

An Infrast, ucture to Communicate
with Wireless Devices

By
© Sharon Koubi

A thesis submitted to the School of Graduate Studies in

partial fulfillment of the . juirements for the degree of
Master of Science
Department of Computer Science
Memorial University
Suk...itt 1on March 2008

St. John'’s Newfoundland

Infrastructure to Communicate\ Sharon Koubi

Absti..ct

Contemporary and future network protocols allow wireless devices to send and
receive information with 1sonable reliability and at reasonable speed. Yet, for an
application to take advantage of the full networking capabilities of modern devices.
much overhead is needed. Although the physical networking capabilities are embedded
in the wireless device, an accepted standardized software protocol for utilizing these
capabilities is not fully in place yet. There is a need for an inf tructure and a protocol
for data communication with wireless devices. Such an infrastructure could serve as a
middleware tool for wireless application developers that will decrease the amount of
overhead for wireless application development. This work proposcs the function and
structure for that infrastructure, the details of the protocol that can be used and
discusses issues of selfishness and cooperation when such middleware is used

cooperatively by uncoordinated parties.

9

Infrastructure to Communicate\ Sharon Koubi

Acknowledgments

| would like to thank the faculty and staff of the computer science department at
Memorial University for their help d support through the years | have been a student
here, in particular my sup isor Dr. Banzhat and my Honours supervisor Dr. Mata-
Montero. | would also like to acknowledge the great help I received from Dr. Shalaby
from the Math Department. | '+ Masters thesis would not be in the interesting areca of
wireless networks if not for the initiative and ideas of the people at Consilient,
particularly Mr. Trevor Adey, Mr. Rod White and Mr. Dwayne Bennett. In addition to
great ideas, this work was generously supported financially by Consilient. Finally, |
would like to thank my wife, Inbal Bahar, for her support and for her help with editing

this work.

J

Infrastructure to Communicate\ Sharon Koubi

ADSIIACE ...ttt ettt ettt e et en e e er e s senes 2
ACKNOWIBAZMENTS. ..o ettt 3
1. Introduction and Roadmap..........cccccuvriieiiiiiie e 9
2. The Need for an InfrastrUCTUIE.......covvieiiereeit ettt e I
2.1, Middleware CONCEPLSeeiuiiiiiieiiiiie ettt ettt I
2.1.1 Middleware SYSteMScociiiiiiiiiiiiieie e 12
2.1.2. Differences between Fixed and Mobile Distributed Systems.................... 13
2.1.3 Middleware for Fixed Distributed Systemscocooevviiiiiiiiis [
2.14 Middleware for Mobile Systems..........oocviiiiiiiiiiii e 16

2.2, Middleware for Mobile Distributed SyStems........c.cccovcieeiiiiiiiiiieniec e 17
2.2.1. Asynchronous communication using JMS........i, 18
222, Mobiware - Using ..adi »nal Middleware for Mobile Computing.......... 19
2.2.3. UIC — Context Awareness Based Middlewarec....ccoooveinie 21
2.2.4. Xmiddle — I a Sharii Oriented Middlewareccooco i, 23
2.2.5. Jini — Service Discovery in Mobile Computing Middleware 25
22.6 JCAF — Context AWArENESSceiviiriieriieiieiiiee et st 26

2,30 SUMMATY oo e e s 27

3. INAUCING COOPEIALION.cuiiiuriiieiieeetieet ettt et ettt ettt et sine e 28
3.1. Cooperation in Wireless Ad-Hoc Networkscccovvevrviniiiiiinn 29
3.1.1. Problem Descriptionccooviviiiiiiini 29
3.1.2. Classifying Node oehaviours. ..o 30
3.1.3. Modeling the Network as a Market..........cccoceeciiiiniininiiiiiii . 33

4,

Infrastructure to Communicate\ Sharon Koubi

3.1.4. The Backbone Method ..o 34
3.1.5. A More Formal Approach.......ccooovoieeieiiiiie e 35
3220 SUIMIMATY (it e e et e e et e e e e et ee e e e teeae e s e eees seseeeeensneeens 37
Introducing AIM: Advanced Infrastructure for Mobile Devices........ccccoeviveinn.n 38
4.1, Infrastructure FEAtUIESc.cccooiiiiiiiiiii e 39
4.1.1. Pushing Data to Mobile DeViCes.........ccoocviriiniieniiiiiniicc e 39
4.1.2. Connect Mobile Devices to Cc | srate Networksocovvvevieevciiieiiieine 39
4.1.3 Handle Intermittent CONNECIVILY ..uiiiiiiirieieiiiieeeeiie e eiiiee e 40
4.1.4 Filter Unwanted Informationcccccomiiiiiiiiiiicccee 40
4.1.5 AIM as a Connection Point to Protocols and Applications 40
4.2 INfrastruCtUre CONCEPLS ..evvie it ettt e 41
4.2.1 A Scalable SErvicecoociviieiniiiieiiie 41
4.2.2 SECUNILY POLICY woiiiiiiiiee et 42
423 ependability and ™ >centralization............ccooooiiiiii 42
424 Reduce Processing Time and Network Time for the Mobile Device ?
42.5. AIM as a Private or Shared Infrastructureco.ccovevivicniii 42
4.3, The Structure of AIMo 43
4.3.1. An Overview of the Structure ..o 45
4.3.2. ATM SEIVICES ettt 45
4.3.3. AIM Client Applications.........cccooiiiiieoiiiiiie e s 46
4.34. AIM Device Directory S 1€ .evvcvviviiiiieiiiiiiciiii e 46
4.35. AIM Devices SUPPOrt SEIVETScocoviiiiiiiiiiiiiiiii e 46
4.3.6. AIM Components NE{ICAtIONooeciviiiieiie e 48

Inf tructure to Communicate\ Sharon Koubi

4.4, SUIMMATY oottt et ettt b et b et ene e e e e s 48
5. The AIM NEIWOIK....ociiiiiii et e 49
5.1. AIM Network Topology and teractions..........cceeveeveeivreiiercieiieeiieee e 49
5.1.1. A Device RegiSters t0 @ SEIVICE.....ovvvivviriirieeieieieeeie e cte e 49
5.1.2. The Relation Between a Service and the ADSS and ADDS 49
5.1.3. A Device "Knows™ of an ADSS ... 50
5.1.4. A Device is Rt “stered to an ADSS ... 51
5.1.5. An ADDS “Knows™ of @ DeVICe........ooceeruiiiiiiiiiiiiiie e 51
5.1.6. An ADDS “Knows™ About Another ADDS ... 51

5.2, SUMMATY oot et 52
0. The ATM ProtoCOl....cccoiviioiiiiie et 53
6.1. Protocol OVEIVIEWcccciiiiiiiiiiiii ittt 53
6.2, Protocol OPErationsccccviviiiieirieciieeeire et et ee e sebessee e eere e eneeseene e 54
6.2.1. Searching for an ADSS .. 54
- AT viceRegis stoan ADSS L 57
6.2.3. A Device R “steri 10 an AIM S 7ice woiiiiiniiiiii 63
6.2.4. Pushing data to @ device......ocoviiviiiiiiiii e 63
6.2.5. Sending data to @ ServiCecooiiiiiiiiciiiic e 63

0.3, SUIT AT ettt ettt e bt ettt te e e e enee e 64
7. MOdEIINE OOPEIALION ..eoieiiieiie ettt ettt ettt ettt 65
7.1 Problem DesCriptionccocoiiiiiiiiiiiiiiir e 65
7.1.1. Attacks and Misl “lavio tI Should be Prevented............................ 65
7.1.2. Algorithm Requirements..........occoviiiiiiiiiinnii e 66

Infrastructure to Communicate\ Sharon Koubi

720 SysSteM MOdel ..o e 67
7.2.1. Basic Definitions......ccoovvvioreire e 67
7.2.2. Utility FUNCHION ..ot 09

7.3, Algorithm Descriptionccococoiieiiiiiieeeee e 70
7.3.1. A Simplified SCeNArio......cooovvi it 70
7.3.2. Rational and Pareto Optimal Operating Pointcccovvieiiiiieerenn 70
7.3.3. The Distributed Tit for Tat A" Hrithm ..o, 71
7.3.4. Algorithm SImulations.........cccooiiiiiiniieii e 74

7.4, Handling Irrationalityccoooooiiiiiieieie i 76

750 SUMMATY cootiiiiiiiett ettt ettt b e e eess e s e eree et eneeenenanaas 77

8. The Implementation of AIM ..ot 78

8.1, The AIM AP oot 78
8.1.1 Common AP ..o e 78
8.1.2 Server APl 79
8.1.3 CHEnt APT .o 80

8.2 Common Moduleoooiiiiiiii e 80

8.3, AIM SEIVEI .o 80

Bid. ATM ClIENE oottt e et e st e s e ere e e ees 81

8.5, AIM Simulation SYSEEMcoiiiiiiiiiiiiiieie ettt 81

B0, SUM A oottt 81

0. SUMMAIY ettt ettt ettt e 83

9.1. Key Points of ThiS WOrKccccoociiiiiiiiie et 83

9.2. The Benefits of a System like AIM ... 83

Infrastructure to Communicate\ Sharon Koubi

9.3. Proposals for Future Work.........ccocooi

A DOUT THE AULNOT oot e et e et ee s tetv e s et aaeanaaasee e satbrbaanaas

References

Infrastructure to Communicate\ Sharon Koubi

1. Introduction and Roadmap

The Internet offers access to information sources worldwide. With the advance of
wireless networking we expect to benefit from that access everywhere. not only when we
arrive at familiar places such our homes or offices [11]. Contemporary wir :ss
technology offers an increasing v. ety of wireless devices that allow Internet
connectivity [22] and leads us to the vision of nomadic computing in which technology
allows anyone to leave their office and still have seamless access to the same set of
network services as they had at their office [12]. Enterprises are looking for mobile
solutions that empower their employees to work more productively while on the road. In
many areas there is a growii need for advanced applications that will decrease the gap
between the level of productivity that can be achieved on a mobile device and on a
desktop workstation [20].

However, while the availability of wireless networks and capable mobile devices are a
necessary condition for mobile enal :d applications, it is not a sufficient onc. A
significant trend is the requirement of ever-faster service development and deployment.
An immediate conclusion is the requirement for various services and application
frameworks and platforms; i.e.. middleware that supports the rapid development of
applications that will support mobile devices [24]. Typical middleware scrvices include
directory. trading and brokerage services for transactions, persistent repositories and most
important different transparencies such as location and failure transparency [4].

This work lays a design and analysis for a middleware infrastructure that supports
mobile devices. The presented infrastructure is named AIM: Advanced Infrastructure for
Mobile devices and it is focused on allowii developers to create applications for mobile
devices that will seamlessly combine with existing distributed enterprise applications.

This work is organized as follows. Chapter 1 is this short introduction. The 2™ and 3™
chapters review related work. Chap -2 is ‘iews mobile oriented middleware. Chapter
3 reviews inducing cooperation. ...e algorithm that controls the infrastructure is designed

to induce cooperation among the participants.

Infrastructure to Communicate\ Sharon Koubi

The chapters that follow describe the proposed infrastructure. Chapter 4 is an
introduction to the AIM infrastructure. Chapter 5 has a more formal description of the
AIM network components, and Chapter 6 includes a detailed description of the proposed
infrastructure protocol. Chapter 7 is dedicated to the investigation ot inducing cooperation
among the participants of the inf itructure. The chapter presents the algorithm that is
used to induce cooperation. Chapter 8 describes the implementation of the AIM
infrastructure. Finally Chapter 9 summarizes the work and presents ideas for future

related work.

Inf tructure to Communicate\ Sharon Koubi

2. The Need for an Infrastructure

This chapter reviews related work in the field of middleware for mobile applications.
Applications for mobile devices present challenging problems to designers and
developers. Devices face temporary and unannounced loss of network connectivity when
they move, and connection sessions can be short and they need to discover other hosts in
an ad-hoc manner. Handheld devices are likely to have limited resources compared to
desktop workstations, such as low battery power, slow CPUs, little memory and a limited
display. Changes in the working environment are likely to occur frequently. such as
change of location or context conditions and variability of network bandwidth [16].

The development of distributed applications for mobile devices can be a complex
process. The application designers should not have to deal explicitly with problems
related to distribution, such as heterogeneity, scalability, and resource sharing. The role of
middleware in this case would be to supply designers and developers with a higher level
of abstraction, hiding the complexity introduced by distribution and the unique mobile
environment. 1is chapter describes the characteristics for middleware that supports
mobile devices and reviews existing solutions.

AIM is designed as a middleware application. In this chapter the concepts of
middleware applications are reviewed. Several examples of other middleware

applications for mobile devices are discussed.

2.1. Middleware Concepts

Building distributed applications, either mobile or stationary, on top of the network
layer is extremely tedious and error-prone. Application developers would have to dcal
explicitly with all the non-functional requirements such as heterogeneity and fault-
tolerance, and this complicates considerably the development and maintenance of an
application. Middleware that takes care of these issues simplifies the process greatly. This

chapter describes general concepts rela | to the des” of middleware systems and more

Infrastructt to Communicate\ Sharon Koubi

specific concepts that deal with middleware for systems that support mobile devices.

2.1.1. Middleware Systems

A distributed system consists of a collection of components. distributed over various
computers (also called hosts) connect¢ via a computer network. These components need
to interact w each other, in order, for example, to exchange data or to access each
other’s services. Although this interaction may be built directly on top of network
operating system primitives, this would be too complex for many application developers.
Instead, middleware is positioned between distributed system components and network
operating system components. The task of the middleware system is to facilitate
component interactions. Figure 2.1 illustrates an example of a distributed system.

l Application

| Middleware

\ oS B
Hardware

ﬁ_\ f Application

L

\ ~ Middleware
-~ 1 -
LT T
; / oS
Network
; Hardware

/
-
7

0s

Hardware

Figure 2.1 A distributed system (adapted from [16])

To support designers buildii distributed applications, middleware system positioned
between the network operatit s n d the ibuted appli ion is put into place.
middleware implements the Session and Presentation Layer of the ISO/OSI Reference

Model as seen in figure 2.2. Its main goal is to enable communication between distributed

Infrastructure to Communicate\ Sharon Koubi

which this happens is by orders of magnitude lower than in mobile settings. Services may
change as well, but the discovery of available services is easily performed by forcing
service providers to register with a well-known location service. Context is extremely
dynamic in mobile systems. Hosts may come and leave generally much more rapidly.
Service lookup is more complex in the mobile scenario, especially in case the fixed
infrastructure is completely missii _ Broadcasting, transmitting information that will be
received (conceptually) by every node on the network, is the usual way of implementing
service advertisement: however, this has to be carefully engineered in order to save the
limited resources (e.g., sending and receiving is power consuming), and to avoid flooding
the network with messages. Location is no longer fixed: the size of wireless devices as
shrunk so much that most of them can be carried in a pocket and moved around casily.
Depending on location and mobility. bandwidth and quality of the network connection
may vary greatly. For example, if a PDA is equipped with both a WiFi network card and
a GPRS module, connection 1y drop from 10Mbs bandwidth. when close to an access
point (e.g.. in a conference room) to less than 48 Kpbs when we are outdoor in a GPRS

cell (e.g., in a car on our way home).

2.1.3. Middlewa for Fixed Distribuf{ 1 Systems

Middleware for fixed distributed systems can be mainly described as resource-
consuming systems that hide most of the details of distribution from application
designers. With the exception of message-oriented middleware, they mainly support
synchronous communication between components as the basic interaction paradigm. We
now discuss in more details the relationship between the physical structure of fixed
distributed systems and the ch. ¢ tics of associated middleware, in the context of the
concepts mentioned in the previous chapter.

Fixed Devices = Heavy Computational Load: Wired distributed systems consist of
resource-rich fixed devic . When buildir distributed applications on top of this
infrastructure, is worthwhile exploitih all the »ure available (e.g.. fast processors.

large amounts of memory, etc.) in order to deliver better service to the application. The

Infrastructure to Communicate\ Sharon Koubi

higher the robustness of the service, the heavier the middleware running underneath the
application. This is due to the set of non-functional requirements that the middlewarc
achieves, like fault tolerance, security or resource sharing.

Permanent Connection Sync onous Communication: Fixed distributed systems are
often permanently connected to the network through high bandwidth and stable links.
This means that the sender of a request and its receiver (i.e., the component asking for a
service and the component delivering that service) are usually connected at the same time.
A permanent connection allows therefore a synchronous form of communication, as the
situations when client and server are not connected at the same time are considered only
exceptions due to failures of the system (e.g., disconnection due to network overload).
Asynchronous communication mechanisms are however also provided by message
oriented middleware and by the CORBA specification. Although asynchronous
communicatio is used also in fixed n- vorks, the bulk of middleware applications have
been develope using synchronous communication.

Static Context 2 Transparency: The execution context of a fixed distributed system is
generally static: the location of a device seldom changes, the topology of the system is
preserved over time, bandwidth r 1ins stable, etc. The abundance of resources allows
the disregard of application specific behaviours in favor of a transparent and still efficient
approach. For example, to achieve fault tolerance, the middleware can transparently
decide on which hosts to create replicas of data and where to redirect requests to access
that data in case a network failure inhibits direct access to the n er copy. in a
completely tra parent n ner. Hidit context information inside the middleware cases
the burden of application programmers that do not have to deal with the achievement of
non-functional requirements (e.g., fault tolerance) explicitly, concentrating, instead. on

the real problems of the application they are building.

21.4.Midd wz forN »ile Systems

Middleware systems for mobile devices differ in some aspects. However, they present a

set of similar characteristics that influence the way middleware should behave.

Infrastructure to Communicate\ Sharon Koubi

Mobile Devices =2 Light C. sutational Load: Mobile applications run on resource-
scarce devices, with less memory, slower CPU, and limited battery power. Due to thesc
resources limitations, heavy-weight middleware systems optimized for powerful
machines do not suit mobile scenarios. Therefore, a trade-off between computational load
and nonfunctional requirements achieved by the middleware needs to be established. An
example of this might be to ax the assumption of keeping replicas always
synchronized, and allow the existence of diverging replicas that will eventually reconcile,
in favor of a lighter-weight middleware.

Intermittent Connection 2 Asynchronous Communication: Mobile devices connect to
the network opportunistically for short periods of time, mainly to access some data or to
request a service. Even during these periods, the available bandwidth is lower than in
fixed distributed systems, and it may also suddenly drop to zero in arcas with no network
coverage. It is often the case that the client asking for a service, and the server delivering
that service, are not connected at the same time. In order to allow interaction between
components that are not executing along the same time line, an asynchronous form of
communication is necessary. For example, it might be possible for a client to ask for a
service, disconnect from the network. d collect the result of the request at some point
later when able to reconnect.

Dynamic Context 2 Awareness: Unlike fixed distributed systems, mobile systems run
in an extremely dynamic context. Bandwidth may not be stable, services that are available
now may not be there a second later. because, for example, while movir the hand-held
device loses connection with the service provider. The high variability (along with the
constrained resources) influences the way middleware makes decisions. The optimization
of the application and middleware behaviour using application and context awarc

techniques becomes then more important, also given the limited resources.

2.2. Middlewa. _ for Mobile Distributed Systems

In this subsection we shall give some examples of middleware systems that are oriented

toward servicir mobile devices. Each of the surveyed systems, Mobiware, UIC,

Infrastructure to Communicate\ Sharon Koubi

Xmiddle and ni is used as an example to demonstrate an important middleware system

feature.

2.2.1. Asynchronous communication using JMS

Message-oriented middlev e systems support communication between distributed
components via message-passing: the sender sends a message to identified queues, which
usually reside on a server. A receiver retrieves the message from the queue at a different
time and may acknowledge the reply. Therefore, message-oriented middleware support
asynchronous communication by achieving de-coupling of senders and receivers. In most
cases, given the way they are implemented, these middleware systems usually require
resource-rich devices, espec ly in terms of memory and disk space, where persistent
queues of messages that have been received but not yet processed, are stored.

As discussed in [17], The Java Messaging Service (JMS) is a widely used interface
than can be adapted to a mobile environment. However we shall discuss some of the
adaptations needed for JMS in order to be truly adequate in a mobile setting. JMS is a
collection of interfaces for asynchronous communication between distributed
components. It provides a common way for Java programs to create, send and receive
messages. JMS users are usually referred to as clients. The JMS specification further
defines providers as the componet incha :of implementing the messaging system and
providing the iministrative and control functionality (i.e., persistence and reliability)
required by the system. Clients sel ~and receive messages. asynchronously, through
the JMS provider, which is in char_ of the delivery and, possibly, of the persistence of
the messages.

Whilst the JMS specification has been extensively implemented and used in traditional
distributed systems, adaptations for mobile environments have been proposed in the last
several years. The challenges of porting JMS to mobile settings are considerable:
however, in view of its widespread acc tance and use, there are considerable advantages
in allowing the adaptation of existii applications to mobile environments and in

allowing the interoperation of applications in the wired and wireless regions of a network.

Infrastructure to Communicate\ Sharon Koubi

If JMS is to be adapted to completely ad hoc environments, where no fixed
infrastructure is available, and where nodes change location and status very dynamically,
some issues must be taken into consideration. Firstly, discovery needs to use a resilient
but distributed model: in this extremely dynamic environment, static solutions are
unacceptable. A JMS administrator defines queues and topics on the provider. Clients can
then learn about them using the Java Naming and Directory Interface (JNDI). However,
due to the way JNDI is designed, a INDI node (or more than one) needs to be in reach in
order to obtain a binding of a name to an address (i.e., knowing where a specific
queue/topic is). In mobile ad hoc environments, the discovery process cannot assume the
existence of a fixed set of discovery servers that are always reachable. as this would not
match the dynamicity of ad hoc networks. Secondly, a JMS Provider. as suggested by the
IJMS specification, also needs to be reachable by each node in the network, in order to
communicate. This assumes a very centralized architecture, which again does not match
the requirements of a mobile ad hoc se ng, in which nodes may be moving and sparse: a
more distributed and dynamic solution is needed. Persistence is, however, essential
functionality in asynchronous communication environments as hosts are, by definition,

connected at different times.

- 2.2. Mobiware - Using Traditional Middleware for Mobile
Computing

In the followit example traditional ddleware is used for a obile application. The
focus is on provision of servic ym a back-bone network to a set of mobile devices.
The main concerns in this example are connectivity and message exchange. In case of a
less structured network or in case services must be provided by mobile devices,
traditional middleware paradigms seems to be less suitable and a new set of strategies
needs to be used. Therefore, communication of context information to the upper layers in
order to monitor the condition of the environment and to adapt to application needs
becomes vital to achieve reasonable quality of service.

Mobiware [2] is an example middleware that uses traditional middleware such as

CORBA, 1IOP and Java to allow service quality adaptation in a mobile setting. As shown

Infrastructure to Communicate\ Sharon Koubi

this approach suffers from severe lim :ions when applied to the mobile setting. 1liding
implementation details means that all the complexity is managed internally by the
middleware layer. The middleware is in charge of making decisions on behalf of the
application, without letting tt application influence this choice. This may lead to
computationally heavy middleware systems, characterized by large amounts of code and
data they use in order to transparently deal with any kind of problems and find the
solution that guarantees the best quality of service to the application. Heavyweight
systems cannc however run efficiently on a mobile device as it cannot afford such a
computational load. Moreover, in a mobile setting it is neither always possible, nor
desirable, to hide all the implementation details from the user. The fundamental problem
is that by hiding implementation details the middleware has to take decisions on behalf of
the application. The application may, however, have vital information that could lead to
more efficient or suitable decisions. Both these limitations can be overcome by reflection.
A reflective system may bring modifications to itself by means of inspection and/or
adaptation. Through inspection, the internal behaviour of a system is exposed, so that it
becomes straightforward to insert additional behaviour to monitor the middleware
implementation. Through adaptation, the internal behaviour of a system can be
dynamically changed, by modification of existing features or by adding new ones. ~ is
means that a middleware core with only a minimal set of functionalities, can be installed
on a mobile device, and then it is the application which is in charge of monitoring and
adapting the behaviour of the middleware according to its own needs.

Universally Interoperable Core (UIC) [26] is a minimal middleware for mobile devices
that is based on the concept of reflection. UIC is composed of a pluggable set of
components that allow developers to specialize the middleware targeting at different
devices and environments, thus solving heterc :neity issues. The configuration can also
be automatically updated both at compile and run time. Personalities can be defined to
have a client-side, server-side or both behaviours. Personalities can also define with
which server type to interact (i.e., CORBA or Java RMI) as depicted in F* 1re 4.5: single
personalities allow the interaction with only one type, while multiple personalities allow

interaction with more than one type. In the case of multiple personalities, the middleware

i

Infrastructure to Communicate\ Sharon Koubi

allows comm ication through sharir of trees. On each device, a set of possible access
points for the private tree is defined; they essentially address branches of the tree that can
be modified and read by peers. The size of these branches can vary from a single node to
a complete tree. The unit of replication can be easily tuned to accommodate ditferent
needs. For example, replication of a fi tree can be performed on a laptop. but only of a
small branch on a PDA, as the memory capabilities of these devices differ.

In order to share data, a host needs to explicitly link to another host’s tree. The concept
of linking to a tree is simi’ to the mounting of network file systems in distributed
operating systems to access and v ate information on a remote disk. As long as two
hosts are connected, they can share and modify the information on each other’s linked
data trees. When disconnections occurs, both explicit (e.g., to save battery power or to
perform changes in isolation from other hosts) and implicit (e.g., due to movement of a
host into an out of reach area), the disconnected hosts retain replicas of the trees they
were sharing while connected, and continue to be able to access and modify the data.

When the two hosts reconnect, the two different. possibly conflicting, replicas need to
be reconciled. Xmiddle exploi uses tree differencing to detect differences between the
replicas which hosts use to concurrently and off-line modify the shared data. However, it
may happen t| the reconcil” ‘on k cannot be completed by the Xmiddle layer alone.
because, for example, different updates have been performed on the same node of the
tree. In order to solve these conflicts, Xmiddle enables the mobile application e1 “neer to
associate application-specific conflict resolution policies to each node of the tree.
Whenever a conflict is detectc = the reconciliation process finds out which policy the
application wants the middleware to apply, in order to successfully complete the merging
procedure.

Xmiddle implements the tree data structure using XML and related technologics. In
particular, application data are stored as XML documents, which can be semantically
associated to trees. Related technolc “es, such as the Document Object Model (DOM),
XPath and XLink [16], are tl ;p od to man” ‘ate nodes, s branches. and
manage references between different p. s of an document. Reconciliation policies

are specified as part of the XML Schema definition of the data structures that are handled

Infrastructure to Con inicate\ Sharon Koubi

by Xmiddle itself.

2.2.5. Jini — Service Discovery in Mobile Computing
Middleware

In traditional middleware systems, service discovery is provided using fixed name
services, which every host knows of its existence. The more dynamic the network
becomes, the more difficult service and host discovery becomes. Already in distributed
peer-to-peer network service discovery is more complex as hosts join and leave the
network very frequently. In mobile systems service discovery can be quite simple: if we
refer to nomadic systems where a fixed infrastructure containing all the information and
the services is present. However, in terms of more ad-hoc or mixed systems. where
services can be run on roaming hosts, discovery may become very complex and/or
expensive.

Jini [3] is a distributed system middleware based on the idea of uniting groups of users
and resources required by those users. Its main goal is to turn the network into a flexible,
easily administered framework on which resources (both hardware devices and software
programs) and services can be found, added and deleted by its users.

An important concept within the Jini architecture is the service. A service is 1 entity
that can be used by a person, a program or another service. Members of a Jini system
federate in order to share access to services. Services can be found and resolved using a
lookup service that maps ir faces indicating the functionality provided by a service to
sets of objects that implement that service. The lookup service acts as the central
marketplace for offering and finding services by members of the federation. A secrvice is
added to a lookup service by a pair of protocols called discovery and join: the new service
provider locates an appropriate lookup service by using the first protocol, and then it joins
it, using the second one, as seen in F* ire 2.6. Ad ibuted security model is put in place
in order to give access to resources only to authorized users.

Jini assumes the existence of fi: infrastructure which provides mechanisms for
devices, services and users to join and detach from a network in ¢/, natural, often

automatic, manner. It relies on the existence of a network of reasonable speed conncctit

Infrastructure to Communicate\ Sharon Koubi

method call. Since there can be multiple sufficient conditions for a method call, cach
condition becomes an element of the list. CACM examines whether there exists any
condition that is satisfied under the current dynamic context. If CACM finds one. it
allows the requested access. Otherwise, CACM refuses the access by raising an
exception.

Ubiquitous applications react to dy mically changing contexts. This is implemented
by an adaptation engine. A u ' specifies the adaptation rules in a policy file, which
describes how to respond when an event occurs in a given context. The adaptation engine
is operated based on adaptation rules. For example, assume the setting of a hospital
management system where there is an adaptation rule that specifies when a doctor and a
patient are in the same consulting room and the doctor owns a PDA. then, in this
situation, the information about the patient is displayed on the doctor’'s PDA
automatically. Then, given any ated event occurrence, such as the entrance of a patient
or a doctor to a consulting room, the adaptation engine examines if all the context
conditions are satisfied. If all the conditions of this rule are satisfied. the adaptation
engine executes a method automatically, which displays information about the patient on

the doctor’s PDA.

2.3. Summary

The growing demand for mobile oriented software solutions have called for rescarch
and investigation of new middlewa that will deal with those new « 1 chal
In the last years we have seen tive research in the field of middleware for wireless
systems and a large number of new applications in that area. AIM, the system presented
in this work, is designed to help sol some of the challenges facing mobile applications

developers.

Infrastructure to Communicate\ Sharon Koubi

3. Inducing Cooperation

This chapter reviews related work regarding inducing cooperation. Inducing
cooperation among participants is part of the AIM infrastructure. The way AIM induces
cooperation is described in Chapter 7.

As described later in Chapter 4, AIM can operate in a public or in a private
configuration. In the public configuration, Device Support Servers (DSS) are shared
between different services. In this chapter we present the dilemma of a DSS whether to
service requests from devices, and discuss relevant work for this topic. In the public
configuration, a device can attempt to register to any DSS that is participating in that
configuration. Unlike the priva conf iration, where the service provides enough DSS
for all supported devices this is not always necessary in the public one. The public
configuration allows devices to register to multiple services, therefore, services can share
the resources they provide to support devices. The problem is how many device requests.
and from whom, should DSS accept? When and why, if at all, should a DSS deny service
from a device?

On the one hand, services would want to be serviced by a DSS as fast as possible: on
the other hand, supplying DSS has a cost that services would prefer to minimize. ldeally.
a service would not supply any DSS and have it devices supported by foreign DSS. Yet, if
all services b ave in this way no DSS will be supplied at all! It seems fair that every
service should supply its fair share of .. 3S slots. The questions of what is the fair share of
slots and how can it be calculated arise. In the public configuration, there is no central
authority that can be assumed to assure that every service provides its fare share.
Therefore, there is a need for a different strategy that will assure cooperation among the
participatii services. Our approach uses game theory to search for a strategy that could
be deployed by each individual service and lead to cooperation among services that
express rational behaviour.

Before modeling coope lon in AIM using we researched relevant work regarding

similar cooperation problems and present the methods they suggest to induce cooperation.

Infrastructure to Communicate\ Sharon Koubi

much more than the average. Different strategies where devised in order to overcome the
problems caused by misbehavit nodes. The following chapters review some the

approaches taken.

3.1.2. Classifying Node Behaviours

The first approach reviewed is classifyir nodes by their behaviour and adjusting
routing accordingly. ...e work [14] presents extensions to the Dynamic Source Algorithm
(DSR) that attempt to detect 1d mit :routing sbehaviour. In DSR every packet has
a route path consisting of the add ises of nodes that have : eed to participate in routing
the packet. It is an “on-demand™ protocol because route paths are discovered when a
source tries to sends packets to a destination for which the source has no path to. DSR
contains two main functions: route discovery and route maintenance. Route discovery is
done by sending a ROUTE REQUEST, as is illustrated by figure 3.1. Route maintenance
handles link breaks. A link bri : occurs when two nodes on a path are no longer in
transmission range. If this happens the source must try a different route or perform a route

discovery.

N
J

"2 (2

| .
O G)
/N T

N

O
®

- QS\\OL -
O P, @)

F re 3.1 ROUTE REQUEST (a) node S sends ROUTE REQUEST packet to find a path to node D. (b) The

request is forwarded through the nodes of the network, each node adding its add s to the packet. (¢) D send back

to S a ROUTE REPLY using the path in one of the ROU . . REQUEST packets it received.

Int tructure to Communicate\ Sharon Koubi

The work further presents two methods to overcome node misbehaviour, Watchdog and
Pathrater. Both methods assume that the wireless interfaces support promiscuous mode
operation. This means that if node A is within the range of node B, then node A can
overhear communications to and from B, even if those communications do not directly
involve A.

The Watchdog method detects misbehaving nodes. By listening to the outgoing traffic
from neighbouring nodes the Watchdog determines which of its neighbouring nodes is
forwarding p <ets and which is misbehaving. There are a few problems with the
Watchdog method. It might not detect misbehaviour due to collisions or limited
transmission power or malicious nodes can collude in order to execute a more
sophisticated attack. For example, node B might be receiving packets from node A to
forward; it forwards them to C that drops them without B reporting to A that the packets
are being dropped.

The Watchdog method comes to use when employed by the Pathrater. The Pathrater,
run by each node in the network, combines knowlec : of misbehaving nodes with link
reliability data to pick the route most likely to be reliable. This differs from DSR, which
chooses the shortest path. The Pathrater assigns rating to nodes according to the following
algorithm. A node assigns itself the value of 1.0. A node previously unknown is assigned
the neutral value of 0.5. The Pathrater increments the ratings of nodes on all actively used
paths by 0.01 at periodic intervals. An actively used path is one which the node has sent a
packet through. When a link bre s detected and the node is unrcachable s
decreased by 0.05. Tl maximum vali a neutral node can attain is 0.8 and the minimum
is 0. A misbehaving node is assigned a special high negative value. -100. When a
Pathrater learns that a node in a path misbehaves and that no alternative paths is free of
misbehaving nodes then it sends a ROUTE REQUEST. The extension that enables the
additional request is called Send Route equest (SRR).

The Watchdog, Pathrater and SRR methods wt tested using simulations. The
simulations also included the mu ion of misbehaving nodes. Di it methe
combinations we ted:a work with no defenses, network using Pathrater only. a

network using Pathrater and Watchdog and a work using all three methods. The results

31

Infrastructure to Communicate\ Sharon Koubi

3.1.3. Modeling the Network as a Market

In this subsection we review the approach of modeling a mobile ad-hoc network as a
market. Services are exchanged and through a virtual economy based on a virtual
currency. Nodes are forced to pay to have their packets forwarded, and are being paid
when they forward some data for other nodes. Selfishness is avoided with a rewarding
technique: a node is free to be selfi: but behaving in this way it will soon ‘:ave it
without the ability to pay and it will not be able to send any packet. Unfortunately, this
solution requires a tamper-proof hardware module, since it is not possible to avoid
forging or stealing.

The work presented in [8, 9] attempts to present a solution for service availability in ad-
hoc networks. Services are defined as all networking services (e.g. packet forwarding,
mobility management, etc.) and should be provided by the other nodes that are
participating in the network. The problem is that nodes do not benefit directly from
providing ser es to other nodes and thus selfishness is profitable. Another problem that
is presented is the overloading. Services can be unavailable because the network is
overloi ":d and can no lo1 r carry useful information. The network can become
overloaded because of a malicious « ial-of-service tack or simply because users want
to send to much information. The goal of the work in [8, 9] is to stimulate co-operation
and prevent overloading in such ad-hoc networks.

The approach that is taken to stimulate a co-operative behaviour and prevent
congestion is to introduce the concept of money and service charges. The idea is that
nodes that use a service should be charged and that nodes that provide a service should be
paid. The work introduces a node currency that is called nuggets. Nodes need to “pay”
nuggets for services and the only way to earn nu s is by providing services to other
nodes. The paper presents two approaches, the Packet Purse Model (PPM) and the Packet
Trade Model (PTM).

In the Packet Purse Mc " | the or" ‘nator of the packet pays the pacl fc arding
service. The service charge is distribu = 101 tI forwa = nodes in the following
way: when sendii a packet, the originator loads it with a number of nuggets sufficient to

reach the destination. Each forwarding node acquires one or several nuggets from the

2
[US]

Infrastructure to Communicate\ Sharon Koubi

packet and thus increases the stock of its nuggets. The problem with this approach is that
it might be difficult to estimate the number of nuggets that are required to reach a given
destination. If the originator underestimates this number, then the packet will be discarded
and the originator loses its investment 1 this packet. If the originator overcstimates, then
the packet will arrive but the originator loses the remaining nuggets. The PTM model
overcomes this problem.

In the Packet Trade Model, the packet does not carry nuggets, nut it is traded for
nu; ts by intermediate nodes. Each intermediary “buys” it from the previous one for
some nuggets, and “sells” it to the next one for more nuggets. In this way. each
intermediary that provided a service by forwarding the packet increases its number of
nuggets, and the total cost of forwarding the packet is covered by the destination of the
packet. An advantage of this proach is that the originator does not have to know in
advance the number of m rets required to deliver a packet. Furthermore, letting the
destination pay for the packet forwarding makes this approach applicable in multicast
packets as well. A disadvantage is that this approach for charging does not directly deter
users from flooding the network. However, allowing each node to decide if it buys a
packet or not can provide a mechanism which may deter a user from generating too much
traffic, by ensuring that eventually nobody will buy packets from users who try to
overload the network.

As mentioned the main problem with the market approach is the requirement for a
tamper resistant security odule that will manage the nugget exchange. Such a module
must be implemented in hardware and makes it unlikely tI such a solutic will be

practical.

3.1.4. The Backbone Method

In [13], the routing backbone method is described to mitigate cooperation in selfish
wireless networks. The algorithm is based on the following social dilemma: a group of
rational individuals want a sit e j son from the 1p to volunteer to offer some
service. This service expends somc of the volunteer's resources, but all the individuals,

including the volunteer, benefit from the service if it is provided. In other words, this

Infrastructure to Communicate\ Sharon Koubi

service is a public good. Each participant in the network needs some of the nodes to
volunteer to provide the public od, but no one wants to be one of the volunteers.

The algorithm presented in [13] is based on the mc ~ | Volunteer’s Timing Dilemma
(VTD). In this model, each player’s strategy is no longer to “volunteer or not.” but rather
a time T > 0 that denotes “when to volunteer.” If no one volunteers until time t, then the
public good is not available until then. To capture the loss in utility from waiting, each
player’s utility decreases by a standard exponential discount factor. The authors elaborate
on the VTD model and developed the Generalized Volunteer's Timing Dilemma (GVTD)
model. The VTD model assume that all players can observe and benefit from any
volunteer. In multihop networks, however, this assumption does not hold: each node
needs a volunteer within its one-hop ne” 'iborhood, and therefore docs not directly benefit
from a volunteer two or more hops away. The input to GVTD is an arbitrary, undirected
graph G. Note that the original VTD game is a special case where G is a complete graph.

The backbone construction protocol consists of two logical steps: leader selection and
the connection of the leaders. In the first phase, nodes play the GVTD game. Based on the
information about the cost distribution and its two-hop neighborhood, each node
independently computes its optimal waiting time before volunteering. When there is no
volunteer neighbor for a long (enough) time, it volunteers as a leader to speed up the
backbone construction, and thus minimizes loss of its own mess: :s. In the second phase,
bridge nodes are chosen to connect the leaders and obtain a connected backbone

(specifically, a connected domii i1 set).

3.1.5. A More Formal Approach

The work done by Srinivasan et al. 3] uses a more formal game theoretic approach to
address the issue of user cooperation in ad-hoc networks. The work deals with solving the
forwarding problem in ad-hoc wireless networks. They propose a distributed and scalable
acceptance algorithm called (us TIT-FOR-TAT (GTFT). The acceptance a rithm
is used by the nodes of the network to decide whether to accept or reject a relay request.
The work demonstrates tt GTFT results in a N "1 equilibrium and proves that the

system conve s to the rational and optimal operating point. A Nash equilibrium is a

Infrastructure to Communicate\ Sharon Koubi

solution concept of a game involving two or more players, in which no player has
anything to gain by changing only her own strategy unilaterally.

It is assumed that the nodes are rational. i.e., their actions are strictly determined
by self interest, and that each node is associated with a minimum lifetime constraint.
However, the assumption fails to recognize malicious intent by certain nodes as self
interest. Given the lifetime constraints and the assumption of rational behaviour, it is
determined what is the optimal throv put that each node should receive. This point is
defined to be the rational Pareto op al operating point. Therefore, resource allocation is
optimized in such a way that no shifting of resources can be made without making at least
one node worse off.

The paper gives a formal system model. The system consists of a population of ¥
nodes distributed among K classes. The nodes are distributed to the different classes
according to a power constraint. The power constraint determines how many packets can
a node forward for how long. This helps define a Normalized Acceptance Rate (NAR) as
the ratio of the number of successful relay requests generated by the node. to the number
of relay requests made by the node. This quantity is an indication of the throughput
experienced by the node.

Then, the work studies the optimal trade-off between the lifetime (based on the
power constraint) and the NARs of the nodes. Given the power constraints, a feasible set
of NARs is identified. This provides a set of Pareto optimal values. That is, values of
NAR such that a node cannot improve its NAR without decreasing some other node’s
NAR. As m¢ ioned, the nodes are assumed to be ional. that is that their actions are
determined strictly by self interest and that self in est is strictly to increase the node’s
throughput. Using this assumption, a unique set of rational and Pareto optimal NARs a
identified for each user.

Since users are self-interested and ratio. there is no 1arantee that they will follow a
particular strategy unless they are convinced that they cannot do better by followir some
other strategy. In game t| retic terms, a set of strategies which constitute a Nash
equilibrium needs to be identified. Ideally. a Nash Equilibrium would result in the

rational and Pareto optimal operatii nt. This is achie 1by,)osing a distribute and

36

Infrastructure to Communicate\ Sharon Koubi

scalable acceptance algorithm, called Generous TIT-FOR-TAT (GTFT). The paper
proves that GTFT is a Nash Equilibrium which converges to the rational and Parcto
optimal NARs. The paper concludes with simulations that show that the algorithm results
in a Nash Equilibrium after a reasonable amount of time. The algorithm seems practical
to implement in order to enhance a real life network. The weakness point of the algorithm
is that it does not consider how to deal with malicious nodes whose self interest to not to

increase their throughput but to decrease the throughput of the other nodes.

3.2. Summary

In this part we reviewed the problem of cooperation in a shared system. Since the
cooperation among middleware participants was not investigated previously we used ad-
hoc networks as a similar model. In the next chapter we shall apply these concepts on the

AlIM system.

37

Infrastructt .0 Communicate\ Sharon Koubi

4. Introducing AIM:
Advanced Infrastructure for Mobile Devices

The main focus of this work is the design and implementation of an infrastructure that
will help develop applications for a wide range of mobile device and help connect
between these devices to a variety of services and applications. 1 chose the name AIM for
this infrastructure, which stands for Advanced Infrastructure for Mobile devices. Figure
4.1 shows a schema of the infrastructure. It is notable from the figure that AIM is situated
between the mobile client application and a fixed service. This chapter will describe the
features that this infrastructure offers to application developers, the principles upon which

the infrastructure is based and the structure of the infrastructure.

- - 1

irewall

—* Corporate

« - Application
Client Device AIM PP

Compo

Figure 4.1 A schema of the AIM ir structure. AIM will be a middleware layer that enables mobile applications
to connect to corporate app ions.

38

Infrastructure to Communicate\ Sharon Koubi

4.1. Infrastructure Features

AIM will provide several s ices that will make developing and adapting applications
and services for mobile devices easier. The infrastructure makes unique mobile
characteristics such as connection details, network identification and network problems
transparent to the application developer, and allows the application to deal only with the
application logic. In addition, AIM could serve as a connection point for mobile devices
to various services and protocols. Infrastructure features can be divided into four
categories: pushing data to mobile devices, connect mobile devices to corporate networks,
handle intermittent connectivity and serve as a connection to adapters for protocols and

applications. This chapter gives a brief overview of the features that are offered by AIM.

4.1.1. Pushing Data to Mobile Devices

Existing and new protocols allow data to be pushed to mobile devices that are
connected to a network. The service level that is offered varies. In some cases large
chunks of data can be pushed to an online device, while in other cases only not...cations
can be made [7, 25]. Also, the interface and other characteristics of these services can be
very different. For example, pushing data to a mobile device through an SMS message is
different mechanism and interface than using a listening socket in a java enabled device
using MIDP 2.0. This adds much develo, ent effort to the extension of a push service to
mobile devices; in particular, if the service is intended for a range of different devices [5].
A main feature of AIM is to make the pushing of data to mobile devices transparent to the
application developer. The infrastructure supplies a standard API on both the client side
and the server side in order to push data to the mobile device through the network or

mechanism of choice.

41.2.Cor ¢ctNM bi ric to Corporate Networks

Security is a major concern for corporate network adminic tors "~7]. Therefore,

39

L

Infrastructure to Communicate\ Sharon Koubi

information in the corporate intranet.

4.1.3. Handle Intermittent Connectivity

collaborative corporate applications are usually protected behind a firewall and reside
only in the corporate internal network, except possibly for some limited interfaces. In an
increasingly mobile environment corporate applications will be extended to mobile
devices. However, the security configuration of such extensions is not necessarily trivial

[10, 23]. AIM will provide controlled and safe tunneling for mobile applications to access

Connectivity in a mobile environment is likely to be interrupted in various situations.

Problems can occur due to being out of coverage, “batteries, etc. [18]. AIM makes the

taking care of potential da loss situations.

4.1.4. . .Iter Unwan d Information

handling of out-of-cover : situations easier by caching requests and responses and by

Mobile devices, naturally, are more limited than desktop workstations. Less

information can be displayed and processes, and in many cases the fees that incur are in

proportion to the amount of data transmitted back and forth. AIM intends to allow a

mobile user to filter the information she is receiving and thus still allows synchronization

with services that are des 1ed to serve desktops, but according to the rules that the

mobile user is comfortable with. The [tocol for this feature of AIM is not yet developed

and it is not a part of the prototype.

4.1.5. AIM as a Connection Point to Protocols and

Applications

other feature of the AIM i itecture is to serve as a col

stion | .nt to various

protocols and applications. For common application such as email protocols, there will be

generic i ~ pters at will ‘low quick and simple registration of corporate and private

40

Infrastructure to Communicate\ Sharon Koubi

users. For proprietary services, AIM adapters could be created. These adapters should be
customized per service. An adapter will be a software library that will mediate between
the proprietary service and the AIM infrastructure. Through AIM adapters the
infrastructure will supply an easy access point for mobile devices. In addition, the
infrastructure provides a unique, randomly generated device id to identify a user on a
device. The unique identification process of AIM will make provisioning services to new
users easier. The protocol for this feature of AIM is not yet developed and it is not a part

of the prototype.

4.2. Infrastructure concepts

There are several key issues that arise when designing an infrastructure. The AIM
infrastructure is deigned to be u 1 in private small settings, as a mobile service platform
for solutions for large enterprises, and as a public platform that is shared by different
enterprises or individual users. In the next few paragraphs the design concepts of the

architecture are being described.

4.2.1. A Scalable Service

The platform must be able to | dle a large number of service requests, which are
coming from various wireless networks, concurrently. AIM is de” ~ as a distributed
and scalable service without a « tral point that could serve as a bottle-neck. In order to
transform from a small configt ion that can handle several hundreds of users to a
configuration that can handle hundreds of thousands or even millions of users, the number
of participating servers needs to be increased, not requiring and complex configuration
changes. More than that, there is no reasonable limit to the number of users that the
infrastructure can handle in an efficient way. The scalability of AIM will be evident in

Se 43t « the server dclient: ictu oft it ruct

41

Infrastructure to Communicate\ Sharon Koubi

/

@7
)

P
=
Q
@
3

(&)

2
g
2]
&
2

=/
)

>
Z
o

nt /

L,

AIM Client

Figure 4.4 (b) The structure of the AIM network — shared mode. Devices can use different servers,
private and public.

4.3.2. AIM € -vices

AIM Servic are applic ions that serve mobile devices and support the AIM
infrastructure. There are two types of possible AIM services. The first is an AIM
Application that is an application that was written using the AIM Server API for an easy
and scalable support for mobile devices. The second type of service is an AIM Adapter,
an adapter that connects to an existing application on one side and uses the AIM Server
API to extend that application to mobile clients. For most parts of this work, the AIM
Applications and AIM Adapters ¢ indistinguishable and will be referred to as AIM

Services.

45

Infrastructure to Communicate\ Sharon Koubi

and can only use an ADSS that is part of that network. In such a case, the client
broadcasts a registration request within the network.

Every client must use one and only one ADSS, even clients that are running several
AIM Client Applications. An ADSS « support many mobile clients, depending on its
resources. In der to receive support from an ADSS, a client needs to register to an
active ADSS. It is possible that a client will have to move to a different ADSS when
moving to a different network. An ADSS can support a limited number of clients, or it
has a certain capacity of client slots. Therefore, a registration request from a client could
be rejected; also, an existing client could be denied further service according to the
priorities programmed to the ADSS and the current available slots. In such cases the
client will have to search for a different available ADSS. In general, the AIM Service is
responsible to supply ADSS slots to its clients. The situation gets more complicated when
a client is registered to several unaffiliated services; this situation is dealt in details in
chapters 7 and 8. After a device is registered with an ADSS, the server will “represent”
the device in front of the AIM Services. When the device moves to a different ADSS the
current ADSS can aid in the registration process in order save network and processing
time from the device.

The infrastructure tunneling refers to tunneling data into a secured network from a
mobile device. A trusted ADSS can serve as a bridge between the secured corporate
network and a mobile device. A Hbile device that needs to send data to an AIM Service
that lies inside a corporate network sends the infc 1ition to the ADSS; the ADSS, in
turn, verifies the device :n _ andt 1els the information to the AIM Service.

The ADSS also functions in pushing information to the mobile device. It stores and
manages information regarding the current network status of the mobile device. When the
AIM Service wants to push information to the mobile device it sends it to the ADSS that
services that device, and the ADSS determines the best way to push the information to the
device. The ADSS notif . the AIM Service if the information was pushed successfully.

The AIM Service could attemptto d to the mobile device while the device is
not connected, switching | ween n¢ ork or any other situation that will obstruct the

process. In such cases, when the send operation to the device fails, the ADSS stores the

47

Infrastructure to Communicate\ Sharon Koubi

request and makes further attempts. Eventually, if after a certain period of time it still
continues to fail, it consults the AIM S' sice on what it would like to do next.

A mobile user can filter the inforr ion that it w s to receive from AIM Services. In
some cases a user will want to block service from sending it messages to the mobile
device. The ADSS stores filtering infc nation in each device profile and forwards data

based on that information.

4.3.6. AIM Components Identification

The components of the AIM ir structure were introduced in this chapter. A unique
identification is necessary in « er to »>vern the interactions between the components.
Therefore, each installation of an AIM Client API on a mobile device contains a unique
n-bit device ID. Also, every ty] of A 1 Server identifies itself by a unique n-bit server
ID. Thus every AIM Service, ADSS and ADDS have an n-bit identifier.

The n-bit identifier is accompan . by an m-bit private key. The n-bit component ID is
used as a public key that corre _ »nds that private key. The provisioning of a unique
ID/private key pair is part of the installation process of an AIM component. It is

important to ensure that this process will guarantee a unique D and a secured private key.

44. Sumn ry

This part introduced the AIM Infrastructure which is the main focus of this work. An
overview of the features and of the structure of AIM was given. The rest of this work will
deal with different aspects of the infrastructure. Refer back to the road map that is given

in the introduction of this work in order to follow the next chapters.

48

Infrastructure to Communicate\ Sharon Koubi

and one ADDS (one and only one). Note that in the implementation one ADSS/ADDS
can correspond to more than one physical server by using a load-balancing scheme, e.g.
Figure 4.4. Also the implementation allows that an ADSS/ADDS server can run several
ADSS/ADDS instances with different IDs. However, there is a one-to-one
correspondence between an AIM Service ID and an ADSS ID and similarly betw 1 an
AIM Service ID and an ADDS "™

For se§ s | ae Sl let ASSOC,, (s)=a denote that AIM Service s is associated

with ADSS a. As explained A is a one-to-one correspondence and ASS()C‘,‘M_'(a)z s
Similarly, for se€§ and be §2 let ASSOC ,,, (s)=b denote that AIM Service s is

associated with ADDS a. In the same fashion, B is also a one-to-one correspondence.

-

VU

AIM Client
Figure 5.1 More than one phys sonds tc 3l 3S add

5.1.3. A Device "Knows” of an ADSS

This relation describes the available ADSS addresses that a device can use when
attempting to register to an ADSS. Since ADSS are supplied by the AIM Services, the
infrastructure is deigned to allow a device to attempt to register to ADSS that are
associated with the AIM Services that the devii is registered to. The device is supplied
with an ADSS address when it registers to an AIM Service. The AIM Service is then
responsible for sending updates to the ce if the in ition changes. An ADSS will

not accept a registration request from a device that is not r¢ stered to it associated

50

-

Infrastructure to Communicate\ Sharon Koubi

service. For d € D let KNOWS . (a’) denote the set of ADSS addresses that d has their
' address. Therefore, for a € S1, then a e KNOWS ,, (d) if and only if there exists s € S

such that s € REG,(d) and ASSOC , (s)=a.

5.1.4. A Device is Registered to an ADSS

As explained, an AIM Service uses an ADSS to communicate with a device, and a device
needs to be registered to an ADSS. The relation REG,4 defines what devices are

l registered to what ADSS. (a,d) € REG,,, if ae S| and d € D and device d is currently

acx

registered to ADSS a. Also, REG,, (a) denotes all the devices that are registered to

ADSS a. Note that for de D, {a[(a,d)e REGM\,HSI. Thus, a device should be

registered to at most one ADSS.

5.1.5. An ADDS “Knows” of a Device
The ADDS are used in order to allow AIM Services to find the ADSS that a certain
device is registered to. When searching for an ADSS Idress the AIM Services initiates a
search in the ADDS network. Since the AIM network has no central focal point, there
isn’t any server that could serve as authority that will contain a the registration
information of all the regist d devices. It is guaranteed that only the ADDS server that
is associated with the ADSS that the device is registered to stores the needed information

for that device. However, it is possible that other ADDS servers will cache this
information. Therefore, for d € D and b e S2, let KNOWS,,,. (b) be the set of devices
that ADDS b knows the I current ADSS registration address. Therefore,
KNOWS ,,..(b)= REG ,, (a) if the case when there exists se€S such that

ASSOC . (s)=a. 1A4SSOC ‘s b.

5.1.6. An ADDS “Knows” About Another ADDS

Since there is no centralized authority for a shared AIM infrastructure, then there is no

51

Infrastructure to C wnicate\ Sharon Koubi

authority that will construct and maintain the connections from which a peer-to-peer
search of the 2 'DS network can be performed. Instead, these connections will be created
by the interactions between the devices and the services. When a device registers to an
AIM service, then by default it notifies it about the other services it is registered to. The
AIM Service uses his information in order to establish connections between its associated
ADDS and the ADDS associated with the other services it was notified of. Therefore,
ideally all services that support a certain device will be interconnected. Define

KNOWS,,. as the set that contains the direct relations between the ADDS. For

b1,b2 € 82 then (b1,b2 KNO 5, if and only if there exists a device ¢ € D such

that 48SoC,, '(bl)e REG,, (d) and ASSOC

Cadds

(b2)e REG . (d). Also, for
beS2 let KNOWS, . (b) be the set of all ott ADDS that 5 “knows™. Therefore,

KNO WSuduf\' (b) = p ASSOC‘(I(!’U’.\' (REGLIUVI('L' (d)) ¢
JeRLG, e

A0 (b))

5.2. Summary

This chapter gave a formal description of the AIM network topology. Laying out the
objects that participate in the AIM net ork and the relations between them is important
for the under anding the AIM protocol (Chapter 6) and for the discussion about

cooperation in AIM (Chapter 7).

Infrastructt to Commun e\ Sharon Koubi

6. The AIM Protocol

The essence of AIM is defined in its protocol. The protocol defines the data structures
that are exchanged between the different components and the behaviour of cach
component in each situation. Hov ‘er, it does not define what network mechanisms are
used. The All protocol is composed of the different operations that are performed by
interactions between AIM components. The details of these operations are described in

the following subsections.

6.1. Protocol Overview

Before describing the operations of the AIM protocol, device and service identification
need to be explained. Every device and each AIM Service is identified by a unique AIM
ID. The AIM ID has a length of 128 bits and serves two purposes. The first as mentioned
to uniquely identify an AIM Device or AIM Service. In addition, the AIM ID serves also
as a public key. Therefore, each AIM “evice and AIM Service has a pub /private key
pair that is used for identification and validation throughout the protocol.

As mentioned in Chapter the infrastructure can operate in two modes, private and
shared. In the private mode all infrastructure components are serving one organization.
Therefore, all ADSS and /DS are man: :d by that organization. In the shared
configuration, each organi. ion supplies its own AIM Services and the participating
organizations share the ADSS/ADDS network. In such cases, it is intended that each
organization supplies ADSS/ADDS according to the amount of users and traffic that its
servers generate. There are some differences in the protocol when operating in a private
or shared configuration.

The AIM protocol is in " as part of the AIM Server and Client APIs and the
AIM Servers: Ao oo and ..oo. .uerefo wt de' opit an application that uses
AIM there is no need to implement the protocol details but only to use thc AIM APls.

XML is used for the formattii of the AIM protocol requests. Although it does cause

53

Infrastructure to Communicate\ Sharon Koubi

some parsing overhead, it greatly increases the readability of the requests and simplifies

the implementation and the development process.

6.2. Protocol Or -ations

This chapter describes the d¢ Is of the protocol operations using a pseudo-code

notation.

6.2.1. Searching for an ADSS

In order to push data to a device, an AIM Service needs to ¢« municate with the
ADSS that is taking care of tl device. If the device has communicated before with that
service, then it is possible that the AIM Server API has cached the address of the ADSS.
Usually that is the case since a device will contact a service at least once before the
service will push data to the device. However, even if there is a cached address it could be
invalid if the device has changed to a different ADSS. This operation describes the steps

that are being taken in order tod the current ADSS.

cerreti g an ANSS ror o rlgue devioe 10
a Device 'tosearch
s = The AIM Service that is searching
C(s) = cached device ids and addresses
SearchForADSS(d)
Carowck DS an ADSS sddress ds o ocached for o the Jdovioe
If exists (d',address. C(s) suchthat ¢ d'

Return address

! 4 e “] 4 r
RSN ¢ i AR SR ' e

b= ASSOC,,(s)
address = Send ADDSRequest({b}, d. 0)

54

Else
Return “failed”
End
Sole o mornand proparos and oenas oan XMDox
a2 ADDY

Infrastructure to Communicate\ Sharon Koubi

if address not null
C (.S) =C (s)) {ada’ress}

Return address

B = ADDS that the request is sent to

d = Device ID to search

depth = Request depth, starts at 0 and increased every resend
SendADDSRequest(B, d, depth)

End

Prepare XML and sond L the ADDS

requestXML = PrepareXML()

73
]
L
]
-
U

st to peers

Foreach be B
SendAsyncronousRequest(b, requestXML)

T iy e NN s 14 N P 2 v
Woen the rirost o vaelld rosponse arrL

—
-

adftoer parsing the XML rosponge
address = null
while (address = null) and CountPendingRequests() <> 0
responseXML = WaitFo esponse()
response = ParseResponse(response XML)
address = response.address

Return address

Figure 6.1(a) Algorithm used by the AIM ¢ ice API to look for a device ADSS

N

a1 ey P R W) i ; A <& - ey oy
cls omethod descoribes how tho ALDS process

NAPTOIN
!

Ty

55

Infrastructure to Communicate\ Sharon Koubi

S2oregquasts
b =The ADDS that is performing the search
C(b) = The collection of ADSS addresses stored on this server
requestXML = The XML of the request
ProcessADDSRequest(requestXML)
Parse the input XML
request = ParseRequest(requestXML)
Heegd devioe I
d = request.deviceid
S Cneck iEoan ADSS aadrass ds o scored cocal

If exists (d',address) e C(s) such that d = d'

Return address

T~ B VS T e YT YT - ~ 4 RO * . . RN e T
Usually MAX DEPTH 15 sel on losince ol ouareioe
} [T . y NS o
¢ AT o) derroe gre Snteoerooniec o
T e . -y - r NPy I vy
T could pe sel Lo 2 Lo ovelrcome DOOKa COiL

address = null
If depth < MAX_DEPTH

address = Send ADDSRequest(KNOWS _,, (b), b, depth+1)

addy

Return address
End

Figure 6.1(b) Algorithm for searching for an ADSS, used in the ADDS.

< addsrequest type="ADSS Search”>
<id>Unique request ID</id>
<info>
<device>
<id>Device ID</id >
</device>
</info>

<depth>Request depth</depth>

56

Infrastructure to Communicate\ Sharon Koubi

<aimservice>

<id>AIM Service ID that originated request<id>

<address>Address of AIM Service that originated request </address>
</ aimservice>

</ addsrequest >

Figure 6.1(c) XML format for the search ADSS uest

< addsrequest type="ADSS Address™
<id>Unique request 1D of originating request</id>
<info>
<device>
<id>Device ID< /id >
</device>
<adss>
<id>ADSS ID</id>
<address>ADSS address</ address >
</adss>
</info>
<adds>
<id>The .. of the ADDS that replies</id>
<address>The address of the ADDS that replies</ address >
</adds>
</ addsrequest >

Figure 6.1(d) XML format for the search ADSS response

6.2.2. A Device Reg™ ters to an ADSS

A device needs to be r~~stered to an ADSS for optimal communication to the AIM
Services it is registered to. R« stration is a regular part of the AIM inf tructure activity.
For example, a device might have to switch from the ADSS server it is rc~*stered to due

to network lin ations. After the device changes to a different network, ADSS can fail or

57

Infrastructu .0 Communicate\ Sharon Koubi

/ e by Fee = 5 o - - ot s # oy e o ' 5
contalin updates to rogistration data thalt Inoiiae
T Sy ceyy o B e T N Doy e
Flritering niformetion and adaplor spodl i, TR BN

requestXML = PrepareXML()
respon. XML = SendRequest(adss, requestXML)

respon = ParseResponse(responseXML)

o

PR 1 R U L R SR I
It roguast succosded tLoaen rolurn

if response.status ="‘ok”
Return “ok”
Else if response.status ="failed to retrieve old registration info”
In this case registration sucoced ot ot e
reguired to complote reglistral lon Dy senndlnag

the full registration inlo since 11 wia 1o

roLriovad from fho ol sorver, Add e ol
registration into o the XM

;o

Olherwi

Return “failed”

End
Figure 6.2(a) Client algorithm for registering to an ADSS

[I O T . PR A Foen P [PN N) f -

Chla el hod Jdogsoribes thoe ADSS procoss for
o N e g g . g e P A N A N P o 5
POOCOSS g pro-reglsi rallon reguesis

a=The ADSS
requestXML = The XML oftl request
ProcessADSSPreRegist tion juestXML)
reques. ParseRequc requestXML)
This should bhe o pre-registration roguest,
read device T, deny g reguoest that Sromoaoaol oo
/

Ehat 1s not registered to thoe assooiatod sorvico

a request.device.id

59

Infrastructure to Communicate\ Sharon Koubi

s= A4S50C,,, " (a)
if d E REGA’L"'VI('L’ (S)

enyADSSRegistration()
Check thal the device [vpe is supportaed Ly (ol
SO ve .
If not ChecklfDevicelsSupport request.device.type)
:nyADSSRegistration
Use custom algoritim o approve roguest
If not ApproveRequest(request)
DenyADSSRegistration()

e 3o P - - T o e N
aprroven, GJenclnaie Qi el UV TOO T ogans s

1) . £+
Rearios

<
Fagh \Iu. 2o L L

N

Leing the dovice I as g public Koy

encryptedrequestid GenerateEncryptedRequestID(d)
Propare and sond an XML o bhaox to fhe oliont
responseXML = Prej eXML()
SendResponse(requestXML)
End

a= ..ae /.S58
requestXML = The XML of the request
ProcessADSSRegistration i 1XML)
request = ParseRequest(r estXML)
Road the decrypilod rogoost La anad validale
If not ValidateRequ e« st.id)
DenyADSSRegist ion()
Road the old ADES add, 5 and notify 1t nal

o yre o P . S e g A7 -) s N s N
Gdovice s rovlsterod WIithoa oW Sorver

d = request.device.id

60

End

Infrastructure to Communicate\ Sharon Koubi

NotifyTermination(request.oldadss.address, d)

o $

Cheook whoether to vae the old rogistration daly

JfailedToGetRegistrationInfo = se

registrationXML = null
If request.useoldregistration = true
Read old regliscragiion inre from old Aoy
registrationXML = GetRegistrationInfo(request.oldadss.address, d)
if registrationXML is nu
failedToGetRegistrationlnfo = true
aclate Jdevice ragistrocion inlormatoon oo ADSE
UpdateDeviceRegistration(request, registrationXML)
Propare and sond an XML Pack to the ol ion
PailoloGelkegistrationInfo Lrue Chen tae o roiaors
cpatus chonld bo modiiied accordingly

responseXML PrepareXML()
SendResponse(requestXML)

Figure 6.2(b) ADSS algorithm for processing client registration requests.

< adssrequest type="Pre-Registration”>

<device>
<id>Device ID</ic
<type>Device type</type>

</device>

</adssrequest >

Figure 6.2(c) Pre-registration XML specification.

<adssrequest typ P | _ ionR y™>

<encryptedid>Encrypted requ¢ ID</encryptedid>

<status>Request status</status>

61

Infrastructure to Cc¢ inicate\ Sharon Koubi

<reason>If declined, then the decline reason</reason>
</adssrequest >

Figure 6.2(d) Pre-registration XML reply.

< adssrequest type=" Regis ion>
<id>Decrypted request id</id>
<device>
<id>Device ID</id >
<type>Device type</ty}
</device>
<adss>
<id>0ld ADSS ID</id>
<address>Old ADSS address</ address >
</adss>
<useoldregistration>Whether to use old registration info</useoldregistration>
<adapterinfo>
Adapter specific info

</adapterinfo>

<filterinfo>
<service>
<id>ID « : that filter info applies to</id>
<rule>Filter rule</rule>
</service>

</filterinfo>
</adssrequest >

Figure 6.2(e) Registration XML request

62

Infrastructure to Communicate\ Sharon Koubi

6.2.3. A Device Registering to an AIM Service

Much of the registration process of a device to an AIM Service is application specific.
The AIM infrastructure provides wrapper procedures that take care of validating the
identity of the device, informing the device with the appropriate ADSS information and
updating the associated ADDS with the device information. This operation also contains

the exchange of secret passwords between the service and the device.

6.2.4. Pushing data to a ¢ vice

An AIM service can push da to a device by forwarding the request to the ADSS that
the device is registered to. The ADSS decides whether to forward the request to the
device based « the filter profile of the device. Using a secret password, the device can
verify that the data that is re | did in fact come from the declared service and the
service can get validate that the client received the request. This transaction involves
sending binary data. Therefo : files will be formatted using multipart/related MIME
type (REC 2112).

6.2.5. Sending data to a Service
A device can send data d y to a service. However, in certain situations, a service
that is behind a firewall cannot have ports open for receiving information. In order to
overcome that without breachii corporate security policies AIM allows the device to
send the data to an ADSS that is outside the corporate network. The AIM service can then
poll the ADSS as often possible to check if any new requests or notification arrived

from a client device.

63

Infrastructure to Communicate\ Sharon Koubi

6.3. Sumn ry

The AIM protocol provides the backbone that is needed in order for an AIM system
implementation. The protocol described was used in a test implementation of AIM used

for this work.

64

Infrastructure to Communicate\ Sharon Koubi

7. Modeling Cooperation

In this chapter we present the algorithms that are used by AIM in order to induce
cooperation in the public configuration. As mentioned earlier, in the public configuration
a device can be registered to several services. Therefore, it is not necessary for a service
to supply ADSS slots to all its devices, but the services should share the burden of
supplying sufficient ADSS slots. Similar to the works shown in [28, 29] we take a game
theoretic approach in order to induce rational participants to cooperate. However, we also
make the assumption that some participants might behave irrationally or maliciously and
therefore exte the algorithms used in order to avoid the effects of such behaviours. In
the following chapters we first discuss the attacks that should be prevented and we
specify the requirements from the a rithms in order to be practical. Then we present the
system model and the algorithm and i -estigate where that algorithm results in a Nash
equilibrium. We continue with the simulation results of the algorithm. Finally, we show

an extension to the algorithm to deal with irrational behaviour.

7.1. Problem Description

7.1.1. Attacks iM el viours that Should be -evented

The main purpose of the a rithm is to induce cooperation among rational participants
who care for their o best intt sts. Yet, a rational participant m™ "1t find it beneficial to
take advantage of other participants’ resources in orc o increase its utility. As described
in Chapter 4, a service must supply a device with the address of at least one ADSS that it
is associated with. However, if a service knows that the device can get ADSS support
from a different service, then it m™ it supply it with a dysfunctional address, or that the
service might supply less ADSS slots n is required in order to reduce its costs. On the
other hand, a service that will supply an ADSS slot to any device that requests so, might

end up supplying slots to all its registered devices while the other services that the devices

65

Infrastructure to Communicate\ Sharon Koubi

are registered to do not contribute anything. Therefore, the algorithm should make sure
that all services supply their fair share of ADSS slots. Our assumption is that the fair
number of slots should be based on the number of devices that are registered and the
average number of services that eac device is registered to, since each additional
registration generates more traffic. W define the fair amount of ADSS slots to be
supplied by each service should be as follows:

total number of devices registered to the service

fair ADSS allocation = , - -
aver: :number of services each device is registered to

Therefore the 1ain goal of the algorithm is to induce rationally behaving services to
supply at least the fair amount of ADSS slots and eliminate “free riders”.

However, it is not impossib that some participants will not behave in a rational
manner or would have a malicious intent to reduce efficiency and cooperation in the
framework. The algorithm should be able to detect such participants. If a misbehaving
service is detected then all its traffic should not be processed by ADSS that are associated

with the rationally behaving services.

7.1.2. Algorithm Re direments

There are certain requirements that need to be fulfilled in order to make the algorithm
feasible. It should not be a burden, performance-wise on the ADSS. The number of
devices and other services can be very large. Also, the algorithm will be used extensively
to measure every request for service and its overhead must not exceed its benefit. Finally
the algorithm should be able to scale regardless on how many devices or services are
added to the system. Therefore, it is preferable that the algorithms time or memory
complexity will not be dependant on the total number of devices served or on the number
of participant services.

Another constraint is the type of data that the algorithm will be able to use. It would be
an easier task if it were possible to get an accurate view on every parameter of the system.

However, it is not possible for every service to collect every piece of information

66

Infrastructure to Communicate\ Sharon Koubi

available in the system. Some of the useful information is too hard to collect or it is
private information. There could be information that needs to be collected from other
services or frc client devices, in such cases there could be a problem with the reliability
of the reported information. Therefore the algorithm should be designed such that all the
necessary information for each service could be collected reliably.

The third requirement is probably the most challenging. It is possible that a
participating service or a client device would have malicious intentions of hindering the
execution of the a' Hrithm. Such cases 1ould be detected and excluded from any activity
in the infrastructure. The requ nent this case is that the algorithm would be tamper

proof to any such attempts. Such a requirement is hard to fulfill.

7.2. System Model

7.2.1. Basic Definitions
The system model will forr ize the definitions of the system components and the
relation among the different components. We consider the set D to be a finite population
of devices and the set .S a finite population of services. We assume that |D| >> |S]. Every

device is associated with a set of services. As | viously defined, let REG,,, (d) be

defined for every device de D il of services that d is registered to. Similarly, for

every service s, the function REG . (s) is defined as the set of devices the service is
associated with. Therefore, tt ni ber of devices that are registered to service s is
[REG.,..(s).

The “fair share” of devices that should be supported by a service s is determined by

total number ¢ devices registered to s, |REG ... (5] and the average number of services

that each devices that isreg red to s is registered to. This aver: : is determined by the

function AVG(s) that is calcu ed as following:

67

Infras ct to Communicate\ Sharon Koubi

Recieved (k) denote the total number of request that server s rcceived. Then the

acceptance ratio of s at time slot k will denoted as:

Accepted (k)
p (k)= ———7"=

Recieved (k)

The average acceptance rate for all devices tI = are registered to service s will be
calculated by averaging the acceptan rate for all devices that are gistered to 5. For

each device d D, Granted ;(k) denotes the number of granted registration requests for
this device up to time slot k. Requested (k) denotes the total number of request that
where made by d. Similarly to y (k) , then ¢ (k) denotes the ratio of granted requests to

total requests:

Z Granted ; (k)
deRlG .. (5)
Z Re quested ,(k)

deREG e (\)

@, (k)=

7.2.2. Utility Function

The utility function measures the in of each participant at a particular time slot k. If
comparing to a market scenario, then e utility measures the profit of each merchant.
There are two factors that are considered to contribute to the utility of the participants.
The first factor is the number of resources that are used, the re resources that are used
the lower the utility is. The :cond factor is the level of user service, the b ier the
service level the higher the utility. The amount of resources in this case is the number of
devices that an ADSS is willing to accept. The level of user service is measured by the
ratio of granted requests to total requests. The utility function can be adjusted by two
constants uc; and uc>. The constants adjust the value of each of the factors that contribute

to the utility and unless otherwise sta | both are equal to 1. Formally, for every se€ §

then UTILITY, (k) describes the utility of s at time slot :

SU. v e 8)

o)

UTILITY (k) = uc, (1 -~] +uc, (o, (k)

69

Inf structure to Communicate\ Sharon Koubi

value when r = 0, i.e. cooperation or when r = FAIR, i.e. complete defection. However, it
cannot exceed | therefore if all particij 1ts are cooperating, then one cannot improve his
utility by not operating. Therefore if the utility function is as defined by the Theorem
7.2 then the system reaches a Nash equ brium. QED.

To emphasize, since lower cooperation rates by one participant will reciprocate in
lower cooper: on rates from others 1en the high utility value is not likely to be
maintained when one does not cooperate. F* 1re 7.2a-c illustrates the possible utility

values for a defector. The x axis is the possible values of » and the y axis is the utility

values.
2
1.75
1.5
1.25
1 o
0.75 \—//
0.5
0.25
200 400 600 800 1000
P.IDl—. FAIR

Figure 7.2a uc, =1—- : -
P,|D| - P, FAIR + FAIR

o8]

1.5
1.25

1
0.75 \

200 400 600 8O JLeey)
P,|D|— P, FAIR
P,|D|— P,FAIR + FAIR

Figure 7.2b uc, > 1 -

73

Infrastructure to Communicate\ Sharon Koubi

1.75
1.5
1.25

1
0.75
0.5 - T
0.25

200 400 J BUU 1000
P.IDI-P,FAIR

Figure 7.2¢ uc, <l-— A——
P, |D|— P, FAIR + FAIR

7.3.4. Algorithm Simulations

Algorithm simulations wi done both for the restricted simplified problem and with
the restrictions removed. Details about the simulation implementation and environment
are described in Chapter 8. In both cases simulation clearly showed that isolated services
that did not contribute a FAIR amount of slots increased dramatically the amount of
requests that were denied, thus rendering non-cooperation to be unprofitable. It is notable
that in the unrestricted scenario the effects of non-cooperation were less dramatic and
slower to propagate than in the simplified scenario.

The first simulation was of the simplified scenario with |D| devices and |S] servers
where every device is registered to each and every one of the services. A device chose a
service to register to by usinga 1dom function; therefore the device choices were nicely
distributed. The simulated s¢ ers were selected to either be in a cooperative mode, thus
accepting registration requests, or non cooperative. All cooperative servers employed the
distributed tit for tat algorithm. The ¢ |, :ndant variable was the parameter measured to
evaluate the e :ctiveness of the algorithm. It was calculated as ratio of successful device
registration requests over total device registration requests made. The independent
variable was the percent. :of senn 3 in the system that are in cooperative mode. Figure

7.3 summarizes the results of this simulation.

74

I[nfrastructure to Communicate\ Sharon Koubi

7.5. Summary

We have demonstrated that by using a simple and computationally cheap algorithm it is
possible to protect the AIM system against ‘selfish’ parties. This algorithm was used in

the implementation of AIM that v created for this work.

77

Inf tructure to Communicate\ Sharon Koubi

8.4. AIM Client

The AIM client module contains the implementation for the CAIMClient which
implements the AIMClient interface. It also contains the client configuration
implementation and the classes that serve s interface to different networks types. The
AIM client was implemented in Java and in C++ for Symbian 7.0.

The Java implementation was crea 1 for testing purposes and does not deal with
switching to « Terent types of networks. Similarly to the server the Java client can run
only in the calling process thr 1 d does not open new threads.

The Symbian client is deigned to be aware of whether a cellular network or a WiFi

network is used.

8.5. AIM Simulation System

The simulation system was designed in order to simulate a large number of AIM
servers and clients in collaboration. It contains a simple demo client Java application and
a simple demo Java server application that uses the AIM APIs.

The demo server application is runs the AIM server and accepts new clients according
to the “Distributed Tit-for-Tat’ algorithm. The simulation system can override this in
order to simulate a situation where there are servers that are not cooperating. The
configuration information is supplied by the simulation system.

The demo client application is a Java application that uses the AIM client Java API. It
can make registration requests to AIM services and send messages through the AIM
services that it is registered to. The list of available services and other configuration
information is supplied by the simulation system. The simulation system also determines
the rules by which a client selects to how many and which servers to register to.

Simulations were run with up to 10000 clients and 100 services operating in parallel.
The simulations ran on a PC with a AMD 64 Athlon and 2GB memory running Windows
XP.

8.6. Summary

The AIM infrastructure version 0.2 is a preliminary implementation of the AIM

81

Infrastructure to Communicate\ Sharon Koubi

infrastructure. A more complete implementation would include a full implementation of
the ADDS and ADSS servers as well as automation of the configuration process and

modules that would allow simple interface for common mobile applications.

Infrastructure to Communicate\ Sharon Koubi

9. Summary

As envisioned in [19] and [27], handheld devices are becoming more and more
ubiquitous. The market for mobile software is rapidly growing and tools for facilitating
this revolution are in need. | believe that some new concepts need to arise in order to
efficiently develop software in an increasingly mobile universe and that there is a place
for an infrastructure that would help developers to create mobile applications more easily

and to smoothly integrate them with established corporate software.

9.1. Key Points of 1:lis Work

The focus of this work is AIM, an infrastructure that will provide services that will
make develop g and adaptii applications for mobile devices easier and smoother. The
approach that is taken in designing AIM is the middleware approach, based on general
and mobile concepts of middleware, as similarly seen in [4]. The description of the AIM
infrastructure includes the rules that determine the interactions between the components
of the AIM network, and thus determine the topology of the AIM network and a detailed
description if the AIM protocol. The last two chapters deal with inducing cooperation in

the system.

8 TF- "-—efits of a System like AIM

AIM could make unique e ¢l cteristics such as connection details, network
identification ~ d network problems transparent and in addition could serve as a
connection point for mobile dev™ s to various services and protocols. Whatever system is
used, the key argument t is ma in this work is that efficiently developing multiple,
elaborate mobile applications need to be done on top of a mobile middleware layer that
will take care of many of the technical details. Such middleware applications exist for
desktop software; however, there is a need for a specialized platform for mobile

implementations.

83

Infrastructure to Communicate\ Sharon Koubi

9.3. Proposals for Future Work

An obvious continuation of this work would be a full implementation of AIM and using
it to adapt several existing applications for mobile devices. If such a system is
implemented then the main obstacle for its commercial success would be to integrate it
with some of the commercial mobile operating systems available. | envision that such a
system can be useful for medium to small software companies that could use it as a tool
on top of the operating system and standard development tools.

There are other theoretical aspects of AIM that can be explored as well. There are a
couple of directions that would be particularly interesting in the context of an
infrastructure such as AIM. One would be the handling of transactions in a mobile
middleware system. In order for such a system to be reliable, transactions need to be an
integral part of it. Another would be the issue of assuring privacy and anonymity. This
area of research is especially relevant for the public configuration of the system in order
to prevent from services the opportunity to match and possibly abuse private user

information.

84

Int ructure to Communicate\ Sharon Koubi

References

F. André and M.T. Segarra, 4 Generic Approach to Satisfy Adaptability Needs in
Mobile Environments, 33rd Hawaii International Conference on System Sciences
(HICSS’00), Maui, Hawaii, January 2000.

O. Angin, A. T. Campbell, M. E. Kounavis and R. Liao, The Mobiware Toolkit:
Programmable Support for Adaptive Mobi Networking, IEEE Personal
Communications M: 1zine, Special Issue on Adaptive Mobile Systems, Vol.5,
pp. 32-43, August 1998.

K. Arnold, B. O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wolrath, The Jini
Specification, Addison-Wesley, 1999.

P. Bellavista, A. Corradi, R. Montanari and C. Stefanelli: Dynamic Binding in
Mobile Applications: A Middleware Approach, IEEE Internet Computing, Vol. 7,
pp- 34-42, 2003.

M. Bhide, P. Deolasse, A. Kat , A. Panchgupte, K. Ramamritham, and
P. Shenoy, Adaptive Push Pull: Disseminating Dynamic Web Data,
IEEE Trans. Computers, special issue on quality of service, pp. 265-274,
2002.

S. Buchegger, J.-Y. Le Boudec, Performance Analysis of the
CONFIDANT Protocol (Cooperation of Nodes: Fairness In Dynamic
Ad-hoc Networks), MobiHoc, pp. 226-236, June 2002.

M. Buddhikot, G. Chandrann 10n, S.-J. Han, Y.-W. Lee, S. Miller, and L.
Salgarelli, Integration of 802.11 and Third-C eration Wireless Data Networks,
Proceedings of INFOCOM, Vol. I, pp. 503-512, March 2003.

L. Buttyan and J.P. Hubaux, Enforcing S ice Availc ity in Mobile Ad-Hoc
WANs, IEEE/ACM Wc¢ shop on Mobile Ad-hoc Networking and Computing, pp.
87-96, August 2000.

L. Buttyan and J.P. Hubaux, Stimulating Cooperation in. f-Organizing Mobile
Ad-hoc Networks, ACM/Kluwer Mobile Networks and Applications, Vol. 8, pp.
579-592, 2003.

. Y.-F. Chen, H. Huang, R. Jana, T. Jim, M. Hil en, R. Muthumanickam, S. John,

S.Jora, and B. W | iMobile EE - an enterprise mobile service platform, ACM
Journal on Wireless Networks, Vol. 9, pp. 283-297, 2003.

86

24,

25.

26.

27.

28.

29.

Infrastructure to Communicate\ Sharon Koubi

K. Raa :ainen, H. Christensen, T. Nakajima, Application Requirements for
Middleware for Mobile and Pervasive Systems, ACM SIGMOBILE Mobile
Computing and Communications Review, Vol. 6, pp. 16-24, 2002.

T. S. Rappaport, Wi ess Communications, Prentice Hall, 2002.

M. Roman, Ubicore: Universally Interoperable Core, hitp://www.ubi-core.com.
(last accessed July 2006).

J. Roth, C. Unger, Using Hana 'd Devices in Synchronous Collaborative
Scenarios, Second Inter1 ional Symposion on Handheld and Ubiquitous
Computing 2000 (HUC2K), , ». 187-199, September 2000.

V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R. Rao, Cooperation in
Wireless Ad-Hoc Networks, in Proc. IEEE INFOCOM, pp. 808-817, 2003.

A. Urpi, M. Bonuccelli. S. Giordano, Modelling Cooperation in Mobile Ad-
Hoc Networks: A Formal Description of Selfishness, Proceedings of Modelling
and Optimization in Mobile, Ad-hoc and Wireless Networks (WiOpt), pp. 56-67,
March 2003.

88

