess is (1) two vertices of degree
4 and others of degree 1 (4%21'%), or (2) a vertex of degree 7 and others of
degree 1 (7'1'%+1),

Leave. ..e leave(12: + 2,4,2) has 12i + 2 edges. A vertex has degree 2 (mod 3)
in it. So the leave is a 2-factor.

Union of even cycles. A construction by Shalaby and Zhong. We know that the
leave(12: + 2,4, 1) is a 1-factor (see Case 3). Add two such 1-factors up, we obtain
a union of even cycles as in Case 13 = cess.

Excess. The excess(12¢ + 2,4,2) has 6i + 1 edges. A vertex has degree 1 (mod
3) in it. There are two solutions as above.

(1) A 1-factor and a "Candy”. A construction by Shalaby and Zhong. We know
that the excess(12i + 2,4, 1) can be 3i — 1 squares and a Kg \ K, (sece Case 3).

Let By = {1,3}{1,4}{2,3}{2,4}{3,4}{3,5}{3,6}{4,5}{4,6} (the K¢\ K4), [7,8,9,10],
[11,12,13,14), (45 — 1,454,457 + 1,45 + 2], j = 4, ..., 37 (the squares);

Let E, = {7,9}{7,10}{8,9}{8,10}{9,10}{9,11}{9,12}{10,11}{10,12} (the K; \
Ky), [1,2,3,4], [5,6,13,14), [47 — 1,45, 45 + 2,45 + 1], j = 4, ..., 37 (the squares).

Combine E; and ™, the two K¢\ K4s and first four unares give blocks {1,2,3,4},
{3,4,5,6}, {7,89,10}, "~ 2 -aph{13,14}{13, {5,13}{11,13}{6 1}{12,14}
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Figure 47: A "Crown”.
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Figure 48: Extension of a ”Crown”.
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Figure 49).

. .gure 49: A "Hat”.

Extension. With the 1-factors of E| and FE,, the "Hat” can be extended into a
even paths and two odd paths betv | vertices 1 and 2, a odd cycle on 1 and another
odd cycle on 2.

(3) a graph {1,21{2,3}{1,3}{1,4}{4,5{1,5{1.6}{6,7 .7} {1,8}{8,9}{1.9} (a
"Windmill”).

Let the two 4-stars of E) and E, be {1,2}{1,3}{1,4} {1,5} and {1,6}{1,7}{1,8}{1,9},
and assume we have edges {6,7}, {8,9} in E), and edges {2,3}, {4,5} in E;. We can
have the "Windmill” (see Figure 50).

Figure 50: A ”Windmill”.

Extension. With the 1-factors of E), and E,, the "Windmill” can be extended
into four odd cycles on vertex 1.
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Figure 52: A leave(14,4,3).

w4cess. The excess(12i + 2,4, 3) has 3 edges. Every vertex has degree 0 (1nod
3) in it. So the excess is a triple edge.

Direct constructions are not found, but there is a recursive construction by Assaf

(6].

3.54 Case 28: v=12i+3
The leave is a triple edge (3%); also is the excess (3?).

Leave. The leave(12i + 3,4, 3) has at least 3 edges. Every vertex has degree 0
(mod 3) in it. So the leave is a triple edge.

Direct constructions are not found, but there exists a recursive construction by
Assaf [7].
Excess. The excess(12i + 3,4,3) has 3 edges. Every vertex has degree 0 (mod

3) in it. So the excess is a triple e

A construction by Shalaby ar * 7 ong. We know that = excess(12i + 3,4,1) is
a l-factor and a 4-star (see Case Take tliree such excesses and let the 4-stars be

(12H1,3H{1,4}{1,5}, {2142,3}{2,4}{2,5), {4,1}{1,2}{4,3}{4,5).
Those form blocks {1,2,3,4}, {1,2,4,5}. The 1-factors form new blocks and a
triple edge as in Case 27 Leave (  Figure 53).

3.5.5 Case 29: v=121+4
There is a B"7 7 (12 + 4,4, 3).

Supervisor Dr N Shalaby ©Chao Zhong







Constrietion of T.eavee and Fycesses when kb = 3,4 Paoe A8

A construction by Billington, Stanton and Stinson [23]. Lemma 9 gives a PBD(v,{4,7*},1),
except for v =19. Let {1,2,3,4,5,6,., be the unique block of size 7.

Take three copies of this block, and remove the blocks {1,2,3,6}, {1,2,4,6}, {1,2,5,7},
{1,3,4,7), {1,3,5,6}, {1,4,5,7}, {2,3,4,7}, {2,357}, {2,4,5,6} and {3,4,5,6} from
them. Also take the blocks of size 4 from the PBDs.

The leave is the edge {6,7} three times (see Figure 54).

Figure 54: A leave(7,4,3).

Excess. The excess(12i + 7,4, 3) has at least 3 edges. Every vertex has degree 0
(mod 3) in it. So the excess is a triple edge.

A construction by Assaf [6]. Since there is a BIBD(12i+ 7,4, 2), the excess(12i +
7,4, 3) is the same as the excess(12i + 7,4, , a triple edge (see Case 8).

3.5.9 Case 33: v=12/+38
There is a BIBD(12: + 8,4, 3).

3.5.10 Case 34: v=121+9
There is a BIBD(12i + 9, 4, 3).
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Figure 55: Leave(14,4,4) case 1.

S h 9 1013 .14

Figure . Leave(14,4,4) case 2.
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1 £ : 2
3 o .......... o 4
5 ° ° 6

Figure 58: A K\ K4 and a triplee .

Case 15). Take two such excesses and let the ”Candies” be 1,2}{1,2}{1,3}{1,4}{2,5}{2,6}
and {3,5}{3,5}{3,2}{3,4}{5,1}{5,6}.

Add them up, we have a new block {1,2,5,3} and a 6-cycle (1,4,3,5,6,2) (see Figure
59).

The two 1-factors form the union of even cycles as in Case 13 Excess.

F'—1re 59: Two C dies.

(4) When A > 10, we can have a more general construction.

A construction by Shalaby and ...ong. We know that e excess(12i + 2,4, 5) is
a 1-factor (see Case 51).

Combine two such leaves we can have a union of even cycles as in Case 13
Excess.
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Figure 61: A Mushroom.

(4) When A > 10, we can have a more general construction.

A construction by Shalaby and Zhong. We know that the excess(12i + 3,4, 5) is
a 1-factor and a 4-star (see Case 52).

Combine two such leaves we can have three constructions as in Case 16 Excess.

Excess. The excess(12i + 3,4,4) has 6¢ + 6 edges. Every vertex has degree 1
(mod 3). There are three solutions as above.

A construction by Shalaby and Zhong. We know that the excess(12i + 3,4,1) is
a 1-factor and a 4-star (see Case 4); and that the excess("~"+3,4, 3) is a triple edge

(see Case 28).

Combine two such exec s, :+ 1have many co. ructions similar to Case 39
Leave, except that we can also attached the triple edge to the 4-star, or use it to
connect the 4-star and an edge in t] 1-factor. These constructions can be denoted
as 1F X + 3.

For example, a 1-factor and a ”"Joker”. Add the triple edge to the star, we
obtain a graph {1,2}{1,2}{1,2}{1,4}{2,4} {3,4}{4,5} (a "Joker”) (see Figure 62),
plus the 1-factor from the excess(12i + 3,4, 1).

3.6.5 Case 41: v=12i+4
There is a BIBD(12i + 4,4, 4).

3.6.6 Case 42: v=121+5

The leave is a 1-factor and a 4-star (4'1'? ); the excess is (1) two
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(1) 4¢ triangles and a square and a double edge. A construction by Shalaby and
Zhong. We know that the . ve(12i+6,4, 1) can be a K¢\ K, and a union of triangles
(see Case 7); and that the leave(12i -+ 6,4, 3) is a triple edge (see Case 31).

Add the triple edge to the Kg \ K4, we have the same construction as in Case
39 Excess 2, except that the 37 squares are replaced by 4i triangles.

(2) 37 + 1 squares and a double edge. A construction by Shalaby and Zhong. We
know that the leave(12i + 6,4, 1) can be a K\ K4 and a union of squares (see Case
7); and that the leave(12: + 6,4, 3) is a triple edge (see Case 31).

Add the triple edge to the Kg \ K4, we have the same construction as in Case
39 Excess 2.

(3) Union of even cycles (containing a 6-cycle). A construction by Shalaby and
Zhong. We know that the leave(12i + 6,4, 2) can be a "Candy” and a 1 ctor (see

Case 19).
Add two such leaves up, we | e the same construction as in Case 39 Excess

3.

(4) When A > 10, we can have a more general construction.

A construction by Shalaby and _.ong. We know that the excess(12: + 6,4, 5) is
a 1-factor (see Case 54).

Combine two such leaves we can have a union of even cycles as in Case 13
Excess.

Excess. The leave(12i+ 6, 4,4) has 6i+6 edges. Every vertex has degree 1 (mod
3). There are two solutions as above.

A construction by Shalaby and Zhong. We know that the excess(12¢ + 6,4, 1} is
a 1-factor (see Case 7); and that the excess(12i + 6,4, 3) is a triple edge (see Case
31).

Add them up we can obtain the 1F + 3 as in Case 39 Leave.

3.6.8 Case 44: v =121+ 7
There is a BIBD(12i + 7,4, 4).

3.6.9 Case 45: v=12:+8

The leave is a 1-factor (1'%*8); the ex: s is a 2-factor (2'%+8).
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Leave. The leave(12i + 8,4, 4) has 6i + 4 edges. Every vertex has degree 1 (mod
3). So the leave is a 1-factor.

A construction by Billington, Stanton and Stinson [23]. Since there is a BIBD(12i+
8,4,3), the leave(12i + 8,4,4) is the same as the leave(12i + 8,4, 1) (see Case 9).

Excess. The leave(12i + 3,4,4) has 12i + 8 edges. Every vertex has degree 2
(mod 3). So the excess is a 2-factor.

Union of even cycles. A construction by Shalaby and Zhong. We know that the
excess(12: + 8,4,2) is a 1-factor (see Case 21). Add up two 1-factors, we can have
a union of even cycles as in C; : 13 Excess.

3.6.10 Case 46: v=12{+9

The leave is (1) two vertices of deg :5 and others of degree 2 (522!%+7),
or (2) a vertex of degree 8 and others of degree 2 (8'2!%*8); the excess is
a 1-factor and a 4-star (4!1'%%8),

Leave. The leave(12i + 9,4,4) 12¢ + 12 edges. Every vertex has degree 2
(mod 3). There are two solutio; as abo

A construction by Shalaby and Zhong. We know that the leave(12i + 9,4,2) is a
1-factor and a 4-star (see Case 22). 1d up two such leaves, we can obtain three
constructions as in C 213 = «

Note Another construction by / .f [7]. Since there is a BIBD(12: + 9,4, 3), the
leave(12: +9,4,4) can be the same as the leave(12:i+9,4,1), i.e. a K¢\ Ky and 4i+1
triangles; or a K¢ \ K and 3i squares and a triangle (see Case 10).

Excess. The excess(12i + 9,4,4) has 67 + 6 edges. Every vertex has degree 1
(mod 3). So the excess is a 1-factor and a 4-star.

A construction by Assaf [6]. Since there is a BIBD(12i+9,4, 3), the excess(12i -+
9,4,4) can be the same as the excess(12i + 9,4,1), i.e. a factor and a 4-star (see
Case 10).

3.6.11 Case 47: v=12:+10
- aere is a BIBD(12: + 10, 4,4).
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Union of even cycles. A construction by Shalaby and Zhong. Since there is a
BIBD(124,4,3), the excess(12,4,5) is the same as the excess(12i,4,2) (see Case
13).

3.7.2 Case 50: v=12i1+1
There is a BIBD(12i + 1,4, 5).

3.7.3 Case 51: v=12{+2

The leave is (1) two vertices of degree 5 and others of degree 2 (522!%),
or (2) a vertex of degree 8 and others of deg1 : 2 (8'2!%*!); the excess is
a 1-factor (1!%+?).

Leave. The leave(12i+2,4. 1 312i+5 edges. Every vertex has degree 2 (mod
3). There are two solutions as »ove.

A construction by Shalaby and Zhong. We know that the leave(12i + 2, 4,2) can
be an union of even cycles (see Case 15); and that the leave(12i + 2,4, 3) is a triple
edge (see Case 27).

Add the triple edge to a cycle, or use the triple edge to connect two cycles. Both
way we obtain two vertices of degree 5, the rest vertices are of degree 2. We denote
this construction by UCy + 3.

Excess. The excess(12: + 2,4,5) has 6i + 1 edges. Every vertex has degree 1
(mod 3). So the excess is a 1-factor.

A construction by Shalaby and Zhong (A = 11). We know that the excess(12i +
2,4,4) can be an union of squares and a 6-cycle (see Case 39); and that the
excess(127 + 2,4,3) is a triple ec : (see (e 27).
~ Take the excess(12i + 2,4, 3) and two copies of the excess(12: + 2,4,4). Let the
6-cycles be (1,2,4,6,5,3], [1,2,3,6,5,4], let the triple edge be {3,4} (three times).

Add them up, we obtain blocks {1,2,3,4}, {3,4,5,6} and edges {1,2}, {3,4}, {5,6}.
We also obtain the rest of the 1-factor from the squares as in Case 13 Leave (see
Figure 63).

Direct constructions for A = 5 are not found, but there exists a recursive con-
struction by Assaf [6].
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1 2
3 %ﬁ'_,_._‘_._j;, 4 7
5 % 6 8

Figure 63: An excess(14,4,11).

3.7.4 Case 52: v=12t1+3

The leave is a 1-factor and a 4-star (4'1'%%?); 1 e excess is a 2-factor
(212+43),

Leave. The leave(12i + 3,4, 5) has 6i + 3 edges. Every vertex has degree 1 (mod
3). So the leave is a 1-factor and a 4-star.

Direct constructions are not fc 1, but there exists a recursive construction by

Assaf [7].

Excess. The excess(12¢ + 3,4,5) has 127 + 3 edges. Every vertex has degree 2
(mod 3). So the excess is a 2-factor.

A triangle, a double edge and a union of even cycles. A construction by Shalaby
and Zhong. We know that the excess(12: + 3,4, 2) can be a "Crown” and an union
of even cycles (see Case 16); and that the excess(12i + 3,4, 3) is a triple edge (see
Case 28).

Add the triple edge to the "Crown”, we obtain a triangle and a double edge as
in Case 39 Excess (1) (see Figure 57), the union of even cycles remain in the
excess(12: + 3,4, 5).

3.7.5 Case 53: v=12i+4
There is a BIF ™ (121 + 4, 4, 5).
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15 qocciiiia 17

Figure 1 A leave(18,4,5).

Add the triple edge to a cycle, or use the triple edge to connect two cycles. We
obtain two constructions as in C se 51 Leave..

3.7.8 Case 56: v=12i+7
The leave is a triple edge (3?); Iso is the excess (3?).

Leave. The leave(12i + 7,4,5) has at least 3 edges. Every vertex has degree 0
(mod 3). So the leave is a triple edge.

A construction by Billington, Stanton and Stinson [23]. Since there is a BIBD(12:+
7,4,2), the leave(12i + 7,4,5) is the me ;the leave(12i +7,4,3) e C ;e 32).

Excess. the excess(12: + 7,4, 5) has at least 3 edges. Every vertex has degree 0
(mmod 3). So the excess is triple ec

A construction by Assaf [6]. Since there is a BIBD(12i + 7,4, 2), the excess(12i +
7,4,5) is the same as the excess(. +7,4,3) (see C: : 32).

3.79 Case 5T: v=12:+8

The leave is a 2-factor (2!%*8); the excess is a 1-factor (1!%*8).
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Excess. The excess(12i + 10,4, 5) has at least 3 edges. Every vertex has degree
0 (mod 3). So the excess is a triple edge.

A construction by Assaf [6]. Since there is a BIL..(12:+ 10,4, 2), the excess(12;+
10,4, 5) is the same as the excess(12¢ + 10,4, 3) (see Case 35).

3.7.12 Case 60: v =121+ 11

The leave is a 2-factor (2!2*!!); the excess is a 1-factor and a 4-star
(41112+10),

Leave. The leave(12i + 11,4, 5) has 12i + 11 edges. Every vertex has degree 2
(mod 3). So the leave is a 2-factor.

A triangle, a double edge and an union of even cycles. A construction by Shalaby
and Zhong. We know that the I €(12¢ + 11,4, 2) can be a "Crown” and a union
of even cycles (see Case 24); and that the leave(12¢ + 11,4, 3) is a triple edge (see

Case 36).
Add the triple edge to the "Crown”, we obtain the same construction as in Case

52 Excess.

Excess. The excess(12¢ + 11,4,5) has 6i + 7 edges. Every vertex has degree 1
(mod 3). So the excess is a 1-fact id a 4-star.

Direct constructions are not found, but there exists recursive construction by
Assaf [6).
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2. In some cases we can construct some particular (1) 5222, (2) 8!12*7! as leaves
and excesses on v vertices, but how to verify if an arbitrary (1) 522v~2, (2) 8!2v~!
can be constructed?

3. In some cases we can cor -u some particular (1) 421v72, (2) . 1"7! as leaves
and excesses on v vertices, but how to verify if  arbitrary (1) 421 °, (2) 7'1v"!
can be constructed?

4. In some cases we can construct some particular (1) 431*73, (2) 74'1v~!, (3)
10'1¥7! as leaves and excesses on v vertices, but how to verify if an arbitrary (1)
43173, (2) 7'4'1v71, (3) 10'1*7! can be constructed?

5. Can we find direct ¢« :ructions of the cases in the Incomplete Cases table?

6. Can we find complete tables of the Nuclear . esigns. The cases of k = 3 was
solved by Mendelsohn E., Shalaby N. and Shen H. [52]. The results of this thesis
provide a first step towards the - of £ 4.
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