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Abstract 

Ab initio self-consistent field molecular orbital and density functional theory cal­

culations have been performed on a series of helical structures comprised of boron­

nitrogen analogues of extended hydrogenated helicenes, with helically arranged N 

fused benzene rings, N fused methylenylnaphthalene fragments, and alternating N 

benzene units fused to N-1 cyclobutadiene rings as reference structures. 

The electronic structure of boron-nitrogen analogues of angular [N]helicenes (N 

= 5, 6, 7, 12) and [N]phenylenes (N = 5, 6, 7, 13) were investigated at the HF /6-

31G(d), B3LYP /6-31G(d), and MP2/6-31G(d)/ /HF /6-31G(d) levels of theory. It 

wa..c; observed that the presence of an even number N of rings in the boron-nitrogen 

[N]helicenes leads to the possibility of angular isomers. Their energetics and relative 

stability was discussed. 

Furthermore, the electronic structure and relative stability of three isomeric non­

hydrogenated boron-nitrogen helices were investigated at the HF /6-31G(d) , B3LYP /6-

31G(d), and MP2/6-31G(d)/ /HF /6-31G(d) levels of theory. According to this study, 

some of the initially assumed regular helical structures are unstable; two types of the 

isomeric structures convert to characteristically different equilibrium geometries. 

In addition, laterally extended boron-nitrogen analogues of [ N]polymethylenylnaph­

thalenes (N = 6, 8, and 12) were also investigated at the HF /6-31G(d,p) and B3LYP / 6-

31G(d,p) levels of theory. By alternating the positions of the boron and nitrogen 

atoms, two very similar structures are possible, the NxByHz type helix and the 
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BxNyHz (y = x- 1) type helix, which are comprised of an odd number of fused 

rings. The inclusion of one more ring results in an even number of fused rings, which 

leads to helical isomerism in these extended boron-nitrogen helices. Their geometries 

and energetics are also discussed. 

Electron density contours were calculated in order to interpret the existing bonding 

patterns. These structures may provide supramolecular building blocks and macro­

molecular "springs" with potential use in nanotechnology. 
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Chapter 1 

Introduction 

The foundatio11.c; of today's modern theoretical computational chemistry were laid 

down with the appearence of the first postulates in quantum mechanics at the begin­

ning of the last century. Quantum chemistry derived itself from quantum mechanics 

and it has become an efficient tool to better describe the behavior of the electrons in 

atoms and atoms in molecules. Although sound theoretical modeLe; were constructed, 

early on, their application was delayed by the lack of computational power. 

In the last 40 years however, with the rapid development of computers, theoreti­

cal computational chemistry has grown into a powerful branch of chemistry. Today, 

scientists are using powerful individual computers or numerous computer clusters 

combined with computational software based on the early as well as new theories and 

models to attempt to solve, model, and describe chemical problems, structures and 

reactions. Molecular modelling has benefited from this evolution of theory and appli-
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cations. One advantage of modelling is the ability to create virtual representations 

of new structures and predict the existence of novel, viable molecules. The driving 

forces of this new kind of virtual research is the already existing chemical knowledge, 

intuition and curiosity. 

Based on these three motivating factors, in the present thesis an attempt is made 

to theoretically describe some members of a family of novel boron-nitrogen compmmds 

having helical conformations, motivated by the intriguing features of analogous ex­

tended helicenes of carbon chemistry. Such spring-like molecules, interesting on their 

own right, may provide potential flexible building blocks for nanosystems with ad­

justable features. 

The modern era of boron-nitrogen chemistry is considered to date back to the 

early 1920s, 1 when borazine, one of the early boron-nitrogen analogues of the carbon 

based benzene, was synthesized.2 It became obvious that the boron-nitrogen atom 

pair, being isoelectronic with the carbon-carbon atom pair, could be a likely replace­

ment for the latter in a variety of carbon-based compounds. An early example is 

that of the boron-nitrogen analogue of naphthalene, first observed experimentally as 

a product formed during the gas-phase pyrolysis of borazine3 and which has been 

characterized experimentally. 4 

The successful synthesis of fullerene7 and carbon based nanotubes8 acted as a 

catalyst for further theoretical research,9-11 eventually leading to the synthesis of 
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boron-nitride nanotubes12 (BNNTs) and of the first boron-nitrogen fullerene-like 

structures.13· 14 These boron-nitrogen nanostructures have also been shown to have 

high chemical and thermal stability, 15 making them good candidates as precursors 

for the synthesis of boron-nitride ceramic rnaterials.6· 16 Recently, it wa..s shown that 

some boron-nitrogen compounds might also have hydrogen storage capabilit iesP-20 

Overall, the study of boron-nitrogen clusters and cages,9· 21-36 boron-nitrogen nan­

otubes,37-44 and boron-nitrogen chains45• 46 attracted considerable interest in the past 

decade. The majority of these boron-nitrogen nanocompounds can be reconstructed 

by fusing smaller building blocks such as borazine rings, boron-nitrogen acenes, or 

boron-nitrogen cyclacenes. 

Borazine 

The chemistry of borazine and its derivatives is well described, 1 and as benzene's 

isoelectronic pair, it received considerable attention among theoreticians.47-55 Studies 

tackled borazine's aromaticity,56 the probability of the existence of borazine dimer,57 

and also borazine's ability to form complexes with metals.58· 59 

Boron-nitrogen acenes 

Boron-nitrogen acenes (Figure 1.1) are comprised of a number of linearly fused 

borazine rings. Whitehead et al.60 performed Hiickel type calculations on molecules 

containing three fused borazine rings predicting the possibility for the existence of 

boron-nitrogen polymers containing a larger number of rings. Kar et al.61 investi­

gated the structure of boron-nitrogen naphthalene and some of its carbon containing 
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Figure 1.1: Boron-nitrogen acene comprised of four fused rings 

derivatives at HF and MP2 levels of theory with the 6-31G(d) and 6-31G+(d) basis 

sets. Their study revealed that in case of the fully substituted boron-nitrogen naph-

thalene, while the calculated bond lengths at the HF level were in good agreement 

with the experimental values, the MP2 values overestimated the experimental bond 

lengths. 

A more recent investigation on these boron-nitrogen compounds involves a theoret-

ical study62 on the structure and vibronic interactions in boron-nitrogen naphthalene 

and boron-nitrogen anthracene using density functional theory with the B3LYP /6-

31G(d) basis set. Further research involved investigations on the structure and aro-

maticity of linearly more extended boron-nitrogen acenes (formed by up to five fused 

borazines, i.e., the boron-nitrogen pentacene) at the density functional B3LYP /6-

31+G(d)63 and B3LYP /6-311+G(d)64 levels of theory. 

Boron-nitrogen cyclacenes 

By connecting the ends of the boron-nitrogen acenes, cyclic structures can be 

formed (Figure 1.2). These are the cyclic boron-nitrogen cyclacenes, the analogues of 
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the more familiar carbon based cyclacenes. 

Figure 1.2: Boron-nitrogen cyclacene comprised of four fused rings 

Erkoc;65 examined the structure and electronic properties of borazine-based cy-

clacenes, comprised of up to six fused borazine rings at semiempirical AMl level of 

theory. Boron-nitrogen cyclacenes containing a larger number of fused borazine rings 

were also studied at MNDO and AMl semiempiricallevels of theory.66 The geome-

tries and energies of these kind of boron-nitrogen cyclacenes were also investigated at 

the density functional UB3LYP/6-31G(d) level of theory.67
• 

68 

Most recently,69 a comprehensive theoretical study was performed at RHF /6-

31G(d) and B3LYP /6-31G(d) levels of theory on boron-nitrogen cyclacenes contain-

ing three and four borazine rings, finding that different conformational isomers are 

possible depending on the direction of the peripheral N-H groups. 

From an experimental point of view, the boron-nitrogen nanostructures are being 

synthesized using a variety of procedures, like arc discharge methods, 12
• 

70 different 
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vapor deposition and condensed-phase pyrolysis methods, 16 or polymerization meth-

Scaling back from nanosize to the molecular level, the study of boron-nitrogen cy-

clacenes and boron-nitrogen acenes containing more than three fused borazine rings 

remains only at the theoretical level, since, to our knowledge no experimental data is 

available. 

Helicenes can be considered as angular isomers of the acenes. These systems 

are formed by N fused benzene rings (Figure 1.3), and the phenylenes are structures 

comprised of N fused benzene rings with N-1 interposed cyclobutadiene rings(Figure 

1.4). These carbon based helical structures were extensively studied theoretically.71
-

75 

HC- CH 
HC /J ~ H 
11 -c c-c~ 

HC \ I ~CH 
'\ c= c 
HC=c~ '\ I c...--c 

H // ~CH 
c c I 

t-jC / ~C/ " --=:::CH 

II I l~ 
HC" -::?C CH 

c "-c-::::::::=-
H H 

Figure 1.3: Structure of [6]helicene 
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Helicenic compounds where the carbon atoms in the helix were replaced by other 

atoms such as nitrogen or sulphur were studied theoretically or experimentally as 

well. r6--8o 

Figure 1.4: Structure of [7]phenylene 

However, to our knowledge, detailed theoretical studies of boron-nitrogen ana-

logues of these helical systems have not been reported yet by other research groups. 

The boron-nitrogen analogues of helicenes, phenylenes, and some more extended 

boron-nitrogen analogues of polymethylenylnaphthalenes are the main focus of this 

thesis, as such molecules possessing helical conformation may become building blocks 

for more extended novel helical boron-nitride compounds with applications in nan-
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otecbnology. They could also serve as flexible interconnecting building units in the 

synthesis of new boron-nitrogen based nanostructures. Since these molecules show 

analogous shapes with macroscopic springs, it is reasonable to expect that their vi­

brational properties also show analogies with vibrations, as well as compressibility 

of macroscopic springs. The aim of this thesis is the theoretical description of the 

structure, energy, and shape of these boron-nitrogen angular helices and a better lill­

derstanding of the energetical stability of some of the existing helical isomers. This 

wa..~ achieved through electronic structure calculations using ab initio and density 

functional methods. 

It has to be mentioned that this study wa..~ also made possible due to the exist­

ing computational power available which ha..<> experienced a considerable increase in 

recent years. 

The thesis is written in manuscript format and is divided into six chapters, each 

chapter having its own bibliography except the la..~t chapter which contains conchl­

sions. Chapter 1 begins with an introduction of the overall thesis; Chapter 2 describes 

the theory behind the methods used throughout the research; Chapter 3, Chapter 4, 

and Chapter 5 are arranged in manuscript format. Each is subdivided into the follow­

ing sections: introduction, computational methodology, results and discussion, and 

summary. 

Chapter 3 presents a theoretical study of hydrogenated boron-nitrogen analogues 
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of helicenes and phenylenes. The presence of an even number N of rings in the 

boron-nitrogen [N]helicenes leads to the possibility of angular isomers. Their elec­

tronic structure and relative stability is discussed. 

Having the nonhydrogenated version of helicenes a.<> a starting point, Chapter 4 

describes a detailed study of nonhydrogenated fused boron-nitrogen hexagons and 

decagons. The electronic structure and relative stability of three possible angular 

isomers are presented. 

Chapter 5 introduces some laterally extended boron-nitrogen helical sheets, based 

on the boron-nitrogen analogue of [N]polymethylenylnaphthalene. By alternating 

the positions of the boron and nitrogen atoms, two very similar structures containing 

odd number of fused hexagonal units are possible, the NxByHz type helix, and the 

BxNyHz type helix. An even number of fused rings leads to helical isomerism. The 

geometries and energetics of these helices are investigated. 

Some concluding remarks and future directions are presented in Chapter 6. 
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Chapter 2 

Theoretical Background 

2.1 Hartree-Fock Theory 

2.1.1 The Schrodinger Equation 

For a detailed description of the microscopic world of atomic or molecular systems 

and their properties, one must resort to quantum mechanics. By applying the laws 

of quantum mechanics to chemical problems, one enters into the world of quantum 

chemistry. Its principles are well outlined in the literature.1
• 

2 Accordingly, one of the 

main goals of the quantum theory of atoms and molecules is solving the Schrodinger 

equation, 

H'I! = E'I! (2.1) 
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where ii is the Hamiltonian operator, E represents the numerical value of the system's 

energy (the Hamiltonian operator returns the system energy E as an eigenvalue, as 

the equation is an eigenvalue equation), and \II is a stationary eigenfunction, which 

depends on the spatial and spin coordinates of all particles making up the system. 

The time independent Hamiltonian for n electrons and M nuclei can be written 

(in atomic 1mits) as the sum of kinetic energy operators and potential energy parts, 

where i and j run over electrons, A and B run over nuclei, MA is the mass of nucleus 

A, Z is the atomic number, rii is the distance between two electrons (rij = lri- ri l), 

riA is the distance between an electron and a nucleus (riA = lriA I = lri- RAj), and 

RAn is the distance between two nuclei (RAn = IRA- Rni). The first term in the 

equation represents the kinetic energy operator of the electrons; the second term is the 

operator for the kinetic energy of the nuclei; the third term describes the attraction 

force between the electrons and the nuclei; the fourth term represents the repulsion 

between electrons, and the last term the repulsion between the nuclei. The Laplacian 

operator '\72 has the form 

(2.3) 
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Note that the Hamiltonian above is nonrelativistic, and additional terms are needed 

to fully describe the energy of a system in which the average speed of electrons is 

approaching the speed of light. 

The solution to the stationary SchrOdinger equation is the eigenfunction IJi. For 

any many-electron system there is a set of 'Iii solut ions with eigenvalues Ei, that is, 

Eq.(2.1) can have many acceptable solutions, corresponding to different stationary 

states. The main focus is to find the state with the lowest energy, the ground state. 

2.1.2 The Born-Oppenheimer Approximation 

The maBses of nuclei are much greater than those of the surrotmding electrons, 

and therefore, the nuclei move much more slowly. In one approximation, it can be 

considered that electrons are changing their positions around the fixed nuclei. Ac­

cordingly, it is convenient to suppose that the electron distribution depends only on 

the positions of the nuclei. 

This model is known3 aB the Born - Oppenheimer approximation, and according 

to it , the SchrOdinger equation in the field of fixed nuclei can be written aB follows: 

(2.4) 

where fiel, the electronic Hamiltonian, haB the form 
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A n 1 2 n M ZA n - 1 n 1 
Hel =-2:-Vi-LL- + 2:2:-

i 2 i= l A = l riA i=l i<i rii 
(2.5) 

The three terms correspond to the kinetic energy, the electron-nuclear attraction, and 

the electron-electron repulsion. Here \]i eL is the electronic waveflmction, and E e1 is 

the electronic energy. Both of them depend directly on the electronic coordinates 

and parametrically on the nuclear coordinates. The nuclear-repulsion energy V N N is 

given by 

(2.6) 

Solving Eq.(2.4) and computing VNN from Eq.(2.6) one can get Eel for each particular 

nuclear configuration. Then the energy Etot can be calculated using 

(2.7) 

In this way Etot can be regarded as the net potential flmction of the nuclear coordi-

nates. Hence it can aLso be represented as a potential energy curve in case of diatomic 

molecules and a potential energy surface (hypersurface) in case of polyatomic systems. 
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2 .1 .3 Molecular Orbital Theory 

Reviewing the electronic Hamiltonian in Eq.(2.5), it can be seen that it is directly 

related to the coordinates of the electrons. An electron can be described by using 

one-electron functions or orbitals.3 The spatial orbital, '1/J( x, y,z) is a function of the 

cartesian coordinates x, y, z, of a single electron, and describes the spatial distribu­

tion of an electron. The absolute value of the square of the spatial distribution, I'I/J2 1 

will give the probability density distribution of the electron in space. To describe 

the electron more accurately, its spin has to be included as well. So, the complete 

one-electron wave(unction can be represented as the product of a spatial orbital and 

a spin function, which gives the spin-orbital x(x,y,z,s ), having the form 

x(x, y, z, s) = '1/J (x, y, z )a(s) (2.8) 

or 

x(x,y,z,s) ='1/J(x,y,z){J(s) (2.9) 

depending on the two possible directions of the electron spin, a(s) as spin up(j) and 

/3(s) as spin down(l). However, for n-electron systems one more condition mm;t be 

fullfilled, that of antisymmetry, which requires that if the spatial and spin coordinates 

of any two electrons are interchanged, the wavefunction changes sign: 
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W(XI(l ), X2(2) ... , Xi(i), Xi(j), ···Xn(n)) = - W(XI(l ), X2(2) ... , Xi(j), Xi(i), ·· ·Xn(n)) 

(2.10) 

The simplest way to ensure the above antisymmetry is to arrange the orbitals in a 

determinantal wavefi.mction. 

W= 

X1( l ) X2(l ) 

X1 (2) X2(2) 

Xn(l ) 

Xn(2) 

Xn(n) 

(2.11) 

The entire wavefunction has to be normalized, so that the probability of finding the 

electron in the full space must be 1. If the individual one-electron functions are nor-

malized, and the determinant in Eq.(2.11) is multiplied by a factor of h one gets 
V (n!) 

the Slater determinant4 for a molecule with even n number of electrons 
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W= -1-
10!) 

X1(1) X2(1) 

X1(2) X2(2) 

2.1.4 Basis Set Expansion 

Xn(1) 

Xn(2) 

Xn(n) 

(2.12) 

In practice, the individual molecular orbitals are expressed as linear combinations 

of a finite set of None-electron functions or orbitals known as basis functions.3 Then, 

the individual orbital '1/Ji will have the form, 

N 

'1/Ji = L c11,i</>,_. (2.13) 
i-L=l 

where¢,_. are elements of a finite basis set, centered at various atoms, and c,_.i are the 

molecular orbital expansion coefficients. 

The most commonly used type of basis function..c; are the Gaussian type functions 

or orbitals (GTF's or GTO's), which have the exponential form exp(-a qA) as part 
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of their description. In practical calculations, however, the basis ftmctions, </J's, are 

written as linear combinations of so-called primitive GaussiaiL.'l, 

(2.14) 
r 

where r represents the type of atomic orbitals, p, d, f ... , dJJ.r is a contraction coeffi-

cient, and 9r is being termed as a primitive Gaussian, and can be generally expressed 

in terms of a global coordinate system as 

(2.15) 

where l, m, and n are integers which characterize the type or order of the Gaussian 

fimction, (x, y, z) are the coordinates of electrons and (xA, YA, zA) represent the 

nuclear positions, N is a normalization factor, and a is the Gaussian exponent. The 

r i A it is an electron position from center A.5 

Some of the popular Gaussian basis sets are denoted by 3-21G, 6-31G(d), 6-

31+G(d), ... etc. The 6-31G(d) and 6-31G(d,p) basis sets are used throughout the 

present work. 

The 3-21G is a split-valence type basis set. The core shells are formed by the linear 

combination of three Gaussians, and two valence shells, represented by a combination 

of two and one Gaussian primitives. The 3-21G* basis set was created especially for 
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the second row elements by the addition of a complete set of six Gaussian primitives. 

The 6-31G(d) ba..c:;is set is a split valence type polarization ba..c:;is set. The core 

shells are represented by the linear combination of six Gaussians, and the two valence 

shells are represented by three and one Gaussian primitives. In addition, six Gaussian 

primitives are used to describe the polarizability of the non-hydrogen atoms. 

The 6-31G(d,p) ba..c:;is set is constructed the same way a..c:; the 6-31G(d), except it 

contains one set of Gaussian p-type functions to better describe hydrogen atoms and 

the helium atom.3 

2.1.5 Hartree-Fock Approximation 

As seen earlier, the orbitals may be expanded in terms of a set of basis functions 

using the expansion coefficients, and the wavefunction can be described as an anti­

symmetrized product of molecular orbitals. To find the best possible wavefunction 

one needs to find the best possible expansion coefficients. 

The variational theorem states3 that, for the lowest electronic state, the expecta­

tion value of the energy corresponding to any function <1? can be obtained from the 

integral 

Eo = j <1?* H<l>dT (2.16) 
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and it will always be greater than or equal to the exact energy, E, described by the 

exact wavefunction \ll, 

E = J w* ifwd, (2.17) 

As a consequence, the best waveftmction will be the one which gives the lowest pos-

sible energy. When selecting a basis set and applying the variational theorem, the 

coefficients c,.i from Eq.(2.13) may be adjusted to minimize the expectation value of 

the energy Eo. 

This can be achieved through solution of the Hartree-Fock and Roothaan equa-

tions. The method itself is described thoroughly elsewhere,1- 3 and the basic idea is 

that by minimizing E0 with respect to the choice of a finite set of spatial orbitals, one 

can derive the Hartree-Fock equation for closed shell systems of the form 

(2.18) 

where F(1) is an effective one-electron operator, called the Fock operator, and has 

the form 

(2.19) 
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The first two terms are forming the core-Hamiltonian operator, h(l), and the sum in 

the last term is a one-electron potential operator called the Hartree-Fock potential, 

in which the Ja(l) and Ka(l) are the Coulomb and exchange operators collectively 

representing all interactions between the electrons, defined as 

(2.20) 

and 

(2.21) 

The substitution of the basis set expansion from Eq.(2.13) into Eq.(2.18), leads to 

(2.22) 
v v 

which reduces the problem of finding the Hartree-Fock molecular orbitals to calcu-

lating the set of expansion coefficients, Cvi· Multiplication of Eq.(2.22) with </>~ and 

integration gives the matrix equation 
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i = 1, 2, ... ,N (2.23) 
v v 

where Ei is the one-electron energy of molecular orbital '1/Ji, 811-v are the elements of 

the overlap matrix, 

(2.24) 

and F 11-V are the elements of the Fock matrix, 

(2.25) 

The H:,:e expression is a matrix representing the energy of a single electron in a field 

of nuclei. It takes the following form: 

(2.26) 

The PM term stands for the elements of the one-electron density matrix, 

occupied 

H .a = 2 2:..:: C~;Cai (2.27) 
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--- ----------

The quantities (J.wi>.o-) are the two-electron repulsion integrals and have the form 

(2.28) 

In the end, the sum of the electronic energy and nuclear repulsion energy expression 

will yield the total energy 

1 N N 

EHF = 2 L L Pl-'v(FI-'v + H::e) + VNN 
1-'=lv= l 

(2.29) 

Roothaan's equation6 can be formulated as a single matrix equation, 

Fe= Sec (2.30) 

where c is the N x N square matrix of the expansion coefficients Cvi 
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C= (2.31) 

and E is a diagonal matrix of the orbital energies Ei, 

0 

€= 0 (2.32) 

Solving the matrix equation (2.30) is done through an iterative process, called the 

self-consistent-field (SCF) procedure.1 The procedure starts with the specification of 

the coordinates of the molecule and the basis set. After this, all required molecular 

integrals, the overlap, one-electron and two-electron integral'> are calculated and an 
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initial guess for the density matrix is obtained. 

This initial set is used to compute the Fock matrix, which further will give an 

initial set of orbital energies E/s. The orbitals are then used to solve Roothaan's 

equation for an improved set of coefficients, giving an improved set of molecular or­

bitals, which are used to compute an improved Fock matrix. 

The calculations are continued until no further improvement in molecular orbital 

coefficients and energies occur from one iteration to the next. Usually the iteration 

terminates on the convergence of the density matrix. Convergence means that the 

last two calculated values should differ by no more than the quantity representing the 

convergence criteria specified in the beginning of the iteration. 

2.2 Post Hartree-Fock Methods 

In the Hartree-Fock approximation, there is an incomplete description of the total 

energy of a system, because electrons with opposite spins are not correlated. If the 

exact energy of a system can be defined3 as the sum 

(2.33) 

the correlation energy is the difference between the Hartree-Fock energy and the ex­

act (nonrelativistic) energy. Correlation energy can be described using the so called 
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Post Hartree-Fock methods, like configuration interaction, coupled-cluster or pertur-

bation theory. They are all well documented1• 3 and are based on multideterminantal 

waveftmctions. 

2.2.1 M 0ller-Plesset Perturbation Theory 

According to the M¢ller-Plesset perturbation theory,3 an electronic Hamiltonian 

can be formulated as the sum of the zeroth order Hamiltonian, H0 , represented by 

the sum of the one-electron Fock operators, and a perturbation AV 

(2.34) 

The perturbation, .XV, can be written a.<; 

(2.35) 

where ii is the correct Hamiltonian and A is a dimensionless parameter. The energy 

of the system can be expanded in powers of A as, 

(2.36) 

The existing perturbation methods can be achieved by truncation of the series in 

Eq.(2.36) to various orders. MP2 means truncation after second order, MP3 after 

third order and so on. 
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2.3 Density Functional Theory 

2.3.1 Electron Density 

In an atomic or molecular system, the electron density is the amount of electronic 

charge within the 1mit volume7 and it can be defined as the following multiple integral 

over the spin coordinates of all electrons 

(2.37) 

Integrating over all space it gives the total number of electrons 

j p(r)dr = n (2.38) 

2 .3.2 Hohenberg-Kohn Equations 

An alternative method which uses the electron density instead of the wavef1mction 

to express a system's energy, is called density functional theory. 7- 9 

It was shown10 that the external potential present in the Hamiltonian (Eq.(2.5)) 

is determined by the electron density p(r), and from Eq.(2.38), it can be seen that p 

also determines the number of electrons. As has been shown later for all molecules 
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without artificial boundaries, any positive volume part of the electron density deter-

mines all other properties including energy.11 

There is an exact energy ftmctional E[p], which can describe the energy of the 

entire atomic or molecular system in terms of the density, having the form 

E[p] = Vne[P] + FHK[P] (2.39) 

where V ne is the potential energy due to the nucleus-electron attraction, 

M ZA 
Vne[P] = 2: j I I p(r )dr 

A r -rA 
(2.40) 

and F HK[P] is the sum of kinetic and electron-electron interaction term, 

FHK[P] = T[p] + Vee [P] (2.41) 

and is called the Hohenberg-Kohn universal ftmctional. The repulsion energy, Vee [pJ, 

can further be written as 

(2.42) 

The same theorem10 states that the energy ftmctional, E[p], for the true ground state 
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density p, will give the ground state energy Eo of the system, and by applying the 

variational principle for any trial density p, the following relation holds 

Eo::; E[p] (2.43) 

2.3.3 Kohn-Sham Equations 

For a better description of the FHK[P] expression, Kohn and Sham rewrote12 

Eq.(2.41) as the sum 

FHK[P] = Ts[P] + J[p] + Exc[p] (2.44) 

where J[p] represents the classical Coulomb repulsion, T s is the kinetic energy of all 

non-interacting electrons of a fictitious reference system with the same density as the 

real one expressed using the so-called Kohn-Sham (KS) orbitals, 'Pi 

(2.45) 

and Exc is an exchange-correlation energy which can be defined as 

Exc[p] = b.T[p] + b.Vee [P] (2.46) 
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The non-interacting kinetic energy is not equal to the true kinetic energy of a system 

so the exchange-correlation term, Exc is being represented as a sum of the difference 

between the true and the non-interacting kinetic energies and the difference between 

the classical and the non-classical electrostatic contributions. After the inclusion of 

these additional terms the expression for the energy in terms of density becomes 

E[p] = Vne[P] + Ts[P] + J[p] + Exc [P] (2.47) 

Similar to the way in which the Hartree-Fock approximation minimizes the energy 

with respect to the choice of orbitals <p, one can derive the Kohn-Sham equations12 

where Hf8 is the KS operator defined as 

and 

Vxc = 6Exc 
6p 
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(2.48) 

(2.49) 

(2.50) 



is the functional derivative of Exc with respect to density. Analogous to the HF 

self-consistent field method, one can also solve the Kohn-Sham equations iteratively. 

The method is described thoroughly in the literature.7- 9 

In general, the major difference between the two theoretical approaches ( ab initio 

and DFT) lies in the approximations made. In the ab initio (Hartree-Fock) method, 

the approximation is introduced from the beginning, meaning that it will never give 

an exact solution. DFT could give the exact solution if one did not need to approxi­

mate the exchange and correlation terms. The most common approximate exchange 

correlation functionals can be classified as follows: the ones based on the early local 

density approximations, gradient corrected functionals, and hybrid flmctionals. 

The gradient corrected functionals are usually a combination of a gradient cor­

rected exchange fimctional and a gradient corrected correlation functional, BLYP for 

example, refers to Becke's corrected exchange flmctional13 in combination with the 

Lee, Yang, Parr correlation functional. 14 

Hybrid functionals , however, also incorporate an exact Hartree-Fock exchange 

functional in the usual density based approximation. B3LYP is one of the most pop­

ular hybrid exchange-correlation flmctional, having the form15 

(2.51) 
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where LDA stands for local density approximation, VWN3 for the Vasko, Wilk, Nu­

sair local correlat ion iimctional, 16 B88 is Becke's corrected exchange functional , 13 

LYP is the above mentioned correlation functional, and E~F is the Hartree-Fock lo­

cal exchange. The empirical parameters a, b, and c were determined by fitting to 

the atomization energies, ionization potentials, proton affinities and first-row atomic 

energies, and have the values 0.20, 0. 72, and 0.81 respectively.l5 

2.4 Geometry Optimization 

2.4.1 Equilibrium Geometry 

Self-consistent field calculations at many geometries with different nuclear ar­

rangements in order to minimize the energy of a system result in an equilibrium 

geometry. The energy is a function of the nuclear coordinates, and can define the 

potential-energy surface (PES) of the molecule. The entire process is also called ge­

ometry optimization and there are many algorithms which are used to find the local 

minimum energy. The most efficient methods to obtain an equilibrium geometry are 

those which perform repeated calculations of both the total energy and its deriva­

tives.2 The partial derivatives of the energy can be described as a vector called the 

energy gradient. At a local minimum, the gradient must be zero. At any point on the 

39 



PES where the gradient is zero, one finds a stationary point which can be a minimum, 

a maximum, or a saddle point (if nondegenerate). 

In this study, the goal was to find the energy minimum of the structures under 

investigation. To be sure that the optimized geometry is a true minimum on the PES, 

the second derivatives of the energy must be calculated at the same geometry. This 

is verified by performing frequency calculations. 

2.4.2 V ibrational Frequencies 

The harmonic vibrational frequencies of a molecule can be calculated theoreti-

cally.3 The classical vibrational energy of the molecule having N number of atoms 

near the equilibrium structure can be written as 

1 3N 

E = 2 Lrii + V(q) 
i = l 

(2.52) 

where the first term represents the vibrational kinetic energy in terms of mass ad-

justed coordinates, and V(q) is the potential energy, which can be written as an 

expansion in terms of Taylor series (here truncated at second-order) 

(2.53) 

where V{qeq} represents the potential energy at the equilibrium configuration. The 
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qi represents the mass weighted Cartesian displacements, defined as 

1 

Qi = M/' (xi - xi,eq) (2.54) 

where 1i represents the locations of the nuclei relative to their equilibrium positions 

Xi.,eq and their masses Mi. 

From the second derivatives of the potential energy in Eq. 2.53, the mass weighted 

force constants, fij can be formed 

(2.55) 

The force constants can be evaluated analytically or by single numerical differentia-

tion of analytical first derivatives, 

(2.56) 

or by double numerical differentiation, 

(2.57) 

In the actual calculations, especially for polyatomic systems, the :A1 are the elements 
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of a force con.c:;tant matrix, which can be diagonalized, and its eigenvalues, >.i, will give 

the actual values for force constants, which can be used to estimate the frequencies 

as 

(2.58) 

Positive force constants are a sign that moving out from the equilibrium zone results 

in an increase in energy. Thus having positive frequencies implies a true minimum on 

the PES. There are cases where negative force constants are present which can lead to 

the existence of imaginary frequencies. One imaginary frequency means that, on the 

potential energy surface (PES) of the molecule, there is a minimum in all dimensions 

but one. This is also called a first order saddle point or transition state. 

2.4.3 Zero-Point Vibrational Energy 

A nonlinear molecule containing N atoms has a total of 3N - 6 vibrational degrees 

of freedom. The vibration of molecules is most often described using the harmonic 

oscillator approximation. In this approximation, the vibrational energy of a molecule 

containing N atoms is the sum of 3N - 6 normal mode vibrations. 

The vibrational energy of a molecule at absolute zero (0 K) is called zero-point 

vibrational energy (ZPVE), and is given by 
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1 3N- 6 

EzPvE = 2,h ~ vi 
1 

(2.59) 

where vi is a normal mode vibrational frequency. The value of the zero-point vibra-

tional energy is usually added to the total energy of the optimized molecule, for a 

more accurate description of the total energy of a system. 

2. 5 Molecular Shape 

The representation of the shape of the molecules varies from simple ones, such a..s 

ball and stick, ball and bond type, and tube or wireframe representions to more com-

plex surface type representations based on a specific property, e.g. electron density 

surfaces, electrostatic potential surfaces, solvent accessible surfaces, or van der Waals 

surfaces. 

This thesis uses electron density as a theoretically calculated property to represent 

the shape of the molecules of interest. 

2.5.1 Molecular Isodensity Contours 

The electron density p(r) can be calculated from then-electron wavefunction solu-

t ion of the electronic Schrodinger equation from Eq.(2.37). For a single-determinantal 
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wavefunction in which the orbitals are expanded in terms of a set of N basis fimctions, 

</>JJ. , the electron density is given by the expression,3 

N N 

p(r) = L L PJJ.v</>JJ.</>v (2.60) 
JJ. v 

where P JJ.V are the elements of the density matrix, obtained from the eigenfimctions 

of the electronic Hamiltonian, 

N/2 

PJJ.V = 2 L CviC~i (2.61) 

The information on the electronic density gained through electronic structure calcu-

lations can be used for further analysis regarding the shape of a molecule. 

The shape group method17 offers a comprehensive description of t he shapes of 

molecules. It uses the concept of a molecular isodensity contour (MIDCO) surface, 

which plays an important role in the description of three dimensional electron densi-

ties. Accordingly, for any nuclear configuration, by choosing a small value a for the 

electron density, and by selecting all those points r in the three dimensional space 

where the density p(r ) is equal with the value of a (in other words, the electron den-

sity is constant) a molecular surface G (a) can be defined as 

G(a) = {r: p(r) = a} (2.62) 
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At very high density, there are disconnected, isolated spherical regions around the 

nuclei. As the density decreases, the isolated regions are connected, revealing existing 

bonding patterns. At very low density, the surface becomes large enough to enclose 

the entire set of nuclei. 

2.6 Isomerism 

Molecules having the same molecular formula but different structures are called 

isomers. They can be constitutional (structural) isomers or stereoisomers. 

a b 

Figure 2.1: Example of angular isomerism in helices with 6 fused units (a and b) 

During the present study, a particular kind of isomerism was observed in some of 
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the helices studied. That is, in the helices formed by an even number of fused units, 

the alternation of boron and nitrogen atoms leads to angular isomerism. 

For example, if one takes structure a from Figure 2.1 containing six fused hexag-

onal units and alternates the position of Lhe boron and nitrogen atoms in the helices, 

one gets a different structure b. 

c d 

Figure 2.2: Example of nonisomerism in helices with 5 fused units ( c and d) 

Taking the helix c from Figure 2.2 containing an odd number (five) of fused units 

and switching the boron and nitrogen atoms gives the same structure, d. As can be 

seen, there is no isomerism present in the case of odd numbers of fused rings; one 

structure is simply rotated by 180 d grees around an imaginary horizontal axis situ-

ated in the middle of the helix, becoming identical to the other. 

More complicated possibilities exist if further rings are used to extend such helices 

laterally. 
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2. 7 Computational D etails 

As with all other theoretical and experimental studies, the calculations and results 

presented in this thesis are not exempt from sources of error. 

The capabilities of the Hartree-Fock approximation in describing the correct ground 

state is restricted due to the HF limit problem and the fact that this level of theory 

does not account for the electron correlation.3 To better describe the stmcture of the 

helices studied, geometry optimization was also performed with density fimctional 

theory which is based on the electron density and accmmts for some of the correla­

tion energy. 

Geometry optimization of all the structures was done at the ab initio and DFT 

levels of theory using medium size basis sets 6-31G(d) and 6-31G(d,p). Single point 

energy calculations using second-order M!llller-Plesset (MP2) perturbation theory were 

also performed. All three levels of theory HF, B3LYP, and MP2 showed the same 

trend in the energy changes in case of the studied isomers. 

Similar ba.c;is sets anrl levels of theory were also used in some recent studies18- 21 

on boron-nitrogen structures containing fused borazine rings. One of the studies18 

focused on the boron-nitrogen analogue of naphthalene. These studies have compared 

theoretical data obtained at 6-31G( d) and 6-31 +G( d) basis sets. They reported negli­

gible improvement using the higher basis set and suggested the smaller sized 6-31G(d) 

basis set as being resonable for systems containing boron and nitrogen. Furthermore, 

while the calculated bond lengths at HF level were in good agreement with the ex-
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perimental values, the ones calculated at the MP2 level of theory overestimated the 

experimental bond lengths. 

Due to this fact and the large size of some of the helices studied in this thesis, 

geometry optimization at the MP2 level wa...:; avoided. It was decided that single point 

energy calculations at the MP2 level of theory using the 6-31G(d) basis set on the 

series of angular isomers would suffice in the description of their relative energies. 

However, a preliminary geometry optimization was still performed at MP2/6-31G(d) 

level of theory on the boron-nitrogen [6]helicene with no effect on the overall helical 

geometry. Data on the lowest vibrational frequencies and ground state energy at the 

MP2 level of theory is provided in Appendix D. 

Throughout the thesis, the flexibility and spring-like behaviour of the studied he­

lical syst ms was emphasised. This is justified by the values of the normal modes. 

Since these molecules do have the actual shape of a spring, one can expect that their 

vibrational motions imitate the vibration motions of macroscopic springs. Visual­

isation of the lowest vibrational frequencies for some of the helices is depicted in 

Appendix C. 

Overall, within the levels of theory and basis sets used, the results presented in 

this thesis are able to describe the electronic stmcture and demonstrate the relative 

stability of the isomeric helical systems. 
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Chapter 3 

Theoretical study on the structure 

and stability of some unusual 

boron-nitrogen helices * 

3.1 Introduction 

The interest in the structure, bonding, and electronic properties of boron-nitrogen 

clusters has increased in recent years.1-4 The boron-nitrogen atom pair, being isoelec­

tronic with the carbon-carbon atom pair, has been a likely replacement of the latter 

in a variety of carbon-based compounds. The change in nuclear charges introduces 

several specific effects in the structure as well as the electronic properties, which pro-

* Adapted from: C. E. Szakacs and P. G. Mezey. J. Phys. Chern. A , 112(11):2477, 2008. 
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vide new options for interesting molecular systems and potential nanomaterials. 

The discovery of hexahelicene5 encouraged investigations towards helically ex­

tended 1r systems leading, for example, to the synthesis6 of helical [7]phenylene. These 

structures are angular systems formed from N fused benzene rings in the ca.qe of he­

licenes and N fused benzene rings with N-1 interposed cyclobutadiene rings in the 

ca.<1e of phenylenes. Additional interest has been generated by their unusual chirality 

and optical properties. 7• 8 The geometry and energetics of phenylenes, helicenes and 

their isomers have been the subject of numerous theoretical studies.9- 12 lost re­

cently,13 theoretical investigations were carried out on the stability of more extended 

systems, up to double turn polyhelicenes, polyphenylenes, and analogous struct ures, 

a.s potential precursors towards helical graphites. 

Borazine, 14 the boron-nitrogen analogue of benzene, is well known. Borazanaph­

thalene, the boron-nitrogen analogue of naphthalene, first observed as a product 

formed during the gas-phase pyrolysis of borazine15 ha.s also been characterized both 

experimentally16-18 and theoretically.19 An earlier study investigated molecules con­

taining three fused borazine rings,20 suggesting a possibility for the existence of boron­

nitrogen polymers containing larger number of rings. Further studies r ported on the 

stabi lity of boron-nitrogen cyclacenes21 which are belt-like structure analogues of the 

carbon based cyclacenes. A series of linearly annulated boron-nitrogen analogues of 

acenes were also subject of detailed density f1mctional calculat ions.22 Most recently,23 

the synthesis of a tubular conical BN helix structure, having ela.stic properties has 
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been reported. Helical all-nitrogen and helical rutrogen rich fused-ring clusters were 

studied as well,24 however, to our knowledge, boron-nitrogen analogues of the helicenic 

and phenylenic angular systems were not yet the subject of any detailed theoretical 

studies. 

In the present chapter, computational investigations are reported for a series of 

single and double turn boron-nitrogen analogues of [N]helicenes and their angular iso-

mers (possible only if N is an even number), [N]phenylenes, and [N]methylenylnaphtha-

lenes. The boron-nitrogen analogues of benzene a, cyclobutadiene b, and methylenyl-

naphthalene c, are the structural units of these angular systems. N fused a rings 

a 

0 b 

D 

Figure 3.1: Structural units of the helices 

form the single turn (N = 5, 6, and 7) and double turn (N = 12) versions of the boron-

nitrogen analogues of [N]helicenes. An even number of rings in the boron-nitrogen 

helicenes leads to the existence of angular isomers, which can be distinguished by 

the different arrangements of the B and N atoms in the terminal ring (Figure 3.2). 

For brevity, the d isomer will be denoted as BN and the e isomer as NB. The 

boron-nitrogen analogues of [N]phenylenes are comprised of N (N = 5, 6, 7, and 13) 
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d e 

5) 5) B 
I 

I 

~-~ c~ 

Figure 3.2: The two possible structures d , e in the case of helicenes with even 

N rings, where the B and atoms, one of them present at each vertex of these 

structural formulas , are shown only along one bond . 

alternating a units fused to N-1 b units. Finally the helical boron-nitrogen analogue 

of [6]polymethylenylnaphthalene is obtained with six fused c units. 

3.2 Computational m ethodology 

The structures 1 - 8 (Figure 3.3 and Figure 3.4) were optimized at two differ-

ent levels of theory, Hartree-Fock and OFT with the B3LYP functional, using the 

6-31G(d) basis set.25• 26 All these methods are implemented in the Gaussian 03 soft-

ware package.27 For all optimized geometries, harmonic vibrational fTequencies were 

computed at the same level of theory. The lowest vibrational frequencies for all the 

optimized structures, no imaginary frequencies among them, are shown in Table 3.1. 

Single point energy calculations were performed at the MP2 level of theory using the 

6-31G(d) basis set for isomeric helices with HF optimized geometries. 
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1 2 

3a 3b 4 

Fig ure 3.3: The optimized geometries of boron-nitrogen analogues of [ ]helicenes and [. ]phenylenes, 1-4 (the boron 

atoms are in light, the nitrogen atoms are in dark colour) 



5 6 

7a 7b 8 

Figure 3 .4: The optimized geometries of boron-nitrogen analogues of [N]helicenes and [N] phenylenes, 5-8 



Table 3 .1: The lowest wavenumbers (cm- 1 ) of the studied boron-nitrogen helices. 

(Calculated values at HF /6-31G(d) shown in the second column, followed by those 

at B3LYP/6-31G(d) in the third column) 

BN[5]helicene, 1 47.19 45.58 

BN[6]helicene, 3a 34.27 31.96 

NB[6]helicene, 3b 31.94 32.44 

BN[7]helicene, 5 32.01 26.76 

BN[12]helicene, 7a 39.15 34.41 

NB[12]helicene , 7b 37.51 36.58 

BN[5]phenylene, 2 18.17 19.69 

BN[6]phenylene, 4 19.57 16.44 

BN[7]phenylene, 6 14.72 12.66 

BN[13]phenylene, 8 13.36 11.51 

BN[6]methylenylnaphthalene, 9a 15.88 15.41 

NB[6]methylenylnaphthalene, 9b 16.64 13.08 

In order to investigate the bonding pattern in the systems, electron density anal­

ysis was performed at the HF /6-31G(d) level. 
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3.3 Results and Discussions 

Geometries of the optimized structures are presented in Figure 3.3 and Figure 3.4, 

and the bond lengths in the single turn boron-nitrogen helices are indicated in Figure 

3.5, 3.6, and 3.7. 

BN NB 

a = 1.418-1.419 1.418 

b = 1.434-1.437 1.433-1.438 

c = 1.450-1.457 1.452-1.456 

d = 1.454-1.457 1.456-1.460 

Figure 3.5: Calculated bond lengths (in Angstroms) of BN[6]helicene and 

NB[6]helicene at HF/6-31G(d) 

Investigations on the optimized structures of 1, 3a, 3b, 5, 7a, and 7b, the boron-

nitrogen analogues of [N]helicenes (N = 5, 6, 7, and 12) , confirmed the existence of 

local energy minima by having real vibrational frequencies at both the Hartree-Fock 
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and DFT levels with the 6-31G(d) basis set. 

a = 1.446-1.448 

b = 1.414-1.417 

c = 1.472-1.476 

d = 1.394-1.400 

e = 1.455-1.456 

f = 1.446-1.449 

Figure 3.6: Calculated bond lengths (in Angstroms) of BN[6] phenylene at HF /6-

31G(d) 

Noted with a, b, c and din Figure 3.5 are the bond lengths of the boron-nitrogen 

analogue of helicenes found for the nonterminal rings of the helical systems. These 

bonds appear longer than those in their reported carbon analogues,l3 which could 

result from the weakening of the 1r bonding in the boron-nitrogen ring, due to the 

electronegativity difference between the boron and the nitrogen atoms. 
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BN NB 

a = 1.418-1.419 1.418-1419 

b = 1.429-1.441 1.428-1442 

C= 1.445-1.452 1.446-1450 

d = 1.439-1.440 1.439-1441 

e = 1.444-1.448 1.445-1451 

f = 1.454-1.455 1.456-1457 

r ---- -, r - ---~ 

' ' ' ' . ' 
( ) 

)- - -- --- -( 

' . 
( ) 

' 

\..- -- -- - -J 

N 

F igure 3.7: Calculated bond lengths (in Angstroms) of 

BN[6]methylenylnaphthalene and NB[6]methylenylnaphthalene at HF /6-31 G( d) 

However, these distances still fall in the range of the experimentally determined bond 

length values {1.400 to 1.453 A) of borazanaphtalene, 18 which could be considered a 

simple model somewhat similar to these fused helical systems. The bonding pattern 

appears to be stable and nearly uniform, with stronger bonds on the peripheries of 

the rings (bond type a in Figure 3.5), that is justified by general electron repulsion 

effects: electrons seek the periphery of extended structures, allowing them to increase 
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their formal "mutual distances". 

0.12(a.u.) 0.20(a.u .) 0.30(a.u. ) 

BN[6]helicene, 3a 

NB[6]helicene, 3b 

Figure 3.8: Electron density isocontours of single turn boron-nitrog n helicene 

This is in agreement with the results of more detailed electron density shape analysis 

of these molecule (Figure 3.8) . The isocontours at the high density value 0.30 a.u. 

already show significant deformations from local spherical shape of the constituent 
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atoms. 

Table 3.2: Total energies, at HF and DFT (in Hartree) and single point energies 

at MP2 (in Hartree) in case of boron-nitrogen analogues of [N]helicenes 

Molecule Level/Basis set 

HF /6-31G(d) B3LYP /6-31G(d) MP2/6-31 G( d) 

BN(5]helicene1 1 -879.7494 -885.1388 

BN(6]helicene, 3a -1039.3953 (3.5)* -1045.7518 (4.1) -1042.4254 (3. 7) 

NB(6]helicene, 3b -1039.4009 (0.0) -1045.7584 (0.0) -1042.4313 (0.0) 

BN(7]helicene, 5 -1199.0472 -1206.3717 

BN(12]helicene, 7a -1997.2850 (4.3) -2009.4474 (4.8) -2003.1411 ( 4.5) 

NB(12]helicene , 7b -1997.2919 (0.0) -2009.4550 (0.0) -2003.1482 (0.0) 

*The values in parenthesis show the energy in kcal/mol of the BN isomers, relative to the NB 

isomers in the case of N = 6 and N = 12. 

At the isocontour value of 0.20 a.u., the electron density analysis confirms bond 

type a being the strongest. The 0.12 a.u. electron density contours are special. On the 

one hand, they show a level of electron density where a single, but multiply-connected 

contour presents a prominent alteration of electron rich and electron deficient atoms. 

On the other hand, one can notice a rare phenomenon: actual hexagonal local struc­

tures give rise to nearly perfect triangular holes, a feature that may be useful in 

"shape-tlming" of local interactions. Considering an approaching molecule, interac-

62 

'---"~--------~- ----------------------------- ---



tions occurring at high density are effected by hexagonal patterns, while low density 

interactions are effected by triangular patterns. 

Taking into consideration the number of rings, as N increases, a decrease in the 

total energy of tmit structures is observed at both levels of theory (Table 3.2) . The 

gradual energy changes from molecule to molecule are approximately -159.65 and 

-160.61 ± 0.01 Hartrees at the HF/6-31G(d) and the B3LYP/6-31G(d) levels, respec­

tively. In case of an even number of N rings, both in the single 3 and double helix 7, 

the NB isomers 3b and 7b are energetically more stable than their BN counterparts. 

The difference in the relative energy values between the two isomers is 3.5, 4.1, and 

3.7 kcaljmol for single-turn helix and 4.3, 4.8, and 4.5 kcal/mol for double-turn helix, 

at the HF /6-31G(d), B3LYP /6-31G(d), and MP2/6-31G(d)/ /HF /6-31G(d), respec-

tively. 

Table 3.3: Total energies (in Hartree) of boron-nitrogen analogues of 

[N]phenylenes 

Molecule 

BN[5]phenylene, 2 

BN[6]phenylene, 4 

BN[7]phenylene, 5 

BN[13]phenylene, 8 

Level/Basis set 

HF /6-31G(d) 

-1196.5797 

-1435.4344 

-1674.2915 

-3107.4371 
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-1203.8299 

-1444.1177 

-1684.4076 

-3126.1526 



The boron-nitrogen analogues of [ ]phenylenes 2, 4, 6 , and 8 , were also optimized 

a.nd found to be energy minimum , tmrtures, ronfirmccl by vibra.tiona.l frequency ra.l­

culation . Except for B [5] phenylene, which has a planar structure, all the other 

have helical g ometries (Figure 3.3 and Figure 3.4). The uni t tructure in all species 

are characterized by six B- bond lengths, noted with a, b, c, d, e , and f in Figure 

3.6. 

0.12(a. u. ) 0.20(a.u.) 0.30(a.u.) 

Figure 3 .9: Electron density isocontours of single-turn BN[7]phenylene 

In the helices 4, 6 , and 8 , the bond lengths are ranging from 1.394 to 1.476 

where bond types d (1.394-1.400 A) and b (l.414-1.417 A) hav a prominent double 

bond character , which are close to the experimentally determin d B-N double bond 

length (1.400 A) in aminoborane .28 

The alternating strong and weak bond evidenced also in the electron density at 
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the isocontour value of 0.20 a.u. (Figure 3.9) suggest an approximate "Kekule-like " 

structure for these systems. 

Similar to the results obtained for the boron-nitrogen helicenes, the energy results 

(Table 3.3) show the analogous gradual total energy contributions of unit structures 

with the increasing number of N. The values of energy changes are nearly constant, up 

to five digits , approximately -238.85 and -240.29 ± 0.01 Hm·trees at the HF /6-31G(d) 

and the B3LYP/6-31G(d) levels, respectively. 

By increasing the number of fused boron-nitrogen rings, extended helices BN[6]poly­

methylenylnaphthalenes, 9a and NB[6]polymethylenylnaphthalenes, 9b can be ob­

tained (Figure 3.10). 

9a 9b 

Figure 3.10: The optimized geometries of extended BN and NB [6]poly­

methylenylnaphthalenes 

Their optimized structures were obtained and it was found that they are station-
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ary points corresponding to energy minima with real vibrational frequencies at the 

HF/6-31G(d) and the B3LYP/6-31G (d) level of theory. 

0.12(a.u.) 0.20(a.u.) 

9a 

• 

9b 

0.30(a.u. ) 

••••••••• ••• • • 
••• ••• . •. ...... . . ~~ . .. ......... 
··~ 

. .~ .•. ~ ... 
• • ..... ....... ..... ···"'"···. . •• •••••••• ••••• 

Figure 3.11: Electron density isocontours of single turn extended boron-nitrogen 

helices 

The values of the six most characteristic B-N distances in the helices denoted by 

a, b, c, d, e, and f in Figure 3.7 range from 1.418 to 1.457 A. From the electron 
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density shape analysis at the isocontour value of 0.20 a.u. (Figure 3.11), and from 

inspection of the optimized bond length values, it seems that the a type B-N bond 

is slightly stronger at the peripheries. This follows the general trend concerning the 

accumulation of electrons at the peripheries of the helices pointed out above. 

3.4 Summary 

Some novel boron-nitrogen analogues of angular helicenes, phenylenes and methyl­

enylnaphthalenes were investigated. Attention was given to their geometries and 

energies as such molecules could provide useful information in the quest for novel 

boron-nitrogen based nanomaterials. The relative stability of the possible angular 

isomers was also discussed. These structures may serve as somewhat compressible, 

"spring-like" building blocks in supramolecular construction . 

The primary goal of this study was to investigate the structural viability of some 

boron-nitrogen systems, where the employed electron density analysi · provided an 

alternative way for pointing out essential bonding features. 
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Chapter 4 

Helices of boron-nitrogen hexagons 

and decagons. A theoretical study* 

4.1 Introduction 

Following the discovery of fullerene1 and carbon nanotubes, 2 theoretical studies 

in the early 90's were already predicting the existence of their boron-nitrogen ana­

logues.3-5 The synthesis6 of boron-nitride nanotubes (BNNTs) and later the experi­

mental evidence7
• 8 for the first boron-nitrogen fullerene-like structures justified their 

structural characterization. These fully boron-nitrogen compmmds proved to have 

high chemical and thermal stability.9 Recently, the synthesis of novel boron-nitride 

helical conical nanotubes (BN HCNTs) having elastic properties wa.c; also reported.10 

Due to their interesting electronic, thermal and mechanical properties, stmctures 

• Adapted from: C. E. Szaka.cs and P. G. Mezey. J. Phys. Chern. A, 112(29):6783, 2008. 
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formed exclusively from boron and nitrogen could provide new options for novel rna-

terials with applications in nanotechnology. As a consequence, the theoretical study 

of the structure, stability, electronic and other properties of fully boron-nitrogen com-

pounds has attracted considerable interest. 1
H

7 

The earlier chapter investigated the structure and stability of some boron-nitrogen 

analogues of more extended polyhelicenic hydrogenated helices, providing some ad-

ditional information on extended boron-nitrogen compounds. 

NB BN 

Figure 4.1: The two types of nonhydrogenated boron-nitrogen angular helices NB 

and BN in case of six fused hexagons 

It was observed that, in the case of boron-nitrogen analogues of helicenes, depend-

ing on the actual arrangements of the boron and nitrogen atoms in the terminal ring, 

an even number of N fused rings leads to the existence of stable angular isomers, 

shown in Figure 4.1. According to our notations, the two isomers are clistinguished 

as follows: on the left hand side, the structures are called NB type helices, and the 
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right hand side structures are called BN type helices, respectively. 

In the present chapter, further computational investigations are reported for a 

series of nonhydrogenated boron-nitrogen helices, formed by an even number N of 

fused boron-nitrogen hexagons and larger polygons. 

The two types of initially assumed helical stmctures, NB and BN, convert to 

characteristically different equilibrium geometries, depicted in Figure 4.2 and Figure 

4.3. The NB isomers have stable forms as helices 1-4 with 6, 8, 10, and 12 fused 

hexagons. The initially a..c;;sumed helical BN isomers of hexagonal units, however, 

undergo ring opening at the terminal rings, leading to helices 5-8, with 2, 4, 6, and 

8 fused hexagons and 2 terminal decagons, respectively. Interchanging again the po­

sitions of B and N atoms in the latter BN type helices leads to additional isomers 

9-12. 

The geometrical structures, bond lengths, and energies of all these isomeric struc­

tures were compared for a better understanding of their relative stability as such 

helices may become building blocks for more extended novel nanostructures. 

4.2 Computational methodology 

Geometry ptimization calculations were performed for a number of nonhydro­

genated boron-nitrogen helices. The levels of theory used were HF and B3LYP with 

the 6-31G(d) basis set.18• 19 In addition, single point energy calculations were also 

performed at MP2/6-31G(d) level of theory, using the HF /6-31G(d) optimized ge-
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ometries. All these methods are implemented in the Gaussian 03 software package.
20 

For verification of the energy minima for all optimized geometries, harmonic vibra­

tional frequencies were computed at the same level of theory and zero point energy 

calculations have also been carried out. Electron density analysis was performed for 

some of the structures using DFT with the B3LYP flmctional and 6-31G(d) basis set 

for the purpose of obtaining additional information to help understand the bonding 

pattern in these systems. 

4.3 Results and Discussions 

4.3.1 Geometries and Bond Lengths 

The optimized geometries of all the boron-nitrogen structures 1-12 are shown in 

Figure 4.2 and Figure 4.3. Note that all the optimized structures have helicoidal ge­

ometry except compound 5 , which is a partial helix, and compound 9 , which prefers 

a planar conformation. 

All optimized structures are characterized to be minima by having real vibrational 

frequencies. The calculated lowest vibrational frequencies conesponding to primar­

ily spring-like motions of the helical systems are shown in Table 4.1. The ease of 

such distortions is an indication of the potential application of these units in flexible 

nanostructures. 

For the nonterminal rings of helices 1-4, there are essentially four kinds of boron-
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Table 4 .1: The lowest wavenumbers (em - l) of the studied boron-rutrogen helices 

1-12. (Calculated values at HF /6-31G(d) shown in the second column, followed 

by t hose at B3LYP/6-31G(d) in the third column) 

1 40.60 37.54 

2 29.51 18.35 

3 34.92 31.93 

4 33.01 31.47 

5 19.80 9.66 

6 16.55 15.30 

7 21.15 18.03 

8 25.31 22.69 

9 13.00 15.06 

10 17.00 17.12 

11 17.54 17.06 

12 18.50 16.63 

nitrogen bond lengths denoted j , k, 1, and m (Figure 4.4). Whereas the two bond 

lengths j and k tend to be larger, the bond length m is shorter, indicating bonds 

that are stronger at the peripheries of the helices. The two end-rings show major 

deviations when compared to the inner units of the helices. 

The final optimized structures 5-12 show a ring opening at the two original ter-
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rninal hexagons, leading to the formation of boron-nitrogen decagons at both ends. 

1 (N= 4)* 

j = 1.449-1.452 

k = 1. 55 2-1.664 

1= 1.376-1.444 

m = 1.279-1.282 

2 (N=6) 

1.444-1.468 

1.550-1.661 

1.372-1.44 7 

1.279-1.284 

j 

k\ ' 
I 

/t ____ ..J 

3 (N= 8) 

1.442-1.461 

1.550-1.652 

1.376-1.444 

1.278-1.283 

m N 

4 (N= 10) 

1.446-1.462 

1.549-1.649 

1.37 4-1.445 

1. 277-1. 286 

Figure 4.4: Bond lengths (in Angstroms) at B3LYP /6-31G(d) level of theory for 

helices 1 , 2 , 3, and 4. 

*TheN from the schematic representation of the structures represents the number 

of inner hexagons. This is valid also for Figure 4.5 and Figure 4.6. 

This ring opening tendency may be partly due to the preference of boron atoms 

to form colinear bonds when placed between two nitrogen atoms. The four bond 

types denoted by j, k , 1, and m , observed in helices 1-4 are characteristic for the 

inner hexagons of the helices 5-12 as well. However, for the terminal rings of the 

structures 5-12, nine types of boron-nitrogen bond lengths can be observed, denoted 
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5 (N= 2) 6 (N= 4) 7 ( = 6) 8 (N= 8) 

a = 1.363 1.362 1.365 1.366 

b = 1.297 1.297 1.294 1.294 

c= 1.338 1.337 1.338 1.338 

d = 1.318 1.319 1.318 1.318 

e = 1.349 1.348 1.347 1.346 

f = 1.319 1.320 1.321 1.323 

g = 1.358 1.357 1.353 1.352 

b = 1.289 1.290 1.293 1.294 

1= 1.372 1.380 1.378 1.378 

j = 1.465 1.451-1.457 1.445-1.459 1. 446-1.461 

k = 1. 568-1.600 1.554-1.591 1.551-1.592 1.551-1.587 

1= 1. 384-1.445 1.375-1.448 1.374-1.452 1.377-1.448 

m = 1.278 1.277-1.282 1.279-1.284 1. 278-1.285 

g f 
h e 

d 
1 __ ... -

c 

/ a 
/i 

'---~- - "' m N 

Figure 4 .5: Bond lengths (in Angstroms) at B3LYP /6-31G(d) level of theory for 

helices 5 , 6, 7 , and 8. 
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9 (N= 2) 10 (N= 4) 11 (N= 6) 12 (N= 8) 

a = 1.375 1.374 1.373 1.373 

b = 1.298 1.300 1.300 1.300 

c = 1.336 1.338 1.337 1.337 

d = 1.319 1.318 1.319 1.319 

e = 1.349 1.349 1.349 1.349 

f = 1.321 1.321 1.321 1.321 

g = 1.358 1.358 1.359 1.359 

b = 1.290 1.290 1.290 1.290 

i = 1.375 1.375 1.376 1.376 

j = 1.448 1.448-1.452 1.449-1.455 1.448-1.455 

k = 1.521-1.621 1.529-1.614 1.529-1.614 1.532-1.616 

1= 1.386-1.439 1.382-1.441 1.380-1.439 1.380-1.439 

m = 1.279 1.279-1.281 1.279-1.281 1.279-1.281 

() f 
Q" ( . ..!-· ···-~ . h 

. l 

! l 
'·· ... ._ .-~;,;) 

N 

Figure 4.6: Bond lengths (in Angstroms) at B3LYP /6-31G(d) level of theory for 

helices 9, 10, 11, and 12. 
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by a, b, c, d, e, f, g, b, and i (Figure 4.5 and 4.6). The corresponding bond lengths 

in the two decagons have the same values at both ends in all the structures due to 

symmetry reasons. Upon examining the bond lengths in the terminal polygon in each 

case (5-12), one can conclude that these bonds are consistently strong, much stronger 

than bond types k and j. 

4.3.2 Electron density analysis 

Electron density calculations were performed for the helices 2, 6, and 10, as well 

a..'l for the largest optimized stmctures 4, 8, and 12, using density flmctional theory. 

The detailed electron density shape analysis of these molecules (Figure 4. 7) provide 

a justification and are in strong agreement with the bond length considerations. 

The shape analysis shows a higher level of electron density distribution in the 

terminal rings (being decagons in helices 6, 8, 10, and 12, and hexagons in helices 2 

and 4) as well as along the peripheries for all the helices where the alternating pattern 

due to the alternation of boron and nitrogen atoms is well manifested. 

This electron density enrichment in the terminal and peripheral regions is prob­

ably due to the tendency of even partial systems for allowing electron repulsion to 

enhance arrangements with accumulations of electrons far apart, resulting in stronger 

bonds in the terminal rings and peripheries, respectively. Looking at the nonterminal 

rings, especially where both the boron and the nitrogen atoms are trivalent, there 
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2 6 10 

4 8 12 

Figure 4. 7: Electron density isocontours of helices 2 (with eight fused hexagons) , 6 

and 10 (with four fused hexagons and two terminal decagons) and helices 4 (with 

twelve fused hexagons) , 8 and 12 (with eight fused hexagons and two terminal 

decagons)at 0.20 a.u. 

is a depletion in the electron density (shown as discontinuity in the actual electron 

density contours at 0.20 a. u. ). This fact is also manifested in longer bond lengths in 

the inner hexagons. 
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4.3.3 Energies 

In all three types of helices, a..'> the number of fused rings increa..'>es, a nearly 

exactly linear decrease in the total energy is observed (Table 4.2). The helices 5-8 

are energetically more stable than the helices 1-4. The ring opening and formation 

of decagons at the two terminal rings seem to enhance their relative stability. The 

difference in the relative energy values between the two types of helices ranges between 

88.4 and 91.7 kcal/mol at the HF/6-31G(d) level, and between 75.0 and 78.9 kcal/mol 

at B3LYP /6-31G(d) level. The relative energy differences calculated at the MP2/6-

31G(d)/ /HF /6-31G(d) are lower in value, but follow a similar trend. 

The inclusion of ZPVE correction in estimating the relative energies does not 

modify the ordering and the considerable differences between isomers (Table 4.2). 

When comparing the 5-8 type helices to their 9-12 counterparts, it should be 

noted that structure 9 has a planar conformation, and contrary to the overall trend, 

it is lower in energy than the partial helix 5 by approximately 1.3 kcaljmol at the 

HF /6-31G(d) level and by approximately 1.5 kcaljmol at the B3LYP /6-31G(d) level 

of theory (Table 4.2). However, the fully helicoidal structures 10, 11, and 12 are 

higher in energy than the helices 6, 7, and 8 , by approximately 1.7, 5.5, and 7.2 

kcaljmol at the HF /6-31G(d) level of theory and by 0.8, 3.3, and 4.6 kcaljmol at 

the B3LYP /6-31G(d) level of theory, respectively. The relative energy differences 

calculated at the MP2/6-31G(d)/ /HF /6-31G(d) follow the same trend. 
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Table 4.2: Calculated total energies (E, in Hartree) , relative energies** (.t.E, in kcal/ mol) , sum of t otal and zero-point 

vibrational energies (E + ZPVE, in Hartree), relative energies including ZPVE (.t.E' , in kcal/ mol), and single point 

energies (Esp, in Hartree) for boron-nitrogen helices 1-12 

Molecule HF /6-31G(d) B3LYP /6-31G(d) MP2/ 6-31G(d) 

T ~E E + ZPVE ~E' E ~E E + ZPVE ~E' Esp ~E 

1 -1029.4354 88.4 -1029.3026 89.4 -1035.4972 77.3 -1035.3734 77.7 -1032.4391 58.4 

2 -1346.2350 86.3 -1346.0600 87.3 -1354.1588 75.0 -1353.9958 75.4 -1350.1728 54.3 

3 -1663.0285 90.0 -1662.8113 91.0 -1672.8160 77.5 -1672.6135 77.9 -1667.9026 58.2 

4 -1979.8189 91.7 -1979.5597 92.6 -1991.4709 78.9 -1991.2292 79.2 -1985.6301 60.1 

5 -1029.5763 0.0 -1029.4450 0.0 -1035.6203 0.0 -1035.4973 0.0 -1032.5321 0.0 

6 -1346.3726 0.0 -1346.1992 0.0 -1354.2783 0.0 -1354.1159 0.0 -1350.2594 0.0 

7 -1663.1719 0.0 -1662.9562 0.0 -1672.9395 0.0 -1672.7377 0.0 -1667.9955 0.0 

8 -1979.9651 0.0 -1979.7073 0.0 -1991.5966 0.0 -1991.3554 0.0 -1985.7259 0.0 

9 -1029.5784 -1.3 -1029.4471 -1.3 -1035.6228 -1.6 -1035.4997 -1.5 -1032.5348 -1.7 

10 -1346.3698 1.7 -1346.1963 1.8 -1354.2775 0.5 -1354.1150 0.5 -1350.2561 2.1 

11 -1663.1632 5.5 -1662.9477 5.4 -1672.9343 3.3 -1672.7326 3.2 -1667.9850 6.6 

12 -1979.9536 7.2 -1979.6961 7.0 -1991.5893 4.6 -1991.3485 4.4 -1985.7128 8.3 

**All relative energy values are calculated in comparison to the Bet of helices 5-8, for which a relative energy of zero it> assigned. 



4.4 Summary 

The initially assumed helical BN isomers of hexagonal units undergo a ring open­

ing in the terminal rings due to the boron atom's preference for linearity. Comparing 

the energy values of the fully optimized ground states, it can be concluded that the 

ring opening stabilizes the helices containing terminal decagon rings. Again, by al­

ternating the boron and nitrogen atoms in these helices, new isomers are obtained. 

In the present study, attention wa.c; given to the relative stability, geometry, bonding 

pattern, and energies of these isomeric helices as such molecules could provide useful 

information in the quest for novel materials based fully on boron and nitrogen. These 

structures are rather flexible and behave like "nano-springs ", suggesting new possi­

bilities, and may become models towards the synthesis of new, helical boron-nitrides. 
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Chapter 5 

Laterally extended spiral graphite 

analogue boron-nitrogen helices* 

5.1 Introduction 

Borazine based polymers are being considered as precursors for the synthesis of 

boron-nitride ceramics.1• 2 An earlier theoretical study3 investigated molecules con­

taining up to three fused borazine rings, predicting the possibility of boron-nitrogen 

polymers containing larger numbers of six-membered rings. Further studies4• 5 re­

ported also on the stability of "cycled-fused-borazines", belt-like structures, analogues 

of the carbon based cyclacenes, and on the boron-nitrogen analogues of acenes, struc­

tures comprised of linearly fused borazine rings. 

The investigation in previous chapters focused on the structure, energy, and rel­

• Adapted from: C. E. Szakacs and P. G. Mezey. J. Phys. Chern. A, 113(17):5157, 2009 
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ative stability of hydrogenated boron-nitrogen analogues of angular fused-ring struc­

tures, like helicenes, phenylenes, and single turn polymethylenylnaphthalenes and 

nonhydrogenated boron-nitrogen analogues of helicenes, respectively. 

In this chapter, computational investigations on a series of laterally extended 

boron-nitrogen helices are reported. The carbon analogue was studied recently,6 at 

HF /6-31G(d) level of theory, being considered a "model toward helical graphites". 

The single-turn boron-nitrogen analogue of polymethylenylnaphthalene comprised of 

six fused units was briefly discussed in Chapter 3. Although derivable from one­

another by interchanging nitrogen and boron atoms, they are very similar but not 

isomeric structures. For isomerism, an even number of heavy atoms in the fused 

borazine rings or hexagonal type units is required, generated by the alternation of 

the positions of the boron and nitrogen atoms. In the case of the boron-nitrogen 

analogues of polymethylenylnapthalenes, which are comprised of an odd number of 

fused rings, this is not generally fulfilled and further discussion on this matter will 

follow in the next sections of the present chapter. 

These structures are likely to serve as building blocks in the synthesis of novel 

spring-Like helical boron-nitride compounds with applications in nanotechnology, es­

pecially if flexible interconnecting building units between geometrically distant func­

tionaltmits are needed. 
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5.2 Computational methodology 

Geometry optimization of all the boron-nitrogen helices were performed at the 

Hartree-Fock and DFT level of theory using the B3LYP hybrid functional7• 8 with the 

use of the 6-31 G( d,p) basis set as implemented in the Gaussian 03 software package.9 

Vibrational frequencies were computed by determining the second derivatives of the 

energy for all optimized geometries at the same levels of theory in order to verify the 

energy minima. 

5.3 Results and Discussions 

5.3.1 Boron-nitrogen analogues of [N]polymethylenylnaphthalene 

Geometries of the optimized structures of the boron-nitrogen analogues of [N]poly­

methylenylnaphthalene (N = 6, 8, and 12) are depicted in Figure 5.1, Figure 5.2, and 

Figure 5.3. An interesting aspect of these helices is that the alternation of the posi­

t ion.'> of the boron and the nitrogen atoms leads to very similar helical conformations. 

Even though the number of existing bonds and the number of atoms in both struc­

tures are the same, the total number of heavy atoms is odd, hence one of the helices 

has an extra nitrogen atom and the other has an extra boron atom. 

From now on we will refer to these structures as the NxByHz helices (1, 3, and 

5) and the BxNyHz helices (2, 4, and 6), where the y = x - 1 relation is valid gener­

ally. Investigations on all the optimized helices 1-6 confirmed the existence of energy 
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minima by having real vibrational frequencies at both levels of theory. The lowest 

vibrational frequencies correspond to spring-like motions, observed also in the helical 

systems studied in the earlier chapters , a potentially useful aspect in nanotechnology. 

helix 

1 

2 

3 

4 

5 

6 

bond type a 

1.418 -1.419 (1.422- 1.423) 

1.418 -1.419 (1.422) 

1.418 -1.419 (1.422- 1.423) 

1.418 -1.419 (1.421 - 1.423) 

1.418 -1.419 (1.423- 1.424) 

1.418 -1.420 (1.422 - 1.424) 

r- -- ..... 
' ' 

I ' ' 
( 

' ' ( 

' ' ...... - ... -

a 

bond type g 

1.454- 1.455 (1.458 - 1.459) 

1.456- 1.457 (1.461 - 1.463) 

1.453- 1.457 (1.457- 1.461) 

1.452- 1.460 (1.457- 1.465) 

1.455- 1.458 (1.459 - 1.462) 

1.453 - 1.460 (1.456 - 1.465) 

-----{ 

' 

/ 
----J 

' ' 
' 

) 

Figure 5.4: Bond lengths (in Angstroms) at HF and DFT (in parenthesis) level 

of theory for peripheral bond type a and inside loop bond type g in the optimized 

boron-nitrogen helices 1-6. 
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Marked with a, b, c, d, e, f , and g in Figure 5.4 are the calculated bond lengths of 

the boron-nitrogen helices. The areas at the peripheries of t he helices characterized 

by bond type a, resemble partial aminoborane fragments. 

Table 5.1: Calculated energies (in Hartree) of the optimized boron-nitrogen helices 

1-6 

Molecule 

1, N2sB21H23 

2, B2sN21H23 

3 , 37B35H29 

4 , B37N35H29 

5 , NssBs4 H41 

6, BssNs4 H41 

HF/ 6-31G(d,p) 

-2207.6926 

-2177.8993 

-2924.4829 

-2894.6996 

-4358.0604 

-4328.2679 

L vcls of theory 

B3LYP /6-31G(d,p) 

-2220.9482 

-2191.0206 

-2942.0206 

-2912.0923 

-4384.1620 

-4354.2343 

In these cases, bond type a has a pronounced double-bond character (1.418-1.419 A), 

close to the value in the real aminoborane10(1.400 A). Bond type g connects trivalent 

boron and nitrogen atoms in the inner part of the helices, is weaker in strength, and 

can have a determining factor in the curvature of the helices. As seen in Figure 5.4, 

bond type g increases in length slightly going from the simple h lice 1 and 2 to the 

larger helices 5 and 6, whereas bond type a remains almost constant throughout the 

series at both levels of theory. 
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The valu of the remaining bond types b, c, d, e, and f are between 1.4.29-1.4.52 

A at Lhe HF and 1.4.33-1.4.57 A at the density functional level of th ory. The bond­

ing pattern appears to be stable and equilibrated, in agreement with the result of 

electron den ity calculations, shown in density i ocontours at 0.20 a.u. en in Figure 

5.5, showing th pattern of strong and weak bond . 

5 6 

Figure 5.5: Electron density isocountours of helices 5 and 6 at 0.20 a.u. 

From an energetic point of view, the rlifference between the two type of extenrlerl 

helices is around 30 Hartree. which i con istent with the energy difference between 

a boron and a nitrogen atom. 
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5.3.2 Laterally extended boron-nitrogen helical isomers 

Taking into consideration the number of fused hexagonal units in the case of 

boron-nitrogen analogues of polymethylenylnaphthalenes presented earlier , one finds 

that they are generally comprised of an odd number of rings, 17 in case of helices 

1 and 2 , 23 in case of helices 3 and 4 , and 35 fused rings in case of helices 5 and 

6 . However if one more ring is attached to one of the ends of helix 1, (N28B27H23) 

or helix 2 (B2 27H23 ), one gets two helical isomers, 7 and 8. These are comprised 

of an even number (18) of fused ring having the formula 29B29H24 and B29 29H24 

(Figure 5.6). 

The ground state energies for the two isomers are shown in Table 5.2, the relative 

difference between t he two helices being 3.2 kcal/ mol at the Hartree-Fock and 3.8 

kcalj mol at the density functional theory. 

Table 5 .2: Total energies (in Hartree) of laterally extended boron-nitrogen helical 

isomers 

Molecule 

7 , N29B29H24 

8 , B29 N29H24 

Level/ Basis set 

HF / 6-31C ( d) B3LYP / 6-31G(d) 

-2312.2596 (3.2) -2326.1611 (3. ) 

-2312.2648 (0.0) -2326.1672(0.0) 

*The values in parenthesis show the energy in kcal/ mol of the isomer 7, relative to isomer 8 . 
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Although full optimizations were performed only for helices containing 18 fused 

hexagonal units, it is clear that fusing one more hexagonal unit to the helices 3, 5 or 

4 , 6 leads to the same kind of isomerism. 

5.4 Summary 

The electronic structure of novel laterally extended boron-nitrogen helices was 

investigated. These structures may serve as potential models for spring-like nanos­

tructures, where electronic and stability properties can be influenced by outside in­

teractions with the electron-rich N atoms, and alternatively, by the electron-poor B 

atoms. By alternating the positions of the boron and nitrogen atoms, two very simi­

lar structures are possible, the NxByHz helix (1, 3, and 5) and BxNyHz helix (2, 4, 

and 6). The same alternation of the boron and the nitrogen atoms in the laterally 

extended helices containing even number of fused hexagonal units leads to angular 

isomers. Such isomerism could have importance by providing alternatives of having 

the "right atom in the right place" in nanosprings, where strong or weak links to 

various locations along the spring are needed. 
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Chapter 6 

Conclusions 

One of the main goals of this thesis was to investigate and describe the struc­

ture, energy, and shape of some boron-nitrogen helical structures as such molecules 

could be useful candidates for the synthesis of new helical boron-nitrides. Quantum­

chemical computation.'> were performed using methods based on ab initio and density 

functional theories. 

The studied boron-nitrogen helices range from simple single turn type helices, 

e.g. the boron-nitrogen analogue of helicenes and phenylenes, to more complicated, 

laterally extended helices, such as the boron-nitrogen analogues of polymethylenyl­

naphthalenes. 

One particular finding of this research is the existence of a special type of isomerism 

resulting from alternating the boron and nitrogen atoms in the helices containing an 

even number of fused building units, e.g. the helicenes. 
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By taking a closer look at the investigations of these boron-nitrogen helices that 

were introduced in Chapter 3, 4, and 5, some conclusions can be drawn from each 

individual study. 

Chapter 3 investigated the structure and energetics of some hydrogenated boron­

nitrogen helices, the boron-nitrogen analogues of [N]helicenes, where N = 5, 6, 7, and 

12, [N]phenylenes, where N = 5, 6, 7, and 13, and [6]polymethylenylnaphthalenes. 

Ab initio and density f1mctional theory calculations revealed: 

• The NB isomers are energetically more stable than their BN counterparts in 

case of the boron-nitrogen helicenes. 

• The energy of helices linearly decreases with the increased number of fused 

structural 1mits. 

• There is a trend of electron accumulation at the peripheries of the helices, re­

sulting in stronger bonds at the margins. 

Chapter 4 presented some nonhydrogenated boron-nitrogen analogues of helicenes 

and their isomers comprised of fused hexagons with terminal decagons. This investi­

gation resulted in the following conclusion..c;: 

• The initially assumed helical BN isomer of hexagonal units 1mdergo a ring 

opening in the terminal rings. 
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• The ring opening stabilizes the helices, making them energetically more favor­

able. 

• Alternating the boron and nitrogen atoms in the latter helices results in new, 

relatively stable isomers. 

• The same trend of electron accumulation at the peripheries of the helices is 

observed. 

Chapter 5 consists of the investigation on laterally extended boron-nitrogen he­

lices. 

• By alternating the positions of the boron and nitrogen atoms, two very similar 

structures are possible, the NxByHz type helix and the BxNyHz type helix. 

• The energy difference between the two types of helices is around 30 Hartrees, 

which is consistent with the energy difference between one boron and one ni­

trogen atom. 

• Fusing one more hexagonal 1mit to these helices leads to laterally extended 

helical isomers with an energy difference of around 3.2-3.5 kcal/mol, depending 

of the level of theory used. 
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6.1 Future Work 

Some of the future directions which could be pursued in further investigation of 

these boron-nitrogen helices are: 

• The boron-nitrogen helices containing smaller number of units, especially the 

ones with six fused rings could be investigated at higher levels of theory (e.g. 

MP2) 

• Inclusion of carbon atoms between the boron and nitrogen atoms in the helical 

structures in order to compare them with fully carbon and fully boron-nitrogen 

cmmterparts. 

• Replacing the hydrogen atoms with other moieties (F, OH, CH3 ) at the phe­

ripheries could result in different electronic distribution. These effects could be 

the focus of further theoretical studies. 
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Appendix A 

CUBE Keyword in Gaussian 

The electron density has been evaluated using the CUBE keyword incorporated 

in the Gaussian software. 

An example of an input file used for the calculation of electron density in case of one 

of the helices is shown below. Please note that instead of the Z-matrix, cartesian 

coordinates can be used as well. 

The output file generated can be visualized with a variety of available software. 
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-start of input file 
#p HF/6-31G(d) cube=(100,density,full,fine) 

8N6helicene_den 

81 

0 1 
H 
H 
H 
H 

1 
2 
3 

82 1 
83 2 

N 12 839 10 
H 40 B40 12 
N 12 B41 10 

81 7.02641282 
82 2.55479549 
83 7.03880805 

037 -89.64240017 
038 171.29409132 
039 98.48206383 

8N6helicene_ den. cube 

-end of input file 
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Appendix B 

Atomic Units 

In the description of the theory in Chapter 2 and in the results of the computa-

tional calculations in Chapter 3, Chapter 4, and Chapter 5 the units used are atomic 

units (a.u.) . In a.u., the charge on the proton, e, the ma.'>s of the electron, 'l'ne, and 

then each have a numerical value of 1. Thus, the equations used are much simplified. 

This way the atomic unit of length will be 

(B.l) 

also called the Bohr. The atomic tmit of energy is described a.'> 

(B.2) 

and is called the H artree. 
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Appendix C 

Visualization of Normal Modes 

Throughout the thesis the flexibility and spring-like behaviour of the studied he­

lical systems is emphasised. This is justified by the values of the vibraUonal frequen-

cies. 

Visualization of the spring-like motion of the lowest normal modes at some of the 

helices studied. Frequencies were calculated using the B3LYP/6-31G(d) optimized 

geometries. 
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Figure C.l: Lowest normal mode of helix 3a from Chapter 3 
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Figure C.4: Lowest normal mode of helix 1 from Chapter 5 
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I. 5 from Chapt r 5 d f he IX . a! rno eo 5. Lowest norm Figure C .. 
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Appendix D 

Example of Optimization at MP2 

A preliminary optimization on the boron-nitrogen helix containing six fused rings 

was performed at the MP2/6-31G(d) level of theory. There was no effect on the 

overall helical conformation. 

Table D.l: The lowest wavenumbers (cm- 1) and ground state energies (in 

Hartrees) for the optimized BN[6]helicene 

Wavenumber 

Total energy 

MP2/6-31G(d) 
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37.55 

-1042.4301 










