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Abstract 

Fluid flow in microchannels has emerged as an important research area. This has been 

motivated by their various applications in microfluidic systems, such as Micro-Electro

Mechanical Systems (MEMS). The advent of MEMS has opened up a new research area 

where non-continuum behavior is important. Microchannels are the fundamental part of 

microfluidic systems. Understanding the flow characteristics of microchannel flows is 

very important in detennining friction factor, pressure distribution, heat transfer, and 

transport properties of the flow. The non-circular cross sections such as rectangular, 

triangular, and trapezoidal, are common channel shapes that may be produced through a 

variety of microfabrication techniques. These cross sections have extensive practical 

applications in MEMS. 

Developing and fully developed slip flow in non-circular microchannels has been 

investigated and models are proposed to predict the friction factor Reynold product jRe 

for slip flow in most non-circular microchannels. It is found that the linearization method 

to solve the Navier-Stokes equations is an accurate approximation for developing slip 

flows. 

Compressibility effects on slip flow in non-circular microchannel have been 

examined and simple models are proposed to predict the pressure distribution and mass 

flow rate for slip flow in most non-circular microchannels. 



The effects of corrugated surface roughness on fully developed laminar flow in 

microtubes are investigated. Novel analytical models are developed to predict friction 

factor and pressure drop in corrugated roughness microtubes for continuum flow and slip 

flow. The developed model for slip flow illustrates the coupled effects between velocity 

slip and corrugated roughness. 

Slip flow heat transfer in annular microchannels has been examined. The effects of 

Knudsen number, radii ratio and beat flux ratio on heat transfer characteristics are 

discussed. 

Analytical models have been developed to provide a means of predicting slip flow 

characteristics, such as friction factor, mass flow rate, and pres ure distribution for fluids 

operating in microchannels. These models are general and robust, and can be used by the 

research community for practical engineering design of microchannel flow systems. This 

study may help understand the behavior of fluids in microchannels. 
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1.1 Introduction 

Chapter 1 

Introduction 

Fluid flow in microchannels has emerged as an important area of research. This bas 

been motivated by their various applications such as medical and biomedical use, 

computer chips, and chemical separations. Over the past 15 years, micromachining 

technology has been used to develop a number of microfluidic systems in silicon, glass, 

quartz, or plastics, such as biochemical lab-on-a-chip ystems and 

microelectromechanical systems (MEMS). The advent of MEMS has opened up a new 

research area where non-continuum behavior is important. MEMS are one of the major 

advances of industrial technologies in the past decades. MEMS refer to devices which 

have a characteristic length of less than 1 mm but more than 1 !J.m, which combine 

electrical and mechanical components and which are fabricated using integrated circuit 

(I C) fabrication technologies. Now, microfabrication is a diverse spectrum of proce sing 

techniques that involve a wide range of disciplines from chemical sciences to plastic 

molding. Compared with conventional mechanical and electrical systems, these M MS 

devices are several orders of magnitude smaller in size. In fact, the e dimensions are in 

the same range as the average diameter of human hair (about 50 IJ.m) . A MEMS device 

can be a single piece of hardware that produces outputs directly based on the inputs from 



external sources. The outputs can be mechanical and fluidi c movement, electrica l charges, 

analog signals, and digital signals. Often several microcomponents are integrated, such as 

the lab-on-a-chip device, which performs the multistage process ing of the inputs and 

produces several different types of outputs, all in one single miniature device. A current 

emphasis in microfluidics research is the development of lab-on-a-chip devices for 

biological and chemical analysis. MEMS and lab-on-a-chip devices, therefore, offer 

opportunities to many areas of application, such as biomedical and infonnation 

technology, that were thought not achievable using conventional devices. Micron- and 

submicron-size mechanical and biochemical devices are becoming more prevalent both in 

commercial applications and in scientific research. Estimates of the potential commercial 

market size are as high as billions of U.S. dollars . 
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Figure 1.1 Typical MEMS and nanotechnology applications 

atmospheric conditions span the entire Knudsen regime [1]. 
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The operational regimes of typical Microsystems at standard temperature and pres ure 

are shown in Figure 1.1 . MEMS devices operate in a wide range of flow regimes 

covering the continuum, slip, and transition flow. It is necessary to study ma , 

momentum, and energy transport in these flow regimes. 

As more new applications are proposed and new MEMS devices designed, it was 

often found that measured quantities could not be interpreted by using conventional 

correlations developed for macro scale devices. It has become increasingly apparent that 

the physical mechanisms at work in these small scale devices are different from what can 

be extrapolated from what is known from experience with macroscaled devices. Many 

fundamental issues that are not observed in macro flows are prominent in microscale 

fluid dynamics. There is a need to either reexamine or replace the modeling developed 

from observations of macro scale devices. 

Microchannels are the fundamental part of microfluidic systems. In addition to 

connecting different devices, microchannels are also utilized as biochemical reaction 

chambers, in physical particle separation, in inkjet print heads, in infrared detector, in 

diode lasers, in miniature gas chromatographs, or as heat exchangers for cooling 

computer chips. The non-circular cross sections such as rectangular, triangular, and 

trapezoidal, are common channel shapes that may be produced by microfabrication. 

These cross sections have wide practical applications in MEMS [1-5]. For example 

Figure 1.2 shows a micro heat exchanger constructed from rectangular channels 

machined in metal. Reduced heat exchanger dimensions of 50 )..l.m to 500 )..l.m result in 

more effective heat transfer due to decreased thermal diffusion lengths. The tremendous 
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enhancement in heat transport obtained by employing microchannels has provided an 

effective alternative to conventional heat dissipation methods. Figure 1.3 bows typical 

microchannel designs for fabricating membrane microfilters. Understanding the flow 

characteristics of microchannel flows is very important in determining pressure 

distribution, heat transfer, and transport propertie of the flow. 

Figure 1.2 Micro heat exchanger constructed from rectangular channels machined 

in metal [2]. 
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(a) 

' (d) 

Figure 1.3 Design of filter microchannels: (a) circular; (b) rectangular; and (c) and 

(d) hexagonal [3]. 

The characteristic dimension associated with the term "microchannels" is ambiguou . 

Nominally, microchannels may be defined as channels whose dimensions are from one 

micron to one millimeter. Typical applications may involve characteristic dimension in 

the range of approximately 10 to 200 )lm. Above one millimeter the flow exhibits 

behavior that is the same as macroscopic continuum flows. A statistical approach is used 

when modeling flows on the nanoscale. Advances in microtechnologies have required the 

use of microcomponents, which are often interconnected by channels. The need to cool or 

heat very small devices such as microelectronics has appeared as an application of flow 

through microchannels . Channels etched in silicon chips have been used to cool 
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microprocessors as well as other computer components. Microchannels have also seen 

application in chemical separations where the chemist is able to take advantage of the 

small scales in obtaining more efficient performance. Research into mtcro heat 

exchangers, mtcro power generation, and other mtcro devices ha made the 

understanding of transport phenomena in microchannels necessary. 

Some researchers have reported on discrepancies between microchannel flow behavior 

and macroscale theory. A number of publications indicate that flows on the microscale 

are different from that on macroscale and that the conventional theories are incapable of 

explaining the occurring phenomena. For laminar flow through microchannel , 

researchers have observed both significant increases and decreases in the pres ure drop 

from the expected value based on macroscale flow theory, as data appears both up to 60% 

above and up to 80% below the theoretical values. The reported deviations from 

macroscale laminar flow theory have been significant for many investigations when the 

hydraulic diameter decreases below approximately 200 ).lm. The result from limited 

prior work have varied greatly resulting in significant confusion concerning the causes of 

the observed phenomenon. Several theories and models have been presented in an 

attempt to explain the observed phenomena, but an unquestionable conclusion has not yet 

been reached. 

1.2 Objectives 

The objectives of present research are: 

(i) consider slip effects in fully developed microchannel flow; 
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(ii) consider compressibility for flows in microchannels with lip; 

(iii) consider entrance effects for microchannel flow; 

(iv) consider microchannel shape effects; 

(v) consider the effects of corrugated surface roughness for microchannel flow; 

(vi) develop robust models for predicting flow characteristics, such as flow rate or 

average velocity, pressure distribution, and friction factor for fluid flow 

through microchannels. 

The remainder of this document describes the literature that has previously reported on 

the topic, presents the methodology of the present work, and provides many new models. 
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Chapter 2 

Literature Review 

2.1 Review of Currently Available Experimental Data 

As microscale fluid transport applications become more numerous, an understanding 

of the fundamental flow physics becomes more important. A review of the literature 

indicated that this basic understanding has not yet been achieved. Particularly, many 

investigators have reported anomalous behavior in the laminar flow regime. 

Flow through microchannels is a relatively new area of research. The number of 

applications is growing with technological advances in the field. Microchannel flows 

have been the most widely studied. The manufacturability and broad use of 

microchannels in industry has fue led this research. However, the amount of experimental 

data is still limited. 

To assist in evaluating the results of these studies, a normalized friction factor, the 

experimental value of jRe is non-dimensionalized using theoretical value of jRe, is 

defined as: 

. (! Re ).,P c =--,--~.:.._ 

(JRe\,eo 
(2. 1) 
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Tuckerman and Pease [6] studied flow through an array of microchatmels with 

approximately rectangular cross sections (high range 50-56 f . .un, width range 287-320 

~m). This is the first experimental investigation of flow through microchannels. The large 

surface-to-volume ratios of microchannels make them excellent candidates for efficient 

heat transfer devices. Although this study was concentrated primarily on heat tran fer 

characteristics, they proved that the flow rate obeyed conventional theory. 

Shortly thereafter, Wu and Little [7,8] conducted experiments measuring the friction 

factors for both laminar and turbulent nitrogen and hydrogen gas flows in microchannels. 

Silicon and glass microchannels were used, having a trapezoidal cross section with 

hydraulic diameters ranging from 55 f..tm to 73 f..tm and for Reynolds numbers ranging 

between 200 and 15000. The glass had a larger surface roughness than did the silicon. 

The measured values of the friction factor were larger than those predicted by the 

conventional theory. The glass channels show the greatest deviation from the macro cale 

theory, which is most likely due to roughness effects caused by the fabrication technique. 

The results showed that the friction factor for the glass was 3 to 5 times higher than the 

friction factor for the silicon channels. Overall, the data were in the shape of the Moody 

chart. The data showed the transition from laminar to turbulent flow to be at a Reynolds 

number of approximately 400. 

Pfahler et al. [9-11] and Harley et a!. [ 12-14] presented a number of paper on 

microscale fluid flow. The channels tested are approximately l 00 ~m wide with depths 

ranging from 0.5 to 50 ~m. The majority of the channels te ted had a low aspect ratio. 

The cross-sections of the channels were either trapezoidal or rectangular. The authors 
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acknowledged that their results depend heavily on channel size measurement, which was 

extremely difficult to measure accurately for the shallowest channels. 

Pfahler et al. [9] reported on flow through micromachined rectangular and trapezoidal 

shaped channels of various aspect ratios and hydraulic diameters ranging from 0. 5-40 J..Lm . 

They uti lized isopropanol and silicon oil as working fluid, and the Reynolds number was 

less than 100 for all of their data. The amount of measured friction factor deviation from 

laminar flow theory for the polar isopropanol was observed to increase with decreasing 

hydraulic diameter. The deviation was toward a smaller friction factor and the deviation 

varied from 0-30% as the hydraulic diameter decreased from 40 to 1 J..Lm. The measured 

friction factor was approximately 15% lower than theoretical predicts for the silicon oil. 

The depth was measured with a surface profilometer within 2% [9,10]. The surface of 

these channels was rough, with roughness of approximately 0.0 L. 

Fluids tested by Pfahler et al. [9-11] and Harley et al. [12-14] included alcohols (n

propanol and isopropanol), silicon oil, and helium, nitrogen, and argon. The overall 

Reynolds number range is from 0.0001 to 1000. These investigations showed a decrease 

in the friction factor on the order of 10% to 30% when compared to macroscale theory. 

While surface roughness may have an effect, similar to the effects seen in the Wu and 

Little [7,8] data, most likely the uncertainty in the channel dimen ions causes these 

discrepancies. 

Pfahler et al. [9-11] and Harley et al. [12] tested three gases- nitrogen, helium, and 

argon. Harley et al. [ 12] showed that the data for Re < 500 is entirely 5% below the 

theoretical values, while the remaining data points for Re > 500 are 5% above the 
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theoretical values. This may be the transition to turbulent flow, which agrees with the 

studies of Wu and Little [7). The data by Pfahler et al. [9, 1 OJ are for the flow of nitrogen 

0.8 :S C* :S 0.9 for 0.01 :S Re :S I 00. 

Choi et al. [ 15] conducted experiments on the friction characteristics of nitrogen gas in 

circular tubes with diameters ranging from 3 to 81 f..Lm. Tubes used by Choi et al. [ 15] 

were smooth with relative roughness from 0.0001 7 to 0.0116. The data showed the 

friction factors to be as much as 30% lower than that predicted by conventional theory for 

10 :S Re :S 500. However, friction factor increased by 15% for Re > 500. This is similar to 

the data presented by Harley et al. [12], and may be due to a transition to turbulent flow. 

In addition, the micro tubes that produced c· > 1 had relative roughness 0.01 , which is the 

same as the roughness of channels used by Harley et al. [1 2). 

Yu et al. [16] extended the work of Choi et al. [15] by conducting experimental and 

theoretical studies of flow and heat transfer characteristics in microtubes. Yu et at. [ 16] 

determined the friction factors of nitrogen gas and water in microtubes with diameters 

ranging from 19 f..Lm to 102 f..Lm and Reynolds number rang ing from 100 to 20000. The 

relative roughness of the inner surface mea ured using a Ia er interferometer wa found 

to be approximately 0.003 . The laminar friction constant is 60% to 90% of the theoretical 

value. This behavior is consistent with data of Choi et al. [ 15). The average friction 

coefficient ranged from 49 to 52, which is somewhat lower than that obtain d by Choi et 

al. (jRe = 53) [ 15). The turbulent flow friction factor was observed to be about 5% lower 

than macroscale empirical turbulent correlations. 
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Several papers have also appeared by Peng et al. [ 17 -20]. They conducted studie in 

stainless steel channels of hydraulic diameter ranged between 133 and 367 11m. They 

report frictional behavior that was correlated empirically asf=C/R/ . This is in contrast to 

the inversely proportional relationship f=C/Re, and what all other researcher have 

reported. Transition also occurred in their channels at Re:::::300-400. The authors proposed 

empirical correlations in order to calculate the friction factor in laminar an in turbulent 

regime, namely, f- Re-1.98 and f- Re-1.72 respectively. In addition, Peng et a!. [ 19] 

suggested that the regions themselves must be redefined depending upon the geometry of 

the microchannel. As in Moody chart for macroscale flows, two distinct relationships 

between f and Re were observed, one in the lower Re region and one in the higher Re 

region. The area between the two trends represents the transition region. The critical 

Reynolds number, Recrit, decreased as the hydraulic diameter was reduced. Recrit was 

estimated at 200 for Dh < 220 11m, 400 for Dh = 240 11m, and 700 for 260 < Dh < 360 11m, 

indicating the occurrence of early transition to turbulence in these microchannels . 

Wang and Peng [21] analyzed the forced convection of water or methanol through 

stainless steel rectangular microchannels. They found that the transition from laminar to 

turbulent regime occurs for Reynolds numbers ranging between 300 and 800. A further 

analysis was conducted by Peng and Peterson [22] using the same test sections analyzed 

in [21]. The effect of the variation of the fluid properties with the temperature for forced 

convection of water and methanol through metallic rectangular microchannels was 

investigated. They observed the laminar region for Reynolds numbers lower than 400. 
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Wilding et al. [23] analyzed flow of water and various biological fluids (saline, serum, 

plasma, and whole blood) in silicon microchannels having a trapezoidal cross-section 

with dimensions ranging between 40 and 150 J . .un in width and between 20 and 40 Jlm in 

height. The experimental data of this study are for 17 < Re < 126 and indicate a 30% 

increase in the nonnalized friction coefficient from the theoretical values. 

Jiang et al. [24] investigated flow of water through rectangular, trapezoidal, or 

triangular microchannels. The microchannel dimensions ranged from 35 Jlm to 110 ~tm in 

width and from 13.4 Jlm to 46 ~tm in height, where the lengths varied from 2.5 mm to 10 

mm. For the 10 mm long microchannel, the experimental data are 0.1 < Re < 10 and the 

normalized friction coefficient is 15-30% above the theoretical values. This is in close 

agreement with the data presented by Wilding et al. [23]. In a later work, Jiang et al. [25] 

studied flow of water through trapezoidal microchannels with the hydraulic diameter 

ranging from 35 to 120 Jlm and Reynolds numbers from 1 to 30. Their experimental 

results were from 50 to 100% lower than theoretical predicts. They also suggested that 

the development length may be different than macroscale theory suggests. 

Arkilic et al. [26,27] investigated helium flow through microchannel for pres ure 

drops of 1.2 to 4.2 atm. The microchannels were 52.25 Jlm wide, 1.33 Jlm deep, 7.5 mm 

long. The results showed that the pressure drop over the channel length was less than the 

continuum flow results. The friction coefficient was only about 40% of the theoretical 

values. The significant reduction in the friction coefficient may be due to the slip flow 

regime, as according to the flow regime classification by Schaaf and Chambre [28] , the 

flows studied by Arkilic et al. [26,27] are mostly within the slip flow regime, only 
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bordering the transition flow near the outlet. When using the Navier-Stokes equations 

with slip flow boundary condition, the slip model with full tangential momentum 

accommodation fit the experimental data well. 

Pong et a!. [29] investigated helium and nitrogen gas flows through rectangular 

microchannels with a depth of 1.2 f.Lm and a width of 5-40 f.Lm. Pressure sensors were 

fabricated as an integral part of the flow channels, allowing measurements of not only the 

overall pressure drop and flow rate, but also pressure distribution along the microchannel. 

They found that the pressure distribution was not linear as suggested by a continuum flow 

analysis. Pressure drop required is less than that in a conventional channel. The 

deviations of the pressure distribution from the linear distribution become more 

pronounced as Knudsen number decreases. Pong et al. suggested that such nonlinearity is 

due to the compressibility and the rarefaction effects. 

Liu et a!. [30] used the same flow system described by Pong et al. [29] to further study 

microscale gaseous flow by employing helium as testing fluid. They also found the 

pressure drop distribution was nonlinear. This is consistent with the results found by 

Pong et al. [29]. Due to very low Reynolds numbers in the experiment, the inertial effects 

were neglected in the model. Liu et al. also proved that the solution to the avier-Stokes 

equation combined with slip flow boundary conditions showed good agreement with the 

experimental data in microchannel flow. 

Shih et a!. [31] continued the experimental work of Liu et a!. [30] and Pong et a!. [29]. 

Shih et al. not only measured the overall pressure drop and flow rate, but also the 

pressure distribution along the microchannel. The microchannel used in the study was the 
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same as the one used by Liu et al. The only difference was the reduced channel length. 

The reduction in channel length resulted from the fact that two of the integrated pressure 

sensors closest to the channel ends were not used due to entrance and exit effects. Shih et 

al. used helium and nitrogen for the flow experiments over a Reynolds number range of 

0.00 1- 0.1. The friction coefficient is only 30-45% of the theoretical values . This 

significant reduction in the friction coefficient may be due to the slip and transition flow 

regimes, as the Knudsen number for the data ranges from 0.02 to 0.16. This is consistent 

with the results of Liu et al. and Arkilic et al. [26,27]. Shih eta!. conducted that the mass 

flow rate for helium was greater than conventional no-slip theory predicted. The data 

agreed very well with a first-order slip flow model. 

Ho and Tai [32] presented a review of progress in microscale fluid flow re earch. 

They suggested possible explanations of the observed deviation. All of the proposed 

theories dealt with surface forces and surface interactions. In the microsca1e flows studied, 

the surface phenomena may become quite significant in comparison to other forces. 

Wu et a!. [33] investigated fluid flow and heat transfer in microchannel . The 

microchannels used in this study were 19 Jlm in width, 1.85 Jlm in height, and 4.4 mm in 

length. Wu et al. [33] used water and nitrogen gas as working fluids over a Reynolds 

number range of 0.1- 1. For water, the values of the normalized friction coefficient are 

10-30% above the theoretical values, which is consistent with the results of Wilding et al. 

[23] and Jiang et al. [24]. For nitrogen gas flow, while the normalized friction factor is 

0.3 < c* < 0.4 and is consistent with the results of Liu et al. [30] and Arkilic et al. [26,27]. 
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Urbanek et al. [34) investigated the flow of three isomer of alcohol in triangular and 

trapezoidal microchannels of hydraulic diameter of 5 and 25 )lm. They reported an 

increase in the frictional pressure drop, in contrast to the decrease observed by other 

investigators in similar channels. 

Papaut ky et al. [35,36] conducted experiments of water flow in a rectangular 

microchannel over a Reynolds number range of 1-20. The channel was metallic with 

dimensions of 3,000 x 600 x 30 )1m3
. The experimental data showed an increase in the 

friction factor above that predicted by conventional theory. Papautsky et al. [37) extend d 

their work on metallic microchannels with water as the working fluid. They te ted 

rectangular channels of widths ranging between 150 and 600 )lm and heights ranging 

between 23 and 26 )lm. Over a Reynolds number range of 0.001- 10, an increase in the 

friction factor was observed. The normalized friction factor was a high as 1.4. Papautsky 

et al. proposed a model based upon micropolar fluid theory. The model predicts an 

increase in flow resistance, in better agreement with their data than conventional 

predictions. 

Choquette et al. [38] studied helium gas flow in a microchannel with a hydraulic 

diameter of 3 )lm. A numerical model was introduced which allowed for slip at the wall. 

The model predicted the flow accurately. 

Harm et al. [39) reported on experiment characterizing pre sure drop and heat 

transfer characteristics in a rectangular microchannel. The channel was 25 1 )lm wide and 

1030 )lm deep and the working fluid was deionized water. The experimental re ults 
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agreed reasonably well with conventional theory for both frictional and heat tran fer 

effects. The critical Reynolds number was found to be 1500. 

Webb and Zhang [ 40] studied refrigerant R-134a in rectangular microchannels with a 

hydraulic diameter of 133 ~J.m . They observed that the friction factor and heat transfer 

properties agreed well with macroscale empirical con·elations. 

Using water as the working fluid, Pfund et al. [ 41] measured pre sure drop in 

rectangular channels of hydraulic diameter ranging from 200 to 900 ~J.m for Reynolds 

numbers between 40 and 4000. For Re :S 1300 their data also showed good agreement 

with the conventional theory. They observed that the friction factor increased a the 

surface roughness increased. Similar behavior was observed in gas flows by Wu and 

Little [7] . Transitional behavior was observed at Re :::::: 1300, which is simi lar to the 

Reynolds number observed for transition by Harms et al. [39]. Later, Pfund et al. [ 42] 

measured the friction factor for water flowing in high aspect ratio smooth and rough 

rectangular channels over a Reynolds number range of 60- 3450. They found that the 

friction factor in laminar flow were significantly greater than the classical theoretical 

value, in particular when the rough chatmel (c!Dh =3%) was tested. 

Mala et al. [ 43,44] proposed a theory to account for the increase in friction factor for 

microchannels. They argue that the cause of the deviation is due to the electric double 

layer (EDL) of the fluid. They developed a model that explains the increase in the friction 

factor by solving the Poisson-Boltzmann equation for microchannel flow. Mala et al. [45] 

reported testing water and an aqueous solution between two parallel plates of silicon and 

glass. The tests were conducted in order to validate the EDL theory. The results agreed 
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well with their proposed theory. Qu et al. [ 46] also studied flow characteristics of water 

in silicon trapezoidal microchannels with a hydraulic diameter ranging between 51.3 and 

169 J.lm. The Reynolds number range was 10- 1500. At small Reynolds numbers (Re :S 

1 00), the friction factor agreed with conventional theory. The results showed an increa e 

in the friction factor from theory as Re increased above 100. The greatest deviation wa 

approximately 40%. The authors proposed a roughness-viscosity model to explain the 

experimental data. 

Mala and Li [ 4 7] studied a flow of water through micro tubes of fused silica and 

stainless steel. They observed nonlinear trends between pressure drop and flow rate for 

low Reynolds numbers. At small Reynolds numbers (Re < 100) the measured friction 

factors were in agreement with conventional theory, but for all other Re (up to 2500), the 

friction factors were consistently higher with respect to conventional theory. 

Kolinsky et al. [ 48] also performed studies on microchannel flows. They proposed an 

electrokinetic theory to model microflows. Their theory dealt with the electrokinetic 

retardation of polar liquids in microchannels due to the charge separation principle. The 

model accounted for the increase in the friction factor from conventional theory. They 

also conducted experiments in rectangular microchannels with a hydraulic diameter 

ranging between 39 and 100 J.lm to further validate the model. Some polar liquids were 

tested including deionized water and ethyl and propyl alcohol . The experimental re ult 

agreed well with the proposed electrokinetic theory. 
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Migun and Prokborenko [49] argued that the effective viscosity of polar fluids such a 

water increases as the hydraulic diameter decreases. In contrast, they argued that the same 

phenomenon does not occur for non-polar liquids. 

Beskok et al. [50] studied gas microflows numerically. They concluded that for 

pressure driven flows the pressure distribution is nonlinear due to compressibility effects. 

This is consistent with the results of Pong et al. [29]. 

Ameel and Warrington [51] al o presented a model for compressible flow in 

microtube . The model was derived from the avier-Stoke equations using a slip 

boundary condition. The experimental data they cited from other researcher 

cotTesponded well with the model. 

Guo and Wu [52] presented a numerical model studying the effects of compressibility 

on gas flows in microtubes. They argued that due to compre sibility effects, the flow 

cannot be considered fully developed and.fRe does not remain con tant and is a function 

ofRe. 

Flockhart and Dhariwal [53] performed an experimental and numerical work to 

determine the flow characteristics of a serie of trapezoidal channel with a hydraulic 

diameter ranging from 50 to 120 J..UTI. This trapezoidal geometry i very common m 

microfluidic applications. Distilled water was u ed as the te ting fluid. The flow was k pt 

within laminar flow regime with the experimental results not exceeding a Reynolds 

number of 600. They found a good agreement with the theoretical predictions on the 

friction factor in macrochannels. 
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Xu et al. [54] carried out experimental investigations on water flow in microchannels 

with hydraulic diameters ranging from 50 to 300 11m. They found that the flow 

characteristics deviated from conventional theory when channels dimensions were below 

100 11m. The friction factor was smaller than that predicted by the conventional theory. 

Later, Xu et al. [55] compared the experimental data obtained with rectangular aluminum 

microchannels and silicon microchannels. The hydraulic diameters investigated ranged 

from 46.8 to 344.3 11m for aluminum microchannels and from 29.59 to 79.08 11m for 

silicon microchannels. They concluded that for liquid flow through microchannels with a 

hydraulic diameter greater than 30 11m the experimental results in the laminar regime 

agree very well with the conventional theory. 

Microscale measurements of friction factor by Sharp et al. [56] agree with the 

macroscale laminar theory for water flowing through circular fused silica microchannels 

with a diameter ranging between 75 and 242 11m over a Reynolds number range of 50-

2000. Similar agreement was also obtained using a 20% solution of glycerol and ! 

propanol. They observed that there is no evidence that transition to turbulence occurs for 

Re < 2000. 

Using Rl34a and Rl2 as the working fluids, Ding et al. [57] conducted experiments to 

investigate the pressure drop through stainless steel microchannels with a triangular and a 

rectangular cross-section having a hydraulic diameter of 400 and 600 11m. The friction 

factor was higher than the conventional macroscale prediction. The experimental results 

demonstrated that the wall roughness effects on the friction factor were strong. In 

particular, they found that the Poiseuille number in the laminar regime does not remain 
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constant but depends on the Reynolds number. The proposed correlation for the friction 

factor in the laminar regime is similar to the correlation proposed by Peng et al. [18,19]. 

Araki et al. [58] studied frictional characteristics of nitrogen and helium flows through 

trapezoidal microchannels whose hydraulic diameter is from 3 to l 0 Jlm. The measured 

friction factor was lower than that predicted by the conventional theory. They concluded 

that this deviation was caused by the rarefaction effects. In the later studies, the friction 

resistance of gas flow in microtubes of diameter ranging 5 to 100 fllTI was observed by 

Kim et al. [59] to be smaller about 20% than that in the conventional sized tubes. 

Celata et al. [60] reported the results of Rll4 flowing in capillary tubes with a 

diameter of 130 Jlm. Experimental tests were performed in a wide range of Reynolds 

numbers ( 1 00-8000) and provided insights into the fluid flow in the transition region. 

They found that the friction factor was in good agreement with the conventional theory in 

the laminar flow regime. They observed that the laminar-to-turbulent transition occurred 

for Reynolds number in the range 1880-2480. The authors evidenced the role that the 

high relative roughness could play on the transition. 

Judy et al. [61] measured the friction factor of water, hexane and isopropanol flowing 

in fused silica circular microtubes with a diameter ranging between 20 and 150 Jlm in 

order to study the effects of the fluid polarity. For diameters lower than 100 Jlm the 

friction factor deviated from the conventional theory. The friction factor was lower than 

expected and the deviations were higher as the diameter decreased. Later, they [62] 

investigated a pressure driven flow through circular and square microchannels in fused 

silica and stainless steel with hydraulic diameters in the range of 47- 101 Jlm and for 
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Reynolds numbers ranging between 8 and 2300. The experimental results on the pressure 

drop demonstrated no distinguishable deviation from the classical theory. 

Li et al. [63] investigated the friction factor of a nitrogen flow through microtubes 

with diameters ranging from 80 to 166.6 ~m. They observed that the pressure drop along 

the tube became nonlinear when Mach numbers were higher than 0.3. The friction factor 

is higher than the prediction of the conventional theory. Later, Li et al. [64] utilized glass, 

silicon and stainless steel micro tubes with diameters ranging from 79.9 to 166.3 ~Lm, from 

100.25 to 205.3 ~m, from 128.8 to 179.8 ~m, respectively, in order to measure the 

friction factors of a deionized water flow and verify the effect of surface roughness. The 

experimental results showed that for smooth glass and silicon microtubes the classical 

theory in the laminar regime holds. For rough stainless steel microtubes (c:/D = 3-4%) the 

friction factors were higher than the predictions of the conventional theory. They 

concluded that the relative roughness cannot be neglected for microtubes also in the 

laminar regime. The transition from laminar to turbulent occurred at Reynolds numbers 

between 1700 and 2000 and no early transition effects were observed. 

Yang et al. [ 65] perfonned a test of the friction characteristic of air, water and 

refrigerant Rl34a through microtubes with a diameter ranging between 173 and 40 I 0 ~m. 

The experimental results demonstrated that the friction factor for water and refrigerant 

Rl34a agree well with the conventional theory. In contrast, for air flow the measured 

friction factors were significantly lower than those predicted by the conventional theory. 

Turner et al. [66] conducted an experimental investigation on nitrogen, helium and air 

flow through rough and smooth rectangular microchannels with hydraulic diameters in 
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the range of 4- 100 ~-tm . The measurements were made over a Reynolds number range of 

0.02 to 1000. The test results showed that the friction factor for both smooth and rough 

microchannels agreed with the conventional theory. 

Kandlikar et al. [67] investigated experimentally the effects of the relative roughness 

on the pressure drop in two microtubes with a diameter of 1067 and 620 ~-tm. They found 

that for the 1067 ~-tm diameter tube with a relative roughness 0.003 , the effects of the 

relative roughness on pressure drop are negligible and the tube can be considered smooth. 

However, for the 620 ~-tm tube, the same relative roughness increases the pressure drop; 

in other words, the pressure drop is dependent of relative roughness even in the laminar 

region. The relative roughness could play an important role in microchannels than in 

macrochannels. 

Gao et al. [68] performed an experimental investigation of the frictional characteristics 

of demineralized water through rectangular microchannels with a hydraulic diameter 

from 199 to 1923 ~-tm . They found that the friction factor agreed with the prediction of the 

conventional theory. 

Warrier et al. [69] reported experimental results on pressure drop for FC-84 through 

an aluminum rectangular microchannel with a hydraulic diameter of 750 ~tm . The 

experimental results in the laminar regime were in good agreement with the conventional 

predictions. 

Hegab et al. [70] investigated experimentally the fluid flow and the heat transfer of 

Rl34a in rectangular aluminum microchannels with hydraulic diameters in the range of 

112 and 210 ~tm and relative roughness from 0.0016 to 0.0089. The experimental data in 
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the laminar regime were very close to the predictions using the classical theory. The 

experimental results in the transition region and in the turbulent regime indicated that the 

friction factor was lower than the values predicted by the conventional theory. They 

evidenced that the aspect ratio of the channels and the relative roughness did not 

influence the transition region. 

Experiments were performed to study the flow behavior of deionized water and 

nitrogen gas through round capillary tubes by Chung et al. [71]. The pressure drop 

measurements at Re less than 2000 showed good agreement with the conventional 

correlations for flows of both gas and liquid in a 100 ).lm microchannel. For gas flows in a 

microchannel, a compressibility effect was found to be impot1ant, even under flow 

conditions that are traditionally described as being incompressible. 

Bucci et al. [72] measured the friction factor for water flowing in a 290 ).lm microtube 

with a relative roughness of 0.0075. They observed that the friction factor agreed with the 

prediction of the conventional theory up to a Reynolds number equals to 1500. 

Wu and Cheng [73] focused on the influence of aspect ratio in smooth trapezoidal 

si licon microchannels with hydraulic diameters ranging between 25 .9 and 291 ).lm. The 

experimental data were in good agreement with the predictions of the conventional theory. 

The authors concluded that the Navier-Stokes equations are still valid for the laminar 

flow of deionized water in microchannels with hydraulic diameters as small as 25.9 f.ll11 . 

Maurer et al. [74] conducted experiments for helium and nitrogen flow in 1.14 ).lm 

deep 200 ~un wide shallow microchannels. Flowrate and pressure drop measurement in 

the slip and early transition regimes were performed for averaged Knudsen numbers 
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extending up to 0.8 for helium and 0.6 for nitrogen. The authors also provided estimates 

for second-order effects and found the upper limit of slip flow regime as the averaged 

Knudsen number equals 0.3±0.1. 

Teng et al. [7 5] investigated experimentally and numerically the fluidic behavior of 

the liquid flowing through the triangular microchannels. The triangular microchannels 

have the transverse dimensions fonn 50-I 00 ~m; the fluid flowing through these 

channels has Reynolds numbers from 0.1 to 35. They concluded that a linear relation 

exists between pressure drop and flow rate. 

Tu and Hmjak [76] investigated experimentally single-phase flow frictional pressure 

drop in five rectangular microchannels with hydraulic diameters ranging from 69.5 to 

304.7 ~tm. The measured friction factors were compared with the conventional 

correlations. The results support such an agreement in the literature that the flow friction 

in microchannels may be different from the conventional results. However when the 

channel surface roughness was low, both the laminar friction factor and the critical 

Reynolds number approach the conventional values. In the turbulent region, the surface 

roughness has great effect on the flow friction even for the smoothest channel tested. 

Jung and Kwak [77] measured forced convective heat transfer coefficients and friction 

factor for flow of water in microchannels. The obtained friction factor are close to the 

theoretical value. 

Bari et al. [78] experimentally investigated frictional characteristics of high velocity 

air flow in microchannels with diameters ranging from 266 to l 090 ~m. The 
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experimental data depart significantly from macroscale correlations when Re > 1400 

suggesting earlier transition to turbulence. 

Brutin and Tadrist [79] experimentally investigated the friction factor of water flow 

through fused silica microtubes with diameters ranging from 50 to 530 )lm. The 

experimental results for tap water indicate a disparity from the conventional theory. The 

experiments show that the surface roughness cannot explain such an increase. Fluid

surface interaction can be put forward as an explanation of the Poiseuille number increase 

by the fluid ionic coupling with the surface. 

Baviere et al. [80] presented experimental results of water flow in smooth and rough 

rectangular microchannels . Friction is correctly predicted by the Navier-Stokes equations 

in the smooth case. Roughness considerably increases the friction coefficient in the 

laminar regime. However, the Poiseuille number remains independent of the Reynolds 

number. 

Pressure drop and mass flow rate measurements were experimentally studied in a 

microchannel with hydraulic diameter of 146 )lm by Hsieh et al. [81]. Deionized water 

served as working medium. The authors proposed empirical correlations in order to 

calculate the friction factor in laminar and in turbulent regime, namely,/ - Re-0
·
94 and/

Re-0
·
23 respectively. The transition was found at Re = 240 which is a little bit lower than 

the value reported by Peng et al. [ 19]. 

Liquid flow in microchannels was investigated both experimentally and numerically 

by Liu and Garimella [82]. The experiments are carried out in microchannels with 

hydraulic diameters from 244 to 974 ~Lm at Reynolds numbers ranging from 230 to 6500. 
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Results show that conventional theory may be used to predict successfully the flow 

behavior in microchannels. 

In recent studies, Kohl et al [83] investigated experimentally liquid and ga flow in 

rectangular microchannels with hydraulic diameters ranging from 25 to 100 ~m. Ga flow 

results for 6.8 < Re < 18814 and liquid flow results for 4.9 < Re < 2068 have been 

obtained. The results suggest that friction factors for microchannels can be accurately 

determined from data for large channels. 

Aubert and Colin [84] studied slip flow in rectangular microchannel usmg the 

second-order boundary conditions proposed by Dei sler [85]. In a later tudy, Colin et al. 

[86] presented experimental results for nitrogen and helium flows in a series of silicon 

rectangular microchannels. The authors proposed that the second-order s lip flow model is 

valid for Knudsen numbers up to about 0.25. 

A variety of researchers have attempted to develop second-order lip models which 

can be u ed in the transition regime. However, there are large variations in the second

order slip coefficient. The lack of a universally accepted second-order lip coefficient is a 

major problem in extending avier-Stokes equatiOns into the transition regime [87]. 

The wide variability of experimental results is illustrated in Figures 2.1 and 2 .2. There 

IS also broad variability in experimental conditions, microchannel geometrie and 

material, surface roughness and methodology. The incon i tencies demonstrate the need 

for further work in order to elucidate potential microscale effects and mechanisms in 

these microchannels. 
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for liquid flows in microchannel. 
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2.2 Summary of Currently Available Experimental Data 

Although the laminar flow in ducts is one of the most fundamental problems in fluid 

dynamics, experimental studies of microchannel flow attempting to reveal the frictional 

characteristics have often fai led to demonstrate the expected relationship between friction 

factor and Reynolds number. Furthennore, the deviations are neither consistently higher 

nor lower than macroscale theory predictions. Tables 2.1 and 2.2 present a summary of 

the experiments that have been perfonned to investigate the behavior of fluid flow in 

microchannels over a large range of Reynolds numbers, geometries, and experimental 

conditions. 

Tables 2.1 and 2.2 illustrate the varied and conflicting results that have been obtained 

by researchers. Many important factors have been varied and explored by these 

researchers . It is noted that, if we want to demonstrate the validity of the conventional 

theory for microchannel flows using the experimental results, the answer obtained is not 

univocal. Some researchers found that the predictions of the conventional theory agree 

with the experimental results; on the other hand, some researchers found the opposite 

conclusion with only slight differences in experimental conditions. 

It is important to summarize the main results cited in the open literature on the friction 

factor with respect to the conventional theory: 

• The friction factor for laminar fully developed flow is found to follow the 

conventional theory [39-41,53,55-56,60,62,64,68-69,71,73, 75,77 ,80,82-83]; 

• The friction factor for laminar fu lly developed flow is found to be higher than the 

conventional prediction [7 -8, 14,18-19,23,33-37,41-48,57,63-64,67,79,8 1 ]; 
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• The friction factor and Reynolds product for laminar fully developed flow does 

not remain constant and depends on the Reynolds number [9- 11 , 18-19,52,57,70]; 

• The friction factor for laminar fully developed flow is found to be lower than the 

conventional prediction [9-12, 15-16,25-27,29-33,38,54,58-59,61,65-66, 70,76]; 

this result has been demonstrated especially for gas microchannel flow 

experiments; 

• The friction factor for gaseous laminar fully developed flow decrease a the 

Knudsen number increa es due to the effect of rarefaction [12,26-27, 29-31,5 -

59,74,86]; 

• The friction factor for gaseous laminar fully developed flow increases when the 

Mach number increases [ 12,29,63] due to the effect of compres ibility; 

• The friction factor depends on the material of the microchannel wall 

(conductivity) and the working fluid (polarity). The effect of electrokinetics 

phenomena for microchannelliquid flows is not negligible [9-11 ,43-48,61-62]; 

• In laminar regime, the friction factor also depends on the relative roughness of the 

walls ofthe microchannels [7,16,41-42,46,57,60,63-64,67,72,76,80]; 

• The critical Reynolds number depend on the microchannel wall roughnes 

[7,47,60,72]; 

• The critical Reynolds numbers decrease when the microchannel hydraulic 

diameter decreases [15, 19,65]. 

• An early laminar-to-turbulent transition with respect to the conventional 

predictions ha been observed [7,12, 15 ,19-22,25,39,43-45,47,54,57,65 78,81]" 
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The flow of liquids in microchannels differs from that of gases in microchannels, due 

to the effects of compressibility and rarefaction in gases. In reviewing the results quoted 

in Tables 2.1 and 2.2, it is noted that generally for gases the friction factor is found to be 

smaller than the prediction of the conventional theory for continuum flows; for liquid , 

the friction factor is found to be larger than or obey the prediction of the conventional 

theory. 

2.3 Proposed Explanation 

Figures 2.1 and 2.2 show the currently available experimental results. The data are 

either above or below the theoretical predictions. Some of these anomalou results may 

be attributed to roughness of the channels and to uncertainty in the detennination of the 

channel dimensions . Part of the di crepancy may also be due to the lack of a well

controlled surface structure. 

Based on the avai lable experimental data in the literature it has been suggested that 

phenomena occur at the microscale that are not described by conventional theory. It is 

also evident that significantly different behavior has been observed in the prevwu 

investigations with similar experimental design conditions. No universally accepted 

physical interpretation of the microscale effects has been proposed. 
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Table 2 .1 Experimental results for liquid flows in microchannels. 

Researcher Channe l ( J..lm) Fluids Dh (J..lm) Re Di fference in/from Theory %Diff 
Pfahler et al. Rectangular, Isopropa 0.5-40, < 100 Decrease 15% 
[9-1 1) Trapezoidal; no I, isopropan Proposed f=C/Re with C given as C vs 

sil icon H=0.48- s ilicon o l, Re g raphs 
38.7, W=55-11 5 oil 2 .5-25, 

si licon oil 
Urbanet et al. Rectangular Propanol 5, 12,25 - Increase 5-20% 
r34l pentanol 
Wang and Rectangular Water 3 11 -747 - Transition to turbu lent flow was -
Peng [2 1] and initia led at Re of300-800. 

methanol 
Peng et al. Rectangular, Water 133-367 50-4000 Flow transition occurred fo r Re=200- -
[18 , 19] Rough stainless 700. T ransition Re decreased as Dh 

steel, H= I 00-300, was reduced. 
W=200-400, f = Cr.1!Re 1.

98 Laminar flow 
L=50mm f = C !Re172 Turbulent flow f,t 

Re=200 Dh<220 
Re=400 Dh=240 
Re=700 260<Dh<360 

Papautsky et Rectangular , Water 57 1-20 Increase 12% 
al. [35,36] metall ic, H=30, 

W=600, L=3mm 
Papautsky et Rectangular , Water 44 0.00 1- Increase 20% 
al. [37] metallic, 10 

H=22.7 1-26.35, 
W= l50-600, 
L=7.75mm 

Jiang et al. C irc ular,Rectangu Water 35-1 20 l-30 Decrease 15-
(25] tar , Trapezoidal, Flow transition occurred for Re=600- 30% 

Triangu lar,silicon 2800. short 
50-
75% 
long 

Wu e t al. [33] Rectangular , Water 3.5 0. 1- l Increase l 0-
silicon, W= l 9, 30% 
H= l.85, L=4 .4mm 

Hanns et a l. Rectangular , Water 403- 1923 - Transitional Re was 1500. 0% 
[39] s ilicon, W=25 1, 

H= l030, L=2.5cm 
Webb & Rectangular , R- 134a 133 6000- None 0% 
Zhang_[40) Si licon 30000 
Pfund et al. Rectangular, Water 200-900 40- 1300 Re< 1300 agreement with lami nar 0% 
[ 4 1] Silicon theory. 

When roughness increased, friction 
factor also increased. 

Pfund et al. Rectangular, Water 128-521 60-3450 Increase. Flow transition occurred for -
[42] Rough, Silicon Re= l700. 
Mala et al. C ircular, Para llel Water 5 1-1 69 0- 1500 Argue that the increase in friction 0-39% 
[ 43-45] plate, S ilicon , factor is due to the electric double 

Rough layer(EDL). 
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Transition to turbulent at Re 300- 900 
Kolinsky et Rectangular, Polar 39-100 - Increase -
al. [ 48] Silicon Liquids Proposed an electrokinetic theory to 

model microflows. 
Harley et al. Rectangular, Isopropa 45,67 - Increase -
[14] Trapezoidal, no! , 

Silicon 
Flockhart & Trapezoidal , Water 50-120 <600 None 0% 
Dhariwal Silicon, H=27-63 
[53] W= I00-1 000 

L= l2-36mm 
Qu et al. [46] Trapezoidal, Water 51-169 10-1 450 Increase 8-38% 

Rough, Silicon, The authors proposed a roughness-
H=28- 114 viscosity model. 
W= 148-523 
L=28mm 

Yu et al. [16] Circular, fused Water 52, 102 250- Decrease 10-
silica 20000 f = 50. 13/Re Re<2000 40% 

f = 0.302/Re025 6000<Re<20000 
Transition from laminar to turbulent 
flow occurred for 2000<Re<6000. 

Sharp et al. Circular Water 75-242 50-2500 None 0% 
r56l 
Wilding et al. Trapezoidal, Water, 26-63 17- 126 Increase 30% 
[23] Silicon, H=20-40 Biolog ic 

W=40- 150 a l fluids 
L= ll .7mm 

Guo & Wu Circular, - - - f Re product not constant; dependent -
[52] numerical on Re.f wi ll increase along the flow 

direction. 
Hegab et al. Rectangular, R-134a 11 2-210 1280- Decrease in the transition and 9-23% 
[70] aspect ratio I . 0- 13000 turbulent region. 

1.5 Transition from laminar to turbulent 
flow occurred for 2000<Re<4000. 
f =0.000 173 Re0 646 2000<Re<4000 
f =0.611Re·035 4000<Re< 15 000 

Xu et al. [54] Rectangular, Water 50-300 50-1500 Decrease from theory for channel -
dimensions below I 00 ~m. 

Xu et a l. [55] Rectangular, Water 29.59- 5-4620 None 0% 
aluminum, s ilicon 344.3 

Celata et al. Circular R 114 130 100- Laminar to turbulent transition for -
[60] 8000 1880<Re<2480. 

Laminar flow regime/is in good 
agreement with conventional theory. 

Judy et al. Circular Water, 20- 150 8-2300 Decrease -
[61] methanol No evidence of transition to turbu lent 

isopropa flow in the range Re<2000 as repo11ed 
no!, by other works. 

Judy et al. Circular and Water, 47-10 1 8-2300 None 0% 
[62] square, Silica and methanol 

Stainless steel isopropa 
nol, 
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Wu and Trapezoidal , Water 25 .9-29 1 11-3060 Nqne 0% 
Cheng [731 silicon 
Li et al. [64] Circular, rough, Water 79.9- - None 0% 

glass, silicon, 205.3 Flow transition occurred for Re=2000. 
stainless steel Relat ive roughness can not be 

neglected in the laminar regime. 
Brutin and Circular, fused Distilled 50-530 - Increase -
Tadrist [79] silica and tap Deviation observed only for tap water. 

water 
Baviere et al. Smooth and Water 7-300 0.01- None 0% 
[80] rough rectangular 8000 Roughness increases / in lam inar 

regime. However, Po remains 
independent of Re. 

lung and Rectangular Water 100-200 50-400 None 0% 
Kwak f771 
Bucci et al. Circular, stainless Water 172-520 200- None for Re< I 000 -

(72] steel 6000 Increase for Re> I 000, transition 
occurs for 1800<Re<3000. 

Ding et al. Triangular and R-134a, 400-600 200- Increase. f=C/Rem -
[57] rectangular R-1 2 3500 Transition from lami nar to turbulent 

are small than macro size. 
Surface roughness is an important 
factor. 

Yang et al. Circular Water, 173-40 10 - None -
[65] Rl 34a Early transi tion to turbulence 
Hsieh et al. Rectangular water 146 0-900 Increase -
[81] f = 48 .1/Re0 94 for laminar 

f = 1.03/Re0 23 for turbulent 
Transition from laminar to turbulent 
flow occurred at Re=240. 

Liu and Rectangular Deionize 244-974 230- None 0% 
Garimella d water 6500 
[82] 
Tu and Rectangular Rl 34a 69.5- 11 2- Decrease -
Hmjak [76] 304.7 9180 Surface roughness is an important 

factor. 
Chung et a l. C ircular Deionize 100 0-2000 None 0% 
[7 11 d water 
Kandlikar et C ircular, rough Water 620, 1032 500- Increase -
al. (67] 3000 Surface roughness is an important 

factor. 
Gao et al. Rectangular Water 199- 1923 None 0% 
[68] 
Warrier et al. Rectangular FC-84 750 None 0% 
[691 
Teng et al. Triangular Water 50- 100 0.1-35 None 0% 
[75] 
Kohl et al. Rectangular Water 25- 100 4.9- None 0% 

f83l 2068 
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Table 2.2 Experimental results for gas flows in microchannels. 

Researcher Channel (J.lm) Fluids Dh (J..lm) Re Difference in/from Theory % Diff 

Wu & Little Trapezoidal; Nitrogen, 55· 76 200- Friction factor for rough g lass channel 0% for 
(7] silicon and glass Helium 15000 3-5 times larger than smooth-pipe smooth 

W= l30-300, predictions. Flow transition occurred channel 
1-1=30-60 at Re=400. Correlation for/ 

(110±8)/Re Re<900 
0 . 165(3.48-logRe)0 24+(0.081 ±0.007) 

900<Re<3000 
(0.195±0.0 17)/Re0 11 3000<Re< l5000 

Cho i et al. Circular silica Nitrogen 3-8 1 10-3000 Decrease 0-30% 
[IS] gas f = 64/Re(1 +30(v/Dc.)]"1 Re<2000 

f = 0 . 140Re"0·
182 2500<Re<20000 

fRe=53 
Flow transition occurred for Re=SOO-
2000. 

Harley et al. Rectangular, Nitrogen, 0 .5 1 12-430 Decrease 12-20% 
[ 12] Trapezoidal, Hydroge 

Silicon n gas 
Pfalher et al. Rectangular, Nitrogen, 1.6-65 0.01- Decrease 10-20% 
[9-11] Trapezoidal, Hydroge 1000 

Silicon n gas 
Ho & Tai Rectangular, Nitrogen 1.2 0.02- Decrease -
(32] Silicon 0.07 The surface phenomena is quite 

significant in microscale flow. 
Wu et al. [33] Rectangular , Nitrogen 3.5 0.1-1 Decrease 60-70% 

si licon, W= l9, 
H= 1.85, L=4.4mm 

Choquette et Rectangular, Helium 3 - Decrease -
al. [38] Silicon 
Guo & Wu Circular, - - - f Re product not constant, dependent 
[52] numerical on Re.f will increase along the flow 

direction. 
Arki lic et al. Rectangular He lium 2.6 0.0005- Decrease 55-65% 
(26,27] silicon, H= 1.33, 0.004 Flow pressure relationship accurately 

W=52.25, modeled by including a slip flow B.C. 
L=7.5mm 

Pong et al. Rectangular Helium, 1.94-2.33 - Decrease -
[29] si licon, 1-1= 1.2, itrogen Pressure distribution was not linear as 

W= 5, 40 L=3mm suggested by a continuum flow 
analysis. 

Liu et al. [30] Rectangular Helium, 2 .33 0.001- Decrease -
si licon, 1-1= 1.2, Nitrogen 0.0 1 The pressure drop distribution was 
W=40 L=4.5 mm shown to be nonlinear. 

Shih et al. Rectangular Helium 2.33 0.001- Decrease 55-70% 
(3 I] si licon H= 1.2, Nitrogen 0.009 Pressure distribution was not linear. 

W=40 L=4mm 
Araki eta!. Trapezoidal; Helium, 3-10 Decrease -
f58l Nitrogen Rarefaction effects could be 
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significant. 
Yuetal.[l6] Circular Nitrogen 19-102 100- Decrease -

20000 Flow transition occurred for Re= 1700-
6000. 
Roughness effects 

Li et al. [63] Circular Helium 80-166.6 - Increase -
Flow transition occurred for Re= 1700-
2300. 

Sari et al. Rectangular Air 266- 1090 250-430 Higher for Re< 1400 -
[78] Lower when Re> 1400 

Earlier transition to turbulence 
Turner et al. Rectangular Helium, 9.7-46.6 0.2- Decrease -
[66] itrogen 1000 Entrance pressure loss is significant. 

Rarefaction and compressibility 
effects could be significant. 

Yang et al. Circular Air 173-4010 - Decrease -
[65] 
Chung et al. Circular Nitrogen 100 0-2000 None 0% 
[71] Compressibility effects could be 

significant. 
Kim et al. Circular Helium, 5- 100 0.03- Decrease 20% 
[59] itrogen, 29.7 

Argon 
Kohl et al. Rectangular Air 25-1 00 6.8- None 0% 
f83l 18814 
Maurer et al. Rectangular Helium, 2.28 0.001- Decrease -
[74] Nitrogen 0.07 Estimated second-order slip effects 
Colin et al. Rectangular Helium, 1-9 - Decrease -
186] Nitrogen Proposed a second-order slip model 
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The theories attempting to explain the observed deviation are vanous. Table 2.2 

demonstrates that the friction factor is lower than conventional prediction for gas 

microchannel flow experiments. It has been widely accepted that the deviation observed 

in gas flows may be attributed to velocity slip at the wall. However, the deviation 

experienced in liquid flows cannot be attributed to slip effects. There are many 

unanswered questions to be explored and a few of these are briefly discussed below. 

Some effects, which are normally neglected for macroscale flows, may exist on the 

microscale. For example, the temperature variations in the transport fluid can cau e a 

significant variation in fluid viscosity through a microchannel. 

Viscous dissipation becomes significant when the diameter decreases and the average 

velocities increase. Energy generated by friction raise the average temperature of the 

fluid, which will result in a lower viscosity. iscous dissipation effects may cause 

deviation in the friction factor from theoretical expectations. The jRe should be calculated 

by basing the viscosity on the average of the inlet and exit temperature. If the JRe is 

calculated by basing the viscosity only on the inlet temperature, the lower temperature 

will heighten the v iscosity resulting in a lower Reynold number than what is 

representative of the flow. Some researchers have reported the decrease in JRe with 

increasing Reynolds number. It is possible that viscous dissipation could contribute to the 

deviation observed by some researchers. 

Many researchers believe the polarity of the fluid and the wall material is a factor in 

the deviation. The electrokinetic effects occur at the interface between the channel and 

the fluid due to chemical interactions. The EDL theory addresses these types of 
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phenomena [ 43,44]. However, the electrokinetic effects have not been adequately 

addressed in the microchannel flow studies. 

In macroscale flows, the surface roughness does not affect the flow resi tance 

relationships in the laminar regime. However, many microscale experimental resul t are 

opposite regarding the effects of surface roughness on friction factor in the laminar 

regwn. 

Early transition to turbulence has often been offered as an explanation for the increase 

of flow resistance in microchannels. The evidence suggesting early transition to 

turbulence has been based solely on the trends in the experimental data. 

Neglecting the entrance effects could affect the accuracy of the mea ured friction 

factor. The entrance lengths at the higher Reynolds numbers could become quite 

significant for comparatively short microchanneis. The entrance length is estimated at 

half the length of the test section for the higher Reynolds number in some experiment in 

the literature. Furthermore, microscale effects could possibly lengthen the entrance region. 

In addition, neglecting the inlet and outlet pressure losses may cause inaccuracies in the 

prediction of the friction factor. 

It is extremely difficult to accurately measure the dimensions of these microchannels, 

particularly when one of the dimensions is on the order of several microns. The 

uncertainty in the JRe calculation is very dependent upon the diameter. The diameter i to 

the fourth power in the JRe calculation. Any uncertainty associated with the diameter 

measurement will be multiplied four times, enough to explain the majority of the 
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discrepancies between the conventional predictions and the observed results in Figures 

2.1 and 2.2 . 

2.4 Summary 

The explanations offered for this anomalous behavior in the literature included 

rarefaction effects, compressibility effects, electrokinetic effects, surface roughness 

effects, variations in viscosity, micro-rotational effects of individual fluid molecules 

(micropolar flow theory), early transition to turbulence, entrance effects, and inaccuracies 

in measuring channel dimensions. 

The currently available experimental data suggest the presence of microscale 

phenomena. However, they do not unequivocally identify the effects. There is a clear 

need for additional experimental investigation over a wider Reynolds number range 

using microchannels with well characterized dimensions and surface roughness in order 

to understand microscale internal fluid flow. 
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Chapter 3 

Methodology 

3.1 Theoretical Background 

The emphasis was on the development of efficient microfabrication techniques in the 

early years of microfluidic devices. However, with the successful design and fabrication 

of various microfluidic devices with complex microstructures, the interest has hifted 

towards the prediction of device performance (e.g. , microchannel flow) as microdevices 

tend to behave differently than the macroscale devices. 

The two approaches that are typically uti lized to study fluid behavior in microtluidic 

devices are continuum approach and molecular approach. In molecular approach, the 

molecular models recognize the fluid as a myriad of discrete particles. In this statistical 

approach, every particle in the flow must be accounted for. Therefore, this method is 

computationally intensive and is predominantly used when modeling nanoscale flows 

with the channel characteristic dimension up to approximately 100 nm. In continuum 

approach, the focus is on small groups of particles with smooth variations in properties so 

that differential calculus can be used in the analysis. This approach i much les 

computationally intensive than the molecular approach and is typically u ed in 

investigation of flows in channels with characteristic dimensions above approximately I 

mm. Some researchers have used the continuum approach to investigate microscale flows 
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and demonstrated a deviation of the experimentally observed results from the theoretical 

predictions. A possible explanation of this phenomenon is the breakdown of the 

continuum assumption. 

3.1.1 Continuum Assumption 

The concept of a continuum is the basis of classical fluid mechanics . The foundation 

of the continuum originated in the works of Euler ( 1707-1783 ). The continuum 

assumption simply means that physical properties are imagined to be distributed 

throughout space. We can consider a small volume element ~Vprocessing mass density p 

defined by 

I. ~m 
P = o~f!.!o ~ V (3 .1) 

where ~m is the total mass contained in ~ V This equation assumes that p is independent 

of the size of~ V. As the size of~ V approaches zero, a critical volume is reached when p 

begins to show increasing dependence on ~ V. In other words, as the size of the volume 

element approaches a characteristic dimension, the continuity assumption for mass 

density is no longer valid. 

As a consequence of the continuum assumption, all properties of interest such as 

density, velocity, stress, pressure, temperature are assumed to be defined everywhere in 

space and to vary continuously from point to point within a flow. Therefore, fluid 

properties are considered continuous functions of position and time. Properties may 

change from one point to the next. Conversely, the continuum assumption does not allow 
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properties to become infinite or to jump discontinuously at a single isolated point. 

Continuum properties may be interpreted as the average of a large number of microscopic 

particles. 

3.1.2 Continuum Breakdown 

The continuum assumption is valid m considering the behavior of fluid under 

macroscale conditions. When the molecular spacing and mean free path of the fluid are 

comparable to the smallest characteristic dimension, the continuum assumption becom 

no longer valid. 

The Knudsen number (Kn) relates the molecular mean free path of gas to a 

characteristic dimension [88] : 

A 
Kn=-

L 
(3.2) 

where A is the mean free path of the molecules and L is a characteristic dimension. 

Knudsen number is very small for continuum flows. However, for microscale gas flows 

where the gas mean free path becomes comparable with the characteristic dimension of 

the duct, the Knudsen number may be greater than 10-3. Schaaf and Chambre [28] have 

proposed the use of the Knudsen number to classify flow regimes of gases as presented in 

Table 3.1 . Thus, microchannels with characteristic lengths on the order of 100 J..l.m would 

produce flows inside the s lip regime (Kn > l o-3) for gas with a typical mean free path of 

approximately 100 nm at standard conditions. 
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Table 3.1 Classification of flow regimes based on Knudsen number. 

Regime Lower Limit Upper Limit 

Continuum Flow 0 0.001 

Slip Flow 0.001 0.1 

Transition F low 0.1 10 

Free Molecular Flow 10 00 

The density of liquids is 100 to 800 times that of the typical gaseous state. The 

molecules are closely packed and surrounded by other molecules . Since the molecules are 

continuously in collision, the concept of a mean free path is not used for liquids. When 

considering liquids, it is typical to talk about molecular lengths. For many liquids the 

molecular lengths are on the order of 1 nm. This mean that the microchannel 

characteristic length must be at least on the order of 1 f.!m or less to produce flows outside 

the continuum regime. Furthermore, the nature of liquid flows near walls is more 

complex than that of gases. The physical and chemical nature of the walls and liquids are 

significant. Beskok and Kamiadakis [89] attempted to define a flow regime cale for 

liquids, similar to gases. However, such an empirical scale requires further experimental 

validation. 

3.1.3 Governing Equations 

The most important equations of fluid mechanics are the continuity equation, 

momentum equation, and energy equation. The continuity equation, also known as the 

law of conservation of mass, states that for a unit volume there is a balance between the 
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masses entering and leaving per unit time, and the change in density. Using symbolic 

notation, the differential continuity equation is written as 

ap 
-+ V ·(pV) =0 at 

where p is the fluid density, Vis the fluid velocity vector, and tis time. 

(3.3) 

The momentum equation is essentially Newton's second law applied to a continuum. 

The momentum equation states that the time rate of change of linear momentum of a 

continuum is equal the sum of the forces on the continuum. Two types of forces are 

typically present: body forces which act on the bulk of the material inside the continuum, 

and surface forces which act at the boundary surface. Using symbolic notation, the 

differential momentum equation is written as 

DV av . 
p-= p-+ p(V · V)V = pF+V · r .. 

Dt ar I} 

(3.4) 

where D/Dt is the material derivative, F is the external body force per unit mass (e.g., 

gravity), p is the pressure, and ru is the stress tensor. 

For an isotropic Newtonian fluid, the stress tensor is proportional to the rate of 

shearing strain and can be expressed in terms of velocity gradient and fluid properties as 

2 
r .. = -p!i .. -- "(v . v)!i + 2,,s . 

IJ IJ 3 r IJ r 'i 
(3.5) 
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where bu is the Kronecker delta or identity tensor, p is the fluid viscosity, and Su i the 

rate of deformation tensor. The identity tensor bu equals unity if i = j and zero if i t j. The 

rate of deformation is defined as 

Equation (3.5) is Newton ' s viscosity law and must be satisfied by all ewtonian fluids . 

For a Newtonian fluid, the viscous stresses are proportional to the rate of shearing strain. 

The stresses can be expressed in terms of velocity gradients and fluid properties in 

rectangular coordinates as (constitutive equation) 

2 ( ) ov r =-p - -f..1.V·V+2f..l.-
w 3 8y 

r =r = 'L -+-(aw au) 
x: zx ,.. ax az (3.7) 

r =-p - ~f.1.(V·V)+2u8w 
zz 3 ' az ( ov awJ r .= r = p -+-

Y- zy Oz 0y 

where u, v, and ware components of the velocity vector V in x, y, and z direction . 

Introducing Newton's viscosity law into the momentum equation yield the 

differential equations of motion for a Newtonian fluid 

DV 2 ( ) p-=-Vp+pF - -V(f.1.V·V)+2V· JLS .. 
Dt 3 I} 

(3.8) 

These equations of motion are commonly referred to as the Navier-Stokes equat ions. The 

equations are greatly simplified when applied to incompressible flows in which variations 
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in fluid viscosity and density can be neglected. Under these conditions the equations 

reduce to 

DV ? 

p- = -Vp + pF + JLV-V 
Dt 

The corresponding energy equation is 

Dh Dp 
p-=--"V·q+<l> 

Dt Dt 

(3.9) 

(3. 10) 

where h is the enthalpy and q is the vector heat flux given by Fourier' law of heat 

conduction, 

q = - k"VT (3 .ll) 

The rate of conversion of mechanical energy into heat due to internal viscous dissipation 

IS 

(3 .12) 

The detailed derivations of the continuity equation, the momentum equation, and the 

energy equation, as well as the more detailed description of the continuum assumption 

are provided in a number of available texts. Advanced readers are refened to White [90] , 

Panton [91 ], and Schlichting [92]. 
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3.1.4 Pressure-Driven Flow in Channels 

For incompressible Newtonian fluid flow with no body forces other than gravity, the 

continuity and momentum equations reduce to 

Y' · Y=O (3. 13) 

(3.14) 

where F; is the body force per unit mass (often F; = g,, the gravitational acceleration). 

Consider a long traight duct with the x direction along the axis of the duct and the 

coordinates y and z in the plane perpendicular to the axis of the duct. When the velocity 

becomes purely axial and varies only with the lateral coordinates, u= (u(y, z), 0, 0), the 

flow is then called fully developed. Thus, for fully developed flow with gravitational 

body force g the equations become very imply 

au dp a ( auJ a ( au) p-=--+pgx+- JL- +- fl -at dx ay 8y az az (3 .15) 

(3 .16) 

Furthermore, if the flow is steady and the properties are constant, then the momentum 

equation for streamwise velocity profiles reduces to a simple Poisson equation 
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(3.17) 

3.1.5 Flow in Circular Tubes 

The circular tube is the geometry most commonly used in fluid flow and heat transfer 

devices. While microfabrication characteristically yields noncircular channels, the 

circular cross section is a useful and familiar archetype. Extensive macroscale research 

on pipe flows dates back to the original studies by Hagen ( L 839), and Poiseuille (I 840). 

Hagen and Poiseuille respectively observed the relation between pressure head and 

velocity, and its inverse proportionality to the fourth power of tube diameter. 

For fully developed laminar flow, the continuum momentum equation takes the fmm 

(3 . 18) 

After applying both the boundary condition of finite centerline velocity and the no slip 

boundary condition at the wall, the following veloci ty distribution is obtained 

u = - dp(R 2- r 2) 
d--c 4,u 

(3.19) 

where R is the radius of the pipe, r is the radial coordinate, fl is the fluid viscosity, and 

dpldx is the constant pressure gradient. The volume flow rate (Q) is then determined by 

integrating the axial velocity over the pipe cross sectional area 
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Q = f2nurdr (3 .20) 

Using the volume flow rate, the average velocity ( u) can be determined by dividing by 

the area, and gives the following form 

_ D 2 dp 
u = - ----

32)1. dx 
(3 .2 1) 

D is the pipe diameter. After integrating Eq. (3 .21), the pressure difference along the 

length of the pipe (L) is given by 

(3.22) 

To find a nondimensional relationship for the pressure drop, both sides of Eq. (3.22) 

are divided by the dynamic pressure pli2 / 2 to yield 

(3.23) 

where Re = puD/ J.1. . The Fanning friction factor (f) is defined as 

I = -r w = __ dp _ D_ 
1 - 2 dY 2pu 2 

- pu 
2 

(3.24) 

and tums out to be the classic relation 16/Re for laminar incompressible flow. 
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The Poiseuille number is conveniently used to describe flow resistance in ducts of 

arbitrary cross section as the Poiseuille number is a pure constant. It is defined by 

Po = r wD = fRe 
;.al 2 

(3.25) 

Therefore, the friction factor can be calculated by measuring the pressure drop along a 

specified length, the flow rate through the tube, and the diameter of the tube. With these 

measurements it is possible to determine the friction factor or friction factor Reynolds 

product using the following relations 

(3.26) 

(3.27) 

where the second tetm represents minor losses that exist due to the tube inlet, exit, and 

developing length. The measured friction factor can then be compared to the theoretical 

value of 16/Re for circular pipe flow. For flows in non-circular ducts, a relation hip 

j=C/Re, where Cis a constant based on the channel geometry, i determined by following 

the similar procedure as above. Measurements off andRe are made, and then the product 

fRe is compared wi th the corresponding constant obtained from macroscale laminar flow 

theory. This has been the standard approach of most research in this area . 

The inverse relationship between friction factor and Reynolds number ha been well 

documented on the macroscale laminar flow . The pressure drop is linearly proportional to 
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the flow rate, Q. When the Reynolds number increases above 2300 in a circular tube, the 

flow begins to transition to turbulence. At this point, the friction factor increa e 

strikingly, and the pressure drop ultimately becomes proportional to Q2
. 

3.1.6 Entrance Length Effects 

The hydrodynamic entrance region of the duct is that reg ion where the velocity 

boundary layer is developing. In this region the flow looks like a boundary layer that 

grows as it progresses downstream. In this region, the fluid velocity profile changes from 

the initial profile at the entrance to an invariant form downstream. This transition occurs 

in the entrance length of the duct. Ultimately, the viscously retarded layers meet in the 

center of the duct at the end of the entrance length. 

The pressure drop from the beginning of the duct to a location x is given by 

Po- p(x)=(41 ~+K(x)Jpu
2 

Dh 2 
(3.28) 

where K(x) is the excess pressure drop coefficient. Schmidt and Zeldin [93] numerically 

calculated the parameter, K, for circular ducts and parallel plates. The apparent fri ction 

factor ,lapp, is defined as 

K 
lapp = I+ 4L/ D (3.29) 

h 

Muzychka and Yovanovich [94] developed a simple model for the apparent friction 

factor in the entrance region for non-circular ducts. 
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2 

fapp Re .JA = 
12 

(3 .30) 

where c is the aspect ratio and the dimensionless position for hydrodynamically 

developing flows z+ = zj(e Ret ). The definition of aspect ratio is summarized in Table 

3.2 for a number of geometries. It predicts most of the non-circular friction data within 

± 10%. 

Table 3 .2 Definition of aspect ratio. 

Geometry Aspect Ratio 

Regular Polygons c = 1 

Singly-Connected 
b 

&=-
a 

2b 
Trapezoid £=--

a+c 

1- r 
. 

Annular Sector 5 
= (1 + r • }t> 

l - r 
. 

Circular Annulus c= 
;r(1 + r • J 

Eccentric Annulus 5 
= (1 + e • X1 - r ·) 

;r(1 + r ·) 

3.1. 7 Noncircular Channels 

Most microfluidic channels have noncircular cross-sections. Fully developed flow in 

noncircular ducts can be found by solving the Poisson equation (3 .17) . Muzychka and 
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Y ovanovich [94] developed a pretty simple model for predicting the friction factor 

Reynolds number product in non-circular ducts for fully developed laminar flow. 

fRe - 12 
.fA - r { 192& ( 1r )] v &(1 + £ 1._ 1- ---;s tanh 

25 

(3.31) 

Yovanovich and Muzychka [95] showed an important result that the characteristic length 

scale for non-circular ducts in laminar flows should not be the hydraulic diameter, but 

rather, the square root of the cross-sectional area of the duct. 

3.2 Scale Analysis 

Scale analysis is the art of examining the order of magnitude of terms appearing in the 

governing equations of transport problems. It is also referred to as order of magnitude 

analysis or scaling. The objective of scale analysis is to u e the basis principles to 

produce order of magnitude estimates for the quantities of interest. Scale analysis may be 

used to simplify governing equations through the determination and elimination of terms 

which have little effects on the flow, and it may be used to obtain crude solutions which 

are correct within an order of magnitude. It is indicative of the relative magnitudes of the 

various physical mechanisms in each problem. Scale analysis is remarkable when the 

exact analytical solution is not available. 

Scale analysis is recommended as the premter method for determining the most 

knowledge for the least effort. There are five essential rules which mu t be followed 

when undertaking a scale analysis. These are discussed in the text by Bejan [96]. 
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Rule l - Always define the spatial extent of the problem under consideration. This 

could be a physical dimension associated with the system or another region such as a 

boundary layer when the system or region of interest is not finite. 

Rule 2 - Any equation constitutes an equivalence between the scales of two dominant 

tenns appearing in the equation. Other terms in the equation of interest may dominate 

under certain conditions. The reasoning for selecting the dominant scales is the basis of 

rules 3-5 . 

Rule 3 - If in the sum of two terms in which the order of magnitude of one term i 

greater than the order or magnitude of the other term, then the order of magnitude of the 

sum is dictated by the dominant term. i.e. given c = a+b, then if 

o( a) > o( b) then o( c) = o( a) (3 .32) 

Rule 4 - If in the sum of two terms, the order of magnitude is the same for each term, 

then the sum is of the same order of magnitude. i.e. given c = a+b, then if 

O(a) = O(b) then O(c)- O(a) - O(b) (3.33) 

Rule 5 - In any product or quotient of two terms, the order of magnitude of the 

product or quotient is given by the product or quotient of the order of magnitudes of each 

term. i.e. given c = ab, then if 

O(c) = O(a )O(b) (3.34) 

or if given c = alb, then 
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o( c) = o( a) 1 o( b) (3.35) 

Successful application of scale analysis can provide much of the information and 

insight about the nature of a given fluid mechanics or transport process without the need 

to solve the governing differential equations. 

3.3 Asymptotic Analysis 

In many problems found in the field of transport phenomena, there exists an 

asymptotic behaviour of a general solution for small and large values of a particular 

parameter. For example, in the case of fluid flow, the first type of behaviour which may 

come to mind is the flow of fluid at small and large Reynold numbers. However, in this 

type of situation, there usually exists a transition region which may or may not be smooth. 

On the other hand if we confine ourselves to a particular flow regime such as laminar 

flow, there exist many fundamental problems which display smooth transition for flow 

from small to large Reynolds number, from short to long tubes, for small to large Prandtl 

numbers. This smooth transition indicates that there is no sudden change in slope and no 

discontinuity within the transition region. 

Many of these problems lend themselves to asymptotic analysis. That is, we may 

develop a composite solution by considering only the asymptotic or limiting behaviour of 

these problems. It is easier to obtain exact or approximate solutions for limiting 

conditions of a particular variable of interest, than it is to find a solution which is exact 

over a wide range of that particular variable. 
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Once these asymptotic limits are determined we may develop a composite model by 

combining the asymptotes in one of two ways: 

y(x) = [{Yo (x-) 0 )t + {y oo (x -) oo )}" J"' (3.36) 

or 

(3.3 7) 

where y 0 and Yoo are asymptotic solutions for small and large values of the independent 

variable x. The parameter n is a fitting coefficient determined using data which should be 

distributed in the transition region of the asymptotes. These data may be either 

experimental or numerical, and in some situations may be ana lytical. The value of the 

parameter n is only important in the transition region. The results for small and large 

values of the independent parameter x, remain unchanged with changing the parameter n. 

The parameter n may be chosen using a number of methods as discus ed by Churchill 

and Usagi [97]. This method was proposed by Churchill and Usagi [97] as a means of 

combining asymptotic solutions to develop a model which is valid over a wide range of 

the parameter of interest. 

Asymptotic techniques provides a way to generate approximate olutions of the 

nonlinear differential equatiOns of fluid mechanics, as well as the corre ponding thermal 

energy (or species transport) equations. They demand an extremely close interplay 

between the mathematics and the physics, and in this way contribute a very powerful 
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understanding of the physical phenomena that characterize a particular problem or 

process. 

Thus, the power and impact of asymptotic techniques is not mainly becau e they 

provide approximate solutions of complex problems but rather because they provide a 

framework to understand the essential features from a qualitative physical point of view. 

3.4 Characteristic Length Scale 

In the fluid flow and heat transfer literature the convention is to use the hydraulic 

diameter 4AIP. This characteristic length arises naturally from a simple control volume 

balance on an arbitrary shaped straight duct. For non-circular geometries, it is desirable to 

eliminate or reduce the effects of geometry such that the general trends for all duct shapes 

may be easily modeled. It is better to choose a ''reasonable" characteristic length scale to 

non-dimensionalize the fluid flow and heat transfer data. 

Dimensional analysis using Buckingham theorem was undertaken for fully developed 

flow by Muzychka [98]. It was shown that only the perimeter or the square root of the 

flow area result as possible choices for the characteristic length. 

All three possibilities for characteristic length L ( L = P , L = .fA , and L = A/ P) have 

a number potential flaws . First, the perimeter and area are not definable for a parallel 

plate. This is not a problem for singly or doubly connected regions having finite area and 

perimeter. This aspect does not pose a problem for the definition of the hydraulic 

diameter. However, a number of deficiencies in the hydraulic diameter concept should be 

addressed, namely, that the hydraulically equivalent circular area and perimeter based 
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upon the hydraulic diameter are not the same as the true area and perimeter of the non

circular duct. This mismatch in area and perimeter is the probable cause in the mismatch 

of dimensionless laminar flow data. Finally, the hydraulic diameter concept produces 

results which are in contradiction of correct physical behaviour. In a number of cases 

where a duct shape varies with aspect ratio, the dimensionle s results decrease with 

decreasing aspect ratio, which is contradictory to observation that fluid friction and heat 

transfer generally increase with a decrease in aspect ratio. 

All three length scales have been critically examined by Muzychka [98]. It was 

observed that L = P and L = JA. succeeded in bringing the dimensionless results clo er 

together for similar ducts, i.e. rectangular and elliptical or polygonal. ln both cases, better 

correlation of the laminar flow data was achieved versus the duct aspect ratio. For low 

aspect ratio ducts, L = P provided better correlation than L = JA.. For high aspect ratio 

ducts such as the polygonal ducts, L = JA. provided better correlation than L = P . 

Overall, L = JA. was found to be more effective at collapsing the data over a wide range 

of duct aspect ratios. 

It may also be argued on physical grounds that the square root of the flow area is 

essentially the same as preserving the duct area or maintaining a constant mass flow rate. 

That is 

(puA )ci, = (pu A )"c" (3 .38) 

Now if both the circular and non-circular ducts have the same mass flux G = pli then, 
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(3.39) 

And the effective circular diameter becomes 

De/! = )4~cir (3.40) 

In other words, the characteristic length L =.fA - Del!. 

Finally, the characteristic length should also be representative of a direction parallel to 

a vector normal to the duct wall. Since this length changes around the perimeter of many 

ducts, L = .fA appears to represent the geometric mean value. Consider the rectangular 

and elliptical cross-sections having semi-axes of length a and b. The square root of the 

cross-sectional area for each ducts gives .J 4ab and .J Trab for the rectangle and ellipse, 

respectively. Both a and b are directions normal to the duct wall. 

3.5 Numerical Simulation 

A summary of possible simulation approaches at the continuum and molecular levels 

for both gas and liquid microflows is shown in Figure 3.1. MD refers to molecular 

dynamics, DPD refers to dissipative particle dynamics, and DSMC refers to direct 

simulation Monte Carlo method. 
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Liquid Flows Gas Flows 

MD 

Lattice Boltzmann 

DPD 

Finite difference 

Spectral Elements 

Finite Elements 

Finite Volume 

Boundary Elements 

Meshless 

Force Coupling 

DSMC 

Boltzmann 

Lattice Boltzmann 

Figure 3.1 Summary of simulation methods for liquid and gas microflows[l]. 

Table 3.3 Flow regimes and fluid models. 

Kn Fluid Model 

KnS lO-J (continuum) Navier-Stokes equations with no-slip boundary conditions 

10-3SKnS1 o-1 (slip) 
Navier-Stokes equations with first-order slip boundary 

conditions 

Navier-Stokes equations with second-order slip boundary 

10-1SKnS10 (transition) conditions, Bumett equations with slip boundary conditions, 

DSMC, Lattice Boltzmann 

Kn2:10 (free molecular) Collisionless Boltzmann, DSMC, Lattice Boltzmann 

Various regimes of fluid flows and appropriate fluid model are shown in Table 3.3. 

The flow regime for Kn < 0.001 is known as the continuum regime, where the av1er-

Stokes equations with no-slip boundary conditions govern the flow. In the slip flow 
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regime (0.00 1 :S Kn :S 0.1) the assumed no-slip boundary conditions seem to fail. This 

results in a finite velocity slip value at the wall, and the corresponding flow regime is 

known as the slip flow regime. In the slip flow regime the flow is governed by the 

Navier-Stokes equations, and rarefaction effects are modeled by using Maxwell's 

velocity slip and von Smoluchowski 's temperature jump boundary conditions at the wall. 
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Chapter 4 

Slip Flow in Long Microchannels 

4.1 Introduction 

Rarefaction effects must be considered in gases in which the molecular mean free path 

is comparable to the channel's characteristic dimension. The continuum assumption is no 

longer valid and the gas exhibits non-continuum effects such as velocity slip and 

temperature jump at the channel walls. Traditional examples of non-continuum gas flow 

in channels include low-density applications such as high-altitude aircraft or vacuum 

technology. The recent development of microscale fluid systems has motivated great 

interest in this field of study. M icrofluidic systems must take into account non-continuum 

effects. There is strong evidence to support the use of Navier-Stokes and energy 

equations to model the slip flow problem, while the boundary conditions are modified by 

including velocity slip and temperature jump at the channel walls. 

Traditionally, the no-s lip condition at a fluid-solid interface ts enforced in the 

momentum equation, and an analogous no-temperature-jump condition is applied in the 

energy equation. The interaction between a fluid particle and a wall is similar to that 

between neighboring fluid particles, and therefore no discontinuities are allowed at the 

fluid-solid interface. In other words, the fluid velocity must be zero relative to the surface 
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and the fluid temperature must be equal to that of the surface. However, strictly speaking 

those two boundary conditions are valid only if the fluid flow adjacent to the surface is in 

thennodynamic equilibrium. This requires an infinitely high frequency of collisions 

between the fluid and the solid surface. In practice, the no-slip and no-temperature-jump 

conditions lead to fairly accurate predictions as long as Knudsen numbers are less than 

0.00 1. Beyond that, the collision frequency is simply not high enough to ensure 

equilibrium, and a certain degree of velocity slip and temperature jump must be allowed. 

The non-continuum effects become important gradually with increased Knudsen number. 

The no-slip and no-temperature-jump boundary conditions are just an empirical finding. 

These boundary conditions are generally valid for macroscopic flows in which the 

continuum holds and the molecular nature of the fluid is not apparent at the length scales 

of the flow. 

One of the most fundamental problems in fluid dynamics is that of laminar flow in 

circular and non-circular channels under constant pressure gradient. Upon obtaining the 

velocity distribution u(x, y) and mean velocity u, the friction factor Reynolds number 

parameter may be defined using the simple expression denoted in some texts as the 

Poiseuille number: 

(
- A dp)e 

Po = f f = P dz = f Re , 
' ,uu JLU 2 

( 4.1) 
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The above grouping Po is interpreted as the dimensionless average wall shear. The 

mean wall shear stress may also be related to the pressure gradient by means of the force 

balance f = -A/Pdpjdz. 

Using the method of scale analysis, we examine the momentum equation and consider 

the various force balances. Considering the force balance between the friction and 

pressure forces for a long microchannel : 

t1p JLU ---
L 

(4.2) 

then, the incompressible flow criterion for microchannel flows can be obtained: 

t1p t1p JLUL 
- =-- --'----
p p pRTD; 

LMa1 L J 
--- - -Kn- Re << 1 
DR D D" 

h e o, h 

(4.3) 

where we have employed ideal gas equation of state p=pRT and Kn-;:;:,lvfal Re and assumed 

that the flow is isothermal. As the pressure drop is owing to viscous effect and not to any 

free expansion of the gas, the isothermal assumption should be reasonable. Therefore, in 

microchannel flows which are dominated by viscous effects, density changes may be 

significant even though the Mach number is very small. The gas flow through a 

microchannel can be considered incompressible when the Reynolds number is very low 

with comparatively high Knudsen numbers or the Knudsen number i small with 

moderate Reynolds numbers. 

Comparing the scale between friction and inettial forces we obtain the following 

relation: 
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a2u u 
f.1 a;/ f.1 D 2 L 

" = L+ (4.4) ---= au pU z D" Re 0 • pu -ax L 

This analysis demonstrates that inertial forces are only important for short ducts L + << l . 

4.2 Slip Flow in Elliptic Microchannels 

Kennard [88] studied internal flows with slip in the circular tube and parallel-plate 

channel. Ebert and Sparrow [99] performed an analysis to determine the velocity and 

pressure drop characteristics of slip flow in rectangular and annular ducts . o attempt has 

been made for solving the same problem in elliptic microchannels . With the development 

of microscale thermal fluid systems, there is a need to investigate slip flow in elliptic 

microchannels. Slip flow in elliptic microchannels will be examined first and a detailed 

theoretical analysi will be performed. Later a simple model for many duct shapes will be 

developed. 

y 

b 

X 

-a c a 

-b 

Figure 4.1 An elliptic duct. 
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4.2.1 Theoretical Analysis 

A schematic diagram of the elliptic cross section with coordinates and other 

dimensional nomenclature is shown in Figure 4 .1. The starting point of the analysis is the 

law of conservation of momentum. When L + >> 1, the continuum flow momentum 

equation reduces to the form 

2 ? d a u a-u 1 'P 
- + --=--
ax2 c3y 2 Jl dz 

(4.5) 

It is convenient to use elliptic cylinder coordinates [1 00,101] to facilitate the solution 

process. The metric coefficients for this system of coordinates are 

g, =g2 =c2 (cosh 2 r; - cos 2 !f/) (4.6) 

(4.7) 

The elemental distance for this coordinate system is [ 100,101] 

( ? 2 )'/? ds1 = c cosh - r; - cos If/ - dr; (4.8) 

( 
? 2 )'/2 ds 2 = c cosh - r; - cos If/ d If/ (4.9) 

In elliptic cylinder coordinates, the momentum equation becomes 

a? 2 2 d 
-u a u c 'P ( 2 2 ) --+ --

1 
= - - cosh r; - cos If/ 

ar; 2 alf/ - Jl dz 
( 4.1 0) 
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The velocity distribution must atisfy the slip boundary condition at the wall . The 

local slip velocity is proportional to the local velocity gradient normal to the wall. In 

elliptic cylinder coordinates, the boundary conditions assuming a one quarter basic cell, 

are: 

_1_ au =0 
ji; alf 

u=-

2 - 0' 
..1 - -

(J' au 
Ji: a77 

at If= 0 

1l' 
at If=-

2 

at 77 = 0 

at 77 = rJo 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

where A. is the molecular mean free path. The constant 17 denotes tangential momentum 

accommodation coefficient, which has values that typically lie between 0.87 and I [I 02]. 

Although the nature of the tangential momentum accommodation coefficients is still an 

active research problem, almost all evidence indicates that for most gas-solid interactions 

the coefficients are approximately 1.0. The same procedure is valid even if a;t: l , defining 

a modified Knudsen number as Kn.=Kn(2-cr)lcr. 

The parameter rto is related to the major and minor axe through 
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b 
1+ -

ry0 = In Rtr 
The half focal length of an ellipse c, is defined such that 

a b 
c= =---

cosh 7]0 sinh 7J0 

( 4.15) 

( 4.16) 

Equation (4.10) may be solved usmg the separation of variables method [100], 

assuming that 

u(ry,l.f/) = ¢(7J,I.f/ )+ F(ry )+ G(l.f/) (4.17) 

After differentiating twice with respect to Yf and l.f/ we get 

o}u 82¢ 8 2 F 
--=--+--
0 7] 2 0 7] 2 0 7] 2 

8 2u 8 2¢ 8 2G 
--=--+--
OI.f/ 2 Ol.f/ 2 Ol.f/ 2 

( 4. 18) 

Substitution ofEq. (4.18) into Eq. (4.10) gives 

( 4. 19) 

Laplace's equation, \1 2¢ = 0 , can be obtained by letting 
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(4.20) 

Integrating both expressions of Eq. ( 4.20) twice yields the following substitutions for F(17) 

and G(lf!): 

c 2 dp 
F(ry) = --cosh 27] 

8f.l dz 

c 2 dp 
G(f/1) = --cos 2f// 

8JL dz 

(4 .21) 

After applying separation of variables to ¢('7, If), the solution of the Laplace equation is 

¢(7J, 'II)= [A cos(51f) + B sin(5f// )][ C cosh(5ry) + D sinh(5ry )] ( 4.22) 

The solution for u(ry, If) is the sum of the solution of the Laplace equation V 2¢ = 0 , and 

ofEq. (4.21); therefore we have 

According to the boundary condition, Eq. (4.11) 

B = O 

In terms of the boundary condition, Eq. ( 4.13) 

70 



D=O 

From the boundary condition, Eq. (4.12) 

5 =n n 
n = 0,2,4,6···(even) 

in which the t5n are a set of eigenvalues. Therefore, the solution of this problem becomes 

oo c2 d 
u = L C~ cos(n If )cosh(n 7J) + _ _E. (cosh 2ry + cos 2!f) 

n=O,even 8JL dz 
(4.24) 

and 

au ~ c· ( ) . h ) c 2 dp 'nh -= L.... ,ncosnrr sm (nry +--2st 2'7 
8 7] n=l 811 dz 

Applying the final boundary condition, Eq. (4.14) 

fc; cos(nll' cosh(nry0)+ ( ,?o----;;- , )"' nsinh(nry0 ) ! 2 - o- l 
n=O,even C COSh lJo - COS If 

[ 

2 - o- J ? /1,--
c - dp a- . 

=--- cosh 2ry0 + cos2rr+2 ( ? )1/2 smh(2ry0 ) 

811 dz c cosh - 'lo - cos 2 If 

a solution for C~ may be obtained by means of a Fourier expansion. 

In order to overcome the difficulty caused by the metric coefficient, we use a binomial 

series to approximate the metric coefficient and take the first three terms: 
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( )
a ~ a( a - 1 X a - 2) .. · (a - n + 1) n 

1+x = 1+~ x 
n= l n! 

- l <x< l 

The metric coefficient may now be written as: 

1 = --:---------:--c:- = -------------;-
.Ji: c(cosh

2 
770 -cOS

2
lf/ )if2 

( cos 2 J~ -
ccosh(770 ) 1- Jlf/ 

cosh- 770 

1 
1 cos 2 If/ 3 cos 4 If/ + - + - ---:-.:...._ 
2 cosh 2 

7]0 8 cosh 4 770 

ccosh(IJ0 ) 

(4.25) 

assuming a three tenn expansion. 

From orthogonality principles, we get 

2;r 2 d J c 'P 
0 

8j.t dz 

1 
1 cos 2 If/ 3 cos 

4 
If/ +- +----'---

2 - CJ 2 cosh 2 17 8 cosh 4 17 
cosh 21J0 +cos 2lf/ + 2A.-- 0 0 sinh(2ry0 ) cos(n lf/)dlf/ 

CJ c cosh(770 ) 

c;, = -----=....:..._---------------------~---'------
1 

1 cos 2 If/ 3 cos 4 If/ 
2;r +- 2 +- 4 

J h( ) 1 2- CJ 2 cosh 770 8 cosh 'lo .• 1 ( ) 
cos n770 + .IL-- nsuu1 n1J0 

0 
CJ ccosh(ry0 ) 

and 

9 
1 + 2 + 4 

. c 2 dp 2 - CJ 4cosh 770 64cosh 'lo . ..... (
2 

) 
C0 = --- cosh 2ry0 + 2A.-- suu1 '7o 

81-L dz CJ ccosh('70 ) 
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1+2A 
2

-a-[ 
1 

+ 
3 

] sinh(2ry0 ) 

. c 2 dp a- 4c cosh 3 ('70 ) 16ccosh 5 ('70 ) cz =--
8JL dz 

1 
1 21 

+ 2 + 4 

( ) 2 1 2-a- 4cosh 770 128 cosh 770 . 1(2 ) 
cosh 2ry0 + /l,-- sm 1 '7o 

a- c cosh(ry0 ) 

A 2 - a- 3 sinh(2ry
0

) 

c· __ c 2 dp (J 32c cosh 5 C77o) 
4 

- 8JL dz 
1 

1 9 
+ J + 4 

l (4 ) 4 1 2 - a- 4cosh-ry0 64cosh 770 . h(4 ) 
cos 1 770 + /l, sm 770 a- ccosh(ry0 ) 

The solution of this problem becomes: 

1 9 
1 + 2 + 4 

c2 dp 2 - a- 4 cosh 770 64 cosh 770 . h(2 ) 
u =--- cosh2ry0 + 2A-- sm 770 

8JL dz a- c cosh(170 ) 

1+2A 
2

-a-[ 
1 

+ 
3 

]sinh(2ry0 ) 

c 2 dp a- 4c cosh 3 (770 ) 16c cosh 5 (770 ) 
---

8JL dz 1 1 21 
cos(2lfl )cosh(2'7) 

+ 2 + 4 

h(2 ) 2 1 2 - a- 4cosh ry0 128cosh 770 'nh(2 ) 
cos 'lo + /l,-- S l '7o 

a- ccosh(170 ) 

A 2 - a- 3 sinh(2f7
0

) 

c 2 dp a- 32c cosh 5 (ry0 ) 
---

8JL dz 1 1 9 
+ 2 + 4 

h(4 ) 4 1 2 - a- 4 cosh 770 64 cosh 770 'nh(4 ) cos ry0 + /l,-- Sl '7o 
a- ccosh(170 ) 

c 2 dp 
+--(cosh 2'7 +cos 2lfl) 

8JL dz 
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The eccentricity of the ellipse is defined as: 

(4.27) 

and the hydraulic diameter as: 

(4.28) 

where £(e) is the complete elliptical integral of the second kind [ 103]. The characteristic 

length scale in the present analysis is defined as the hydraulic diameter (2b <Dh :S nb ), 

such that: 

A A 
Kn=-=--· 

Dh 1cb 
(4.29) 

E(e) 

Finally, the velocity distribution is as follows: 
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l 
l 9 

+ + -------
c 2 dp 1rbKn0 , 2- o- 4cosh 2 770 64cosh 4 770 . h( ) 

u = ---- cosh 2ry0 + 2 stn 2770 
8j.J. dz E(e) a- c cosh(770 ) 

1+2 7rbKno. 2-o-[ 1 + 3 ]sinh(2'7o) 
c2 dp E(e) a- 4ccosh3 (770 ) l6ccosh 5 (770 ) _______ ____:::_ _ _ _ :....___ ___ ____::___:::__ ___ cos(2!f )cosh (217) 
8,u dz 

1 
l 2 1 

b + ' + 4 
"'Kn0 , 2 - o- 4cosh - 770 l28cosh 'lo . 

1 
(
2 

) 
cosh(2770 ) + 2 ( ) ' Stn 1 170 E e a- c cosh(770 ) 

trbKn 0 ') -a- 3 ( ) ----,--,--"-'' - sinh 217
0 

c2 dp E(e) a- 32ccosh 5 (770 ) ______ __:___:__ _ _ _ _ _ ! ....:....:....::....__ _ _ 
9
- ----cos(4!f )cosh(4ry) 

8j.J. dz 
-LK 1 + 2 + 4 

( ) 
1tu n0 , 2-o- 4cosh 770 64cosh 770 . h( ) 

cosh 4770 + 4 E(e) ' stn 4ry0 a- ccosh(ry0 ) 

c 2 d 
+ -- _.E_ (cosh 277 + cos 21/f) 

8,u dz 

In the limit of Kn-0, Eq. (4.30) reduces to its continuum flow solution [104] : 

u = - --- cosh 2170 + cos(2tf1 )cosh(277 )- cosh(2ry )- cos(2!f) c
2 

dp [ 1 l 
8,u dz cosh 2ry0 

(4.30) 

(4.31 ) 

The mean veloc ity is found by integration of Eq. ( 4.30) across the section of the duct 

u = _!_ fu dA = fudslds2 = r f \ 1 C2 
(cosh 

2 
77 - cos

2 
If )d77dlf = r r· u c

2 
(cosh 

2 
77 - cos

2 
If )d77dlfl 

A fdslds2 r f ,. c2(cosh277 - cos21f)d'7dlfl 7rab 

(4.32) 

We can define the Poiseuille number using the above equations: 
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(4.33) 

The solution can be obtained using commercially available algebraic software tool such 

as Maple 9 [105]. 

The mass flow rate in the microchannel is given by using the equation of state and 

assuming Po = Poe /(1 + aK.n · ) which is discussed later in this section: 

( ]

2 
:;rb 

:;rab --
m = ptiA =- E(e) dp (p + a 2 - a- pKn) 

4f!PocRT dz a-
(4.34) 

We can use pKn = p
0
Kno since pKn is constant for isothermal flow. Integrating Eq. 

(4.34), we obtain 

(4.35) 

Letting z = L gives: 

(4.36) 

The continuum flow mass flow rate is given by: 
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, ( rrb J
2 

rr abp ~ - ( ) ( 1 J 
m c = pu A = E e Ppo,: - 1 

8JLPocRTL 
(4.37) 

The effect of slip may be illustrated clearly by dividing the slip flow mass flow Eq. (4.36) 

by the continuum mass flow Eq. (4.37) 

2- 0" 
. 2a--Kn

0 

~=1+ 0" 

me !!...!_ + 1 
Po 

(4.38) 

It is seen that the rarefaction increases the mass flow and that the effect of rarefaction 

becomes more significant when the pressure ratio decreases . By including the lip 

velocity at the wall, one adds another tetm to the mass flow equation; therefore, the mass 

flow rate for a given inlet and outlet pressure always increases due to the effect of slip. 

This could be interpreted as a decrease of the gas viscosity. 

Combining Eq. (4.35) and Eq. (4.36), we obtain the expressiOn for pres ure 

distribution: 

p 7 2-o-
- - =-a --Kn

0 
+ 

Po 0" 
( J2 [ 2 ( JJ 2-o- p p 2-o- p . z 

a --Kn
0
+-' - - '

2 
- l + 2a--Kn

0 
-' - 1 - (4.39) 

o- Po Po o- Po L 

4.2.2 Results and Discussion 

Table 4.1 presents a comparison of the Poiseuille number results using one to four 

terms of the binomial series approximation respectively. For the practical application 
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range c > 0.1, taking first three terms to obtain the Poiseuille number is accurate enough. 

More terms should be used when aspect ratio c is comparatively small and Knudsen 

number is comparatively large. 

Table 4.1 A comparison of the Po using one to four terms of binomial series approximation. 

Po 1Kn=0.1) Po Kn =0.01) 

E 1 term 2 tenns 3 terms 4 terms 1 term 2 terms 3 terms 4 terms 

I 1 +.!. cos ' VI 

2 cosh 1 'lo 

I cos' VI l +_l_ cos' VI + · ·· 1+---+ ... 
2 cosh 2 'h• 2 cosh' l'fo 

1 +-'- cos' VI l +_l_ cos' VI +"· l+ _l_ cos '. ~~' + ... 
I 2 cosh 2 l'fo 2 cosh1 'lu 2cosh · ,.,, 

0.1 5.03 4.66 4.49 4.38 8.84 8.72 8.66 8.62 
0.2 4.96 4.61 4.46 4.36 8.54 8.43 8.38 8.34 
0.3 4.91 4.58 4.44 4.36 8.25 8.16 8.11 8.08 
0.4 4.86 4.56 4.44 4.37 8.01 7.92 7.88 7.86 
0.5 4.82 4.54 4.44 4.39 7.82 7.74 7.71 7.69 
0.6 4.77 4.52 4.44 4.41 7.67 7.60 7.58 7.57 
0.7 4.70 4.49 4.44 4.42 7.57 7.51 7.50 7.49 
0.8 4.63 4.47 4.44 4.43 7.57 7.45 7.44 7.44 
0.9 4.54 4.45 4.44 4.44 7.44 7.42 7.42 7.41 
1 4.44 4.44 4.44 4.44 7.41 7.41 7.41 7.41 

Table 4.2 Poiseuille number results for elliptic ducts. 

Po 
E 

Kn =0 Kn =0.01 Kn =0.05 Kn.=0.1 

0.1 9.657 8.657 6.125 4.490 
0.2 9.301 8.379 6.012 4.457 
0.3 8.948 8.110 5.917 4.443 
0.4 8.647 7.884 5.846 4.440 
0.5 8.4 12 7.709 5.795 4.440 
0.6 8.239 7.582 5.759 4.440 
0.7 8.122 7.496 5.735 4.439 
0.8 8.049 7.442 5.721 4.440 
0.9 8.011 7.415 5.715 4.443 
1 8.000 7.407 5.714 4.444 
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Table 4.2 shows the Poiseuille number results for different aspect ratio e and Kn. The 

Po values decrease with an increase of Kn for the same aspect ratio. The Po values 

decrease with an increase of e for the same Kn. 

The Poiseui lle number result can be presented conveniently in term of normaliz d 

Poiseuille number. Furthermore, rhe effects of lip are illu trated clearly by plotting the 

ratio Pol Poe as a function of the Knudsen number and aspect ratio, where Poe repre ents 

the continuum flow value. Figure 4.2 shows the normalized Poi euille number re ult for 

elliptic ducts a a function of aspect ratio e and Kn. From an inspection of the graph , it is 

een that Po decrea es as the rarefaction becomes greater. 

u 
0 
o_ -0 
o_ 

----';i'--- b/a=0.1 

-~~- b/a=0.25 
---E;--- b/a=0.5 

- --.::r-- b/a=0.75 
_ ____,,___ b/a= 1 

0.8 

0.6 

0.4 L----L----~--~L----L----~--~-----L----~--~----~ 

0 0.02 0.04 0.06 0.08 0.1 

Kn·= 2-a !:.._ 
a Dh 

Figure 4.2 Normalized Po results as a function of a pect ratio t and Kn . 
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The Poiseuille number reduction depends on the geometry of the cross-section. It i 

convenient that the Poiseuille number results are expressible to good accuracy by the 

relation 

=-----
2 - CT 

1+a--Kn 
(} 

(4.40) 

in which a depends on the duct geometry. For other geometries, a = 12 for the parallel 

plate and a = 8 for the circular tube. 

For an elliptic duct, the constants, a, are derived from a least-square fit of the 

Poiseuille number results (Figures 4.2). It is found that the maximum error incurred by 

using these constants in Eq. (4.40) is less than 0.3 %. The error is much smaller and 

negligible for most cases i.e. < 0.05%. The constants a are listed in Table 4.3 and the data 

points are fitted to a simple correlation: 

then 

a= 12.53 - 9.41& + 4.87 &2 

Po =---------------------------
Poe 1+(12.53 -9.41&+4.87& 2 )

2
-CT Kn 
(} 
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where Poe = (1 + £ 2 XTr/ E(e )Y, see Shah and London [ l 06]. 

Table 4.3 The constants a for the Poiseuille number ratio. 

£ a 
0.1 11.522 

0.15 11.242 
0.2 10.911 

0.25 10.556 
0.3 10.196 
0.4 9.531 
0.5 8.989 
0.6 8.587 

0.75 8.211 
0.85 8.076 

1 8 

Therefore, using the simple expression Eq. (4.42), the Poiseuille number results can be 

easily obtained. As a further proof of the reliability of the proposed solution, Eq. (4.33), 

all the numerical results obtained in slip flow reduce to their continuum flow limits in the 

limit of Kn~o [106]. Moreover, the limit ofEq. (4.33) for bla~l corre ponds to the 

circular tube solution. 

Figure 4.3 shows the pressure distribution with and without rarefaction predicted by 

Eq. ( 4.39) for different pressure ratios. The pressure distribution exhibits a nonlinear 

behavior due to the compressibility effect. The pressure drop required is less than that in 

a conventional channel. The deviations of the pressure distribution from the linear 

distribution decrease with an increase in Knudsen number. The nonlinearity increases as 

the pressure ratio increases. The effects of compressibility and rarefaction are opposite as 

Kamiadakis et al. [ 1] demonstrated. 
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---- Kn 0 =0 
8 -- --- Kn0 =0.1 

----- incompressible 

""' ' ' 6 ' ' 0 

""' 0.. ' - ' ' N 

""' ' 0.. 
' ' 

""' ' 
' ' 

""' ' 4 ' " 
""' " 

2 

0 0.2 0.4 0.6 0 .8 

z/L 

Figure 4.3 The pressure distribution fot· different pressure ratios [107]. 

Slip flow in elliptic microchannels has been examined and a detailed theoretical 

analysis has been performed. An analytical solution of Poiseuille number was obtained 

using separation of variables in elliptic cylinder coordinates. A simple model [Eq. ( 4.42)] 

was developed for predicting the Poiseuille number in elliptic microchannels for slip flow. 

The accuracy of the proposed simple model was found to be within 2 percent of exact 

values. The developed model may be used to predict mass flow rate and pressure 

distribution of slip flow in elliptic microchannels. 
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4.3 Slip Flow in Other Non-Circular Microchannels 

The non-circular cross sections such as rectangular, triangular, and trapezoidal, are 

common channel shapes that may be produced by microfabrication. These cross section 

have extensive practical application in MEM [1-5] . Muzychka and Yovanovich [94] 

developed a simple model for predicting the friction factor Reynold number product in 

non-circular ducts for fully developed laminar continuum flow. Later, we will show that 

Muzych.ka and Yovanovich 's approach can be extended to the slip flow regime. 

4.3.1 Rectangular Ducts 

We may now examine the solution for rectangular duct for lip flow. A chematic 

diagram of the rectangular cross section is shown in Figure 4.4. When L" >> I, the 

continuum flow momentum equation in Cartesian coordinates reduce to the form 

y 

b 

-----------------..1---------if------ X 
-a 0 a 

-b 

Figure 4.4 A rectangular duct. 
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a\, a2u 1 dp 
-+-=--ax2 ay2 Jl dz 

(4.43) 

The velocity distribution must satisfy the slip boundary condition at the walls. The local 

slip velocity i proportional to the local velocity gradient normal to the wall. Due to 

symmetry, the boundary conditions are 

u =-A. 2 - u au 
(]' ax 

au = 0 
ay 

au= 0 
ax 

at y = b, 

at x = a , 

at y = 0, 

at x = 0, 

O ~x< a 

O ~y< b 

O ~ x ~ a 

O ~y~ b 

It is convenient to rewrite the momentum equation and the boundary conditions 

where E = bla, the ratio of minor and major axes . 

A 2 - CY au u=------
b u a(;) 

at y = 1 
b ' 
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X 
0 ~ - < 1 

a 

(4.44) 

( 4.45) 

(4.46) 

(4.47) 

(4.48) 

( 4.49) 



A.2-o- au 
u =--;;----;;-a(:) at x = 1, 

a 

at ~ = 0, 
a 

os;Y<1 
b 

(4.50) 

(4.51 ) 

( 4.52) 

Following Ebert and Sparrow [99], usmg Method of Eigenfunction Expansion , a 

solution of the velocity may be assumed as follows: 

b 
2 

dp ~ (X) ( y) U = --L.Xn - COS 8n-
Jl dz n=l a b 

(4 .53) 

in which the bn are a set of eigenvalues, the Xn are a set of functions of x/a, and the 

cos(8nYI b) are a set of eigenfunctions. This solution satisfies the boundary condition, Eq. 

(4.51). Furthermore, substituting the velocity solution into the boundary condition, Eq. 

( 4.49), we obtain 

b 
8, tan8n = 

2 - (J" 

--A. 
0" 

(4 .54) 

The characteristic length scale in the present analysis is defined as the hydraulic diameter. 
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A. A-
Kno =-=-4b 

" D" 
( 4.55) 

l + £ 

Thus, 

1 o, tan o, = -
2
-_-CJ'--

4
---

~ 1+£Kno, 

(4.56) 

The eigenvalues, 611 , can be obtained from Eq. ( 4.56). 

In order to determine unknown Xn(xla), the right-hand side of Eq. ( 4.48) should al o 

expand in terms of eigenfunctions cos(onylb) 

--= l:C,cos o,-b 2 dp co ( y) 
JL dz 1 b 

(4.57) 

Therefore, the Fourier coefficient becomes: 

_b
2 

_dp fcos(o x)dy 2 -b
2 

_dp sino 
I' dz 0 

11 

b b 1-l dz n 

ell= II ( y) y = o, +sino, COSO/I 

0 

cos
2 o, b db 

(4.58) 

and Eq. (4.48) becomes 

( 4.59) 
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Introducing Eq. (4.53) into Eq. (4.59), we find 

(4.60) 

The solution for Xn is 

(
6 x) . (6 x) 2sin6 Xn =A" cosh -"- + B" smh -"- - 2 . " 

& a & a 6" (6, +sm6" cos6J 
( 4.61) 

Substituting Eq. (4.61) into Eq. (4.53), we obtain 

According to the boundary conditions Eqs. ( 4.50) and ( 4.52), we obtain 

2sin6" 

Finally, the velocity distribution is as follows : 

h(6n X) cos --
c a _

1 

h(b") 2-CJ 4 K .<: ·nh(b") COS - +---- n0 U
11 

Sl -
c () l +& " c 

(4.63) 
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The mean velocity is found by integration of Eq. ( 4.63) across the section of the duct 

u = _!_ JudA = J Ju d ~ d y 
A 0 0 a b 

5, 
(4.64) 

We can define the friction factor and Reynolds product from the above equations 

2(-_i dp )D~~ 
!R 

_ P dz 
eo. -

JIU 

4 = ----------=---------------=(4.65) 

sinh(;' ) 
(l +c-Y f 4 c-sin 25, 5, 

n= l 5, (5, + sin 5, cos 5,) c 
cosh(

5
" ) + 

2
- cr -

4
- Kn 5 

c 0' 1 + c 0
" 

11 

The limit of Eq. ( 4.65) coiTesponds to a parallel-plate channel for £--+0: 

24 f Reo = ------
" 2-cr 

I +--12Kn0 
cr " 

It can also be demonstrated that Eq. (4.65) reduces to its continuum flow limits as Kn--+0: 

5 = (2n - l) lr , 2 when Kn ~ 0 
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(/ Re ) - 24 

D,, c - [ (5 )] 
(1 +.sf 1-6I--;- tanh -" 

n= l 511 C 

(4 .66) 

Moreover, the limit of Eq. (4.66) which corresponds to a parallel-plate channel for ~::-0 

IS: 

when 

The friction factor Reynolds product jRe for slip flow in rectangular microchannels, 

considering only the first term of the series Eq. (4.65) gives 

4 f Re o. = --- --------;=--------------:------:---------:::;- ( 4.67) 

sinh(; ) 

cosh(~) + 2 - a -
4

- Kn 0 51 sinh(~) 
c 0' 1+& ,, c 

Examination of the single term solution reveals that the greatest error occurs when 

Kn=O.OO 1 and £= l in slip regime, which gives a jRe value 2.6 percent above the exact 

value. Table 4.4 presents a comparison of the exact values with the single term 

approximation, Eq. (4.65) and Eq. (4.67). 

The friction factor results can be presented conveniently in term of normalized 

Poiseuille number. Furthermore, the effects of slip are illustrated clearly by plotting the 

ratio Po/ Poe as a function of the Knudsen number and aspect ratio, where Poe repre ent 

the continuum flow value. Figure 4.5 shows the normalized Poiseuille number result for 

rectangular ducts as a function of aspect ratio £ and Kn. 
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The Poiseuille number reduction depends on the geometry of the cross-section. It is 

convenient that the Poiseuille number resul ts are expressible to good accuracy by the 

relation 

f Re 
= =------------

Poe (/ Re )c 
Po 

2- 0" 
1 +a---- Kn0 

0" " 

(4.68) 

in which a depends on the duct geometry. For the common duct shapes, a= l 2 for the 

parallel plate and a =8 for the circular tube. 

Table 4.4 Comparison of single term approximation for jRe. 

£ = bla 
/ Re0 (K n.=O.OOI ) 

" Eq.( 4.67)/Exact 
f Re 0 h (Kn ·=0. 1) 

Eq.( 4.67)/Exact 
Exact Eq. (4.67) Exact Eq. (4.67) 

0.001 23.70 24.03 1.014 10.90 10.94 1.004 
0.01 23.4 1 23.74 1.01 4 10.82 10.86 1.004 
0.05 22.24 22.55 1.0 14 10.47 10.52 1.005 
0.1 20.95 2 1.26 1.0 15 10.09 10. 14 1.005 
0.2 18.89 19. 18 1.0 15 9.46 9.52 1.006 
0.3 17.36 17.64 1.01 6 9.00 9.06 1.007 
0.4 16.24 16.5 1 1.0 17 8.66 8.72 1.007 
0.5 15.43 15.7 1 1.0 18 8.41 8.49 1.010 
0.6 14.87 15.16 1.020 8.25 8.33 1.010 
0.7 14.50 14.8 1 1.02 1 8. 14 8.23 1.011 
0.8 14 .28 14.6 1 1.023 8.08 8.18 1.0 12 
0.9 14.1 7 14.52 1.025 8.04 8.16 1.0 15 
I 14. 14 14.5 1 1.026 8.04 8.16 1.015 
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Figure 4.5 Normalized Po results as a function of aspect ratio t and Kn for rectangular ducts. 

For rectangular ducts, the constants a are derived from a least-square fit of the Poiseuill e 

number results (Figure 4.5) . It is found that the maximum en·or caused by using these 

constants in Eq. ( 4.68) is less than 0.3 %. The error is much smaller and negligible for 

most cases. The constants a are a function of aspect ratio and the data points are fitted to 

a simple correlation: 

a = 11.97 - 10.59& + 8.49&2 
- 2.11&3 (4.69) 

then 
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Po =------------------------------------- (4.70) 

Therefore using the simple expression Eq. (4.70), the Poi euille number result can be 

easily obtained. 

4.3.2 Annular Ducts 

A schematic diagram of the annular cross section is pictured in Figure 4.6. Using the 

similar procedure as for rectangular duct , it i not difficult to how that the friction factor 

Reynolds product for an annular duct is a follows: 

Figure 4.6 A concentric circular annular duct. 
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8(1- rY f Reo, = ------------->---<----------------=-

( ' { 2-o- )2 r 1-r- 1+4--Kn0 

( )
2-o- 0" " 

I + r 
2 
+ 8 r 

2 
- r + 1 ----;;--- Kn 0" + , 2 _ o-

r ln r- 2(1- r - )--Kn0 " 
0" 

where r = r;/r0 , the dimensionless radius ratio. 

4.3.3 Trapezoidal and Double-trapezoidal Ducts 

(4.71) 

Morini et al. [ 1 08] numerically studied the velocity distribution in microchannel with 

trapezoidal (a=54.74°) and hexagonal (double-trapezoidal) cross-section typical of 

microchannels. A schematic diagram of the trapezoidal and hexagonal cross-section ts 

depicted in Figure 4. 7. Morini et al. [ 1 08] showed that the normalized Poiseuille number 

can be expressed as Eq. (4.68). The appropriate value of a for trapezoidal and double-

trapezoidal microchannels was numerically determined and reported for different a pect 

ratio. 

a 

a 

b b 

c 
c 

Figure 4.7 Trapezoidal and double-trapezoidal microchannels [108]. 
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4.4 Modelling Slip Flow in Long Microchannels 

We will now examine the rectangular, elliptical and annular friction factor Reynolds 

product results employing characteristic length .JA as Muzychka and Yovanov ich [94] 

showed that the square root of cross-sectional area was a more effective characteristic 

length scale than the hydraulic diameter for non-dimensionalizing the laminar continuum 

flow data. If the solution for rectangular duct is recast using .JA as a characteristic length 

scale in f Re JA , the following relationship is obtained: 

2 
fRe JA = --------- - --=----------:--------::;-

sinh( ~ ) 
cosh( 

011
) + 

2
- a- -

4
- Kn 0 lin sinh(~) 

c 0" 1+£ h c 

(4 .72) 

considering only the first term of the series gives: 

2 f Re JA = ----------==----------- ----= ( 4.73) 

sinh( ;) 

cosh(~)+ 2 - a- -
4

- Kn 0 0 1 sinh(~) 
c 0" 1+ £ '' & 

In the limit of Kn---+0, Eq. (4.73) reduces to its corresponding continuum flow solution 

[94]: 
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JR 
12 

e !A = r { 192£ ( tr )] 
v £ (1 + £11- ---;s tanh 

2
£ 

(4.74) 

Furthermore, usmg the above developed correlation Eq. (4.70), Eq. (4.72) can b 

simplified to provide the following model for practical applications: 

fRe.JA = ( , 3 )2 - o- { 192£ ( tr ) ] 1+ 11.97 - 10.59&+8.49&--2. 11£ --Kn0 • .fi(1+£ 1- -- tanh -
0" "5 2£ 

12 

(4.75) 

The maximum difference between Eq. (4.72) and Eq. (4.75) is le than 1%. 

If the solutions for elliptical and annular ducts are also recast u ing .fA a a 

characteristic length scale m f Re !A , the following relation hip are obtained 

respectively: 

£(e) 
f Re .fA = r-- f Reo. 

v £tr 

for the elliptic duct, where f Re o. is found from Eq. ( 4.33), and 

8(1 - r~tr(l -r 1 ) f Re .fA = ________ _:______;~_,__ _ __...!.._ ______ _ 

r(l-rc{ l +4 
2

- o- Kn
0 

)

2 

( )
2-o- \ 0" " 1 +r 2 +8 r 1 -r+ l --Kn

0 
+ ---...o...._ _ ____ ..;:._ 

0" h ( ' )2 - o-r ln r - 2 1 - r - -- Kn 
0" D,, 

for the annular duct using Eq. (4.71). 
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4.4.1 Effect of Characteristic Length Scale 

There are three possibilities for characteristic length f ( e = Dh, e =.fA and e = 2b) 

to define Knudsen number. All three length scales have been critically examined in the 

slip regime over a wide range of duct aspect ratios. lt was observed that u ing e = Dh to 

define Knudsen number and e = .fA to define Reynolds number succeeded in bringing 

the dimensionless results closer together for similar ducts, i.e. rectangular and elliptical or 

trapezoidal. Overall, using e = Dh to define Knudsen number was found to be more 

effective at collapsing the data in the slip regime over a wide range of duct aspect ratio . 

For example, Table 4.5 presents the solutions f Re .fA (bla=0.1) for elliptical and 

rectangular ducts using the three characteristic length scales, .e , respectively. 

Table 4.5 f Re .fA (b/a=O.l) results for elliptical and rectangular ducts using three 

characteristic length e respectively. 

fRe~ A f Re~ A fRe R A 
Kn* Kn=- Kn = .JA 

.r;; 
Kn =-

fReE ' Dh f Re5A ' fRe E ' 2b .fA .r;; 

0 1.052 1.052 1.052 
0.01 1.057 1.068 1.066 
0.02 1.061 1.079 1.079 
0.03 1.064 1.087 1.090 
0.04 1.067 1.094 1.099 
0.05 1.070 1.099 1.109 
0.06 1.072 1.103 1.11 7 
0.07 1.074 1.107 1.124 
0.08 1.075 1.110 1.131 
0.09 1.077 1.113 1.138 
0.1 1.078 1.115 1.144 
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Table 4.6 jRe results for elliptical and rectangular ducts. 

f Re D• (Kn ·=0. 1) f Re..r;. (Kn'=0.1) 

b/a f ReR f ReR 
Rect. Ellip. 

f ReE 
Rect. Ellip. 

fRe E 

0.05 10.472 9.023 1.1 61 24.586 22.8 17 1.078 
0.1 10.080 8.979 1.123 17.532 16.277 !.078 
0.2 9.447 8.9 13 1.060 12.674 11.8 12 !.073 
0.3 8.97 1 8.886 1.010 10.646 10.037 !.061 
0.4 8.62 1 8.88 1 0.97 1 9.542 9.1 16 !.047 
0.5 8.372 8.880 0.943 8.880 8.581 1.035 
0.6 8.201 8.879 0.924 8.470 8.255 1.026 
0.7 8.089 8.879 0.911 8.218 8.056 !.020 
0.8 8.0 19 8.880 0.903 8.069 7.944 l.O 16 
0.9 7.978 8.885 0.898 7.989 7.89 1 l.O 12 
I 7.957 8.889 0.895 7.957 7.878 l.O 10 

f ReD 
" 

(Kn'=0.0 1) f Re..r;. (Kn'=0.01) 

b/a f ReR fReR 
Rect. Ellip. 

f ReE 
Rect. Ellip. 

f Re E 

0.05 20.163 17.540 1.150 47.340 44.471 1.065 
0.1 19.066 17.314 l.l 01 33 .161 31.384 1.057 
0.2 17.298 16.758 1.032 23.20_8 22.209 !.045 
0.3 15.976 16.2 19 0.985 18.959 18.3 19 1.035 
0.4 15.000 15.767 0.951 16.602 16.185 !.026 
0.5 14.296 15.4 18 0.927 15.163 14.898 l.O 18 
0.6 13.805 15. 164 0.9 10 14.258 14.097 l.O II 
0.7 13.477 14.99 1 0.899 13.692 13.603 1.007 
0.8 13.273 14.884 0.892 13.355 13.3 14 1.003 
0.9 13.160 14.830 0.887 13.178 13.170 !.001 
1 13. 11 4 14.815 0.885 13. 114 13.129 1.000 

A comparison is now made between the rectangular and ellip tical duct solutions, Eqs. 

(4.75, 4.76). Muzychka and Yovanovich [94] showed that the square root of cro s-

sectional area is more appropriate than the hydraulic diameter for non-dimensional izing 

the lami nar continuum flow data. Table 4 .6 demonstrates that the same conclusion can be 

extended to the slip flow regime. Figures 4.8 and 4 .9 show the solution f Re ..r;. as a 
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function of aspect ratio and Knudsen number. As seen in these Figures, the result for the 

elliptical duct and the rectangular duct come closer together. From these Figures it is seen 

that the maximum difference which is 7.8% between the values for jRe occur in the limit 

of£----+ 0. The difference is smaller than 1% and negligible for large aspect ratio (E = 0.6 

- 1.0). Therefore, we may use the simpler expression, Eq. (4.75), to compute values for 

the elliptical duct. This way, we do not need to use elliptic cylinder coordinates and the 

complicated solution proposed in Section 4.2, unless greater accuracy is desired. 

40 

I~ 
Q) 30 

Q; 

20 

10 

Rectangle (b/a=0.05) 
- - ...... - - Ellipse {b/a=0.05) 

----<>---- Rectangle {b/a=0.1) 

- - ~ - - Ellipse {b/a=O. 1) 

----<or-- Rectangle (b/a=0.25) 

- - -e - - Ellipse (b/a=0.25) 
_ ___,,____ Rectahgle {b/a=0.5) 

- - -e - - Ellipse (b/a=0.5) 
_ __,,__ Rectangle (b/a=1) 

Ell ipse {b/a=1) 

0 ~--L--~--L--~--L--~--L--~--L-__J 
0 0 .02 0 .04 0.06 0 .08 0 .1 

Kn·= 2-a ~ 
a D" 

Figure 4.8 f Re ..fA for elliptic and rectangular ducts. 
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Figure 4.9 I Re .fA for elliptic and rectangular ducts. 

In addition, from an inspection of the graphs, it is seen that I Re .fA decreases as the 

Knudsen number increases for the same aspect ratio. The IRe .fA values decrease with 

an increase of € for the same Kn . Moreover, it is obvious that the pressure gradient for a 

slip flow is less than the corresponding continuum flow. 

The simple expression, Eq. (4.75), can also be extended to other common geometries. 

The definition of aspect ratio proposed by Muzychka and Yovanovich [94] is 

summarized in Table 4.7 for a number of geometries. The aspect ratio for regular 

polygons is unity. The aspect ratio for all singly connected ducts is taken as the ratio of 

the maximum width to maximum length such that 0 < € < 1. For the trapezoid and 

double-trapezoid ducts, simple expressions can be used to relate the characteri tic 

dimensions of the duct to a width to length ratio. 
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Table 4.7 Definitions of aspect ratio [94]. 

Geometry 

Regular Polygons 

Singly-Connected 

Trapezoid 

Double-Trapezoid 

Annular Sector 

Circular Annulus 

' 

0.3 

Aspect Ratio 

c = 1 

b 
£= -

a 

2b 
£=--

a+ c 

2b 
£= - -

a +c 

1-r 
£ = 

(l +r)cD 

l - r 
£ = 

n{l +r) 

+ Annulus Kn"=O 

Model Eq. (4.75) Kn"=0.02 

o Annulus Kn"=0.02 

- - - Model Eq. (4.75) Kn"=0.05 

o Annulus Kn"=0.05 

- -- - - Model Eq. (4.75) Kn"=0.1 

o Annulus Kn"=0.1 

0.5 

1-r/ro 
0.7 

Figure 4 .10 f R e .fA for annular ducts. 
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Figure 4.11 f Re JA for trapezoidal ducts, data from Morini et al. [1081. 
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Figure 4.12 f Re.JA for double-trapezoidal ducts, data from Morini et al. [108j. 
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Figure 4.10 presents the comparison between the proposed model Eq. ( 4.75) and the 

analytical solution of annular ducts Eq. ( 4. 77). The model predictions are in agreement 

with analytical solution within 8. 7%. 

Figure 4.11 demonstrates the comparison between the proposed model Eq. (4.75) and 

Morini et a!. [1 08] numerical data for trapezoidal ducts . It is found that the model 

predictions agree with Morini et a!. numerical data within 6.5%. 

Figure 4.12 presents the comparison between the proposed model Eq. (4.75) and 

Morini et al. [ 1 08] numerical data for double-trapezoidal ducts . The model prediction 

are in agreement with Morini eta!. numerical data within 1.8%. 

It is clear that Eq. (4.75) characterizes the non-circular microchannel slip flow. The 

maximum deviation of exact values is less than 10 percent. The friction factor Reynolds 

product may be predicted from Eq. ( 4 .75), provided an appropriate definition of the 

aspect ratio is chosen. Thus, Muzychka and Yovanovich ' s approach [94] may be 

extended to the slip flow regime. 

4.4.2 Mass Flow Rate and Pressure Distribution 

The mass flow rate in the microchannel is given by using the equation of state, Eq. 

2(-~ dp )JA 
m = puA = pA P dz = 

f-LfRe .fA 

A S/2 

1:;;;. : ( p +a 
2 ~ o- pKn )<478) 

"'(1 +E {1-1 :~· tanh(;.)] 
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We can use pKn = p
0
Kn

0 
since pKn is constant for isothennal flow. Integrating Eq. 

(4.78), we obtain 

(4.79) 

Letting z=L gives: 

m = jniA = ----1-p;-~-=Ap:...._::----[-P_;: -1 + 2a-
2

---CT Kno(_P, -1)] (4.80) 
Po (J Po 

~(1+£{1- 1:~• tanh(~)] 

The continuum flow mass flow rate is given by: 

(4.81) 

The effect of slip may be illustrated clearly by dividing the slip flow rna flow Eq.( 4. 0) 

by the continuum flow mass flow Eq. (4.81) 

2 - (J 

. 2a-- Kno 
~=1+ (J 

me l!..!_ + 1 
Po 
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It is seen that the rarefaction increases the rna s flow and that the effect of rarefaction 

becomes more significant when the pressure ratio decreases. This could also be 

interpreted as a decrease in effective gas viscosity. 

Combining Eq. (4.79) and Eq. (4.80), we obta in the expressiOn for pressure 

distribution in non-circular microchannels: 

Pz 2- (} 
-=-a--Kn + 

0 

Po (} 

5 

4 

3 

1 
0 

( J2 [ 2 ( JJ 2 - (J p p . 2-(} p 7 

a--Kno +-' - ~- 1 +2a--Kno -' -1 -=-(4.83) 
(} Po Po (} Po L 

' 

0.2 0.4 

zll 

Trapezoid E=0.5 
--- Kn0=0 

- - - - - Kn0 =0.1 

----- incompressible 

' ' ' ' ' 
~ ' ' 
~ ' ' 
~ ' 

' 
~ 

0.6 0.8 

Figure 4.13 The pressure distribution for different pressure ratios. 
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Figure 4.13 shows the pressure distribution with and without rarefaction predicted by 

Eq. ( 4.83) for non-circular microchannels. The pressure distribution exhibits a nonlinear 

behavior due to the compressibility effect. The nonlinearity increase a the pressure ratio 

increases. The incompressibility assumption (linear pressure di tribution) i valid for 

small pre sure drop in the microchannel . 

In the present analysis for the pressure distribution and mass flow rate, momentum 

changes are neglected. The effect of the momentum changes will become important when 

Reynolds number is increased. 

Slip flow in non-circular microchannels has been investigated and a imple model wa 

developed for predicting the friction factor Reynold product in non-circular 

microchannels for slip flow. The present model took advantage of the selection of a more 

appropriate characteristic length scale quare root of flow area to develop a simple mod I. 

The accuracy of the developed model wa found to be within 10 percent, with most data 

for practical configurations within 5 percent. A for slip flow no solutions or tabulated 

data exist for most geometries, this developed model may be used to predict mass flow 

rate and pres ure distribution of slip flow in non-circular microchannel . 

4.5 Compressibility Effects on Slip Flow in Microchannels 

As Mach number is increased, the effect of momentum change hould be taken into 

account. The effects of momentum changes on press me variation along the duct and rna 

flow rate will be investigated in detail in thi section. 
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4.5.1 Theoretical Analysis 

In Section 4.4, we examined slip flow in non-circular microchannels and presented the 

unified modes for pressure distribution and mass flow rate in non-circular microchannel . 

In addition, some mass flow rate analytical expressions for simple geometric form are 

given as follows [ l 09]. 

Using Eq. (4.64), the mass flow rate in the rectangular microchannel was given by 

h( 8, ) 2-a- 4 K s: ·nh( 8,) cos - + ---- n u, Sl -
& a- 1+& & 

(4.84) 

Taking derivative of the Eq. (4.83) and substituting into Eq. (4.84) and evaluating at 

outlet z=L, we obtain 

2ab
3p/[p/ 2- a- (p, )] l (0 ) l ~ - 2 - 1+2a - Kno - -1 . , sinh _.!!._ 

m = j..JLRT Po a- Po f 2&sm- o, o, _ c 

1 + a~ Kn
0 

""1 o, 
4 

(o, +sin o, cos !i, ) E cosh(~)+~ - 4- Kn. rS, sinh(~) 
0" E 0" I +E E 

(4.85) 

Examination of the single term and two terms of the series solutions reveal that the 

greatest error occurs when Kn=O 00 l and c-= 1 in slip regime, which gives a value 2.6 and 

0.3 percent below the exact value respectively. Therefore, using the first term of the 

series or two terms at most is accurate enough to obtain the mass flow rate. 

106 



It can be demonstrated that the limit of Eq. (4.85) for c--O corresponds to parallel 

plates channel 

m = 2ab3 Po 2 [ p,2 -1 + 24 2- u Kn (~ -1]] 
3pLRT Po 2 u " Po 

(4.86) 

Simi larly, using Eq. ( 4.71 ), the mass flow rate in the annular microchannel was given by 

{ )

2 

( 
2 2 - 0" 

r 1- r 1+ 4--Kn 
1 + r 2 + 8(r 2 

- r + I) 2 - u Kn + u 
(} ( 2) 2- 0" r lnr - 2 l -r --Kn 

(} 

(4.87) 

Taking derivative of the Eq. (4.83) and substituting into Eq . (4.87), we get 

1r(r•
2 

- r,
2 

~•
2 

Po 
2 

[~ -l + 2a 
2 -o- Kn (.E!_ _ 1)] I ( _ 2 { 2 -o- ) 

21 l6tLRT z o rl r 1+4 Kn. 
rn = I Po o- P. l+r2+ 8(,· 2- r + l)-2_- _o- Kn+ u 

2 -o- 0" 
0 

( 2) 2-o-l+a-- Kn. r ln r-2 1-r -- Kn
0 

0" 0" 

(4.88) 

where a=8 when r=O and a::::: l 2 for r>O.l. The limit of Eq. (4.88) for r-0 reduces to 

circular tubes 

(4.89) 

In the above analysis for the pre sure distribution and mass flow rate in microchannel 

flows, momentum changes are neglected as the pres_ ure force is mostly uti! ized to 
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overcome the friction force against the walls, very little is spent in accelerating the flow. 

The effect of the momentum changes will become important when Mach number is 

increased. The effects of momentum changes on pressure distribution and mass flow rate 

will be discussed as follows. A similar analysis on pressure distribution was done by 

Ebert and Sparrow [99] for flow in annular tubes and Sreekanth [ 11 OJ for flow in circular 

tubes. 

As it is exceedingly difficult to solve the Navier-Stokes equations to determine the 

actual velocity distribution of the compressible gas flow in non-circular microchannel , 

the flow is assumed to be locally fully developed and isothermal. Becau e the pressure 

drop is due to viscous effects and not to any free expansion of the gas, the isothermal 

assumption should be reasonable. The locally fully developed flow assumption mean 

that the velocity field at any cross section is the same as that of a fully developed flow at 

the local density and the wall shear stress also takes on locally fully developed values. 

The momentum balance on a control volume with axial length d::. is given by: 

- Adp - fw Pdz = d(Lpu 2dA) (4.90) 

The momentum flux may be written as 

(4.91 ) 

The wall shear force can be expressed as follows : 
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_ f 1 _ 2 PoReJ./ 
7: = -pu = 

w 2 D z p h 

(4.92) 

Substituting Eqs. (4.91) and (4.92) into (4.90) and utilizing the perfect gas equation of 

state p=pRT, with some algebraic manipulation, we get 

P p 2 p ( 1/f J Po z -d-+Re jJ-d -- +4PocRej3-d- =0 
Po Po Po p / Po Poe D, 

(4.93) 

where 

= _!_ l (!!..) 2 dA 
1/f A 14 -u 

(4.94) 

The Knudsen number may be calculated based on the following formula 

(4.95) 

therefore 

(4.96) 

The Poiseuille number reduction depends on the geometry of the eros -section. It is 

convenient that the Poiseuille number results are expressible by the relation 

Po 
= -----

2- (J' 
1+a - - Kn 

a 
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(4.97) 



----------------

It is clear that Po/Poc and 1/f depend on the Knudsen number, or on the pressure. The 

derivation of 1/f is fairly complicated and the expressions for !If are also very lengthy. The 

resulting expressions for circular tubes and rectangular microchannels are given a 

follows respectively: 

2£ 1 ( 1 c . h 28, J - + --sm -
2 28 c 0 

n " + l 
cosh-" +----- Kno, sinh-" -----Kn5n +coth -( 

o 4 2 - a o ) 4 2 - a o, 

I c l+c a c l+ c a c 

(4.98) 

n=l s: 6 ( 4 2 - a K 1 s: ) u ----- n+csc u 
" l+c a n lf/ = ________ ____,__ ______ ...:..___ _ ____ --=- ( 4.99) 

252

[ t 8:l~~~K~8" +c c
2 8" I~~K~8, +coth~- ~ ]J 

Figures 4.14 and 4.15 show the values of 1/f as a function of Knudsen number for 

circular tubes and rectangular microchannels respectively. It is seen that the variation of 

!If with Knudsen number is very gentle. It is reasonable that the approximation !If = 

constant as 1/f is a weak function of Knudsen number. Figures 4 .14 and 4.15 may be u ed 

to choose an estimated value of 1/f for most non-circular microchannels for practical 

application calculation. 
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Figure 4.14 Momentum flux correction factor for circular tubes. 
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Figure 4.15 Momentum flux correction factor for rectangular ducts. 
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By noting that pKn is constant for isothermal flow, a reference state which is taken at 

the outlet can be introduced 

(4. 100) 

Equation ( 4.93) may be rearranged to 

[ [ 

2-o- ]] 
a--Kn 

p 2 -o- 2 2 2 l o- 0 p 2 / 2 z 
-- - a--Kno +Re -Kn

0 
If! --+ 

7 
d - = 4Poc Re -Kn

0 
d-

Po o- :rr p i Po (p i pJ- Po :rr Dh 

(4.101) 

An expression of the pressure difference between some upstream position z and the outlet 

position z=L can be found by integration Eq. ( 4.10 1) (known outlet conditions) 

[( ] 2 ] ( J [ ( J ] p 2- 0" P 4 2 2 2- 0" Po P - - 1 +2a--Kn
0 
--1 +-Re Kn

0 
If! a--Kn

0 
--1 - ln -

Po 0" Po ;rr 0" P Po (4. 102) 

=~Po ReKn 2 L -z 
c o D 

:rr " 

Similarly, taking a reference state at the inlet, the pressure difference between some 

downstream position z and the inlet location z = 0 is (known inlet conditions) 

[( J
2 l ( J [ l p 2- o- p 4 2 2 2 - o- P; p 

- . -1 +2a--Kn; - . - 1 +-Re Kn; If! a--Kn;(-- 1]- ln-. 
p, o- p, :rr o- p p, (4.103) 

16 2 z 
=--Po ReKn -

c I D 
:rr " 
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Equations (4.102) and (4.103) may be applied to any duct. 

It is seen that variations of If/ does not bring obvious difference of pressure distribution 

in practical microchannel flows application range that ReKn:::::: Ma is small. Sreekanth 

[ ll 0] al o showed that the approximation If/ = constant had little effect on pressure 

distribution covered in his experiments. Taking If/ as a constant is completely reasonable 

for practical microchannel flow applications. 

Substituting Eq. (4.90) into Eq. (4.78) and integrating, with some algebraic 

manipulation, we obtain 

2 A S/} [ p ; p 
2 

2 - CT K ( p i p J 4 R 2 K 2 [ 2 - CT K ( p 0 p () J l p I ]] Po - -
2 

- -
2 
+2a--- no - -- +- e no f.// a - no --- - n -

. p Po Po CT Po Po 7r CT P, P P 
m = ----~-----------------------~~----------------~~ 

l2pRTz 

(4.104) 

Letting z=L gives: 

1 A 
5

1
2 

[ p ;
2 

2 - cr ( p ; J 4 2 2 [ 2 - CT ( Po J P; ] ] p;-- --
2 

- 1+2a--Kno - -1 + - Re Kno f.// a --Kno --1 - ln -
p Po CT Po 7r CT P; Po 

m =------=---------------------~----------~ 
l 2j.i.RTL 

(4.105) 

It is seen that, in microchannel fl ows, compressibility affects the pressure distribution and 

mass flow rate primarily through the viscous shear rather than through momentum flux. 

However, when Re Kn :::::: Ma increases, the effect of the momentum fl ux become 
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gradually significant. Especially for low pressure ratio, the effect of the momentum flux 

is comparatively pronounced. 

The continuum flow mass flow rate is given by: 

(4.1 06) 

The effect of slip may be illustrated clearly by dividing the slip flow mass flow Eq.(4 .1 05) 

by the continuum flow mass flow Eq. ( 4.1 06) 

2 2 - a K ( p; 1) 4 R 2 K 2 l 2 - a K ( Po lj l P; ] . a-- no -- + - e no V/la - - no - - - n-
m a Po 7r a P; Po 
-= l +------------~2-~----------~ 

me E.!_ - 1 
' 

(4.107) 

p; 

It is seen that the rarefaction increa es the rna s flow for low Mach number microchannel 

flows and that the effect of rarefaction becomes more significant when the pressure ratio 

decreases. For comparatively high Mach number microchannel flows, the rarefaction may 

decrease the mass flow. 

Combining Eq. (4 .104) and Eq. (4.105), we obtain the implicit expression for pres ure 

distribution: 
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2 2 ( ] [ ( J ] P; p 2- cr P; P 4 2 2 2- cr Po Po P; 
2--

2 
+2a--Kn

0 
--- +-Re Kn

0 
If a--Kno --- - In-- = 

Po Po cr Po Po tr cr P; P Po 
(4.108) 

2 [P;2 l 2 2-crK (P; 1] 4R 2 K 2 [ 2-crK ( Po 1] 1 P;]] - 2- + a-- no -- +- e no f/1 a-- no - - - n-
L Po cr Po tr cr P; Po 

In the limit of ReKn -o, Eq. (4.108) reduces to the explicit form Eq. (4.83). The 

deviations of the nonlinear pressure distribution from the linear distribution is given by 

[ [ ) l [ )2 [ 1 [ )] 
p P; P, z 2 - CT 2 - CT P; P;- 2- CT p, z 

- - - - - -1 - =-a--Kno + a--Kn" +- - -
2 

-1 +2a-- Kn
0 
--1 -

Po Po Po L CT CT Po Po cr Po L 

p [ P· ) z 
- p~ + p~ -1 L 

(4. 109) 

Taking derivative of the Eq. ( 4.1 09) and letting it equals zero, we obtain the location of 

maximum deviation from linearity as 

(4. 110) 

It is seen that the location of maximum deviation from linearity is between 0.5 and 0.75. 

The location approaches to 0.5 for low pressure ratio and approaches to 0.75 for high 

pressure ratio . 
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4.5.2 Results and Discussion 

The mass flow rate models Eq. (4.85) and Eq. (4.105) have been examined u ing 

Arkilic et al. [27] experimental data. Figure 4.16 pre ents the normalized mass flow rate 

• mjJR.TL 
m = 

2 b
) 2 

a Po 

as a function of the pressure ratio. It is found that the predictions agree with Arkilic et al. 

[27] experimental data within 9.8%. It is seen that there is a significant rna s flow rate 

increase from this Figure. The experimental data and model predictions are in good 

agreement. 

Figure 4.17 demonstrates the pressure distribution comparison between the propo ed 

model Eq. ( 4.1 08) and Pong et a!. [29] experimental data. It is found that the model 

predictions agree with Pong eta!. experimental data within 2.2%. 

Figure 4.18 presents the pressure distribution comparison between the proposed model 

Eq. ( 4.1 08) and Lui et a!. [30] experimental results. The model predictions are in 

agreement with Lui et al. experimental results within 1.6%. 

Jang and Wereley [ 111] experimentally investigated pressure distributions of slip flow 

in uniform rectangular microchannels. Figure 4 .19 shows the pres ure distribution 

companson between the proposed model Eq. (4.108) and Jang and Wereley [111 ] 

experimental data. The model predictions are m agreement with Jang and Wereley 

experimental data within 0.4%. 

116 



3 

E 2 

Model Eq . (4.105) Kn 0 =0.0846 

+ Arkilic et al. experimental data 

- - - - - Model Eq . (4.85) Kn 0 =0 

+ 
+ 

+ 

+ + 

0 L-----~----~------L-----~-----L------L-----~----~ 
1 1.5 2 2 .5 3 

P/Po 

Figure 4.16 Normalized mass flow rate comparison for Arkilic et al. [27J experimental data. 
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Figure 4.17 Pressure distribution comparison for Pong et al. [29] experimental data. 
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Figure 4.18 Pressure distribution comparison for Liu et al. [30] experimental data. 
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Figure 4.19 Pressure distribution comparison for Jang and "Vereley [ I ll] experimental data. 
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The corresponding experimental conditions for Arkilic et al., Pong et al., Lui et al., 

and Jang and Wereley are given in Table 4.8. 

Table 4.8 Experimental conditions for microchannel flows. 

Parameter Arkilic et al. Pong et al. Liu et al. J ang and Wereley 
Length (J..t.m) 7500 3000 4500 5020 
Width (J..t.m) 52.25 40 40 104.63 
Height (J..t.m) 1.33 1.2 1.2 38.57 

Gas Helium Nitrogen Helium Air 
Kn0 0.08460 0.02833 0.05665 0.001232 

Po (kPa) 100.8 100 100 98.7 
T(K) 314 298 298 296 

From an inspection of the above Figure , it is seen that the pressure distribution 

exhibits a nonlinear behavior due to the compressibility effect. Pressure drop required i 

less than that in a conventional channel. The deviations of the pressure distribution from 

the linear distribution decrease with an increase in Knudsen number. The nonlinearity 

increases as the pressure ratio increases. The effects of compressibility and rarefaction 

are opposite as Karniadakis et al. [ l] demonstrated . When the pressure ratio is very small , 

the pressure distribution is nearly linear, which is close to an incompress ible flow . 

Karniadakis et al. [ 1] simulated nitrogen flow in a microchannel. The microchannel is 

1.25 J..t.m high and 40 J..t.m wide. Figure 4.20 shows the deviation from linear pressure 

distribution comparison between the proposed model Eq. ( 4 .1 09) and Karniadaki et a!. 

[1] simulation resu lts . Equation ( 4.1 09) agrees with Karniadakis et a!. [ l] simulation 

results very well. 

It is clear that the pressure distribution may be predicted from Eq. (4.102), Eq. (4. 103) 

or Eq.( 4.1 08) according to different known conditions. The pressure distribution model 
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can provide quite accurate results. The mass flow rate may be predicted from Eq. ( 4.1 05) 

for most non-circular microchannels, provided an appropriate definition of the aspect 

ratio is chosen. The maximum deviation of exact values is less than 10 percent. 

0 
0. 

"';:::::_ .. .. .. 
0:: 

I 
0. 

0.06 

0.04 

0.02 Kn0 =0.0273, p,/p0 =2.02 

---- Eq. (4 109) 

0 L---~----~----~--~----~--~-----L----~--~----~ 
0 0.2 0.4 0.6 0.8 

z/L 

Figure 4.20 Deviation from linear pressure distribution comparison for 
Karniadakis et al. [1] numerical data. 

Compressibility effects on slip flow in non-circular microchannels have been 

examined. Simple models were developed for predicting the pressure di tribution and 

mass flow rate in non-circular microchannels for slip flow. The effects of momentum 

changes were considered in the models. The effect of the momentum flux becomes 

gradually significant with an increase in Mach number. The developed pres ure 

distribution and mass flow rate models can provide very accurate results . The accuracy of 

the developed models has been examined with some experimental measurements and 
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numerical analysis. As for slip flow no solutions exist for most geometries, the developed 

models may be used to predict mass flow rate and pressure distribution of slip flow in 

non-circular microchannels. 

4.6 Summary 

This chapter investigated fully developed slip flow in microchatmels. Microchannel 

shape effects and compressibility effects were considered. Some robust models for 

predicting slip flow characteristics were developed. An analytical olution of Poiseuille 

number was obtained using separation of variables in elliptic cylinder coordinates. Slip 

flow in non-circular microchannels has been investigated and a simple model was 

proposed to predict the friction factor Reynolds product in non-circular microchannel . 

The developed model took advantage of the selection of a more appropriate characteristic 

length scale square root of flow area to develop a simple model. The accuracy of the 

developed model was found to be within 10 percent, with most data for practical 

configurations within 5 percent. Compressibility effects on slip flow in non-circular 

microchannels have been examined and simple models were developed to predict the 

pressure distribution and mass flow rate. The effects of momentum changes were taken 

into account in the models. 
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Chapter 5 

Slip Flow in the Hydrodynamic Entrance of 

Microchannels 

5.1 Introduction 

For developing continuum flow (Kn=O), some solutions or tabulated data exist for 

some geometries [ 1 06]. However, for developing slip flow, only parallel plate and 

circular duct are considered in the literature due to the slip boundary conditions which 

make this particular hydrodynamically developing flow problem, even more complicated. 

A survey of the avai lable literature indicates a shortage of information for three 

dimensional entrance flows in the slip regime, such as short non-circular microchannel 

where the entrance region plays a very important role. There currently is no publi hed 

model or tabulated data which can be utilized by the research community. 

When a vi cous fluid enters a duct with the uniform velocity distribution at the 

entrance, boundary layers develop along the walls and the velocity is gradually 

redistributed due to the viscosity. Eventually the fluid will reach a location where the 

velocity is independent of the axial direction, and under such conditions the flow is 

termed hydrodynamically fully developed. The hydrodynamic entrance length is defined 

as the duct length required to achieve a maximum velocity of 99% of that for fully 

developed flow. Following Sparrow et al. [112] , slip flow in the entrance of circular and 
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parallel plate microchannels is first considered by solving a linearized momentum 

equation respectively. Sparrow et al. only considered the channel using the linearization 

method. In this analysis the compressibility effects can be neglected. 

5.2 Circular Tubes 

The equations of continuity and momentum in Cartesian coordinates are 

.!.~(rv) + au= 0 
r ar ax 

(5 .1) 

v au+ u au = _ _!_ dp + ~ a (r au) 
ar ax p d.x: r ar ar 

(5 .2) 

assuming that dp I d1. is independent of r. 

By using the continuity Eq. (5.1), Eq. (5.2) can be rewritten as 

~(ru 2 )+ ~(ruv) = _ _c_ dp + v~(r au) 
ax ar p dx ar ar 

(5 .3) 

Integrating Eq. (5.3) with respect tor from 0 toR, there is obtained 

(5.4) 

Eliminating dp I dx from Eqs. ( 5 .2) and ( 5.4) and rearranging 

u- +- - --- r - = u - u - - v-+-- ru-dr _ au 2 V (au) V a ( au ) (- ) au OU 2 a rR 1 

ax R ar r=R r ar ar ax ar R ~ 8x 
(5 .5) 
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The cross-sectional average of the terms on the right side of Eq. (5.5) is zero. This 

follows by integrating Eq. (5.5) across the section and employing that aj ox( r rudr) is 

zero from continuity equation. Hence, the right side is equated to zero as a linearizing 

approximation. The equation to be solved becomes 

~_£_(r au) = u au+ ~(au) 
r or or ax R or r=R 

(5.6) 

From the above analysis we obtain Targ' s linearization results [106] : 

au au _au v-+u-=u-or ox ox 

1 dp _ 2v (au 1 
-- --) 
p dx: R or r=R 

Introducing the dimensionless variables ~ = (x/ D )/(uD/v), 77 = r/ R, and U = u/u, Eq. 

(5.6) becomes 

(5.7) 

The velocity distribution must satisfy the slip boundary condition at the walls. The local 

slip velocity is proportional to the local velocity gradient normal to the wall. The 

appropriate boundary conditions are 
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u(l,;)=- 2
- o- 2Kn(aujary),=, 
()" 

(5 .8) 

(au) = 0 
a" , =o 

(5.9) 

U(ry ,O) = 1 (5. 10) 

(5.11) 

The Knudsen number is defined a Kn=A./Dh and A. is the molecular mean free path. 

We can write a solution of the form 

(5.12) 

where V(ry , ;) essentially represents the deviation from the fully deve loped flow velocity 

distribution. It is obvious that V approaches zero for large ( . 

Substituting Eq. (5.12) into Eq. (5 .7), we find that U fd (77) satisfie the equation 

I_~(77 dU fd) = 2(dUrd) 
77 a 77 dry dl] ,=, 

(5. 13) 

and V(ry ,;) sati fies the equation 

(5. 14) 
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A solution of Eq. (5 .13) may be obtained using Eqs. (5.8) and (5 .9) and the continuity 

condition J~ ryU fd (ry )dry = 1/2 

8 2 - 0' Kn 

() 0' + 2 (1 - n2) 
u f d ry = 2 - Q" 2 - Q" 'I 

1+8--Kn 1+8--Kn 

(5.15) 

Equation (5.14) can be solved using separation of variables method. Thus, 

V(ry, ;) = F(;)G(ry) (5 .16) 

Substituting Eq. (5.16) into Eq. (5.14), we obtain 

(5 .17) 

1 d (· dG;) 2G _2(dG;) -- ry- +a - -
ry dry dry I I dry 1)=\ 

. (5. 18) 

where a ; are the eigenvalues. 

We find that a particular solution ofEq. (5.18) is 

(5 .19) 

The homogeneous equation is Bessel's equation of zero order and the solution is 

(5.20) 
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In terms of Eq. (5.9), B; = 0, and thus the solution of Eq. (5.18) is 

(5 .21) 

then 

(5.22) 

Therefore, the solution for G; ('7) is obtained 

(5.23) 

According to boundary condition Eq. (5.8), we find the eigenvalue a ; satisfies the 

following equation 

(5 .24) 

In addition, the coefficients A; can be chosen so as to normalize the G; in terms of the 

Sturm-Liouville orthogonality conditions, that is J~ ryG; 
2 
dry = 0. 5 

2a . 
[ 

2 ]1 /2 
(5.25) 

Thus, the G; form a complete orthonormal et. 
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Applying the entrance condition, Eq. (5.1 0), 

00 

V(ry ,O) =l - U1Ary) = LC;G;(17) 
1=1 

Using the orthonormality properties of G;, the coefficients C; can be determined 

C, = 2 ~ (5 1: ry 3G;(ry ~17 
1+8--Kn 

(5 

Substituting Eq. (5 .23) into Eq. (5.26), we obtain 

Therefore, 

Finally, the complete velocity solution is 

12R 

(5.26) 

(5.27) 

(5.28) 



(5.29) 

Figure 5.1 shows the effect of ( on the development of the velocity for Kn ·=0.0 1. 

Figure 5.2 illustrates the dimensionless entrance development length L + ( Lj D, Re 0 , ) as a 

function of Kn (O .OOl SKnSO.l) . The values of L+ corresponding to the point where 

U(0,()=0.99Uja{O). They are fitted a simple correlation: 

2-CY 2-CY 
[ ( )2] L+ = 0.0396 1 +3.7~Kn- 15 ~Kn (5 .30) 

For the continuum flow entrance length, Atkin on et al. [113] presented a simple 

relationship 

L 
- = 0.59 + 0.056 Re 
D 

(5.3 1) 

Chen et al. [114] suggested a form using the development length data of Friedmann et al. 

[ 115]: 

L = 0
·
60 

+ 0.056 Re 
D 0.035Re+ 1 

(5.32) 
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The entrance length does not vanish as Re approaches zero. It still takes about 0.6 tube 

diameter. Finally, we present a relationship for slip flow entrance length: 

!:.._= 0
·
60 

+0.0396Re[l+3 .7
2

- o- Kn-15(
2

- o- Kn)
2

j 
D 0.035Re+ 1 a- a-

(5.33) 

where we use the first term of Chen's development length formula, Eq. (5.32). Sreekanth 

[ 11 0] calculated the entrance lengths of his experiments and found that they agree with 

values predicted by the expression L + = K/4, where K has a value between 0.15 and 0.2 

depending on the Kn. Therefore, Sreekanth's experiments approximately agree with Eq. 

(5.30). 

u 
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0.4 

Kn'=0.01 
---,..---- ~=0 .001 

-~~- ~=0.005 
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-----f=t---- ~ =0. 03 

-----<!r--- ( =0. 05 

0 ~--~--~~--~--~----~---L----L----L----~--~ 

0 0.2 0.4 0.6 0.8 

7J =r/R 

Figure 5.1 Effect of~ on development of velocity profiles for Kn * =0.01 for circular tubes. 

110 



0.048 

0.046 

~ 0.044 

0.042 

0.04 

0.038 L__ _ ___t_ __ L__ _ _J_ _ _____l. __ _J __ ___J_ __ ...l..._ _ ___i_ ___ ..L..._ _ _J 

0 0.02 0.04 0.06 

2-a 
Kn·= --l<n 

a 

0.08 0.1 

Figure 5.2 Entrance length for which U(0,{)=0.99U1d(O) for circular tubes. 

The pressure drop between the entrance and any station downstream can be fatmd by 

integrating the momentum equation. Equation (5.4) can be written as 

(5 .34) 

Under fully developed conditions, the inertia terms in Eq. (5.34) disappear. Therefore, 

(5 .35) 
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Equation (5.35) is integrated between 0 and (, giving 

[p(o)-p(~)]1d =-16 r(au1dJ d~= 64~ 
1 _ , Jo a17 2- (J' 
- pu - 17=1 1+8--Kn 
2 (J' 

(5.36) 

It is convenient to report the pressure drop in a developing flow as equal to that for a 

fully-developed flow plus a correction term K(() representing additional pressure drop 

which exceeds the fully developed pressure drop. Thus, 

p(O) - p(~) -
1 - 2 - pu 
2 

64~ + K(~) 
2 - 0' ':> 

1+8--Kn 
(J' 

Integrating Eq. (5 .34) between 0 and ( , we can obtain the following expression 

Thus, 

From an inspection ofEq. (5 .39), it is found that K(O) is zero and K(oo ) is given by 
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(5.38) 

(5.3 9) 



(5.40) 

which is the fully-developed value of incremental pressure drop factor. 

Figure 5.3 shows the variation of the excess pressure drop function K(() with ( for 

various values of Kn. It is seen that the effect of increasing Kn is to decrease K((). The 

excess pressure drop function for continuum flow and finite difference olutions from 

White [90] are in agreement. 

1.2 

.......... 
~ 0.8 
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_ _____,..,.._____ Kn • =0. 1 

0.06 0.08 

Figure 5.3 Effect of Kn *on excess pressure drop for circular tubes. 
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Substituting Eq. (5.39) into Eq. (5 .37), the apparent friction factor Reynolds product 

for circular tubes can be obtained 

The effects of Kn onfaprfi.e for developing laminar t1ow is illustrated in Figure 5.4. It is 

seen that the effect of increasing Kn is to decrease apparent friction factor. 

0 
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0::: 
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0.0001 

-----1f--- Kn·=o.001 
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---E:t--- Kn"=0.1 

0.001 0.01 0.1 

Figure 5.4 Effect of Kn * on[appRe for developing laminar flow for circular tubes. 
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5.3 Parallel Plates 

Next, following Spanow et al. [112], we consider the flow in hydrodynamic entrance 

region under slip conditions between parallel plate microchannels. The solution i 

considered in detail as Sparrow et al. only howed the developing velocity profile . The 

microchannel height is 2h and there i ymmetry about y=O: The equations of continuity 

and momentum in Cartesian coordinates are 

(5.42) 

au au I dp a2u u-+v-= ----+v-
ax By p dx 8y 2 

(5.43) 

assuming that dp / dx is independent of y. 

Using continuity Eq. (5.42), we can rewrite Eq. (5.43) as 

au 2 a(uv) I dp 82 u --+--=---+v-
ax By p dx 8y 2 

(5.44) 

Integrating Eq. (5.44) with respect to y from 0 to h, there is obtained 

- J_ dp = _!_ _£__ {'u zdy - ~(au J 
p dx h ax h l, By y=h 

(5.45) 

Eliminating dpjd1. from Eqs. (5.43) and (5.45) and reananging 
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_au v (au J a1
u (- ) au au I a r" 2 u-+-- -v-, = u-u --v-+-- 1u dy 

ax h 8y y=h ay- ax 8y h ax 
(5.46) 

The cross-sectional average of the terms on the right side of Eq. (5.46) is zero. Thi 

follows by integrating Eq. (5.46) across the section and employing that ajax( rudy ) i 

zero from continuity equation. Hence, the right side is equated to zero as a linearizing 

approximation. The equation thus to be solved becomes 

(5.47) 

Also, from the above analysis we obtain Targ's linearization results [106]: 

au au -au 
u-+v- = u-ax 8y ax 

_!_ dp _ ~(au J 
p dx h ay y=h 

Introducing the dimensionless variables, ~ = (x/ D" )/(uD,jv), 77 = yj h , and U = uju , 

Eq. (5.47) becomes 

(5.48) 

The appropriate boundary conditions are 
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(5.49) 

(5 .50) 

U(77,0) = 1 (5.5 1) 

(5.52) 

We can write a solution of the form 

U ( 77, q) = U fJ ( 77) ->- V (17 , q) (5 .53) 

where V(77, q) is the deviation from the fully developed flow velocity distribution. It is 

evident that V approach zero for large ~. 

Substituting Eq. (5.53) into Eq. (5.48), we find that U Jii (ry) satisfies the equation 

(5 .54) 

and V(77,q) satisfies the equation 

(5.55) 
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A solution of Eq. (5 .54) may be obtained u ing Eqs. (5.49) and (5 .50) and the continuity 

condition £ufd (7J)d7J = 1 

12 2 - o- Kn 

u 1A 7J) = f _ a-
1+ 12--- Kn 

o-

+ 1.5 (l - 7]2) 
2-o-

1+ 12--Kn 
o-

Equation (5 .55) can be solved using separation of variables method. Thus, 

Substituting Eq. (5.57) into Eq. (5.55), we obtain 

where a ; are the eigenvalues. 

We find that a particular solution of Eq. (5.59) i 

The solution of the homogeneous equation is 
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(5.57) 

(5 .58) 

(5.59) 

(5.60) 

(5.6 1) 



In terms ofEq. (5.50), B; = 0, and thus the solution ofEq. (5.59) is 

(5 .62) 

then 

(5.63) 

Therefore, the solution for G; (ry) is obtained 

(5 .64) 

According to boundary condition Eq. (5.49), we find the eigenvalue a , satisfies the 

following equation 

tan(a;) = az 
. 2 -(} 

1+4a; - - Kn 
(} 

(5 .65) 

Also, the coefficients A; can be chosen in order to normalize the G, in term of the Sturm-

Liouville orthogonality condition , that i J1 
G/ dr; = 1 

- I 

A. = 
I [ 2 ] -~ 1 2-0" 2-0" 

. ( ) 1+ 12--Kn +l6(a;-- Kn) 
sm a ; O" O" 
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Thus, the G; form a complete orthonormal set. 

Applying the entrance condition, Eq. (5.51), 

00 

v(77,0) = 1-u fil (77) =I C;G; ('7) 
i=l 

Using the orthonormality properties of G;, the coefficients C can be determined 

1.5 r l 2 ( t.~ 
C; = 2 - cr J_l 77 G; 77? 77 

1+ 12--Kn 
(5.67) 

() 

Substituting Eq. (5.64) into Eq. (5.67), we obtain 

(5.68) 

Therefore, 

v(ry,;) =I 2A/ si~(a;)[a; cos(a;77 ) - sin( a; )]exp(- 16a/;) 
i= l a ; 

=I 2[a; cos(a;r?)-sin(a;)]exp(-16a/;) 
2 

(5.69) 

'"' a,' sin(a, {l + l 2 2 ~" Kn +l{a, 2 ~" Kn)] 

Finally, the complete velocity solution is 
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12 2 - cr Kn 

U(7J,~)= ~-cr + ~·~cr (1-'1
2

) 

1+12--Kn 1+12--Kn 
() () 

+I 2[a; cos(a;7J )- sin(a;)]exp(- l6a/ ~) 
2 

•~ • a ,' sin(a.{l + l2
2 :o- Kn+l{a, l:o- Kn) ] 

(5.70) 

Figure 5.5 shows the effect of r; on the development of the velocity for Kn ·=0.005 . 

Figure 5.6 illustrates the dimensionless entrance development length L+ as a function of 

Kn (0 .001 ~Kn~0.1) . The values of L+ corresponding to the point where U(O,r;)=0.99UJd(O) . 

They are fitted a simple correlation: 

2-cr 2-cr 
[ ( )2] L+ =0.0112 1+6.7--;;.--Kn - 37 -;;-Kn (5.71) 

For the continuum flow entrance length, Atkinson et al. [ 113] ugge ted a simple 

relationship 

L 
- = 0.3125 + 0.011 Re 
Dh 

(5.72) 

Chen [114] proposed an equation similar to Eq. (5.32) 

0.315 
= +0.011Re 

Dh 0.0175Re+ l 

L 
(5 .73) 

The entrance length does not vanish as Re approaches zero. It still takes about 0.63 plate 

separation. Finally, we suggest a relationship for slip flow entrance length: 
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Figure 5.5 Effect of ~ on development of velocity profiles for Kn *=0.005 for parallel plates. 
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Figure 5.6 Entrance length for which U(0,{)=0.99 Urd{O) for parallel plate . 
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Figure 5.7 Entrance length comparison for Barber and Emerson numerical model. 

!::.._= 0
·
315 

+0.0ll2Re[l+6.7
2

- a Kn-37(
2
-a Kn)

2

] 

D h 0. 0 1 7 5 Re+ 1 a a 
(5 .74) 

where we use the first term of Chen's development length formula, Eq. (5. 73). It is seen 

that the effect of slip is to increase the entrance length. 

Barber and Emerson [ 116] also suggested a curve fitted model using numerical data. 

[ 

2 - a l L 0332 1+ 14.78--Kn 
- = . +O.OllRe a 
Dh 0.0271Re+l 1 + 9 .78 2~a Kn 

(5 .75) 
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.------------- - -

Figure 5.7 shows the comparison between present analytical model Eq. (5.74) and Barber 

and Emerson numerical model Eq. (5 . 75). The difference between present analytical 

model and Barber and Emerson numerical model is less than 8%. 

The pressure drop between the entrance and any station downstream can be found by 

integrating the momentum equation. Equation (5 .45) may be written as 

(5.76) 

Under fully developed conditions, the inertia terms in Eq. (5 .76) disappear. Therefore, 

Equation (5.77) is integrated between 0 and ;;, giving 

Thus, 

(p(o) - p(~)]1d = _ 32 ~ [au.rd J d~ = __ 96_.:::..._~ _ 
1 _ 2 1 a77 2- a-
- pu IJ= l 1+ 12--Kn 
2 a-

p(O )- p(~) -
1 _, 
- pu -
2 

926~ a- + K(~) 
1+12--Kn 

a-

Integrating Eq. (5 .76) between 0 and ;;, we can obtain the following expression 
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(5 .77) 

(5.78) 

(5.79) 



(5 .80) 

Therefore, 

K(S') = { £ U' dry -1 - 16 r( ~~ J,/S' l 
= 0.8 _

4
I [3 - exp(-16a/~)]exp(- t6a/~) (5.81) 

( 
2 - 0" )

2 
i=l 2[ 2-0" ( 2 - 0" )

2
] 1 + 12~Kn a ; 1+12~Kn + l6 a,~Kn 

From an inspection of Eq. (5 .81), it is found that K(O) is zero and K(oo) i given by 

K(oo)= 0.8 ' 

( 
2 - 0" ) -

l+12~Kn 

(5. 2) 

which is the fully developed value of incremental pressure drop factor. 

Figure 5.8 shows the variation of the excess pressure drop function K(() with ( for 

various values of Kn. It is seen that the effect of increasing Kn is to decrease K((). The 

excess pres ure drop function for continuum flow and finite difference solutions from 

vVhite [90] are in agreement. 
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* Figure 5.8 Effect of Kn on excess pressure drop for parallel plates. 

Substituting Eq. (5 .8 1) into Eq. (5.79), the apparent friction factor Reynolds product for 

parallel plates can be obtained 

l app Reo,,= ~~C5 + ( l )
2 

_ f [(3 - exp(- t6a;
2

~))ex(p(- t6a,
2

~) )
2

] 

1 + 12 K 2 - C5 i = l ? 2 - C5 2 - C5 
-----;;:- n 5~ 1 + 12 -----;;:- Kn a;-~ 1 + 12-----;;:- Kn + 16 a ; -----;;:- Kn 

(5.83) 
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The Effect of Kn on /appRe for developing laminar flow is illustrated in Figure 5.9. It i 

seen that the effect of increasing Kn is to decrease apparent friction factor. 

0 
(]) 

a:: 
c. 
c. 

...... "' 

--f--- Kn"=0.001 

-----E:r---- Kn · =0. 0 1 

-----;;--- Kn"=0.05 

---1::!--- Kn"=0.1 

100 

10 ~-~~~~~~~-~-~~~~~-~~~~~~~ 

0 .0001 0.001 0.01 0.1 

Figure 5.9 Effect of Kn* onfappR.e for developing laminar flow for parallel plates. 

Muzychka and Yovanovich [94] showed that Eq. (5.84) may be used to compute the 

friction factor for the short duct of most non-circular ducts (¢" :5 0.001) for continuum 

flow (Kn=O). All numerical results obtained from Eq.(5.4l) or Eq.(5.83) almost reduce to 

their continuum limits Eq. (5.84) in the limit Kn---+0. 

(!. ) 3.44 
app Re , c = ~ (5. 84) 
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For slip flow, Figure 5.10 also demonstrates that very near the inlet of circular and 

parallel plate ducts(¢":::; 0.001),/appR.e is nearly equivalent and independent of duct shape. 

This is a further proof of the reliability ofthe proposed solutions. Therefore, Eq. (5.41 ) or 

Eq. (5.83) may be used to compute the friction factor for the very short duct of non-

circular shape. As the boundary layer develops further downstream (¢" > 0.00 1), the 

effects of geometry become more pronounced and the solution for circular tubes and 

parallel plates Eq. (5.41) or Eq. (5 .83) are no longer valid for non-circular duct . 

Furthermore, the asymptotic limit of /appRe for c;~o can be obtained by substituting 

velocity slip boundary condition into Eq. ( 4.1 ), i.e. 

2 J..tu D 
2-CT h 

A.--
2f Dh CT u 2 2 

f app Re = _J..l_U_ = __ J..l..:::.L_t -- = u _K_n_· --=e;:--:-o -7 Kn • 

Slip flow in the entrance regron of rectangular microchannels was investigated 

numerically by Renksizbulut et al. [ 117]. Figures 5.11-5.13 demonstrate the comparison 

between Eq. (5.41) and Renksizbulut et al. [117] numerical data for different Reynolds 

numbers and Knudsen numbers. The numerical data from Shah and London [I 06] for 

continuum flow are also included in Figure 5.13. When (=10-5 and Kn.=0.1, 0.05 , 0.01 , 

fappRe=19.9, 39.5, 185.6 respectively for present analysis . Therefore, present analytical 

results agree very well with the asymptotic limiting values, whereas the results of [ 11 7] 

are in poorer agreement with the asymptotic limiting values. This indicates that the 
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linearization method is an accurate approximation for slip flow. It is found that the 

Renksizbulut et al. [ 117] numerical data over predict the values offaprfi.e. 

-----<1--.!..__ Kn*=0.001 Circular 

- - -+ - - Kn'=0.001 Par. Plate 

-~~- Kn'=0.01 Circular 

- - ~ - - Kn'=0.01 Par. Plate 

-~~- Kn'=O.OS Circular 

- - -€ - - Kn'=O.OS Par. Plate 
100 ---i'r--- Kn'=0.1 Circular 

Kn'=0.1 Par. Plate 

10 

0.0001 0.001 0.01 0.1 

Figure 5.10 Comparison offappRe for different Kn * between circular tube and parallel plates. 
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000 00000 006-Q.- zo_ 0 

~----------------~~~-- -- -- - -- --
10 L---~--~~~_LLU ____ _L __ L_L_~~~----~_J~~-LLLU 

1 E-005 0.0001 0.001 0.01 

Figure 5.11 Comparison offappR.e for Renksizbulut et al. [117] numerical data for Re=l. 
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Figure 5.12 Comparison offappRe for Renksizbulut et al. [117] numerical data for Re=lO. 
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Figure 5.13 Comparison offappR.e for Renksizbulut et al. [117] numerical data for Re=lOO. 
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5.4 General Model 

Muzychka and Y ovanovich [94] showed that the square root of cross-sectional area is 

more appropriate than the hydraulic diameter for non-dimensionalizing the developing 

laminar continuum flow data. Duan and Muzychka [ 1 09] demonstrated that the same 

conclusion can be extended to the slip flow regime for fully developed flows. Muzychka 

and Y ovanovich [94] presented the following model for predicting the friction factor 

Reynolds product in non-circular ducts for developing and fully developed laminar 

continuum flow. 

1/2 

(3·;;J2 + fRe.JA = -vs 
12 

(5 .85) 

If the friction factor Reynolds product for circular tubes is recast using .fA as a 

characteristic length scale in f Re JA , the following relationship i obtained: 

f. R = sJ; ~ 1 _ 
2 
I (3 - exp(- 1ra, 

2 q ))exp(- 1ra/ q) 

""' e.r;; 1+8
2
:" Kn + .[; 3~( 1 +8 2 :" Kn)' '"' a,'~(1 + 8 2 :" Kn +{a, 2

: " Kn)'J 
C.86) 

where 
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~= X 

JARe JA 

For short duct asymptote (( <0.00 1), we only consider the second term of right hand side 

of Eq. (5.86) 

f Re = _2_ 1 _ 2 ~ (3 - exp(- ;ra/ ~ ))exp(- ;ra/ ~) 
,/A I ( )2 ~ ( ( )2] ....; Jr 2 - (J i=l 2 2 - (J 2 - (J 

3~ I + 8----;--- Kn a ; ~ 1 + 8----;--- Kn + 4 a,----;--- Kn 

(5.87) 

Equation (5.87) is independent of the duct shape and may be used to calculate the friction 

factor Reynolds product for the short asymptote of most non-circular ducts for slip flow. 

The friction factor Reynolds product JRe for slip flow in long non-circular 

microchannels has been proposed by Duan and Muzychka [109] as follows : 

12 
f Re =---------------------------------------~-----------= 

.fA ( ' 3) 2 - (J r- { I92c ( Jr ) ] I + 11.97 - 10.59& + 8.49&- - 2.11& --Kn ....;&(1 + c I - --tanh --
a- ;r5 2& 

(5.88) 

A general model is now proposed usmg the Churchill and Usagi [97] asymptotic 

correlation method. The model takes the form: 

(5.89) 

154 



where n is a superposition parameter determined by comparison with numerical and 

analytical data over the full range of (. Using the results provided by Eq. (5 .87) and Eq. 

(5.88), and the general expression, Eq. (5.89), the following model is proposed: 

f Re.fA = 
12 

( 2 3) 2 - a- r( { 192& ( " )] 1+ 11.97 - 10.59&+8.49& -2. 11& --Kn-y& 1+& 1---tanh -
(j "5 2& 

(5 .90) 

Table 5.1 Eigenvalues obtained from Eq. (5.24). 

Eigenvalues 
i Kn = 0 Kn = 0.0 1 Kn = 0.05 Kn =0. 1 
l 5.13562 5.03806 4.74142 4.5 1606 
2 8.41724 8.258 17 7.81634 7.54591 
3 11.6 1984 11 .40 186 10.85911 I 0.59026 
4 14.79595 14 .52 101 13.91 224 13.66206 
5 17.95982 17.62986 16.98 106 16.75353 
6 2 1.11700 20.73409 20.06384 19.85810 
7 24.27011 23.83646 23. 15780 22.97149 
8 27.42057 26.93845 26.26044 26.09100 
9 30.56920 30.04095 29.36979 29.21488 
10 33 .71652 33. 14447 32.48437 32.34199 
11 36.86286 36.24934 35.60308 35.47152 
12 40.00845 39.35572 33.72508 38.60294 
13 43.15345 42.46372 41.84973 41.73582 
14 46.29800 45.57337 44.97654 44.86989 
15 49.442 16 48.68466 48.10514 48.00491 
16 52.58602 51.79754 5 1.23522 51.14072 
17 55.72963 54.91 198 54.36656 54.277 18 
18 58.87302 58.02790 57.49896 57.41420 
19 62.01622 6 1.1 4522 60.63226 60.55168 
20 65 .15927 64.26388 63.76635 63.68956 
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Using the available analytical data for circular tubes, and Muzychka and Yovanovich [94] 

model for continuum flow, it is found that the value n which minimizes the root mean 

square difference lies in the range 1.0< n < 1.2 with a convenient value n ::::: 1. The 

e igenvalues a ; are g iven in Table 5.1. It was found that twenty eigenvalue are sufficient 

accurate for all values of~ of interest. When ~ is not too small, only everal term are 

required. More eigenvalues should be used when ~ is very small and Knud en number is 

comparatively small. 

5.5 Results and Discussion 

Figure 5.14 demonstrates the comparison between the proposed model Eq. (5 .90) and 

Muzychka and Yovanovich model [94] Eq. (5.85) for continuum flow. It is found that the 

difference between the two models is less than l 0%. Since there are no experimental 

results for slip flow in the hydrodynamic entrance of non-circular microchannels, it is 

impossible at the present to completely appraise the present model. However, 

experimental, analytical and numerical results for continuum flow do support the validity 

of the present model. Moreover, the proposed model correctly approaches the ~--+0 and 

~--+oo limits. 

Furthermore, Figure 5.15 presents the comparison between the proposed model Eq. 

(5 .90) and the analytical solution of circular ducts Eq. (5 .86). The model predictions are 

in agreement with the analytical solution within 1%. 

Niazmand et al. [ 118] and Renksizbulut et al. [ 11 7] numerically investigated slip flow 

in the entrance region of rectangular microchannels. The Reynolds number range i from 
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0.1 to 100. Figure 5.16 demonstrates the comparison between the proposed model and 

Niazmand et al. [118] numerical data for Re=100 and ( > 0.005. It is found that the 

difference between the model and Niazmand et a!. numerical data i from 9% to 19% . 

The difference decreases with an increase in Knudsen number. This indicates that the sl ip 

flow is less sensitive to analytical linearized approximations than the continuum flow. It 

should also be noted, however, that Niazmand et a!. numerical data over predict the 

values ofjRe. 

It is found that Eq . (5.90) characterizes the developing lip flow in non-circular 

microchannels. The maximum deviation of exact values is approximately less than 10 

percent. The friction factor Reynolds product may be predicted from Eq. (5.90), provided 

an appropriate definition of the aspect ratio is chosen. 

5.6 Summary 

A model was developed for predicting the friction factor Reynolds product in non

circular microchannels for developing slip flow. It is shown that complete problem may 

be easily analyzed by combining the asymptotic results for the short and long duct. The 

present model took advantage of the selection of a more appropriate characteristic length 

scale square root of flow area to develop a simple model. As for developing slip flow no 

solutions or tabulated data exist for most geometries, this developed model may be used 

to predict friction factor and pressure drop of developing slip flow in non-circular 

microchannels . The developed model correctly approaches the slip flow asymptote for 

developing flows and fully developed flows. The accuracy of the developed model wa 
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approximately within I 0 percent. It is found that slip flow is less sensitive to analytical 

linearized approximations than continuum flow and the linearization method i an 

accurate approximation for slip flow. The effects of the Knudsen number on the 

hydrodynamic entrance length for circular tubes and parallel plates have also been 

examined. Simple models were developed to predict entrance length for circular tubes 

and parallel plates. 

100 

10 ~-L-L~~~~-L~LUll_~~~~u_~~~~W-~LJ-U~~ 

0.0001 0.001 0.01 0.1 10 

~=L/~ Rev'A 

Figure 5.14 Comparison of fRe..r;. for Muzychka and Yovanovich [94] model. 
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Figure 5.15 Comparison of f Re !A for circular tubes. 
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Figure 5.16 Comparison of f Re .JA for Niazmand et al. [118] numerical data. 
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Chapter 6 

Effects of Corrugated Roughness on Laminar 

Flow in Microtubes 

6.1 Introduction 

Some researchers have reported on deviations between microscale flow behavior and 

conventional macroscale flow theory. For laminar fully developed flow through 

microchannels, researchers have observed significant increases in the pressure drop from 

the macroscale flow theoretical values, as data appears up to 50% above the theoretical 

values [7-8, 14,18-19,23,33-3 7,41-48,57,63-64,67,79,8 1 ,119]. Some publications indicate 

that flows on the microscale are different from that on macroscale. Several theories and 

models have been proposed to explain the observed deviations, but an indisputable 

conclusion has not yet been reached. 

In macroscale flow theory, the friction factor is independent of relative roughne s in 

the laminar region. However, some researchers proposed that the friction factor depends 

on the relative roughness of the walls of the microchannels also in laminar region and the 

relative roughness cannot be neglected for microchannels in the laminar region [7, 16,41-

42,46,57,60,63-64,67,72,76,80, 119]. 
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Due to limitations in current micromachining technology, the microfabricated 

microchannel walls typically exhibit some degree of roughness, as shown in Figure 6.1. 

Roughness plays an increasingly important role in microchannel flows, but it is difficult 

to characterize its effects theoretically or numerically. It can be characterized u ing 

stylus-type surface profilometer, optical measurement, Scanning Electron Microscope 

(SEM), Atomic Force Microscope (ATM), and Scanning Tunneling Micro cope (STM). 

There is a need for a better understanding of the effects of wall roughness on fluid 

characteristics in microchannels. 

Figure 6.1 SEM image of the cross-section of a roughness 
microtube with a nominal internal diameter of75J.lm r621. 

Bahrami et al. [ 119] developed a model to predict the pre sure drop of the fully 

developed laminar continuum flows in rough microtube . In this model, the wall 

roughness is assumed to possess a Gaussian isotropic distribution . 

Kleinstreuer and Koo [ 120] proposed a numerical model to consider the effect of wall 

roughness on liquid continuum flow in microchannels . They modeled roughness by 
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considering a porous medium layer (PLM) near the wall. The porous medium layer 

approach is able to mimic some details of the velocity profiles and of the effect of the 

roughness height. 

Wang et al. [ 121] numerically investigated the friction factors of single pha e 

continuum flow in microchannels with various roughness elements. The two-dimen ional 

numerical solution shows significant influence of surface roughness including the height 

and spacing of the roughness elements on the Poiseuille number. The Poi euille number 

increases with an increase of roughness height and decreases with an increase of the 

roughness spacing. 

Li et al. [122) studied the effects of surface roughness on the slip flow in long 

microtubes. The rough surface was represented as a porous film based on the Brinkman

extended Darcy model, and the core region of the flow utilized velocity slip to model the 

rarefaction effects. By using the appropriate matching conditions at the gas/porous 

interface (velocity slip and stress continuity), the governing equation of pres ure 

distribution was derived. 

Sun and Faghri [ 123] investigated the effects of surface roughness on nitrogen flow in 

a microchannel using the direct simulation Monte Carlo method. The surface roughness 

was modeled by an array of rectangular modules placed on two surfaces of a parallel 

plate channel. The effects of relative surface roughness, roughness distribution , and ga 

rarefaction on flow were studied. It was found that the effect of surface roughness is more 

pronounced at low Knudsen number . The roughness distribution represented by the ratio 

of the roughness height to spacing of the modules has a significant effect on the friction 
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factor. The friction factor increases not only as the roughness height increases but also as 

the distance between the roughness modules decreases. This is consistent with the 

conclusions ofWang et al. [121]. 

In the present chapter we examine a simple approach to modeling surface roughne m 

the slip flow regime. 

6.2 Circumferential Corrugated Roughness 

In order to simplify the roughness problem, we can consider flow inside a microtube 

with a rough surface which is approximately sinusoidal corrugation, r = R + Rc- sin(A.B) , 

as illustrated in Figure 6.2. Where R is the mean radius of the rough microtube and il i 

the wave number (A. = 2trR./ I), relative roughness 5 = b/ R << l , b and I are the amplitude 

and wave length of the rough conugated walls respectively. It is convenient to nonnalize 

the axial velocity u with -(dpjdz)! Jl. When the tubes are long enough (LID >> l) and 

Reynolds number is relatively low, the momentum equation reduces to the Poi on 

equation. We will consider continuum flow first. 

0 

Figure 6.2 A sinusoidal wave roughness microtube. 
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6.2.1 Continuum Flow 

(6 .1) 

and 

(6.2) 

The boundary conditions are 

at r = 0 (6.3) 

u =0 at r = R + R&sin(A.B) (6.4) 

Using perturbation methods, we expand the velocity in tenns of c; 

U = U 0 (r, e) + CU 1 (r, e) + c 2 
U 2 (r, e) + · · . (6.5) 

Equation (6.1) yields 

(6.6) 

and for the boundary conditions we can expand u(R + &Rsin(A. B), e) in a Taylor serie to 

obtain 

u(R + &Rsin(A-B),e) = u(R,B) + c[Rsin(A-B) au (R,e)J + c2 [ [Rsin(A.B)Y 
82 ~ (R,B)l + ... = 0 

& 2 & -

(6.7) 
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Substitution ofEq. (6.5) into Eq. (6.7) give 

u(R +dl in(-111),11) ~ u0 (R,II)+<[u,(R,II)+ ~: (R,II)Rsin(AII)] 
1 (6 .8) 

+c- 1 [u,(R,B)+ au1 (R ,B)Rsin(A.B)+ J._ a- ~:o (R,B)R1 in 2 (A.e)]+ O(c- 3
) = 0 - ar 2 ar-

Then, the boundary conditions become respectively 

u0 (R, B) = 0 (6 .9) 

u
1
(R ,B)+ auo (R,B)Rsin(A.B)= 0 (6.10) 

ar 

The solutions of thi problem yields: 

R2 :! -r 
U o =---

4 
(6. 12) 

u, ~ ~ R ' ( ~ )' sin(AII) (6. 13) 

(6. 14) 

The total flow rate is given by 
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dp/ dz f 2;r/,! fR+&R sin(,tB)( 2 ) 
Q =---A. JJ JJ Vio + &u1 + c u2 + · · · rdrdfJ = 

Jl 
7rR4dp/dz [1 - (2A.- 3)&2 + o(c4 )] 

8JL 
(6.15) 

It is seen that the periodic solution cannot be related to flow rate along:::. 

(6.16) 

where Qsm is the flow rate for smooth microtubes. The flow rate decreases with an 

increase in A.. As 2A.-3 is always positive for practical applications indicating a decrease in 

the flow rate with wall roughness . 

After integrating Eq. (6.15), the pressure drop along the length of the pipe (L) may be 

determined to be 

(6.17) 

It can be also shown that the effect of wall roughness on the pressme drop i given by 

the following equation 

(6.18) 

where 6..p sm is the pressure drop for smooth micro tubes. 

Figures 6.3 and 6.4 demonstrate the effect of wave number A. and relative roughness c 

on pressme drop of microtubes. As 2A.-3 is always positive, the pressure drop increases 

with wall roughness. 
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The friction factor Reynolds product can be obtained simply by substituting Eq. (6 .15) 

into the definition ofjRe. 

(6.19) 

where A= Jr.R 2 (1 + fc 2
) and the perimeter can be evaluated numerically , see Shah and 

London [ 1 06]. The friction factor Reynolds product is presented in Table 6.1. The 

numerical value determined by conformal mapping and Green's function from Shah and 

London [106] is also included for comparison. It is found that Eq. (6.19) agrees with the 

numerical results ofjRe from Shah and London. The difference decreases with a decrea e 

me. 

1.3 

:g. 1.2 

1.1 

20 30 

'A 
40 50 

Figure 6.3 Effect of relative roughness £ and wave number A on 
pressure drop of microtubes. 
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Figure 6.4 Effect of relative roughness e and wave number A. on 
pressure drop of microtubes. 

Table 6.1 JR.e for developed laminar flow in corrugated microtubes. 

A. c Dh/2R fRe fRe [106] Difference 
6 0.02 0.9966 15.952 15.952 0.00% 

0.04 0.9863 15.805 15.806 0.00% 
0.06 0.9689 15.551 15.559 0.05% 

8 0.02 0.9938 15.888 15.887 0.00% 
0.04 0.9747 15.536 15.542 0.04% 
0.06 0.9418 14.915 14.943 0.19% 

12 0.02 0.9856 15.677 15.679 0.01% 
0.04 0.9402 14.647 14.671 0.16% 
0.06 0.8583 12.774 12.872 0.77% 

6.2.2 Slip Flow 

We will first examine smooth microtube . When the tubes are long enough (LID >> 1) 

and Reynold number is relatively low, the continuum flow momentum equation is 
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(6.20) 

The boundary conditions for smooth microtubes are therefore 

u -:;:. oo at r = 0 (6.21) 

u =-A . 2 - O" du at r = R 
1 CY dr 

(6.22) 

where A1 denotes the molecular mean free path. The characteristic length scale in the 

present analysis is defined as the microtube mean diameter. It i convenient to introduce 

the Knudsen number 

A 
Kn=_l_ 

2R 

A solution ofvelocity distribution is obtained: 

1 dp ( 2 2 2 - (]" 2 ) u=--- R -r +--4KnR 
4,u dz CY 

The mean velocity is found by integration Eq. (6.24) across the section 

1 J 1 r R R 
2 

dp ( 2 - u ) u = - udA =--? 1 u2Trrdr =--- 1+--8Kn 
A nR. - 8,u dz O" 

Then, we can obtain 
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(6.24) 

(6.25) 



16 
fRe =----

2 - o-
1+--8Kn 

In addition, the volume rate of flow in the micro tube is given by 

,_ TrR
4 

dp ( 2- () ) Q = JrR-u = - -- 1 + --8Kn 
8Jt dz o-

(6.26) 

(6.27) 

The above equation indicates that the slip velocity boundary condition increases the 

volume rate of flow through the microtube. 

Now we will consider the coupled effects due to velocity slip and comtgated 

roughness on the channel walls. The only difference with no-slip case is the boundary 

conditions 

u =-A. 2- o- du 
1 o- dn 

where n is the outer direction normal. 

at r = R + R& in(A.B) (6.2 ) 

We can expand u(R + &R sin(A.B), B) in a Taylor series to obtain the boundary conditions 

u(R+&R in(A.B) B) = u(R, B) +&[Rsin(A.B)
0

u (R,B)]+& 2 [ [R in(A.e)r 
02~ (R,B)]+ · .. or 2 or 

and 

2 - 0"0u 
--A.---
- I 0" on 

(6.29) 
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(6.30) 

Following a procedure similar to the no-slip case (the derivation is quite pace consurnmg 

and omitted here), we may obtain the solution as follows: 

2 ? R - r - 2- 0' , 
u0 = +--KnR-

4 0' 
(6.31) 

u1 =periodic solution = · · · x (sin(A.B)) (6.32) 

R
2 

[
1 

2...t(l+2Kn.X1+4A.Kn· -2Kn•)] . d ' 1 . 
u 2 =- - • + perw zc so utzon 

8 1+2A.Kn 

=~[1- 2...t(l + 2Kn. x1 + 4A.~n. - 2Kn. )] + ... X (cos(2...tB)) 
8 l +2A.Kn 

(6.33) 

The total flow rate is then given by 

dpjdz f2;rf..t fR+&Rsin{..tB) ( 2 ) 
Q = - --A. 1 1 u 0 + t:u 1 + t: u 2 + · · · rdrdB 

Jl 

= TrR
4

dp j dz[l +SKn· -(l+ 2...t(l + 2Kn·X1+4A.~n· - 2Kn· ) _ 4Kn· _ 4 l+2Kn·.Jc2 +O(t: 4 )] 

8p 1 + 2A.Kn 1 + 2A.Kn 

= nR4dpj dz[l - Bt:1 + O(t:4)Xt +8Kn') 
8p 

(6.34) 

where 
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l+ 2A.(1+2Kn. X1+4--1Kn · -2Kn· )_
4

Kn· _
4 

1+2Kn· 
B = 1 + 2A.Kn. 1 + 2A.Kn. 

1 + 8Kn· 
(6.35) 

B is a function of wave number A. and modified Knudsen number Kn •. 

(6.36) 

where Qsm is the flow rate for continuum flow in smooth microtubes. As B is always 

positive indicating a decrease in the flow rate with wall roughness. 

After integrating Eq. (6 .34), the pressure drop for incompressible flow along the 

length of the pipe (L) may be determined to be 

8pLQ 

6p = 1rR 4 

[t - Bc2 + o(c4 )(1 + 
2 ~ O" 8Kn ) 

(6 .37) 

It can be also shown that the effect of wall roughness on the pressure drop is given by 

the following equations 

(6.38) 

where 6psm is the pressure drop for continuum flow in smooth microtubes. 
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Figure 6.5 Effect of relative roughness t, wave number). and Knudsen 
number Kn on pressure drop of microtubes. 

Figure 6.5 demonstrates the effect of wave number A., relative roughness t and 

Knudsen number Kn on pressure drop of microtubes. Velocity slip decreases pressure 

drop and corrugated roughness increases pressure drop. Pressure drop depends on t, A., 

and Kn and it can be less than, equal to or greater than unity. The coupled effects between 

small corrugated roughness and velocity slip proposes a possible explanation on the 

observed phenomenon that Chung et al. [71] and Kohl et a!. [83] found, which showed 

that the friction factors for slip flow in microchannels can be accurately determined from 

conventional theory for large channels. 

Using the similar procedure as continuum flow, the friction factor Reynolds product 

for slip flow can be obtained as follows: 
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(6.39) 

Next we consider the effects of compressibility of the gas. For compressible flow, the 

mass flow rate in the microtube is given by employing the equation of tate p=p 91 T 

(6.40) 

We can use pKn = p
0
Kn

0 
since pKn is constant for isothermal flow. Integrating Eq. 

(6.40), we obtain 

where If denotes the average value of B(A., Kn;) and B(A., Kn; ). 

Letting z=L gives: 

R4 2 { 2 ( ]] . - Jr Po - 2 4 P; 2- o- P; 
m = puA = [1 - B& +O(c-) -, - 1+ 16--Kno --1 

16JIRTL p~ o- Po 
(6.42) 

The continuum flow mass flow rate is given by: 

(6.43) 
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The effect of slip may be illustrated clearly by dividing the slip flow mass flow Eq. (6.42) 

by the continuum mass flow Eq. (6.43) 

. 16 2 - o- Kn 
m o - = 1 + _ ___;;;a-__ _ 

me .J2 + 1 
Po 

(6.44) 

It is seen that the rarefaction increases the mass flow and that the effect of rarefaction 

becomes more significant when the pressure ratio decreases. 

Finally, combining Eq. (6.41) and Eq. (6.42), we obtain the expression for pressure 

distribution: 

p. 2-o- ( 2-o- p J2 [p 2 

2 - o- (p JJ z -· =: -8--Kn
0 

+ 8--Kn.
0 

+ - 1 
- - ' -

2 
-1 + 16--K/1.

0 
- ' - 1 - (6.45) 

Po o- o- Po Po o- Po L 

The influences of circumferential corrugated surface roughness on the fully developed 

laminar flow in microtubes are studied and novel models are proposed to predict friction 

factor and pressure drop for continuum flow and slip flow. Compressibility effect has 

also been examined and simple models are proposed to predict the pressure distribution 

and mass flow rate for slip flow in corrugated rough microtubes. 

It is observed that the normalized pressure drop, !J.p • , rs a function of relative 

roughness G and wave number A for continuum flow, r.e. !::..p • = F(c, A). The present 

model exhibits the influence of corrugated roughness. For most conventional microtubes 

(G ~ 0.03- 0.05, A = 30- 50), the present model proposes an explanation on the observed 
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phenomenon that pressure drop results for continuum t1ow have shown a striking increase 

(15-50%) due to roughness. 

For slip flow, !1p • is a function of relative roughness c:, wave number A. and Knudsen 

number Kn, i.e. !1p • = F1 (&,A., Kn) . There exist coupled effects between velocity slip and 

corrugated roughness. Velocity slip decreases pressure drop and increa es flow rate. 

Corrugated roughness increases pressure drop and decreases flow rate. These two effects 

can have a canceling effect in some systems. 

6.3 Axial Corrugated Roughness 

6.3.1 Introduction 

The exact solutions of Hagen-Poiseuille flow can be obtained theoretically. However, 

when the radius of a tube varies with the axial distance, the flow cannot be characterized 

by Hagen-Poiseuille law. Langlois [124] employed the lubrication approximation to 

calculate the mean pressure drop. The prediction of the simple approximation method 

agrees well with the exact value when the tube radius varies slowly. Since Langloi ' 

paper, some authors investigated this flow problem in tubes of slowly varying radius. 

Tanner and Linnett [125] extended the perturbation analysis of Blasius to predict the 

kinetic energy losses of viscometric capillary tubes. However, they neglected second 

order viscous terms in the momentum equations. Manton [ 126] obtained an asymptotic 

series solution for the low Reynolds number flow through an axisymmetric tube who e 

radius varie slowly in the axial direction. However, he a! o neglected fir t and second 

order viscous terms. Noticing this and the applications of thi flow in biomechanics, 
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Phan-Thien [ 127] developed a perturbation solution and obtained an improved solution 

up to second order o(c- 2
) for the mean pressure gradient. Vasudeviah and Balamurugan 

[ 128] tried to solve the corresponding problem for slip flow. However, their derivation 

and result are questionable, which are discussed later. In view of the importance of thi 

flow problem, we develop a new perturbation solution for slip flow through axially 

corrugated rough microtubes. 

6.3.2 Theoretical Analysis 

In order to simplify the roughness problem, we can consider flow inside a microtube 

with a rough surface which 1s approximately sinusoidal corrugation, 

r'=R+Rc-sin(27rz'/l), as illustrated in Figure 6.6. Where R is the mean radius of the 

rough microtube, relative roughness£= b/ R << 1, b and I are the amplitude and wave 

length of the rough corrugated walls respectively. It is convenient to normalize all length 

variables with respect to R. When the tubes are long enough (LID >> 1) and Reynolds 

number is relatively low, the Stokes equation in cylindrical coordinates (r, (), z) is 

-~-----------------------~- z 

Figure 6.6 An axial sinusoidal wave rough microtube. 
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(6.46) 

and (6.47) 

where If/ is the dimensionless stream function normalized by (- Q /2;rr). 

The boundary conditions are 

at r = 0 (6.48) 

If/ = l, _!_ Olf/ = _ A.1 2- cr j__(_!_ Olf/ ) 
n on R cr on n on at r = l +&sin(k ) (6.49) 

where n is the outer direction normal and A is the wave number (A = 2trR./ l ). A 1 is the 

molecular mean free path. The characteristic length scale m the pre ent analysi is 

defined as the microtube mean diameter. It ts convenient to introduce the Knudsen 

number 

A, . 
Kn = - 1 

2R 

Using perturbation methods, we expand If in terms of£ 

(6.50) 

(6.5 1) 

For the boundary conditions (6.49) we can expand tp(l + £ sin(k ), z) in a Taylor series to 

obtain 

178 



and 

Of//' = \7 f// · V[r -1- .c sin A.z] =[ Of// _cA. cos A.z Of// _ &
2 .. f cos2 A.z Of// l + o(c-3) 

on r~ l+csin .<z !V(r- 1-&sm A.z]! or oz 2 or r=l+csinh 

=[Of//o +&[Of//, +sinA.z0 2f//o -A. cosA.zOf//o) 
or or or2 oz 

2 [a f// , . a 2 
f//, a f//, 1 . , a 3 

f// o A. . a 2 
f// o A. 

2 
, a f// o )] ( 3 ) + & --- + smA.z---A.cosk-- + - sm - A.z-- --sm 2.-lz----cos- A.z-- + 0 & or or2 oz 2 or3 2 oroz 2 or 

r • l 

(6.53) 

and 

azf// 

on 2 
. 

r = I+ES!n k 

(6.54) 

The solution of If 0 is governed by 

(6.55) 

at r = 0 (6.56) 
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l.j/
0 

= 1, (l-2Kn•)
8

1.f/o +2Kn· 
0~~0 = 0 

or or 

The zeroth-order (l) solution is the usual slip Poiseuille flow 

The c1-solution is governed by 

_ 2(1+4Kn. } 2 -r4 

l.f/o - l + 8Kn • 

at r = 0 

at r = l 

. 
1

_ o If/ 0 16Kn. . 
1

_ 

l.f/1 =-sm~--=- • stn~ at r = 1 
or l +8Kn 

(6.57) 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

(t - 2Kn•)
8

1.f/1 +2Kn· 
02~1 = -sin it.z 02~0 +Acos k

0
1.f/0 -2Kn·(sin iiz

02
1.f/0 - 2A. co 

or or ar- oz or3 

= s(l+ 4Kn•)sinA.z at r = 1 
1 +8Kn· 

(6.62) 

According to the boundary conditions, the l.f/ 1 is in the form 

l.f/ 1(r ,z)= ¢1(r)sinA.z (6.63) 

where 
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D 2 = r !!_ (_!_ .!!._) 
dr r dr 

(6.64) 

The solution of rA is 

where Iv(x), Kv(x) are the modified Bessel functions of the first and second kind 

respectively of order v. Due to the boundedness of the velocity field, B 1=B 2=0. Therefore, 

(6.66) 

Applying boundary conditions (6.61) and (6.62) 

(6.67) 

Solving Eqs. (6.67) and (6.68), we have 

c-1 
- 1 + 8Kn· 

8 
(6.69) 

(6 .70) 
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It is seen that the first-order solution is periodic in z and cannot be related to a mean 

pressure gradient along z. 

Next, The t 2-solution is governed by 

(6.71) 

0 _!_ 8 1f/2 = 0 
lj/ 2 = ' 

r az at r = 0 (6 .72) 

. aryl 1 . 2 8 2!f/o 
ry = -smA.z----sm A.z--

2 ar 2 8r 2 

= [- C,AJ,(A)- C2(2I,(A)+ .11, (A))+~::~:: r- co~( Hz )J 
(6.73) 

at r = 1 

at r = 1 

(6 .74) 

The appropriate solution is in the form 

fj/2 (r, z) =If/ za (r )+periodic solution = lj/ 2, (r )+ · · · x (cos(2A.z )) (6.75) 
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It is een that the second-order solution may cause a mean pres ure gradient along z. A 

periodic solution does not contribute to the mean pressure gradient, only f/1 1a need to be 

determined. The If za solution is governed by 

fll za = 0, 

(1- 2Kn • ) afll za + 2Kn. az f/1 za 
8r 8r 2 

_!_ a f/1 1a = 0 
r az 

(6.76) 

at r = 0 (6.77) 

at r = 1 (6.78) 

=-±((C,A- + 2C
2 
-2C1A-3Kn· +2C2 A-2Kn.)I0 (A-)+(3C2 A-+2C,A.2 Kn· +4C2A.Kn· -2C2A-3Kn·)I,(A-)] 

6(1 + 2Kn· )- 4A.2 Kn· + 16A.2 Kn·
2 

+ • 
1+8Kn 

at r = l 

(6 .79) 

The solution for If 2a should be of the fom1 

(6.80) 

In terms of boundary conditions (6.78) and (6.79), we obtain 
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C4 = 4(l+~Kn')[(C1 A.+2C2 +2C1A.3Kn' -2C2A.2Kn ' )r0 (A.)-(C2A.+2C1A.
2
Kn' +4C2 A.Kn" -2C2 A.

3
Kn' )r1(A.)] 

1+10Kn' -2A.2 Kn' +8A.2Kn'
2 

(1 + sKn'Y 

= l [- 1- lOKn' +?A.zKn" -8A.2Kn'2- 2[aJ~ (A.) + a21o (A.)iJA.)+aJJI2(A.)]l 
(1+8Kn} - A. [i 1

2 (A.)- 10 (A.)12(A.)] + 4A.Kn'i1
2 (A.) 

(6.82) 

where 

( 

• 1 • 1 .2 4 .3 ) 
a

1 
= A -1- 4Kn - 2A-Kn - 24A.- Kn - 8A Kn (6.83) 

• 2 • 4 .3 
a 2 = 2 + 8Kn - 4A Kn - 16A Kn (6.84) 

(6.85) 

The total flow rate is then given by 

Q = 2rrR
4 

dp / dz' 2rr 1 

JL A !Vr/J.. 1 a ( 2 \ -- E If/ fiz 
r ar 

= 
rrR 4 dp j d:::' 1 + 8Kn • 

8JL 1+ 8 &1 +O(c 4
) 

(6.86) 

where 

B = ( 1 + 8Kn. ,:C 4 (6.87) 

B is a function of wave number A. and modified Knudsen number Kn •. Figure 6.7 shows 

the effect of A. and Kn • on B(A., Kn *). In the limit of Kn~O, Eq. (6.87) reduces to its 

corresponding continuum flow solution [ 127]: 
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(6.88) 

For practical applications, a simple expression which is valid for A.~ 2 can be used 

Be = 3.92,.1, -1.76 (6.89) 

It is seen that the periodic solution cannot be related to the mean pressure gradient along z 

as its contribution to the integral is zero. Only 1f1 0 and lfl 2a contribute to the mean 

pressure gradient. 

Q 1+ 8Kn· 

Qsm = 1 + B 5 2 + 0(c 4 
) 

(6.90) 

where Qsm is the flow rate for continuum flow in smooth microtubes. The flow rate 

decreases with an increase in A. As B i always positive indicating a decrease in the flow 

rate with wall roughness. 

I I I I I 1 I I 

300 1-- Kn"=O j 
- - - - - Kn"=0.005 

- - - Kn"=0.025 

----- Kn·=o.os 

200 

m 

100 

0~~~~--~--L_~--~--_L--~ __ L__j 
0 4 8 12 16 20 

Figure 6.7 B(J.., Kn *) as a function of}. and Kn *. 
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Setting c: = 0 in Eq. (6.90), we obtain the corre ponding expression for the flow rate in 

smooth microtubes as Q/ Q,.m = 1 + 8Kn • . However, Vasudeviah and Balamurugan [ 128] 

gave the following inaccurate expression: 

Q 1 + 10Kn • 
= (6.91) 

Q sm l + 2Kn· 

After integrating Eq. (6.86), the pressure drop along the length of the pipe (L) may be 

determined to be 

/1 _ 81-tLQ l+B& 1 +0(&4
) 

p- :rR 4 l+8Kn· 
(6.92) 

It can be also shown that the effect of wall roughness on the pressure drop is given by 

the following equations 

!1p. = 6p = 1 + B&
2 

+ ~(& 4 ) 
f1P sm 1 + 8Kn 

(6.93) 

where 6ps, is the pressure drop for continuum flow in smooth microtubes. 

Figures 6.8 and 6.9 demonstrate the effect of wave number A. and relative roughnes c: 

on pressure drop of microtubes for continuum flow. As B is always positive the pres ure 

drop increases with wall roughness. 
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F igure 6.8 Effect of relative roughness ~; and wave number 2 on 
pressure drop of microtubes for continuum flow. 
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Figure 6.9 Effect of relative roughness ~; and wave number 2 on 
pressure drop of microtubes for continuum flow. 

187 



1.15 

1.1 

1.05 

a. 
<J 

0.95 

0.9 

0.85 
0 4 

/ 
/ , / 

8 

_,-
/, 

------

12 

/' 
/' 

/' 
/' 

/' 

16 20 

Figure 6.10 Effect of relative roughness e, wave number ). and 
Knudsen number Kn on pressure drop of microtubes for slip flow. 

Figure 6.10 demonstrates the effect of wave number A., relative roughness c and 

Knudsen number Kn on pressure drop of microtubes for slip flow. Velocity slip decrea e 

pressure drop and corrugated roughne increa es pressure drop. Pres ure drop depends 

on £, A., and Kn and it can be less than, equal to or greater than unity. The coupled effect 

between small con-ugated roughness and velocity slip proposes a possible explanation on 

the observed phenomenon that Chung et al. [71] and Kohl et al. [83] found, which 

showed that the friction factors for gas flow in microchannel can be accurat ly 

determined from conventional theory for large channels. 

The mean friction factor Reynolds product can be obtained simply by substituting Eq. 

(6.86) into the definition ofjRe. 
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(6.94) 

The above analysis is carried out for constant fluid properties. We may now consider 

compressibility of the gas. For compressible flow, the mass flow rate in the microtube is 

given by employing the equation of state p=p 91 T 

(6.95) 

We can use pKn = p
0
Kn

0 
since pKn is constant for isothermal flow. Integrating Eq. 

(6.95), we obtain 

where B denotes the average value of B(A., Kn; ) and B(A., Kn:) . 

Letting z=L gives : 

(6.97) 

The continuum flow mass flow rate is given by: 

(6.98) 
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The effect of slip may be illustrated clearly by dividing the slip flow mass flow Eq. (6.97) 

by the continuum mass flow Eq. (6.98) 

(6.99) 

It is seen that the rarefaction increases the mass flow and that the effect of rarefaction 

becomes more significant when the pressure ratio decreases. 

Combining Eq. (6.96) and Eq. (6.97), we obtain the expressiOn for pressure 

distribution: 

p 2-o-
_ z ~-8--Kn + 

- 0 

Po 0" 
( )

2 [ 1 ( ) ] 

2-o- p . p .- 2-o- p z 
8--Kn

0
+-' - ·~-1+16--Kno - ' -1 -(6.100) 

o- Po Po o- Po L 

The influences of axial corrugated surface roughness on the fully developed laminar 

flow in microtubes are studied and novel models are proposed to predict friction factor 

and pressure drop for continuum flow and slip flow. Compressibility effect has also been 

examined and simple models are proposed to predict the pressure distribution and mas 

flow rate for slip flow in corrugated rough microtubes. 

It is observed that the normalized pressure drop, 6p • , is a function of relative 

roughness c and wave number A for continuum flow, i.e. 6p • = F(c, A. ). The present 

model exhibits the influence of corrugated roughness. For most conventional microtubes 

(c :::::: 0.03- 0.05, A = 10- 20), the present model proposes an explanation on the ob erved 
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phenomenon that pressure drop results for continuum flow have shown an increase due to 

roughness. 

For slip flow, D:..p • is a function of relative roughness E:, wave number A. and Knud en 

number Kn, i.e. D:..p • = FJc, :t, Kn). There exist coupled effects between velocity slip and 

corrugated roughness. Velocity slip decreases pressure drop and increases flow rate. 

Corrugated roughness increases pressure drop and decreases flow rate. 

6.4 Summary 

The effects of corrugated surface roughness on fully developed laminar flow in 

microtubes are investigated. Novel analytical models are developed to predict friction 

factor and pressure drop in corrugated rouglmess microtubes for continuum flow and slip 

flow. The developed model for slip flow illustrates the coupled effects between velocity 

slip and corrugated roughness. 

The Poiseuille number depends on the relative roughness of the walls of the 

microchannels also in laminar region and the relative roughness cannot be neglected for 

microchannels in the laminar region. 

The Poiseuille number increases not only as the roughness height increases but also as 

the roughness spacing decreases. 

The presented simple models for circumferential and longitudinal com1gated 

roughness in this chapter may be used to approximately estimate roughness and velocity 

slip effects for the design and application of microtubes. 
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Chapter 7 

Slip Flow Heat Transfer in Annular Microchannels 

with Constant Heat Flux 

7.1 Introduction 

Slip flow heat transfer in circular tubes was investigated by Sparrow and Lin [129], 

Barron et al. [130], Ameel et al. [51] , Larrode et al. [131], and Simek and 

Hadjiconstantinou [132]. Yu and Ameel [133 , 134], Tung and Bayazitoglu [135] and 

Renk:sizbulut et al. [117] studied slip flow heat transfer in rectangular microchannels. In 

these analyses both uniform wall temperature and uniform wall heat flux boundary 

conditions were considered. Convection heat transfer in annular macrochannels has been 

extensively investigated by numerical and analytical methods over the years [ l 06]. 

However, no attempt has been made for solving the same problem in microchannel . 

With the development of microscale thermal fluid systems, there is a need to investigate 

slip flow heat transfer in annular microchannels. In particular such a model is useful as it 

contains both the tube and channel as special limits. 

7.2 Theoretical Analysis 

It is necessary to first examine the velocity problem since the heat transfer analys is 

requires knowing velocity distribution . A schematic diagram of the annular duct section 
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is provided in Figure 7.1. When the microchannels are long enough (L/Dh >> 1) and 

Reynolds number is relatively low, the momentum equation reduces to the form 

Jl(d
2

u + .!_ du J = dp 
dr 2 r dr dx 

(7. 1) 

The velocity distribution must satisfy the slip boundary condition at the walls. The local 

slip velocity is proportional to the local velocity gradient normal to the wall . The 

corresponding slip boundary conditions are therefore 

u = A2- crdu 
cr dr 

u = -A 2- cr du 
cr dr 

at r = b 

at r =a 

(7.2) 

(7.3) 

The characteristic length scale in the present analysis is defined as the hydraulic diameter, 

such that 

A A. 
Kn = - = ---..,.-_..,.. 

Dh 2(a-b) 
(7.4) 

A solution of these equations yields 

a 2 dp 
u=-- -

4f-L dx 

2 
c(l - &2 { 1+4 

2- cr Kn)[(t-&)2- cr 2Kn - ln ~] 
r ( )2- cr \ cr cr a 1-- + 4 1- & --Kn - ___ _:.___ ____ ...:...::::. _ ______ ---=. 

a2 
cr ( )2-cr 1- & 

2 
--2Kn - & ln & 

CT 

(7.5) 
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where r = bla. The mean velocity is found by integration ofEq. (7.5) across the section of 

the duct: 

1 f 1 I' u =- u dA = ( 1 1 ) u2Trrdr 
A Tra--b -

a 2 dp 
=---

8Jt dx 

{ )

? 

( 
, 2-o- -

c 1 - c- 1 + 4--Kn 

1+ £ 2 +8(£ 2 -£+1)
2

-o- Kn + a-
a- ( ' )2-o-c ln &-2 1-£- - - Kn 

0" 

(7.6) 

With the velocity solution, we may now consider the heat transfer problem. 

7.2.1 Case (i) uniform wall heat flux on the inner wall , adiabatic on 

the outer wall (qi = q, qo = 0) 

A schematic diagram of the annular tube cross section is pictured in Figure 7. 1. The 

starting point of the analysis is the law of conservation of energy. For fully developed 

laminar flow, the energy equation takes the form 

(7 .7) 

For thermally fully developed flow with uniform wall heat flux, aT/Ox. = dT/dx IS a 

constant. From an energy balance on a length of duct dx, it follows that 

(7 .8) 

Solving for dT/dx and substituting into Eq. (7.7) gives 
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a 

Figure 7.1 A concentric circular annular duct with uniform wall 
heat flux on the inner wall, adiabatic on the outer wall. 

(7.9) 

Due to effect of rarefaction, there is a temperature jump between the wall surface 

temperature Tw and the contiguous gas temperature T. The appropriate boundary 

conditions are 

dT =O 
dr 

at r =a 

T T 
- 2- (J" T 2y A dT 

- ---------
IV (J" T r + 1 Pr dr 

(7.1 0) 

at r = b (7 .11) 

m which CJr represents a thermal accommodation coefficient measunng the extent to 

which the energies of molecules impinging on a surface are affected by contact with the 

surface. CJr is usually between 0.32 and 1 [102] and close to unity for typical engineering 

surfaces, but it may reduce to the order of 10-1 for especially clean surfaces. Pr and y 
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denote the Prandtl number and specific heat ratio respectively. With these boundary 

conditions, the temperature distribution can be obtained. In order to determine the local 

heat transfer coefficient and Nusselt number, the bulk temperature Tb is needed and may 

be obtained as follows 

[21rruTdr 
Tb =...:.:.__ __ _ 

f2m-udr 
(7. 12) 

After integration we can obtain the Nusselt number as 

Nu;; = k(T - T) 
w b 

(7.13) 

The solution requires many pages to show the complete Nusselt number expression. It is 

very space consuming and therefore must be omitted here. In the limit of Kn----tO , Eq. 

(7.13) reduce to its continuum flow solution: 

Nu . = 144(c - t)(c
2 

- lY[c
2

lnE -E
1 

+ ln c+ lY 

" [45& 9 - 234& 7 + 432& 5 -342& 3 +99&+72c(lncr +(33& 9 - 108&5 - 144&
3 

+2 19cXln cY] 

+ (-76& 9 + 184& 7 + 1 08& 5 
- 464& 3 + 248£ )ln E 

(7 .14) 

Assuming cr = 1, crT = 1, Pr=O. 7 1, y= 1.4, we can obtain the relationship of Nu and Kn. 

Figure 7.2 shows the variation of Nusselt numbers for uniform wall heat flux on the inner 

wall, adiabatic on the outer wall for annular ducts, where the Nusselt number data have 

been normalized with the continuum flow usselt number. It i seen that the Nu/Nuc 
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values decrease as the Knudsen number increases for the same radii ratio. The Nu/Nuc 

values also decrease with a decrease of c: for the same Kn. The fully developed Nus elt 

numbers for different Knudsen numbers are presented in Table 7. 1. It is noted that Eq. 

(7.13) reduces to its con·esponding continuum flow results [106] in the limit of Kn---+0. 

0.8 

u 
-:::,= 

~ 0.6 ::;-
z 

0.4 

0.2 L..._ _ __L_ _ __L _ _J _ _ J.._ _ _J_ _ ___...L __ J.__-'-----'--_J 

0 0.02 0.04 0.06 0.08 0.1 

A. 
Kn=2(a-b) 

Figure 7.2 Variation of Nusselt number for uniform wall heat flux on the 
inner wall, adiabatic on the outer wall. 
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Table 7.1 Fully developed Nusselt numbers (i) for different Knudsen numbers. 

bla NuKn =0 Nu Kn ·=0.01 Nu Kn.=0.04 Nu Kn .=0.07 NuKn =0.1 
0 00 00 00 00 00 

0.001 337.04414 51.588 19 14.55661 8.47398 5.97672 
0.01 54.01669 28.69024 11 .87604 7.48470 5.46457 
0.02 32.705 12 21.33320 10.39371 6.86479 5.12490 
0.04 20.50925 15.38538 8.75035 6.10532 4.68769 
0.05 17.8 11 28 13 .82053 8.22319 5.84363 4.53139 
0.06 15.93349 12.66667 7.8026 1 5.62800 4.40034 
0.08 13.46806 11.06362 7.1 6737 5.29021 4.19083 
0.10 11.90578 9.99206 6.70573 5.03512 4.02914 
0.15 9.68703 8.3899 1 5.95260 4.60069 3.74676 
0.20 8.49892 7.49106 5.49354 4 .32437 3.56254 
0.25 7.75347 6.91204 5.18291 4 .13239 3.43250 
0.30 7.241 15 6.50739 4.95876 3.99143 3.33602 
0.40 6.58330 5.98007 4.65823 3.79954 3.20353 
0.50 6. 18102 5.65372 4.46803 3.67676 3.11830 
0.60 5.91 171 5.43397 4.33869 3.59301 3.060 18 
0.70 5.72036 5.27750 4.2463 1 3.53339 3.01894 
0.80 5.57849 5.16183 4. 17839 3.49089 2.98868 
0.90 5.46988 5.10665 4.12284 3.451 18 2.95475 

7.2.2 Case (ii) uniform wall heat flux on the outer wall , adiabatic on 

the inner wall (qi = 0, qo = q) 

A schematic diagram of the annular tube cross section is given in Figure 7 .3. For fully 

developed laminar flow, the energy equation can be expressed as 

(7 .15) 

For thermally fully developed condition w ith uniform wall heat flux , from an energy 

balance on a length of duct dx, it follows 

198 



Figure 7.3 A concentric circular annular duct with uniform 
wall heat flux on the outer wall, adiabatic on the inner wall. 

Eliminating 8T/8x from Eqs. (7.15) and (7 . 16) and rearranging 

Due to effect of rarefaction, the appropriate bow1dary conditions are 

dT = O 
dr 

at r = b 

T - T =-2- (]" T 2y ~ dT 
w (]" T r + 1 Pr dr 

at r = a 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

With these boundary conditions, the temperature distribution can be obtained in the same 

manner as the previous case. 
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After integration the bulk temperature Tb using Eq. (7 .12) we can obtain the Nusselt 

number as 

(7.20) 

As before the solution requires many pages to show the complete Nusselt number 

expression. In the limit of Kn----+0, Eq. (7.20) reduces to its continuum flow solution: 

Nu = 144(&-1X&
2 

-1Y[&
2

ln&- &
2 

+ ln& + lY 

oo [-99&8 +342& 6 -432& 4 +234& 2 - 45+72&8 (ln&)
3 

+ (- 219&8 + 144&6 +108&
4 

-33Jln &Y] 

+(248& 8 -464& 6 +108& 4 +184& 2 -76)ln& 

(7 .21) 

Moreover, the limit of Eq. (7.20) which conesponds to a circular tube for c----+0 is [ 129]: 

Nu = q oD h = 48 
oo k(T - T ) ( ) 2 

'" 
6 11+128 2

- 0" Kn+384 2
- 0" Kn 

0" 0" + 48 2- 0" r ...31__ Kn 

( 

2 - 0" )
2 

O"r r+ 1 Pr 
1+8--Kn 

0" 

(7.22) 

Assuming cr = 1, crT = l , Pr=0.71 , y=1.4, we can obtain the relationship of Nu and Kn. 

Figure 7.4 shows the variation of Nusselt numbers for uniform wall heat flux on the outer 

wall, adiabatic on the inner wall for annular ducts. It is seen that the Nu/Nuc values 

decrease as the Knudsen number increases for the same radii ratio. The Nu/Nuc values 

increase with a decrease of c for the same Kn. The fully developed Nus elt numbers for 
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different Knudsen numbers are demonstrated in Table 7.2. It is seen that Eq. (7.20) 

reduces to its corresponding continuum flow results [ l 06] in the limi t of Kn-tO. 
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Figure 7.4 Variation of Nusselt number for uniform wall heat flux on the 
outer wall, adiabatic on the inner wall. 
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Table 7.2 Fully developed N usselt numbers (ii) for different Knudsen numbers. 

b/a Nu Kn·=o Nu Kn·=O.Ol Nu Kn·=0.04 Nu Kn·=0.07 Nu Kn·=O.l 
0 4.36364 4.22916 3.76201 3.31123 2.92359 

0.001 4.58657 4.27301 3.76998 3.31379 2.92445 
0.01 4.69234 4.4 1098 3.81332 3.32884 2.92923 
0.02 4.73424 4.46555 3.83847 3.33786 2.93144 
0.04 4.77803 4.51708 3.86441 3.34621 2.93172 
0.05 4.79 198 4.53214 3.87177 3.34796 2.93083 
0.06 4.80323 4.54373 3.87711 3.34882 2.92957 
0.08 4.82070 4.56063 3.88403 3.34887 2.92642 
0.10 4.8342 1 4.57269 3.88802 3.34770 2.92290 
0.15 4.86026 4.59354 3.89256 3.34296 2.91414 
0.20 4.88259 4.60981 3.89496 3.33840 2.90669 
0.25 4.90475 4.62560 3.89787 3.33524 2.90100 
0.30 4.9280 1 4.64233 3.90215 3.33379 2.89707 
0.40 4 .97917 4.68022 3.91551 3.33583 2.89394 
0.50 5.03653 4.72413 3.93480 3.34352 2.89597 
0.60 5.09922 4.77322 3.95897 3.35566 2.90194 
0.70 5.166 18 4.82649 3.98695 3.37 121 2.91092 
0.80 5.23654 4.88378 4.01949 3.38944 2.92227 
0.90 5.30955 4.94356 4.05602 3.40928 2.93510 

7.2.3 Case (iii) uniform wall heat flux on both walls (qi '# 0, q0 '# 0) 

A schematic diagram of the annular tube cross section is pictured in Figure 7.5. For 

fully developed laminar flow, the energy equation may be written as 

(7.23) 

The boundary conditions are 

r = b (7.24) 
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Figure 7.5 A concentric circular annular duct with uniform 
wall heat flux on both walls. 

r=a (7.25) 

As the boundary conditions are nonhomogeneous, solutions for these boundary 

conditions can be obtained by the principle of superposition once the solutions for each 

boundary condition are derived. Considering the problem as two components ( 1 and 2): 

Problem 1 

(7.26) 

The boundary conditions are: 

r = b (7 .27) 

r=a (7 .28) 
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Problem 2 

fX u aT2 = !:._~(r aT2 ) 

p ax r ar ar (7 .29) 

The boundary conditions are : 

r = b (7.30) 

r = a (7.31) 

Due to effect of rarefaction, there is a temperature jump between the wall surface 

temperature Tw and the contiguous ga temperature T. In mathematical terms, the 

boundary conditions are as follows: 

T. - T - 2 - a-r 2 r A. d~ 
I wil - (}" T r + 1 Pr dr 

at r = b (7.32) 

T - T = 2 - a-r 2 r ~ dT2 
' wi? 
- - (}" T r + 1 Pr dr 

at r = b (7 .33) 

at r = a (7.34) 

T _ T = _ 2 - a-r 2 r ~ dT2 
2 wo2 (}" T r + l Pr dr 

at r =a (7.35) 

applying the principle of superposition 
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(7.36) 

(7.37) 

(7.38) 

(7 .39) 

The solutions of problems 1 and 2 have been correspondingly obtained from the above 

cases (i, ii), therefore superposition of these solutions is the solution of original problem. 

Nu; and Nu0 are evaluated at the inner and outer walls respectively. For convenience, we 

may define two parameters c;, c0 

(7.40) 

q;Dh 
Nu . = ( ) = Nu .£ . 

I k T . - T II I 
WI b 

(7 .41) 

(7.42) 

(7.43) 

The solution for Nu; and Nu0 are quite involved. The program Maple was used to a i t 

in the computation. It is quite space consuming and therefore mu t be omitted here. 

However, they are available from the author upon request. 
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Moreover, when q;=q0 , the limit of Eqs. (7.41) and (7.43) which corresponds to a 

parallel-plate channel for £-1 is [ 136]: 

Nu = Nu = qD, = 140 

IV b 17 + 336 2 - a Kn + 1680 2 - a Kn 
I 0 k(T - T ) ( )2 

a a + 
140 

2- a r __3r_ Kn 

( 
2-a )

2 
a r y+ l Pr 

0 
:j-

z -,_ 
::::l 
z 

1+12--Kn 
a 
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Fi~ure 7.6 Variation of N u; for uniform wall heat flux on both walls. 
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Figure 7.7 Effects of q/q0 for Nui for uniform wall heat flux on both walls. 
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Figure 7.8 Variation of Nuo for uniform wall heat flux on both walls. 

207 



---------- ---

0.8 

8 0.6 
::I 
z -o 
::I 
z 

0.4 

0.2 

E=0.5 

---+-- q /qo=1 

-~-- q /qo=2 

- ----o--- qJqo=3 

- - - - q/ qo=4 

0 L__J_ _ _L_~--~--L-~--L--~--L-~ 

0 0.02 0.04 

A 
Kn-2(a-b) 

0.06 0.08 0.1 

Figure 7.9 Effects of q;/q0 for Nu0 for uniform wall heat flux on both walls. 

Assuming cr = 1, crr = L P r=0.7 l , y= l.4, we can obtain the re lationship of Nu and Kn. 

Figure 7.6 shows the variation of Nui for uniform wall heat flux on both walls for annular 

ducts . It is seen that the Nu/ Nuic values decrease as the Knudsen number increases for the 

same t: and q/q0 . The Nu/ Nuic values increase with an increase of t: for the same Kn and 

q/q0 . Figure 7.7 demonstrates the effects of q;/q0 for Nui for uniform wall heat flux on 

both walls for annular ducts. The Nu/ Nuic values increase with an increase of q/ qo for the 

same Kn and c. 
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Figure 7.8 shows the variation of Nu0 for uniform wall heat flux on both walls for 

annular ducts. It is seen that the Nur/Nuac values decrease as the Knudsen number 

increases for the same c: and q/ q0 . The Nur/Nuac values increase with a decrease of c for 

the same Kn and q/ q0 . Figure 7.9 illustrates the effects of q/ q0 for Nu0 for uniform wall 

heat flux on both walls for annular ducts. The Nur/Nuac value decrease with an increa e 

of q/q0 for the same Kn and c: . 

Now, we consider two special cases of specified constant wall heat fluxes in order to 

compare with the available continuum flow results in the open literature [ 1 06]. Two 

special cases of specified constant wall heat fluxes are (A) constant and equal axial heat 

fluxes specified on both walls such that at any axial location the peripheral wall 

temperatures are constant but different at the inner and outer wall ; (B) constant but 

different wall heat fluxes specified on both walls such that at any axial location the 

peripheral wall temperatures at the inner and outer walls are constant and equal. ote that 

the heat flux is specified as positive if the heat transfer is from the wall to the fluid . The 

fully developed Nusselt numbers for both these cases are presented in Tables 7.3-7 .6. It is 

noted thatEqs. (7.41 ) and (7.43) reduce to its conesponding continuum flow result [106] 

in the limit of Kn-+0. 
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Table 7.3 Fully developed Nusselt numbers at the inner walls (iii)( A) for different Kn. 

bla Nu Kn =0 Nu Kn ·=0.01 Nu Kn =0.04 Nu Kn .=0.07 Nu Kn.=O.l 
0 0 0 0 0 0 

0.000 1 -7.222 -7 .775 -12.753 -36.118 43.424 
0.001 -7.507 -8 .045 - 13 .262 -40.165 38.867 
0.01 -8.912 -9.826 -17.639 -133 .195 23.535 
0.02 -10.270 - 11.593 -23.670 161.919 17.945 
0.04 -13.269 - 15.695 -48.714 36.963 13.153 
0.05 -15.055 -18.300 -85.684 28.059 11.847 
0.06 -17. 128 -21.500 -270.336 23.046 10.87 1 
0.08 -22.569 -30.94 1 97.476 17.540 9.494 
0. 10 -3 1.036 -49.60 1 44.947 14.545 8.558 
0. 15 - 128.740 228.507 21.509 10.804 7.129 
0.20 88.7 12 42.656 15.302 8.999 6.307 
0.25 37.359 25.680 12.394 7.922 5.765 
0.30 25.166 19.267 10.695 7.201 5.378 
0.40 16.555 13.786 8.779 6.290 4.860 
0.50 13. 11 1 11.316 7.720 5.734 4.525 
0.60 11.248 9.905 7.045 5.358 4.291 
0.70 10.077 8.989 6.576 5.087 4.118 
0.80 9.272 8.348 6.229 4 .881 3.984 
0.90 8.684 7.867 5.960 4 .7 16 3.875 
1.00 8.235 7.50 1 5.755 4 .590 3.791 

Table 7.4 Fully developed N usselt numbers at the inner walls (iii)(B) for different Kn. 

bla NuKn =0 Nu Kn =0.01 Nu Kn =0.04 Nu Kn =0.07 Nu Kn =0. 1 q/qo 
0 00 00 00 00 00 00 

0.0001 405 1.526 59.989 15. 159 8.675 6.077 847.448 
0.001 563.70 1 55.17 1 14 .829 8.565 6.021 114.141 
0.01 9 1.097 37.065 13.144 7.970 5.7 18 17.348 
0.02 55.320 29.525 12.094 7.573 5.509 10.236 
0.04 34.772 22.595 10.804 7.054 5.230 6.206 
0.05 30.209 20.627 10.357 6.866 5.127 5.319 
0.06 27.026 19.13 1 9.988 6.706 5.038 4.703 
0.08 22.833 16.988 9.406 6.447 4.893 3.893 
0. 10 20. 162 15.505 8.962 6.243 4.777 3.379 
0.15 16.334 13.204 8.196 5.878 4.567 2.642 
0.20 14.253 11.853 7.696 5.630 4.421 2.240 
0.25 12.924 10.953 7.338 5.448 4.3 14 1.98 1 
0.30 1 1.993 10.302 7.067 5.307 4.229 1.798 
0.40 10.764 9.4 18 6.680 5.102 4.106 1.55 1 
0.50 9.979 8.837 6.4 13 4.957 4 .018 1.389 
0.60 9.429 8.423 6.2 16 4.849 3.951 1.272 
0.70 9.020 8. 111 6.064 4.764 3.899 1. 182 
0.80 8.70 1 7.864 5.941 4.695 3.856 1.110 
0.90 8.446 7.665 5.850 4.638 3.820 1.050 
1.00 8.235 7.50 1 5.755 4.590 3.791 1.000 
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Table 7.5 Fully developed Nusselt numbers at the outer walls (iii)(A) for different Kn. 

bla NuKn =0 NuKn =0.01 Nu Kn =0.04 Nu Kn.=0.07 NuKn =0.1 
0 4.364 4.229 3.762 3.31 1 2.924 

0.0001 4.526 4.235 3.763 3.312 2.924 
0.001 4.589 4.276 3.772 3.315 2.926 
0.0 1 4.721 4.438 3.834 3.345 2.941 
0.02 4.792 4.519 3.880 3.369 2.956 
0.04 4.894 4.625 3.947 3.409 2.980 
0.05 4.937 4.666 3.974 3.426 2.991 
0.06 4.977 4.705 4.000 3.442 3.001 
0.08 5.052 4.774 4.047 3.472 3.021 
0.10 5.122 4.839 4.090 3.500 3.040 
0.15 5.288 4.988 4.190 3.566 3.085 
0.20 5.449 5.130 4.284 3.630 3.129 
0.25 5.608 5.270 4.377 3.692 3.172 
0.30 5.767 5.409 4.468 3.753 3.215 
0.40 6.089 5.689 4.649 3.875 3.300 
0.50 6.419 5.973 4.831 3.995 3.385 
0.60 6.759 6.263 5.013 4. 115 3.468 
0.70 7.109 6.561 5.197 4.235 3.550 
0.80 7.472 6.864 5.380 4.354 3.632 
0.90 7.847 7. 188 5.571 4.472 3.7 12 
1.00 8.235 7.501 5.755 4.590 3.791 

Table 7.6 Fully developed Nusselt numbers at the outer walls (iii)(B) for different Kn. 

bla NuKn =0 Nu Kn =0.0 1 Nu Kn =0 .04 Nu Kn = 0.07 Nu Kn =O.l q/qo 
0 4.364 4.229 3.762 3.311 2.924 00 

0.0001 4.781 4.468 3.945 3.450 3.030 847.448 
0.001 4.939 4.595 4.019 3.503 3.070 114.141 
0.01 5.251 4.926 4.205 3.624 3.154 17.348 
0.02 5.404 5.084 4 .307 3.690 3.199 10.236 
0.04 5.603 5.279 4.438 3.775 3.257 6.206 
0.05 5.679 5.351 4.488 3.807 3.279 5.319 
0.06 5.747 5.415 4 .531 3.836 3.298 4.703 
0.08 5.865 5.523 4.604 3.884 3.331 3.893 
0.10 5.967 5.6 16 4.666 3.924 3.359 3.379 
0.15 6.182 5.807 4 .790 4.005 3.413 2.642 
0.20 6.363 5.966 4 .891 4.070 3.456 2.240 
0.25 6.524 6.104 4.976 4.124 3.492 1.981 
0.30 6.672 6.230 5.052 4.171 3.524 1.798 
0.40 6.941 6.455 5.185 4.253 3.577 1.551 
0.50 7.185 6.657 5.300 4.323 3.622 1.389 
0.60 7.414 6.844 5.405 4.386 3.662 1.272 
0.70 7.631 7.020 5.50 1 4.442 3.698 1.182 
0.80 7.840 7.185 5.59 1 4.495 3.731 l.l10 
0.90 8.040 7.348 5.676 4.545 3.762 1.050 
1.00 8.235 7.501 5.755 4.590 3.79 1 1.000 
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7.3 Results and Discussion 

Due to the temperature jump boundary condition, the bulk gas temperature of slip flow 

is lower than the gas temperature of continuum flow. The temperature jump is equivalent 

to a thermal contact resistance between the wall and gas, while the slip velocity acts to 

decrease the thermal contact resistance. The velocity slip and temperature jump bring 

about opposite effects on the temperature difference between the gas and the wall; the 

velocity slip tends to decrease the temperature difference between the gas and the wall, 

while the temperature jump tends to increase the difference. It is clear that the effects of 

velocity slip would tend to increase the Nusselt number, while the temperature jump 

would act to decrease the Nusselt number. 

Larrode et al. [131] studied slip flow heat transfer in circular tubes and Yu and Ameel 

[133, 134] investigated slip flow heat transfer in rectangular microchannels. They 

proposed that heat transfer could be increased or decreased compared to continuum flow 

conditions depending on fJ and Knudsen number. Where p is defined as 

2-CYr 2r 
------

fJ= 
CYr r + 1 Pr 

2-CY 
(7.45) 

and includes all of the parameters associated with the gas and wall interaction. 

Actually, only when fJ and Knudsen number are very small (such as (3<0.3 for parallel 

plates and (3<0.8 for circular tubes) does it appear possible for the effects of velocity slip 

to win out over the opposite effects of the temperature jump and thus make a Nusselt 
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number greater than the continuum flow value. Or, when the tangential momentum 

accommodation coefficient is significantly smaller than thermal accommodation 

coefficient, the Nusselt number will be greater than the continuum flow value. However, 

for practical engineering applications, it is extremely difficult to realize and heat tran fer 

is always reduced when slip flow occurs. 

For small /3, the velocity slip dominates and heat transfer is enhanced. At large /3, the 

temperature jump dominates and heat transfer is weakened. When the temperature jump 

at the wall is neglected (/3=0), in other words, only the velocity slip at the wall i 

considered, the Nusselt number increases with an increase of Knudsen numbers. The 

same results were found by several researchers [51 , 129-133]. Ignoring temperature jump 

will lead to significant overprediction of heat transfer. 

7.4 Summary 

Slip flow heat transfer m annular microchannels with constant heat flux under 

hydrodynamically and thermally fully developed condition is investigated. The analysis 

is carried out for both uniform wall heat flux on one wall, adiabatic on the other wall, and 

uniform wall heat flux on both walls. The results indicate that the slip flow Nusselt 

numbers are lower than those for continuum flow and decrease with an increase in 

Knudsen number for practical engineering applications. Only when f3 are very mall is it 

possible for the effects of velocity slip to override the opposite effects of the temperature 

jump and thus make a Nusselt number greater than the continuum flow value. The effects 
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of Knudsen number, radii ratio and heat flux ratio on heat transfer characteristics are 

discussed respectively. 
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8.1 Summary 

Chapter 8 

Summary 

Analytical models have been developed to provide a means of predicting flow 

characteristics, such as volumetric flow rate or average velocity, friction factor, and 

pressure distribution for fluids operating in microchannels. The developed model 

address: (i) fully developed slip flow m non-circular microchannels, (ii) 

hydrodynamically developing slip flow m non-circular microchannels (iii) 

compressibility effects, (iv) surface roughness effects, and (v) slip flow heat transfer in 

annular microchannels. The studies help understand the behavior of fluids in 

microchannels. The simple models developed are general and robust, and may be used by 

the research community for the practical engineering design of microchannel flow 

systems. 

An analytical solution of Poiseuille number was first obtained using separation of 

variables in elliptic cylinder coordinates. Fully developed slip flow in non-circular 

microchannels has been investigated and a model was proposed to predict the friction 

factor Reynolds product jRe for slip flow in most non-circular microchannels. The 

developed model took advantage of the selection of a more appropriate characteristic 

length scale square root of the cross-sectional flow area to develop a simple model. The 
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accuracy of the developed model was found to be within l 0 percent, with most data for 

practical configurations within 5 percent. 

Compres ibility effects on slip flow m non-circular microchannels have been 

examined and simple models were proposed to predict the pressure distribution and mass 

flow rate for slip flow in most non-circular microchannels. 

Hydrodynamically developing slip flow in non-circular microchannels has been 

investigated and a model was proposed to predict the friction factor Reynolds product j Re 

for slip flow in most non-circular microchannels. The developed model con·ectly 

approaches the slip flow asymptote for developing flows and fully developed flows . It i 

found that the linearization method to solve the avier-Stokes equations is an accurate 

approximation for developing slip flows. The effects of the Knudsen number on the 

hydrodynamic entrance length for circular tubes and parallel plate have also been 

examined and simple models were developed to predict entrance length for circular tube 

and parallel plates. 

The developed simple models may be used to predict results for non-circular 

microducts for which no solutions or tabulated data exist such as rectangular, annular, 

elliptical, trapezoidal, double-trapezoidal, triangular, rhombic, hexagonal, octagonal 

circular segment microchannels. The developed models are simple and founded on theory, 

and the accuracy of the developed models ha been examined with ome experimental 

measurements and numerical analysis. 

The effect of con-ugated surface roughness on fully developed laminar flow in 

microtubes were investigated. ovel analytical models were developed to predict friction 
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factor and pressure drop in corrugated roughness microtubes for continuum flow and slip 

flow. The developed model for slip flow illustrates the coupled effects between velocity 

slip and corrugated roughness. The Poiseuille number depends on the relative roughness 

of the walls of the microchannels also in laminar region and the relative roughness cannot 

be neglected for microchannels in the laminar region. The Poiseuille number increases 

not only as the relative roughness increases but also as the roughness spacing decrease . 

Slip flow heat transfer in annular microchannels has been examined. The effects of 

Knudsen number, radii ratio and heat flux ratio on heat transfer characteristics were 

discussed. The results indicate that the slip flow Nusselt numbers are lower than those for 

continuum flow and decrease with an increase in Knudsen number for practical 

engineering applications. 

8.2 Future Research 

The developed models could be extended to the early transition regime by employing 

the second-order slip boundary conditions. The second-order models may improve 

predictions for high Knudsen numbers. 

Further work may include numerical investigation on slip flow in short non-circular 

microchanne ls. Velocity s lip is very large near the channel entrance due to the existence 

of large gradients. 

Another area of future study involves slip flow heat transfer in non-circular ducts 

under constant wall temperature and heat flux conditions as similar numerical works are 

only confined to simple geometries. Heat transfer in microflows has important 
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~--------- ----------------------- ---- -----

engineering applications. In particular the entrance region should be investigated, where 

the major heat transfer occurs in short channels that are frequently encountered in various 

types of microfluidic devices found in MEMS. 

Due to the lack of molecular-based theory of liquids, a nondimensional number similar 

to the Knudsen number is not commonly used. In liquid flows, slip is detectable only 

when the characteristic dimension is approximately 1 f.lm. Slip in liquid is on the order 

of 10 to 100 nm. Furthermore, there is no slip if the walls are rough. Other important 

influences on slip are the chemical characteristics of the wall and liquid, and residual 

gases effects. The physics of liquid slip is complicated and not well understood. If a 

nondimensional number similar to the Knudsen number is defined for liquid slip flow, the 

present developed models can be utilized. 

Benchmark studies, which carefully examine pressure drop, friction factor, entrance 

and exit effects, and roughness effects for liquid flow over a wider Reynolds number 

range in microchannels are strongly needed. These studies will determine if the 

conventional theory applies or if there needs to be new fundamental flow theories 

formulated especially for liquid flow in microchannels. 
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