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Abstract 

Based on the Kramer-Kronig relations, the frequency-domain added mass and 

damping coefficients are transformed to the time-domain added mass and response 

function by applying a semi-analytical method (Cao, 2008) which has significant 

improvement over the conventional methods, such as the Fast Fourier Transform 

(FFT) method. In this thesis, with the assumption of infinite depth water, heave 

added mass and damping coefficients of a floating hemisphere, a Wigley hull and 

a Liquefied Natural Gas (LNG) carrier have been computed by using the Motion 

Analysis Program Suite (MAPS), a program based on the panel-free method for 

the accurate computation of wave-body interactions in the frequency-domain. 

Validation studies are presented by comparing the response function based on the 

frequency-domain solutions by a semi-analytical method with the solutions of Qiu 

(2001). The accuracy of the method is also demonstrated by comparing the 

recovery of added mass and damping based on the computed response functions. 
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Chapter 1 

Introduction 

1.1 Response Function 

Accurate computation of motions of a floating structure or a ship is very 

important to real-time simulation in marine applications. Currently, the linear 

radiation-diffraction theory is widely employed in computing the wave induced 

load on the structure. It is time-consuming to directly solve the boundary-value 

problem of the radiation and diffraction problems in the time domain, especially 

for a long-time simulation on a personal computer. Thus, this method is not 

desirable for real time simulations. 

The impulse response function method, developed by Cummins (1962), 

introduced an effective way to solve this problem. Based on the linear radiation­

diffraction theory, the wave load can be expressed in terms of hydrodynamic 

coefficients, such as the wave excitation forces, added mass and damping 

coefficients. The geometry of the underwater portion of the structure, the mode 

of motion and the frequency of the wave are the parameters influencing these 

hydrodynamic coefficients. For a given hull, the hydrodynamic coefficients need 
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only to be calculated once, and the results can then be stored as a database. The 

database includes the wave excitation force transfer functions and the 

second-order wave drift force transfer functions for carefully selected wave 

frequencies and directions and the added mass and radiation damping 

coefficients for the six degrees of freedom of motion. With the employment of 

the database, the wave loads on the structure undergoing six degrees of freedom 

of motion can be calculated repeatedly in various environmental conditions in 

either the frequency-domain or the time-domain calculations. The response 

function, which is also called the retardation function, is desired m the 

calculation of the corresponding radiation/diffraction wave load m the 

time-domain. 

The concept of the direct time-domain solution is based on the early work of 

Finkelstein (1957), Stoker (1957) and Wehausen and Laitone (1960). In the work 

of Cong, et al. (1998) and Qiu (2001), the response function is determined by 

solving an integral equation directly in the time-domain at each time step. To 

enhance the capability of the combined formulation, a pseudo-nonlinear scheme 

was developed by Qiu et al. (2001). In that work, varied hydrodynamic 

coefficients for various waterlines were considered. The time-domain added 

mass, damping and restoring force coefficients were pre-computed for various 

wetted surfaces by choosing hull attitudes. When the wetted surface of the hull 

varies during the time-domain computation, these coefficients are interpolated at 

the instantaneous wetted surface at each time interval. This method showed 
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promising improvements for motion prediction, particularly for roll. However, 

panelizing the hull for various positions required additional efforts. 

Another approach to compute the response function is to solve the problem 

indirectly base on the frequency-domain solution. The added mass and damping 

coefficients, together with the time-domain added mass and the response 

function, are related through the Kramer-Kronig relations over the entire 

frequency range. For a floating structure which has general geometry, it is 

usually easier to obtain the added mass and damping coefficients in the 

frequency domain. 

1.2 The Computation of Added Mass and Damping 

Coefficients 

The panel method has been widely used to calculate the velocity and force 

distribution along the surface of a ship and offshore structure's under water 

portion. Hess and Smith (1964) first developed the panel method in which the 

geometry of the hull was divided into flat panels. All the panels on the hull 

influence each other and all the influences are collected in a matrix. In addition, 

a flow condition, which must be satisfied by the induced velocities, is defined on 

the underwater portion of the hull surface. 
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A panel-free method has been developed by Qiu and Hsiung (2001) and Qiu et 

al. (2006). They have first applied the panel-free method to wave interactions 

with bodies in the time domain and then in the frequency domain. In their studies, 

the singularity which is caused by the Rankine term in the Green function was 

removed and the desingularized integral equations were first developed. The 

Non-Uniform Rational B-Splines (NURBS) were employed to represent the 

exact body surface mathematically. The conventional integral equations were 

then discretized over the hull surface by the use of Gaussian quadrature. The 

results of the panel-free method have been demonstrated by its applications to 

simple geometry bodies such as submerged spheres, hemispheres, vertically 

floating cylinders and Wigley hulls. In this work, the Motion Analysis Program 

Suite (MAPS), based on the panel-free method, is employed to compute the 

added mass and damping coefficients in the frequency domain. 

1.3 The Computation of Response Function from Frequency­

Domain Results 

The added mass and damping coefficients can be transformed to the 

time-domain added mass and response function according to the Kramer-Kronig 

relations. Conventional numerical quadrature can be employed to evaluate the 

integrals over the sub-domains. However, numerical quadrature is likely to give 

inaccurate and unreliable results due to the nature of the method. Moreover, 
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great computational efforts are required by the higher-order quadratures. The 

response function can also be obtained by employing the Fast Fourier Transform 

(FFT) method which can overcome the disadvantages of conventional quadrature. 

However, the FFT method will also have high computational cost. A highly 

accurate semi-analytical integration method was introduced by Cao (2008) to 

evaluate the integrals for the time-domain added mass and response functions . 

Since this method does not suffer the numerical difficulties and high 

computational costs, it has significant improvements over the conventional 

method and the FFT method. 

1.4 Thesis Contents 

The purpose of the thesis is to develop an efficient numerical tool to calculate the 

time-domain response functions of ships based on the frequency-domain added 

mass and damping coefficient. Based on the Kramer-Kronig relations, the 

time-domain response functions are obtained by transforming the 

frequency-domain added mass and damping coefficients using a semi-analytical 

method (Cao, 2008). A computer program, Motion Analysis Program Suite 

(MAPS) based on the panel-free method, was employed to compute the 

frequency-domain added mass and damping coefficients. 

In this thesis, the theoretical background of the panel-free method is presented in 

Chapter 2. Chapter 3 describes an improved transformation method for the 

response function computation. The mathematical formulation and the numerical 
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method are introduced. The conventional methods, such as the numerical 

quadrature and the FFT method are also described. The validation studies for a 

hemisphere, a Wigley hull and a Liquefied Natural Gas (LNG) carrier are 

presented in Chapter 4. The response functions computed by the semi-analytical 

method were compared with those by the FFT method. Conclusions are drawn in 

Chapter 5. 
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Chapter 2 

The Panel-Free Method for Frequency 

Domain Computation 

The MAPS has been developed by Qiu et al. (2006) based on the panel-free 

method for the accurate computation of wave-body interactions in the frequency 

domain. In the panel-free method developed by Qiu (2001) and Qiu et al. (2006), 

modified nonsingular integral equations were first developed. The Gaussian 

points were distributed over the exact body surface, and also were automatically 

distributed on the interior free surface. In comparison with panel method, the 

advantages of panel-free method have been shown to be: 

a) Less numerical manipulation, since panelization of a hull surface is no longer 

needed. 

b) Greater accuracy, since the assumption for the degree of approximation of 

source strength distribution which made in the panel method is not needed 

and the surface geometry can be mathematically described. 

c) The integral equation is desingularized before it is discretized so that 

Gaussian quadrature can be applied directly and globally. In the panel method, 

the singularity remains in the discretized integral equation and Gaussian 
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,--------------------------

quadrature cannot be applied directly over the body surface. 

d) The Gaussian quadrature points, and their respective Jacobian and normals 

on the surface can be accurately computed based on the NURBS expression; 

The NURBS surface can be obtained directly from commercial computer 

aided design packages. 

e) The accuracy of the solution can be easily controlled by changing the number 

and/or the arrangement of Gaussian quadrature points. 

The theoretical background of the panel-free method IS summarized m the 

following sections. 

2.1 Mathematical Formulation 

A Cartesian coordinate system 0-xyz, as shown in Fig 2-1, is employed to 

compute the wave interaction with a floating structure at zero speed. The mean 

wetted surface is denoted by Sb. The oxy plane is on the plane with z = 0 

which represents the undisturbed water surface. The z -axis is positive upward. 
z 

X 

Fig 2-1 Coordinate system 
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Incident waves with a radial frequency w, spread with an angle j3 to the x-axis. 

The velocity potential at a field point P(x, y, z) in the fluid domain Q satisfies 

the Laplace equation and the linearized free surface boundary condition on 

z =0. 

a¢- ol ¢=0 
az g ' 

on z= O 

a¢ =V 
an II 

on sb (2.1) 

V¢~0 as R1 ~=,on z= O 

V¢~ 0 as z~-oo 

where Sb is the wetted surface of a body in the equilibrium position, V,, is the 

normal velocity, g is the acceleration of gravity. The velocity potential can be 

decomposed as 

¢ ( P) = ¢R ( P) + ¢o ( P) + ¢, ( P) (2.2) 

where ¢R, ¢0 and ¢, are the radiation, diffraction and incident wave velocity 

potential, respectively. For a rigid body with six degrees of freedom, the 
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radiation potential can be expressed as 

6 

¢R (P) = -iwL~k¢k (2.3) 
k : l 

where ~k is the complex amplitude of the body motion in the k th mode. 

Introducing tA = ¢0 the radiation and the diffraction potentials can be calculated 

by solving the desingularized integral equations as follows (Qiu et al. , 2006): 

+f a k (Q)GF (P,Q)dS 
Sb 

k = 1, 2, 3, ... , 7 (2.4) 

where Q ( x', y', z') is the source point, O'k is the source strength, r(P) is the 

source distribution on the body wetted surface Sb, and ¢0 is equipotential due 

to r( P) . The solution of ¢0 can be found in Qiu and Hsiung (2002) and the 

solution of O'k can be solved from the following equation (Qiu et al., 2006): 

f aGF (P,Q) ( ) + O'k Q dS 
Sb an p 

(2.5) 

where 
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G0 (P,Q)=-- -+- , 1 ( 1 1) 
4.n r 'i 

(2.6) 

r = )( x- x')2 + ( y- y')2 + ( z - z')2 
, (2.7) 

and (2.8) 

For infinite water depth 

G F ( P' Q) = - 2~ fo~ ,U ~ K e,u(z+z') 10 (,uR')d ,U- i ~ KeK (z+z') ] 0 ( KR') 

(2.9) 

with 

(2.10) 

and the first-order deep-water dispersion relationship is given as 

(2.11) 

where 10 is the Bessel function of zeroth order. 

11 



A modified non-singular integral equation was also developed by Qiu et al. 

(2005) to remove the effects of irregular frequencies. The body boundary 

condition on the interior free surface is 

for P ES; (2.12) 

where the nP is the normal vector pointing into the interior free surface. 

The velocity potential on the body surface Sb can be computed by 

(2.13) 

Using Gaussian quadrature with the Gaussian point as the collocation point, the 

desingularized integral equations can be discretized over exact surfaces, Sb and 

2.2 Geometry Representation 

Since the desingularized integral equations can be discretized over exact 

12 



geometry by applying Gaussian quadrature, accurately computing coordinates, 

normals and J acobians of Gaussian points becomes the next important task. 

Non-uniform rational B-Splines (NURBS) are employed to describe the 

geometry of the body surface mathematically. 

Non-uniform rational B-Splines (NURBS) have become the preferred method in 

body surface constructions. The widespread acceptance and popularity of 

NURBS has resulted from the fact that they provide a common mathematical 

form for the precise representation of standard analytical shapes, such as conics, 

circles, line, and quadratic surfaces, as well as free-form curves and surfaces. 

NURBS offer extra degrees of freedom to generate a large variety of shapes. The 

method's intrinsic characteristics of local control and low memory requirement, 

coupled with a stable and efficient generating algorithm, make it a powerful 

geometric tool for surface description, especially for complicated body 

geometry. 

In the work of Qiu (2001) and Qiu et al. (2006), it is assumed that N P patches 

are adopted to describe a body surface. For example, for a ship with a flat 

transom, two patches could be used to represent the hull surface, one for the 

main hull and another one for the transom. Each patch can be described by a 

NURBS surface. Assume that P(x(u, v), y(u, v), z (u, v )) is a point on a NURBS 

surface, where x, y and z denote the Cartesian coordinates, and u and v 

13 



are two parameters for the surface definition. On the NURBS surface, P ( u, v) 

can be defined as 

n m ""we .N (u)N (v) ~ ~ I} 1,) l.p 1,(/ 

p ( U, V) = _i =_O n-'-J=_On_l ------- (2.14) 

""wN (u)N (v) ~~ I) 1,p j,(j 

i=O }=0 

where w;1 are the weights; the C; ,J form a network of control points; and 

N;,p ( u) and N1.q ( v) are the normalized B-Spline basis functions of degrees p 

and q in the u- and v- directions, respectively. 

Then the unit normal vector can be obtained from 

(2.15) 

Introducing a computational space rs which is from -1 to 1, the Gaussian 

quadrature points are then arranged in the rs space. The mapping relationship 

of the computational space rs , the parametric space uv and the physical space 

xyz is illustrated in Figure 2-2. 
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.---------------------------------------------------------------- --

-1 

"' "' 
0 

"' "' 

Computational space 
(r s-plane) 

r 

v 

o' 

"' 

"' "' 

Parametric space 
(uv-plane) 

u 

z 

o" 

y 

Physical space 
(xyz-plane) 

X 

Fig 2-2 Mapping relationship for the computational space, the parametric 
space and the physical space (Qiu, 2001) 
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Chapter 3 

Improved Transformation Method for 

Response Function Computation 

3.1 Mathematical Formulation 

With the assumptions of the potential flow, absence of a current, linear waves and 

linear motions of the structure, the wave load acting on the hull of a floating body 

can be expressed by the superposition of the wave exciting force and the radiation 

force as (Cao, 2008): 

F (t) = F(w) (t )+ F (r) (t) (3.1) 

where F (t) is a time (t) dependent vector with six components. The first three 

are the forces along the coordinate axes and the other three are the forces about 

the coordinate axes. The wave exciting force F (w) ( t) which acts on the hull is 

caused by incident waves. The radiation load on the hull F(r) ( t) is caused by 

the motions of the hull in the absence of the incident waves and can be expressed 

as 

16 



~ 

p(r)(t)=-,ux(t)-f K(r)x(t-r)dr (3.2) 
0 

where x(t), x(t-r) and x(t) are the motion, velocity and acceleration of the 

hull, respectively, ,u is the time-domain added mass, a six by six constant 

matrix, and K ( r) is also a six by six matrix dependent on time r and is called 

response function (or retardation function). For a steady harmonic motion of the 

hull with frequency cv, the motion vector can be expressed in complex form as 

X ( t) = Xe - iax (3.3) 

where X is the motion amplitude of the hull. Substituting Eq. (3.3) into Eq. 

(3.2), we have 

(3.4) 

According to the work of Cao (2008), p(r) ( t) can also be expressed in the 

following form 

p(r) (t) = ( cv2 A( cv)+ icvB( w)) Xe-i(J}t (3.5) 

17 



where A ( cv) and B ( cv) are the frequency-domain added mass and damping, 

respectively. Both of them are six by six matrices. Comparing the right-hand side 

ofEq. (3.4) with that ofEq. (3.5) and applying the Euler transformation, 

ix · · e = cos x + z sm x , 

the following relationships can be obtained: 

~ 

B(w) = J K (r)cos(wr)dr (3.6) 
0 

1 ~ 
fL = A ( W) +-f K ( T) sin ( CVT) d T 

(()0 

(3.7) 

As seen from Eq. (3. 6), B ( cv) and K ( r) are a cosine transform pair. Therefore, 

K ( r) can be expressed in terms of B ( w) 

2 ~ 

K ( T) = - f 8 ( W) cos ( WT) d W 
1! 0 

(3.8) 

Eq. (3.6) and Eq. (3.7) are one of different forms of the Kramer-Kronig relations 

relating A ( cv) and B ( w) according to the work of Wehausen (1971) and 
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Onnberg (2004). From Eq. (3.7), it is easy to see that .u =A( oo) and therefore 

the time-domain added mass .u is also referred to as the added mass at infinite 

frequency. 

In this work, the frequency-domain added mass A ( w) and damping B ( w) are 

obtained by using the Motion Analysis Program Suite (MAPS) based on the 

panel-free method. Then, the time-domain added mass ,u and response function 

K(r) are calculated base on the Kramer-Kronig relations as given in Eq. (3.7) 

and Eq. (3.8). 

It should be noted that, time-domain added mass .u should be a constant matrix 

independent of m, even though the terms in the right-hand-side of Eq. (3.7) are 

functions of m. This important property of .u is used to assess the quality of 

A ( w) and B ( m) , as well as the accuracy of the integration method used for the 

evaluation of ,u and K ( r) . Let A ( m) , B ( w) and K ( r) be the approximation 

to A ( m) , B ( m) and K ( r) , respectively, 

(3.9) 

where num ([ B ( w) cos ( un-) d w) represents a numerical evaluation of the 
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~ 

integral J B ( w) cos ( wr) d w. Introducing j1 as the approximation to 11 , then 
0 

(3.10) 

As discussed before, 11 should be a constant matrix independent of w . 

However, the values of Jl( w) will vary with w because of numerical errors. 

For a practical time-domain calculation, an averaged value "[!, derived from 

j1 ( w) is usually used. In this study, the averaged value which minimizes the 

least square difference was chosen, 

tV max 

£= J (fl(w)-"fif dw. (3.11) 
0 

In the perfect situation of £ = 0, j1 ( w) is independent of w , i.e. j1 ( w) = "[!,. 

Therefore, £ can be used to measure the scattering of j1 ( w) , and the quality of 

A ( w) and B ( w) , as well as "[!, and K ( r) . 

3.2 Numerical Method 

For the integrals in Eq. (3.8), the entire frequency range (0,=) is first divided 
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into a series of sub-domains. Eq. (3.8) are expressed in terms of the sum of 

integrals over N+ 1 sub-domains ( cu,,, cu,,+1 ) and ( cvN+P oo) ( n = 1, 2, ... , N). Then, 

the integrals over the sub-domains are approximated by summing 

N 

K ( '() ::: L M, ( '() + M~ ( '() (3.12) 
n- 1 

where 

(3.13) 

(3.14) 

In most engineering practice, a large number of sub-domains is used, and the 

radiation damping B ( cv) of the sub-domain ( {J)N+l , oo) is sufficiently small, so 

the contribution from ( {J)N+l , oo) is usually ignored. 

The integrals in Eq. (3.6) and Eq. (3.7) can be evaluated in a similar way by 

swapping the roles of cv and -r . Three numerical integration methods are 

discussed below. 

2 1 



3.2.1 Numerical quadratures 

A conventional numerical quadrature can be employed to evaluate the integrals 

over the sub-domains as 

M 

f).Kn ( -r) = L w,B( {t)n ,m )cos ( w,,,.-r) (3.15) 
m=l 

where wn.m is the m'" evaluation points of the numerical quadrature for the 

n'" segment, w,. is the weight corresponding to the evaluation point and M is 

the number of evaluation points for the n'" segment. The values of the added 

mass and damping, A ( w) and B ( w) are needed at the evaluation points. 

Similarly, the integral in Eq. (3.10) or Eq. (3.7), can be evaluated using the same 

numerical quadrature, 

(3.16) 

where L is the number of time steps. Because of the nature of the sine and 

cosine functions, the kernels in the above integrals are highly oscillatory for 

large values of w or T. Numerical quadrature is likely to give inaccurate and 
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unreliable results, especially for large intervals and the wide variation of values 

of the integrals. Higher-order quadratures can overcome the problem in some 

degree, however it requires the computation of A ( w) and B ( w) at a very 

large nwnber of frequencies and results in a high computational cost. 

3.2.2 Fast Fourier Transform 

As seen in Eq. (3. 8), K ( r) is the real part of the Fourier transform of B ( w) . 

Therefore, the numerical result of K (-.) can be obtained by employing the Fast 

Fourier Transform (FFT). The FFT method can overcome the disadvantages of 

the quadratures, such as the numerical difficulties and the inaccuracy. However, 

the FFT method requires the frequency discretization to be a uniform spacing 

which must be smaller than the sampling frequency in order to capture and 

transform the complete characteristics of A ( w) and B ( w) . Since the number 

of frequencies is large, the FFT method will have a high computational cost. 

In addition, there is a further difficulty with the FFT. To obtain convergent 

results, the inverse Fourier transform has to be cut off at a certain frequency. The 

appropriate cut-off frequency for a given mode varies for different hull forms 

and forward speeds, and can only be determined by numerical experiments. 
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3.2.3 Semi-analytical method 

A semi-analytical method is introduced by Cao (2008) to accurately evaluate the 

integrals. This technique does not suffer the numerical difficulties and high 

computational costs of numerical quadrature and FFT methods. It does not 

require the frequency discretization to be uniform. This significantly reduces the 

number of frequencies which are needed to compute A( m) and B( w), and thus 

greatly enhances the computational efficiency. 

Observation has shown that, compared with B ( w) cos (an), B ( w) is a relatively 

slow varying function of w over the entire frequency range. To numerically 

approximate the slow varying function B ( w) is easier and better than 

approximating the highly oscillatory function B ( w) cos (an) . Instead of 

approximating the whole integrand B ( w) cos (an) with a polynomial m 

numerical quadrature, the semi-analytical method approximates B ( w) with a 

linear function within sub-domain ( w,,, w,,+, ) by 

(3.17) 

where 

(3.18) 
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The contribution to the response function on the sub-domain ( w,, w,+1 ) can then 

be expressed as 

m,.+J 

M,(-r)z; f (~+~w)cos((J)'f)dw=lV1 + ~12 (3.19) 
w, 

where 

w,+J 

11 = J cos(wr)dw (3.20) 

to,+ I 

And 12 = J wcos(wr)dw. (3.21) 

The analytically results for the integrals in Eq. (3.20) and Eq. (3.21) can be 

easily obtained as 

(3.22) 

and (3.23) 

The contribution on range ( w N+P oo) can also be accounted. Since B ( w) 

should vanish as w ~ oo, it can be approximated with an exponentially decaying 

function as 
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(3.24) 

where j3 isapositivenumberinorderfor .B(w) tovanishas W -7 00 • a and 

f3 are determined so that B ( w) and its first derivative are continuous at wN+t , 

in which case 

(3.25) 

(3.26) 

The first derivative dB ( wN+t ) can be approximated by using finite differencing. 
dw 

The contribution from range ( wN+t, oo) can be then expressed by 

~ ~ 

~K~ ( -r) = J B ( w) cos ( {l)'Z") dw "'" a J e - fJ(w- (tJN,,) cos ( {l)'Z") dw 

(3.27) 

The semi-analytical method can also be used to evaluate the radiation damping 

B ( w) and time-domain added mass p (the integrals in Eq. (3.6) and Eq. (3.7)) 

by simply swapping the roles of w and -r. 
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3.2.4 Accuracy check of the integration method 

Since B(m) and K(r) are a transform pair in Eq. (3.6) and Eq. (3.8), these 

equations can be used to check the accuracy of the numerical integration. The 

response function k(r) is computed first. Then, Eq. (3.7) and Eq. (3.6) are 

used to calculate the approximation of time-domain added mass j1 ( m) and the 

reconstructed damping .B(cv,,). According to Cao's work (2008), the error 

criterion to assess the quantity of j1 ( m) is given as 

(3.28) 

The smaller £ is, the closer j1 ( m) is to the constant j1. 

The relative least-squared difference between B ( m,) and B (co,,), which used 

to measure the closeness, is given as 

o = 7' ( 8 ( m) - .B ( m)) 
2 

d mj"'r ( .B ( m) f d m. 
0 0 

(3 .29) 

The closer B ( mn) is to B ( m,), the better the accuracy of the integration. 
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In addition, the time-domain added mass f.1 should be a constant matrix which 

is independent of (1) even though the individual terms in the right-hand-side of 

Eq. (3.7) are functions of OJ. 

The calculation procedure is summarized as follows: 

1) Compute added mass A (OJ) and damping B (OJ) by using MAPS at a set of 

frequencies . 

2) Calculate the retardation functions K ( r) , the time-domain added mass 

J1( OJ) and its average Ji by the semi-analytical method. 

3) Reconstruct the added mass and radiation damping using the Kramer-Kronig 

relations, 

A(OJ) =Ji-_!_ j K(r)sin(OJr)dr 
OJ O 

(3.30) 

B(OJ) = J K(r)cos(OJr)dr (3.31) 
0 

4) Calculate the error 

(3.28) 

and the relative least-difference between B (OJ, ) and B (OJ,,) 

s = 7' ( s ( (1)) - .8 ( (1))) 
2 

d OJ/7' ( .8 ( (1)) f d OJ 
0 0 

(3.29) 
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Chapter 4 

Numerical results 

The added mass and damping of a floating hemisphere, a Wigley hull and a 

Liquefied Natural Gas (LNG) carrier was computed by using MAPS based on 

the panel-free method. The frequency-domain results can then be employed to 

calculate the response function using the Kramer-Kronig relations. The 

numerical results of the hemisphere and the Wigley hull were compared with the 

time-domain solutions by Qiu (2001). 

4.1 Hemisphere 

A hemisphere with a radius R = lO.Om is floating in deep water. The body 

surface of the hemisphere was represented by NURBS surfaces. In the NURBS 

representation, the hemisphere was described by four NURBS surfaces. Each 

NURBS surface is formed by a 4 x 4 control net and B-Splines of degrees of 3 

in the u - and v - directions. The number of Gaussian points over a quarter of 

the hemisphere is chosen as 8x8 . To remove irregular frequencies, the Gaussian 

points on the interior free surface S; are automatically distributed according to 
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the geometry of the waterline. 

4.1.1 The added mass and damping coefficients 

Fig 4-1 and Fig 4-2 present the added mass and damping coefficients versus the 

non-dimensional frequency for the hemisphere in heave. In these figures, the 

frequency, computed heave added mass and radiation damping coefficient are 

nondimensionalized as oi R/ g , f\3 I ( p'\1) and B33 I ( p'\1 w) , respectively, where 

pis the water density and V is the volume displacement. 
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Fig 4-1 Heave added mass for the hemisphere 
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Fig 4-2 Heave damping coefficient for the hemisphere 

4.1.2 Response function 

The semi-analytical method and the FFT method were applied to compute the 

heave response function for the hemisphere. The results by the semi-analytical 

method and the FFT method are compared with the time-domain solution by the 

panel-free method (Qiu, 2001) in Figure 4-3. The time and heave response 

function are nondimensionalized as t~gjR and K33 (t)j(pV)~Rjg , 

respectively, where R is the radius of the hemisphere. The time step, dt , was 

chosen as 0.02 second. At the same time step, dt , the results from the 

semi-analytical method showed a good agreement with the time-domain solution 

by the panel-free method and those by the FFT method. 
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Fig 4-3 Heave response function for the hemisphere 

4.1.3 Accuracy check of the integral method 

Since K ( r) and B ( cv) are a transfer pair, the recovery of the damping 

coefficient based on the computed response function can be used to check the 

accuracy of the integral method. The recovered heave damping coefficient, the 

recovered heave added mass and the time-domain added mass are presented in 

Fig 4-4 to Fig 4-6. As seen, the recovery of the heave damping coefficient and 

added mass are in good quality and the time-domain added mass ,u( m) IS 

barely dependent on cv. 
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4.2 Wigley Hull 

Heave added mass and damping coefficients have also been computed for a 

Wigley-hull ship at zero speed in water of infinite depth by using MAPS. 

The hull geometry is defmed by (Journee, 1992) 

(4.1) 

where the nondimensional variables are given by 
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1J=2yjB, ( = z/T (4.2) 

where L is the length of the Wigley hull, B is the beam and T is the draft. 

The hull has 

L/B = IO, L/T =16, 

and a block coefficient of 

v c = - = 0.5606 
b LBT 

L = 120.0 (4.3) 

(4.4) 

NURBS representations were used for the computation. In the NURBS 

expression, the half Wigley hull was described by a 13x l3 control net with 

degrees of 3 in both u - and v- directions. In the computation, 41 x 10 and 

21 x4 Gaussian points are distributed on half of the wetted surface and on half 

of the interior free surface, respectively. 

4.2.1 Added mass and damping coefficient 

Fig 4-7 shows the heave added mass and Fig 4-8 presents the heave damping 

coefficient. The frequency, heave added mass and radiation damping coefficient 

are nondimensionalized as ai B/ g , ~3/(pV) and B33/ (pV (1)) respectively, 
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where p is the water density and B is the beam of the Wigley hull. 
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4.2.2 Response function 

At a given time step 11t = 0.02s, the heave response function was computed by 

the semi-analytical method and the FFT method, respectively. The results were 

compared with that of the time-domain solution (Qiu, 2001). Fig 4-9 and Fig 

4-10 show the computed heave response function and pitch radiation response 

function by using the semi-analytical method and the FFT method, respectively. 

In these figures, the time t , the heave response function K 33 and the pitch 

radiation response function K55 are non-dimensionalized as t~ g j L , 

K33~ gf Lj(pg"V /L) and K 55~ g f Lj(g"V) respectively, where L is the length 

of the Wigley hull. 
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As presented in Fig 4-9 and Fig 4-10, the response functions computed by the 

semi-analytical method, the FFT method and the solution of Qiu (2001) agree 

with each other very well. 

4.2.3 Accuracy check of the integral method 

The recovery of the heave damping coefficient, heave added mass and 

time-domain heave added mass based on the computed heave response function 

are presented in Fig 4-11 to Fig 4-13. As shown, the reconstructed heave 

damping coefficient and heave added mass by the semi-analytical method have 

good qualities and the time-domain heave added mass J1 ( m) is much less 

dependent on m. It demonstrates the great accuracy of the semi-analytical 
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4.3 Liquefied Natural Gas (LNG) Carrier 

Heave added mass and damping coefficient have been computed by MAPS for a 

Liquefied Natural Gas (LNG) carrier in shallow water waves. The water depth 

for the LNG carrier is 15 m. Gaussian points were automatically distributed on 

the entire wetted surface. Fig 4-14 shows the Gaussian points on the wetted 

surface and on the lid. In the computation by MAPS, 4200 Gaussian points 

were distributed on the entire wetted surface and 1800 Gaussian points were on 

the lid. 
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l 

Fig 4-14 Gaussian points distribution on the hull surface and the lid of the 

LNG carrier (Peng et al., 2007) 

4.3.1 Added mass and damping coefficient 

The heave added mass and the heave damping coefficient of the LNG carrier are 

shown in Fig 4-15 and Fig 4-16. 
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Fig 4-16 Heave damping coefficient for the LNG carrier 
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4.3.2 Response function 

Fig 4-17 to Fig 4-20 show the response functions computed by the 
semi-analytical method and the FFT method for a time step of !!J.t = 0.05s . 
Obviously, the results computed by the semi-analytical method are much more 
reasonable than those by the FFT method in which significant peaks appear for 
the case when frequency interval is /}.(J) = 0.05 rad/s. 
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Fig 4-17 Heave response function for the LNG carrier 
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Fig 4-18 Heave response function due to pitch for the LNG carrier 
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Fig 4-19 Pitch response function due to heave for the LNG carrier 
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Fig 4-20 Pitch response function for the LNG carrier 

4.3.3 Accuracy check of the integral method 

250 

Fig 4-21 to Fig 4-26 present the time-domain heave added mass, the recovery of 

the heave added mass and the damping coefficients base on the computed 

response functions . As shown, at the frequency discretization dw = 0.05 rad/s, 

the damping coefficients by the semi-analytical method were reconstructed 

successfully while the results by the FFf method fail to reconstruct the original 

damping coefficients. 
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Fig 4-21 Reconstructed heave added mass for the LNG carrier 
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Fig 4-22 Time-domain heave added mass for the LNG carrier 

46 



("') 
("') 

!Xl 

500000 ~~.' 

: 

400000 

300000 

200000 

100000 

0 

-100000 
0 

Semi-analytical (The frequency discretization=0.05 rad/s) -­
Semi-analytical (The frequency discretization=0.025 rad/s) --­

FFT (The frequency discretization=0.05 rad/s) ·········· 
FFT (The frequency discretization=0.025 radls) -··-··-

MAPS o 

··-· ·-··-- -~ --:.::-.::.=:-.~-- ··£.:."-:. 

0.5 1.5 2 

Frequency (rad/ s) 

2.5 

Fig 4-23 Reconstructed heave damping coefficient for the LNG carrier 

2e+007 ~--------~----------,-----------r---------~----------. 

1.5e+007 

1e+007 

5e+006 

0 

Semi-analytical (The frequency discretization=O.OS rad/s) -­
Semi-analytical (The frequency discretization=0.025 rad/s) --­

FFT (The frequency discretization=0.05 rad/s) ---------­
FFT (The frequency discretization=0 .025 rad/s) -------

MAPS o 

ri .. /··,··-.. ~;:::~. 
.._, ~~ -.. 

'-9:9-.o -·-·-··· ··· 
'··~~!2.P..Q.o . ··---·- -------·- -··-·--·---··--

---.- - 2..!:2. ru>..Q. Q..Q .Q.Q..Q_Q_Q 2..Q_Q Q._Q .D 0-.... : 
---·---------------·-------~ 

0 0.5 1.5 2 2 .5 

Frequency (rad/s) 

Fig 4-24 Reconstructed heave damping coefficient due to pitch for the LNG 
carrter 

47 



3.5e+007 

3e+007 

2.5e+007 

2e+007 

"' 1.{) 
(() 1.5e+007 

1e+007 

0 

Semi-analytical (The frequency discretization=0.05 rad/s ) -­
Semi-analytical (The frequency discretization=0.025 rad/s) --­

FFT (The frequency discretization=0.05 rad/s) ·········· 
FFT (The frequency discretization=0.025 rad/s ) - ----- -

MAPS o 
', 

0.5 1.5 2 

Frequency (rad/s) 

2 .5 

Fig 4-25 Reconstructed pitch damping coefficient due to heave for the LNG 
earner 

l() 
l() 
(() 

5e+009 

4e+009 

3e+009 

2e+009 

1e+009 

0 

0 

Semi-analytical (The frequency discretization=0.05 rad/s) -­
··- Semi-analytical (The frequency discretization=0.025 rad/s) ---

:' FFT (The frequency discretization=0.05 rad/s) .......... 
· FFT (The frequency discretization=0.025 rad/s) 

MAPS o 

- ...... 
'• 

·--
·--

0 0 0 0 0 0 0 0 0 0 --·-··-··--·--·-· · -··--·---~--- ..... 

. 0 0 0 oo o ooooooo 00 ~-0--

0 .5 1.5 2 2 .5 

Frequency (rad/s) 

Fig 4-26 Reconstructed pitch damping coefficient due for the LNG carrier 

48 



For simple shapes (hemi-sphere and Wigley hull) both the semi-analytical 

method and the FFT method present very good results. However, for the 

complicated shape (LNG carrier), the FFT method gives unreasonable results at 

a large spacing of frequency descretization. The reason is the FFT method 

requires the spacing of the frequency discretization to be smaller than the 

sampling frequency in order to capture and transfer the complete characteristics 

of damping coefficients into response functions . To obtain reasonable results 

from the FFT method the frequency discretization must be refined which 

requires the computation of added mass and damping coefficient for a large 

number of frequencies. This imposes a high computational cost. Compared with 

the FFT method, the semi-analytical method is more accurate and efficient, 

especially for complicated geometry. 
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Chapter 5 

Conclusions 

A practical procedure is presented to evaluate, assess and improve the 

computation of the retardation function or response function to be stored in a 

database for use in the calculations of the radiation loads on a floating body. To 

generate a high quality database, the procedure does not require a tremendous 

amount of computational effort. The procedure is very suitable for practical use. 

A highly accurate semi-analytical integration method was introduced for 

evaluation of the integrals for the time-domain reponse functions , as well as the 

integrals in the Kramer-Kronig relations. 

The Motion Analysis Program Suite (MAPS) based on the panel-free method 

(PFM) has been employed to solve the added mass and radiation damping in the 

frequency domain. The Non-Uniform Rational B-Splines (NURBS) were 

adopted to mathematically describe the exact body geometry. 

The accuracy of the semi-analytical method is demonstrated by comparing the 
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response functions from the frequency-domain solutions with those from the 

direct time-domain solutions (Qiu, 2001) for a floating hemisphere, a 

Wigley-hull ship in water of infinite depth. The accuracy of the method is also 

illustrated by comparing the recovered added mass and damping coefficients 

with the original ones. 

The significant efficiency and accuracy of the semi-analytical method for the 

complicated geometry is further demonstrated by its application to an LNG 

carrier. 

The semi-analytical method for computing response functions can be integrated 

into the ship motion programs in the time domain for real-time simulations. 
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