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Abstract 

Extensible Markup Language (XML) is a simple and flexible text format derived 

from Standard Generalized Markup Language (SGML) [1]. It has been widely ac­

cepted as a crucial component of many information retrieval related applications, 

such as XML databases, web services, etc. One of the reasons for its wide acceptance 

is its customized format during data transmission or storage. Classification is an 

important data mining task that aims to assign unknown objects to classes that best 

characterize them. In this thesis, we propose a method to classify XML documents 

under the assumption that they do not have a common schema that may or may not 

be available, which is closer to the real cases. Our method is similarity-based. Its 

main characteristic is its way to handle the roles played by texts and the structural 

information. Unlike most existing methods, we use a bottom-up approach, i.e., we 

start from the text first, and then embed the structural information. This is based 

on the observation that in XML documents with diversified tag structures, the most 

informative information is carried by the terms in the texts. Our experiments show 

that this strategy can achieve a better performance than the existing methods for 

documents from sources that exhibit heterogeneous structures. 
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Chapter 1 

Introduction 

In the current information age, text file has become an important information source. 

Text classification, which aims to assign unknown objects into predefined classes that 

characterize the objects, gains more and more focus. Although text classification 

dates back to the 1960s, automated text classification began to attract attention 

around two decades ago. Until the late 1980s, the mainstream of the applicable 

application on text classification is based on knowledge engineering (KE) [17] , which 

makes prediction based on a set of rules set manually by the experts in this field 

in advance. Since the 1990s, text classification has been an active area in the data 

mining field [15] [17] [27]. A machine learning method is often used to automatically 

build a classifier by learning the information in the training samples. The advantage 

of this method is the saving on the domain experts' manual effort for one particular 

classifier system as well as the comparable prediction accuracy to the previous KE 

based system. 

Semi-structured documents is a type of text document, which usually follows some 
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standards, such as HTML, email, and XML (Extensible Markup Language) [1]. Unlike 

the first two document formats, the standard of XML is more open and flexible. It 

allows the users to define the structures themselves to some degree. This openness 

and flexibility of XML provide convenience to the users. Nonetheless, it introduces 

some uncertainties of the structures at the same time. 

Like the task of text classification (TC, a.k.a text categorization, or topic spot­

ting [17]), semi-structured document classification is used to predict the class label of 

an unlabeled text document based on learning from a group of labeled training sam­

ples. With the rising number of semi-structured documents, it is increasingly impor­

tant to support quick and effective information processing, such as retrieval, search 

and filtering. Among other things, grouping them into correct categories first will 

greatly facilitate such a process. For instance, at news websites there might be several 

categories of news in XML format, such as Business, Sports, Health, Tech &Science, 

and Entertainment. Before being published, it is desirable to automatically classify 

the high volume of news into their respective categories. 

There are several challenges associated with automated text categorization: an 

appropriate document representation, an appropriate classifier function to obtain 

good generalization, avoiding over-fitting and an appropriate dimensionality reduc­

tion method to handle algorithmic issues [7]. 

However, employing the conventional text classifiers directly on semi-structured 

document classification does not perform well because they are designed for non­

structured data [27]. A crucial issue for semi-structured document classification, 

though, is how to exploit their structures [5] [8] [9] [15] [20] [27] [29]. For HTML or email 

documents, this is relatively easy, since the tags appearing in these documents nor-
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mally follow some fixed standards. Users cannot add self-defined elements that are not 

defined in the standards. This enables the analysts to take advantages of the limited 

and predefined element tags to build highly accurate classifiers (13][18][19]. Unlike 

HTML or email, however, all the elements in XML documents can be predefined 

by the authors themselves via a DTD (Document Type Definition) file. During the 

learning process, if all the samples in the training set follow a common DTD, then the 

process of hypothesis formulation (i.e., classifiers) can be facilitated (8][9][15] . How­

ever, when the XML documents come from different sources, it is likely that they do 

not share a common DTD, and, furthermore, these DTDs are not even available. 

In this thesis, we propose a bottom-up scheme for the classification of XML 

documents that may come from different sources and can follow different DTDs. 

These documents have similar but not identical structures, such as elements, at­

tributes, and their relationships. We borrow the definition of "similar DTDs" from 

the homogeneity-hypothesis in [8], i.e., "similar DTDs carry similar structural in­

formation (documents are more or less of the same type), but that tags may have 

different names, some may be missing and some may be added". This assumption is 

closer to the real world data. To simplify the problem, in this thesis, every document 

belongs to one and only one class. Our method is similarity-based. It differs from 

the existing schemes in that it is based on a bottom-up approach, i.e., we start from 

the text first, and then embed the structural information. This is based on the obser­

vation that in XML documents with diversified tag structures, the most informative 

information is carried by the terms in the texts. Our experiments show that this 

strategy can achieve a better performance than existing methods for documents from 

sources that exhibit heterogeneous structures. 
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The rest of this thesis is organized as follows . In Chapter 2, we survey on re­

lated work. We cover text classification briefly focus more on the semi-document 

classification. In Chapter 3, we give the detail of our method. In Chapter 4, we 

present the experiments as well as the experimental results. In Chapter 5, we draw 

our conclusion. 
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Chapter 2 

Related work 

2.1 Text classificaton 

In [17), Sebastiani compares a group of state-of-the-art approaches to text classifi­

cation. He discusses in detail three problems: document representation, classifier 

construction and classifier evaluation. The conclusion is that constructing a data 

structure that can represent the document, and constructing a classifier that can be 

used to predict the class label of a document with high accuracy, are the key objective 

tasks in text classification. 

Document representation is a key point in the document mining task. The better 

the representation is adopted, the less information is lost, thus better results should 

be achieved. To represent a document, feature selection is usually required due to the 

high dimensionality of the text document. Yang and Pedersen evaluate 5 different ag­

gressive dimensionality reduction methods [26]. Rogati and Yang report a controlled 

study on a large number of filter feature selection methods for text classification [16]. 
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Dasgupta et al. discuss the feature selection methods for text classification in [7). 

Fragoudis et al. present their approach that deals with both the problems of instance 

selection as well as feature selection for reducing the amount and complexity of data 

in text classification [12). 

Classifier construction concerns how to choose the classifiers. Eyheramendy et al. 

empirically compare the performance of 4 probabilistic models for text classification[lO). 

They find that, in general, relaxing the "Naive Bayes" assumption in the 4 models 

does not change the performance of the classifier. Sebastiani gives a list of classifiers 

in detail. He also collects the published experimental results for some considerations 

on the comparative performance of the TC methods involved. There is no sufficient 

evidence showing which one is always the best classifier in different circumstances[17). 

"The experimental evaluation of a classifier usually measures its effectiveness 

(rather than its efficiency)" [17). In the binary classification, which is a task to 

predict whether a test document belongs to a predefined class or not , the precision 

and recall as well as the F1 measure are widely used to evaluate a classification sys­

tem [7)[10)[12). Generally, however, in the multi-class-single-label classification (i.e. , 

multiple class labels exist and every document belongs and only belongs to one class) , 

researchers provide an accuracy or error rate [14)[27)[29). 

2.2 Semi-structured text classification 

In the semi-structured document classification field, many researchers have proposed 

different classification methods to do the semi-structured documents classification 

task [5)[6)[8)[9)[14) 
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[15] [20] [21] [23] [25] [27] [29]. Most utilize the combination of the content and embedded 

structure [5] [8] [9] [15] [20] [25] [27] [29]. 

Some researchers utilize the limited and fixed structures in the current email or 

HTML standards [6][13]. However, this does not apply to classification on XML 

documents with different structures. Researchers propose different ways to utilize the 

structural information within the XML documents. 

Yi and Sundaresan describe a novel text classifier that can effectively cope with 

structured documents [27]. It is one of the earliest attempts to do semi-structured 

document classification with the consideration of the information included in the 

embedded structure as well as the textual information in the leaf nodes belonging 

to the XML documents. In their methods, to keep the information in the struc­

ture, firstly, a structured vector model is developed, which represents a document 

with a structured vector. The elements of the vector can either be terms or nested 

structured vectors. Secondly, the well known Bernoulli Document Generation Model 

is extended to a probabilistic document classification model for structured vectors. 

"This is the first classification system that feeds both textual and structural fea­

tures into a general statistical model in order to classify semi-structured documents" 

[27]. This method extends the Bernoulli Document Generation Model by filling in 

the information collected via counting the terms along the paths of a document. The 

documents belonging to a class do not have to conform to a specific schema. However, 

it makes a weaker assumption than the conventional classifier. Other than requiring 

independence for the entire set of terms of the document, it instead requires the as­

sumption to be held only in the structure nodes to which the terms belong. Moreover, 

it assumes that different levels of the paths in a document are independent of each 
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other. This classifier is also a document ranking classifier [17], i.e. to predict the class 

of an unlabeled document by ranking the posterior probability P( Cld) , where d is 

the given unlabeled document, C is the respective class. The class that maximizes 

the posterior probability is chosen as the class label. 

A method based on the frequent sub-structures contained in XML documents is 

proposed in [29]. This scheme, however, implicitly assumes that documents in the 

same class share sub-structures in common, while documents from different classes do 

not. Zaki and Aggarwal propose this rule based method by using frequent discrim­

inatory substructures within XML documents. The core part of this method is to 

construct the structural rules in order to perform the classification task. In the train­

ing phrase, the substructures that are closely associated with one certain class are to 

determined because they believe that "the presence of a particular kind of structural 

pattern in an XML document is related to its likelihood of belonging to a particular 

class" [29]. In order to do so, XMiner, which mines pertinent structures for multiple 

classes simultaneously, is extended from TreeMiner [28] . It accepts as input a list of 

minimum support thresholds for each class, and outputs a set of frequent rules for 

each class, respectively. In the process of mining the structures, a special vertical tree 

representation for fast support counting, scope list, is proposed, moreover, join oper­

ation, a special operation applying to scope list is also proposed to help to find the 

frequent sub-structures. Rule support and rule strengths are defined to measure the 

qualification of the rules. When the satisfied frequent substructures are found, based 

on them, rules that are less predictive will be removed. The qualified rules for every 

class will be sorted according to the strengths and support, respectively. Moreover, 

a default class will be determined so that, when no rule can cover an example tree, 
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the default class will be appointed to that document. But, the issue is that it is not 

easy to define the rule support and rule strengths when facing different data sets. In 

addition, this method is suitable for data sets that do have some special characteristic 

substructures in one class against any other classes. If the data sets do not have these 

substructures in each of the classes, or when this substructures are hard to be mined 

out, the classification performance will be affected. 

Denoyer and Gallinari present 2 papers on semi-structured/XML document classi­

fication/ categorization [8] [9]. Both of them model the XML document as a Bayesian 

Network (BN). It is assumed that the children nodes are only dependent on their 

parent nodes, respectively. It requires the assumption that the textual words are 

independently held in the structure node it belongs to, which is similar to the one 

in [27]. The information included in the XML document is divided into 3 parts: 

logical structure information, label information and the textual information. As the 

textual information held in one node is assumed to be independent, a leaf node that is 

made up of textual contents can be divided into several independent textual one-word 

nodes, all of which are the children nodes of the structural node that contains this 

leaf node. In the first part of the [8], it is assumed that all the XML documents share 

a common DTD so that all the parent-child relationships can be estimated from the 

training set, i.e., the probability of a child node given the known parent node can be 

estimated in advance. According to the characteristic of the BN model as well as the 

Baysian rule, the posterial probability P( Cld) can be estimated for a test document. 

The values for different classes will be ranked, and the highest one will be picked as 

the class label. 

In the second part of [8], the authors extend the method to the unknown DTD 
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XML document classification. That is, the XML documents involved do not necessar­

ily share a common DTD. In their method, all the node labels in the test document 

will be ignored, and it tries to fill in the node labels based on the structures of the 

test document as well as the training set. After the node labels have been filled, it 

can do the calculation as the first part does. However, this can lose the node label 

information and it is a time-consuming process. 

In [9], the first part is same as [8], however, in order to improve the discrimina­

tive abilities of the generative model, the authors employ the Fisher score for each 

document d and each class c, thus, a vector corresponding to the document represen­

tation in the Fisher space can be formed. Then the SVM (Support Vector Machine) 

classifier is used to do the binary classification. 

Bratko and Filipic investigate methods exploiting structural information in the 

semi-structured documents when doing the document classification by the Naive 

Bayes classifier [5]. The authors try different document modeling methods to estimate 

the posterior probability P(dic). Component tagging, which treats word occurrences 

in different document components as different features, is a common approach to 

model the semi-structured document. Another one is "component splitting", which 

is to train as many classifiers as there are structural components. The final clas­

sification is a combination of the results of all the classifiers. Bratko and Filipic 

also employ different component smoothing methods to solve the data sparseness 

and out-of-vocabulary (OOV) issues. The experiment shows that the conventional 

fiat Bag-of-Words representation for the text classification is outperformed on every 

single data set; this supports the argument that the utilization of the structural in­

formation in the semi-structured documents does help to improve the performance of 
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the document classification. 

Theobald et al. propose a methodology on how to automatically classify schema­

less XML data into a user-defined topic directory [20]. The normal ways to use only 

text terms and their frequencies as features for automatic classification of text docu­

ments often lead to unsatisfied results because of the noise and different styles of the 

document authors. The key lies in a more precise document characterization for semi­

structure data by exploiting its structure and annotation. The authors' main focus is 

on constructing appropriate feature spaces on which a classifier operates. The XML 

twigs and tag paths combined with text terms are studied as extended candidate fea­

tures. The Mutual Information (MI) between one particular candidate feature of the 

documents and one particular topic are computed based on the training set. Thus, 

the relevance of the candidate feature and the specific topic can be measured. As 

well, the top m features will be selected based on the MI values. The term frequency 

(tf) and the inverse document frequency (idf) statistics for candidate features will be 

computed and used as the weight of the features. The highest weighted features are 

those that are frequent in one document but infrequent across the corpus. Rather 

than using the tags and terms directly as a feature of an XML document, the WordNet 

thesaurus is employed as the ontological background to reduce the semantic ambigu­

ity of one word under different circumstances or same meaning conveyed by different 

words. When the feature space is generated, the SVM is chosen as the classifier. It 

is an innovative way to measure the relevance between a selected feature and a class 

in this work. However, the pattern or patterns selected for the candidate features are 

fixed beforehand, thus, the results can be greatly affected by the structures in the 

XML documents. Moreover, in the MI formula of this work, the binary value that 
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stands for the existance of the candidate feature cannot tell the quantitive difference 

of this candidate feature in different documents from different classes, when all of 

those documents contain that candidate feature . 

We believe that the bottom-up approach can reduce, to a certain level, the sen­

sitivity to the difference on the XML structures in the feature selection. In [22), 

we describe the basic idea and the advantages of bottom-up approach for classifying 

XML documents. 

Marteau et al. propose a model based on Bayesian classification for the semi­

structured data classification task [15). Their method is also an attempt to exploit the 

structural knowledge in the semi-structured document when doing the categorization. 

It is also a document ranking method similar to [8) [9) [27), which means the classifier 

is based on the probability of a test document in every predefined class, respectively. 

The class maximizing the probability will be chosen. The main task is to estimate 

the posterior probability P(dJc), where dis the test document and cis the candidate 

class label. The XML document is modeled as a DOM (Document Object Model) 

tree. There are several hypotheses requested: 1) the orderless occurrence of the sub­

trees (i.e., the occurrence order of the sub-trees is not important); 2) the conditional 

independence of the sibling sub-trees given the root node and the category; 3) the 

conditional independence of characteristics included in one leaf node. Particularly, it 

is proposed to set a weight for the node that has a textual element attached. The 

weight proposed can be the proportion of the cardinal of the vocabulary associated to 

the node for this candidate category and the size of the textual element attached to 

this node inside the test document. In other words, relatively, the more vocabulary 

a node associates with in one certain class, the more important this node is for this 
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particular class. Just as the authors state, "Thus, the weight associated to node n 

in document d is a kind of quality criteria that measures the vocabulary coverage of 

node n for document d" [15]. Their experimental result shows that the document 

structure plays an important role for the classification. Their model attains the same 

level accuracy as the SVM model applied on fiat text or split textual components, 

given an ad hoc heuristic independent from the categories. 

Xing et al. propose an algorithm for computing the edit distance between a 

document and schemas [24] and to classify the XML documents based on those edit 

distances [25]. Firstly, the task is to extract the schema from the XML documents. 

Actually, here, the authors assume that there exists a schema in a collection of XML 

documents, d1 , d2, ... , dn, such that those XML documents are document instances 

that can be generated by this schema. They also assume that XML documents from 

different classes have different schemas. An XML document will be represented in 

Vector Space Model as a ITI dimensional vector where ITI is the number of terms. jdj 

documents can form a IT! x jdj term-by-document matrix. By adopting the Latent 

Semantic Indexing (LSI) and Singular Value Decomposition (SVD) , the number of 

dimensions can be reduced. After them schemas are ready, the distance between an 

XML document and those m schemas will be computed to form an m dimensional 

vector < D 1, D2 , .. , Dm >, where Dk is the distance between this document and the 

schema of the class k (1 ::; k ::; m). Once each of the documents can be represented 

in a vector form, it is easy to input these vectors to a classifier and train the classifier. 

In their study, the distance between a document and a schema is top-down edit 

distance [24] and the classifier SVM is used. However, the assumption that there is a 

common schema that can be extracted from one class cannot always be guaranteed. 
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Kurt and Tozal propose a method to do the classification by exploiting the extra 

information included in the XSLT documents that are used to convert the correspond­

ing XML documents into HTML or other documents [14] . They argue that the use 

of XSLT presents an opportunity rather than a challenge to web document classifica­

tion. The framework consists of 3 modules: Preprocessor, Semi-structured Document 

Modeler and Classifier. The original XSLT documents are transferred into formatted 

XSLT stylesheets which can be used to transfer the original XML documents into the 

corresponding formatted XML documents. Then these formatted XML documents 

can be output to the structural modeler to generate the feature vectors for every XML 

document. After generating the vector representation of the XML documents in both 

the training set and the testing set, SVM is used as a classifier to do the classification 

task on those vectors. This method takes into account all the element names from the 

root to the innermost element by concatenating all of them with a specific character in 

the formatted XML documents. As well, in the processing of the structural modeler 

stage, each unique word or element is considered as a feature, whose frequency will be 

counted and filled in the corresponding position as the value for that attribute in the 

document vector. Similarly, the authors mention, "Although the structure is captured 

in a loose manner, (i.e., we do not capture ancestor hierarchy in a strict manner) , 

the complete document hierarchy is captured" [14]. Their experiment shows that, 

in general, XSLT classification yields considerably higher accuracy rates than both 

HTML and XML classification. XML classification performs slightly better than the 

HTML classification. However, the scheme makes use of the information contained 

in XSLT files that are not always available. Due to its dependency on the availability 

of XSLT files, this method's applicability is limited. 
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Co-training is a strategy for using unlabeled data which has two seperate and 

redundant views [23]. Wu [23] presents an algorithm of using Co-training with decision 

tree to handle the labeled - unlabeled problem of XML classification. The method 

reportedly can solve the problem that a large quantity of labeled samples is needed to 

learn accurately in the supervised learning. The intuition of the Co-training is that 

it may be easier for a learner to identify an example and this example may provide 

the useful information to the other learner. The basic idea behind the co-training 

framework is to exploit the compatibility between different views on an example. 

Predicate rewrite systems are used to generate sub-feature spaces for one feature 

space. Unlike the other Co-training in which the views generated are fixed and set 

up before the process starts, the predicate rewrite systems in this method can be 

easily modified to change the views generated. Nevertheless, this also needs human 

interference every time when classifying different data sets. Moreover, how to choose 

the predicate rewrite system is a key point and it is still an open question to generate 

conditionally independent views for an individual sample. This still needs more study. 
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Chapter 3 

Bottom-up approach 

3.1 Preparation 

3.1.1 Motivation 

A crucial observation in this thesis is that the contents in the leaf nodes of the XML 

documents constitute the main informative part in the document. Even though doc­

uments from different sources may follow different tag structures, and have different 

tag names, they are likely to have some important contents in common in the leaf 

nodes if they belong to the same classes. Examples are shown in Figure 3.1 and 

Figure 3.2, which are parts of two real XML files from the data set from [14] with the 

class label "automobile". These documents are from different web sites, and do not 

share the same DTD schema. 

From Figure 3.1, we can see that most of the information in the document is in the 

leaf nodes. E.g. "Isuzu Ascender", "4 Speed Automatic OD", "Automatic Transmis­

sion"... etc. Actually, they are informative enough to describe certain features inde-
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- <automobile> 
<m3Jlofacturer>Isuzu<!manuJacturer> 
<model>Isuru Ascender<lmodel> 
<year> 2005<1year> 

-<engine> 
<type>53L 8 Cylinder 300 hp Gas<ltype> 

</engine> 
<transmission>4 Speed Automatic OD</transmission> 

-<feature> 
<safety>ABS Brakes I Driver-Passenger airbags</saJety> 
<dm·e>RWD<'dm·e> 
<seat> 7</seat> 
<mpg>City: 15 Highway: 20</mpg> 
<pro>Alarm<lpro> 
<pro> Automatic Transmission<lpro> 
<pro> Base List Price Below Average*</pro> 
<pro>CD Changer<lpro> 
<pro>CD Player<lpro> 

Figure 3.1: XML document Example 1 

pendently. Here, even if there were no node labels included, this leaf node information 

would still be enough to do the classification as long as the boundaries that separate 

different classes are reasonably well defined. On the other hand, some leaf nodes do 

need their parental node labels to be informative, such as "< seat > 7 < /seat >" , 

"< mpg > City : 15 Highway : 20 < jmpg >". Without the node label "< seat>" , 

the word "7" itself is meaningless. It is also hard to understand what the "City: 15 

Highway: 20" means when the node label "< mpg >" is not included. We can see 

here, the tag of a node provides some extra scope information for their children. E.g.: 

"Isuzu" is the leaf child of the node with tag "<manufacturer>", which limits the 

scope of the meaning of "Isuzu" by stating that "Isuzu" is a "manufacturer". Further-

more, the parent node of "< manufacturer >" is "automobile" , which provides the 

further scope limitation that, more specifically, it is an "automobile manufacturer". 
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So, generally speaking, the tag of the parent node limits the semantic scope of their 

children, whether the child is the structural node or textural leaf node. 

- <car> 
<geuerator>Oxygen XMI. Editor</generator> 
<database>MySQL<idatabase> 
<id>l00012<iid> 
<modei>Ja.guar- XJS 3.2</model> 
<manufacturer web='ww\v.jagoar.com'>Jagoar</mannfactorer> 
<year>2004</year> 
<! -- fe5tures --> 

+ <feature><lfea.ture> 
+<feature><lfeature> 

<feature>Front fog lamps Twin trip computer </feature> 
<! -- interiors --> 

+ <ioterior><fmterior> 
<interior> Filled contoured bench rear seats<iinterior> 
<interior> Figured walnut veneer<fmterior> 
<interior> Leather steering wheel</ioterior> 

D111itted •••• 

<safety>Ultrasonic intrusion sensing security system<isafety> 
<safety>engine immobiliser</safety> 
<safety> Radio frequency remote control central locking </safety> 

-<power> 
<displacemeot>nla cc</displacemeot> 
<eugioe>32-valve, quad cam 3.21itre<leogioe> 
<installation>nla</iostallatioo> 
<acceleratioo>8.5</acceleratioo> 
<max-power>nla</max-powel'> 
<lorqoe>o'a<itorque> 
<max-speed>225</max-speed> 

</power> 
- <transmission> 

<type>S speed electronic</type> 
<ltraosmissioo> 

Figure 3.2: XML document Example 2 

In Figure 3.2, the main informative part is still in the content of the leaf nodes, such 

as "Fixed contoured bench rear seats", "Ultrasonic intrusion sensing security system", 

etc. There is also the information about the automobile manufacturer included in Ex-

ample 2, but, this time, the tag of the parent node of the node <manufacturer > is 

"car" , which is literally different from the "automobile" in Example 1. Note that both 
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documents are from the class of automobile but have very different structures, even 

for similar information. For example, both contain information about "transmission", 

but, in Example 1, there is no "<type >" node under "<transmission>" as in Ex­

ample 2. However, in the leaf nodes under "< transmission>" in both examples, an 

important word "speed" appears. As in reality, the transmission system of a vehicle 

is closely related to the speed adjustment. So, it is very likely that the word "speed" 

appears under the node that is related to the transmission system of a vehicle. On 

the other side, if a word "speed" shows up in the node "< transmission >", it is 

likely that this document is related to something about a vehicle. 

In the later sections, "tag" or "node label" will be used interchangeably, both of 

which mean the label of a node. 

From the above discussion, we can see that an XML document can be viewed as a 

text document with some supplemental element tags included. The major information 

lies in the leaf nodes, i.e. the textual content, and the node tags are used to define 

the scopes of the child element tags or textual contents beneath them. Based on 

these observations as well as the assumptions stated previously, we propose the XML 

classification method in this thesis, and use the experimental results to show the merit 

of our method. 

3.1.2 XML representation 

An XML document is usually represented by a tree (such as [8)[9)[27][29]) that can 

be denoted as N, E, R, where N is a set of label nodes, and E is a set of edges from 

parent nodes to child nodes. R is the root of the tree. The XML document in Figure 

19 



3.1 is represented by the following tree: 

1: autca:bil• 
2: ..-..l!.c:turv 
3: ocdol 

6: t::rlrll::duion 

9: Isuzu~ 
10: ~ 

Figure 3.3: XML representation example 

In Figure 3.3, the structural nodes are represented as round nodes and the leaf 

nodes as quadrangle nodes. The edges in the tree can be interpreted as the verb 

"contain". E.g.: in XML document in Figure 3.1, "< automobile >" contains "< 

manufacturer >", and "< manufacturer >" contains leaf node with the content 

"Isuzu", which are represented by the edges from node 1 to node 2, and from node 2 

to node 8, respectively. 

Additionally, some preparation is presented below. 

If node A is an ancestor of node B in an XML document, then the path from node 

A to node B can be defined as the unique tag sequence when moving from node A to 

node B. When node A is the root node in this XML file, the path is called the root 
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path to node B. If the node B is a leaf node, the root path is called leaf node B's full 

path. An XML file can be represented as a collection of full paths. Each path is a 

unique sequence from the root node to a leaf node. The attributes of a node can also 

be represented as the child nodes of this node, and the values of the attributes can 

be the child nodes of the respective attributes themselves. 

We introduce some assumptions here: 

Assumption 1: 

The entire data set to be classified is in XML format . The documents in it are 

from different sources. XML documents from different sources may not share a com­

mon DTD file, but all the schemas of the XML documents are similar if they can be 

classified into the same category. Here we adopt the idea of "similar DTD schema" 

from the homogeneity-hypothesis in {8}. 

In the real world, it is unlikely that all the data sources share the same DTD 

schema. However, if they describe the information from the same category, some 

popular information is likely to be used to name and structure the tags, even though 

they are from different data sources. For example, in XML documents related to the 

automobile, it is likely that "transmission", "door" , "body", etc., are used to name 

tags, and "door" is the descendant of "body" . 

Assumption 2: 

In each class, there are some key terms that are used exclusively to identify that 

class. 

Classes differ from each other based on the contents included. Different classes 

pertain to different themes, and t hese themes must be distinguishable at the con­

ceptual level. This is possible only if there exists a group of terms that collectively 
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characterize each class and not any other class. For example, it is likely that the 

terms "speed", "cylinder", "wheel", "engine" are all found in the documents in the 

class related with automobile but not education, environment, politics, etc. 

3.2 Collecting related information from XML doc­

uments 

3.2.1 Key terms 

Conceptually, key terms are the terms that are highly discriminative between the 

containing class and other classes. Assumption 2 implies that, in each class, there 

exist some key terms with distinct within-class frequencies of occurrences from other 

classes. More specifically, the key terms for a class characterize that class. Due to 

this, it is important to develop strategies to search for the key terms for each class. 

3.2.2 Reprocessing documents 

Every leaf node in XML documents can be viewed as a group of terms contained in 

one leaf node, and a measuring method will be used to find the key terms within 

the leaf nodes. We adopt a variant version of MI (Mutual Information [2])measure 

here. Actually, before the beginning of the key term searching, the stop words in the 

leaf nodes will be filtered out. Terms in the leaf nodes are further separated by some 

certain characters, such as blanks and punctuations. Then the stemming method 

widely adopted in the text mining is also employed to transfer the different forms of a 

word into a normal form. In our experiment, Porter Stemming Algorithm is adopted 
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[3]. 

We discuss how to search for the key terms in a class, why the key terms can 

be found and what the problems of the traditional MI measure are in the following 

sections. 

3.2.3 Term ranking and bottom-up processing 

In our scheme, we calculate an MI score to evaluate the corelationship between each 

term and each class. In each class, different terms are sorted in descending order 

based on their MI scores. First m terms having sufficient occurrence in that ordered 

sequence in each class will be picked as key terms to that class. Then these key terms 

will be cooperated with the structural information to classify the document into a 

predefined category. 

This method can be called a bottom-up method compared to the ones that usually 

begin from the root node of the XML document. We discuss the scheme in detail 

below. 

3.2.4 Mutual Information (MI) 

"In probability theory and information theory, the mutual information, or transinfor­

mation, of two random variables is a quantity that measures the mutual dependence 

of the two variables" [2]. MI can be used to measure the relevance between a term 

and a class. Higher MI implies higher relevance. 
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3.2.4.1 A general definition of MI 

According to [2], an MI between two discrete random variables X and Y is defined 

as: 

MI(X,Y) = LLP(x,y)log( (~)'(\) 
yEYxEX p p y 

, where p(x,y) is the joint probability distribution function of X andY, and p(x),p(y) 

are the marginal probability distribution fucntion of X and Y, respectively. 

3 .2.4.2 MI for text classification 

Theobald et al. [20] employ a special version of the above formula for text mining as 

follows: 

""' ""' p(X, C) MI(Xi, Ck) = 6 _ 6 _ p(X, C)log(p(X)p(C)) 
XE{Xi,Xi} Ce{Ck,C,,J 

(1) 

, where Xi E F, Ck E r , F is the set of all candidate features and r is the set of all 

the class labels in the training set. Variable X is defined as: X=Xi if a random object 

contains Xi, and X=Xi otherwise. Likewise, C is defined as C = Ck if a random 

object is labeled with Ck, and C = Ck otherwise. Thus, p(X), p(C) and p(X,C) are 

just traditional probability distribution functions . Intuitively, this formula measures 

the information that X and C share. It measures how much one of them is known if 

another one is given in advance. E.g., if feature X is independent to class C (meaning 

the presence or absence of X in an object does not alter the likelihood of the object 

being labeled with C), then p(X,C) = p(X)p(C), thus the formula measure is 0, which 

means nothing can be known on Xi (or Ck) if Ck(or Xi) is given in advance. 

Based on the Formula (1) , as well as the Assumption 2 earlier, the relevance of a 

term and a class can be evaluated using the following formula: 
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"""' """' p ( t, c) MI(ti,Ck)= ~ ~ p(t,C)log( ()(C)) 
{ -} - ptp 

tE t;,t; CE{Ck,Ck} 

(2) 

, where ti and Ck are the term and the class between which the relevance is to be 

assessed. Variable tis defined similarly as X in Formula (1) above. 

3.2.4.3 Incorporating occurrence frequencies of terms into MI 

Our goal in this stage is to find the key terms in each class. As mentioned before, 

key terms must be informative. Formula (2) might be used to achieve this purpose. 

But, this formula treats t as a binary variable. This may not be appropriate if, for 

example, all the documents in all the classes contain t, but differ from each other in 

terms of its occurrence frequencies. In this case, a mere presence or absence of t may 

not be informative enough. To overcome this weakness, we modify Formula (2) by 

incorporating the occurrence frequencies of terms into it. We first introduce some 

definitions below. 

3.2.4.4 Notations 

Several notations will be used throughout the entire thesis. We put them together in 

Table 3.1 for easy reference. 

3.2.4.5 Normalized occurrence 

The percentage of a term in a document is defined as the normalized occurrence of 

that term in that document, since we have to take into account the size of a document. 

Generally speaking, the more terms a document has, the higher the probability that 

any particular term will be contained in it. A normalized occurrence relieves the 
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Notation Explanation 

OCC(d, t) number of occurrence of term t in document d 

NOC(d, t) normalized occrrence of term tin document d 

ANO(C, t) average normalized occurrence of term tin Class C 

p touches t term t is included in the leaf node of the root path p 

Paths(d) the set of root paths in document d 

Paths( C) the set of key paths in class C, i.e., the class model of C 

PathSim(p, q) path similarity between path p and path q 

Sim( d, C) similarity between document d and class C 

r the set of predefined classes 

Keys( C) the key term set of class C 

T S the training set 

Table 3.1: Notations and explanations 
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c1 c2 000 ck 

dll dl2 000 dl ,p d21 d2 2 ... d2,q ... dk,l dk 2 ... 
' ' ' ' ' 

tl 0.0002 0 000 0 0.004 0 000 0 00 000 

t2 0.006 0 000 0.0003 

00 0 000 ... ... 000 ... . .. 000 000 000 000 000 000 

tm ... ... 000 ... ... 00 0 000 000 000 ... . .. ... 

Table 3.2: Normalized occurrences of terms in all the classes in the training set 

effects by such a bias. Let ti and dj be a term and a document, respectively, and 

we have NOC(dj, ti) = I: ltil lt 
1
, where ltil is the number of times ti occurs, and 

tk Edj k 

LtkEdj ltkl is the total number of times all the terms occur in dj. 

Calculating the normalized occurrences can be done efficiently. We scan the train-

ing set once to obtain the occurrences of all the candidate terms in each document. 

Then their respective term percentages in every document can be evaluated, result-

ing in their normalized occurrences. Shown in Table 3.2 are the normalized occur-

rences for a sample training set. The rows correspond to terms and columns to 

documents. E.g.: There are k classes contained in the training set (C1, C2, ... Ck) and 

p documents(dl,l, d1,2 , .. . , dl ,p) in cl and q documents in c2 (d2,1, d2,2, ... , d2,q) ... etc. 

3.2.4.6 Discretization 

Discretization converts a continuous variable into a categorical variable. It is neces-

sary in classification for the discovery of patterns for the correlation of the features 

and class labelling. We use the supervised discretization method proposed in [11]. 

27 



c1 c2 ... ck 

d11 d12 ... dl,p d2 1 d2,2 ... d2,q ... dk 1 dk 2 ... 
' ' ' ' ' 

tl I I .. . I II I ... ... ... 

t2 II I ... I 

... ... ... ... .. . ... ... ... ... .. . ... ... .. . 

tm ... ... ... ... ... ... ... ... .. . .. . ... .. . 

Table 3.3: Discretized normalized occurrences to all the classes in the training set 

It discretizes the normalized term occurrence into discretized sections. Each section 

indicates a discretized term occurrence interval. After the discretization, each nor-

malized occurrence value is assigned to a unique section. For each term, if multiple 

normalized occurrence values are close to each other, they will likely be placed into 

a single section. This makes the MI calculation less sensitive to small differences on 

normalized occurrences. Those terms whose normalized occurrences differ by a big 

margin for different classes will take different discretized values and therefore can 

serve as candidates for the key terms for some classes. Shown in Table 3.3 is an 

example of discretized values for the normalized occurrences in Table 3.2, where I 

= [0, 0.003), II = [0 .003, +oo) for both t 1 , h(This might not always be the case in 

reality, because different terms are discretized separately. We just refer to this as an 

example of discretization.) 
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3.2 .4.7 An application of MI 

We propose a variant application of MI as shown in Formula (3) below: 

MI( C ) ~ ~ ( I C)l ( p(t', C) ) 
ti, k = ,L L- P t, og p(t')p(C) 

t Enti CE{Ck,Ck} 

(3) 

, where Slti is the set of categorized values for term ti, p(t', C) is the joint probability 

distribution function of t' and C; p( t') and p( C) are the marginal probability distri-

bution functions of t' and C, respectively. These probability values can be estimated 

as follows . For a given t' E Slti and C E {Ck, Ck}, p(t', C)= N~':~' ,c, where Numi,t',C 

is the number of documents belonging to class C in which ti takes discret ized value 

t' (i.e., the normalized occurrence of ti falls into section t'), Num is the total number 

of documents in all the classes; P(t') = N~:~t · , where Numt',ti is the number of 

documents in which ti has value of t'; p( C) is the prior probability of class C in t he 

training set. 

In the following cases, we call the distribution of a term t in a particular class, 

i.e., the distribution of the frequencies of the term in the documents across that class, 

the class distribution of the term for that class. Consider the following cases. 

1. The class distribution oft is similar across all the classes. 

2. The class distribution oft is not similar for all the classes. 

2.1 There exists a class for which the class distribution of t is different from any 

other class. 

2.2 The class distribution oft for any class is similar to at least one other class. 

An obvious question is how to interpret the words "similar" and "different" in the 

above definition. Like any similarity-based schemes in the field of machine learning, 

there does not exist an absolute definition for these terms. Their precise meanings 
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c1 c2 ... ck 

d1,1 d1,2 ... dl,p d2 1 . .. d2,q . .. dk 1 dk 2 . .. 
' ' ' 

tl 0.002 0.0015 ... 0.0017 0.00001 . .. 0.00002 . .. 0 0 0 

t2 0.001 0.001 ... 0.03 0 . .. 0 0 0.002 0 0.001 

t3 0.015 0.0001 ... 0.0002 0.001 0.0015 . .. 0 0 0 

t4 0.001 0.00001 ... 0.005 0.00003 ... 0.00001 . .. 0.0002 . .. 0.0001 

tm ... ... .. . ... ... ... ... . .. . .. ... . .. 

Table 3.4: Examples of cases 2.1 , 2.2. as well as the exception cases 

depend on the context, and the ultimate goal of an application. For now, we can 

just understand them conceptually as a measure of the closeness between the class 

distributions of a term for different classes. 

It is obvious that if a term t distributes similarly across all the classes, t cannot 

discriminate different classes, and therefore cannot be a key term for any class. For 

cases 2.1 and 2.2, let us discuss them in more detail. 

In Table 3.4, t 1 is an example of case 2.1. Its normalized occurrence fluctuates 

at a higher level in C1 than any other classes. Thus, it is likely that during the 

discretization process, t1 will obtain distinct values in cl from the values it obtains 

in other classes. This will make t 1 informative in characterizing C1, and therefore a 

good candidate for a key term for cl· 

Now, consider t 2 . Its normalized occurrence fluctuates at a similar level for both 

the c1 and ck, and it shows almost no presence in any other classes, which is an 

example of case 2.2. Thus, t2 cannot distinguish between these classes. This means 
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it cannot serve as a key term in any class. 

However, the condition described in case 2.1 may not always be adequate for a 

term to be a key term. Still, consider t1 in Table 3.4. We observe that t 1 's class 

distribution in C2 is also different from any other class. Can t1 also serve as a key 

term in C2? Intuition tells us that it should not, since its occurrence frequency is very 

low in C2 . It is easy to be understood that characterization must be supported by 

adequate presence. In our context, we request 'adequate presence' for a term in a class, 

as its overall volume in that class being larger than its overall volumes in any other 

class. That is, ti is a key term in class Ck only if ANO(Cb ti) > ANO(Ci, ti), Vj =J k, 

where ANO(C, t) is the average normalized occurrences oft in class C. We will give 

the detail of this criterion later. 

In an ideal situation, we would like a key term to have more or less consistent 

occurrences across all the documents in a class for which it is a key term. In practice, 

however, this may not always be the case. Consider t3 in Table 3.4, for example. Its 

class distribution for cl and that for c2 both meet case 2.1. Furthermore, we note 

that its occurrences are consistently higher in all the documents in C2 than they are 

in most documents in C1. Thus, intuitively, it is more appropriate for t3 to be a key 

term for C2 than for C1 . Notice that, however, its occurrence is very high in a single 

document d1,1 in C1 . This 'over-expressed' outlier may render t3 having a higher 

average occurrence in C1 than in C2 and therefore makes it to be mis-selected as a 

key term for C1 rather than for C2 . Term t4 describes a similar scenario, where by 

intuition it should have been the key term for C1. However, because it is substantially 

'under-expressed' in a single document d1,2 , it will not be selected as such. A general 

solution to cope with this problem is to run an outlier detection algorithm in each 
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class before starting the key term search. However, this will complicate our scheme. 

Therefore, we rather leave it as is, with the belief that extreme outliers in the context 

of XML document classification is rare and will not dramatically affect the overall 

accuracy of our scheme. 

3.2.5 Substantial condit ion 

The MI score discussed above can be used to measure whether a term is informative 

to a class, but it is not enough to determine the key term only by the MI score. For 

example, term t presents very low occurrence in class Ci, but it appears a lot in other 

classes Cj, Ckl ... ,j, k =/= i. In this case, tis informative in Ci, but can we select t as a 

key term in Ci? The answer is definitely 'no'. It is clear that a key term needs not 

only to be informative to a class but enough occurrence in that class as well. For that 

reason, the substantial condition is introduced here as an extra requirement for the 

key terms selection in a class. Every key term in a class must satisfy this condition. 

Definition [substantial condition]: Let t be an arbitrary term in class Ci, and let 

r be the predefined class set. We say that t satisfies the substantial condition with 

respect to ci) if 

, where ANO(Ci, t) denotes the average normalized occurrence of term t in class 

l:d · EC · NOC(dj,t) 
Ci. ANO(Ci , t) can be estimated as ' 'n , and NOC(dj, t) stands for the 

Normalized Occurrence of term tin document dj, and n is the number of documents 

in Ci, N OC ( dj, t) = L: It I It 1. That is, the average normalized occurrence of term t 
tpEdj P 

in class Ci is greater than any other class Cj, where Ci, Cj E f , j =/= i . 
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3.2.6 Determining the key terms 

A key term for a particular class is supposed to be informative to that class, and at 

the same time, it should present enough occurrence in that class, too. We use the 

MI value mentioned above to measure the relativity between the term and the class. 

Moreover, the substantial condition can guarantee the enough occurrence of the term 

in that class. Based on this, we make the rule for determing the key terms in a class. 

It has two steps: firstly, in every class, we sort all the terms based on their MI scores 

in descending order; secondly, we select the top m terms from the sorted list that 

satisfy the substantial condition. These m terms then serve as the key term set for 

that class. 

3.2. 7 Key path 

In this phase, the key terms in all the classes have been determined already. We 

shall now utilize them with the structural information included in the tags and their 

dependencies. In the following, the term "path" implicitly implies that it starts from 

the root and ends at a leaf. 

Let d be an XML document, and d E C where C is a class. Let p be a path in d. 

If p ends at a leaf node that contains at least one key term for C, then we call p a key 

path in C. Note that, according to the above definition, key path is a concept relating 

to a class, not to any individual document. However, it is defined via the individual 

documents belonging to the class. Thus, for any individual class, the associated set 

of key paths is well-defined only if (1) the documents belonging to the class are given, 

and (2) the key terms for the class have been determined. In the subsequent sections, 

33 



when the phrase "key path" is used, it is implicitly implied that the associated class 

has been given in the training set, and the key terms have been selected by the search 

method. Let Paths( C) be the set of all the key paths in C. We call Paths( C) the 

class model of C. Note that according to the above definition, a key path may end at 

a leaf node containing multiple key terms. Since we don't have any prior knowledge 

of the relationship between the key terms and the paths, we just assume they are 

independent of each other. 

3.3 Classifying the XML documents 

In our method, class prediction is based on the concept of similarities. For any 

given document, we define a similarity between it and each of the classes. Then, 

the document will be classified into the class with which it has the highest similarity 

among all the classes. Formally, let d be a document to be classified, and Paths( C) 

be the class model for C, we have: 

Class= arcmaxcH(Sim(d, C)) 

, where r is the set of predefined classes; Sim(d, C) is the similarity between d and 

class C, which is calculated based on d and class model Paths( C). It can be converted 

into similarities between paths and it is defined as: 

Sim(d, C)= 

1 
2:::::: (AVG(t) x 2:::::: max{PathSim(p,q) lq E Paths(C), q touches t} (4) 

t EK eys(C) pEPaths(d) 
p tou.ches t 

, where Keys( C) is the key term set of class C; AVG(t) is the average of normalized 

occurrences oft across all classes, AVG(t) = LdtET.h~·~C(dt ,t), where T Sis the training 
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set, NOC(dt, t) is the normalized occurrence of term t in document dt as defined 

above. Here, a path touches a term if the term is contained in the leaf node on this 

path. 

3.3.1 Path similarity calculation 

We have expressed the similarity between an XML document and a class in terms of 

the sum of the similarities between two key paths. In the following, we describe how 

to evaluate the latter similarities. 

Let d be an arbitrary XML document, Paths(C) be a class model of C, and 

Paths(d) be the path set of d. Let p1 E Paths(d) and p2 E Paths(C) be two key 

paths. The similarity between p1 and p2 is determined by the three factors, denoted 

as a, {3 and/, each of which is expressed as a function of p1 and p2. 

Factor a is defined as: 

a(pl,P2) = [L(l + log(w(s)))]/max(IPIL IP2I) 
sES 

, where S is the maximum subset of the nodes in p2 such that there exists a 1-1 

mapping f : S --t nodes(p1) that meets the following conditions: (1) Vs E S, [s 

matches f(s) in tag name and type], and (2) Vs1, s2 E S, [s1 -< s2 =? j(s1) -< j(s2)]. 

The expression w(s) indicates the level of sin p2. 

Factor a essentially measures the extent to which the nodes in one path can match 

those in the other in the same order. A node is weighted with its level, since nodes 

at different levels have different specificities: the deeper its level, the more specific it 

is, and therefore the larger its weight. (We adopt the convention that the root is at 

level 1.) The a factor is reversely proportional to the lengths of the paths, since for 

35 



the same amount of node matching, the longer the paths, the less alike they are. 

Factor {3 is defined as: 

, where T is the maximum subset of the nodes in p2 such that there exists a 1-

1 mapping g : T --+ nodes(p1) that meets the following conditions: (1) Vt E T, [t 

matches g(t) in tag name and type], (2) Vt1 , t2 E T & t 1 # t2, [g(t1 ) # g(t2)]. 

Note that we do not require g to preserve the order of the nodes in T. (This differs 

from S in the definition for the a factor.) Thus, the {3 factor measures the number of 

identical nodes between p2 and p1 , the orders of which are not necessarily consistent. 

This captures the idea that more identical nodes between two paths makes them more 

similar, even if their orders are not preserved. 

Factor 1 is defined as: 

, where Vp E Paths( C), 1r(p) = the number of key terms of C that p contains. 

Unlike the a and {3 factors, which measures the similarity of two paths, the 1 factor 

essentially adds a weight to the similarity. This weight measures the importance of the 

path in the class model. The more key terms the path contains, the more important 

it is. Since all the paths in the class model are the paths that contain at least one 

key term, we have Vp2 E Paths(C) , h' >OJ. 

Finally, we have 

Let us see the following example to make it more clear. 
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-<car> 
+ <meta><lmeta> 
-<specification> 

- <technical> 
+ <dimension><ldimension> 
+<engine type="LP Turbo, 2.5 Liter Engine: 5-Cyl"><lengine> 

<suspension>FandR Stabilizer Bars<lsuspension> 
<tyre>Limited Use Spare Tire<ltyre> 
<transmission>5 Speed Automatic w/Geartronic Transmission<ltransmission> 
<wbeel>Eriuus ADoy Wheels<lwbeel> 
<brake> Anti-Lock Brllking System Power FandR Disc Brakes<lbrake> 

</technical> 
</specification> 

+<aspect><! aspect> 
<lear> 

Figure 3.4: XML document Sample 1 in the testing set 

For example, we have 2 XML documents in Figure 3.4 and 3.5, respectively. 

Suppose Sample 1 is in the testing set, Sample 2 is one document in the train-

ing set with class label C, and "speed" and "automatic" are two key terms in 

class C. To show the similarity of the paths, we take one key path that con-

tains any of these key terms from each of the two documents. In Sample 1, we 

take the key path "< car >< specification >< technical >< transmission > 

[5 Speed Automatic wfGeartronic Transmission]", which is noted as p1 . Fur-

thermore, we take "< car >< transmission >< specification >< type > [5 -

speed EH automatic]" from Sample 2, which is noted as p2 , i.e., p2 E Paths(C). 

According to the definition above, a:(p1, p2) = (l+log(l)~l+log(2)), since we have two 

identical nodes ("< car >", "< transmission >") in the same order in these two 

paths; (3(p1,p2) = ~ , because without considering the order, there are three identical 

nodes ("< car >", "< transmission >", "< specification >"); and "'f(p1,p2) = 

log(3), as there are two key terms contained in p2 . Since we only calculate the 
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-<car> 

-<power> 
- <specification> 

<displacement>4398 cc</displacement> 
<engine>8-cylinder light-alloy V-engine<lengine> 
<installation>nla<lins tallation> 
<aoceleration> 7 .0</acceleration> 
<max-power>21 0/286/5400</max-power> 
<torque>440/324/3600</torque> 
<max-speed>250<1max-speed> 

</specification> 
</power> 

-<transmission> 
- <specification> 

<type>5-speed EH antomatic</type> 
</specification> 

<!transmission> 
+ <fuel><lfoel> 

</car> 

Figure 3.5: XML document Sample 2 in the training set 

similarity between the two paths that contain the same key term, and the key paths 

that contain the same key term should express the similar information about the 

class, thus, the two paths from the same class have a higher probabilty to share more 

identical nodes than from different classes. We can see that, basically, for the length-

normalized paths, the more the identical nodes two paths share, the "closer" they 

will be. 
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3.3.2 A justification of the similarity-based bottom-up clas­

sifier 

In this section, we will justify the proposed classification scheme from a theoretical 

perspective. The goal is to show that it is more likely that our scheme classifies a 

document to the class that contains it than to any other class that does not contain 

it. We will use the notations listed in Table 3.1. We first make four assumptions. 

Assumption I: Every term that a document contains distributes evenly among 

the leaf nodes in the document. Every term distributes evenly among the doc­

uments in the same class. Given two key terms from two classes, the numbers 

of paths that touch these two key terms in the respective class model are iden­

tical. More precisely, let t 1 , t2 be 2 key terms from C1, C2 , respectively, M = 

I {qlq E Paths(CI), q touches t1} I, N =I {qlq E Paths(C2), q touches t2} I, then M = 

N. Given two key terms from the same class, the numbers of paths that touch these 

two key terms in the class model are identical too, and a document has the same 

amount of these 2 key terms. 

We model an XML document as a tree. And we assume the term evenly distributes 

among the leaf nodes of a document . This assumption is a little bit strong. Since 

we do not have any prior knowledge of a term's distribution, we adopt a simple case, 

i.e., it is evenly distributed. Similarly, inside one class, the term distributes evenly 

in documents in the same class. For the same reason, we assume identical key term­

touching path numbers as above, as well as the equality of the amount of key terms 

in a document. 

Assumption II: The occurrence of a key term that a document contains is equal 
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to the number of key paths that touch this key term in this document. 

Generally, for any particular key term, the more a document contains it, the more 

key paths related to this key term are in the document. According to Assumption I, 

a key term distributes evenly among the leaf nodes in a document. Thus, there is a 

proportional relationship between the numbers of key term occurrences and the key 

paths. For simplicity, we assume they are identical. 

Assumption III: Let C1 and C2 be two classes of documents in the training 

set, dis a test document and dE C1. Let t 1 E Keys(C1) and t2 E K eys(C2). Let 

P1 and P2 be key paths in C1 and C2 that touch t1 and t2, respectively. Let q1 and 

q2 be two paths that touch t 1 and t 2 , respectively, in d. Then the following is true: 

P(PathSim(p1 , q1) > PathSim(p2, q2)) > 0.5 

Intuitively, since p1 and q1 both belong to the same class, while p2 and q2 belong 

to different classes, the likelihood that p1 is more similar to q1 than p2 is to q2 is higher 

than the likelihood for the other way around. This is consistent with our previous 

assumption that documents in the same class are based on more similar schemas than 

the documents in different classes. 

Assumption IV: Let C1 and C2 be two classes of documents in the training set, 

and d E C1. Let t1 E Keys(C1) and t2 E Keys(C2). Let P1 and P2 be two paths 

that touch t 1 and t 2 , respectively, in d. Let q1 be a randomly selected key path in 

Paths( C1) that touches t 1 and q2 be a randomly selected key path in Paths( C2 ) that 

touch t 2 . Let x = PathSim(p1 , q1), y = PathSim(p2, q2). Then, x follows uniform 

distribution in the interval [a, b], and y follows uniform distribution in the interval 

[c, d] , and 0 < d- c = b- a. 

For a path in a document, and a path in the class model touching the same key 
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term, there is no prior knowledge on the relationship between them. Therefore, we 

just assume x can occur equally likely in an interval, i.e, [a, b]. Similarly, we assume 

y can occur equally likely in another interval [c, d]. In addition, without any prior 

knowledge about specifics about x andy, we should not be biased toward either x or 

y, i.e., we assume their intervals have the same width. 

Since our inferences use the probabilistic framework, we first introduce four lem-

mas based on probability theory. These results will be used in the later context. 

Lem m a I: Let X= {x1, x2, ... , Xn} andY= {y1, Y2, ... , Yn} be 2 random variable 

sets, where Xi and Yi are uniform random variables in the intervals [a,b], [c,d], respec-

tively, b- a= d- c = 8 > 0. Assume for all 1 ::::; i ::::; n, 1 ::::; j ::::; n, P(xi > Yi) > 0.5. 

Let u = max {X} = max {x1, x2, ... , Xn} and v = max {Y} = max {y1 , Y2, ... , Yn}· 

Then: E(u) > E(v) . 

P roof: Firstly, we claim that a > c. To prove the claim, we assume the contrary. 

Thus, a ::::; c. Vx E X and y E Y we have P(x > y) = J fx>y f(x, y)dxdy, where 

f(x, y) is the joint probability density function of x and y. Since x, y are indepen-

dent, f(x, y) = f(x)g(y), where f(x) and g(y) are probability density functions of 

x and y, respectively. Since x and y follow the uniform distribution, f(x) = b~a 

and g(y) = d~c· So, P(x > y) = J fx>y (b-a)1(d-c)dxdy = (b- a)1(d- c) J: J: dxdy = 

1 (b )2 1 - (b-~)2 (b-~)2 - 1 h' h · t d' t' Th ad' t' 2 - c (b-a)(d- c) - 20 ::::; 28 - 2, w 1c 1s a con ra 1c 1on. e contr 1c 1on 

proves our claim. 

For all i, the probability density function of Xi is, for all x E[a, b], f(x) = b~a· 

Its cumulative distribution function is Fxi(x) = P(xi::::; x) = fax b~adx = ~=~· Thus, 

the cumulative distribution function for u is Fu.(u::::; x) = P(max(X) ::::; x) = P(x1 ::::; 

x, .. . , Xn :::; x) = ~~=;?:. This implies the probability density function for u is fu.( x) = 
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n(x-a)n-l 
(b-a)n · 

n(y-c)n- 1 
(d-c)n · 

For the same reason, the probability density function for v is fv (y) -

So, E(u) = I: xfu(x)dx = I: xn((b-=_~):- 1 

dx = n~l (b- a)+ a. Similarly, E(v) = 

n~l (d- c)+ c. Since a> c, E(u) > E(v). Thus, this lemma has been proven. 

Lemma II: Let X= {x1 , x2 , . .. ,xi} andY= {y1 , y2 , ... , Yk} be 2 random variable 

sets, where for all 1 ~ i ~ j, xi follow the same distribution, and for all 1 ~ i ~ k, Yi 

follow the same distribution, and E(xp) > E(yq) for all p and q. Let u = avg(X) = 

I:{".? xi, v = avg(Y) = L:~k1 Yi, then: E(u) > E(v) . 

Proof: E(u) = E( L:{.? xi) = E(xp), and E(v) = E( L:~k1 Yi ) = E(yq), so E(u) = 

E(xp) > E(yq) = E(v). This lemma has been proven. 

Lemma III: Let X = {x1, x2, ... , Xm}, and Y = {y1, Y2, ... , Ym} be 2 sets of 

random variables where for all 1 ~ i ~ m, Xi follows the same distribution, and so are 

Yi, and E(xp) > E(yq), for all p and q. Then the following holds true: P(L::;:1 xi > 

L::;:1 Yi) > 0.5. 

Proof: Let Sx denote L::;:1 Xi, Sy denote L::;:1 Yi, and S denote Sx - Sy. Let 

- s- s - - -
Sx = ~, Sy = ~, and, S = Sx- Sy. Because Xi, Yi follow the same distribution, 

according to Central Limit Theorem, both Bx and Sy follow the normal distribution1
. 

Since S is a linear combination of Bx and Sy, S follows normal distribution too, and 

S,...., N(J-£, a2 ) where 1-£ = E(Sx- Sy) = E(Sx) - E(Sy)- According to Central Limit 

Theorem again, E(Sx)- E(Sy) = E(xp) - E(yq) > 0, so 1-£ > 0. 

We now have P(L::;:1 xi > L:::1 Yi) = P(Sx > Sy) = P(Sx - Sy > 0) = P(S > 

0) = P(S > 0) = P(O < S < J-£) + P(S > J-£). Since J-£ > 0, P(O < S < J-£) > 0. 

Thus P(L::;:1 Xi > L::;:1 Yi) > P(S > J-£). According to the property of normal 

1m is reasonably big so that the Central Limit Theorem is valid 

42 



distribution, (i.e., P(x > f.-lx) = 0.5 when X rv N(J.-Lx, a;)), P(S > J.-L) = 0.5. So, 

P(L::;:1 Xi > L::;:1 Yi) > 0.5. This proves the lemma. 

Lemma IV: Let C1 and C2 be two classes of documents in the training set, 

and d E C1. Let t1 E Keys(CI) and t2 E Keys(C2). Then the following is true: 

OCC(d,t1) > OCC(d,t2) 
AVG(tJ) AVG(t2) ' 

Proof: Let C3 , C4 , ... , Cn denote the rest of the classes in the training set. 

Firstly, we claim that ANO(C1, t1) > AVG(t1), i.e., A~~b~~;~1 ) > 1. Let ai = 

L::dECi NOC(d, t1), bi = ICil, respectively, where i E [l.. .n]. From the definition, 

ANO(C1, t1) = ~' AVG(t1) = ab7:lt.·.t-1:n. Let Ck denote any class other than C1 

in the training set, then ANO(Ck, t1) = ~ (k =I 1). From the substantial condi-

tion, ANO(C1, t1) > ANO(Ck, t1), then ~b1 > ~bk. Thus a1+a2 .. . +an < ~b1 , implying b1 +b2 ... +bn 

AVG(t1) < ANO(C1, ti), i.e. , A~~b~:;~1 ) > 1. The claim follows. 

Secondly, we claim that ANO(C1, t2) < AVG(t2), i.e., A~~b~;~)2) < 1. Since t2 

is a key term from C2, it is not a key term in any other class. Without knowing 

any specifics about its occurrences in these classes, we should put them in equal 

footing, by assuming it has the same average normalized occurrences in any class 

other than C2. That is, ANO(C1, t2) = ANO(C3 , t2) = ... = ANO(Cn, t2). Let 

ei = L::dECi NOC(d, t2), fi = ICil, where i E [l...n]. Then ANO(Ci, t2) = ~· From 

the substantial condition, ANO(C2, t2) =}; > ANO(Ck, t2) =]!,where k =I 2. Thus 

e1 +e2 ... +en > ~. By definition, AVG(t2) = e1+e2 ... +en. Thus AVG(t2) > ANO(C1, t2), 
h+/2-.. +Jn h h+/2- .. +Jn 

. ANO(C1 ,t2) 1 Th l . c ll 1.e., AVG(t
2

) < . e c a1m 10 ows. 

For the document d E C1, according to the 

A t . I t t d' t 'b t l . 'd c th NOC(d,t!) NOC(d,t2) ssump wn , we assume 1, 2 1s n u e even y ms1 e 1, en, AVG(t1) > AVG(t2) . 

S NOC(d,t!)· ldl > NOC(dh)·ldl h ldl . th t t l b f t . d Thus, we o AVG(tJ) AVG(t2) , w ere 1s e o a num er o erms m . 
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h OCC(d,t1) OCC(d,t2) Th" l . 
ave AVG(t

1
) > AVG(t

2
) • IS emma IS proven. 

Based on the lemmas above, we have the following theorem. 

Theorem I : Let C1 and C2 be two classes of documents in the training set and 

dE C1 . Then the following is true: P(Sim(d, C1) > Sim(d, C2)) > 0.5. 

P roof: From Formula (4), Sim(d, C1)= 

1 L (AVG(t) x L max {PathSim(p,q)lq E Paths(C1), q touches t}) 
tEKeys(CI) pEPaths(d) 

p touches t 

Occ(
d ) 'I:,pEPaths(d) max {PathSim(p, q)lq E Paths(C1), q touches t} 

"'""' ( , t p touches t ) 
L...t ) AVG(t) x OCC(d, t) tEKeys(C1 

Let OCC(d, t) = mt, then Sim(d, C1)= 

'I:,pEPaths(d) max {PathSim(p, q)lq E Paths(C1), q touches t} 
"'""' ( mt p touches t ) 
L...t AVG(t) X mt 

tEKeys(C1) 

"'""' mt 
L...t (AVG(t) X 

tEKeys(C2) 

'I:,pEPaths(d) max { PathSim(p, q) lq E Paths( C2), q touches t} 
p touches t ) 

mt 

According to Assumption II, we use the occurrence of a key term to replace the 

number of t he key path that touches this key term in the test document. And if we 

number the k key paths in d that touch a certain key term t from Pl to ptk, then 

Sim(d, C1)= 

"'""' ( mt x'I:,;;,!1 max {PathSim(Ptk,q)lqEPaths(C1), qtouchest}) 
L...t AVG(t) mt (

5
) 

tEKeys(C1) 

And Sim(d, C2)= 

"'""' ( mt x'I:,;;,!1 max {PathSim(Ptk,q)lqEPaths(C2), qtouchest}) 
L...t AVG(t) mt (6) 

tEKeys(C2) 
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Let t 1 , t 2 denote 2 randomly selected key terms from Keys(CI), K eys(C2 ), re-

spectively, Pt is a key path that touches t in d. Let 

f =max {PathSim(Ptll q)lq E Paths(C1), q touches ti}, 

g =max {PathSim(Pt2 , q)lq E Paths(C2 ) , q touches t2 }. According to Assumption 

IV, PathSim(Pt1 , q)"" U(a, b), and PathSim(Pt2 , q)"" U(c, d), b - a= d- c. From 

Assumption III, P(PathSim(Ptp q) > PathSim(Pt2 , q)) > 0.5. Also, from Assump-

tion I, the numbers of paths that touch t 1 , t 2 in Path(C1 ), Path(C2 ), respectively, 

are identical. Thus, the prerequisite for Lemma I is satisfied. Then, by Lemma I, 

E(f) > E(g). 

Let r =I::~ max{PathSim(Pt~,q)lqEPaths(C1 ), q tauches t 1 } 

mtl 

S = L:;:'~i max{ PathSim(Pt; , q)iqEPat~s(C2), q tauches t2} 
(8) . 

E(f) > E(g) above, we have E(r) > E(s). 

(7), 

Then, by Lemma II, and 

According to Assumption IV, for all t1 E Keys(C1), k E {1, ... , mtJ, and q E 

Paths(C1), we have PathSim(Pt~ , q) ""U[a,b]. In addition, by Assumption I, 

I {PathSim(Pt~,q)lq E Paths(C1) , q touches tl} I = n where n is a constant w.r.t. 

t1 . Let f(x) be the probability density funciton for 

At1 =max { PathSim(Pt~, q)lq E Paths(C1) , q touches tl}. Then from the proof of 

( ) _ n(x- at - 1 (C ) { } Lemma I, we have f x - (b-a)n . Thus, for all t1 E Keys 1 , k E 1, ... , mt1 , 

and q E Paths(C1), At1 S have the same probability density funciton . So, they have 

the same characteristic function [4] . Furthermore, by Assumption I as well, for all 

t1 E Keys(C1), OCC(d, t1) = m t1 = l where l is a constant w.r.t t 1 and the test 

document d. Let the characteristic function of At1 be <pAt
1 
(t), then the characteristic 

mt1 { . k } 

f . f A- Lk=l max PathStm(Pt1 ,q)iqEPaths(CI), q tauches t1 . F l (
7

) . 
unctwn o t 1 = r = m ormu a IS 

mtl 

<pAt_
1 
(t) = (cpAt

1 
(t/l))1 [4]. So, the variables r calculated from Formula (7) follow the 
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same distribution. It is similar for s, too. By Lemma III, we have P(R > S) > 0.5, 

where 

R= L (L_r;:,1 max{PathSim(Ptk,q) jqEPaths(C1), qtouchest}), 

ffit 
tEKeys(CJ) 

S = L (2:.7:::1 max { PathSim(Ptk , q) jq E Paths(C2 ) , q touches t} ). 
ffit 

tEKeys(C2) 

From Lemma IV, for any key term hE K eys(C1) and t2 E Keys(C2), 0};Jf~~)) > 

0};Jf~!)) > 0, i.e., A;~~t1 ) > A;~~t2) > 0. Since each term in Sim(d, C1) is a product 

of the corresponding term in Rand A?'G(t), and each term in Sim(d, C2) is a product of 

the corresponding term inS and A;d(t), we haveR> S::::} Sim(d, C1) > Sim(d, C2). 

Thus, P(Sim(d, C1) > Sim(d, C2)) ~ P(R > S) > 0.5. The theorem has been 

proven. 

Finally, the following corollary gives justification for our classification scheme. 

Corollary I: Suppose there are in total n classes of documents in the training set. 

Let C1 and C2 be two classes of documents in the training set and dE C1. Let P1 = 

P(Sim(d, C1) > Sim(d, C2), Sim(d, C1) > Sim(d, C3), ... , Sim(d, C1) > Sim(d, Cn)), 

P2 = P(Sim(d, C2) > Sim(d, C1), Sim(d, C2) > Sim(d, C3), ... , Sim(d, C2) > Sim(d, Cn)). 

Proof: Because d E C1 , according to Theorem I, we have the following n- 1 

formulas: 

P(Sim(d, C1) > Sim(d, C2)) > 0.5 (1) 

P(Sim(d, C1) > Sim(d, C3)) > 0.5 (2) 

P(Sim(d, C1) > Sim(d, Cn)) > 0.5 (n- 1) 
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Let Cx, Cy be two arbitrary classes in the training set and Cx =f Cy, Cx =/=-

C1 , Cy =/=- C1 . Since neither Cx nor Cy contains d, we should take an unbiased view 

toward their similarities with d. In probabilistic terms, that is, P(Sim(d, Cx) > 

Sim(d, Cv)) = 0.5. In addition, we suppose for any 3 classes, Ca, Cb, Cc, Ca =/=- Cb =/=-

Cc, event Sim( d, Ca) > Sim( d, Cb) is independent to event Sim( d, Ca) > Sim( d, Cc) 

2 , i.e., P(Sim(d, Ca) > Sim(d, Cb), Sim(d, Ca) > Sim(d, Cc)) = P(Sim(d, Ca) > 

Sim(d, Cb)) · P(Sim(d, Ca) > Sim(d, Cc)). Then: P1 = IT c.,er P(Sim(d, C1) > 
C.,#C1 

Sim(d, Cx)), P2 = IT c.,er P(Sim(d, C2) > Sim(d, Cx)). 
C.,#C2 

Given any class Ck =/=- C1 , Ck E r , according to Theorem I , P(Sim(d, C1) > 

Sim(d, Ck)) > 0.5, so, P1 > 0.5n-l. Also, because P(Sim(d, C1) > Sim(d, C2)) > 0.5, 

thus P(Sim(d, C2) > Sim(d, C1)) < 0.5. For the rest of the classes other than C1 

and C2 in the training set, say, Cs, we have P(Sim(d, C2 ) > Sim(d, Cs)) = 0.5, so 

This proves the corollary. 

Thus, according to Corollary I, given a random document d E C1, it is most likely 

that d will be classified into cl· 

2The assumption of independence may be a bit strong here. Nonetheless, it is not necessary to 

prove the corollary. We make this assumption to avoid tedious mathematical manipulations involved 

in multiple integrations on the joint distributions of the similarities. 
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Chapter 4 

Experiment 

4.1 Experiment setup 

The goal of our experiment is to examine the effectiveness of our bottom-up approach. 

For this purpose, we compare the classification accuracies of our method with several 

existing works that represent the mainstream approaches in XML document classi­

fication. These include Yi's method [27], Zaki's method [29], Denoyer's method [8] 

and Theobald's method [20]. (In the original version of Denoyer's method, no detail 

is given of how to resolve the case when no match exists in the training set for a 

parent-child pair in a testing set. Strictly following the theory would assign it a zero 

probability, resulting in a poor performance. We choose to assign it the minimum 

probability of all the pairs ever estimated in the training set.) Our experiment is im­

plemented by Java via the eclipse 3.2.1. We adopt the discretization implementation 

in weka 3.4. 

Our comparison is based on two data sets. The first is a real life data set introduced 
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in [14], which is generated in the XML/XSLT version of web pages from 20 different 

sites belonging to 4 categories, labeled as "Automobile", "Movie", "Reference" and 

"Software". There are a total of 101 documents: 20 in "Automobile", 20 in "Movie", 

41 in "Reference" and 20 in "Software". There is no cross-labeling. Since XSLT is 

not always accessible in real life, we ignore them in our experiment. 

The second data set is collected from 10 different English news websites, which are 

ABC, BBC, CBS, CNN, FindNerws Org, Hosted AP Org, New York Times, Reuters, 

Washington Post, and Yahoo. To avoid overlapped item headings in the news of the 

same days in one website, i.e., one piece of news still remains active in the rest of the 

day, we do not collect the news more than once a day (actually, most of the news 

collected are 3 or more days later from the previous collecting). The RSS documents 

in XML format from those websites belong to 5 categories, which are labeled as 

"Business", "Entertainment", "Health", "Science and Technology" and "Sports". As 

in the first data set, every RSS file has only one class label. There are in total 274 RSS 

documents, 53 in "Business", 42 in "Entertainment", 60 in "Health", 67 in "SciTech" 

and 52 in "Sports". 

4.2 Evaluation method 

The evaluation is based on cross-validation. Each data set is divided into n subsets 

of equal sizes. For each data set, the evaluation consists of n rounds. In each round, 

n- 1 subsets are used for training and the other one for testing. The overall accuracy 

for a data set is the average of the accuracies over n rounds. For each data set, we 

use two ways of dividing it into n subsets, random and by-websites. These will be 

49 



described in detail in the subsequence sections. 

The metric used for accuracy evaluations is defined as follows: 

" n CCNi 
AA = L-i=l TNF; 

n 

, where CC Ni and TN Fi are, respectively, the correctly classified number of test files 

and the total number of test files in round i. 

4.3 Experiment 1: Cross-validations based on ran-

dom selections 

For the data sets 1 and 2, we use 4-fold and 5-fold cross validations, respectively. 

Samples are assigned to each subset at random. Generally, for each web site, both 

the training set and testing set will contain some documents from it. Since a web 

site uses the same DTD for the documents it generates, for any testing document, it 

is likely that there also exists a matching training document such that both of them 

share the same DTD. Generally, a random selection can guarantee that the training 

set and the testing set have approximately the same probability distributions for both 

the textual terms and the tag structures. This is favorable for algorithms that must 

learn not only the textual terms but also the structures. 
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4.4 Experiment II: Cross-validations based on web 

sites 

This experiment uses n-fold cross-validation where n is the number of web sites from 

which our data are drawn 3 . In each round, we use the data from n -1 web sites as the 

training set, and the data from the other web site as the testing set. Since different 

web sites may use different tag structures, a document in the testing set may use a 

DTD that is not used by any document in the training set. In such a situation, it is 

hard for a learning algorithm to learn the DTDs of the testing sets from the training 

sets. This way of cross-validation can test the sensitivity of a learning algorithm to 

the un/ availability of the information about the DTDs during the learning process. 

4.5 Experimental results 

4 .5.1 K ey terms 

We search for the key terms from the leaf nodes in the training documents in every 

class. Listed in Table 4.1 and 4.2 are the top 10 key terms found in Data Set 1 and 

2, respectively, in a round of cross-validation based on random selection. In the other 

rounds, most of the key terms selected are identical. The columns with the t itle of 

3This is the case for Data Set 2. However, for Data Set 1, since several websites do not have 

enough sample documents, we just merge them with an other website when dividing the entire data 

set into n groups, respectively. We still guarantee that any 2 documents from the same website will 

be put in the same group. It implicitly suggests that the structures in the testing documents are 

"new" to the training set. 
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automobile movie reference software 

Term MI Term MI Term MI Term MI 

CONDIT 0.1941 PERMISS 0.2348 WHEN 0.1410 WEB 0.1659 

OVER 0.1928 COPYRIGHT 0.1939 MORE 0.1326 LICENS 0.1338 

AGRE 0.1881 INFRING 0.1708 SAID 0.1297 XML 0.1298 

LIST 0.1823 LAW 0.1639 HAD 0.1288 FILE 0.1183 

SOLE 0.1823 MIN 0.1495 HEAD 0.1288 SUPPORT 0.1148 

PRICE 0.1765 WARRANT 0.1494 HOME 0.1237 APPLIC 0.1147 

INTERIOR 0.1765 COPI 0.1323 WHAT 0.1235 ORG 0.1096 

ACCURACI 0.1708 KNOW 0.1270 HORSEPOW 0.1170 SOLUT 0.1096 

VISITOR 0.1708 RECEIV 0.1241 WAI 0.1149 ALLOW 0.1094 

CORRECT 0.1708 PARTI 0.1212 DRIVE 0.1082 ETC 0.1067 

Table 4.1: First 10 Key terms found on Data Set 1 in one round 

"MI" indicate mutual information values between the corresponding key term and 

the relevant class. 

We note that some of the key terms in Data Set 1 are not readable under the 

corresponding classes. This is due to the fact that they result from the stemming 

process. For example, "CONDIT" actually comes from the word "conditioning". It 

has been used in many occasions where "air conditioning" is mentioned in Automobile 

class. "PERMISS" results from "permission" . It stands for "permissible", "permis­

sion", etc, in Movie class. In many cases, these are used when copyrights of a movie 

are mentioned. Also, some terms seem not to be characteristic for the related class, 

such as "WHEN" under Reference class. However, from statistic point of view, they 

52 



Business Entertainment Health 

Term MI Term MI Term MI 

ECONOMI 0.1988 ENTERTAIN 0.2365 HEALTH 0.2737 

INVEST 0.1884 JOLI 0.1524 DISEAS 0.2024 

MARKET 0.1755 SINGER 0.1459 CANCER 0.1920 

STOCK 0.1726 FILM 0.1400 PATIENT 0.1818 

BUSI 0.1710 ALBUM 0.1272 DOCTOR 0.1748 

OIL 0.1249 DRAMA 0.1270 TUBERCULOSI 0.1680 

MORTGAG 0.1243 HILTON 0.1215 BREAST 0.1613 

DOW 0.1223 MCCARTNEI 0.1185 FLU 0.1613 

BANK 0.1146 ANGELINA 0.1185 FDA 0.1599 

PRICE 0.1127 HOLLYWOOD 0.1185 DRUG 0.1591 

Sci Tech Sports 

Term MI Term MI 

TECH 0.2030 SPORT 0.2238 

TECHNO LOG 0.1868 ROUND 0.2119 

MICROSOFT 0.1725 COACH 0.2037 

COMPUT 0.1598 BASEBAL 0.2001 

INTERNET 0.1575 GOLF 0.1795 

SOFTWAR 0.1374 TEAM 0.1754 

LAPTOP 0.1339 CUP 0.1550 

GOOGL 0.1299 CHAMPIONSHIP 0.1550 

PHONE 0.1218 WIN 0.1452 

PRIVACI 0.1214 YANKE 0.1446 

Table 4.2: First 10 Key t erms found on Data Set 2 in one round 
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are indeed informative in the training set. For example, the term "WHEN" appears 

31 times in Reference, but substantially less times in the other classes: 0 time in 

Automobile, 11 times in Movie, and 1 time in Software. This means not only it is 

informative, but also has a sufficient support in Reference. 

4.5.2 Accuracies of classifications 

In Table 4.3 and 4.4, respectively, the AA scores for different learning algorithms 

on Data Set 1 and 2 are listed. The results are obtained by selecting 110 key terms 

for Data Set 1 and 60 key terms for Data Set 2. The number of the key terms is 

determined by the experiment, respectively. 

We can see that, in all of the cases, our method has a better performance in terms 

of accuracies than all the other learning algorithms. From the tables, we can also 

observe that for both data sets, all the algorithms demonstrate a better performance in 

Experiment I than they do in Experiment II. As mentioned previously, in Experiment 

I, any testing document is most likely to have a matching training document that 

follows the same DTD, while this is not the case in Experiment II. This makes all 

the algorithms less effective in learning the structures of the testing documents in 

Experiment II. However, we also note that among all the algorithms, our algorithm is 

most resilient under such a circumstance. This is clearly demonstrated by the values 

in the right-most columns in both tables. This low sensitivity of our algorithm to the 

structural information to be learned can be attributed to our bottom-up approach, 

where the textual information plays a substantially more important role than the 

top-down-based approaches. 
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Experiment I Experiment II 

Method AA(%) AA(%) 

Yi's method in [27] 75.27 48.54 

Zaki's method in [29] 40.58 40.58 

Denoyer's method in [8] + upgrade 100 88 

Theobald's method in [20] 86.15 44.45 

This method 100 89.12 

Table 4.3: AA scores of different methods on Data Set 1 

Experiment I Experiment II 

Method AA(%) AA(%) 

Yi 's method in [27] 96.02 83.85 

Zaki 's method in [29] 24.46 23.26 

Denoyer's method in [8] +upgrade 93.81 81.49 

Theobald's method in [20] 89.02 84.23 

This method 97.01 89.14 

Table 4.4: AA scores of different methods on Data Set 2 
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We also note that, in the general case, the decreases in performance from Exper­

iment I to Experiment II for Data Set 1 are more severe than those for Data Set 2. 

This is because the documents in Data Set 1 are collected from some professional 

web sites, which may prefer different tag structures to be used in their documents to 

serve their own purposes, even for a single topic. On the other hand, the documents 

in Data Set 2 are collected from a group of news web sites, which have identical goals 

of disseminating news. Thus, the tag structures between them more or less exhibit 

some patterns. For example, many of them use the structural pattern like (((title)", 

(((description)", etc. 

4.5.3 m-AA chart 

In our method, the similarities are evaluated for the key paths, which are constructed 

based on the top m key terms in each class, where m is a parameter that must be 

supplied by users. Thus, it is of interest to examine how the performance of our 

algorithm depends on the number of key terms used. For this purpose, we conduct 

Experiment I for both data sets for different m values. Depicted in Figure 4.1 and 

4.2 are the results for Data Set 1 and 2, respectively. 

From the figures, we can observe that we must use sufficient numbers of key terms 

to achieve acceptable performances. For Data Set 1, once the number of key terms 

reaches 20, very high accuracy is attained. When 40 or more key terms are used, 

maximum accuracy is generated. For Data Set 2, the maximum accuracy is reached 

when 60 key terms are selected. Thus, both data sets indicate that too small a set 

of key terms is not adequate to characterize the containing class. However, they are 
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not consistent in the results generated by large key term sets. In Data Set 1, once 

the number of key terms reaches 50, the accuracy reaches the maximum and stays 

at that level, whereas in Data Set 2, when more than 100 key terms are used, the 

performance will deteriorate slowly as the number of key terms used increases. This 

can be explained as follows. The tag structures in Data Set 1 are quite discriminative 

from class to class. Even though additional but less informative terms are used, 

the structural information contained in the key paths built on the entire set of key 

terms is enough for accurate classifications. However, this is not the case in Data 

Set 2, where the tag structures are not as discriminative. Thus, when a lot of non­

informative terms are used, the noises introduced into the key paths deteriorate the 

performances. At this point, we do not know how to derive an optimal key term set 

in the general case. In practice, users can select a good key term set by pooling, i.e., 

select the key terms incrementally, and evaluate the performance for each set. The 

set with the best performance can then be identified as the one for the purpose of 

actual classifications. 
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m-AA chart for Data Set 1 
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Figure 4.1: m-AA chart for Data Set 1 

m-AA chart for Data Set 2 
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Figure 4.2: m-AA chart for Data Set 2 
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Chapter 5 

Conclusion 

We introduce a bottom-up approach for XML document classification. Our method 

places substantially more weight on the textual components than many existing ap­

proaches. This is based on the observation that, in many cases, the most informative 

components are embedded in the text. We first search for the terms that can best 

characterize a class. We then substantiate them with the structural information con­

tained in the tag structures. The actual classification is based on similarity match. 

Our experiments show that this approach is less sensitive to the un/ availability of the 

structural information to be learned during the learning process. This is beneficial in 

the cases where the documents may follow highly diverse structures. 

For the XML documents whose structures present discriminative information to 

classes, this scheme works quite well. For the XML documents whose leaf nodes con­

tain text information that is discriminative, this scheme performs well too. However, 

since different data sets have different key term sets, with respect to the classification 

effectiveness affected by the sizes of the key term sets, the sizes of key term sets need 
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to be determined case by case experimentally. 

In XML document classification, structures play a very important role as we 

showed in the related work. We propose a new way to utilize the structure informa­

tion in the tags of the XML documents. For the XML documents in the classification, 

there are two extreme cases, i.e., documents share the same structures or, do not have 

any structure in common. The former case indicates that the XML documents come 

from the same source, and the latter one indicates the diverse sources of the XML 

documents. In most of the real cases, this can be relaxed, but cannot be either of the 

cases. That means the real situation will be in the middle of these two cases, which is 

the case we assumed in our research: documents from the same category have closer 

structures than the ones from different categories. This thesis gives a bottom-up 

method to classify the XML documents in this situation. We analyze this method 

from both theoretical perspective and experimental results. The experimental results 

show it is more effective than the commonly used top-down approaches. 

The future research can be in the following directions: finding the key terms more 

effectively and efficiently, the key terms here can be not only a single word but a 

phrase as well; a better measurement mechanism for the relativeness between the key 

terms and the categories; deciding the threshold for the document-category distance 

when a document can belong to multiple categories. 
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