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method are introduced. conventic 1 methods, such as the imerical
quadrature and t : FFT me )d are also described. The validation st lies for a
hemisphere, a Wigley hull and a Liquefied Natural Gas (LNG) carrier are
presented in Chapter 4. The response functions computed by the semi-analytical
method were con ared with those by the FFT method. Conclusions are drawn in

Chapter 5.
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For infinite water depth
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with

== )+ (y- ) (2.10)

and the first-order deep-wat.  spersion relationship is given as

K=a% @2.11)

where J, is the Bessel fun on of zeroth order.
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where A(w)and B(w) are the frequency-domain added mass and damping,

respectively. Both of them are six by six matrices. Comy ing the right-hand side

of Eq. (3.4) with that of Eq. (3.5) and applying the Euler transformation,

e =cosx+isin x,

the following re  onships can be obtained:

)= [ K ()cos (wr)dr (3.6)
4 (@)+~[K(z)sin(0r)dr (3.7)
a)(]
As seen from Eq. (3.6), B ) and K (r) are a cosine transform pair. Therefore,
K(r) canbe expressed in of B(w)
K (r)= ;TB(a))cos(a)r)da) (3.8)

0

Eq. (3.6) and Eq. (3.7) are ¢ of different forms of the Kramer-Kronig relations

relating A(w) and B(w)  cording to the work of Wehausen (1971) and
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Ormberg (2004). From | (3.7), it is easy to see that = A(e) and therefore
the time-domain added mass u 1is also referred to as the added mass at infinite

frequency.

In this work, the frequency-domain added mass A(w) and damping B(w) are

obtained by using the Motion Analysis Program Suite (MAPS) based on the

panel-free method. Then, ¢ ne-domain added mass x and response function
N

K (r) are calculated b: :  the Kramer-Kronig relations as given in Eq. (3.7)

and Eq. (3.8).

It should be noted that, ne-domain adde mass x should be a constant matrix

independent of @, even tt 1 the te s in the right-hand-side of Eq. (3.7) are

functions of @. This impc property of u is used to assess the quality of
A(w) and B(w),as well: the accuracy of the integration method used for the
evaluation of x4 and K(r). LetA(w), B(w)and K(r)be the approximation

toA{w), B(w) and K(r), pectively,

k(- mm[IB’(a))cos(wr)dw] (3.9)

where num[jé(w)cos(wr) uj repres s a numerical evaluation of the
0
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The contribution to the respor : function on the sub-domain (w,.®,, ) can then
be expressed as
AK,(7)= J (B + Pw)cos(wr)dw=FJ +PJ, (3.19)
where
I | cos(wr)dew (3.20)
And J. J wco: 7)dw. (3.21)

The analytically results for e integrals in Eq. (3.20) and Eq. (3.21) can be

easily obtained as

J, = l(sin (@,,,7)-sin(®,7)) (3.22)

n+l
T

" n+l

1 -, sin(a)"‘r)+l(cos(a) r)—cos(a),,r))). (3.23)

1 .
and J,==|aw,sin(® »
7 T

The contribution on (@,,,,0) can also be accounted. Since B(w)

should vanishas @ =,it 1 be approximated with an exponentially decaying

function as
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B(w)=~ ae o) (3.24)

where B is a positive number in order for B(w) to vanishas w—e. « and
B are determined so that B(w) and its st derivative re continuous at a,,,,

in which case

a B(wy,) (3.25)

1 dR(m. )

B . (3.26)

Blwy, ) dw

The first derivative can be approximated by using finite differencing.

dw

The contribution from range  v,,,,°2) can be then expressed by

AK™(7)= j )cos(a)r)da):aj e ) cos(wr)dw

Wy Wy

(I)N+Iz') —rsin{m. lz‘)

— 3.
For (3.27)

The semi-analytical method can also be used to evaluate the radiation damping

B(w) and time-domain ac mass 4 (the integrals in Eq. (3.6) and Eq. (3.7))

by sim; /swap] gtherolesof @ and 7.
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response functions from the frequency-domain solutions with those from the
direct time-don n soluti (Qiu, 2001) for a floating hemisphere, a
Wigley-hull ship in water of infinite depth. The accuracy of the method is also
illustrated by comparing the recovered added mass and damping coefficients

with the original ones.
The significant ¢ ‘iciency ¢ | accuracy of the semi-analytical method for the
complicated geo etry is er demonstrated by its application to an LNG

carrier.

The semi-analytical methc 1 computing response functions can be integrated

into the ship motion pr the time domain for real-time simula H>ns.
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